Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ song song trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Hình vẽ minh họa

    -Ta có S \in (SIK) \cap
(SAC).

    Trong mặt phẳng (ABCD), gọi E = IK \cap AC

    \Rightarrow \left\{ \begin{matrix}
E \in IK \subset (SIK) \\
E \in AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow E \in (SIK) \cap (SAC)

    Suy ra SE = (SIK) \cap
(SAC).

    Ta có:

    \left\{ \begin{matrix}
S \in (SIK) \cap (SBD) \\
BD \subset (SBD),IK \subset (SIK) \\
BD//IK \\
\end{matrix} ight.

    \Rightarrow (SIK) \cap (SBD) = Sx,(\
Sx//BD//IK)

    -Trong mp (SBD), gọi F = Sx \cap DM

    \Rightarrow \left\{ \begin{matrix}
S \in DM \\
S \in Sx \subset (SIK) \\
\end{matrix} \Rightarrow F = DM \cap (SIK) ight..

    Ta có SF//BD \Rightarrow \frac{MF}{MD} =
\frac{MS}{MB} = 1.

  • Câu 2: Thông hiểu

    Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

    Hình vẽ minh họa

    Gọi d = (GMN) \cap (BCD)

    Khi đó d đi qua G. Xét ba mặt phẳng (GMN),(BCD),(ACD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,CD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,CD,MN đồng quy hoặc đôi một song song.

    MN//CD\  = > \ d//CD

    Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Hình vẽ minh họa

    a) Đúng

    Ta có MN là đường trung bình của tam giác SAB \Rightarrow MN//ABAB//CD nên MN//CD

    b) Sai

    Ta có \left\{ \begin{matrix}
S \in (SAB) \cap (SCD) \\
AB//CD \\
AB \subset (SAB),CD \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
d = (SAB) \cap (SCD) \\
S \in d \\
d//AB//CD \\
\end{matrix} ight.

    Gọi I = AN \cap d \Rightarrow \left\{
\begin{matrix}
I \in AN \\
I \in d,d \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow I = AN \cap
(SCD)

    Ta có SI//BA \Rightarrow \frac{SI}{AB} =
\frac{SN}{NB} = 1

    \Rightarrow SI = AB \Rightarrow SI =
CD

    Vậy SICD là hình bình hành

    c) Đúng

    Gọi F là giao điểm của AEBC trong (ABCD), ta có

    AD//CF \Rightarrow \frac{AE}{EF} =
\frac{ED}{CE} = 1

    \Rightarrow E là trung điểm AF

    Vậy ME là đường trung bình của tam giác SAF

    \Rightarrow EM//SF

    Ta có \left\{ \begin{matrix}
ME//SF \\
ME ⊄ (SCD) \\
SF \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow ME//(SCD)

    d) Đúng

    Gọi E là trung điểm CD ta có

    \frac{EH}{ES} = \frac{EG}{EB}\left( =
\frac{1}{3} ight) \Rightarrow GH//SB

    Ta có \left\{ \begin{matrix}
GH//SB \\
SB \subset (SBD) \\
GH ⊄ (SBD) \\
\end{matrix} ight.\  \Rightarrow GH//(SBD)

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD. Gọi M, N, P, Q, R, T lần lượt là trung điểm AC, BD, BC, CD, SA, SD. Bốn điểm nào sau đây đồng phẳng?

    Hình vẽ minh họa

    Tìm bốn điểm đồng phẳng

    Ta có: RT là đường trung bình của tam giác SAD nên.

    MQ là đường trung bình của tam giác ACD nên MQ{m{//}}AD.

    => RT{m{//}}MQ

    => M, Q, R, T đồng phẳng.

  • Câu 5: Nhận biết

    Trong các khẳng định sau, khẳng định nào đúng?

    Khẳng định đúng: "Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau."

  • Câu 6: Nhận biết

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm M,N làm trung điểm, lấy P \in BC sao cho \frac{CP}{PD} = 2 Q \in AD sao cho bốn điểm M,N,P,Q đồng phẳng. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa

    Xét mặt phẳng (BCD) ta có: \frac{CP}{PD} = 2

    => E = NP \cap BD

    M,N lần lượt là trung điểm của AB,BC do đó MN//AC

    \Rightarrow PQ//AC

    CP = 2PQ \Rightarrow AQ = 2QD hay \frac{QA}{DQ} = 2.

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD tâm O. Gọi M,N lần lượt là trung điểm của SB,AB. Xác định các giao tuyến của (MNO) với các mặt của S.ABCD. Hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh hoạ

    Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau

    Qua M kẻ PQ // NO với Q ∈ SC.

    Kéo dài NO cắt CD tại P.

    => Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.

    Tứ giác MNPQ có MN // NP

    => Tứ giác MNPQ là hình thang.

  • Câu 9: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 10: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 11: Thông hiểu

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 12: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy các điểm M \in AD',N \in DB sao cho AM = DN = x;\left( 0 < x < a\sqrt{2}
ight). Khi giá trị x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

    Hình vẽ minh họa

    Áp dụng định lí Ta – lét đảo cho D,N,B
\in DBA,M,D' \in
AD'. Từ tỉ lệ

    \frac{AM}{AD'} = \frac{DN}{DB}\left(
= \frac{x}{a\sqrt{2}} ight)

    Ta suy ra AD,MN,BD' cùng song song với một mặt phẳng (\alpha) nào đó.

    Ta chọn mặt phẳng (\beta) chứa BD' và song song với AD.

    Mặt phẳng (\beta) chính là mặt phẳng (BCD'A') và là mặt phẳng cố định.

    \Rightarrow
MN//(\alpha)//(BCD'A')

    Hay MN//(A'BC)

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    => MN // AB

    Ta lại có \left( {MNO} ight) \cap \left( {ABCD} ight) = O

    => Giao tuyến của hai măt phẳng (MNO) và (ABCD) là đường thẳng đi qua O và song song với AB.

  • Câu 14: Vận dụng

    Cho hình thang ABCD AD//BC,AD = 3BC. Lấy điểm S bất kì, S
otin (ABCD). Gọi M,N lần lượt là trung điểm của AB,AC, G là trọng tâm tam giác (SAD). Khi đó giao tuyến được tạo bởi mặt phẳng (GMN) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Gọi (GMN) \cap (SAD) = d

    Xét ba mặt phẳng (GMN);(SAD);(ABCD).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AD,MN đồng quy hoặc đôi một song song. Mà AD//MN \Rightarrow d//AD

    Giả sử: d cắt SA;SD lần lượt tại E;F.

    Khi đó thiết diện của hình chóp S.ABCD cắt bởi (GMN) là hình thang MNFE.

    Ta có:

    MN = \frac{AD + BC}{2} = \frac{AD +
\frac{1}{3}AD}{2} = \frac{2}{3}AD

    Ta có: G là trọng tâm tam giác SAD

    => MN = EF

    => Hình thang MNFE là hình bình hành.

  • Câu 15: Thông hiểu

    Cho tứ diện ABCD. Trung điểm các cạnh AB,AC lần lượt là các điểm M,N. Giả sử (MND) \cap (BCD) = d. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(DMN) \supset MN \\
(DBC) \supset BC \\
MN//BC \\
\end{matrix} ight.

    => d là đường thẳng song song với MNBC.

    => d song song với (ABC)

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử (SAB) \cap (SCD) = d. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: (SAB) \cap (SCD) = d

    Ta lại có: \left\{ \begin{matrix}
S \in (SAB);S \in (SCD) \\
AB \subset (SAB);CD \subset (SCD) \\
AB//CD \\
\end{matrix} ight. suy ra đường thẳng d đi qua S và song song với AB.

  • Câu 17: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 18: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành ABCD tâm O. Giao tuyến của hai mặt phẳng (SAC)(SAD)

    Ta có (SAC) \cap (SAD) = SA.

  • Câu 20: Nhận biết

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử G,G' lần lượt là trọng tâm của tam giác SAB;SCD. Cho các khẳng định sau:

    i) GG'//(SBC)

    ii) GG'//(SAD)

    iii) GG'//(SAC)

    iv) GG'//(ABD)

    Hỏi có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Gọi M,N lần lượt là trung điểm của AB và CD

    Do G,G' lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên \frac{SG}{SM} = \frac{SG'}{SN} = \frac{2}{3}
\Rightarrow GG'//MN

    MN \subset (ABCD) \Rightarrow
GG'//(ABCD)

    Ta có: MN//AD//BC \Rightarrow
GG'//AD//BC

    \left\{ \begin{matrix}
BC \subset (SBC) \\
AD \subset (SAD) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
GG'//(SBC) \\
GG'//(SAD) \\
\end{matrix} ight.

    Vậy có 3 khẳng định đúng.

  • Câu 22: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 23: Nhận biết

    Mệnh đề nào sau đây đúng?

    Mệnh đề đúng: “Qua ba điểm không thẳng hàng xác định được duy nhất một mặt phẳng.”

  • Câu 24: Nhận biết

    Khẳng định nào sau đây là đúng?

    Câu đúng là: “Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song”.

  • Câu 25: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là đúng?

    Đáp án: "Nếu (∝) // (β)d_1 ⊂ (∝); d_2 ⊂ (β) thì d_1 // d_2" và "Nếu d_1 // (∝)d_2 // (β) thì d_1 // d_2" sai vì hai đường thẳng d_1,d_2 có thể chéo nhau.

    Đáp án: "Nếu d_1 // d_2d_1⊂(∝), d_2⊂(β) thì (∝) //(β)" sai vì hai mặt phẳng (∝), (β) có thể cắt nhau.

  • Câu 26: Vận dụng cao

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Đáp án là:

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Hình vẽ minh họa

    Gọi I là trung điểm cạnh AD

    Trong mặt phẳng (ABCD) giả sử IE và BC cắt nhau tại điểm Q. 

    Dễ thấy SQ = (IGE) \cap
(SBC).

    Do đó: GE//(SBC) \Leftrightarrow GE//SQ \Leftrightarrow \frac{IE}{IQ} =
\frac{IG}{IS} \Rightarrow
\frac{IE}{IQ} = \frac{1}{3}.

    Mặt khác, tam giác EIA đồng dạng với tam giác EQC nên \frac{EI}{EQ} = \frac{EA}{EC} = \frac{EA}{xEA} =\frac{1}{x}

    Suy ra EQ = x.EI.

    \Rightarrow \frac{IE}{IQ} = \frac{IE}{IE
+ EQ} = \frac{IE}{IE + x.IE} = \frac{1}{1 + x}.

    Từ và \Rightarrow \frac{1}{1 + x} =
\frac{1}{3} \Leftrightarrow x =
2.

    Vậy GE//(SBC) \Leftrightarrow x = 2.

  • Câu 27: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E;F;G lần lượt là trung điểm của SA;SB;SC. Mệnh đề nào dưới đây là mệnh đề sai?

    Hình vẽ minh họa:

    Ta có: (EFG)//(ACD) \Rightarrow (EFG)\cap (ACD) = \varnothing

    Ta có: EG là đường trung bình trong tam giác SAC

    EG//AC

    Ta có: EF là đường trung bình trong tam giác SAB

    => EF//AB

    => EF//CD

    Dễ thấy SD cắt (EFG) tại trung điểm H của SD.

    Do đó mệnh đề SD \cap (EFG) =\varnothing là mệnh đề sai.

  • Câu 29: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."

  • Câu 30: Nhận biết

    Cho hình chóp S.MNPQ. Có bao nhiêu cạnh của hình chóp chéo nhau với cạnh MN?

    Hình vẽ minh họa

    Các cạnh của hình chóp chéo nhau với cạnh MNSP;SQ.

  • Câu 31: Nhận biết

    Qua phép chiếu song song, tính chất nào không được bảo toàn?

    Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.

    Suy ra tính chất chéo nhau không được bảo toàn.

  • Câu 32: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 33: Vận dụng cao

    Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình vuông, A B = 1 ; A A' = 2. Gọi L là trung điểm B'D, mặt phẳng (P) qua L và song song AC lần lượt cắt A A'; C C'; D D' tại E ; F ; K.

    Đặt \frac{DK}{DD'} = x. Khi (EFK)//(MA'C') thì P = \frac{2025x}{1005} bằng (Làm tròn đến hàng phần trăm).

    Đáp án: 2,01

    Đáp án là:

    Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình vuông, A B = 1 ; A A' = 2. Gọi L là trung điểm B'D, mặt phẳng (P) qua L và song song AC lần lượt cắt A A'; C C'; D D' tại E ; F ; K.

    Đặt \frac{DK}{DD'} = x. Khi (EFK)//(MA'C') thì P = \frac{2025x}{1005} bằng (Làm tròn đến hàng phần trăm).

    Đáp án: 2,01

    Hình vẽ minh họa

    Trong mặt phẳng (A'B'C'D'), O' = A'C' \cap
B'D'.

    Trong mặt phẳng (B'D'DB), Q = B'D \cap MO'.

    ML là đường trung bình của tam giác B'BD nên ML\ //\ BD\ //\ B'D' (1).

    O'L là đường trung bình của tam giác B'D'D nên LO'\ //\ D'D\ //\ B'B (2).

    Từ (1),(2) suy ra tứ giác MLO'B' là hình bình hành nên Q là trung điểm B'L \Rightarrow QO'//LD' (3).

    Ta có EF\ //\ A'C' nên để (EFK)//(MA'C') thì \Rightarrow QO'//LK (4).

    Từ (1),(2) suy ra K
\equiv D' \Rightarrow \frac{DK}{DD'} = 1 \Rightarrow x =
1.

    Vậy P = \frac{2025x}{1005} =
\frac{2025}{1005} \approx 2,01.

  • Câu 34: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Mặt phẳng (\beta) bất kì song song với mặt phẳng (ABC). Hình tạo bởi các giao tuyến giữa hai mặt phẳng trên là:

    Hình vẽ minh họa

    Gọi M,N,P lần lượt là giao điểm của (\beta) với các cạnh AA',BB',CC'.

    Khi đó ta có: \left\{ \begin{matrix}
MN = AB \\
NP = BC \\
PM = AC \\
\end{matrix} ight.

    Vậy hình tạo bởi các giao tuyến giữa hai mặt phẳng là tam giác đều

  • Câu 35: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD) giả sử BNAD cắt nhau tại điểm K.

    Dễ thấy SK = (BMN) \cap
(SAD).

    Do đó : MN//(SAD) \Leftrightarrow MN//SK \Leftrightarrow \frac{BM}{MS} =
\frac{BN}{NK} (1)

    Mặt khác tam giác NCB đồng dạng với tam giác NAK \Rightarrow \frac{BN}{NK} = \frac{CN}{NA} (2).

    Từ (1) và (2) \Rightarrow \frac{BM}{MS} =
\frac{NC}{NA} \Leftrightarrow x =
y.

    Vậy MN//(SAD) \Leftrightarrow x = y. Khi đó \frac{x}{y} = 1

  • Câu 36: Nhận biết

    Trong mặt phẳng (\alpha), cho tứ giác ABCDABcắt CDtại E, ACcắt BD tại F, S là điểm không thuộc (\alpha). Giao tuyến của (SAB) (SCD)

    Hai mặt phẳng (SAB) (SCD) có hai điểm chung là S E nên có giao tuyến là đường thẳng SE.

  • Câu 37: Vận dụng

    Cho tứ diện ABCD cạnh bằng 1. Gọi M là trung điểm của AB, E đối xứng với B qua C, F đối xứng với B qua D. Xác định các giao điểm của mặt phẳng (MEF) với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh họa

    Gọi I = MF \cap AD,H = ME \cap
AC

    Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.

    Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.

    Suy ra \frac{HA}{HC} =
\frac{1}{2}. Chứng minh tương tự ta có: \frac{IA}{ID} = \frac{1}{2}. Do đó ta có:

    \frac{HI}{CD} = \frac{2}{3} \Rightarrow
HI = \frac{2}{3}

    Tứ diện đều ABCD có cạnh bằng 1 nên \left\{ \begin{matrix}
\widehat{MAI} = 60^{0} \\
AM = \frac{1}{2};AI = \frac{2}{3} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác ta có:

    MI^{2} = MA^{2} + IA^{2} -
2MA.IA.cos60^{0}

    \Rightarrow MI^{2} =
\frac{13}{36}

    \Rightarrow MI = \sqrt{\frac{13}{36}} =
\frac{\sqrt{13}}{6} = MH

    Áp dụng công thức Hê- rông tính diện tích tam giác ta được: S_{MHI} = \frac{1}{6}

  • Câu 38: Nhận biết

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

  • Câu 39: Thông hiểu

    Chọn mệnh đề sai trong các mệnh đề sau:

    Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.

    Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.

    Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.

  • Câu 40: Nhận biết

    Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

  • Câu 41: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.

    Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.

  • Câu 42: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang có cạnh đáy là AB,CD. Gọi M,N lần lượt là trung điểm của AD;BC, điểm P
\in SA;(P eq S;P eq A). Xác định giao tuyến của hai mặt phẳng (SAB);(MNP).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
P = (SAB) \cap (MNP) \\
MN \subset (MNP) \\
AB \subset (SAB) \\
MN//AB \\
\end{matrix} ight.

    \Rightarrow (SAB) \cap (MNP) =
PQ với Px//AB//MN,Q \in
SB.

    Vậy giao tuyến của hai mặt phẳng (SAB);(MNP) là đường thẳng qua P và song song với AB.

  • Câu 43: Nhận biết

    Có duy nhất một mặt phẳng đi qua

    Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.

    Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.

    Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.

    Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."

  • Câu 44: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 45: Nhận biết

    Số cạnh của hình chóp tam giác là:

     Số cạnh của hình chóp tam giác là: 6 cạnh.

  • Câu 46: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
    các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là

    Hình vẽ minh họa

     Đường thẳng và mặt phẳng song song

    Ta có thiết diện của S.ABCD cắt bởi
    mặt phẳng (IJK) là ngũ giác

  • Câu 47: Thông hiểu

    Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, lấy điểm N trên cạnh AC sao cho AN
= 2NC. Giao tuyến của hai mặt phẳng (DMN)(BCD) đi qua giao điểm của hai đường nào trong các cặp đường thẳng sau?

    Hình vẽ minh họa

    luyện tập điểm đường thẳng mặt phẳng trong không gian

    Gọi I là giao điểm của MN và BC.

    Giao tuyến cần tìm là DI.

    Do đó giao tuyến ấy đi qua giao điểm của MN và BC.

  • Câu 48: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.

  • Câu 49: Nhận biết

    Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

    Chọn khẳng định đúng

    Gọi E là trung điểm của AB

    Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:

    \frac{{EM}}{{EC}} = \frac{{EN}}{{ED}} = \frac{1}{3} 

    Theo định lí Ta - lét ta có: MN // CD (1)

    CD \subset \left( {BCD} ight);CD \subset \left( {ACD} ight) (2)

    Từ (1) và (2) => MN // (BCD); MN // (ACD)

  • Câu 50: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Giao tuyến của hai mặt phẳng (SAC)(SBD) là:

    Hình vẽ minh họa

    Ta có: S \in (SAC) \cap
(SBD)(*)

    Mặt khác \left\{ \begin{matrix}
O \in AC \subset (SAC) \\
O \in BD \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow O \in (SAC) \cap
(SBD)(**)

    Từ (*) và (**) ta suy ra SO = (SAC) \cap
(SBD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo