Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 2: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm \lbrack
40;60) là:

    Giá trị đại diện của nhóm \lbrack
40;60) là: c = \frac{40 + 60}{2} =
50

  • Câu 3: Thông hiểu

    Hoàn thành bảng số liệu sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    43

    7

    [45,5; 50,5)

    48

    16

    [50,5; 55,5)

    53

    10

    [55,5; 60,5)

    58

    5

    [60,5; 65,5)

    63

    4

    [65,5; 70,5)

    68

    2

    Đáp án là:

    Hoàn thành bảng số liệu sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    43

    7

    [45,5; 50,5)

    48

    16

    [50,5; 55,5)

    53

    10

    [55,5; 60,5)

    58

    5

    [60,5; 65,5)

    63

    4

    [65,5; 70,5)

    68

    2

    Trong mỗi khoảng cân nặng, giá trị đại diện là giá trị trung bình của giá trị hai đầu mút nên ta hoàn thành bảng số liệu như sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    \frac{40,5 + 45,5}{2} =43

    7

    [45,5; 50,5)

    \frac{45,5 + 50,5}{2} =48

    16

    [50,5; 55,5)

    \frac{50,5 + 55,5}{2} =53

    10

    [55,5; 60,5)

    \frac{55,5 + 60,5}{2} =58

    5

    [60,5; 65,5)

    \frac{60,5 + 65,5}{2} =63

    4

    [65,5; 70,5)

    \frac{65,5 + 70,5}{2} =68

    2

     

  • Câu 4: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện

    Tần số

    [1; 5)

    6

    [5; 10)

    19

    [10; 15)

    13

    [15; 20)

    20

    [20; 25)

    12

    [25; 30)

    11

    [30; 35)

    6

    [35; 40)

    5

    Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?

    Ta có:

    Đại diện

    Tần số

    Tần số tích lũy

    [1; 5)

    6

    6

    [5; 10)

    19

    25

    [10; 15)

    13

    38

    [15; 20)

    20

    58

    [20; 25)

    12

    70

    [25; 30)

    11

    81

    [30; 35)

    6

    87

    [35; 40)

    5

    92

     

    N = 92

     

    Ta có: \frac{N}{4} = \frac{92}{4} =23

    => Nhóm chứa Q_{1}[5; 10) (vì 23 nằm giữa các tần số tích lũy 6 và 25).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 5;m = 6,f = 19;c = 10 -5 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 5 + \dfrac{23 - 6}{19}.5 \approx9,47

  • Câu 5: Vận dụng

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    [150; 154]

    5

    [155; 159]

    2

    [160; 164]

    6

    [165; 169]

    8

    [170; 174]

    9

    [175; 179]

    11

    [180; 184]

    6

    [185; 189]

    3

    Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (149,5; 154,5]

    5

    5

    (154,5; 159,5]

    2

    7

    (159,5; 164,5]

    6

    13

    (164,5; 169,5]

    8

    21

    (169,5; 174,5]

    9

    30

    (174,5; 179,5]

    11

    41

    (179,5; 184,5]

    6

    47

    (184,5; 189,5]

    3

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là (169,5; 174,5]

    Khi đó: \left\{ \begin{matrix}l = 169,5,\dfrac{N}{2} = 25 \\m = 21,f = 9,d = 174,5 - 169,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 169,5 + \frac{25 -21}{9}.5 \approx 171,7

  • Câu 6: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Khoảng cân nặng nào có số học sinh chiếm nhiều nhất?

    Khoảng cân nặng có số học sinh chiếm nhiều nhất là: [50; 55)

  • Câu 7: Vận dụng

    Cho bảng dữ liệu dưới đây:

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow T = 2x - y = 6

  • Câu 8: Thông hiểu

    Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    Số cây

    10

    15

    17

    14

    12

    2

    Tính trung vị của mẫu dữ liệu ghép nhóm.

    Ta có:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

     

    Số cây

    10

    15

    17

    14

    12

    2

    N = 70

    Tần số tích lũy

    10

    25

    42

    56

    68

    70

     

    Ta có: \frac{N}{2} = \frac{70}{2} =35

    => Nhóm chứa trung vị là: [60; 70) (vì 35 nằm giữa hai tần số tích lũy là 25 và 56)

    \Rightarrow l = 60;\frac{N}{2} =\frac{70}{2} = 35;m = 25;f = 17,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    = 60 + \dfrac{(35 - 25)}{17}.10 \approx 66

  • Câu 9: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?

    Chuyển mẫu dữ liệu sang dạng ghép nhóm:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là: \frac{11 + 9 + 1}{40}.100\% =52,5\%

  • Câu 10: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây. Tìm mốt.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

     

    N = 30

    Mốt của mẫu dữ liệu thuộc nhóm dữ liệu: (130; 135]

    Chiều cao (cm)

    Số học sinh

     

    (120; 125]

    3

     

    (125; 130]

    5

    f_{0}

    (130; 135]

    11

    f_{1}

    (135; 140]

    6

    f_{2}

    (140; 145]

    5

     

     

    N = 30

     

    Khi đó: \left\{ \begin{matrix}l = 130;f_{0} = 5;f_{1} = 11;f_{2} = 6 \\c = 135 - 130 = 5 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 130 +\frac{11 - 5}{2.11 - 5 - 6}.5 = 132,7

  • Câu 11: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

  • Câu 12: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Tổng

    N = 100

    Xác định giá trị đại diện của nhóm thứ tư?

    Giá trị đại diện của nhóm thứ tư là \frac{165 + 170}{2} = 167,5

  • Câu 13: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa mốt và tính giá trị mốt?

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 14: Vận dụng

    Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:

    Điểm>10>20>30>40>50>60>70>80>90
    Số học sinh7062503830241794

    Tìm trung vị của mẫu dữ liệu.

    Ta có:

    Điểm(10; 20](20; 30](30; 40](40; 50](50; 60](60; 70](70; 80](80; 90](90; 100]
    Số học sinh7062503830241794
    Tần số tích lũy70132182220250274291300304

    Ta có: \frac{N}{2} = \frac{304}{2} =152

    Nên khoảng chứa trung vị là: (30; 40]

    \Rightarrow l = 30;\frac{N}{2} = 152;m =132;f = 50,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 30 + \frac{152 - 132}{50}.10 =34

  • Câu 15: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?

    Đáp án: 52 cư dân

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?

    Đáp án: 52 cư dân

    Số cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng là:

    12 + 23 + 17 = 52 (cư dân)

  • Câu 16: Thông hiểu

    Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?

    11

    23

    31

    17

    24

    38

    37

    7

    12

    5

    8

    15

    33

    19

    27

    Đáp án đúng là:

  • Câu 17: Thông hiểu

    Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

    Số nữ sinh

    2

    8

    12

    20

    8

    Tìm trung vị của dữ liệu ghép nhóm ở trên.

    Ta có:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

     

    Số nữ sinh

    2

    8

    12

    20

    8

    N = 50

    Tần số tích lũy

    2

    10

    22

    42

    50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)

    \Rightarrow l = 150;\frac{N}{2} =\frac{50}{2} = 25;m = 22;f = 20,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c= 150 + \dfrac{(25 - 22)}{20}.10 = 151,5

  • Câu 18: Nhận biết

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Mẫu dữ liệu đã cho có bao nhiêu nhóm?

    Mẫu dữ liệu ghép nhóm đã cho có 6 nhóm.

  • Câu 19: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    25

    55

    [30; 40)

    x

    55 + x

    [40; 50)

    9

    64 + x

    Tổng

    N = 64 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow \left\{ \begin{matrix}l = 20;\dfrac{N}{2} = \dfrac{64 + x}{2} \\m = 30;f = 25,c = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    24 = 20 + \dfrac{\dfrac{64 + x}{2} -30}{25}.10

    \Leftrightarrow 16 = x

  • Câu 20: Nhận biết

    Tính tổng tần số của bảng số liệu:

    Khoảng thời gian

    (giờ)

    Tần số

    [0; 5)

    8

    [6; 11)

    1

    [12; 17)

    4

    [18; 23)

    2

    Tổng tần số của mẫu số liệu là: 8 + 1 + 4 + 2 = 15

  • Câu 21: Nhận biết

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

    Đáp án là:

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

     Đáp án đúng là: 5.

  • Câu 22: Thông hiểu

    Biết k là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \frac{n}{2}, r, d, nk lần lượt là đầu mút trái, độ dài, tần số của nhóm k khi đó công thức r + \left( \dfrac{\dfrac{n}{2} -cf_{k - 1}}{n_{k}} ight).d dùng để tính:

    Trung vị được tính theo công thức r +\left( \frac{\frac{n}{2} - cf_{k - 1}}{n_{k}} ight).d.

  • Câu 23: Vận dụng

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?

    Ta có:

    Chiều cao (h)

    Số học sinh

    Tần số tích lũy

    130 < h ≤ 140

    2

    2

    140 < h ≤ 150

    4

    6

    150 < h ≤ 160

    9

    15

    160 < h ≤ 170

    13

    28

    170 < h ≤ 180

    8

    36

    180 < h ≤ 190

    3

    39

    190 < h ≤ 200

    1

    40

    Tổng

    N = 40

     

    Ta có: \frac{N}{4} = \frac{40}{4} =10

    => Nhóm chứa tứ phân vị thứ nhất là: (150; 160]

    Khi đó: \left\{ \begin{matrix}l = 150;\dfrac{N}{4} = 10;m = 6 \\f = 9;d = 160 - 150 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \left( \dfrac{\dfrac{N}{4} -m}{f} ight).d

    \Rightarrow Q_{1} = 150 + \left(\frac{10 - 6}{9} ight).10 = \frac{1390}{9}

    Ta có: \frac{3N}{4} = \frac{3.40}{4} =30

    => Nhóm chứa tứ phân vị thứ ba là: (170; 180]

    Khi đó: \left\{ \begin{matrix}l = 170;\dfrac{3N}{4} = 30;m = 28 \\f = 8;d = 180 - 170 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \left( \frac{\frac{3N}{4} -m}{f} ight).d

    \Rightarrow Q_{3} = 170 + \left(\frac{30 - 28}{8} ight).10 = \frac{345}{2}

    => Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:

    \Delta = \left| Q_{1} - Q_{3} ight| =\left| \frac{1390}{9} - \frac{345}{2} ight| =\frac{325}{18}

  • Câu 24: Thông hiểu

    Dưới đây là bảng biểu diễn điểm của 140 sinh viên của trường đại học. Tìm trung vị.

    Khoảng điểm

    Số sinh viên

    (9,5; 19,5)

    7

    [19,5; 29,5)

    15

    [29,5; 39,5)

    18

    [39,5; 49,5)

    25

    [49,5; 59,5)

    30

    [59,5; 69,5)

    20

    [69,5; 79,5)

    16

    [79,5; 39,5)

    7

    [89,5; 39,5)

    2

    Ta có:

    Khoảng điểm

    Số sinh viên

    Tần số tích lũy

    (9,5; 19,5)

    7

    7

    [19,5; 29,5)

    15

    22

    [29,5; 39,5)

    18

    40

    [39,5; 49,5)

    25

    65

    [49,5; 59,5)

    30

    95

    [59,5; 69,5)

    20

    115

    [69,5; 79,5)

    16

    131

    [79,5; 39,5)

    7

    138

    [89,5; 39,5)

    2

    140

     

    N = 140

     

    Ta có: \frac{N}{2} = \frac{140}{2} =70

    => Trung vị nằm trong nhóm [49,5; 59,5) (vì 70 nằm giữa hai tần số tích lũy là 65 và 95)

    \Rightarrow l = 49,5;\frac{N}{2} = 70;m= 65;f = 30,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c= 49,5 + \frac{70 - 65}{30}.10 =51,17

  • Câu 25: Nhận biết

    Mỗi ngày, bạn Chi đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bạn Chi được thống kê lại ở bảng sau:

    Quãng đường trung bình mà bạn Chi chạy được là?

    Ta có bảng tần số ghép nhóm chứa giá trị đại diện như sau:

    Cỡ mẫu là: n = 3 + 6 + 5 + 4 + 2 = 20.

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

  • Câu 26: Nhận biết

    Một nhà thực vật học khảo sát chiều cao của một số cây trong khu rừng, kết quả đo được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

    Trong biểu đồ, trục hoành biểu thị chiều cao của cây (đơn vị: mét), trục tung biểu thị số lượng cây tương ứng. Số cây có chiều cao không nhỏ hơn 9,1m là:

    Quan sát biểu đồ dữ liệu ta thấy:

    Số lượng cây có chiều cao không nhỏ hơn 9,1m là: 60 + 55 + 30 = 145 (cây)

  • Câu 27: Thông hiểu

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Đáp án là:

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Goi x_{ 1 }, x_{2}, ... ,x_{ 20 } là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.

    Khi đó: x_{1},x_{2} \in \lbrack 5; 7), x_{3},...,x_{9} \in \lbrack7;\ 9), x_{9},...,x_{16} \in\lbrack 9;\ 11), x_{17},...,x_{19}\in \lbrack 11;\ 13), x_{20} \in\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

    n = \ 20,n_{m} = \ 7,C = \ 9,u_{m} = \9,u_{m + 1} = 11

    Q_{3} = 9 + \frac{\frac{3.20}{4} -9}{7}(11 - 9) \approx 10,71 \approx 11

  • Câu 28: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Bảng số liệu ghép nhóm nào sau đây đúng?

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

  • Câu 29: Vận dụng

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +
12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =
10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -
7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +
(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 30: Nhận biết

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Cỡ mẫu của mẫu số liệu ghép nhóm là:

    N = 5 + 18 + 40 + 26 + 8 + 3 =100

  • Câu 31: Vận dụng

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 32: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

  • Câu 33: Nhận biết

    Cho bảng số liệu:

    Đại diện X

    16 – 20

    21 – 25

    26 – 30

    31 – 35

    36 – 40

    41 – 45

    46 – 50

    51 – 55

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Cho biết bảng số liệu trên có phải bảng phân phối tần số liên tục không?

    Dữ liệu đã cho không phải là phân phối tần số liên tục.

    Bây giờ, chúng ta phải chuyển đổi dữ liệu đã cho thành phân phối tần số liên tục bằng cách trừ 0,5 từ giới hạn dưới và thêm 0,5 vào giới hạn trên của mỗi khoảng thời gian của nhóm.

    Đại diện X

    [15,5; 20,5)

    [20,5; 25,5)

    [25,5; 30,5)

    [30,5; 35,5)

    [35,5; 40,5)

    [40,5; 45,5)

    [45,5; 50,5)

    [50,5; 55,5)

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Ở đây

    Giới hạn trên của khoảng cao nhất là 55,5

    Giới hạn dưới của khoảng thấp nhất là 15,5

    => Khoảng biến thiên là 55,5 – 15,5 = 40

  • Câu 34: Thông hiểu

    Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là

    Ta có:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Giá trị đại diện

    12

    16

    20

    24

    28

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là:

    \overline{x} = \frac{55.12 + 78.16 +
110.20 + 45.24 + 12.28}{55 + 78 + 110 + 45 + 12} \approx
18,41.

    Vậy mức giá mua nhà trung bình là: 18,41(triệu đồng/m^{2}).

  • Câu 35: Thông hiểu

    Cho bảng dữ liệu như sau:

    Khong thi gian hc (giờ)

    [8; 18)

    [18; 28)

    [28; 38)

    [38; 48)

    [48; 58)

    [58; 68)

    [68; 78)

    Số học sinh

    2

    3

    14

    8

    7

    8

    2

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Ta có:

    Khong thi gian hc (giờ)

    [8; 18)

    [18; 28)

    [28; 38)

    [38; 48)

    [48; 58)

    [58; 68)

    [68; 78)

    Số học sinh

    2

    3

    14

    8

    7

    8

    2

    Tần số tích lũy

    2

    5

    19

    27

    34

    42

    44

    Ta có: \frac{3N}{4} = \frac{3.44}{4} =33

    => Nhóm chứa Q_{3}[48; 58) (vì 33 nằm giữa các tần số tích lũy 27 và 34).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 48;m = 27,f = 7;c = 58 -48 = 10

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 48 + \dfrac{33 - 27}{7}.10 \approx56,6

  • Câu 36: Thông hiểu

    Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):

    Lương

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số nhân viên

    18

    23

    30

    20

    12

    10

    Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Lương

    {f_i}{x_i}{f_i}{x_i}

    [0; 10)

    18

    5

    90

    [10; 20)

    23

    15

    345

    [20; 30)

    30

    25

    750

    [30; 40)

    20

    35

    700

    [40; 50)

    12

    45

    540

    [50; 60)

    10

    55

    550

     

    N = 113

     

    T = 2975

    Mức lương trung bình của nhân viên là:

    \overline{x} = \frac{\sum_{i =1}^{n}{f_{i}x_{i}}}{N} = \frac{2975}{113} \approx 26,33(triệu đồng)

  • Câu 37: Nhận biết

    Mẫu số liệu có bao nhiêu nhóm?

    Mẫu số liệu đã cho có 5 nhóm.

  • Câu 38: Nhận biết

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?

    Ta có: N = 100

    =>N/4=100/4=25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

  • Câu 39: Vận dụng

    Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng 19,92?

    Đối tượng

    Tần số

    [4; 8)

    11

    [8; 12)

    13

    [12; 16)

    16

    [16; 20)

    14

    [20; 24)

    a

    [24; 28)

    9

    [28; 32)

    17

    [32; 36)

    6

    [36; 40)

    4

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    6

    11

    66

    10

    13

    130

    14

    16

    224

    18

    14

    252

    22

    a

    22a

    26

    9

    234

    30

    17

    510

    34

    6

    204

    38

    4

    152

    Tổng

    90 + a

    1772 + 22a

    Biết số trung bình bằng  19,92  nên ta có:

    \overline{x} = 19,92

    \Leftrightarrow \frac{1772 + 22a}{90 +a} = 19,92

    \Leftrightarrow a = 10

  • Câu 40: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo