Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Giới hạn. Hàm số liên tục gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính giới hạn \lim_{x ightarrow -
\infty}\frac{2x + 1}{x + 1}.

    Ta có: \lim_{x ightarrow -\infty}\dfrac{2x + 1}{x + 1} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{1}{x}}{1 + \dfrac{1}{x}} = 2.

  • Câu 2: Nhận biết

    Tính giới hạn \lim\frac{n + 2}{n^{2} + n + 1}

    Ta có:

    \lim \frac{{n + 2}}{{{n^2} + n + 1}}= \lim \dfrac{{n\left( {1 + \dfrac{2}{n}} ight)}}{{{n^2}\left( {1 + \dfrac{1}{n} + \dfrac{2}{{{n^2}}}} ight)}}

    = \lim\left( \dfrac{1}{n}.\dfrac{1 +\dfrac{2}{n}}{1 + \dfrac{1}{n} + \dfrac{2}{n^{2}}} ight) = 0

  • Câu 3: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{4^{n - 1}}{5^{n -
2}}. Tính \lim_{n ightarrow +
\infty}u_{n}.

    Ta có:

    \lim_{n ightarrow + \infty}u_{n} =
\lim_{n ightarrow + \infty}\frac{4^{n - 1}}{5^{n - 2}} = \lim_{n
ightarrow + \infty}\left( \left( \frac{4}{5} ight)^{n}.\frac{4^{-
1}}{5^{- 2}} ight) = 0

  • Câu 4: Thông hiểu

    Cho a,b là các số thực khác 0. Tìm điều kiện của a,b để giới hạn \lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} -
3x} + ax}{bx - 1} = 3

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} - 3x} + ax}{bx - 1} = 3

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 - \dfrac{3}{x}} + a}{b - \dfrac{1}{x}} =3

    \Leftrightarrow \frac{- 1 + a}{b} =
3

    \Leftrightarrow \frac{a - 1}{b} =
3

  • Câu 5: Thông hiểu

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left| x ight|\sqrt {1 + \dfrac{2}{x}}  + 3x}}{{\left| x ight|\sqrt {1 + \dfrac{1}{x}}  - x + 2}} \hfill \\ \end{matrix}

    = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {1 + \dfrac{2}{x}}  + 3}}{{\sqrt {1 + \dfrac{1}{x}}  - 1 + \dfrac{2}{x}}} = \frac{{ - 2}}{3}

  • Câu 6: Thông hiểu

    Số điểm gián đoạn của hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\begin{matrix}
x^{2} + 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ 0 \leq x \leq 2 \\
3x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 2 \\
\end{matrix} \\
\end{matrix} ight. là:

    Hàm số xác định trên \mathbb{R}

    Dễ thấy hàm số liên tục trên mỗi khoảng (
- \infty;0),(0;2),(2; + \infty)

    Ta có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x} ight) = 0 \hfill \\
  f\left( 0 ight) = 1 \hfill \\ 
\end{matrix}  ight.

    => Hàm số gián đoạn tại x =
0

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 1} ight) = 5 \hfill \\
  f\left( 2 ight) = 5 \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {3x - 1} ight) = 5 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
2

    Vậy có 1 điểm gián đoạn.

  • Câu 7: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 8: Thông hiểu

    Giá trị của A =
\lim\frac{2n^{2} + 3n + 1}{3n^{2} - n + 2} bằng:

    Ta có:

    A = \lim\frac{2 + \frac{3}{n} +
\frac{1}{n^{2}}}{3 - \frac{1}{n} + \frac{2}{n^{2}}} =
\frac{2}{3}

  • Câu 9: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 10: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 11: Nhận biết

    \lim_{x ightarrow 1^{+}}\frac{x + 1}{x
- 1} bằng

    Đặt f(x) = x + 1;g(x) = x -
1.

    Ta có \lim_{x ightarrow 1^{+}}f(x) =
2;\lim_{x ightarrow 1^{+}}g(x) = 0;g(x) > 0 khi x ightarrow 1^{+}

    Vậy \lim_{x ightarrow 1^{+}}\frac{x +
1}{x - 1} = + \infty.

  • Câu 12: Thông hiểu

    Tính giới hạn B =
\lim_{x ightarrow - \infty}\left( 2x^{2} - x^{2} + x - 3
ight).

    Ta có:

    B = \lim_{x ightarrow - \infty}\left(
2x^{2} - x^{2} + x - 3 ight)

    B = \lim_{x ightarrow -
\infty}\left\lbrack x^{3}\left( 2 - \frac{1}{x} + \frac{1}{x^{3}} -
\frac{3}{x^{3}} ight) ightbrack

    Ta lại có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{3}{{{x^3}}}} ight) = 2 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow B = \lim_{x ightarrow -
\infty}\left( 2x^{2} - x^{2} + x - 3 ight) = - \infty

  • Câu 13: Vận dụng

    Tính giới hạn \lim_{x ightarrow 2}\frac{\sqrt{x - 1} + x^{4} -
3x^{3} + x^{2} + 3}{\sqrt{2x} - 2}

    Ta có:

    \frac{\sqrt{x - 1} + x^{4} - 3x^{3} +
x^{2} + 3}{\sqrt{2x} - 2}

    = \frac{\sqrt{x - 1} - 1}{\sqrt{2x} - 2}
+ \frac{x^{4} - 3x^{3} + x^{2} + 4}{\sqrt{2x} - 2}

    = \frac{(x - 2)\left( \sqrt{2x} + 2
ight)}{(2x - 4)\left( \sqrt{x - 1} + 1 ight)} + \frac{(x - 2)\left(
x^{3} - x^{2} - x - 2 ight)\left( \sqrt{2x} + 2 ight)}{2x -
4}

    = \frac{\sqrt{2x} + 2}{2\left( \sqrt{x -
1} + 2 ight)} + \frac{\left( x^{3} - x^{2} - x - 2 ight)\left(
\sqrt{2x} + 2 ight)}{2}

    Do đó \lim_{x ightarrow 2}\frac{\sqrt{x
- 1} + x^{4} - 3x^{3} + x^{2} + 3}{\sqrt{2x} - 2} = 1

  • Câu 14: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 15: Nhận biết

    Xét tính liên tục của hàm số f(x) = \left\{ \begin{matrix}
1 - \cos x\ \ \ khi\ x \leq 0 \\
\sqrt{x + 1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 0 \\
\end{matrix} ight.. Khẳng định nào sau đây đúng?

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: f(x) liên tục trên ( - \infty;0)(0; + \infty)

    Mặt khác

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\sqrt{x + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( 1 - \cos x ight) = 0

    Vậy hàm số gián đoạn tại x = 1

  • Câu 16: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2}}}{x}{\text{           khi }}x < 1,x e 0} \\ 
  \begin{gathered}
  {\text{0      khi }}x = 0 \hfill \\
  \sqrt x {\text{   khi }}x \geqslant 1 \hfill \\ 
\end{gathered}  
\end{array}} ight.. Hàm số f(x) liên tục tại:

    Tập xác định D\mathbb{= R}

    Dễ thấy hàm số y = f(x) liên tục trên mỗi khoảng ( - \infty;0),(0;1);(1; +
\infty)

    Ta có:

    f(0) = 0

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{-}}(x) =
0

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{+}}(x) =
0

    Vậy hàm số liên tục tại x = 0

    Tương tự ta có:

    f(1) = 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 1^{-}}(x) =
1

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\sqrt{x} = 1

    Vậy hàm số liên tục tại x = 1

    Vậy hàm số đã cho liên tục trên tập số thực.

  • Câu 17: Nhận biết

    Hàm số nào không liên tục tại x = 2?

    Ta có hàm số y = \frac{x^{2}}{x -
2} không xác định tại x =
2 nên hàm số không liên tục tại x =
2

    NB

  • Câu 18: Thông hiểu

    Tính giới hạn của \lim\frac{1 + 3 + 5 + \ldots + (2n + 1)}{3n^{2} +
4}

    Ta có:

    \lim\frac{1 + 3 + 5 + \ldots + (2n +1)}{3n^{2} + 4}

    = \lim\dfrac{n^{2}}{3n^{2} + 4}

    = \lim\dfrac{1}{3 +\dfrac{4}{n^{2}}} = \frac{1}{3}

  • Câu 19: Vận dụng

    Tìm các giá trị nguyên của a thuộc (0;20)sao cho \lim\sqrt{3 + \frac{a.n^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là một số nguyên?

    Ta có:

    \left\{ \begin{matrix}\lim\left( \dfrac{a.n^{2} - 1}{3 + n^{2}} ight) = \lim\dfrac{a -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = a \\\lim\left( \dfrac{1}{2^{n}} ight) = \lim\left( \dfrac{1}{2} ight)^{n}= 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{a.n^{2}
- 1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + a}

    Ta có: \left\{ \begin{matrix}
a \in (0;20),a\mathbb{\in Z} \\
\sqrt{a + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 1;6;13
ight\}

    Vậy có ba giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 20: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 21: Thông hiểu

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

  • Câu 22: Nhận biết

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}  {2{x^3} - 2x{\text{  }}khi{\text{ }}x \geqslant 1} \\   {{x^3} - 2x{\text{   }}khi{\text{ }}x < 1} \end{array}} ight.. Khi đó \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) bằng:

    Ta có:

    \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} - 2x} ight) =  - 1

  • Câu 23: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x)=\frac{x^{3}-3x+2}{x-1} với mọi xeq 1. Tính f(1)

     Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3x + 2}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x + 2} ight){{\left( {x - 1} ight)}^2}}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \left( {x + 2} ight)\left( {x - 1} ight) = 0 \hfill \\ \end{matrix}

    Do hàm số đã cho xác định và liên tục trên \mathbb{R}

    => Hàm số liên tục tại x = 1

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) = f\left( 1 ight) = 0

  • Câu 24: Thông hiểu

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    a) Ta có:

    \lim\dfrac{2n^{2} + 1}{3n^{3} - 3n + 3} =\lim\dfrac{n^{3}\left( \dfrac{2}{n} + \dfrac{1}{n^{3}} ight)}{n^{3}\left(3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}} ight)}

    = \lim\dfrac{\dfrac{2}{n} +\dfrac{1}{n^{3}}}{3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}}} = \dfrac{0}{3} =0

    b) Ta có:

    \lim\dfrac{n\sqrt{n^{2} +1}}{\sqrt{4n^{4} - n^{2} + 3}} = \lim\dfrac{n^{2}\sqrt{1 +\dfrac{1}{n^{2}}}}{n^{2}\sqrt{4 - \dfrac{1}{n^{2}} +\dfrac{3}{n^{4}}}}

    = \lim\dfrac{\sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{4 - \dfrac{1}{n^{2}} + \dfrac{3}{n^{4}}}} =\dfrac{1}{2}.

    c) Phương trình lượng giác \cos x =
0 có một nghiệm là x =
\frac{\pi}{2}

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = 0, thì u_{3} = 0 + 2.\frac{1}{2} =
1

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức B = \lim\left\lbrack \sqrt{n}\left( \sqrt{n + 1} -
\sqrt{n - 1} ight) ightbrack

    B = \lim\left\lbrack \sqrt{n}\left(
\sqrt{n + 1} - \sqrt{n - 1} ight) ightbrack

    B = \lim\frac{\sqrt{n}\left( \sqrt{n +
1} - \sqrt{n - 1} ight)\left( \sqrt{n + 1} + \sqrt{n - 1}
ight)}{\sqrt{n + 1} + \sqrt{n - 1}}

    B = \lim\frac{2\sqrt{n}}{\sqrt{n + 1} +
\sqrt{n - 1}}

    B =\lim\dfrac{\dfrac{2\sqrt{n}}{\sqrt{n}}}{\dfrac{\sqrt{n + 1} + \sqrt{n -1}}{\sqrt{n}}}

    B = \lim\dfrac{2}{\sqrt{1 + \dfrac{1}{n}}+ \sqrt{1 - \dfrac{1}{n}}}

    B = \frac{2}{1 + 1} = 1

  • Câu 26: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 27: Thông hiểu

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow + \infty}\left(
x^{2} + 3 ight) = + \infty. Đúng||Sai

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - x ight) = - \infty. Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{1}{x + 2} = 0. Đúng||Sai

    d) \lim_{x ightarrow +
\infty}\sqrt{\frac{2x}{x + 3}} = 2. Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow + \infty}\left(
x^{2} + 3 ight) = + \infty. Đúng||Sai

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - x ight) = - \infty. Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{1}{x + 2} = 0. Đúng||Sai

    d) \lim_{x ightarrow +
\infty}\sqrt{\frac{2x}{x + 3}} = 2. Sai||Đúng

    a) \lim_{x ightarrow + \infty}\left(
x^{2} + 3 ight) = \lim_{x ightarrow + \infty}x^{2}\left( 1 +
\frac{3}{x^{2}} ight) = + \infty, do \lim_{x ightarrow + \infty}x^{2} = +
\infty\lim_{x ightarrow +
\infty}\left( 1 + \frac{3}{x^{2}} ight) = 1.

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - x ight) = \lim_{x ightarrow - \infty}\left( -
x\sqrt{1 + \frac{1}{x}} - x ight)

    = \lim_{x ightarrow - \infty}x\left( -
\sqrt{1 + \frac{1}{x}} - 1 ight) = + \infty

    Do \lim_{x ightarrow - \infty}x = -
\infty\lim_{x ightarrow -
\infty}\left( - \sqrt{1 + \frac{1}{x}} - 1 ight) = - 2.

    c) \lim_{x ightarrow -
\infty}\frac{1}{x + 2} = \lim_{x ightarrow - \infty}\frac{x \cdot
\frac{1}{x}}{x\left( 1 + \frac{2}{x} ight)} = \lim_{x ightarrow -
\infty}\frac{\frac{1}{x}}{1 + \frac{2}{x}} = 0.

    d) \lim_{x ightarrow +
\infty}\sqrt{\frac{2x}{x + 3}} = \lim_{x ightarrow +
\infty}\sqrt{\frac{2x}{x\left( 1 + \frac{3}{x} ight)}} = \lim_{x
ightarrow + \infty}\sqrt{\frac{2}{1 + \frac{3}{x}}} =
\sqrt{2}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 28: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    a) Ta có: \lim_{x ightarrow
1}\left\lbrack f(x) + g(x) ightbrack = \lim_{x ightarrow 1}f(x) +
\lim_{x ightarrow 1}g(x) = - 1

    b) Ta có:

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack\lim_{x ightarrow a^{+}}f(x) = f(a);\lim_{x
ightarrow b^{-}}f(x) = f(b)

    c) \lim_{x ightarrow -\infty}\dfrac{3x^{4} - 2x}{5x + 1} = \lim_{x ightarrow -\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} ight)}{x\left( 5 +\dfrac{1}{x} ight)} = \lim_{x ightarrow - \infty}\left( x^{3}.\dfrac{3- \dfrac{2}{x^{3}}}{5 + \dfrac{1}{x}} ight)

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{3 - \frac{2}{{{x^3}}}}}{{5 + \frac{1}{x}}}} ight) = \frac{3}{5} > 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^4} - 2x}}{{5x + 1}} =  - \infty

    d) Ta có:

    f(x) + 2f\left( \frac{1}{x} ight) =
3x;(x eq 0)(*)

    \Rightarrow f\left( \frac{1}{x} ight)
+ 2f(x) = \frac{3}{x};(x eq 0)(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\f\left( \dfrac{1}{x} ight) + 2f(x) = \dfrac{3}{x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\2f\left( \dfrac{1}{x} ight) + 4f(x) = \dfrac{6}{x} \\\end{matrix} ight.

    \Rightarrow f(x) = - x +
\frac{2}{x}

    Do đó: \lim_{x ightarrow\sqrt{2}}\dfrac{f(x)}{x - \sqrt{2}} = \lim_{x ightarrow \sqrt{2}}\left(\dfrac{- x + \dfrac{2}{x}}{x - \sqrt{2}} ight)

    = \lim_{x ightarrow \sqrt{2}}\frac{-
\left( x - \sqrt{2} ight)\left( x + \sqrt{2} ight)}{x\left( x -
\sqrt{2} ight)} = \lim_{x ightarrow \sqrt{2}}\frac{- \left( x -
\sqrt{2} ight)}{x} = - 2

  • Câu 29: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 1}  - x) bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 1}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 1}  - x} ight)\left( {\sqrt {{x^2} + 1}  + x} ight)}}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{{{x^2}}}}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    a) Ta có:

    f(x) = \frac{x + 1}{x^{2} + 7x +
12} có điều kiện xác định

    ( - \infty; - 4) \cup ( - 4; - 3) \cup (
- 3; + \infty)

    Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.

    b) Đặt 3x^{4} + 5x^{3} + 10 =
f(x)

    f(x) liên tục trên tập số thực nên f(x) liên tục trên \lbrack - 2; - 1brack\ \ (*)

    Ta có: f( - 2) = - 126;f( - 1) =
2

    \Rightarrow f( - 2).f( - 1) <
0(**)

    Từ (*) và (**) suy ra phương trình f(x) =
0 có nghiệm thuộc ( - 2; -
1).

    c) Ta có:

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( x^{2} - 3x ight) = - 2

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x - 1) = 1

    Vậy không tồn tại giới hạn của hàm số khi x ightarrow 2

    d) Ta có: với n chẵn

    \lim u_{n} = \lim\left\lbrack ( -
1)^{n}\sqrt{n} ightbrack = + \infty

    Với n lẻ \lim u_{n} = \lim\left\lbrack (
- 1)^{n}\sqrt{n} ightbrack = - \infty

    Suy ra dãy số không bị chặn.

  • Câu 31: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 32: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 33: Thông hiểu

    Tính giới hạn của hàm số f(x) = \frac{\sqrt{4x^{2} + 1}}{x + 1} khi x \mapsto - \infty.

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{\sqrt{4x^{2} + 1}}{x +
1}

    = \lim_{x ightarrow -\infty}\dfrac{|x|\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1} = \lim_{x ightarrow- \infty}\dfrac{- x\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}} = \dfrac{- \sqrt{4}}{1} = -2

  • Câu 34: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x^{2} + 3x + 30\ \ \ \ khi\ \ x \geq 2 \\
x + 3a + 4\ \ \ \ khi\ \ x \leq 2 \\
\end{matrix} ight.. Khi hàm số liên tục trên \mathbb{R} thì a \in (m;n) ( với m,n là hai số nguyên liên tiếp). Tính 100(m + n).

    Đáp án: 2500

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x^{2} + 3x + 30\ \ \ \ khi\ \ x \geq 2 \\
x + 3a + 4\ \ \ \ khi\ \ x \leq 2 \\
\end{matrix} ight.. Khi hàm số liên tục trên \mathbb{R} thì a \in (m;n) ( với m,n là hai số nguyên liên tiếp). Tính 100(m + n).

    Đáp án: 2500

    TXĐ: D\mathbb{= R}

    Hàm số liên tục khi x eq 2

    Xét tại x = 2

    Ta có: f\left( 2 ight) = 44; \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( 2x^{2} + 3x + 30 ight) = 44;\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x + 3a + 4) = 3a + 6

    Để hàm số liên tục trên \mathbb{R} thì \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)

    \Leftrightarrow 3a + 6 = 44
\Leftrightarrow a = \frac{38}{3} \in (12;13)

    \Rightarrow \left\{ \begin{matrix}
m = 12 \\
n = 13 \\
\end{matrix} ight.\  \Rightarrow 100(m + n) = 2500

    Đáp án: 2500.

  • Câu 35: Thông hiểu

    Phương trình nào dưới đây có nghiệm trong khoảng (0; 1)?

    Xét hàm số f(x) = 3x^{2017} - 8x +
4 liên tục trên \mathbb{R}.

    \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) = - 4 < 0

    => Phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 36: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Theo nội dung định lý tìm giới hạn, ta có:

    Nếu \lim u_{n} = 0, thì \lim{|u_{n}|} = 0

  • Câu 37: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 38: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 39: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 40: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo