Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tính mức thu nhập trung bình của nhóm người.

    Mức thu nhập

    {f_i}{x_i}{f_i}{x_i}

    [0; 8)

    8

    4

    32

    [8; 16)

    7

    12

    84

    [16; 24)

    16

    20

    320

    [24; 32)

    24

    28

    672

    [32; 40)

    15

    36

    540

    [40; 48)

    7

    44

    308

     

    N = 77

    1956

    Mức thu nhập trung bình của nhóm người là: \overline{x} = \frac{\sum_{i =1}^{n}{f_{i}x_{i}}}{N} = \frac{1956}{77} = 25,4

  • Câu 2: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    [95; 105)

    9

    9

    [105; 115)

    13

    22

    [115; 125)

    26

    48

    [125; 135)

    30

    78

    [135; 145)

    12

    90

    [145; 155)

    10

    100

    Tổng

    N = 100

     

    Ta có: N = 100 \Rightarrow \frac{N}{4} =\frac{100}{4} = 25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

    Khi đó: \left\{ \begin{matrix}l = 115;\dfrac{N}{4} = 25;m = 22 \\f = 26,d = 125 - 115 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 115 + \frac{25 -22}{26}.10 \approx 116,15

  • Câu 3: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ ba của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \frac{75 - 65}{27}.5 \approx 166,85

  • Câu 4: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu thuộc nhóm nào trong mẫu dữ liệu trên?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

  • Câu 5: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau.

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tính giá trị trung bình của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    12

    300

    35

    9

    315

    45

    7

    315

    Tổng

    N = 50

    1180

    Giá trị trung bình là: \overline{x} =\frac{1180}{50} = 23,6

  • Câu 6: Thông hiểu

    Cho bảng số liệu thống kê sau: Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    3

    2

    4

    Những ngày có không dưới 40 khách hàng đến mua cà phê chiếm bao nhiêu phần trăm?

    Những ngày có không dưới 40 khách hàng đến mua cà phê là: 3 + 2 + 4 = 9 (khách hàng) chiếm \frac{9.100\%}{14} \approx64\%

  • Câu 7: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 4 nhóm.

  • Câu 8: Nhận biết

    Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Số phần tử của mẫu dữ liệu ghép nhóm là:

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Tổng

    N = 30

     

    Vậy số phần tử mẫu là N = 30

  • Câu 9: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?

    Chuyển mẫu dữ liệu sang dạng ghép nhóm:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là: \frac{11 + 9 + 1}{40}.100\% =52,5\%

  • Câu 10: Nhận biết

    Các bước để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm là:

    • Chia miền giá trị của mẫu số liệu thành một nhóm theo tiêu chí cho trước.
    • Đếm số giá trị của mẫu số liệu thuộc mỗi nhóm (tần số).
    • Lập bảng thống kê cho mẫu số liệu ghép nhóm.
    Thứ tự là:
    • Chia miền giá trị của mẫu số liệu thành một nhóm theo tiêu chí cho trước.
    • Đếm số giá trị của mẫu số liệu thuộc mỗi nhóm (tần số).
    • Lập bảng thống kê cho mẫu số liệu ghép nhóm.
  • Câu 11: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    8

    9

    15

    12

    6

    Nhóm chứa mốt của mẫu số liệu đã cho là:

    Nhóm chứa mốt là nhóm có giá trị tần số lớn nhất

    Nên nhóm chứa mốt của mẫu số liệu là: \lbrack 40;60).

  • Câu 12: Nhận biết

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có nhiều học sinh nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Vậy lớp 11C có nhiều học sinh nhất.

  • Câu 13: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 14: Thông hiểu

    Quan sát bảng sau và tìm mốt.

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)

    Khi đó: \left\{ \begin{matrix}l = 30;f_{0} = 12;f_{1} = 22;f_{2} = 17 \\c = 40 - 30 = 10 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 30 +\frac{22 - 12}{2.22 - 12 - 17}.10 \approx 30,7

  • Câu 15: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    25

    55

    [30; 40)

    x

    55 + x

    [40; 50)

    9

    64 + x

    Tổng

    N = 64 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow \left\{ \begin{matrix}l = 20;\dfrac{N}{2} = \dfrac{64 + x}{2} \\m = 30;f = 25,c = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    24 = 20 + \dfrac{\dfrac{64 + x}{2} -30}{25}.10

    \Leftrightarrow 16 = x

  • Câu 16: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

  • Câu 17: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 18: Nhận biết

    Một nhà thực vật học khảo sát chiều cao của một số cây trong khu rừng, kết quả đo được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

    Trong biểu đồ, trục hoành biểu thị chiều cao của cây (đơn vị: mét), trục tung biểu thị số lượng cây tương ứng. Số cây có chiều cao không nhỏ hơn 9,1m là:

    Quan sát biểu đồ dữ liệu ta thấy:

    Số lượng cây có chiều cao không nhỏ hơn 9,1m là: 60 + 55 + 30 = 145 (cây)

  • Câu 19: Vận dụng

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    [150; 154]

    5

    [155; 159]

    2

    [160; 164]

    6

    [165; 169]

    8

    [170; 174]

    9

    [175; 179]

    11

    [180; 184]

    6

    [185; 189]

    3

    Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (149,5; 154,5]

    5

    5

    (154,5; 159,5]

    2

    7

    (159,5; 164,5]

    6

    13

    (164,5; 169,5]

    8

    21

    (169,5; 174,5]

    9

    30

    (174,5; 179,5]

    11

    41

    (179,5; 184,5]

    6

    47

    (184,5; 189,5]

    3

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là (169,5; 174,5]

    Khi đó: \left\{ \begin{matrix}l = 169,5,\dfrac{N}{2} = 25 \\m = 21,f = 9,d = 174,5 - 169,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 169,5 + \frac{25 -21}{9}.5 \approx 171,7

  • Câu 20: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Biết rằng nếu học sinh có điểm thi dưới 40 điểm sẽ không đạt yêu cầu vượt qua kì thi. Hỏi số học sinh không đạt yêu cầu là bao nhiêu?

    Quan sát bảng số liệu ghép nhóm ta thấy:

    Nhóm [20; 30) có 4 học sinh

    Nhóm [30; 40) có 6 học sinh

    => Số học sinh không đạt yêu cầu là 6 + 4 = 10 (học sinh)

  • Câu 21: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 22: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{2} =21

    => Nhóm chứa trung vị là [40; 60)

    (Vì 21 nằm giữa hai tần số tích lũy 14 và 26)

  • Câu 23: Nhận biết

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Tìm khoảng chứa trung vị?

    Ta có:

    Chiều cao (h)

    Số học sinh

    Tần số tích lũy

    130 < h ≤ 140

    2

    2

    140 < h ≤ 150

    4

    6

    150 < h ≤ 160

    9

    15

    160 < h ≤ 170

    13

    28

    170 < h ≤ 180

    8

    36

    180 < h ≤ 190

    3

    39

    190 < h ≤ 200

    1

    40

    Ta lại có: N = 40 \Rightarrow \frac{N}{2}= 20

    => Nhóm chứa trung vị là: (160; 170]

  • Câu 24: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Giá trị đại diện cho nhóm số liệu thứ năm là:

    Nhóm thứ năm trong mẫu số liệu ghép nhóm là [60; 70) có giá trị đại diện là:

    \frac{60 + 70}{2} = 65

  • Câu 25: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 26: Thông hiểu

    Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

    Số nữ sinh

    2

    8

    12

    20

    8

    Tìm trung vị của dữ liệu ghép nhóm ở trên.

    Ta có:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

     

    Số nữ sinh

    2

    8

    12

    20

    8

    N = 50

    Tần số tích lũy

    2

    10

    22

    42

    50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)

    \Rightarrow l = 150;\frac{N}{2} =\frac{50}{2} = 25;m = 22;f = 20,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c= 150 + \dfrac{(25 - 22)}{20}.10 = 151,5

  • Câu 27: Thông hiểu

    Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:

    Nữ

    6

    7

    9

    8

    10

    10

    Nam

    7

    9

    12

    14

    13

    17

    a) Khoảng biến thiên giá trị của nữ là: 4

    Khoảng biến thiên giá trị của nam là: 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11

    Đáp án là:

    Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:

    Nữ

    6

    7

    9

    8

    10

    10

    Nam

    7

    9

    12

    14

    13

    17

    a) Khoảng biến thiên giá trị của nữ là: 4

    Khoảng biến thiên giá trị của nam là: 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11

    a) Khoảng biến thiên giá trị của nữ là: 10 – 6 = 4

    Khoảng biến thiên giá trị của nam là: 17 – 7 = 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 17 -6 = 11

  • Câu 28: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Nhóm

    Tần số

    (0; 10]

    x

    (10; 20]

    8

    (20; 30]

    20

    (30; 40]

    15

    (40; 50]

    7

    (50; 60]

    y

    Tổng

    N = 60

    Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?

    Bảng số liệu được ghi như sau:

    Nhóm

    Tần số

    Tần số tích lũy

    (0; 10]

    x

    x

    (10; 20]

    8

    x + 8

    (20; 30]

    20

    x + 28

    (30; 40]

    15

    x + 43

    (40; 50]

    7

    x + 50

    (50; 60]

    y

    x + y + 50

    Tổng

    N = 60

     

    Ta có: N = 60

    \Rightarrow x + y = 10

    Theo bài ra ta có: M_{e} =28,5

    => Nhóm chứa trung vị là (20; 30]

    Suy ra: \left\{ \begin{matrix}l = 20,\dfrac{N}{2} = 30 \\m = x + 8,f = 20,d = 10 \\\end{matrix} ight.

    Khi đó ta có:

    M_{e} = l + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Leftrightarrow 28,5 = 20 +\dfrac{\dfrac{60}{2} - (x + 8)}{20}.10

    \Leftrightarrow x = 5

    \Rightarrow y = 10 - 5 = 5

  • Câu 29: Thông hiểu

    Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tần số tích lũy

    6

    20

    60

    94

    100

    Ta có: \frac{N}{2} = \frac{100}{2} =50

    => Trung vị nằm trong nhóm \lbrack700;750)(vì 50 nằm giữa hai tần số tích lũy là 20 và 60)

    \Rightarrow l = 700;\frac{N}{2} = 50;m =20;f = 40,c = 50

    \Rightarrow M_{e} = l + \frac{\left(\frac{N}{2} - m ight)}{f}.c

    = 700 + \frac{50 - 20}{40}.50 =737,5 (giờ)

  • Câu 30: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tổng

    N = 100

    Mốt của mẫu số liệu gần với giá trị nào nhất trong các giá trị dưới đây?

    Mốt của mẫu số liệu thuộc nhóm [160; 165).

    Đối tượng

    Tần số

    [150; 155)

    15

     

    [155; 160)

    10

    f_{0}

    [160; 165)

    40

    f_{1}

    [165; 170)

    27

    f_{2}

    [170; 175)

    5

     

    [175; 180)

    3

     

    Tổng

    N = 100

     

    Ta có: \left\{ \begin{matrix}l = 160;f_{0} = 10;f_{1} = 40;f_{2} = 27 \\c = 165 - 160 = 5 \\\end{matrix} ight.

    Khi đó ta tính mốt như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Rightarrow M_{0} = 160 + \frac{40 -10}{2.40 - 10 - 27}.5 \approx 163,5

    Vậy mốt của mẫu số liệu gần với giá trị 164 nhất.

  • Câu 31: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{2}= 30

    => Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 va 40)

    Khi đó \left\{ \begin{matrix}l = 100;\dfrac{N}{2} = 30;m = 17;f = 23 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\dfrac{\dfrac{N}{2} - m}{f}.c

    \Rightarrow M_{e} = 100 + \frac{30 -17}{23}.50 \approx 128,26

  • Câu 32: Thông hiểu

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Biết rằng nếu học sinh có ít nhất 60 điểm và không vượt quá 80 điểm sẽ đạt điểm B. Hỏi phần trăm số học sinh đạt điểm B trong lớp 11A chiếm bao nhiêu phần trăm?

    Quan sát bảng số liệu ghép nhóm ta thấy:

    Số học sinh lớp 11A là 60 học sinh

    Nhóm [60; 70) có 10 học sinh

    Nhóm [70; 80) có 6 học sinh

    => Số học sinh đạt điểm B là 10 + 6 = 16 (học sinh)

    Vậy số học sinh đạt điểm B chiếm \frac{16}{60}.100\% \approx 26,7\%

  • Câu 33: Nhận biết

    Khi nào mẫu số liệu ghép nhóm thường được dùng để thuận lợi cho việc tổ chức, đọc và phân tích số liệu?

    Mẫu số liệu ghép nhóm được dùng khi ta không thể thu thập được số liệu chính xác hoặc do yêu cầu bài toán mà ta phải biểu diễn mẫu số liệu dưới dạng ghép nhóm để thuận lợi cho việc tổ chức, đọc và phân tích số liệu.

  • Câu 34: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

  • Câu 35: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Cỡ mẫu của mẫu số liệu là:

    Cỡ mẫu của mẫu số liệu là:

    N = 5 + 12 + 10 + 6 + 5 + 8 = 46

  • Câu 36: Vận dụng

    Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:

    Khoảng

    Tần số

    Nhỏ hơn 20

    6

    Nhỏ hơn 40

    28

    Nhỏ hơn 60

    65

    Nhỏ hơn 80

    90

    Nhỏ hơn 100

    111

    Ta có:

    Khoảng

    Đại diện khoảng

    Tần số

    Tích

    [0; 20)

    10

    6

    60

    [20; 40)

    30

    28

    840

    [40; 60)

    50

    65

    3250

    [60; 80)

    70

    90

    6300

    [80; 100)

    90

    111

    9990

    Tổng

     

    N = 300

    20440

    Số trung bình là:

    \overline{x} = \frac{20440}{300} \approx68,13

  • Câu 37: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 38: Thông hiểu

    Tính khoảng biến thiên của mẫu dữ liệu cho dưới đây:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Khoảng biến thiên mẫu dữ liệu ghép nhóm được đưa ra bởi công thức:

    Khoảng biến thiên = Giới hạn trên của khoảng cao nhất – Giới hạn dưới của khoảng thấp nhất

    Giới hạn trên của khoảng cao nhất là: 80

    Giới hạn dưới của khoảng thấp nhất là: 10

    => Khoảng biến thiên là: 80 – 10 = 70

  • Câu 39: Vận dụng

    Hoàn thành mẫu dữ liệu ghép nhóm sau. 

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Ghép nối các nội dung thích hợp với nhau:

    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
    Đáp án đúng là:
    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
  • Câu 40: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo