Thời gian chạy trung bình cự li
(giây) của các bạn học sinh là
Thời gian chạy trung bình cự li (giây) của các bạn học sinh là:
(giây)
Thời gian chạy trung bình cự li
(giây) của các bạn học sinh là
Thời gian chạy trung bình cự li (giây) của các bạn học sinh là:
(giây)
Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?
Số học sinh tham gia khảo sát là: 40 học sinh.
Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
Tốc độ | Tần số |
40 ≤ x < 50 | 4 |
50 ≤ x < 60 | 5 |
60 ≤ x < 70 | 7 |
70 ≤ x < 80 | 4 |
Xác định giá trị của
?
Ta có:
Tốc độ | Tần số | Tần số tích lũy |
40 ≤ x < 50 | 4 | 4 |
50 ≤ x < 60 | 5 | 9 |
60 ≤ x < 70 | 7 | 16 |
70 ≤ x < 80 | 4 | 20 |
Tổng | N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là:
Khi đó:
Tứ phân vị thứ nhất là:
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Ta có:
Tuổi | Đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60) | 55 | 10 |
[60; 70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90) | 85 | 1 |
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị trung vị của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó trung vị là:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa trung vị của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Xác định số nhóm trong mẫu số liệu ghép nhóm sau?
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Mẫu dữ liệu ghép nhóm đã cho có 7 nhóm.
Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có nhiều học sinh nhất?
Số học sinh lớp 11A là:
4 + 8 + 12 + 10 + 6 = 40 (học sinh)
Số học sinh lớp 11B là:
5 + 12 + 10 + 8 + 4 = 39 (học sinh)
Số học sinh lớp 11C là:
4 + 10 + 15 + 9 + 3 = 41 (học sinh)
Số học sinh lớp 11D là:
4 + 9 + 16 + 11 + 3 = 43 (học sinh)
Vậy lớp 11C có nhiều học sinh nhất.
Thời gian chạy 50m của 20 học sinh được ghi lại trong bảng dưới đây:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Tần số |
2 |
3 |
9 |
5 |
1 |
Số trung bình cộng thời gian chạy của học sinh là:
Số trung bình cộng thời gian chạy của học sinh là:
Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:
Điểm | Số học sinh |
(20; 30] | 1 |
(30; 40] | 1 |
(40; 50] | 10 |
(50; 60] | 11 |
(60; 70] | 5 |
(70; 80] | 2 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
(20; 30] | 1 | 1 |
(30; 40] | 1 | 2 |
(40; 50] | 10 | 12 |
(50; 60] | 11 | 23 |
(60; 70] | 5 | 28 |
(70; 80] | 2 | 30 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là (40; 50]
Khi đó:
Tứ phân vị thứ nhất của mẫu số liệu là:
Cho mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Tính giá trị trung bình của mẫu dữ liệu ghép nhóm trên.
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | 12 | 300 |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 50 | 1180 |
Giá trị trung bình là:
Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:
Cân nặng (x, kg) | Số người |
0 < x ≤ 20 | 2 |
20 < x ≤ 40 | 6 |
40 < x ≤ 60 | 7 |
60 < x ≤ 80 | 4 |
80 < x ≤ 100 | 1 |
Ta có:
Cân nặng đại diện (x, kg) | Số người | Tích các giá trị |
10 | 2 | 20 |
30 | 6 | 180 |
50 | 7 | 350 |
70 | 4 | 280 |
90 | 1 | 90 |
Tổng | N = 20 | 920 |
Cân nặng trung bình của 20 người đó là:
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có
mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là
Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là
. Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách
trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là . Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
a) Ta có cỡ mẫu . Vậy đáp án a) đúng.
b) Gọi được sắp xếp theo thứ tự không giảm.
Khi đó, trung vị là . Do
thuộc nhóm
nên nhóm này chứa trung vị.
Suy ra ,
,
,
,
,
.
.
Vậy đáp án b) sai.
c) Số trung bình của mẫu số liệu là
.
Vậy đáp án c) sai.
d) Điểm ngưỡng để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Cỡ mẫu
Tứ phân vị thứ ba là
mà
thuộc nhóm [30;40) nên nhóm này chứa
.
Do đó, và ta có:
.
Vậy để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.
Vậy đáp án d) đúng.
Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.
Điểm | Số học sinh |
[0; 10) | 2 |
[10; 20) | 6 |
[20; 30) | 8 |
[30; 40) | x |
[40; 50) | 30 |
[50; 60) | 22 |
[60; 70) | 18 |
[70; 80) | 8 |
[80; 90) | 4 |
[90; 100) | 2 |
Biết trung vị bằng 47. Tìm tổng số học sinh.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
[0; 10) | 2 | 2 |
[10; 20) | 6 | 8 |
[20; 30) | 8 | 16 |
[30; 40) | x | 16 + x |
[40; 50) | 30 | 46 + x |
[50; 60) | 22 | 68 + x |
[60; 70) | 18 | 86 + x |
[70; 80) | 8 | 94 + x |
[80; 90) | 4 | 98 + x |
[90; 100) | 2 | 100 + x |
| N = 100 + x |
|
Trung vị là 47 => Nhóm chứa trung vị là [40; 50)
Vậy số học sinh là 126 học sinh.
Bảng số liệu dưới đây cho biết khoảng chi tiêu hàng tháng của 200 hộ gia đình.
Khoảng chi tiêu (USD) | [0; 1000) | [1000; 2000) | [2000; 3000) | [3000; 4000) | [4000; 5000) |
Số hộ gia đình | 28 | 46 | 54 | 42 | 30 |
Tính trung vị của mẫu số liệu ghép nhóm này.
Ta có:
Khoảng chi tiêu (USD) | [0; 1000) | [1000; 2000) | [2000; 3000) | [3000; 4000) | [4000; 5000) |
|
Số hộ gia đình | 28 | 46 | 54 | 42 | 30 | N = 200 |
Tần số tích lũy | 28 | 74 | 128 | 170 | 200 |
|
Ta có:
=> Nhóm chứa trung vị là [2000; 3000) (vì 100 nằm giữa hai tần số tích lũy là 74 và 128)
Do đó:
Khi đó trung vị là:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?
Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị
?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [20; 40)
(Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)
Khi đó ta tìm được các giá trị:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là:
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là
(đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là: Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là (đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
Do đó doanh thu trung bình của cửa hàng là:
(triệu đồng)
Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
|
Tần số tích lũy |
2 |
9 |
16 |
19 |
20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:
Xét nhóm [7; 9) ta có:
Xét nhóm [9; 11) ta có:
Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.
Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?
Ta có:
Giá trị lớn nhất: 25
Giá trị nhỏ nhất: 4
Khoảng biến thiên là: 25 – 4 = 21
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48
Số học sinh lớp 11A kiểm tra cân nặng là
7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)
Điểm kiểm tra môn Toán của một nhóm học sinh được thể hiện trong bảng dưới đây:
Điểm số | [0; 2) | [2; 4) | [4; 6) | [6; 8) | [8; 10) |
Số học sinh | 3 | 7 | 8 | 12 | 9 |
Mẫu dữ liệu trên có bao nhiêu nhóm?
Quan sát bảng dữ liệu ta thấy mẫu dữ liệu được chia thành 5 nhóm:
Nhóm có điểm số [0; 2) có 3 học sinh
Nhóm có điểm số [2; 4) có 7 học sinh
Nhóm có điểm số [4; 6) có 8 học sinh
Nhóm có điểm số [6; 8) có 12 học sinh
Nhóm có điểm số [8; 10) có 9 học sinh
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Giá trị đại diện cho nhóm [155; 160) bằng:
Giá trị đại diện của nhóm [155; 160) là
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính mốt?
Ta có:
Số tiền (nghìn đồng) | Số người |
|
[0; 50) | 5 |
|
[50; 100) | 12 | |
[100; 150) | 23 | |
[150; 200) | 17 | |
[200; 250) | 3 |
|
| N = 60 |
|
Ta có:
=> Mốt của dấu hiệu là:
Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:
Chiều cao h (cm) | Số cây |
130 < h ≤ 140 | 3 |
140 < h ≤ 150 | 7 |
150 < h ≤ 160 | 5 |
Nhóm chứa trung vị là:
Ta có:
Chiều cao h (cm) | Số cây | Tần số tích lũy |
130 < h ≤ 140 | 3 | 3 |
140 < h ≤ 150 | 7 | 10 |
150 < h ≤ 160 | 5 | 15 |
Tổng | N = 15 |
|
Ta có:
=> Nhóm chứa trung vị là: 140 < h ≤ 150
Hoàn thành mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Ghép nối các nội dung thích hợp với nhau:
Cho bảng dữ liệu như sau:
Đại diện A | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện X | Tần số | Tần số tích lũy |
[15,5; 20,5) | 5 | 5 |
[20,5; 25,5) | 6 | 11 |
[25,5; 30,5) | 12 | 23 |
[30,5; 35,5) | 14 | 37 |
[35,5; 40,5) | 26 | 63 |
[40,5; 45,5) | 12 | 75 |
[45,5; 50,5) | 16 | 91 |
[50,5; 55,5) | 9 | 100 |
| N = 100 |
|
Ta lại có:
=> Nhóm chứa là
(vì 25 nằm giữa các tần số tích lũy 23 và 37).
Khi đó ta tìm được các giá trị:
Thời gian lái xe của 25 nhân viên trong công ty được ghi lại trong bảng sau:
Thời gian (phút) | Số nhân viên |
(0; 10] | 3 |
(10; 20] | 10 |
(20; 30] | 6 |
(30; 40] | 4 |
(40; 50] | 2 |
Tính thời gian lái xe trung bình của các nhân viên đó.
Ta có:
Thời gian đại diện (phút) | Số nhân viên | Tích các giá trị |
5 | 3 | 15 |
15 | 10 | 150 |
25 | 6 | 150 |
35 | 4 | 140 |
45 | 2 | 90 |
Tổng | N = 25 | 545 |
Thời gian lái xe trung bình là:
(phút)
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Tính độ dài nhóm số liệu trong mẫu số liệu ghép nhóm trên.
Độ dài nhóm của mẫu số liệu ghép nhóm trên là 5.
Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:
Chiều cao (cm) | [120; 130) | [130; 140) | [140; 150) | [150; 160) | [160; 170) |
Số nữ sinh | 2 | 8 | 12 | 20 | 8 |
Tìm trung vị của dữ liệu ghép nhóm ở trên.
Ta có:
Chiều cao (cm) | [120; 130) | [130; 140) | [140; 150) | [150; 160) | [160; 170) | |
Số nữ sinh | 2 | 8 | 12 | 20 | 8 | N = 50 |
Tần số tích lũy | 2 | 10 | 22 | 42 | 50 |
|
Ta có:
=> Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)
Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tần số tích lũy | 6 | 20 | 60 | 94 | 100 |
Ta có:
=> Trung vị nằm trong nhóm (vì 50 nằm giữa hai tần số tích lũy là 20 và 60)
(giờ)
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Tính số tuổi trung bình của những người trong khu vực thể hiện dưới bảng số liệu sau đây:
Nhóm tuổi | Số lượng người |
[0; 10) | 6 |
[10; 20) | 12 |
[20; 30) | 10 |
[30; 40) | 32 |
[40; 50) | 22 |
[50; 60) | 18 |
[60; 70) | 15 |
[70; 80) | 5 |
[80; 90) | 4 |
[90; 100) | 3 |
Trong mỗi nhóm tuổi, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Nhóm tuổi | Số lượng người |
5 | 6 |
15 | 12 |
25 | 10 |
35 | 32 |
45 | 22 |
55 | 18 |
65 | 15 |
75 | 5 |
85 | 4 |
95 | 3 |
| N = 127 |
Tuổi trung bình là:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:
| Điểm | >10 | >20 | >30 | >40 | >50 | >60 | >70 | >80 | >90 |
| Số học sinh | 70 | 62 | 50 | 38 | 30 | 24 | 17 | 9 | 4 |
Tìm trung vị của mẫu dữ liệu.
Ta có:
| Điểm | (10; 20] | (20; 30] | (30; 40] | (40; 50] | (50; 60] | (60; 70] | (70; 80] | (80; 90] | (90; 100] |
| Số học sinh | 70 | 62 | 50 | 38 | 30 | 24 | 17 | 9 | 4 |
| Tần số tích lũy | 70 | 132 | 182 | 220 | 250 | 274 | 291 | 300 | 304 |
Ta có:
Nên khoảng chứa trung vị là: (30; 40]
Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:
7,3 | 7,8 | 7,5 | 6,6 | 8,5 | 8,3 | 8,3 |
7,5 | 8,4 | 8,6 | 7,4 | 8,2 | 8,0 | 8,1 |
8,7 | 8,2 | 8,8 | 8,1 | 7,7 | 7,8 | 8,5 |
7,0 | 7,9 | 6,9 | 9,4 | 9,0 | 8,0 | 8,7 |
8,9 | 7,6 | 8,0 | 8,2 | 7,9 | 7,7 | 7,2 |
Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:
Khoảng biến thiên:
Ta chia thành các nhóm sau:
Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:
Chiều cao (m) | Số cây |
[6,5; 7) | 2 |
[7; 7,5) | 4 |
[7,5; 8) | 9 |
[8; 8,5) | 11 |
[8,5; 9) | 7 |
[9; 9,5) | 2 |
Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)