Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định giá trị đại diện của nhóm dữ liệu thứ ba?

    Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.

    Nhóm dữ liệu thứ ba là [4; 6)

    => Giá trị đại diện của nhóm dữ liệu thứ ba là: \frac{4 + 6}{2} = 5

  • Câu 2: Vận dụng

    Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:

    Khoảng

    Tần số

    Nhỏ hơn 20

    6

    Nhỏ hơn 40

    28

    Nhỏ hơn 60

    65

    Nhỏ hơn 80

    90

    Nhỏ hơn 100

    111

    Ta có:

    Khoảng

    Đại diện khoảng

    Tần số

    Tích

    [0; 20)

    10

    6

    60

    [20; 40)

    30

    28

    840

    [40; 60)

    50

    65

    3250

    [60; 80)

    70

    90

    6300

    [80; 100)

    90

    111

    9990

    Tổng

     

    N = 300

    20440

    Số trung bình là:

    \overline{x} = \frac{20440}{300} \approx68,13

  • Câu 3: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 4: Thông hiểu

    Cho bảng số liệu thống kê sau: Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    3

    2

    4

    Những ngày có không dưới 40 khách hàng đến mua cà phê chiếm bao nhiêu phần trăm?

    Những ngày có không dưới 40 khách hàng đến mua cà phê là: 3 + 2 + 4 = 9 (khách hàng) chiếm \frac{9.100\%}{14} \approx64\%

  • Câu 5: Nhận biết

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    21

    [15; 20)

    13

    [20; 25)

    8

    [25; 30)

    6

    Số nhân viên trong công ty đi muộn quá 15 phút là:

    Số nhân viên trong công ty đi muộn quá 15 phút là:

    13 + 8 + 6 = 27 (nhân viên)

  • Câu 6: Thông hiểu

    Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:

    Số tiền (nghìn đồng)

    [350; 400)

    [400; 450)

    [450; 500)

    [500; 550)

    [550; 600)

    Số hộ gia đình

    6

    14

    21

    17

    2

    Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)

    Đáp án: 471 nghìn đồng.

    Đáp án là:

    Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:

    Số tiền (nghìn đồng)

    [350; 400)

    [400; 450)

    [450; 500)

    [500; 550)

    [550; 600)

    Số hộ gia đình

    6

    14

    21

    17

    2

    Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)

    Đáp án: 471 nghìn đồng.

    Ta có giá trị đại diện của các nhóm lần lượt là: 375;\ \ 425;\ \ 475;\ \ 525;\ \ 575

    Trung bình cộng của bảng số liệu trên là:

    \frac{375 \times 6 + 425 \times 14 + 475
\times 21 + 525 \times 17 + 575 \times 2}{60}

    = 470,8(3) \simeq 471 (nghìn đồng).

  • Câu 7: Thông hiểu

    Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm 10) của 50 học sinh tham dự kỳ thi giữa kỳ 1 của lớp 11A, ta có bảng số liệu sau:

    Điểm

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh

    5

    7

    13

    18

    7

    Tìm mốt của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)

    Từ bảng số liệu, nhóm chứa mốt sẽ là \lbrack 6\ ;\ 8).

    Khi đó mốt là

    M_{0} = 6 + \frac{18 - 13}{(18 - 13) +
(18 - 7)}.(8 - 6) = 6,625 \approx 6,63.

  • Câu 8: Thông hiểu

    Tìm số trung bình của mẫu số liệu sau:

    Thời gian (s)

    Thời gian đại diện (s)

    (50,5; 55,5]

    53

    (55,5; 60,5]

    58

    (60,5; 65,5]

    63

    (65,5; 70,5]

    68

    (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Thời gian (s)

    Thời gian đại diện (s)

    Số vận động viên (người)

    Tích các giá trị

    (50,5; 55,5]

    53

    2

    106

    (55,5; 60,5]

    58

    7

    406

    (60,5; 65,5]

    63

    8

    504

    (65,5; 70,5]

    68

    4

    272

    Tổng

    21

    1288

    Số trung bình của mẫu dữ liệu ghép nhóm là:

    \overline{x} = \frac{1288}{21} \approx61,3

  • Câu 9: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 174)

    Tần số

    8

    x

    12

    6

    Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của x?

    Nhóm số liệu có độ dài 166 là: [164; 168)

    Theo bài ra ta có:

    \frac{x.100\%}{8 + 12 + x + 6} = 60\%\Rightarrow x = 39

  • Câu 10: Vận dụng

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    x

    [15; 20)

    13

    [20; 25)

    12

    [25; 30)

    y

    Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?

    Ta có: N = 100 \Rightarrow x + y =36

    Lại có:

    Thời gian (phút)

    Số nhân viên

    Tần số tích lũy

    [0; 5)

    25

    25

    [5; 10)

    14

    39

    [10; 15)

    x

    39 + x

    [15; 20)

    13

    52 + x

    [20; 25)

    12

    64 + x

    [25; 30)

    y

    64 + x + y

    Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)

    Khi đó:

    \Rightarrow \left\{ \begin{matrix}l = 10;\dfrac{N}{2} = 50,m = 39,f = x \\c = 15 - 10 = 5 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\frac{\frac{N}{2} - m}{f}.c

    \Leftrightarrow 12,5 = 10 + \frac{50 -39}{x}.5 \Leftrightarrow x = 22

    \Rightarrow y = 36 - 22 =14

  • Câu 11: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ ba của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \frac{75 - 65}{27}.5 \approx 166,85

  • Câu 12: Nhận biết

    Cho bảng số liệu:

    Đại diện X

    16 – 20

    21 – 25

    26 – 30

    31 – 35

    36 – 40

    41 – 45

    46 – 50

    51 – 55

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Cho biết bảng số liệu trên có phải bảng phân phối tần số liên tục không?

    Dữ liệu đã cho không phải là phân phối tần số liên tục.

    Bây giờ, chúng ta phải chuyển đổi dữ liệu đã cho thành phân phối tần số liên tục bằng cách trừ 0,5 từ giới hạn dưới và thêm 0,5 vào giới hạn trên của mỗi khoảng thời gian của nhóm.

    Đại diện X

    [15,5; 20,5)

    [20,5; 25,5)

    [25,5; 30,5)

    [30,5; 35,5)

    [35,5; 40,5)

    [40,5; 45,5)

    [45,5; 50,5)

    [50,5; 55,5)

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Ở đây

    Giới hạn trên của khoảng cao nhất là 55,5

    Giới hạn dưới của khoảng thấp nhất là 15,5

    => Khoảng biến thiên là 55,5 – 15,5 = 40

  • Câu 13: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 14: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Các nhóm số liệu trong bảng trên có độ dài là bao nhiêu?

    Độ dài các nhóm là 5.

  • Câu 15: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm mốt của mẫu dữ liệu ghép nhóm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

     

    [105; 115)

    13

     

    [115; 125)

    26

    f_{0}

    [125; 135)

    30

    f_{1}

    [135; 145)

    12

    f_{2}

    [145; 155)

    10

     

    Tổng

    N = 100

     

    Ta có: Nhóm chứa mốt của mẫu dữ liệu ghép nhóm là: [125; 135)

    Khi đó: \left\{ \begin{matrix}l = 125;f_{0} = 26 \\f_{1} = 30,f_{2} = 12;d = 135 - 125 = 10 \\\end{matrix} ight.

    Mốt của mẫu dữ liệu ghép nhóm là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.d

    \Rightarrow M_{0} = 125 + \frac{30 -26}{2.30 - 26 - 12}.10 = 126,8

  • Câu 16: Nhận biết

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    2

    2

    Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?

    Giá trị đại diện nhóm [20; 25) là: \frac{20 + 25}{2} = 22,5

  • Câu 17: Vận dụng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta = \left|Q_{1} - Q_{3} ight|?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta = \left| Q_{1} -Q_{3} ight| = \left| 52 - \frac{480}{7} ight| \approx16,6

  • Câu 18: Nhận biết

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Tìm khoảng chứa trung vị?

    Ta có:

    Chiều cao (h)

    Số học sinh

    Tần số tích lũy

    130 < h ≤ 140

    2

    2

    140 < h ≤ 150

    4

    6

    150 < h ≤ 160

    9

    15

    160 < h ≤ 170

    13

    28

    170 < h ≤ 180

    8

    36

    180 < h ≤ 190

    3

    39

    190 < h ≤ 200

    1

    40

    Ta lại có: N = 40 \Rightarrow \frac{N}{2}= 20

    => Nhóm chứa trung vị là: (160; 170]

  • Câu 19: Thông hiểu

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 20: Nhận biết

    Nhóm số liệu ghép nhóm có dạng \lbrack m;n). Khi đó giá trị đại diện của nhóm tính bằng công thức nào sau đây?

    Giá trị đại diện của một nhóm số liệu là trung bình cộng giá trị hai đầu mút của nhóm số liệu.

    Công thức tính giá trị đại diện của nhóm \lbrack m;n)\frac{m + n}{2}

  • Câu 21: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

    Tổng

    N = 30

    Tính tứ phân vị thứ ba. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

    Tổng

    N = 30

     

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =22,5

    => Nhóm chứa tứ phân vị thứ ba là (135; 140]

    Khi đó: \left\{ \begin{matrix}l = 135;\dfrac{3N}{4} = 22,5;m = 19 \\f = 6;d = 140 - 135 = 5 \\\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 135 + \frac{22,5 -19}{6}.5 \approx 137,9

  • Câu 22: Nhận biết

    Cho mẫu số liệu sau và cho biết cân nặng của học sinh lớp 11 trong 1 lớp:

    Cân nặng

    Dưới 55

    Từ 55 đến 65

    Trên 65

    Số học sinh

    20

    15

    2

    Số học sinh của hợp đó là bao nhiêu?

    Số học sinh của lớp đó là: 20 + 15 + 2 =
37.

  • Câu 23: Vận dụng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Đáp án là:

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +
57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

    Nhóm chứa mốt là: [50; 55) suy ra 50 \leq
M_{e} < 55.

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 53

  • Câu 24: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị trung vị của mẫu dữ liệu?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{2} =21

    => Nhóm chứa trung vị là [40; 60)

    (Vì 21 nằm giữa hai tần số tích lũy 14 và 26)

    Do đó: l = 40;\frac{N}{2} = 21;m = 14;f =12,c = 60 - 40 = 20

    Khi đó trung vị là:

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c = 40 + \dfrac{21 - 14}{12}.20 = \frac{155}{3}

  • Câu 25: Thông hiểu

    Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Giá trị đại diện của nhóm [150; 180) là bao nhiêu?

    Giá trị đại diện của nhóm [150; 180) là: \frac{150 + 180}{2} = 165

  • Câu 26: Nhận biết

    Cho dãy số liệu thống kê: 21, 23, 24,25, 22, 20. Số trung bình cộng của dãy số liệu thống kê đã cho là

    Số trung bình là:

    \overline{x} =
\frac{21 + 23 + 24 + 25 + 22 + 20}{6} = 22,5

  • Câu 27: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

  • Câu 28: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Cỡ mẫu của mẫu số liệu là:

    Cỡ mẫu của mẫu số liệu là:

    N = 5 + 12 + 10 + 6 + 5 + 8 = 46

  • Câu 29: Thông hiểu

    Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:

    Mức giá (triệu đồng/m2)

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    54

    78

    120

    45

    12

    Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây?

    Nhóm chứa mốt của mẫu số liệu là nhóm [18;22).

    Do đó: u_{m} = 84;n_{m} = 24;n_{m - 1} =
20;n_{m + 1} = 15;u_{m + 1} = 86.

    Vậy mốt của mẫu số liệu là:

    M_{0} = 18 + \frac{120 - 78}{(120 - 78)
+ (120 - 45)}.(22 - 18) \approx 19,4.

  • Câu 30: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Có bao nhiêu học sinh có thời gian vui chơi từ 2 đến 8 tiếng?

    Số học sinh có thời gian vui chơi từ 2 đến 8 tiếng là:

    16 + 4 + 2 = 22 (học sinh)

  • Câu 31: Nhận biết

    Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Số phần tử của mẫu dữ liệu ghép nhóm là:

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Tổng

    N = 30

     

    Vậy số phần tử mẫu là N = 30

  • Câu 32: Thông hiểu

    Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:

    7,8

    7,7

    7,5

    7,8

    7,7

    7,6

    8,7

    7,6

    7,5

    7,5

    7,3

    7,1

    8,1

    8,4

    7,0

    7,1

    7,2

    7,3

    7,4

    8,5

    8,3

    7,2

    7,1

    7,0

    6,7

    6,6

    8,6

    8,2

    6,9

    6,8

    6,5

    6,2

    6,3

      

    Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?

    Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:

    Thời gian (giây)

    Tần suất (%)

    [6,0; 6,5)

    6,06

    [6,5; 7,0)

    15,15

    [7,0; 7,5)

    30,3

    [7,5; 8,0)

    27,27

    [8,0; 8,5)

    12,12

    [8,5; 9)

    9,1

    Tổng

    100%

    Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:

    30,3\% + 27,27\% + 12,12\% =69,69\%

  • Câu 33: Vận dụng

    Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.

    Điểm

    Số học sinh

    [0; 10)

    2

    [10; 20)

    6

    [20; 30)

    8

    [30; 40)

    x

    [40; 50)

    30

    [50; 60)

    22

    [60; 70)

    18

    [70; 80)

    8

    [80; 90)

    4

    [90; 100)

    2

    Biết trung vị bằng 47. Tìm tổng số học sinh.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    [0; 10)

    2

    2

    [10; 20)

    6

    8

    [20; 30)

    8

    16

    [30; 40)

    x

    16 + x

    [40; 50)

    30

    46 + x

    [50; 60)

    22

    68 + x

    [60; 70)

    18

    86 + x

    [70; 80)

    8

    94 + x

    [80; 90)

    4

    98 + x

    [90; 100)

    2

    100 + x

     

    N = 100 + x

     

    Trung vị là 47 => Nhóm chứa trung vị là [40; 50)

    \Rightarrow \left\{ \begin{matrix}l = 40;\dfrac{N}{2} = \dfrac{100 + x}{2} \\m = 16 + x;f = 30,c = 50 - 40 = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 47 = 40 + \dfrac{\left(\dfrac{100 + x}{2} - 16 - x ight)}{30}.10

    \Leftrightarrow 21 = \frac{100 + x - 32- 2x}{2}

    \Leftrightarrow x = 26

    Vậy số học sinh là 126 học sinh.

  • Câu 34: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Nhóm

    Tần số

    (0; 10]

    x

    (10; 20]

    8

    (20; 30]

    20

    (30; 40]

    15

    (40; 50]

    7

    (50; 60]

    y

    Tổng

    N = 60

    Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?

    Bảng số liệu được ghi như sau:

    Nhóm

    Tần số

    Tần số tích lũy

    (0; 10]

    x

    x

    (10; 20]

    8

    x + 8

    (20; 30]

    20

    x + 28

    (30; 40]

    15

    x + 43

    (40; 50]

    7

    x + 50

    (50; 60]

    y

    x + y + 50

    Tổng

    N = 60

     

    Ta có: N = 60

    \Rightarrow x + y = 10

    Theo bài ra ta có: M_{e} =28,5

    => Nhóm chứa trung vị là (20; 30]

    Suy ra: \left\{ \begin{matrix}l = 20,\dfrac{N}{2} = 30 \\m = x + 8,f = 20,d = 10 \\\end{matrix} ight.

    Khi đó ta có:

    M_{e} = l + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Leftrightarrow 28,5 = 20 +\dfrac{\dfrac{60}{2} - (x + 8)}{20}.10

    \Leftrightarrow x = 5

    \Rightarrow y = 10 - 5 = 5

  • Câu 35: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58

    Ta có:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 155)

    152,5

    15

    [155; 160)

    157,5

    11

    [160; 165)

    162,5

    39

    [165; 170)

    167,5

    27

    [170; 175)

    172,5

    5

    [175; 180)

    177,5

    3

    Giá trị trung bình của đối tượng là:

    \overline{x} = \frac{152,5.15 + 157,5.11+ 162,5.39 + 167,5.27 + 172,5.5 + 177,5.3}{100} = 162,75

  • Câu 36: Vận dụng

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +
12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =
10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -
7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +
(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 37: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 38: Thông hiểu

    Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm 10) của 50 học sinh tham dự kỳ thi giữa kỳ 1 của lớp 11A, ta có bảng số liệu sau:

    Điểm

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh

    5

    7

    13

    18

    7

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)

    Ta có bảng số liệu:

    Điểm

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh

    5

    7

    13

    18

    7

    Tần số tích lũy

    5

    12

    25

    43

    50

    \frac{n}{4} = \frac{50}{4} =
12,5 nên nhóm chứa tứ phân vị thứ nhất là \lbrack 4\ ;\ 6).

    Khi đó tứ phân vị thứ nhất là

    Q_{1} = 4 + \frac{\frac{50}{4} -
12}{13}.(6 - 4) = \frac{53}{13} \approx 4,08.

  • Câu 39: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 40: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính cân nặng trung bình của học sinh lớp 11H?

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo