Cho hàm số xác định trên tập số thực và có đồ thị như hình vẽ:
Hỏi hàm số không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Cho hàm số xác định trên tập số thực và có đồ thị như hình vẽ:
Hỏi hàm số không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Biết giới hạn và
. Khi đó:
a) Giá trị nhỏ hơn 0. Sai||Đúng
b) Giá trị lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Giá trị nhỏ hơn 0. Sai||Đúng
b) Giá trị lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
. Sai||Đúng
a) Ta có:
b) Ta có:
.
c) Phương trình lượng giác có một nghiệm là
d) Cho cấp số cộng với công sai
và
, thì
Kết luận:
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Tìm được các giới hạn sau:
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
Tìm được các giới hạn sau:
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Ta có:
.
b) Ta có:
vì
.
c) Ta có:
, do
d) Ta có:
.
Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:
Chọn khẳng định đúng.
Ta có: khi đó:
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
bằng
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
a) Ta có:
có điều kiện xác định
Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.
b) Đặt
f(x) liên tục trên tập số thực nên f(x) liên tục trên
Ta có:
Từ (*) và (**) suy ra phương trình có nghiệm thuộc
.
c) Ta có:
Vậy không tồn tại giới hạn của hàm số khi
d) Ta có: với n chẵn
Với n lẻ
Suy ra dãy số không bị chặn.
Giá trị của bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
bằng:
Ta có:
Giá trị của bằng:
Chia cả tử và mẫu cho ta có được.
Kết quả của giới hạn
Ta có:
. Khi đó:
(vì )
Giá trị của bằng:
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Cho hàm số . Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
Tính .
Ta có:
Cho hàm số xác định và liên tục trên
với
với mọi
. Tính
Ta có:
Do hàm số đã cho xác định và liên tục trên
=> Hàm số liên tục tại x = 1
=>
Ta có:
Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Biết . Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Tính giới hạn của hàm số .
Ta có:
Cho hàm số . Tìm tất cả các giá trị của tham số m để hàm số liên tục tại
?
Ta có:
Hàm số liên tục tại
Biết , trong đó
. Tính
.
Đáp án: -100||- 100
Biết , trong đó
. Tính
.
Đáp án: -100||- 100
Ta có:
.
Ta có:
.
.
Đồng thời:
.
Vậy .
Biết rằng liên tục trên
với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?
Ta có:
Hàm số xác định và liên tục trên
Khi đó liên tục trên
khi và chỉ khi
Ta có:
Kết quả đúng của là:
Xét:
Ta có:
Suy ra
.
Cho hàm số liên tục tại
. Xác định giá trị thực của tham số k.
Tập xác định
Theo giả thiết ta có:
Cho hàm số . Tính
.
Ta có:
Giá trị của bằng:
Ta có mà
Suy ra
Cho . Khi đó:
a) Khi thì
. Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Sai||Đúng
d) thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Cho . Khi đó:
a) Khi thì
. Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Sai||Đúng
d) thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Ta có:
.
Vì vậy giá trị của là một nghiệm của phương trình
.
Kết luận:
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Có bao nhiêu giá trị nguyên của tham số m để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Cho các mệnh đề:
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
.
Trong các mệnh đề trên:
Theo tính chất hàm số liên tục thì
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
. Mệnh đề sai.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm. Mệnh đề đúng.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
. Mệnh đề đúng.
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
bằng
Ta có:
Tìm giới hạn
Ta có:
Tính giới hạn .
Ta có: .
Tính giá trị giới hạn
Ta có:
Cho hàm số với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Xét tính liên tục của hàm số . Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Tính giới hạn .
Ta có:
Giá trị của với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .