Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Số học sinh có điểm dưới 7 điểm là:
Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: học sinh.
Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Số học sinh có điểm dưới 7 điểm là:
Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: học sinh.
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính giá trị trung bình của mẫu số liệu đã cho?
Ta có:
Số tiền (nghìn đồng) | Giá trị đại diện | Số người |
[0; 50) | 25 | 5 |
[50; 100) | 75 | 12 |
[100; 150) | 125 | 23 |
[150; 200) | 175 | 17 |
[200; 250) | 225 | 3 |
|
| N = 60 |
Giá trị trung bình cần tìm là:
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:
|
Thời gian (phút) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
3 |
5 |
14 |
15 |
5 |
Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:
Mẫu số liệu trên có (học sinh).
Tứ phân vị thứ nhất là .
Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: .
Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:
Chiều cao h (cm) | Số cây |
130 < h ≤ 140 | 3 |
140 < h ≤ 150 | 7 |
150 < h ≤ 160 | 5 |
Tính trung vị của mẫu số liệu ghép nhóm.
Ta có:
Chiều cao h (cm) | Số cây | Tần số tích lũy |
130 < h ≤ 140 | 3 | 3 |
140 < h ≤ 150 | 7 | 10 |
150 < h ≤ 160 | 5 | 15 |
Tổng | 15 |
|
Ta có:
=> Nhóm chứa trung vị là: 140 < h ≤ 150
Khi đó:
Trung vị là:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Cỡ mẫu của mẫu số liệu là:
Cỡ mẫu của mẫu số liệu là:
Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:
7,8 | 7,7 | 7,5 | 7,8 | 7,7 | 7,6 | 8,7 |
7,6 | 7,5 | 7,5 | 7,3 | 7,1 | 8,1 | 8,4 |
7,0 | 7,1 | 7,2 | 7,3 | 7,4 | 8,5 | 8,3 |
7,2 | 7,1 | 7,0 | 6,7 | 6,6 | 8,6 | 8,2 |
6,9 | 6,8 | 6,5 | 6,2 | 6,3 |
Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?
Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:
Thời gian (giây) | Tần suất (%) |
[6,0; 6,5) | 6,06 |
[6,5; 7,0) | 15,15 |
[7,0; 7,5) | 30,3 |
[7,5; 8,0) | 27,27 |
[8,0; 8,5) | 12,12 |
[8,5; 9) | 9,1 |
Tổng | 100% |
Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:
Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):
Lương | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số nhân viên | 18 | 23 | 30 | 20 | 12 | 10 |
Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Lương | |||
[0; 10) | 18 | 5 | 90 |
[10; 20) | 23 | 15 | 345 |
[20; 30) | 30 | 25 | 750 |
[30; 40) | 20 | 35 | 700 |
[40; 50) | 12 | 45 | 540 |
[50; 60) | 10 | 55 | 550 |
| N = 113 |
| T = 2975 |
Mức lương trung bình của nhân viên là:
(triệu đồng)
Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?
Độ dài nhóm là
Khoảng biến thiên:
Ta có: => Số nhóm tạo thành là 4 nhóm.
Số giờ | Tần số |
Tổng cộng |
Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.
Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?
Ta có:
Giá trị lớn nhất: 25
Giá trị nhỏ nhất: 4
Khoảng biến thiên là: 25 – 4 = 21
Cho bảng dữ liệu dưới đây:
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Cho bảng dữ liệu như sau:
Đại diện | Tần số |
[1; 5) | 6 |
[5; 10) | 19 |
[10; 15) | 13 |
[15; 20) | 20 |
[20; 25) | 12 |
[25; 30) | 11 |
[30; 35) | 6 |
[35; 40) | 5 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Ta có:
Đại diện | Tần số | Tần số tích lũy |
[1; 5) | 6 | 6 |
[5; 10) | 19 | 25 |
[10; 15) | 13 | 38 |
[15; 20) | 20 | 58 |
[20; 25) | 12 | 70 |
[25; 30) | 11 | 81 |
[30; 35) | 6 | 87 |
[35; 40) | 5 | 92 |
| N = 92 |
|
Ta có:
=> Nhóm chứa là
(vì 69 nằm giữa các tần số tích lũy 58 và 70).
Khi đó ta tìm được các giá trị:
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Dưới đây là điểm đánh giá tổng kết của các học sinh:
Khoảng điểm | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số học sinh | 2 | 7 | 15 | 10 | 11 | 5 |
Tính trung vị.
Ta có:
Khoảng điểm | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
|
Số học sinh | 2 | 7 | 15 | 10 | 11 | 5 | N = 50 |
Tần số tích lũy | 2 | 9 | 24 | 34 | 45 | 50 |
|
Cỡ mẫu: 50
Ta có:
=> Nhóm chứa trung vị là (vì 25 nằm giữa hai tần số tích lũy là 24 và 34)
Do đó:
Khi đó trung vị là:
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | 25 | 55 |
[30; 40) | x | 55 + x |
[40; 50) | 9 | 64 + x |
Tổng | N = 64 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là [20; 30)
Kết quả đo chiều cao một nhóm các học sinh nam lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Khi chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 5 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau ta được các nhóm là:
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 5 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 3
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 175.
Khi đó ta có các nhóm là:
Cho bảng số liệu:
Đại diện X | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 | 51 – 55 |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Cho biết bảng số liệu trên có phải bảng phân phối tần số liên tục không?
Dữ liệu đã cho không phải là phân phối tần số liên tục.
Bây giờ, chúng ta phải chuyển đổi dữ liệu đã cho thành phân phối tần số liên tục bằng cách trừ 0,5 từ giới hạn dưới và thêm 0,5 vào giới hạn trên của mỗi khoảng thời gian của nhóm.
Đại diện X | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Ở đây
Giới hạn trên của khoảng cao nhất là
Giới hạn dưới của khoảng thấp nhất là
=> Khoảng biến thiên là
Điểm kiểm tra môn Toán của một nhóm học sinh được thể hiện trong bảng dưới đây:
Điểm số | [0; 2) | [2; 4) | [4; 6) | [6; 8) | [8; 10) |
Số học sinh | 3 | 7 | 8 | 12 | 9 |
Mẫu dữ liệu trên có bao nhiêu nhóm?
Quan sát bảng dữ liệu ta thấy mẫu dữ liệu được chia thành 5 nhóm:
Nhóm có điểm số [0; 2) có 3 học sinh
Nhóm có điểm số [2; 4) có 7 học sinh
Nhóm có điểm số [4; 6) có 8 học sinh
Nhóm có điểm số [6; 8) có 12 học sinh
Nhóm có điểm số [8; 10) có 9 học sinh
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Giá trị đại diện của nhóm ![]()
Giá trị đại diện của mẫu là: .
Cho mẫu dữ liệu ghép nhóm như sau:
Mức lương (USD) | [60; 70) | [50; 60) | [40; 50) | [30; 40) | [20; 30) |
Nhân viên | 5 | 10 | 20 | 5 | 3 |
Điền đáp án vào ô trống
a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD
(Làm tròn kết quả đến số thập phân thứ nhất)
b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75
Cho mẫu dữ liệu ghép nhóm như sau:
Mức lương (USD) | [60; 70) | [50; 60) | [40; 50) | [30; 40) | [20; 30) |
Nhân viên | 5 | 10 | 20 | 5 | 3 |
Điền đáp án vào ô trống
a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD
(Làm tròn kết quả đến số thập phân thứ nhất)
b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75
Sắp xếp nhóm dữ liệu theo chiều tăng như sau:
Mức lương (USD) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Mức lương trung bình (USD) | 25 | 35 | 45 | 55 | 65 |
Nhân viên | 3 | 5 | 20 | 10 | 5 |
Tần số tích lũy | 3 | 8 | 28 | 38 | 43 |
Mức lương trung bình là:
Ta có:
Nên khoảng chứa trung vị là: [40; 50) vì 21,5 nằm giữa hai tần số tích lũy là 8 và 28.
Các bước để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm là:
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Tính trung vị của mẫu số liệu ghép nhóm?
Ta có:
Đối tượng | Tần số | Tần số tích lũy |
[150; 155) | 15 | 15 |
[155; 160) | 11 | 26 |
[160; 165) | 39 | 65 |
[165; 170) | 27 | 92 |
[170; 175) | 5 | 97 |
[175; 180) | 3 | 100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
Do đó:
Khi đó trung vị là:
Cho bảng dữ liệu như sau:
Đại diện X | [10; 15) | [15; 20) | [20; 25) | [25; 30) | [30; 35) |
Tần số | 8 | 12 | 14 | 10 | 6 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Đại diện X | [10; 15) | [15; 20) | [20; 25) | [25; 30) | [30; 35) |
Tần số | 8 | 12 | 14 | 10 | 6 |
Tần số tích lũy | 8 | 20 | 34 | 44 | 50 |
Ta có:
=> Nhóm chứa là [25; 30)
Khi đó ta tìm được các giá trị:
Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:
Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:
(0; 10]; (10; 20]; (20; 30]; (30; 40]; …
Mẫu nhóm thứ tư là (30; 40]
=> Giới hạn dưới của nhóm thứ tư là 30.
Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:
Thu nhập (triệu đồng) | [0; 8) | [8; 16) | [16; 24) | [24; 32) | [32; 40) | [40; 48) |
Số người | 8 | 7 | 16 | 24 | 15 | 7 |
Tính mức thu nhập trung bình của nhóm người.
Mức thu nhập | |||
[0; 8) | 8 | 4 | 32 |
[8; 16) | 7 | 12 | 84 |
[16; 24) | 16 | 20 | 320 |
[24; 32) | 24 | 28 | 672 |
[32; 40) | 15 | 36 | 540 |
[40; 48) | 7 | 44 | 308 |
| N = 77 | 1956 | |
Mức thu nhập trung bình của nhóm người là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh tham gia khảo sát là:
Số học sinh tham gia khảo sát là:
(học sinh)
Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:
Khoảng | Tần số |
Nhỏ hơn 20 | 6 |
Nhỏ hơn 40 | 28 |
Nhỏ hơn 60 | 65 |
Nhỏ hơn 80 | 90 |
Nhỏ hơn 100 | 111 |
Ta có:
Khoảng | Đại diện khoảng | Tần số | Tích |
[0; 20) | 10 | 6 | 60 |
[20; 40) | 30 | 28 | 840 |
[40; 60) | 50 | 65 | 3250 |
[60; 80) | 70 | 90 | 6300 |
[80; 100) | 90 | 111 | 9990 |
Tổng |
| N = 300 | 20440 |
Số trung bình là:
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm
Thu nhập (nghìn đồng) | Hộ gia đình |
|
[0; 100) | 5 |
|
[100; 200) | 7 |
|
[200; 300) | 12 | |
[300; 400) | 18 | |
[400; 500) | 16 | |
[500; 600) | 10 |
|
[600; 700) | 5 |
|
Khi đó ta tính mốt như sau:
Hoàn thành mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Ghép nối các nội dung thích hợp với nhau:
Cho mẫu dữ liệu ghép nhóm như sau:
Nhóm | Tần số |
(0; 10] | x |
(10; 20] | 8 |
(20; 30] | 20 |
(30; 40] | 15 |
(40; 50] | 7 |
(50; 60] | y |
Tổng | N = 60 |
Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?
Bảng số liệu được ghi như sau:
Nhóm | Tần số | Tần số tích lũy |
(0; 10] | x | |
(10; 20] | 8 | x + 8 |
(20; 30] | 20 | x + 28 |
(30; 40] | 15 | x + 43 |
(40; 50] | 7 | x + 50 |
(50; 60] | x + y + 50 | |
Tổng | N = 60 |
|
Ta có:
Theo bài ra ta có:
=> Nhóm chứa trung vị là
Suy ra:
Khi đó ta có:
Chọn đáp án có độ dài nhóm khác với các đáp án còn lại.
Ta có độ dài nhóm bằng giới hạn trên - giới hạn dưới khi đó:
Các đáp án có độ dài bằng 5 ngoại trừ nhóm có độ dài nhóm là 6.
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Cho bảng dữ liệu như sau:
Khoảng thời gian học (giờ) | [8; 18) | [18; 28) | [28; 38) | [38; 48) | [48; 58) | [58; 68) | [68; 78) |
Số học sinh | 2 | 3 | 14 | 8 | 7 | 8 | 2 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Ta có:
Khoảng thời gian học (giờ) | [8; 18) | [18; 28) | [28; 38) | [38; 48) | [48; 58) | [58; 68) | [68; 78) |
Số học sinh | 2 | 3 | 14 | 8 | 7 | 8 | 2 |
Tần số tích lũy | 2 | 5 | 19 | 27 | 34 | 42 | 44 |
Ta có:
=> Nhóm chứa là
(vì 33 nằm giữa các tần số tích lũy 27 và 34).
Khi đó ta tìm được các giá trị: