Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu thuộc nhóm số liệu nào?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu thuộc nhóm số liệu nào?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Cho tập hợp dữ liệu như sau:
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Điền vào ô trống các giá trị còn thiếu:
Nhóm | Giá trị đại diện | Tần số |
(0; 10] | 5 | 3 |
(10; 20] | 15 | 5 |
(20; 30] | 25 | 3 |
(30; 40] | 35 | 4 |
Cho tập hợp dữ liệu như sau:
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Điền vào ô trống các giá trị còn thiếu:
Nhóm | Giá trị đại diện | Tần số |
(0; 10] | 5 | 3 |
(10; 20] | 15 | 5 |
(20; 30] | 25 | 3 |
(30; 40] | 35 | 4 |
Ta có:
Nhóm | Giá trị đại diện | Tần số |
(0; 10] | 5 | 3 |
(10; 20] | 15 | 5 |
(20; 30] | 25 | 3 |
(30; 40] | 35 | 4 |
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Giá trị đại diện cho nhóm [155; 160) bằng:
Giá trị đại diện của nhóm [155; 160) là
Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có nhiều học sinh nhất?
Số học sinh lớp 11A là:
4 + 8 + 12 + 10 + 6 = 40 (học sinh)
Số học sinh lớp 11B là:
5 + 12 + 10 + 8 + 4 = 39 (học sinh)
Số học sinh lớp 11C là:
4 + 10 + 15 + 9 + 3 = 41 (học sinh)
Số học sinh lớp 11D là:
4 + 9 + 16 + 11 + 3 = 43 (học sinh)
Vậy lớp 11C có nhiều học sinh nhất.
Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:
7,8 | 7,7 | 7,5 | 7,8 | 7,7 | 7,6 | 8,7 |
7,6 | 7,5 | 7,5 | 7,3 | 7,1 | 8,1 | 8,4 |
7,0 | 7,1 | 7,2 | 7,3 | 7,4 | 8,5 | 8,3 |
7,2 | 7,1 | 7,0 | 6,7 | 6,6 | 8,6 | 8,2 |
6,9 | 6,8 | 6,5 | 6,2 | 6,3 |
Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?
Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:
Thời gian (giây) | Tần suất (%) |
[6,0; 6,5) | 6,06 |
[6,5; 7,0) | 15,15 |
[7,0; 7,5) | 30,3 |
[7,5; 8,0) | 27,27 |
[8,0; 8,5) | 12,12 |
[8,5; 9) | 9,1 |
Tổng | 100% |
Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là
. Xác định tần suất nhóm
trong mẫu dữ liệu ghép nhóm thu được?
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Ta có tần suất của nhóm là:
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Ta có:
Tuổi | Đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60) | 55 | 10 |
[60; 70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90) | 85 | 1 |
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh tham gia khảo sát là:
Số học sinh tham gia khảo sát là:
(học sinh)
Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:
Tuổi | Nhỏ hơn 10 | Nhỏ hơn 20 | Nhỏ hơn 30 | Nhỏ hơn 40 | Nhỏ hơn 50 | Nhỏ hơn 60 | Nhỏ hơn 70 | Nhỏ hơn 80 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi (năm) | (0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
|
Số người (nghìn người) | 2 | 3 | 4 | 3 | 2 | 1 | 0,5 | 0,1 | N = 15,6 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?
Ta có:
Đối tượng | Tần số | Tần số tích lũy |
[150; 155) | 15 | 15 |
[155; 160) | 11 | 26 |
[160; 165) | 39 | 65 |
[165; 170) | 27 | 92 |
[170; 175) | 5 | 97 |
[175; 180) | 3 | 100 |
Cỡ mẫu là:
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 5 nhóm.
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
|
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
|
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
|
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
|
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Ta có giá trị đại diện của các nhóm lần lượt là:
Trung bình cộng của bảng số liệu trên là:
(nghìn đồng).
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Tổng | N = 40 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (150; 160]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (170; 180]
Khi đó:
Tứ phân vị thứ ba là:
=> Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Điểm trung bình môn của lớp 11A thuộc nhóm nào?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Giá trị đại diện | 10 | 30 | 50 | 70 | 90 |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Điểm trung bình của lớp 11A là:
Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tần số tích lũy | 6 | 20 | 60 | 94 | 100 |
Ta có:
=> Trung vị nằm trong nhóm (vì 50 nằm giữa hai tần số tích lũy là 20 và 60)
(giờ)
Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:
Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:
(0; 10]; (10; 20]; (20; 30]; (30; 40]; …
Mẫu nhóm thứ tư là (30; 40]
=> Giới hạn dưới của nhóm thứ tư là 30.
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Số học sinh lớp 11H là:
Số học sinh lớp 11H là:
5 + 12 + 10 + 6 + 5 + 8 = 46 (học sinh)
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
+ Mẫu số liệu trên được chia thành 8 nhóm.
+ Độ dài nhóm số liệu là 10
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm
Thu nhập (nghìn đồng) | Hộ gia đình |
|
[0; 100) | 5 |
|
[100; 200) | 7 |
|
[200; 300) | 12 | |
[300; 400) | 18 | |
[400; 500) | 16 | |
[500; 600) | 10 |
|
[600; 700) | 5 |
|
Khi đó ta tính mốt như sau:
Tìm số trung bình của mẫu số liệu sau:
Thời gian (s) | Thời gian đại diện (s) |
(50,5; 55,5] | 53 |
(55,5; 60,5] | 58 |
(60,5; 65,5] | 63 |
(65,5; 70,5] | 68 |
(Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Thời gian (s) | Thời gian đại diện (s) | Số vận động viên (người) | Tích các giá trị |
(50,5; 55,5] | 53 | 2 | 106 |
(55,5; 60,5] | 58 | 7 | 406 |
(60,5; 65,5] | 63 | 8 | 504 |
(65,5; 70,5] | 68 | 4 | 272 |
| Tổng | 21 | 1288 |
Số trung bình của mẫu dữ liệu ghép nhóm là:
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó mốt của dấu hiệu thuộc nhóm số liệu nào?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Quan sát bảng dữ liệu ghép nhóm ta thấy mốt của dấu hiệu thuộc nhóm số liệu .
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | 25 | 55 |
[30; 40) | x | 55 + x |
[40; 50) | 9 | 64 + x |
Tổng | N = 64 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là [20; 30)
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 11
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 11
Goi là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.
Khi đó: ,
,
,
,
Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Nhóm nào chứa tứ phân vị thứ nhất của mẫu số liệu?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 và 17)
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Ta có 100 học sinh tham gia đo chiều cao khi đó:
5 + 18 + x + 26 + y + 3 = 100
=> x + y = 48 (*)
Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)
Từ (*) và (**) ta có hệ phương trình:
Mẫu nhóm số liệu ghép nhóm là tập hợp:
Mẫu số liệu ghép nhóm là tập hợp các giá trị của số liệu được ghép nhóm theo một tiêu chí xác định.
Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:
Khoảng số từ | Số câu |
[1; 5) | 2 |
[5; 9) | 5 |
[9; 13) |
|
[13; 17) | 23 |
[17; 21) | 21 |
[21; 25) | 13 |
[25; 29) | 4 |
[29; 33) | 1 |
Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:
Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)
Khoảng số từ | Số câu |
|
[1; 5) | 2 |
|
[5; 9) | 5 |
|
[9; 13) | ||
[13; 17) | 23 | |
[17; 21) | 21 | |
[21; 25) | 13 |
|
[25; 29) | 4 |
|
[29; 33) | 1 |
|
Do đó:
Khi đó ta có:
Vậy cỡ mẫu N = 86.
Chọn đáp án có độ dài nhóm khác với các đáp án còn lại.
Ta có độ dài nhóm bằng giới hạn trên - giới hạn dưới khi đó:
Các đáp án có độ dài bằng 5 ngoại trừ nhóm có độ dài nhóm là 6.
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:
Cân nặng (x, kg) | Số người |
0 < x ≤ 20 | 2 |
20 < x ≤ 40 | 6 |
40 < x ≤ 60 | 7 |
60 < x ≤ 80 | 4 |
80 < x ≤ 100 | 1 |
Ta có:
Cân nặng đại diện (x, kg) | Số người | Tích các giá trị |
10 | 2 | 20 |
30 | 6 | 180 |
50 | 7 | 350 |
70 | 4 | 280 |
90 | 1 | 90 |
Tổng | N = 20 | 920 |
Cân nặng trung bình của 20 người đó là:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ ba của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Biểu đồ dưới đây thể hiện điểm kiểm tra của 20 học sinh:

Tính điểm trung bình của 20 học sinh trên?
Ta có bảng sau:
Khoảng điểm | Điểm đại diện | Tần số | Tích các giá trị |
(0; 10] | 5 | 2 | 10 |
(10; 20] | 15 | 5 | 75 |
(20; 30] | 25 | 6 | 150 |
(30; 40] | 35 | 4 | 140 |
(40; 50] | 45 | 3 | 135 |
Tổng |
| N = 20 | 510 |
Số điểm trung bình:
Cho bảng dữ liệu như sau:
Đại diện | Tần số |
[1; 5) | 6 |
[5; 10) | 19 |
[10; 15) | 13 |
[15; 20) | 20 |
[20; 25) | 12 |
[25; 30) | 11 |
[30; 35) | 6 |
[35; 40) | 5 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Ta có:
Đại diện | Tần số | Tần số tích lũy |
[1; 5) | 6 | 6 |
[5; 10) | 19 | 25 |
[10; 15) | 13 | 38 |
[15; 20) | 20 | 58 |
[20; 25) | 12 | 70 |
[25; 30) | 11 | 81 |
[30; 35) | 6 | 87 |
[35; 40) | 5 | 92 |
| N = 92 |
|
Ta có:
=> Nhóm chứa là
(vì 69 nằm giữa các tần số tích lũy 58 và 70).
Khi đó ta tìm được các giá trị:
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | x |
[15; 20) | 13 |
[20; 25) | 12 |
[25; 30) | y |
Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?
Ta có:
Lại có:
Thời gian (phút) | Số nhân viên | Tần số tích lũy |
[0; 5) | 25 | 25 |
[5; 10) | 14 | 39 |
[10; 15) | x | 39 + x |
[15; 20) | 13 | 52 + x |
[20; 25) | 12 | 64 + x |
[25; 30) | y | 64 + x + y |
Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)
Khi đó:
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:
|
Thời gian (phút) |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số học sinh |
7 |
13 |
9 |
18 |
22 |
6 |
Nhóm chứa trung vị là:
Cỡ mẫu của bảng số liệu này là , nên nhóm chứa trung vị là nhóm chứa giá trị thứ
, suy ra đó là nhóm
Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:
Độ dài của nhóm là 4
Cho bảng số liệu thống kê sau:
Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần
69 | 37 | 39 | 65 | 31 | 33 | 63 |
51 | 44 | 62 | 33 | 47 | 55 | 42 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Bảng M | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng N | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 4 | 2 | |
Bảng P | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 2 | 3 | 4 | |
Bảng Q | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 3 | 5 | 2 | 4 |
Khoảng biến thiên là 69 – 31 = 38
Ta chia thành các nhóm sau: [30; 40), [40; 50), [50; 60), [60; 70)
Đếm số giá trị mỗi nhóm ta có bảng ghép nhóm
Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 |
Cho dãy số liệu thống kê:
,
,
,
,
,
. Số trung bình cộng của dãy số liệu thống kê đã cho là
Số trung bình là: