Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Đáp án là:

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.

  • Câu 2: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 3: Vận dụng

    Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow x.y = 176

  • Câu 4: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị trung vị của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;\frac{N}{2} = 10;m = 9;f =7,c = 11 - 9 = 2

    Khi đó trung vị là:

    {M_e} = l + \frac{{\left( {\frac{N}{2} - m} ight)}}{f}.c = 9 + \frac{{10 - 9}}{7}.2 = \frac{{65}}{7}

  • Câu 5: Nhận biết

    Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:

    Độ dài của nhóm là: 2 - 1,5 =0,5

  • Câu 6: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm mốt của mẫu dữ liệu ghép nhóm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

     

    [105; 115)

    13

     

    [115; 125)

    26

    f_{0}

    [125; 135)

    30

    f_{1}

    [135; 145)

    12

    f_{2}

    [145; 155)

    10

     

    Tổng

    N = 100

     

    Ta có: Nhóm chứa mốt của mẫu dữ liệu ghép nhóm là: [125; 135)

    Khi đó: \left\{ \begin{matrix}l = 125;f_{0} = 26 \\f_{1} = 30,f_{2} = 12;d = 135 - 125 = 10 \\\end{matrix} ight.

    Mốt của mẫu dữ liệu ghép nhóm là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.d

    \Rightarrow M_{0} = 125 + \frac{30 -26}{2.30 - 26 - 12}.10 = 126,8

  • Câu 7: Nhận biết

    Điểm kiểm tra môn Toán của một nhóm học sinh được thể hiện trong bảng dưới đây:

    Điểm số

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh

    3

    7

    8

    12

    9

    Mẫu dữ liệu trên có bao nhiêu nhóm?

    Quan sát bảng dữ liệu ta thấy mẫu dữ liệu được chia thành 5 nhóm:

    Nhóm có điểm số [0; 2) có 3 học sinh

    Nhóm có điểm số [2; 4) có 7 học sinh

    Nhóm có điểm số [4; 6) có 8 học sinh

    Nhóm có điểm số [6; 8) có 12 học sinh

    Nhóm có điểm số [8; 10) có 9 học sinh

  • Câu 8: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 9: Nhận biết

    Trong mẫu dữ liệu ghép nhóm sau có bao nhiêu nhóm?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Tổng

    N = 100

    Mẫu số liệu ghép nhóm đã cho có 6 nhóm.

  • Câu 10: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 11: Vận dụng

    Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:

    Tuổi

    Nhỏ hơn 10

    Nhỏ hơn 20

    Nhỏ hơn 30

    Nhỏ hơn 40

    Nhỏ hơn 50

    Nhỏ hơn 60

    Nhỏ hơn 70

    Nhỏ hơn 80

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi (năm)

    (0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

     

    Số người (nghìn người)

    2

    3

    4

    3

    2

    1

    0,5

    0,1

    N = 15,6

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

     

    Ta có: \frac{N}{2} = \frac{15,6}{2} =7,8

    => Trung vị nằm trong nhóm \lbrack20;30)(vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)

    \Rightarrow l = 20;\frac{N}{2} = 7,8;m =5;f = 4,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\frac{N}{2} - m ight)}{f}.c= 20 + \frac{7,8 - 5}{4}.10 =27

  • Câu 12: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58

    Ta có:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 155)

    152,5

    15

    [155; 160)

    157,5

    11

    [160; 165)

    162,5

    39

    [165; 170)

    167,5

    27

    [170; 175)

    172,5

    5

    [175; 180)

    177,5

    3

    Giá trị trung bình của đối tượng là:

    \overline{x} = \frac{152,5.15 + 157,5.11+ 162,5.39 + 167,5.27 + 172,5.5 + 177,5.3}{100} = 162,75

  • Câu 13: Thông hiểu

    Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là

    Ta có:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Giá trị đại diện

    12

    16

    20

    24

    28

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là:

    \overline{x} = \frac{55.12 + 78.16 +
110.20 + 45.24 + 12.28}{55 + 78 + 110 + 45 + 12} \approx
18,41.

    Vậy mức giá mua nhà trung bình là: 18,41(triệu đồng/m^{2}).

  • Câu 14: Vận dụng

    Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:

    Khoảng

    Tần số

    Nhỏ hơn 20

    6

    Nhỏ hơn 40

    28

    Nhỏ hơn 60

    65

    Nhỏ hơn 80

    90

    Nhỏ hơn 100

    111

    Ta có:

    Khoảng

    Đại diện khoảng

    Tần số

    Tích

    [0; 20)

    10

    6

    60

    [20; 40)

    30

    28

    840

    [40; 60)

    50

    65

    3250

    [60; 80)

    70

    90

    6300

    [80; 100)

    90

    111

    9990

    Tổng

     

    N = 300

    20440

    Số trung bình là:

    \overline{x} = \frac{20440}{300} \approx68,13

  • Câu 15: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Các nhóm số liệu trong bảng trên có độ dài là bao nhiêu?

    Độ dài các nhóm là 5.

  • Câu 16: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 17: Nhận biết

    Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:

    Lượng nước (m3)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    [100; 120)

    Số hộ gia đỉnh

    6

    12

    10

    7

    4

    2

    Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.

    Vì nhóm chứa mốt của mẫu số liệu là nhóm \lbrack 20;40)nên giá trị đại diện của nhóm này là 30.

  • Câu 18: Thông hiểu

    Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

    Số nữ sinh

    2

    8

    12

    20

    8

    Tìm trung vị của dữ liệu ghép nhóm ở trên.

    Ta có:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

     

    Số nữ sinh

    2

    8

    12

    20

    8

    N = 50

    Tần số tích lũy

    2

    10

    22

    42

    50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)

    \Rightarrow l = 150;\frac{N}{2} =\frac{50}{2} = 25;m = 22;f = 20,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c= 150 + \dfrac{(25 - 22)}{20}.10 = 151,5

  • Câu 19: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 20: Thông hiểu

    Quan sát bảng sau và tìm mốt.

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)

    Khi đó: \left\{ \begin{matrix}l = 30;f_{0} = 12;f_{1} = 22;f_{2} = 17 \\c = 40 - 30 = 10 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 30 +\frac{22 - 12}{2.22 - 12 - 17}.10 \approx 30,7

  • Câu 21: Thông hiểu

    Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?

    Ta có:

    Giá trị lớn nhất: 25

    Giá trị nhỏ nhất: 4

    Khoảng biến thiên là: 25 – 4 = 21

  • Câu 22: Thông hiểu

    Thời gian lái xe của 25 nhân viên trong công ty được ghi lại trong bảng sau:

    Thời gian (phút)

    Số nhân viên

    (0; 10]

    3

    (10; 20]

    10

    (20; 30]

    6

    (30; 40]

    4

    (40; 50]

    2

    Tính thời gian lái xe trung bình của các nhân viên đó.

    Ta có:

    Thời gian đại diện (phút)

    Số nhân viên

    Tích các giá trị

    5

    3

    15

    15

    10

    150

    25

    6

    150

    35

    4

    140

    45

    2

    90

    Tổng

    N = 25

    545

    Thời gian lái xe trung bình là:

    \overline{x} = \frac{545}{25} =21,8(phút)

  • Câu 23: Nhận biết

    Cho dãy số liệu thống kê: 21, 23, 24,25, 22, 20. Số trung bình cộng của dãy số liệu thống kê đã cho là

    Số trung bình là:

    \overline{x} =
\frac{21 + 23 + 24 + 25 + 22 + 20}{6} = 22,5

  • Câu 24: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Tìm thu nhập trung bình của các hộ gia đình.

    Ta có:

    Thu nhập đại diện (nghìn đồng)

    Hộ gia đình

    Tích các giá trị

    50

    5

    250

    150

    7

    1050

    250

    12

    3000

    350

    18

    6300

    450

    16

    7200

    550

    10

    5500

    650

    5

    3250

    Tổng

    N = 73

    26550

    Thu nhập trung bình của các hộ gia đình là:

    \overline{x} = \frac{26550}{73} \approx364

  • Câu 25: Thông hiểu

    Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:

    Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:

    (0; 10]; (10; 20]; (20; 30]; (30; 40]; …

    Mẫu nhóm thứ tư là (30; 40]

    => Giới hạn dưới của nhóm thứ tư là 30.

  • Câu 26: Nhận biết

    Dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

    Chiều cao (m)

    [150; 153)

    [153; 156)

    [156; 159)

    [159; 162)

    [162; 165)

    [165; 168)

    Số học sinh

    10

    15

    28

    22

    14

    11

    Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là

    Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là \lbrack  156; 159 ).

    Giá trị đại diện cho nhóm là \frac{156 +
159}{2} = 157,5.

  • Câu 27: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 28: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Nhóm chứa tứ phân vị thứ nhất và nhóm chứa tứ phân vị thứ ba lần lượt là:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

  • Câu 29: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 30: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 31: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -33}{5}.5 \approx 66,5

  • Câu 32: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 33: Thông hiểu

    Biết k là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \frac{n}{2}, r, d, nk lần lượt là đầu mút trái, độ dài, tần số của nhóm k khi đó công thức r + \left( \dfrac{\dfrac{n}{2} -cf_{k - 1}}{n_{k}} ight).d dùng để tính:

    Trung vị được tính theo công thức r +\left( \frac{\frac{n}{2} - cf_{k - 1}}{n_{k}} ight).d.

  • Câu 34: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm \lbrack
40;60) là:

    Giá trị đại diện của nhóm \lbrack
40;60) là: c = \frac{40 + 60}{2} =
50

  • Câu 35: Vận dụng

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    [150; 154]

    5

    [155; 159]

    2

    [160; 164]

    6

    [165; 169]

    8

    [170; 174]

    9

    [175; 179]

    11

    [180; 184]

    6

    [185; 189]

    3

    Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (149,5; 154,5]

    5

    5

    (154,5; 159,5]

    2

    7

    (159,5; 164,5]

    6

    13

    (164,5; 169,5]

    8

    21

    (169,5; 174,5]

    9

    30

    (174,5; 179,5]

    11

    41

    (179,5; 184,5]

    6

    47

    (184,5; 189,5]

    3

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là (169,5; 174,5]

    Khi đó: \left\{ \begin{matrix}l = 169,5,\dfrac{N}{2} = 25 \\m = 21,f = 9,d = 174,5 - 169,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 169,5 + \frac{25 -21}{9}.5 \approx 171,7

  • Câu 36: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm [300; 400)

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

     

    [100; 200)

    7

     

    [200; 300)

    12

    {f_0}

    [300; 400)

    18

    {f_1}

    [400; 500)

    16

    {f_2}

    [500; 600)

    10

     

    [600; 700)

    5

     

    \Rightarrow l = 300;f_{0} = 12;f_{1} =18;f_{2} = 16;c = 400 - 300 = 100

    Khi đó ta tính mốt như sau:

    \begin{matrix}  {M_0} = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}}.c \hfill \\   \Rightarrow {M_0} = 300 + \dfrac{{18 - 12}}{{2.18 - 12 - 16}}.100 = 375 \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính giá trị trung bình của mẫu số liệu đã cho?

    Ta có:

    Số tiền (nghìn đồng)

    Giá trị đại diện

    Số người

    [0; 50)

    25

    5

    [50; 100)

    75

    12

    [100; 150)

    125

    23

    [150; 200)

    175

    17

    [200; 250)

    225

    3

     

     

    N = 60

    Giá trị trung bình cần tìm là:

    \overline{x} = \frac{25.5 + 75.12 +125.23 + 175.17 + 225.3}{60} = 125,83

  • Câu 38: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính trung vị của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

     

    N = 200

     

    Ta có: \frac{N}{2} = \frac{200}{2} =100

    => Trung vị nằm trong nhóm \lbrack440;450)(vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)

    \Rightarrow l = 440;\frac{N}{2} = 100;m= 76;f = 54,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c = 440 + \dfrac{100 - 76}{54}.10 =444,44

  • Câu 39: Nhận biết

    Giá trị đại diện của nhóm \lbrack
60;80)

    Ta có giá trị đại diện là \frac{60 +
80}{2} = 70.

  • Câu 40: Thông hiểu

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Đáp án là:

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:

    8 + 16 + 4 = 28 (học sinh)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo