Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a)
Sai||Đúng
b)
khi
Đúng||Sai
c) Hàm số
liên tục tại
Đúng||Sai
c)
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Sai||Đúng
b) khi
Đúng||Sai
c) Hàm số liên tục tại
Đúng||Sai
c) Sai||Đúng
Ta có:
Ta có: Khi thì
Ta có:
Vậy hàm số liên túc tại
Ta có:
Biết rằng hàm số
liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Biết rằng hàm số liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Hàm số xác định trên và liên tục trên
và
.
Khi đó để liên tục trên đoạn
thì hàm số liên tục tại
.
Ta có: .
Để hàm số liên tục tại thì
.
Tìm a để hàm số
liên tục tại
. Tìm m để hàm số liên tục tại
.
Ta có:
Để hàm số liên tục tại thì
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên
bằng:
Ta có:
Tính giới hạn
.
Ta có:
Tính giới hạn
ta được kết quả bằng
Ta có:
.
Cho hàm số
. Tính
.
Ta có:
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho giới hạn
. Khi đó :
a)
khi
Đúng||Sai
b)
khi
Sai||Đúng
c)
khi
Đúng||Sai
d) Có 3 giá trị nguyên của
thuộc
sao cho
là một số nguyên. Đúng||Sai
Cho giới hạn . Khi đó :
a) khi
Đúng||Sai
b) khi
Sai||Đúng
c) khi
Đúng||Sai
d) Có 3 giá trị nguyên của thuộc
sao cho
là một số nguyên. Đúng||Sai
Ta có
Ta có
Kết luận:
a) Đúng | b) Sai | c) Đúng | d) Đúng |
Hàm số nào dưới đây không liên tục trên khoảng
?
Xét hàm số với
Ta có:
Suy ra không tồn tại nên hàm số không liên tục tại x = 0
Vậy hàm số không liên tục trên .
Tính
được kết quả là:
Ta có
.
Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Vậy
Kiểm tra sự đúng sai của các kết luận sau?
a)
Sai||Đúng
b)
khi
Đúng||Sai
c) Hàm số
liên tục tại
Đúng||Sai
c)
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Sai||Đúng
b) khi
Đúng||Sai
c) Hàm số liên tục tại
Đúng||Sai
c) Sai||Đúng
Ta có:
Ta có: Khi thì
Ta có:
Vậy hàm số liên túc tại
Ta có:
Giá trị của giới hạn
là:
Ta có:
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
bằng
Ta có:
Giá trị của giới hạn
bằng:
Với mọi giá trị thì
Do đó:
Tính giới hạn ![]()
Ta có:
Cho dãy số
với
. Tính
.
Ta có:
Giá trị của
bằng:
Ta có:
Giá trị của
bằng:
Ta có:
Tính giới hạn của hàm số
.
Ta có:
bằng:
Ta có:
Cho hàm số
. Xác định
để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên khi và chỉ khi hàm số liên tục tại
Tính được các giới hạn sau, khi đó:
a)
Sai||Đúng
b)
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
bằng:
Ta có:
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết ;
Ta có là hàm đa thức nên liên tục trên
Suy ra phương trình có ít nhất một nghiệm trên
nên phương trình có ít nhất một nghiệm trên khoảng
Suy ra phương trình có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm
Vậy phương trình có đúng 3 nghiệm.
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Trong giới hạn sau đây, giới hạn nào bằng -1?
Ta có:
Tìm giới hạn ![]()
Ta có:
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Biết
liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
Xác định ![]()
Ta có:
Cho hàm số
. Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.