Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Giới hạn. Hàm số liên tục gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 2: Thông hiểu

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    a) Ta có:

    \lim\dfrac{2n^{2} + 1}{3n^{3} - 3n + 3} =\lim\dfrac{n^{3}\left( \dfrac{2}{n} + \dfrac{1}{n^{3}} ight)}{n^{3}\left(3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}} ight)}

    = \lim\dfrac{\dfrac{2}{n} +\dfrac{1}{n^{3}}}{3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}}} = \dfrac{0}{3} =0

    b) Ta có:

    \lim\dfrac{n\sqrt{n^{2} +1}}{\sqrt{4n^{4} - n^{2} + 3}} = \lim\dfrac{n^{2}\sqrt{1 +\dfrac{1}{n^{2}}}}{n^{2}\sqrt{4 - \dfrac{1}{n^{2}} +\dfrac{3}{n^{4}}}}

    = \lim\dfrac{\sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{4 - \dfrac{1}{n^{2}} + \dfrac{3}{n^{4}}}} =\dfrac{1}{2}.

    c) Phương trình lượng giác \cos x =
0 có một nghiệm là x =
\frac{\pi}{2}

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = 0, thì u_{3} = 0 + 2.\frac{1}{2} =
1

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 3: Thông hiểu

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = \sqrt{2 + 2} - 1 = 1.

    b) Ta có:

    \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (4x - 3) \cdot
\frac{1}{x - 1} ightbrack = + \infty\lim_{x ightarrow 1^{+}}(4x - 3) = 1,\lim_{x
ightarrow 1^{+}}\frac{1}{x - 1} = + \infty.

    c) Ta có:

    \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight)

    = \lim_{x ightarrow 2^{-}}\frac{x + 2
- 1}{(x - 2)(x + 2)} = \lim_{x ightarrow 2^{-}}\frac{x + 1}{(x - 2)(x
+ 2)}

    = \lim_{x ightarrow 2^{-}}\left\lbrack
\frac{x + 1}{x + 2} \cdot \frac{1}{(x - 2)} ightbrack = -
\infty, do \left\{ \begin{matrix}\lim_{x ightarrow 2^{-}}\dfrac{x + 1}{x + 2} = \dfrac{3}{4} \\\lim_{x ightarrow 2^{-}}\dfrac{1}{x - 2} = - \infty \\\end{matrix} ight.

    d) Ta có:

    \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = \lim_{x ightarrow - 1^{-}}\frac{- x - 1}{(x - 1)(x +
1)} = \lim_{x ightarrow - 1^{-}}\frac{- 1}{x - 1} =
\frac{1}{2}.

  • Câu 4: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 5: Thông hiểu

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 6: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    a) Ta có:

    f(x) = \frac{x + 1}{x^{2} + 7x +
12} có điều kiện xác định

    ( - \infty; - 4) \cup ( - 4; - 3) \cup (
- 3; + \infty)

    Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.

    b) Đặt 3x^{4} + 5x^{3} + 10 =
f(x)

    f(x) liên tục trên tập số thực nên f(x) liên tục trên \lbrack - 2; - 1brack\ \ (*)

    Ta có: f( - 2) = - 126;f( - 1) =
2

    \Rightarrow f( - 2).f( - 1) <
0(**)

    Từ (*) và (**) suy ra phương trình f(x) =
0 có nghiệm thuộc ( - 2; -
1).

    c) Ta có:

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( x^{2} - 3x ight) = - 2

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x - 1) = 1

    Vậy không tồn tại giới hạn của hàm số khi x ightarrow 2

    d) Ta có: với n chẵn

    \lim u_{n} = \lim\left\lbrack ( -
1)^{n}\sqrt{n} ightbrack = + \infty

    Với n lẻ \lim u_{n} = \lim\left\lbrack (
- 1)^{n}\sqrt{n} ightbrack = - \infty

    Suy ra dãy số không bị chặn.

  • Câu 8: Nhận biết

    Giá trị của A =
\lim\frac{2n + 1}{n - 2} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{5}{a} + 2 > 2

    Ta có:

    \left| \frac{2n + 1}{n - 2} - 2
ight| = \frac{5}{|n - 2|} < \frac{5}{n_{a} - 2} < a\ với\ mọi\ n
> n_{a}

    Vậy A=2.

  • Câu 9: Vận dụng

    \lim_{x
ightarrow 1}\frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} bằng:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{100} - 2x
+ 1}{x^{50} - 2x + 1}

    = \lim_{x ightarrow 1}\frac{\left(
x^{100} - 1 ight) - 2(x - 1)}{\left( x^{50} - 1 ight) - 2(x -
1)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( x^{99} + x^{98} + .... + x + 1 - 2 ight)}{(x - 1)\left(
x^{49} + x^{48} + .... + x + 1 - 2 ight)}

    = \lim_{x ightarrow 1}\frac{x^{99} +
x^{98} + .... + x + 1 - 2}{x^{49} + x^{48} + .... + x + 1 - 2} =
\frac{98}{48} = \frac{49}{24}

  • Câu 10: Thông hiểu

    Giá trị của C =\lim\frac{\sqrt[4]{3n^{3} + 1} - n}{\sqrt{2n^{4} + 3n + 1} + n} bằng:

    Chia cả tử và mẫu cho n^{2} ta có được.

    C = \lim\frac{\sqrt[4]{\dfrac{3}{n^{5}} +\dfrac{1}{n^{8}}} - \dfrac{1}{n}}{\sqrt{2 + \dfrac{3}{n^{3}} +\dfrac{1}{n^{4}}} + \dfrac{1}{n}} = 0

  • Câu 11: Vận dụng

    Kết quả của giới hạn \lim\frac{2^{n + 1} + 3n + 10}{3n^{2} - n +
2}

    Ta có: 2^{n} = \sum_{k =
0}^{n}C_{n}^{k}

    \Rightarrow 2^{n} \geq C_{n}^{3} =
\frac{n(n - 1)(n - 2)}{6}\sim\frac{n^{3}}{6}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.. Khi đó:

    \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2} -n + 2} = \lim\left\lbrack \dfrac{2^{n}}{n^{2}}.\dfrac{2 + 3\left(\dfrac{n}{2^{n}} ight) + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} ightbrack = + \infty

    (vì \left\{ \begin{matrix}\lim\left\lbrack 2 + 3\left( \dfrac{n}{2^{n}} ight) + 10.\left(\dfrac{1}{2} ight)^{n} ightbrack = \dfrac{2}{3} > 0 \\\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\end{matrix} ight.)

  • Câu 12: Nhận biết

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 13: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 14: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 15: Nhận biết

    Tính \lim_{x
ightarrow 1}\frac{x^{2} + x - 2}{x - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + x -
2}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 2)}{x -
1}

    = \lim_{x ightarrow 1}(x + 2) =
3

  • Câu 16: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x)=\frac{x^{3}-3x+2}{x-1} với mọi xeq 1. Tính f(1)

     Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3x + 2}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x + 2} ight){{\left( {x - 1} ight)}^2}}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \left( {x + 2} ight)\left( {x - 1} ight) = 0 \hfill \\ \end{matrix}

    Do hàm số đã cho xác định và liên tục trên \mathbb{R}

    => Hàm số liên tục tại x = 1

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) = f\left( 1 ight) = 0

  • Câu 17: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}}=?

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\sqrt {4 + \dfrac{1}{{{x^2}}}}  - x\sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} }}{{x\left( {2 - \dfrac{5}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {1 + \dfrac{5}{x}} }}{{2 - \dfrac{5}{x}}} = \dfrac{2}{2} = 1 \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 19: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 20: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 21: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{\sqrt{2x + 1} - 1}{x}\ khi\ x eq 0 \\m^{2} - 2m + 2\ khi\ x eq 0 \\\end{matrix} ight.. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x = 0?

    Ta có: f(0) = m^{2} - 2m + 2

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\sqrt{2x + 1} - 1}{x}

    = \lim_{x ightarrow
0}\frac{2x}{x\left( \sqrt{2x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{2}{\sqrt{2x + 1} + 1} = 1

    Hàm số liên tục tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0}f(x) = f(0)

    \Leftrightarrow m^{2} - 2m + 1 = 0
\Rightarrow m = 1

  • Câu 22: Vận dụng cao

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Đáp án là:

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - 2}{(x - 1)(x - 2)} + \lim_{x ightarrow
1}\frac{2 - \sqrt{x + 3}}{(x - 1)(x - 2)}.

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - 2}{(x - 1)(x - 2)}

    = \lim_{x ightarrow 1}\frac{x + 7 -
2^{3}}{(x - 1)(x - 2)\left\lbrack \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x +
7} + 4 ightbrack}.

    = \lim_{x ightarrow 1}\frac{1}{(x -
2)\left( \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x + 7} + 4 ight)} = -
\frac{1}{12}.

    Đồng thời:

    \lim_{x ightarrow 1}\frac{2 - \sqrt{x
+ 3}}{(x - 1)(x - 2)} = \lim_{x ightarrow 1}\frac{2^{2} - (x + 3)}{(x
- 1)(x - 2)(2 + \sqrt{x + 3})}

    = \lim_{x ightarrow 1}\frac{- 1}{(x -
2)(2 + \sqrt{x + 3})} = \frac{1}{4}

    \Rightarrow \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = - \frac{1}{12}
+ \frac{1}{4} = \frac{1}{6}

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 6 \\
\end{matrix} ight..

    Vậy - 106a + b = - 106 + 6 = -
100.

  • Câu 23: Thông hiểu

    Biết rằng f(x) =\left\{ \begin{matrix}\dfrac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ khi\ x eq 1 \\\end{matrix} ight. liên tục trên \lbrack 0;1brack với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?

    Ta có:

    Hàm số xác định và liên tục trên \lbrack
0;1brack

    Khi đó f(x) liên tục trên \lbrack 0;1brack khi và chỉ khi \lim_{x ightarrow 1^{-}}f(x) = f(1)\ \ \
(*)

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} - 1}{\sqrt{x} - 1} = \lim_{x ightarrow 1^{-}}\left\lbrack (x +
1)\left( \sqrt{x} + 1 ight) ightbrack = 4

    (*) \Leftrightarrow a = 4

  • Câu 24: Thông hiểu

    Kết quả đúng của \lim\left( 5 - \frac{n.\cos{2n}}{n^{2} + 1}
ight) là:

    Xét: \frac{n}{n^{2} + 1} \leq
\frac{n.\cos{2n}}{n^{2} + 1} \leq \frac{n}{n^{2} + 1}

    Ta có: \lim\left( - \frac{n}{n^{2} + 1}ight) = \lim( - \frac{1}{n}.\frac{1}{1 + 1:n^{2}}) = 0

    Suy ra \lim\left( - \frac{n}{n^{2} + 1}
ight) = 0

    \Rightarrow \lim\left(
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 0\  \Rightarrow \lim\left( 5 -
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 5.

  • Câu 25: Thông hiểu

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x} - 1}{x - 1}\ khi\ x eq 1 \\k + 1\ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1. Xác định giá trị thực của tham số k.

    Tập xác định D = \lbrack 0; +
\infty)

    Theo giả thiết ta có:

    k + 1 = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow k + 1 = \lim_{x ightarrow
1}\left( \frac{\sqrt{x} - 1}{x - 1} ight)

    \Leftrightarrow k + 1 = \lim_{x
ightarrow 1}\left( \frac{1}{\sqrt{x} + 1} ight)

    \Leftrightarrow k + 1 = \frac{1}{2}
\Leftrightarrow k = - \frac{1}{2}

  • Câu 26: Thông hiểu

    Cho hàm số f(x) =
\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x + 2}. Tính \lim_{x ightarrow -
\infty}f(x).

    Ta có:

    \lim_{x ightarrow -
\infty}f(x)

    = \lim_{x ightarrow -
\infty}\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x +
2}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} + \sqrt{1 - \dfrac{1}{x} +\dfrac{3}{x^{2}}}}{3 + \dfrac{2}{x}}

    = \frac{- 2 + 1}{3} = -
\frac{1}{3}

  • Câu 27: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 28: Thông hiểu

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Đáp án là:

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + ax + 5} + x ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{x^{2} + ax + 5 - x^{2}}{\sqrt{x^{2} + ax + 5} - x}
ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{ax + 5}{\sqrt{x^{2} + ax + 5} - x} ight) = -
6

    \Leftrightarrow \lim_{x ightarrow -\infty}\left( \dfrac{a + \dfrac{5}{x}}{- \sqrt{1 + \dfrac{a}{x} +\dfrac{5}{x^{2}}} - 1} ight) = - 6

    \Leftrightarrow \frac{a}{- 2} = - 6
\Leftrightarrow a = 12.

    Vì vậy giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 =
0.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 29: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - 3x + 2}}{{\left| {x - 1} ight|}}{\text{   khi }}x e 1} \\   {{\text{m                  khi }}x = 1} \end{array}} ight. liên tục trên \mathbb{R}?

    Ta có:

    Hàm số f(x) liên tục trên các khoảng ( - \infty;1),(1; + \infty). Khi đó hàm số đã cho liên tục trên \mathbb{R} khi và chỉ khi nó liên tục tại x = 1, tức là ta cần có:

    \lim_{x ightarrow 1}f(x) =f(1)

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)\ \ (*)

    Ta lại có:

    f(x) = \left\{ \begin{matrix}x - 2\ \ \ khi\ x > 1 \\m\ \ \ \ \ \ \ \ khi\ x < 1 \\2 - x\ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{+}}(x - 2) = - 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{xightarrow 1^{-}}(2 - x) = 1

    Khi đó (*) không thỏa mãn với mọi m\mathbb{\in R}

    Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.

  • Câu 30: Nhận biết

    Cho các mệnh đề:

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b).

    Trong các mệnh đề trên:

    Theo tính chất hàm số liên tục thì

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0. Mệnh đề sai.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm. Mệnh đề đúng.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b). Mệnh đề đúng.

  • Câu 31: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 32: Thông hiểu

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left| x ight|\sqrt {1 + \dfrac{2}{x}}  + 3x}}{{\left| x ight|\sqrt {1 + \dfrac{1}{x}}  - x + 2}} \hfill \\ \end{matrix}

    = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {1 + \dfrac{2}{x}}  + 3}}{{\sqrt {1 + \dfrac{1}{x}}  - 1 + \dfrac{2}{x}}} = \frac{{ - 2}}{3}

  • Câu 33: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 34: Nhận biết

    Tính giới hạn \lim_{x ightarrow -
\infty}\frac{2x + 1}{x + 1}.

    Ta có: \lim_{x ightarrow -\infty}\dfrac{2x + 1}{x + 1} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{1}{x}}{1 + \dfrac{1}{x}} = 2.

  • Câu 35: Thông hiểu

    Tính giá trị giới hạn \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    Ta có:

    \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    = \lim\frac{2n^{2}}{\left(\sqrt[3]{n^{3} - 2n^{2}} ight)^{2} + n.\sqrt[3]{n^{3} - 2n^{2}} +n^{2}}

    = \lim\dfrac{- 2}{\left( \sqrt[3]{\left(1 - \dfrac{2}{n} ight)} ight)^{2} + \sqrt[3]{1 - \dfrac{2}{n}} + 1} =- \dfrac{2}{3}

  • Câu 36: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{\sqrt {x + 4}  - 2}}{x};x > 0} \\ 
  {mx + m + \dfrac{1}{4};x \leqslant 0} 
\end{array}} ight. với m là tham số. Tính giá trị của tham số m để hàm số có giới hạn tại x = 0.

    Hàm số có giới hạn tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0^{+}}f(x) = \lim_{x ightarrow 0^{-}}f(x)

    \Leftrightarrow \lim_{x ightarrow
0^{+}}\frac{\sqrt{x + 4} - 2}{x} = \lim_{x ightarrow 0^{-}}\left( mx +
m + \frac{1}{4} ight)

    \Leftrightarrow \frac{1}{4} = m +
\frac{1}{4} \Leftrightarrow m = 0

  • Câu 37: Nhận biết

    Xét tính liên tục của hàm số f(x) = \left\{ \begin{matrix}
1 - \cos x\ \ \ khi\ x \leq 0 \\
\sqrt{x + 1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 0 \\
\end{matrix} ight.. Khẳng định nào sau đây đúng?

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: f(x) liên tục trên ( - \infty;0)(0; + \infty)

    Mặt khác

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\sqrt{x + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( 1 - \cos x ight) = 0

    Vậy hàm số gián đoạn tại x = 1

  • Câu 38: Nhận biết

    Tính giới hạn B =
\lim_{x ightarrow ( - 2)^{-}}\left( \frac{3 + 2x}{x + 2}
ight).

    Ta có:

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3 + 2x} ight) =  - 1 < 0

    \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {x + 2} ight) = 0} \\ 
  {x \mapsto {{\left( { - 2} ight)}^ - } \Rightarrow x + 2 < 0} 
\end{array}} ight.

    \Rightarrow B = \lim_{x ightarrow ( -
2)^{-}}\left( \frac{3 + 2x}{x + 2} ight) = + \infty

  • Câu 39: Nhận biết

    Giá trị của \lim\sqrt[n]{a} với a> 0 bằng:

    Nếu a=1 thì ta có luôn giới hạn bằng 1.

    • Với  a > 1 thì khi đó: a = \left\lbrack 1 +\left( \sqrt[n]{a} - 1 ight) ightbrack^{n} > n(\sqrt[n]{a} -1)

    Suy ra: 0 < \sqrt[n]{a - 1} <\frac{a}{n} ightarrow 0 nên \lim\sqrt[n]{a} = 1

    • Với 0 < a < 1 thì khi đó:  \frac{1}{a} >1 .

    Suy ra: \lim \sqrt[n]{\frac{1}{a} }=1 \Rightarrow \lim \sqrt[n]{a}=1.\frac{1}{a}>1 \Rightarrow \lim \sqrt[n]{a}=1

    Tóm lại ta luôn có: \lim\sqrt[n]{a} =1 với a > 0 .

  • Câu 40: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo