Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tính giá trị tứ phân vị thứ nhất.

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 45 \\m = 30,f = 30,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -30}{30}.10 = 25

  • Câu 2: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    Đáp án là:

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    a) Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50
+ 10.70 + 6.90}{42} \approx 51,43

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 40;60)

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0} f_{1} f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =
12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(
f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -
9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 3: Vận dụng

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    x

    [15; 20)

    13

    [20; 25)

    12

    [25; 30)

    y

    Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?

    Ta có: N = 100 \Rightarrow x + y =36

    Lại có:

    Thời gian (phút)

    Số nhân viên

    Tần số tích lũy

    [0; 5)

    25

    25

    [5; 10)

    14

    39

    [10; 15)

    x

    39 + x

    [15; 20)

    13

    52 + x

    [20; 25)

    12

    64 + x

    [25; 30)

    y

    64 + x + y

    Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)

    Khi đó:

    \Rightarrow \left\{ \begin{matrix}l = 10;\dfrac{N}{2} = 50,m = 39,f = x \\c = 15 - 10 = 5 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\frac{\frac{N}{2} - m}{f}.c

    \Leftrightarrow 12,5 = 10 + \frac{50 -39}{x}.5 \Leftrightarrow x = 22

    \Rightarrow y = 36 - 22 =14

  • Câu 4: Nhận biết

    Một nhà thực vật học khảo sát chiều cao của một số cây trong khu rừng, kết quả đo được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

    Trong biểu đồ, trục hoành biểu thị chiều cao của cây (đơn vị: mét), trục tung biểu thị số lượng cây tương ứng. Số cây có chiều cao không nhỏ hơn 9,1m là:

    Quan sát biểu đồ dữ liệu ta thấy:

    Số lượng cây có chiều cao không nhỏ hơn 9,1m là: 60 + 55 + 30 = 145 (cây)

  • Câu 5: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    25

    55

    [30; 40)

    x

    55 + x

    [40; 50)

    9

    64 + x

    Tổng

    N = 64 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow \left\{ \begin{matrix}l = 20;\dfrac{N}{2} = \dfrac{64 + x}{2} \\m = 30;f = 25,c = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    24 = 20 + \dfrac{\dfrac{64 + x}{2} -30}{25}.10

    \Leftrightarrow 16 = x

  • Câu 6: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Số học sinh lớp 11A là:

    Số học sinh lớp 11A là:

    4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)

  • Câu 7: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 8: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 9: Vận dụng

    Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:

    Tuổi

    Nhỏ hơn 10

    Nhỏ hơn 20

    Nhỏ hơn 30

    Nhỏ hơn 40

    Nhỏ hơn 50

    Nhỏ hơn 60

    Nhỏ hơn 70

    Nhỏ hơn 80

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi (năm)

    (0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

     

    Số người (nghìn người)

    2

    3

    4

    3

    2

    1

    0,5

    0,1

    N = 15,6

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

     

    Ta có: \frac{N}{2} = \frac{15,6}{2} =7,8

    => Trung vị nằm trong nhóm \lbrack20;30)(vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)

    \Rightarrow l = 20;\frac{N}{2} = 7,8;m =5;f = 4,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\frac{N}{2} - m ight)}{f}.c= 20 + \frac{7,8 - 5}{4}.10 =27

  • Câu 10: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định số nhóm trong mẫu dữ liệu ghép nhóm trên?

    Mẫu dữ liệu ghép nhóm trên có 5 nhóm.

  • Câu 11: Nhận biết

    Giá trị đại diện của nhóm \lbrack
60;80)

    Ta có giá trị đại diện là \frac{60 +
80}{2} = 70.

  • Câu 12: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm nào chứa tứ phân vị thứ nhất của mẫu số liệu?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 và 17)

  • Câu 13: Thông hiểu

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Số học sinh

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

     

    N = 50

    Tính mốt của mẫu dữ liệu đã cho?

    Quan sát bảng thống kê ta thấy tần số cao nhất là 14 nằm trong nhóm [160; 165)

    Chiu cao (tính bng cm)

    Số học sinh

    [150; 155)

    12

     

    [155; 160)

    9

    {f_0}

    [160; 165)

    14

    {f_1}

    [165; 170)

    10

    {f_2}

    [170; 175)

    5

     

     

    N = 50

     

    \Rightarrow l = 160;f_{0} = 9;f_{1} =14;f_{2} = 10;c = 165 - 160 = 5

    Khi đó ta tính mốt như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Rightarrow M_{0} = 160 + \frac{14 -9}{2.14 - 9 - 10}.5 \approx 162,8

  • Câu 14: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Tìm thu nhập trung bình của các hộ gia đình.

    Ta có:

    Thu nhập đại diện (nghìn đồng)

    Hộ gia đình

    Tích các giá trị

    50

    5

    250

    150

    7

    1050

    250

    12

    3000

    350

    18

    6300

    450

    16

    7200

    550

    10

    5500

    650

    5

    3250

    Tổng

    N = 73

    26550

    Thu nhập trung bình của các hộ gia đình là:

    \overline{x} = \frac{26550}{73} \approx364

  • Câu 15: Vận dụng

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    Đáp án là:

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    a) Ta có cỡ mẫu n = 4 + 19 + 6 + 2 + 3 +
1 = 35. Vậy đáp án a) đúng.

    b) Gọi x_{1},x_{2},...,x_{35} được sắp xếp theo thứ tự không giảm.

    Khi đó, trung vị là x_{18}. Do x_{18} thuộc nhóm \lbrack 20;30) nên nhóm này chứa trung vị.

    Suy ra p = 2, a_{2} = 20, a_{3} = 30, m_{2} = 19, m_{1} = 4, a_{3} - a_{2} = 10.

    M_{e} = a_{p} + \dfrac{\dfrac{n}{2} -\left( m_{1} + ... + m_{p - 1} ight)}{m_{p}}.\left( a_{p + 1} - a_{p}ight)

    = 20 + \dfrac{\dfrac{35}{2} - 4}{19}.10 =\frac{515}{19} \approx 27,1.

    Vậy đáp án b) sai.

    c) Số trung bình của mẫu số liệu là

    \overline{x} = \frac{15 \times 4 + 25
\times 19 + 35 \times 6 + 45 \times 2 + 55 \times 3 + 65}{35} =
\frac{213}{7} \approx 30,4.

    Vậy đáp án c) sai.

    d) Điểm ngưỡng để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.

    Cỡ mẫu n = 35

    Tứ phân vị thứ ba Q_{3}x_{27}x_{27} thuộc nhóm [30;40) nên nhóm này chứa Q_{3}.

    Do đó, \left\{ \begin{matrix}
p = 3,a_{3} = 30,m_{3} = 6 \\
m_{1} + m_{2} = 4 + 19 = 23 \\
a_{4} - a_{3} = 10 \\
\end{matrix} ight. và ta có:

    Q_{3} = 30 + \dfrac{\dfrac{3 \times 35}{4}- 23}{6}.10 = 35,42.

    Vậy để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.

    Vậy đáp án d) đúng.

  • Câu 16: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau.

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tính giá trị trung bình của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    12

    300

    35

    9

    315

    45

    7

    315

    Tổng

    N = 50

    1180

    Giá trị trung bình là: \overline{x} =\frac{1180}{50} = 23,6

  • Câu 17: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính mốt?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

     

    [50; 100)

    12

    f_{0}

    [100; 150)

    23

    f_{1}

    [150; 200)

    17

    f_{2}

    [200; 250)

    3

     

     

    N = 60

     

    Ta có: \left\{ \begin{matrix}l = 100,f_{0} = 12;f_{1} = 23,f_{2} = 17 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    => Mốt của dấu hiệu là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    = 100 + \frac{23 - 12}{2.23 - 12 -17}.50 \approx 132,35

  • Câu 18: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 4 nhóm.

  • Câu 19: Vận dụng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta = \left|Q_{1} - Q_{3} ight|?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta = \left| Q_{1} -Q_{3} ight| = \left| 52 - \frac{480}{7} ight| \approx16,6

  • Câu 20: Nhận biết

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Đáp án là:

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.

  • Câu 21: Thông hiểu

    Tìm trung vị của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Ta có:

    Thời gian (s)

    Số vận động viên (người)

    Tần số tích lũy

    (50,5; 55,5]

    2

    2

    (55,5; 60,5]

    7

    9

    (60,5; 65,5]

    8

    17

    (65,5; 70,5]

    4

    21

    Tổng

    N = 21

     

    Ta có: \frac{N}{2} = \frac{21}{2} =10,5

    => Nhóm chứa trung vị là (60,5; 65,5]

    Khi đó: \left\{ \begin{matrix}l = 60,5,\dfrac{N}{2} = 10,5 \\m = 9,f = 8,d = 65,5 - 60,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 60,5 + \frac{10,5 -9}{8}.5 \approx 61,4

  • Câu 22: Vận dụng

    Hoàn thành mẫu dữ liệu ghép nhóm sau. 

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Ghép nối các nội dung thích hợp với nhau:

    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
    Đáp án đúng là:
    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
  • Câu 23: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Khoảng cân nặng nào có số học sinh chiếm nhiều nhất?

    Khoảng cân nặng có số học sinh chiếm nhiều nhất là: [50; 55)

  • Câu 24: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 25: Nhận biết

    Các bước để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm là:

    • Chia miền giá trị của mẫu số liệu thành một nhóm theo tiêu chí cho trước.
    • Đếm số giá trị của mẫu số liệu thuộc mỗi nhóm (tần số).
    • Lập bảng thống kê cho mẫu số liệu ghép nhóm.
    Thứ tự là:
    • Chia miền giá trị của mẫu số liệu thành một nhóm theo tiêu chí cho trước.
    • Đếm số giá trị của mẫu số liệu thuộc mỗi nhóm (tần số).
    • Lập bảng thống kê cho mẫu số liệu ghép nhóm.
  • Câu 26: Thông hiểu

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Đáp án là:

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Goi x_{ 1 }, x_{2}, ... ,x_{ 20 } là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.

    Khi đó: x_{1},x_{2} \in \lbrack 5; 7), x_{3},...,x_{9} \in \lbrack7;\ 9), x_{9},...,x_{16} \in\lbrack 9;\ 11), x_{17},...,x_{19}\in \lbrack 11;\ 13), x_{20} \in\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

    n = \ 20,n_{m} = \ 7,C = \ 9,u_{m} = \9,u_{m + 1} = 11

    Q_{3} = 9 + \frac{\frac{3.20}{4} -9}{7}(11 - 9) \approx 10,71 \approx 11

  • Câu 27: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 28: Nhận biết

    Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Nhóm chứa trung vị là:

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    N = 15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

  • Câu 29: Nhận biết

    Khi nào mẫu số liệu ghép nhóm thường được dùng để thuận lợi cho việc tổ chức, đọc và phân tích số liệu?

    Mẫu số liệu ghép nhóm được dùng khi ta không thể thu thập được số liệu chính xác hoặc do yêu cầu bài toán mà ta phải biểu diễn mẫu số liệu dưới dạng ghép nhóm để thuận lợi cho việc tổ chức, đọc và phân tích số liệu.

  • Câu 30: Thông hiểu

    Quan sát bảng sau và tìm mốt.

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)

    Khi đó: \left\{ \begin{matrix}l = 30;f_{0} = 12;f_{1} = 22;f_{2} = 17 \\c = 40 - 30 = 10 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 30 +\frac{22 - 12}{2.22 - 12 - 17}.10 \approx 30,7

  • Câu 31: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 32: Thông hiểu

    Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tính giá trị tứ phân vị thứ nhất. (Làm tròn giá trị đến chữ số thập phân thứ nhất).

    Ta có:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tần số tích lũy

    8

    15

    31

    55

    70

    77

    Ta có: \frac{N}{4} = \frac{77}{4} =19,25

    => Nhóm chứa tứ phân vị thứ nhất là: [16; 24)

    Khi đó: \left\{ \begin{matrix}l = 16,\dfrac{N}{4} = 19,25,m = 15 \\f = 16,d = 24 - 16 = 8 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 16 + \frac{19,25 -15}{16}.8 = 18,125

  • Câu 33: Thông hiểu

    Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:

    Cân nặng (x, kg)

    Số người

    0 < x ≤ 20

    2

    20 < x ≤ 40

    6

    40 < x ≤ 60

    7

    60 < x ≤ 80

    4

    80 < x ≤ 100

    1

    Ta có:

    Cân nặng đại diện (x, kg)

    Số người

    Tích các giá trị

    10

    2

    20

    30

    6

    180

    50

    7

    350

    70

    4

    280

    90

    1

    90

    Tổng

    N = 20

    920

    Cân nặng trung bình của 20 người đó là:

    \overline{x} =\frac{920}{20} = 46(kg)

  • Câu 34: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính trung vị của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

     

    N = 200

     

    Ta có: \frac{N}{2} = \frac{200}{2} =100

    => Trung vị nằm trong nhóm \lbrack440;450)(vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)

    \Rightarrow l = 440;\frac{N}{2} = 100;m= 76;f = 54,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c = 440 + \dfrac{100 - 76}{54}.10 =444,44

  • Câu 35: Thông hiểu

    Tính tứ phân vị thứ ba của mẫu dữ liệu ghép nhóm sau:

    Nhóm dữ liệu

    Tần số

    (10; 20]

    15

    (20; 30]

    25

    (30; 40]

    20

    (40; 50]

    12

    (50; 60]

    8

    (60; 70]

    5

    (70; 80]

    3

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (10; 20]

    15

    15

    (20; 30]

    25

    40

    (30; 40]

    20

    60

    (40; 50]

    12

    72

    (50; 60]

    8

    80

    (60; 70]

    5

    85

    (70; 80]

    3

    88

    Tổng

    N = 88

     

    Ta có: \frac{3N}{4} = \frac{3.88}{4} =66

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}l = 40;\dfrac{3N}{4} = 66;m = 60 \\f = 12;d = 50 - 40 = 10 \\\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{66 -60}{12}.10 = 45

  • Câu 36: Thông hiểu

    Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:

    Mức giá (triệu đồng/m2)

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    54

    78

    120

    45

    12

    Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây?

    Nhóm chứa mốt của mẫu số liệu là nhóm [18;22).

    Do đó: u_{m} = 84;n_{m} = 24;n_{m - 1} =
20;n_{m + 1} = 15;u_{m + 1} = 86.

    Vậy mốt của mẫu số liệu là:

    M_{0} = 18 + \frac{120 - 78}{(120 - 78)
+ (120 - 45)}.(22 - 18) \approx 19,4.

  • Câu 37: Thông hiểu

    Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tần số tích lũy

    6

    20

    60

    94

    100

    Ta có: \frac{N}{2} = \frac{100}{2} =50

    => Trung vị nằm trong nhóm \lbrack700;750)(vì 50 nằm giữa hai tần số tích lũy là 20 và 60)

    \Rightarrow l = 700;\frac{N}{2} = 50;m =20;f = 40,c = 50

    \Rightarrow M_{e} = l + \frac{\left(\frac{N}{2} - m ight)}{f}.c

    = 700 + \frac{50 - 20}{40}.50 =737,5 (giờ)

  • Câu 38: Nhận biết

    Cho các bảng số liệu sau:

    Bảng A

    Số khách hàng

    [35; 40)

    [40; 45)

    [45; 50)

    [50; 55)

    Số ngày

    5

    3

    2

    4

    Bảng B

    Điểm

    [0; 2,5)

    [2,5; 5)

    [5; 7,5)

    [7,5; 10)

    Số học sinh

    4

    6

    10

    12

    Bảng C

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Bảng D

    Số sách

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Số khách hàng

    12

    5

    7

    10

    Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?

    Bảng A có độ dài nhóm số liệu là: 5

    Bảng B có độ dài nhóm số liệu là: 2,5

    Bảng C có độ dài nhóm số liệu là: 30

    Bảng D có độ dài nhóm số liệu là: 10

  • Câu 39: Nhận biết

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Đáp án là:

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Số học sinh lớp 11A kiểm tra cân nặng là

    7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)

  • Câu 40: Thông hiểu

    Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

    Số nữ sinh

    2

    8

    12

    20

    8

    Tìm trung vị của dữ liệu ghép nhóm ở trên.

    Ta có:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

     

    Số nữ sinh

    2

    8

    12

    20

    8

    N = 50

    Tần số tích lũy

    2

    10

    22

    42

    50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)

    \Rightarrow l = 150;\frac{N}{2} =\frac{50}{2} = 25;m = 22;f = 20,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c= 150 + \dfrac{(25 - 22)}{20}.10 = 151,5

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo