Mẫu nhóm số liệu ghép nhóm là tập hợp:
Mẫu số liệu ghép nhóm là tập hợp các giá trị của số liệu được ghép nhóm theo một tiêu chí xác định.
Mẫu nhóm số liệu ghép nhóm là tập hợp:
Mẫu số liệu ghép nhóm là tập hợp các giá trị của số liệu được ghép nhóm theo một tiêu chí xác định.
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Giá trị tứ phân vị thứ ba thuộc nhóm số liệu nào?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:
Kích thước (gram) | [410; 420) | [420; 430) | [430; 440) | [440; 450) | [450; 460) | [460; 470) | [470; 480) |
Số lượng táo | 14 | 20 | 42 | 54 | 45 | 18 | 7 |
Tính trung vị của mẫu dữ liệu ghép nhóm trên.
Ta có:
Kích thước (gram) | Số lượng táo | Tần số tích lũy |
[410; 420) | 14 | 14 |
[420; 430) | 20 | 34 |
[430; 440) | 42 | 76 |
[440; 450) | 54 | 130 |
[450; 460) | 45 | 175 |
[460; 470) | 18 | 193 |
[470; 480) | 7 | 200 |
| N = 200 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)
Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:
Khoảng số từ | Số câu |
[1; 5) | 2 |
[5; 9) | 5 |
[9; 13) |
|
[13; 17) | 23 |
[17; 21) | 21 |
[21; 25) | 13 |
[25; 29) | 4 |
[29; 33) | 1 |
Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:
Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)
Khoảng số từ | Số câu |
|
[1; 5) | 2 |
|
[5; 9) | 5 |
|
[9; 13) | ||
[13; 17) | 23 | |
[17; 21) | 21 | |
[21; 25) | 13 |
|
[25; 29) | 4 |
|
[29; 33) | 1 |
|
Do đó:
Khi đó ta có:
Vậy cỡ mẫu N = 86.
Giá trị đại diện của nhóm
là
Ta có giá trị đại diện là .
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là:
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là
(đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là: Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là (đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
Do đó doanh thu trung bình của cửa hàng là:
(triệu đồng)
Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
|
Tần số tích lũy |
2 |
9 |
16 |
19 |
20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:
Xét nhóm [7; 9) ta có:
Xét nhóm [9; 11) ta có:
Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.
Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?
Độ dài nhóm là
Khoảng biến thiên:
Ta có: => Số nhóm tạo thành là 4 nhóm.
Số giờ | Tần số |
Tổng cộng |
Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Do đó:
Khi đó tứ phân vị thứ nhất là:
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Biết rằng nếu học sinh có ít nhất 60 điểm và không vượt quá 80 điểm sẽ đạt điểm B. Hỏi phần trăm số học sinh đạt điểm B trong lớp 11A chiếm bao nhiêu phần trăm?
Quan sát bảng số liệu ghép nhóm ta thấy:
Số học sinh lớp 11A là 60 học sinh
Nhóm [60; 70) có 10 học sinh
Nhóm [70; 80) có 6 học sinh
=> Số học sinh đạt điểm B là 10 + 6 = 16 (học sinh)
Vậy số học sinh đạt điểm B chiếm
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:
Thu nhập (triệu đồng) | [0; 8) | [8; 16) | [16; 24) | [24; 32) | [32; 40) | [40; 48) |
Số người | 8 | 7 | 16 | 24 | 15 | 7 |
Tính mức thu nhập trung bình của nhóm người.
Mức thu nhập | |||
[0; 8) | 8 | 4 | 32 |
[8; 16) | 7 | 12 | 84 |
[16; 24) | 16 | 20 | 320 |
[24; 32) | 24 | 28 | 672 |
[32; 40) | 15 | 36 | 540 |
[40; 48) | 7 | 44 | 308 |
| N = 77 | 1956 | |
Mức thu nhập trung bình của nhóm người là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Mốt của dữ liệu bằng bao nhiêu?
Mốt thuộc nhóm
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
|
|
|
Khi đó mốt của dữ liệu được tính như sau:
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Số học sinh |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
N = 50 |
Tính mốt của mẫu dữ liệu đã cho?
Quan sát bảng thống kê ta thấy tần số cao nhất là 14 nằm trong nhóm
Chiều cao (tính bằng cm) | Số học sinh |
|
[150; 155) | 12 |
|
[155; 160) | 9 | |
[160; 165) | 14 | |
[165; 170) | 10 | |
[170; 175) | 5 |
|
| N = 50 |
|
Khi đó ta tính mốt như sau:
Cho mẫu dữ liệu ghép nhóm như sau:
Nhóm | Tần số |
(0; 10] | x |
(10; 20] | 8 |
(20; 30] | 20 |
(30; 40] | 15 |
(40; 50] | 7 |
(50; 60] | y |
Tổng | N = 60 |
Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?
Bảng số liệu được ghi như sau:
Nhóm | Tần số | Tần số tích lũy |
(0; 10] | x | |
(10; 20] | 8 | x + 8 |
(20; 30] | 20 | x + 28 |
(30; 40] | 15 | x + 43 |
(40; 50] | 7 | x + 50 |
(50; 60] | x + y + 50 | |
Tổng | N = 60 |
|
Ta có:
Theo bài ra ta có:
=> Nhóm chứa trung vị là
Suy ra:
Khi đó ta có:
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48
Số học sinh lớp 11A kiểm tra cân nặng là
7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ ba của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:
Khoảng | Tần số |
Nhỏ hơn 10 | 10 |
Nhỏ hơn 20 | 20 |
Nhỏ hơn 30 | 30 |
Nhỏ hơn 40 | 40 |
Nhỏ hơn 50 | 50 |
Nhỏ hơn 60 | 30 |
Tính giá trị tứ phân vị thứ nhất.
Ta có:
Nhóm dữ liệu | Tần số | Tần số tích lũy |
(0; 10] | 10 | 10 |
(10; 20] | 20 | 30 |
(20; 30] | 30 | 60 |
(30; 40] | 50 | 110 |
(40; 50] | 40 | 150 |
(50; 60] | 30 | 180 |
Tổng | N = 180 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.
Điểm | Số học sinh |
[0; 10) | 2 |
[10; 20) | 6 |
[20; 30) | 8 |
[30; 40) | x |
[40; 50) | 30 |
[50; 60) | 22 |
[60; 70) | 18 |
[70; 80) | 8 |
[80; 90) | 4 |
[90; 100) | 2 |
Biết trung vị bằng 47. Tìm tổng số học sinh.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
[0; 10) | 2 | 2 |
[10; 20) | 6 | 8 |
[20; 30) | 8 | 16 |
[30; 40) | x | 16 + x |
[40; 50) | 30 | 46 + x |
[50; 60) | 22 | 68 + x |
[60; 70) | 18 | 86 + x |
[70; 80) | 8 | 94 + x |
[80; 90) | 4 | 98 + x |
[90; 100) | 2 | 100 + x |
| N = 100 + x |
|
Trung vị là 47 => Nhóm chứa trung vị là [40; 50)
Vậy số học sinh là 126 học sinh.
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
75 | 4 |
Ta có:
Tốc độ | Đại diện tốc độ | Tần số |
40 ≤ x < 50 | 45 | 4 |
50 ≤ x < 60 | 55 | 5 |
60 ≤ x < 70 | 65 | 7 |
70 ≤ x < 80 | 75 | 4 |
Một nhà thực vật học khảo sát chiều cao của một số cây trong khu rừng, kết quả đo được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Trong biểu đồ, trục hoành biểu thị chiều cao của cây (đơn vị: mét), trục tung biểu thị số lượng cây tương ứng. Số cây có chiều cao không nhỏ hơn 9,1m là:
Quan sát biểu đồ dữ liệu ta thấy:
Số lượng cây có chiều cao không nhỏ hơn 9,1m là: (cây)
Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:
Chiều cao (cm) | Số học sinh |
[150; 154] | 5 |
[155; 159] | 2 |
[160; 164] | 6 |
[165; 169] | 8 |
[170; 174] | 9 |
[175; 179] | 11 |
[180; 184] | 6 |
[185; 189] | 3 |
Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(149,5; 154,5] | 5 | 5 |
(154,5; 159,5] | 2 | 7 |
(159,5; 164,5] | 6 | 13 |
(164,5; 169,5] | 8 | 21 |
(169,5; 174,5] | 9 | 30 |
(174,5; 179,5] | 11 | 41 |
(179,5; 184,5] | 6 | 47 |
(184,5; 189,5] | 3 | 50 |
Tổng | N = 50 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Khi đó giá trị tứ phân vị thứ ba là:
71
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Khi đó giá trị tứ phân vị thứ ba là: 71
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Khi đó ta tìm được các giá trị:
Cho bảng số liệu:
Đại diện X | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 | 51 – 55 |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Cho biết bảng số liệu trên có phải bảng phân phối tần số liên tục không?
Dữ liệu đã cho không phải là phân phối tần số liên tục.
Bây giờ, chúng ta phải chuyển đổi dữ liệu đã cho thành phân phối tần số liên tục bằng cách trừ 0,5 từ giới hạn dưới và thêm 0,5 vào giới hạn trên của mỗi khoảng thời gian của nhóm.
Đại diện X | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Ở đây
Giới hạn trên của khoảng cao nhất là
Giới hạn dưới của khoảng thấp nhất là
=> Khoảng biến thiên là
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân
Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng mỗi tháng là:
5 + 12 + 23 = 40 (cư dân)
Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:
Thời gian (phút) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) |
Số học sinh | 8 | 16 | 4 | 2 | 2 |
Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?
Giá trị đại diện nhóm [20; 25) là:
Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) |
Tần số | 8 | 12 | 22 | 17 |
Ta có:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) | Tổng |
Tần số | 8 | 12 | 22 | 17 | N = 59 |
Tần số tích lũy | 8 | 20 | 42 | 59 |
|
Ta có:
Vậy nhóm chứa tứ phân vị thứ ba là:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tìm mốt của mẫu dữ liệu ghép nhóm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)
Ta có:
Chiều cao (cm) | Số học sinh |
|
[95; 105) | 9 |
|
[105; 115) | 13 |
|
[115; 125) | 26 | |
[125; 135) | 30 | |
[135; 145) | 12 | |
[145; 155) | 10 |
|
Tổng | N = 100 |
|
Ta có: Nhóm chứa mốt của mẫu dữ liệu ghép nhóm là: [125; 135)
Khi đó:
Mốt của mẫu dữ liệu ghép nhóm là:
Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:
Cân nặng (x, kg) | Số người |
0 < x ≤ 20 | 2 |
20 < x ≤ 40 | 6 |
40 < x ≤ 60 | 7 |
60 < x ≤ 80 | 4 |
80 < x ≤ 100 | 1 |
Ta có:
Cân nặng đại diện (x, kg) | Số người | Tích các giá trị |
10 | 2 | 20 |
30 | 6 | 180 |
50 | 7 | 350 |
70 | 4 | 280 |
90 | 1 | 90 |
Tổng | N = 20 | 920 |
Cân nặng trung bình của 20 người đó là:
Dưới đây là bảng biểu diễn điểm của 140 sinh viên của trường đại học. Tìm trung vị.
Khoảng điểm | Số sinh viên |
(9,5; 19,5) | 7 |
[19,5; 29,5) | 15 |
[29,5; 39,5) | 18 |
[39,5; 49,5) | 25 |
[49,5; 59,5) | 30 |
[59,5; 69,5) | 20 |
[69,5; 79,5) | 16 |
[79,5; 39,5) | 7 |
[89,5; 39,5) | 2 |
Ta có:
Khoảng điểm | Số sinh viên | Tần số tích lũy |
(9,5; 19,5) | 7 | 7 |
[19,5; 29,5) | 15 | 22 |
[29,5; 39,5) | 18 | 40 |
[39,5; 49,5) | 25 | 65 |
[49,5; 59,5) | 30 | 95 |
[59,5; 69,5) | 20 | 115 |
[69,5; 79,5) | 16 | 131 |
[79,5; 39,5) | 7 | 138 |
[89,5; 39,5) | 2 | 140 |
| N = 140 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 70 nằm giữa hai tần số tích lũy là 65 và 95)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Nhóm nào chứa mốt của mẫu số liệu?
Nhóm chứa mốt của dấu hiệu là: [100; 150)
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Mẫu số liệu được chia thành bao nhiêu nhóm?
Mẫu số liệu được chia thành 7 nhóm.
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58
Ta có:
Đối tượng | Giá trị đại diện | Tần số |
[150; 155) | 152,5 | 15 |
[155; 160) | 157,5 | 11 |
[160; 165) | 162,5 | 39 |
[165; 170) | 167,5 | 27 |
[170; 175) | 172,5 | 5 |
[175; 180) | 177,5 | 3 |
Giá trị trung bình của đối tượng là:
Tìm tứ phân vị thứ nhất trong bảng dữ liệu dưới đây:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Kết quả làm tròn đến chữ số thập phân thứ nhất.
Ta có:
Nhóm | Tần số | Tần số tích lũy |
[0; 20) | 16 | 16 |
[20; 40) | 12 | 28 |
[40; 60) | 25 | 53 |
[60; 80) | 15 | 68 |
[80; 100) | 12 | 80 |
[100; 120) | 10 | 90 |
Tổng | N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Số nhân viên trong công ty đi muộn quá 15 phút là:
Số nhân viên trong công ty đi muộn quá 15 phút là:
13 + 8 + 6 = 27 (nhân viên)
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Tổng | N = 40 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (150; 160]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (170; 180]
Khi đó:
Tứ phân vị thứ ba là:
=> Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:
Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:
Thời gian (phút) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) |
Số học sinh | 8 | 16 | 4 | 7 | 12 |
Hỏi số học sinh tập thể dục ít nhất 10 phút mỗi ngày chiếm bao nhiêu phần trăm?
Số học sinh tập thể dục ít nhất 10 phút mỗi ngày là:
(học sinh) chiếm
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Tổng | N = 100 |
Xác định giá trị đại diện của nhóm thứ tư?
Giá trị đại diện của nhóm thứ tư là
Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
Số cây | 10 | 15 | 17 | 14 | 12 | 2 |
Tính trung vị của mẫu dữ liệu ghép nhóm.
Ta có:
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
|
Số cây | 10 | 15 | 17 | 14 | 12 | 2 | N = 70 |
Tần số tích lũy | 10 | 25 | 42 | 56 | 68 | 70 |
|
Ta có:
=> Nhóm chứa trung vị là: [60; 70) (vì 35 nằm giữa hai tần số tích lũy là 25 và 56)