Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?
Ta có:
Giá trị lớn nhất: 25
Giá trị nhỏ nhất: 4
Khoảng biến thiên là: 25 – 4 = 21
Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?
Ta có:
Giá trị lớn nhất: 25
Giá trị nhỏ nhất: 4
Khoảng biến thiên là: 25 – 4 = 21
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Mốt của dữ liệu bằng bao nhiêu?
Mốt thuộc nhóm
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
|
|
|
Khi đó mốt của dữ liệu được tính như sau:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Chọn đáp án đúng?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)
Khi đó
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Cho bảng dữ liệu dưới đây:
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.
Điểm | Số học sinh |
[0; 10) | 2 |
[10; 20) | 6 |
[20; 30) | 8 |
[30; 40) | x |
[40; 50) | 30 |
[50; 60) | 22 |
[60; 70) | 18 |
[70; 80) | 8 |
[80; 90) | 4 |
[90; 100) | 2 |
Biết trung vị bằng 47. Tìm tổng số học sinh.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
[0; 10) | 2 | 2 |
[10; 20) | 6 | 8 |
[20; 30) | 8 | 16 |
[30; 40) | x | 16 + x |
[40; 50) | 30 | 46 + x |
[50; 60) | 22 | 68 + x |
[60; 70) | 18 | 86 + x |
[70; 80) | 8 | 94 + x |
[80; 90) | 4 | 98 + x |
[90; 100) | 2 | 100 + x |
| N = 100 + x |
|
Trung vị là 47 => Nhóm chứa trung vị là [40; 50)
Vậy số học sinh là 126 học sinh.
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
75 | 4 |
Ta có:
Tốc độ | Đại diện tốc độ | Tần số |
40 ≤ x < 50 | 45 | 4 |
50 ≤ x < 60 | 55 | 5 |
60 ≤ x < 70 | 65 | 7 |
70 ≤ x < 80 | 75 | 4 |
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Đáp án đúng là: 5.
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 5 nhóm.
Cho mẫu dữ liệu ghép nhóm sau đây:
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | x |
(30;40] | 9 |
(40;50] | 7 |
Biết
. Tìm cỡ mẫu?
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | x | 25x |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 38 + x | 880 + 25x |
Theo bài ra ta có giá trị trung bình là:
Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50
Cho mẫu dữ liệu ghép nhóm như sau:
Nhóm | Tần số |
(0; 10] | x |
(10; 20] | 8 |
(20; 30] | 20 |
(30; 40] | 15 |
(40; 50] | 7 |
(50; 60] | y |
Tổng | N = 60 |
Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?
Bảng số liệu được ghi như sau:
Nhóm | Tần số | Tần số tích lũy |
(0; 10] | x | |
(10; 20] | 8 | x + 8 |
(20; 30] | 20 | x + 28 |
(30; 40] | 15 | x + 43 |
(40; 50] | 7 | x + 50 |
(50; 60] | x + y + 50 | |
Tổng | N = 60 |
|
Ta có:
Theo bài ra ta có:
=> Nhóm chứa trung vị là
Suy ra:
Khi đó ta có:
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26
Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:
8 + 16 + 4 = 28 (học sinh)
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Khoảng cân nặng nào có số học sinh chiếm nhiều nhất?
Khoảng cân nặng có số học sinh chiếm nhiều nhất là: [50; 55)
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
Tốc độ | Tần số |
40 ≤ x < 50 | 4 |
50 ≤ x < 60 | 5 |
60 ≤ x < 70 | 7 |
70 ≤ x < 80 | 4 |
Xác định giá trị của
?
Ta có:
Tốc độ | Tần số | Tần số tích lũy |
40 ≤ x < 50 | 4 | 4 |
50 ≤ x < 60 | 5 | 9 |
60 ≤ x < 70 | 7 | 16 |
70 ≤ x < 80 | 4 | 20 |
Tổng | N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là:
Khi đó:
Tứ phân vị thứ nhất là:
Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:
|
Điểm |
Số học sinh |
|
(20; 30] |
1 |
|
(30; 40] |
1 |
|
(40; 50] |
10 |
|
(50; 60] |
11 |
|
(60; 70] |
5 |
|
(70; 80] |
2 |
Tìm trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
|
Điểm |
Số học sinh |
Tần số tích lũy |
|
(20; 30] |
1 |
1 |
|
(30; 40] |
1 |
2 |
|
(40; 50] |
10 |
12 |
|
(50; 60] |
11 |
23 |
|
(60; 70] |
5 |
28 |
|
(70; 80] |
2 |
30 |
|
Tổng |
N = 30 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:
|
Thời gian (phút) |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số học sinh |
7 |
13 |
9 |
18 |
22 |
6 |
Nhóm chứa trung vị là:
Cỡ mẫu của bảng số liệu này là , nên nhóm chứa trung vị là nhóm chứa giá trị thứ
, suy ra đó là nhóm
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu gần với giá trị nào nhất trong các giá trị dưới đây?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Đối tượng | Tần số |
|
[150; 155) | 15 |
|
[155; 160) | 10 | |
[160; 165) | 40 | |
[165; 170) | 27 | |
[170; 175) | 5 |
|
[175; 180) | 3 |
|
Tổng | N = 100 |
|
Ta có:
Khi đó ta tính mốt như sau:
Vậy mốt của mẫu số liệu gần với giá trị 164 nhất.
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Tổng | N = 100 |
Xác định giá trị đại diện của nhóm thứ tư?
Giá trị đại diện của nhóm thứ tư là
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
|
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
|
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
|
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
|
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Ta có giá trị đại diện của các nhóm lần lượt là:
Trung bình cộng của bảng số liệu trên là:
(nghìn đồng).
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Cho bảng dữ liệu như sau:
Đại diện | Tần số |
[1; 5) | 6 |
[5; 10) | 19 |
[10; 15) | 13 |
[15; 20) | 20 |
[20; 25) | 12 |
[25; 30) | 11 |
[30; 35) | 6 |
[35; 40) | 5 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Ta có:
Đại diện | Tần số | Tần số tích lũy |
[1; 5) | 6 | 6 |
[5; 10) | 19 | 25 |
[10; 15) | 13 | 38 |
[15; 20) | 20 | 58 |
[20; 25) | 12 | 70 |
[25; 30) | 11 | 81 |
[30; 35) | 6 | 87 |
[35; 40) | 5 | 92 |
| N = 92 |
|
Ta có:
=> Nhóm chứa là
(vì 69 nằm giữa các tần số tích lũy 58 và 70).
Khi đó ta tìm được các giá trị:
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Điểm kiểm tra môn Toán của một nhóm học sinh được thể hiện trong bảng dưới đây:
Điểm số | [0; 2) | [2; 4) | [4; 6) | [6; 8) | [8; 10) |
Số học sinh | 3 | 7 | 8 | 12 | 9 |
Mẫu dữ liệu trên có bao nhiêu nhóm?
Quan sát bảng dữ liệu ta thấy mẫu dữ liệu được chia thành 5 nhóm:
Nhóm có điểm số [0; 2) có 3 học sinh
Nhóm có điểm số [2; 4) có 7 học sinh
Nhóm có điểm số [4; 6) có 8 học sinh
Nhóm có điểm số [6; 8) có 12 học sinh
Nhóm có điểm số [8; 10) có 9 học sinh
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58
Ta có:
Đối tượng | Giá trị đại diện | Tần số |
[150; 155) | 152,5 | 15 |
[155; 160) | 157,5 | 11 |
[160; 165) | 162,5 | 39 |
[165; 170) | 167,5 | 27 |
[170; 175) | 172,5 | 5 |
[175; 180) | 177,5 | 3 |
Giá trị trung bình của đối tượng là:
Kết quả kiểm tra Toán của 30 học sinh lớp 11 được ghi theo nhóm như sau:
Khoảng điểm | Số học sinh |
[20; 30) | 1 |
[30; 40) | 1 |
[40; 50) | 10 |
[50; 60) | 11 |
[60; 70) | 5 |
[70; 80) | 2 |
Tìm mốt của mẫu dữ liệu. (Làm tròn đến số thập phân thứ nhất).
Ta ghi lại bảng số liệu như sau:
Khoảng điểm | Số học sinh |
|
[20; 30) | 1 |
|
[30; 40) | 1 |
|
[40; 50) | 10 | |
[50; 60) | 11 | |
[60; 70) | 5 | |
[70; 80) | 2 |
|
Quan sát bảng trên ta thấy:
Nhóm chứa mốt của mẫu dữ liệu là nhóm [50; 60).
Do đó:
Khi đó ta tính mốt như sau:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Số học sinh lớp 11H là:
Số học sinh lớp 11H là:
5 + 12 + 10 + 6 + 5 + 8 = 46 (học sinh)
Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:
Nhóm dữ liệu | Tần số |
(0; 2] | 5 |
(2; 4] | 16 |
(4; 6] | 13 |
(6; 8] | 7 |
(8; 10] | 5 |
(10; 12] | 4 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu trên. (Làm tròn đến chữ số thập phân thứ hai).
Ta có:
Nhóm dữ liệu | Tần số | Tần số tích lũy |
(0; 2] | 5 | 5 |
(2; 4] | 16 | 21 |
(4; 6] | 13 | 34 |
(6; 8] | 7 | 41 |
(8; 10] | 5 | 46 |
(10; 12] | 4 | 50 |
Tổng | N = 50 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (2; 4]
Khi đó:
Vậy tứ phân vị thứ nhất là:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 va 40)
Khi đó
Một nhà thực vật học khảo sát chiều cao của một số cây trong khu rừng, kết quả đo được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Trong biểu đồ, trục hoành biểu thị chiều cao của cây (đơn vị: mét), trục tung biểu thị số lượng cây tương ứng. Số cây có chiều cao không nhỏ hơn 9,1m là:
Quan sát biểu đồ dữ liệu ta thấy:
Số lượng cây có chiều cao không nhỏ hơn 9,1m là: (cây)
Độ dài nhóm số liệu ghép nhóm
là:
Độ dài của nhóm số liệu ghép nhóm là
.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Điểm trung bình môn của lớp 11A thuộc nhóm nào?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Giá trị đại diện | 10 | 30 | 50 | 70 | 90 |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Điểm trung bình của lớp 11A là:
Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:
Khoảng | Tần số |
Nhỏ hơn 10 | 10 |
Nhỏ hơn 20 | 20 |
Nhỏ hơn 30 | 30 |
Nhỏ hơn 40 | 40 |
Nhỏ hơn 50 | 50 |
Nhỏ hơn 60 | 30 |
Tính giá trị tứ phân vị thứ ba.
Ta có:
Nhóm dữ liệu | Tần số | Tần số tích lũy |
(0; 10] | 10 | 10 |
(10; 20] | 20 | 30 |
(20; 30] | 30 | 60 |
(30; 40] | 50 | 110 |
(40; 50] | 40 | 150 |
(50; 60] | 30 | 180 |
Tổng | N = 180 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (40; 50]
Khi đó:
Tứ phân vị thứ ba là:
Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:
|
Lượng nước (m3) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
[100; 120) |
|
Số hộ gia đỉnh |
6 |
12 |
10 |
7 |
4 |
2 |
Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.
Vì nhóm chứa mốt của mẫu số liệu là nhóm nên giá trị đại diện của nhóm này là
.
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Giá trị đại diện cho nhóm số liệu thứ năm là:
Nhóm thứ năm trong mẫu số liệu ghép nhóm là [60; 70) có giá trị đại diện là:
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | 25 | 55 |
[30; 40) | x | 55 + x |
[40; 50) | 9 | 64 + x |
Tổng | N = 64 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là [20; 30)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân
Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng mỗi tháng là:
5 + 12 + 23 = 40 (cư dân)
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Tổng | N = 40 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (150; 160]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (170; 180]
Khi đó:
Tứ phân vị thứ ba là:
=> Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
| Tổng | N = 30 |
Tính tứ phân vị thứ ba. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là (135; 140]
Khi đó:
Vậy tứ phân vị thứ ba là: