Giới hạn bằng
Ta có:
Giới hạn bằng
Ta có:
Hàm số nào sau đây gián đoạn tại ?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Giới hạn bằng
Ta có:
.
Vì .
bằng
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Giá trị của giới hạn bằng:
Với mọi giá trị thì
Do đó:
Cho dãy số với
và
. Chọn giá trị đúng của
trong các số sau:
Áp dụng phương pháp quy nạp toán học ta có
Nên ta có :
Suy ra : , mà
Vậy .
Tính giới hạn ta được kết quả bằng
Ta có:
.
Tính giới hạn .
Ta có:
Giá trị của với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
Tính .
Ta có:
Tính giới hạn
Ta có:
Do đó
Có bao nhiêu số tự nhiên chẵn k để
Ta có:
Bài toán trở thành
Ta có: nên bài toán trở thành tìm k sao cho
Mà
=> Không tồn tại giá trị của k (do k nguyên dương và k chẵn).
Giới hạn dãy số với
là?
Ta có:
Vì nên suy ra:
Cho hàm số . Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Giá trị của bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Tìm giá trị của a để hàm số liên tục tại
.
Ta có:
Hàm số liên tục tại
khi và chỉ khi
bằng:
Ta có:
Cho số thực m thỏa mãn . Khi đó giá trị của m là bao nhiêu?
Ta có:
Tính giá trị biểu thức
Tìm a để hàm số liên tục tại
. Tìm m để hàm số liên tục tại
.
Ta có:
Để hàm số liên tục tại thì
Giá trị của bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Cho hàm số . Các kết luận dưới đây đúng hay sai?
a). Sai||Đúng
b). Sai||Đúng
c). Đúng||Sai
d) Hàm số liên tục tại
. Đúng||Sai
Cho hàm số . Các kết luận dưới đây đúng hay sai?
a). Sai||Đúng
b). Sai||Đúng
c). Đúng||Sai
d) Hàm số liên tục tại
. Đúng||Sai
a) Sai
.
b) Sai
.
c) Đúng
.
d) Đúng
Ta có:
và
.
.
Vậy nên hàm số
liên tục tại
.
Cho hàm số . Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
bằng:
Ta có:
bằng:
Ta có:
Giới hạn bằng:
Sử dụng máy tính cầm tay ta được:
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Tính giới hạn sau: .
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Xét tính liên tục của hàm số . Khẳng định nào dưới đây đúng?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên tập số thực.
Cho hàm số xác định và liên tục trên
với
với
. Tính
.
Ta có hàm số xác định và liên tục trên
nên suy ra
Tìm m để hàm số liên tục trên
.
Ta có:
Dễ thấy hàm số liên tục khi . Hàm số liên tục tại
khi và chỉ khi
Giá trị của bằng:
Ta có:
Cho là một đa thức thỏa mãn
. Tính giá trị
Ta có:
Khi đó
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
a) Ta có:
có điều kiện xác định
Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.
b) Đặt
f(x) liên tục trên tập số thực nên f(x) liên tục trên
Ta có:
Từ (*) và (**) suy ra phương trình có nghiệm thuộc
.
c) Ta có:
Vậy không tồn tại giới hạn của hàm số khi
d) Ta có: với n chẵn
Với n lẻ
Suy ra dãy số không bị chặn.
Biết liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
bằng số nào sau đây?
Ta có:
bằng
Ta có:
Do
Hàm số nào dưới đây gián đoạn tại ?
Ta có: nên hàm số
gián đoạn tại điểm
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.