Độ dài nhóm số liệu ghép nhóm
là:
Độ dài của nhóm số liệu ghép nhóm là
.
Độ dài nhóm số liệu ghép nhóm
là:
Độ dài của nhóm số liệu ghép nhóm là
.
Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Biết rằng nếu học sinh có điểm thi dưới 40 điểm sẽ không đạt yêu cầu vượt qua kì thi. Hỏi số học sinh không đạt yêu cầu là bao nhiêu?
Quan sát bảng số liệu ghép nhóm ta thấy:
Nhóm [20; 30) có 4 học sinh
Nhóm [30; 40) có 6 học sinh
=> Số học sinh không đạt yêu cầu là 6 + 4 = 10 (học sinh)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Nhóm nào chứa tứ phân vị thứ nhất của mẫu số liệu?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 và 17)
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tần số tích lũy | 6 | 20 | 60 | 94 | 100 |
Ta có:
=> Trung vị nằm trong nhóm (vì 50 nằm giữa hai tần số tích lũy là 20 và 60)
(giờ)
Các bước để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [20; 40)
(Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)
Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:
Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:
(0; 10]; (10; 20]; (20; 30]; (30; 40]; …
Mẫu nhóm thứ tư là (30; 40]
=> Giới hạn dưới của nhóm thứ tư là 30.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính mức doanh thu trung bình của cửa hàng?
Đáp án: 9,4 (triệu đồng)
(Kết quả ghi dưới dạng số thập phân)
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính mức doanh thu trung bình của cửa hàng?
Đáp án: 9,4 (triệu đồng)
(Kết quả ghi dưới dạng số thập phân)
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Giá trị đại diện | 6 | 8 | 10 | 12 | 14 |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Do đó doanh thu trung bình của cửa hàng là:
(triệu đồng)
Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm
Thu nhập (nghìn đồng) | Hộ gia đình |
|
[0; 100) | 5 |
|
[100; 200) | 7 |
|
[200; 300) | 12 | |
[300; 400) | 18 | |
[400; 500) | 16 | |
[500; 600) | 10 |
|
[600; 700) | 5 |
|
Khi đó ta tính mốt như sau:
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Tần số |
2 |
7 |
7 |
3 |
1 |
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Tần số |
2 |
7 |
7 |
3 |
1 |
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng như sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 12 | |
[154; 158) | 18 | |
[158; 162) | 30 | |
[162; 166) | 24 | |
[166; 170) | 10 |
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | x |
[15; 20) | 13 |
[20; 25) | 12 |
[25; 30) | y |
Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?
Ta có:
Lại có:
Thời gian (phút) | Số nhân viên | Tần số tích lũy |
[0; 5) | 25 | 25 |
[5; 10) | 14 | 39 |
[10; 15) | x | 39 + x |
[15; 20) | 13 | 52 + x |
[20; 25) | 12 | 64 + x |
[25; 30) | y | 64 + x + y |
Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)
Khi đó:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Tính độ dài nhóm số liệu trong mẫu số liệu ghép nhóm trên.
Độ dài nhóm của mẫu số liệu ghép nhóm trên là 5.
Cho mẫu dữ liệu ghép nhóm sau đây:
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | x |
(30;40] | 9 |
(40;50] | 7 |
Biết
. Tìm cỡ mẫu?
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | x | 25x |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 38 + x | 880 + 25x |
Theo bài ra ta có giá trị trung bình là:
Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50
Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:
|
Mức giá (triệu đồng/m2) |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
54 |
78 |
120 |
45 |
12 |
Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây?
Nhóm chứa mốt của mẫu số liệu là nhóm [18;22).
Do đó: .
Vậy mốt của mẫu số liệu là:
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.
Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có nhiều học sinh nhất?
Số học sinh lớp 11A là:
4 + 8 + 12 + 10 + 6 = 40 (học sinh)
Số học sinh lớp 11B là:
5 + 12 + 10 + 8 + 4 = 39 (học sinh)
Số học sinh lớp 11C là:
4 + 10 + 15 + 9 + 3 = 41 (học sinh)
Số học sinh lớp 11D là:
4 + 9 + 16 + 11 + 3 = 43 (học sinh)
Vậy lớp 11C có nhiều học sinh nhất.
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định số nhóm trong mẫu dữ liệu ghép nhóm trên?
Mẫu dữ liệu ghép nhóm trên có 5 nhóm.
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 11
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 11
Goi là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.
Khi đó: ,
,
,
,
Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm
Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:
Chiều cao (cm) | Số học sinh |
[150; 154] | 5 |
[155; 159] | 2 |
[160; 164] | 6 |
[165; 169] | 8 |
[170; 174] | 9 |
[175; 179] | 11 |
[180; 184] | 6 |
[185; 189] | 3 |
Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(149,5; 154,5] | 5 | 5 |
(154,5; 159,5] | 2 | 7 |
(159,5; 164,5] | 6 | 13 |
(164,5; 169,5] | 8 | 21 |
(169,5; 174,5] | 9 | 30 |
(174,5; 179,5] | 11 | 41 |
(179,5; 184,5] | 6 | 47 |
(184,5; 189,5] | 3 | 50 |
Tổng | N = 50 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai
b) Nhóm chứa trung vị của mẫu số liệu là
. Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là:
. Đúng||Sai
d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là
. Sai||Đúng
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai
b) Nhóm chứa trung vị của mẫu số liệu là . Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: . Đúng||Sai
d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là . Sai||Đúng
a) Điểm trung bình của lớp 11A là:
b) Nhóm chứa trung vị của mẫu số liệu là
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là:
Ta có:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
N = 42 |
|
Tần số tích lũy |
5 |
14 |
26 |
36 |
42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Khi đó ta tìm được các giá trị:
Mốt thuộc nhóm
Ta có:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
|
|
|
|
Khi đó mốt của dữ liệu được tính như sau:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?
Đáp án: 52 cư dân
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?
Đáp án: 52 cư dân
Số cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng là:
12 + 23 + 17 = 52 (cư dân)
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm
) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Ta có bảng số liệu:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
|
Tần số tích lũy |
5 |
12 |
25 |
43 |
50 |
Vì nên nhóm chứa tứ phân vị thứ nhất là
.
Khi đó tứ phân vị thứ nhất là
.
Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.
Điểm | Số học sinh |
[0; 10) | 2 |
[10; 20) | 6 |
[20; 30) | 8 |
[30; 40) | x |
[40; 50) | 30 |
[50; 60) | 22 |
[60; 70) | 18 |
[70; 80) | 8 |
[80; 90) | 4 |
[90; 100) | 2 |
Biết trung vị bằng 47. Tìm tổng số học sinh.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
[0; 10) | 2 | 2 |
[10; 20) | 6 | 8 |
[20; 30) | 8 | 16 |
[30; 40) | x | 16 + x |
[40; 50) | 30 | 46 + x |
[50; 60) | 22 | 68 + x |
[60; 70) | 18 | 86 + x |
[70; 80) | 8 | 94 + x |
[80; 90) | 4 | 98 + x |
[90; 100) | 2 | 100 + x |
| N = 100 + x |
|
Trung vị là 47 => Nhóm chứa trung vị là [40; 50)
Vậy số học sinh là 126 học sinh.
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng
. Đúng||Sai
b)
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là:
Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng . Đúng||Sai
b) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Ta có:
|
Cân nặng (kg) |
Giá trị đại diện |
Số học sinh |
|
[45; 50) |
47,5 |
5 |
|
[50; 55) |
52,5 |
12 |
|
[55; 60) |
57,5 |
10 |
|
[60; 65) |
62,5 |
6 |
|
[65; 70) |
67,5 |
5 |
|
[70; 75) |
72,5 |
8 |
Cân nặng trung bình của học sinh lớp 11H là:
Nhóm chứa mốt là: [50; 55) suy ra .
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
|
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
|
[45; 50) |
5 |
5 |
|
[50; 55) |
12 |
17 |
|
[55; 60) |
10 |
27 |
|
[60; 65) |
6 |
33 |
|
[65; 70) |
5 |
38 |
|
[70; 75) |
8 |
46 |
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Chiều cao trung bình của học sinh trong bảng trên:
Ta có:
Chiều cao đại diện (h) | Số học sinh | Tích các giá trị |
135 | 2 | 270 |
145 | 4 | 580 |
155 | 9 | 1395 |
165 | 13 | 2145 |
175 | 8 | 1400 |
185 | 3 | 555 |
195 | 1 | 195 |
Tổng | N = 40 | 6540 |
Chiều cao trung bình là:
Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:
|
Thời gian (phút) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Giá trị đại diện của nhóm
là:
Giá trị đại diện của nhóm là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Khi đó giá trị tứ phân vị thứ ba là:
71
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Khi đó giá trị tứ phân vị thứ ba là: 71
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Khi đó ta tìm được các giá trị:
Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:
Cân nặng (x, kg) | Số người |
0 < x ≤ 20 | 2 |
20 < x ≤ 40 | 6 |
40 < x ≤ 60 | 7 |
60 < x ≤ 80 | 4 |
80 < x ≤ 100 | 1 |
Ta có:
Cân nặng đại diện (x, kg) | Số người | Tích các giá trị |
10 | 2 | 20 |
30 | 6 | 180 |
50 | 7 | 350 |
70 | 4 | 280 |
90 | 1 | 90 |
Tổng | N = 20 | 920 |
Cân nặng trung bình của 20 người đó là:
Cho mẫu dữ liệu ghép nhóm như sau:
Mức lương (USD) | [60; 70) | [50; 60) | [40; 50) | [30; 40) | [20; 30) |
Nhân viên | 5 | 10 | 20 | 5 | 3 |
Điền đáp án vào ô trống
a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD
(Làm tròn kết quả đến số thập phân thứ nhất)
b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75
Cho mẫu dữ liệu ghép nhóm như sau:
Mức lương (USD) | [60; 70) | [50; 60) | [40; 50) | [30; 40) | [20; 30) |
Nhân viên | 5 | 10 | 20 | 5 | 3 |
Điền đáp án vào ô trống
a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD
(Làm tròn kết quả đến số thập phân thứ nhất)
b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75
Sắp xếp nhóm dữ liệu theo chiều tăng như sau:
Mức lương (USD) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Mức lương trung bình (USD) | 25 | 35 | 45 | 55 | 65 |
Nhân viên | 3 | 5 | 20 | 10 | 5 |
Tần số tích lũy | 3 | 8 | 28 | 38 | 43 |
Mức lương trung bình là:
Ta có:
Nên khoảng chứa trung vị là: [40; 50) vì 21,5 nằm giữa hai tần số tích lũy là 8 và 28.
Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:
Độ dài của nhóm là 4
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm
) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm mốt của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Từ bảng số liệu, nhóm chứa mốt sẽ là .
Khi đó mốt là
.
Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Số học sinh có điểm dưới 7 điểm là:
Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: học sinh.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa mốt và tính giá trị mốt?
Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:
Xét nhóm [7; 9) ta có:
Xét nhóm [9; 11) ta có:
Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có: