Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Giới hạn. Hàm số liên tục gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}}=?

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\sqrt {4 + \dfrac{1}{{{x^2}}}}  - x\sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} }}{{x\left( {2 - \dfrac{5}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {1 + \dfrac{5}{x}} }}{{2 - \dfrac{5}{x}}} = \dfrac{2}{2} = 1 \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Tính giới hạn M =
\lim_{x ightarrow + \infty}\left( \frac{cx^{2} + a}{x^{2} + b}
ight).

    Ta có:

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

  • Câu 3: Nhận biết

    Tính giới hạn M
= \lim_{x ightarrow 2}\frac{x^{2} - 4}{x - 2}.

    Ta có:

    M = \lim_{x ightarrow 2}\frac{x^{2} -
4}{x - 2} = \lim_{x ightarrow 2}\frac{(x - 2)(x + 2)}{x - 2} = \lim_{x
ightarrow 2}(x + 2) = 4

  • Câu 4: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 5}  - x) bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 5}  - x} ight)\left( {\sqrt {{x^2} + 5}  + x} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Giá trị của D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n} bằng:

    Ta có:

    D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n}  

    = \lim\dfrac{n\left( \sqrt{1 + \dfrac{1}{n^{2}}} - \sqrt[3]{3 +\dfrac{2}{n^{3}}} ight)}{n\left( \sqrt[4]{2 + \dfrac{1}{n^{3}} +\dfrac{2}{n^{4}}} - 1 ight)}

       =\frac{1 - \sqrt[3]{3}}{\sqrt[4]{2} -1}

  • Câu 6: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {3x - 5}&{{\text{ }}khi{\text{ }}x \leqslant  - 2} \\   {mx + 3}&{{\text{ }}khi{\text{ }}x >  - 2} \end{array}} ight.. Giá trị của m để hàm số đã cho liên tục tại x = -2 là:

    Ta có:

     \begin{matrix}  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3x - 5} ight) = -11 \hfill \\  f\left( { - 2} ight) = -11 \hfill \\  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \left( {mx + 3} ight) =  - 2m + 3 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=-2 thì 

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = f\left( { - 2} ight)

    \Leftrightarrow  - 2m + 3 = -11 \Rightarrow m = 7

  • Câu 7: Vận dụng

    Xác định giới hạn của dãy số \lim\left\lbrack \frac{1}{1.2} + \frac{1}{2.3} +
... + \frac{1}{n(n + 1)} ightbrack là:

    Ta có:

    \lim\left\lbrack \frac{1}{1.2} +
\frac{1}{2.3} + ... + \frac{1}{n(n + 1)} ightbrack

    = \lim\left\lbrack 1 - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}
ightbrack

    = \lim\left( 1 - \frac{1}{n + 1} ight)
= 1

  • Câu 8: Thông hiểu

    Giá trị của giới hạn \lim(\sqrt{n^{2}-1}-\sqrt{3n^{2}+2}) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - 1}  - \sqrt {3{n^2} + 2} } ight) \hfill \\   = \lim \left[ {n\left( {\sqrt {1 - \dfrac{1}{{{n^2}}}}  - \sqrt {3 + \dfrac{2}{{{n^2}}}} } ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ \begin{gathered}  \lim n =  + \infty  \hfill \\  \lim \left( {\sqrt {1 - \frac{1}{{{n^2}}}}  - \sqrt {3 + \frac{2}{{{n^2}}}} } ight) = 1 - \sqrt 3  < 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim f\left( x ight) =  - \infty  \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 10: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 11: Nhận biết

    Nếu hàm số f(x) thỏa mãn \lim_{x ightarrow 1}f(x) = 3 thì \lim_{x ightarrow 1}3f(x) bằng

    Ta  có:

    \lim_{x ightarrow 1}3f(x) =
3\lim_{x ightarrow 1}f(x) = 9.

  • Câu 12: Vận dụng

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    a) Đúng.

    \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 3^{2} - 3 + 3 = 9

    b) Sai.

    \lim_{x ightarrow 1}\left( 3f(x) -
5g(x) ight) = 3.2 - 5.4 = - 14

    c) Sai.

    \lim_{x ightarrow 2}\frac{\sqrt{4x +
1} - 3}{x^{2} - 4} = \lim_{x ightarrow 2}\frac{4x + 1 - 9}{(x - 2)(x +
2)(\sqrt{4x + 1} + 3)}

    = \lim_{x ightarrow 2}\frac{4}{(x +
2)(\sqrt{4x + 1} + 3)} = \frac{1}{6}

    d) Đúng.

    Xét thấy x = 2 là nghiệm của phương trình x^{2} - 3x + 2 = 0 (mẫu số) nên x = 2 cũng là một nghiệm của phương trình 2x^{2} - ax + 4 =
0 (tử số) \Rightarrow a = 6.

    Khi đó:

    \lim_{x ightarrow 2}\frac{2x^{2} - ax +4}{x^{2} - 3x + 2} = \lim_{x ightarrow 2}\frac{2x^{2} - 6x + 4}{x^{2}- 3x + 2} = 2.

    Vậy a = 6;b = 2 \Rightarrow a^{2} + b^{2}
= 36 + 4 = 40.

  • Câu 13: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 14: Vận dụng

    Tính tổng S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ... .

    Ta có:

    S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ...

    = 9\left( {\underbrace {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^{n - 1}}}} + ...}_{CSN:{u_1} = 1;q = \frac{1}{3}}} ight)

    = 9.\left( \dfrac{1}{1 - \dfrac{1}{3}}ight) = \dfrac{27}{2}

  • Câu 15: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{2x + 1}{x - 1}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow +\infty}\left( \dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) =2

  • Câu 16: Vận dụng

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Đáp án là:

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Hàm số y = f(x) có TXĐ D\mathbb{= R}.

    Hàm số f(x) = \frac{x(x + 1)}{x^{2} -
1} liên tục trên mỗi khoảng ( -
\infty; - 1), ( - 1;1)(1; + \infty).

    (i) Xét tại x = - 1, ta có \lim_{x ightarrow - 1}f(x) = \lim_{x ightarrow
- 1}\frac{x(x + 1)}{x^{2} - 1} = \lim_{x ightarrow - 1}\frac{x}{x - 1}
= \frac{1}{2} = f( - 1)\overset{}{ightarrow} Hàm số liên tục tại x = - 1.

    (ii) Xét tại x = 1, ta có 

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{x}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{x}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. \toHàm số y = f(x) gián đoạn tại x = 1.

    Vậy số điểm gián đoạn cần tìm là 1.

  • Câu 17: Thông hiểu

    Cho dãy số \left(
u_{n} ight) với u_{n} =
\frac{n}{4^{n}}\frac{u_{n +
1}}{u_{n}} < \frac{1}{2}. Chọn giá trị đúng của \lim u_{n} trong các số sau:

    Áp dụng phương pháp quy nạp toán học ta có n \leq 2^{n},\ \forall n \in N

    Nên ta có :

    n \leq 2^{n} \Leftrightarrow
\frac{n}{2^{n}} \leq 1 \Leftrightarrow \frac{n}{2^{n}.2^{n}} \leq
\frac{1}{2^{n}} \Leftrightarrow \frac{n}{4^{n}} \leq \left( \frac{1}{2}
ight)^{n}

    Suy ra : 0 < u_{n} \leq \left(
\frac{1}{2} ight)^{n}, mà \lim\left( \frac{1}{2} ight)^{n} = 0

    Vậy \lim u_{n} = 0.

  • Câu 18: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 19: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 20: Thông hiểu

    Tìm giá trị nhỏ nhất của a để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 5x + 6}{\sqrt{4x - 3} - x}\ \ \ khi\ x > 3 \\1 - a^{2}x\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 3 \\\end{matrix} ight. liên tục tại x = 3.

    Điều kiện bài toán trở thành \lim_{x
ightarrow 3^{+}}f(x) = \lim_{x ightarrow 3^{-}}f(x) = f(3)\ \
(*)

    Ta có:

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{x
ightarrow 3^{+}}\frac{x^{2} - 5x + 6}{\sqrt{4x - 3} - x} = \lim_{x
ightarrow 3^{+}}\frac{(x - 2)\left( \sqrt{4x - 3} + x ight)}{1 - x}
= - 3

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{x
ightarrow 3^{-}}\left( 1 - a^{2}x ight) = 1 - 3a^{3}

    f(3) = 1 - 3a^{2}

    Khi đó (*) \Leftrightarrow a = \pm
\frac{2}{\sqrt{3}} \Rightarrow a_{\min} = -
\frac{2}{\sqrt{3}}

  • Câu 21: Thông hiểu

    Hàm số nào dưới đây không liên tục trên khoảng ( - 1;1)?

    Xét hàm số y = \left\{ \begin{matrix}
\sin x\ \ \ \ khi\ x \geq 0 \\
\cos x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight. với x \in (
- 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \cos x = 1 \hfill \\ 
\end{gathered}  ight.

    Suy ra không tồn tại \lim_{x ightarrow
0}f(x) nên hàm số không liên tục tại x = 0

    Vậy hàm số không liên tục trên ( -
1;1).

  • Câu 22: Thông hiểu

    Giá trị của A =
\lim\frac{2n^{2} + 3n + 1}{3n^{2} - n + 2} bằng:

    Ta có:

    A = \lim\frac{2 + \frac{3}{n} +
\frac{1}{n^{2}}}{3 - \frac{1}{n} + \frac{2}{n^{2}}} =
\frac{2}{3}

  • Câu 23: Thông hiểu

    \lim\sqrt{4-\frac{\cos2n}{n}} bằng số nào sau đây?

    Ta có: 0 \leqslant \left| {\frac{{\cos 2n}}{n}} ight| \leqslant \frac{1}{n} \to 0

    \Rightarrow \lim \sqrt {4 - \frac{{\cos 2n}}{n}}  = 2

  • Câu 24: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 25: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 26: Vận dụng

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Đáp án là:

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5nên f(x) - 10\overset{x
ightarrow 1}{ightarrow}5(x - 1)hay f(x)\overset{x ightarrow 1}{ightarrow}5x +
5

    Do đó

    \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4f(x) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5x + 5 -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4(5x + 5) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5(x -
1)\left( \sqrt{x} + 1 ight)}{(x - 1)\left( \sqrt{20x + 29} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5\left(
\sqrt{x} + 1 ight)}{\left( \sqrt{20x + 29} + 3 ight)} =
1.

  • Câu 27: Thông hiểu

    Giá trị của C =\lim\frac{\sqrt[4]{3n^{3} + 1} - n}{\sqrt{2n^{4} + 3n + 1} + n} bằng:

    Chia cả tử và mẫu cho n^{2} ta có được.

    C = \lim\frac{\sqrt[4]{\dfrac{3}{n^{5}} +\dfrac{1}{n^{8}}} - \dfrac{1}{n}}{\sqrt{2 + \dfrac{3}{n^{3}} +\dfrac{1}{n^{4}}} + \dfrac{1}{n}} = 0

  • Câu 28: Nhận biết

    Cho các giới hạn \lim_{x ightarrow x_{0}}f(x) = 2;\lim_{x
ightarrow x_{0}}g(x) = 3. Tính giá trị biểu thức T = \lim_{x ightarrow x_{0}}\left\lbrack 3f(x) -
4g(x) ightbrack

    Ta có:

    T = \lim_{x ightarrow
x_{0}}\left\lbrack 3f(x) - 4g(x) ightbrack

    \Rightarrow T = 3\lim_{x ightarrow
x_{0}}f(x) - 4\lim_{x ightarrow x_{0}}g(x) = 6 - 12 = - 6

  • Câu 29: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 30: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}\sin \dfrac{1}{x}}&{{\text{ }}khi{\text{ }}x e 0} \\   m&{{\text{ }}khi{\text{ }}x = 0} \end{array}} ight. liên tục tại x = 0

    Với mọi x e 0 ta có:

    0 \leqslant \left| {f(x)} ight| \leqslant \left| {{x^2}\sin \frac{1}{x}} ight| \leqslant {x^2} \to 0 khi x \to 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = 0

    Theo giả thiết ta phải có: \mathop {m = f\left( 0 ight) = \lim }\limits_{x \to 0} f\left( x ight) = 0

  • Câu 31: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 32: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 33: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 34: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 35: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \left[ {x(\sqrt {{x^2} + 5}  - x)} ight] bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{x\left( {\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt 1  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 37: Nhận biết

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 38: Nhận biết

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 39: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để\lim\sqrt{\frac{9^{n} + 3^{n +
1}}{5^{n} + 9^{n + a}}} \leq \frac{1}{2187}.

    Ta có: \dfrac{9^{n} + 3^{n + 1}}{5^{n} +9^{n + a}} > 0;\forall n \in \mathbb{N}^{*}nên

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} = \sqrt{\lim\dfrac{9^{n} + 3^{n + 1}}{5^{n} + 9^{n +a}}}

    = \sqrt{\lim\dfrac{1 + 3.\left(\dfrac{1}{3} ight)^{n}}{\left( \dfrac{5}{9} ight)^{n} + 9^{a}}} =\sqrt{\dfrac{1}{9^{a}}} = \dfrac{1}{3^{a}}

    Theo đề bài ta có

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} \leq \dfrac{1}{2187}

    \begin{matrix}
   \Leftrightarrow \dfrac{1}{{{3^a}}} \leqslant \dfrac{1}{{2187}} \Leftrightarrow {3^a} \geqslant 2187 \hfill \\
   \Leftrightarrow a \geqslant 7 \hfill \\ 
\end{matrix}

    Mặt khác \left\{ \begin{matrix}
a\mathbb{\in Z} \\
a \in (0;2019) \\
\end{matrix} \Rightarrow a \in \left\{ 7;8;9;...;2018 ight\} ight.

    Vậy có tất cả 2012 giá trị nguyên thỏa mãn.

  • Câu 40: Thông hiểu

    Cho  f(x)=\frac{x}{\sqrt{x+1}-1} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( 0 ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 1}  - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 1}  + 1} ight)}}{{x + 1 - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 1}  + 1} ight) = 2 \hfill \\ \end{matrix}

    Để hàm số liên tục trên \mathbb{R} thì 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( 0 ight) = f\left( 0 ight) \hfill \\   \Leftrightarrow 2 = f\left( 0 ight) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo