Đề kiểm tra 45 phút Toán 11 Chương 3 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Giới hạn. Hàm số liên tục giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết rằng \lim_{x ightarrow
3}\frac{x^{2} - 5x + 6}{x^{2} - 9} = \frac{a}{b}, với \frac{a}{b} là phân số tối giản và a,b\mathbb{\in N}. Tính a + b.

    Ta có:

    \lim_{x ightarrow 3}\frac{x^{2} - 5x +
6}{x^{2} - 9} = \lim_{x ightarrow 3}\frac{(x - 2)(x - 3)}{(x - 3)(x +
3)}

    = \lim_{x ightarrow 3}\frac{x - 2}{x +3} = \frac{1}{6} = \frac{a}{b} \Rightarrow a = 1,b = 6.

    Vậy: a + b = 7.

  • Câu 2: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 3: Thông hiểu

    Giá trị của F = \lim\frac{(n - 2)^{7}(2n + 1)^{3}}{\left(
n^{2} + 2 ight)^{5}}bằng:

    Ta có:

     F = \lim\frac{(n - 2)^{7}(2n + 1)^{3}}{\left(
n^{2} + 2 ight)^{5}} 

    = \lim\frac{\left( 1 - \frac{2}{n}ight)^{7}\left( 2 + \frac{1}{n} ight)^{3}}{\left( 1 +\frac{5}{n^{2}} ight)^{5}\ } = 8

  • Câu 4: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 5: Thông hiểu

    Tính giới hạn B =
\lim_{x ightarrow - \infty}\left( 2x^{2} - x^{2} + x - 3
ight).

    Ta có:

    B = \lim_{x ightarrow - \infty}\left(
2x^{2} - x^{2} + x - 3 ight)

    B = \lim_{x ightarrow -
\infty}\left\lbrack x^{3}\left( 2 - \frac{1}{x} + \frac{1}{x^{3}} -
\frac{3}{x^{3}} ight) ightbrack

    Ta lại có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{3}{{{x^3}}}} ight) = 2 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow B = \lim_{x ightarrow -
\infty}\left( 2x^{2} - x^{2} + x - 3 ight) = - \infty

  • Câu 6: Nhận biết

    Giá trị của C =
lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} bằng:

    Ta có theo tính chất giới hạn, ta có:

    lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} =
0

  • Câu 7: Nhận biết

    Phát biểu nào dưới đây sai?

    Ta có phát biểu sai là: \lim_{x
ightarrow + \infty}q^{n} = 0;\left( |q| > 1 ight)

    Sửa lại là: \lim_{x ightarrow +
\infty}q^{n} = 0;\left( |q| < 1 ight)

  • Câu 8: Nhận biết

    Tính giới hạn \lim_{x ightarrow 1}\frac{x^{2} + 3x - 4}{x -
1}

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + 3x -
4}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 4)}{x -
1}

    = \lim_{x ightarrow 1}(x + 4) =
5

  • Câu 9: Thông hiểu

    Cho hàm số f(x) liên tục trên đoạn [−1; 4] sao cho f(−1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [−1; 4]:

    Ta có:

    Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.

    Khi đó

    \left\{ \begin{matrix}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \\g(4) = f(4) - 5 = 7 - 5 = 2 \\\end{matrix} ight.

    \Rightarrow g( - 1).g(4) <
0

    Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)

  • Câu 10: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 11: Nhận biết

    \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} =  - \infty

    Do \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 2} ight) = 3 \hfill \\  x \to {1^ - } \Rightarrow x - 1 < 0 \hfill \\ \end{gathered}  ight.

  • Câu 12: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -
\sqrt{n^{2} + 1} trong đó a là tham số thực. tìm a để \lim u_{n} = - 1

    Ta có:

    \lim u_{n} = \lim\left( \sqrt{n^{2} +
a.n + 5} - \sqrt{n^{2} + 1} ight)

    = \lim\left( \frac{a.n + 4}{\sqrt{n^{2}
+ a.n + 5} + \sqrt{n^{2} + 1}} ight)

    = \lim\left( \dfrac{a +\dfrac{4}{n}}{\sqrt{1 + \dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 +\dfrac{1}{n^{2}}}} ight) = \dfrac{a}{2}

    Ta có: \lim u_{n} = - 1

    \Leftrightarrow \frac{a}{2} = - 1
\Rightarrow a = - 2

  • Câu 13: Vận dụng

    Có bao nhiêu giá trị nguyên của a thỏa mãn \lim\left( \sqrt{n^{2} - 8n} - n + a^{2} ight) =
0?

    Ta có:

    \lim\left( \sqrt{n^{2} - 8n} - n + a^{2}
ight)

    = \lim\left( \frac{- 8n}{\sqrt{n^{2} -
8n} + n} + a^{2} ight)

    = \lim\left( \dfrac{- 8}{\sqrt{1 -\dfrac{8}{n}} + 1} + a^{2} ight) = a^{2} - 4

    Do đó:

    a^{2} - 4 = 0 \Leftrightarrow a = \pm
2

    Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 14: Thông hiểu

    Tính giá trị giới hạn \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    Ta có:

    \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    = \lim\frac{2n^{2}}{\left(\sqrt[3]{n^{3} - 2n^{2}} ight)^{2} + n.\sqrt[3]{n^{3} - 2n^{2}} +n^{2}}

    = \lim\dfrac{- 2}{\left( \sqrt[3]{\left(1 - \dfrac{2}{n} ight)} ight)^{2} + \sqrt[3]{1 - \dfrac{2}{n}} + 1} =- \dfrac{2}{3}

  • Câu 15: Thông hiểu

    Hàm số nào trong các hàm số sau liên tục tại x = 1?

    Xét hàm số f(x) = \left\{ \begin{matrix}
x + 1\ khi\ x \geq 1 \\
3x - 1\ khi\ x < 1 \\
\end{matrix} ight. có:

    \left\{ \begin{matrix}
f(1) = 2 \\
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}(x + 1) = 2
\\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}(3x - 1) = 2
\\
\end{matrix} ight.

    Vậy hàm số liên tục tại x =
1.

  • Câu 16: Nhận biết

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 17: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 18: Vận dụng

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{x^{2} - 3x +
2}{6\sqrt{x + 8} - x - 17}

    Ta có:

    \lim_{x ightarrow 1^{+}}\frac{x^{2} -
3x + 2}{6\sqrt{x + 8} - x - 17}

    = \lim_{x ightarrow 1^{+}}\frac{\left(
x^{2} - 3x + 2 ight)\left( 6\sqrt{x + 8} + x + 17 ight)}{\left(
6\sqrt{x + 8} - x - 17 ight)\left( 6\sqrt{x + 8} + x + 17
ight)}

    = \lim_{x ightarrow 1^{+}}\frac{\left(
x^{2} - 3x + 2 ight)\left( 6\sqrt{x + 8} + x + 17 ight)}{- x^{2} +
2x - 1}

    = \lim_{x ightarrow 1^{+}}\frac{(x -
2)(x - 1)\left( 6\sqrt{x + 8} + x + 17 ight)}{- (x -
1)^{2}}

    = \lim_{x ightarrow 1^{+}}\frac{(x -
2)\left( 6\sqrt{x + 8} + x + 17 ight)}{- x + 1}

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} ight)\left( {6\sqrt {x + 8}  + x + 17} ight) =  - 36 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( { - x + 1} ight) = 0 \hfill \\
   - x + 1 < 0,\forall x > 1 \hfill \\ 
\end{gathered}  ight.

    =>  \lim_{x
ightarrow 1^{+}}\frac{x^{2} - 3x + 2}{6\sqrt{x + 8} - x - 17} = +
\infty

  • Câu 19: Nhận biết

    Hàm số f(x) =\dfrac{x^{2} + x\cos x + \sin x}{2sinx + 3} liên tục trên:

    Ta có: 2sinx + 3 eq 0,\forall
x\mathbb{\in R}

    => Tập xác định D\mathbb{=
R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 20: Thông hiểu

    Xác định khoảng liên tục của hàm số f(x) = \left\{ \begin{matrix}
\cos\frac{\pi x}{2}\ \ \ \ \ \ \ \ khi\ |x| \leq 1 \\
x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ |x| > 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây sai?

    Hàm số liên tục trên các khoảng ( -
\infty; - 1),(1; + \infty);( - 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} \left( {x - 1} ight) =  - 2 \hfill \\
  f\left( { - 1} ight) = 0 \hfill \\ 
\end{gathered}  ight.

    => Hàm số gián đoạn tại x = -
1

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  f\left( 1 ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \cos \dfrac{{\pi x}}{2} = 0 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
1

  • Câu 21: Vận dụng

    Biết \lim\frac{n - \sqrt{2n^{2} + 1}}{4 +
3n} = \frac{a - \sqrt{b}}{c} (biết a,b,c là các số nguyên dương). Tính a^{2} + b^{2} + c^{2}?

    Đáp án: 14

    Đáp án là:

    Biết \lim\frac{n - \sqrt{2n^{2} + 1}}{4 +
3n} = \frac{a - \sqrt{b}}{c} (biết a,b,c là các số nguyên dương). Tính a^{2} + b^{2} + c^{2}?

    Đáp án: 14

    Ta có:

    \lim\frac{n - \sqrt{2n^{2} + 1}}{4 + 3n}= \lim\frac{n.\left( 1 - \sqrt{2 + \frac{1}{n^{2}}} ight)}{n\left( 3 +\frac{4}{n} ight)}

    = \lim\frac{1 - \sqrt{2 +
\frac{1}{n^{2}}}}{3 + \frac{4}{n}} = \frac{1 - \sqrt{2}}{3}

    Do đó a = 1,b = 2,c = 3 \Rightarrow a^{2}
+ b^{2} + c^{2} = 14.

  • Câu 22: Thông hiểu

    Tính giới hạn của hàm số f(x) = \frac{2x + 3}{\sqrt[3]{2x^{2} -
3}} khi x \mapsto -
\infty.

    Ta có:

    \lim_{x ightarrow - \infty}\dfrac{2x +3}{\sqrt[3]{2x^{2} - 3}} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{3}{x}}{- \sqrt{2 - \dfrac{3}{x^{3}}}} = - \sqrt{2}

  • Câu 23: Thông hiểu

    Giới hạn \lim_{}\left( n^{3} - 2023n +
2024 ight) bằng

    Ta có:

    \lim\left\lbrack n^{3} - 2023n + 2024
ightbrack

    = \lim\left\{ n^{3}\left( 1 -
\frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) ight\} = +
\infty.

    \left\{ \begin{matrix}
\underset{}{\lim\left( n^{3} ight) = + \infty} \\
\lim\left( 1 - \frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) = 1 >
0 \\
\end{matrix} ight..

  • Câu 24: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 25: Thông hiểu

    Tính giới hạn: \lim\frac{\sqrt{n + 1} - 4}{\sqrt{n + 1} +n}

    Ta có:

    \lim\frac{\sqrt{n + 1} - 4}{\sqrt{n + 1}+ n}

    = \lim\dfrac{\sqrt{\dfrac{1}{n}+ \dfrac{1}{n^{2}}} - \dfrac{4}{n}}{\sqrt{\dfrac{1}{n} + \dfrac{1}{n^{2}}} +1} = \dfrac{0}{1} = 0

  • Câu 26: Vận dụng cao

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Đáp án là:

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Ta có:

    I = \lim_{x ightarrow 0}\frac{\sqrt{2x
+ 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} - \sqrt[3]{8 +
x}}

    = \lim_{x ightarrow 0}\left(
\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{x}.\frac{x}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}} ight)

    = \lim_{x ightarrow 0}\left\{ \left(
\frac{\sqrt{2x + 1} - 1}{x} + \frac{1 - \sqrt[3]{x^{2} + 1}}{x}
ight).\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}
ight\}

    Ta có:

    +) \lim_{x ightarrow 0}\frac{\sqrt{2x +
1} - 1}{x} = \lim_{x ightarrow 0}\frac{2x}{\left( \sqrt{2x + 1} + 1
ight).x} = \lim_{x ightarrow 0}\frac{2}{\left( \sqrt{2x + 1} + 1
ight)} = 1

    +) \lim_{x ightarrow 0}\frac{1 -
\sqrt[3]{x^{2} + 1}}{x} = \lim_{x ightarrow 0}\frac{-
x^{2}}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack.x}

    = \lim_{x ightarrow 0}\frac{-
x}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack} = 0.

    +) \lim_{x ightarrow
0}\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2}
ightbrack}{\left( \sqrt[3]{8 - x} ight)^{3} - \left( \sqrt[3]{8 +
x} ight)^{3}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2x}

    = \lim_{x ightarrow
0}\frac{\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2} = - 6.

    Vậy I = (1 + 0).( - 6) = - 6 \Rightarrow
100I = - 600.

  • Câu 27: Nhận biết

    Giá trị của \lim\frac{\sqrt{n + 1}}{n + 2} bằng:

    Với mọi số thực a>0 nhỏ tùy ý, ta chọn n_{a} = \left\lbrack \frac{1}{a^{2}} - 1
ightbrack + 1

    Ta có:

    \frac{\sqrt{n + 1}}{n + 2} <
\frac{1}{\sqrt{n + 1}} < a  với mọi n > n_{a}

    Suy ra \lim\frac{\sqrt{n + 1}}{n + 2} =
0

  • Câu 28: Vận dụng cao

    Cho hàm số y =
2x^{3} + ax^{2} + bx + c;(a,b,c \in R) thỏa mãn 9a + 3b + c < −54a − b + c > 2. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?

    Hàm số đã cho xác định trên \mathbb{R}.

    Ta có: a − b + c > 2 ⇔ a − b + c − 2 > 0f(−1) = −2 + a − b + c nên f(−1) > 0.

    Mặt khác 9a + 3b + c < −54 ⇔ 9a + 3b + c + 54 < 0f(3) = 54 + 9a + 3b + c nên f(3) < 0.

    Ta lại có \lim_{x ightarrow - \infty}y
= - \infty nên tồn tại số m < −1 sao cho f(m) < 0 và \lim_{x ightarrow + \infty}y = +
\infty nên tồn tại số k > 0 sao cho f(3) > 0.

    Vậy f(m) . f(−1) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (m; −1).

    f(−1) . f(3) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (−1; 3).

    f(3) . f(k) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (3; k).

    Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.

  • Câu 29: Nhận biết

    Giá trị của \lim_{x ightarrow 1}\left( 2x^{2} - 3x + 1ight) bằng:

    Ta có: \lim_{x ightarrow 1}\left( 2x^{2} - 3x+ 1 ight) = 0

  • Câu 30: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\ 
  {m{\text{               khi }}x = 2} 
\end{array}} ight. liên tục tại x = 2.

    Tập xác định D\mathbb{= R} chứa x = 2

    Theo giả thiết ta có:

    m = f(2) = \lim_{x ightarrow
2}f(x)

    \Rightarrow m = \lim_{x ightarrow
2}\frac{x^{2} - x - 2}{x - 2} = \lim_{x ightarrow 2}(x + 1) =
3

  • Câu 31: Thông hiểu

    Tìm khẳng định đúng trong các khẳng định sau

    (I) f(x) liên tục trên [a; b]f(a). f(b) > 0 thì tồn tại ít nhất một số c ∈ (a;b) sao cho f(c) = 0.

    (II) f(x) liên tục trên [a; b] và trên [b;c] nhưng không liên tục trên (a;c).

    Khẳng định (I) sai vì f(a).f(b) >0 vẫn có thể xảy ra trường hợp f(x) = 0 vô nghiệm trên khoảng (a; b).
    Khẳng định (II) sai vì nếu f(x) liên tục trên đoạn (a; b] và trên [b; c) thì liên tục (a; c).

    Vậy cả hai khẳng định đều sai.

  • Câu 32: Nhận biết

    Tính \lim_{x
ightarrow 3^{+}}\frac{- x^{2} + 5}{x - 3}.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left( { - {x^2} + 5} ight) =  - 4 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 3} ight) = 0 \hfill \\
  x - 3 > 0,\forall x > 3 \hfill \\ 
\end{gathered}  ight.

    Do đó \lim_{x ightarrow 3^{+}}\frac{-
x^{2} + 5}{x - 3} = - \infty

  • Câu 33: Thông hiểu

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

  • Câu 34: Nhận biết

    Cho các mệnh đề:

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b).

    Trong các mệnh đề trên:

    Theo tính chất hàm số liên tục thì

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0. Mệnh đề sai.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm. Mệnh đề đúng.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b). Mệnh đề đúng.

  • Câu 35: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 36: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 37: Thông hiểu

    Cho hàm số f(x)=\begin{cases}\sqrt{6-2x}+1 & \text{ với } x\leq 3 \\ ax & \text{ với } x> 3 \end{cases}. Với giá trị nào của a thì hàm số f(x) liên tục tại x = 3?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) = 3a} \\   \begin{gathered}  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) = 1 \hfill \\  f\left( 3 ight) = 1 \hfill \\ \end{gathered}  \end{array}} ight.

    Hàm số liên tục tại x=3 khi và chỉ khi 

    \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) = f\left( 3 ight) = 1

    \Leftrightarrow 3a = 1 \Leftrightarrow a = \frac{1}{3}

  • Câu 38: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}}=?

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\sqrt {4 + \dfrac{1}{{{x^2}}}}  - x\sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} }}{{x\left( {2 - \dfrac{5}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {1 + \dfrac{5}{x}} }}{{2 - \dfrac{5}{x}}} = \dfrac{2}{2} = 1 \hfill \\ \end{matrix}

  • Câu 39: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {{m^2}{x^2}{\text{        khi }}x \leqslant 2} \\ 
  {\left( {1 - m} ight)x{\text{   khi }}x > 2} 
\end{array}} ight. liên tục trên \mathbb{R}?

    Tập xác định D\mathbb{= R}

    Hàm số liên tục trên mỗi khoảng ( -
\infty;2);(2; + \infty)

    Khi đó hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi f(x) liên tục tại x = 2

    Hay \lim_{x ightarrow 2}f(x) =
f(2)

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)\ \ (*)

    Ta lại có:

    f(2) = 4m^{2}

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left\lbrack (1 - m)x ightbrack = 2(1 -
m)

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}\left( m^{2}x^{2} ight) = 4m^{2}

    Khi đó (*) \Leftrightarrow 4m^{2} = 2(1 -
m)

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 40: Vận dụng cao

    Rút gọn biểu thức A = 1 + \cos^{2}x +\cos^{4}x + ... + \cos^{2n}x + ... với \cos x eq \pm 1

    Ta có:

    \begin{matrix}
  A = \underbrace {1 + {{\cos }^2}x + {{\cos }^4}x + ... + {{\cos }^{2n}}x + ...}_{CSN:{u_1} = 1;q = {{\cos }^2}x} \hfill \\
   = \dfrac{1}{{1 - {{\cos }^2}x}} = \dfrac{1}{{{{\sin }^2}x}} \hfill \\ 
\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo