Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu bằng bao nhiêu?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0}f_{1}f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 2: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính trung vị của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

     

    N = 200

     

    Ta có: \frac{N}{2} = \frac{200}{2} =100

    => Trung vị nằm trong nhóm \lbrack440;450)(vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)

    \Rightarrow l = 440;\frac{N}{2} = 100;m= 76;f = 54,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c = 440 + \dfrac{100 - 76}{54}.10 =444,44

  • Câu 3: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{2}= 30

    => Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 và 40)

  • Câu 4: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 5: Vận dụng

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 6: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Giá trị đại diện cho nhóm số liệu thứ năm là:

    Nhóm thứ năm trong mẫu số liệu ghép nhóm là [60; 70) có giá trị đại diện là:

    \frac{60 + 70}{2} = 65

  • Câu 7: Nhận biết

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Đáp án là:

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.

  • Câu 8: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Tìm thu nhập trung bình của các hộ gia đình.

    Ta có:

    Thu nhập đại diện (nghìn đồng)

    Hộ gia đình

    Tích các giá trị

    50

    5

    250

    150

    7

    1050

    250

    12

    3000

    350

    18

    6300

    450

    16

    7200

    550

    10

    5500

    650

    5

    3250

    Tổng

    N = 73

    26550

    Thu nhập trung bình của các hộ gia đình là:

    \overline{x} = \frac{26550}{73} \approx364

  • Câu 9: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính giá trị tứ phân vị thứ nhất của mẫu dữ liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

    Tổng

    N = 200

     

    Ta có: \frac{N}{4} = \frac{200}{4} =50

    => Nhóm chứa tứ phân vị thứ nhất là: [430; 440)

    Khi đó ta có: \left\{ \begin{matrix}l = 430;\dfrac{N}{4} = 50;m = 34 \\f = 42,d = 440 - 430 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 430 + \frac{50 -34}{42}.10 \approx 433,8

  • Câu 10: Nhận biết

    Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:

    Độ dài của nhóm là: 2 - 1,5 =0,5

  • Câu 11: Vận dụng

    Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:

    Khoảng

    Tần số

    Nhỏ hơn 20

    6

    Nhỏ hơn 40

    28

    Nhỏ hơn 60

    65

    Nhỏ hơn 80

    90

    Nhỏ hơn 100

    111

    Ta có:

    Khoảng

    Đại diện khoảng

    Tần số

    Tích

    [0; 20)

    10

    6

    60

    [20; 40)

    30

    28

    840

    [40; 60)

    50

    65

    3250

    [60; 80)

    70

    90

    6300

    [80; 100)

    90

    111

    9990

    Tổng

     

    N = 300

    20440

    Số trung bình là:

    \overline{x} = \frac{20440}{300} \approx68,13

  • Câu 12: Thông hiểu

    Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    Số cây

    10

    15

    17

    14

    12

    2

    Tìm mốt của mẫu dữ liệu trên?

    Quan sát bảng thống kê ta thấy tần số cao nhất là 17 nằm trong nhóm [60; 70).

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    Số cây

    10

    15

    17

    14

    12

    2

     

    f_{1}f_{1}f_{2}

     

     

    \Rightarrow l = 60;f_{0} = 15;f_{1} =17;f_{2} = 14;c = 70 - 60 = 10

    Khi đó ta tính mốt như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Rightarrow M_{0} = 60 + \frac{17 -15}{2.17 - 15 - 14}.10 = 64

  • Câu 13: Nhận biết

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là:

    \overline{x} = \frac{126.3 + 128.7 +
130.15 + 132.10 + 134.5}{40} = 130,35(giây)

  • Câu 14: Nhận biết

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu đã cho là:

    Ta có: x_{1},x_{2} \in \lbrack
5;7), x_{3},...,x_{9} \in \lbrack
7;\ 9), x_{9},...,x_{16} \in
\lbrack 9;\ 11), x_{17},...,x_{19}
\in \lbrack 11;\ 13), x_{20} \in
\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

  • Câu 15: Thông hiểu

    Một cuộc khảo sát về chiều cao (tính bằng cm) của 50 nữ sinh lớp X được tiến hành tại một trường học và thu được số liệu sau:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

    Số nữ sinh

    2

    8

    12

    20

    8

    Tìm trung vị của dữ liệu ghép nhóm ở trên.

    Ta có:

    Chiều cao (cm)

    [120; 130)

    [130; 140)

    [140; 150)

    [150; 160)

    [160; 170)

     

    Số nữ sinh

    2

    8

    12

    20

    8

    N = 50

    Tần số tích lũy

    2

    10

    22

    42

    50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là: [150; 160) (vì 25 nằm giữa hai tần số tích lũy là 22 và 42)

    \Rightarrow l = 150;\frac{N}{2} =\frac{50}{2} = 25;m = 22;f = 20,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c= 150 + \dfrac{(25 - 22)}{20}.10 = 151,5

  • Câu 16: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -33}{5}.5 \approx 66,5

  • Câu 17: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \frac{15 - 9}{7}.2 = \frac{75}{7}\approx 10,7

  • Câu 18: Nhận biết

    Tính tổng tần số của bảng số liệu:

    Khoảng thời gian

    (giờ)

    Tần số

    [0; 5)

    8

    [6; 11)

    1

    [12; 17)

    4

    [18; 23)

    2

    Tổng tần số của mẫu số liệu là: 8 + 1 + 4 + 2 = 15

  • Câu 19: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 20: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau đây:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    x

    (30;40]

    9

    (40;50]

    7

    Biết \overline{x} = 23,6. Tìm cỡ mẫu?

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    x

    25x

    35

    9

    315

    45

    7

    315

    Tổng

    N = 38 + x

    880 + 25x

    Theo bài ra ta có giá trị trung bình là:

    \overline{x} = 23,6

    \Leftrightarrow \frac{880 + 25x}{38 + x}= 23,6

    \Leftrightarrow x = 12

    Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50

  • Câu 21: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính Q_{3} ?

    Đáp án: 164,7

    (Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính Q_{3} ?

    Đáp án: 164,7

    (Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

    Khi đó \left\{ \begin{matrix}l = 150;\dfrac{3N}{4} = 45;m = 40;f = 17 \\c = 200 - 150 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 150 + \frac{45 -40}{17}.50 = \frac{2800}{17}

  • Câu 22: Thông hiểu

    Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Ta có: \frac{N}{4} = \frac{30}{4} =7,5

    => Nhóm chứa tứ phân vị thứ nhất là (40; 50]

    Khi đó: \left\{ \begin{matrix}l = 40,\dfrac{N}{4} = 7,5 \\m = 2,f = 10,d = 50 - 40 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất của mẫu số liệu là:

    Q_{1} = L + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 40 + \frac{7,5 -2}{10}.10 = 45,5

  • Câu 23: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 24: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?

    Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.

  • Câu 25: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 26: Vận dụng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta = \left|Q_{1} - Q_{3} ight|?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta = \left| Q_{1} -Q_{3} ight| = \left| 52 - \frac{480}{7} ight| \approx16,6

  • Câu 27: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 28: Thông hiểu

    Tìm trung vị của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Ta có:

    Thời gian (s)

    Số vận động viên (người)

    Tần số tích lũy

    (50,5; 55,5]

    2

    2

    (55,5; 60,5]

    7

    9

    (60,5; 65,5]

    8

    17

    (65,5; 70,5]

    4

    21

    Tổng

    N = 21

     

    Ta có: \frac{N}{2} = \frac{21}{2} =10,5

    => Nhóm chứa trung vị là (60,5; 65,5]

    Khi đó: \left\{ \begin{matrix}l = 60,5,\dfrac{N}{2} = 10,5 \\m = 9,f = 8,d = 65,5 - 60,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 60,5 + \frac{10,5 -9}{8}.5 \approx 61,4

  • Câu 29: Thông hiểu

    Kết quả kiểm tra Toán của 30 học sinh lớp 11 được ghi theo nhóm như sau:

    Khoảng điểm

    Số học sinh

    [20; 30)

    1

    [30; 40)

    1

    [40; 50)

    10

    [50; 60)

    11

    [60; 70)

    5

    [70; 80)

    2

    Tìm mốt của mẫu dữ liệu. (Làm tròn đến số thập phân thứ nhất).

    Ta ghi lại bảng số liệu như sau:

    Khoảng điểm

    Số học sinh

    [20; 30)

    1

     

    [30; 40)

    1

     

    [40; 50)

    10

    {f_0}

    [50; 60)

    11

    {f_1}

    [60; 70)

    5

    {f_2}

    [70; 80)

    2

     

    Quan sát bảng trên ta thấy:

    Nhóm chứa mốt của mẫu dữ liệu là nhóm [50; 60).

    Do đó:

    \Rightarrow l = 50;f_{0} = 10;f_{1} =11;f_{2} = 5;c = 60 - 50 = 100

    Khi đó ta tính mốt như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Rightarrow M_{0} = 50 + \frac{11 -10}{2.11 - 10 - 5}.10 \approx 51,4

  • Câu 30: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm [300; 400)

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

     

    [100; 200)

    7

     

    [200; 300)

    12

    {f_0}

    [300; 400)

    18

    {f_1}

    [400; 500)

    16

    {f_2}

    [500; 600)

    10

     

    [600; 700)

    5

     

    \Rightarrow l = 300;f_{0} = 12;f_{1} =18;f_{2} = 16;c = 400 - 300 = 100

    Khi đó ta tính mốt như sau:

    \begin{matrix}  {M_0} = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}}.c \hfill \\   \Rightarrow {M_0} = 300 + \dfrac{{18 - 12}}{{2.18 - 12 - 16}}.100 = 375 \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Biết k là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \frac{n}{2}, r, d, nk lần lượt là đầu mút trái, độ dài, tần số của nhóm k khi đó công thức r + \left( \dfrac{\dfrac{n}{2} -cf_{k - 1}}{n_{k}} ight).d dùng để tính:

    Trung vị được tính theo công thức r +\left( \frac{\frac{n}{2} - cf_{k - 1}}{n_{k}} ight).d.

  • Câu 32: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

  • Câu 33: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định giá trị đại diện của nhóm dữ liệu thứ ba?

    Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.

    Nhóm dữ liệu thứ ba là [4; 6)

    => Giá trị đại diện của nhóm dữ liệu thứ ba là: \frac{4 + 6}{2} = 5

  • Câu 34: Vận dụng

    Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:

    Khoảng số từ

    Số câu

    [1; 5)

    2

    [5; 9)

    5

    [9; 13)

    x

    [13; 17)

    23

    [17; 21)

    21

    [21; 25)

    13

    [25; 29)

    4

    [29; 33)

    1

    Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:

    Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)

    Khoảng số từ

    Số câu

    [1; 5)

    2

     

    [5; 9)

    5

     

    [9; 13)

    x

    f_{0}

    [13; 17)

    23

    f_{1}

    [17; 21)

    21

    f_{2}

    [21; 25)

    13

     

    [25; 29)

    4

     

    [29; 33)

    1

     

    Do đó:

    \Rightarrow \left\{ \begin{matrix}l = 13;f_{0} = x;f_{1} = 23;f_{2} = 21 \\c = 17 - 13 = 4,M_{0} = 16 \\\end{matrix} ight.

    Khi đó ta có:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Leftrightarrow 16 = 13 + \frac{23 -x}{2.23 - x - 21}.4

    \Leftrightarrow x = 17

    Vậy cỡ mẫu N = 86.

  • Câu 35: Thông hiểu

    Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tần số tích lũy

    6

    20

    60

    94

    100

    Ta có: \frac{N}{2} = \frac{100}{2} =50

    => Trung vị nằm trong nhóm \lbrack700;750)(vì 50 nằm giữa hai tần số tích lũy là 20 và 60)

    \Rightarrow l = 700;\frac{N}{2} = 50;m =20;f = 40,c = 50

    \Rightarrow M_{e} = l + \frac{\left(\frac{N}{2} - m ight)}{f}.c

    = 700 + \frac{50 - 20}{40}.50 =737,5 (giờ)

  • Câu 36: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 37: Vận dụng

    Hoàn thành mẫu dữ liệu ghép nhóm sau. 

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Ghép nối các nội dung thích hợp với nhau:

    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
    Đáp án đúng là:
    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
  • Câu 38: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính giá trị trung bình của mẫu số liệu đã cho?

    Ta có:

    Số tiền (nghìn đồng)

    Giá trị đại diện

    Số người

    [0; 50)

    25

    5

    [50; 100)

    75

    12

    [100; 150)

    125

    23

    [150; 200)

    175

    17

    [200; 250)

    225

    3

     

     

    N = 60

    Giá trị trung bình cần tìm là:

    \overline{x} = \frac{25.5 + 75.12 +125.23 + 175.17 + 225.3}{60} = 125,83

  • Câu 39: Nhận biết

    Trong mẫu dữ liệu ghép nhóm sau có bao nhiêu nhóm?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Tổng

    N = 100

    Mẫu số liệu ghép nhóm đã cho có 6 nhóm.

  • Câu 40: Nhận biết

    Độ dài nhóm số liệu ghép nhóm \lbrack m;n) là:

    Độ dài của nhóm số liệu ghép nhóm \lbrackm;n)n - m.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo