Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ song song trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD, lấy điểm M \in BC,(M eq B,M eq C). Mặt phẳng (\beta) đi qua M và song song với ABBC. Xác định các giao tuyến của (\beta) và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh họa:

    Mặt phẳng (\beta) qua M và song song với AB

    => Mặt phẳng (\beta) cắt mặt phẳng (ABC) theo giao tuyến MN song song với AB,(N \in AC).

    Mặt khác, (\beta) song song với CD nên (\beta) cắt (ACD)(BCD) theo các giao tuyến NPMQ với P \in
AD;Q \in BD

    => Hình tạo bởi các giao tuyến là tứ giác MNPQ.

    Mặt khác \left\{ \begin{matrix}
MN//PQ(//AB) \\
NP//MQ(//CD) \\
\end{matrix} ight.

    => Tứ giác MNPQ là hình bình hành.

    Vậy hình tạo bởi các giao tuyến của (\beta) và các mặt của hình chóp là hình bình hành.

  • Câu 4: Thông hiểu

    Cho mặt phẳng (\alpha) và hai đường thẳng m,n. Khẳng định nào sau đây đúng?

    “Nếu m//(\alpha)n//(\alpha) thì m,n đồng phẳng.” sai vì có thể chéo nhau.

    “Nếu m \subset (\alpha)m cắt n thì n cắt (\alpha).” sai vì có thể nằm trên (\alpha) 

    “Nếu m//nn//(\alpha) thì m//(\alpha).” sai vì có thể nằm trên (\alpha) .

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD. Gọi E;F lần lượt là trung điểm của AB,CDG là trọng tâm của tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
EG \subset (ABF) \\
AF = (ABF) \cap (ABC) \\
\end{matrix} ight.

    => Giao điểm của đường thẳng EG và mặt phẳng (ACD) là giao điểm của đường thẳng EGAF.

  • Câu 6: Nhận biết

    Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

    Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.

    Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.

    Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)

    Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.

  • Câu 7: Nhận biết

    Cho hai đường thẳng mn chéo nhau. Có bao nhiêu mặt phẳng chứa m và song song với n?

    Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.

  • Câu 8: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 9: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4;\widehat {BAC} = {30^0}. Mặt phẳng \left( P ight) song song với \left( {ABC} ight) cắt đoạn SA tại M sao cho \frac{{SM}}{{SA}} = 2. Tính diện tích thiết diện tạo bởi mặt phẳng \left( P ight) và hình chóp S.ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4;\widehat {BAC} = {30^0}. Mặt phẳng \left( P ight) song song với \left( {ABC} ight) cắt đoạn SA tại M sao cho \frac{{SM}}{{SA}} = 2. Tính diện tích thiết diện tạo bởi mặt phẳng \left( P ight) và hình chóp S.ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu

    Trong không gian, cho 3 đường thẳng a, b, c, biết a//b, a và c chéo nhau. Khi đó hai đường thẳng b và c:

    Giả sử b//c

    => c // a (mâu thuẫn với giả thiết). 

    Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.

  • Câu 11: Nhận biết

    Có bao nhiêu vị trí tương đối của hai đường thẳng phân biệt mn trong không gian?

    Có 3 vị trí tương đối có thể có giữa hai đường thẳng phân biệt mn là:

     

    • m cắt n

    • m song song với n

    • m chéo nhau với n

     

  • Câu 12: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N tương ứng là hai điểm bất kì trên các đoạn thẳng ACBD. Tìm giao tuyến của hai mặt phẳng (MBD)(NAC).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MBD) \cap (NAC) \\
N \in (MBD) \cap (NAC) \\
\end{matrix} ight.

    \Rightarrow (MBD) \cap (NAC) =
MN

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCDG,E lần lượt là trọng tâm tam giác SADSCD. Lấy các điểm H,K lần lượt là trung điểm của ABBC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi I là trung điểm của SD.

    Xét tam giác ACI có: \frac{IG}{IA} = \frac{IE}{IC} =
\frac{1}{3}

    Theo định lí đảo của định lí Thales, ta có GE//AC (1).

    Mặt khác HK là đường trung bình của tam giác ABC

    => HK//AC (2)

    Từ (1) và (2) ta có HK//GE.

  • Câu 15: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Hình vẽ minh họa

    Gọi N,P,Q lần lượt là trung điểm các cạnh SD,SC,BC.

    Gọi E = AD \cap BC,I = MN \cap
PQ ta có S,I,E thẳng hàng vì cùng thuộc giao tuyến của (SAD)(SBC).

    Thiết diện là hình thang MNPQ (vì NP \parallel AB \parallel
MQ).

    Ta có S_{MNPQ} = S_{\Delta IMQ} -
S_{\Delta INP}, mà \frac{NP}{DC} =
\frac{1}{2},\frac{DC}{MQ} = \frac{2}{3} \Rightarrow \frac{NP}{MQ} =
\frac{1}{3}

    \Rightarrow S_{\Delta INP} =
\frac{1}{9}S_{\Delta IMQ}

    \Rightarrow S_{MNPQ} = S_{\Delta IMQ} -
\frac{1}{9}S_{\Delta IMQ} = \frac{8}{9}S_{\Delta IMQ}.

    Ta có M là trung điểm AD, D là trung điểm của AE nên \frac{MI}{SA} = \frac{3}{4}

    \Rightarrow S_{\Delta IMQ} =
\frac{9}{16}S_{\Delta SAB}

    \Rightarrow S_{MNPQ} =
\frac{8}{9}.\frac{9}{16}S_{\Delta SAB} = \frac{1}{2}S_{\Delta
SAB}.

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3\sqrt{2}SA = SD = 3, SB = SC = 3\sqrt{3}. Lấy M,N lần lượt là trung điểm của SA,SD, lấy P
\in AB,AP = 2. Giả sử hình \wp tạo bởi các giao tuyến của mặt phẳng (MNP) với các mặt bên của hình chóp. Tính chu vi của hình \wp.

    Hình vẽ minh họa

    Ta có: AD//(MNP) => Giao tuyến của (MNP)(ABCD) cũng song song với AD.

    Xét mặt phẳng (ABCD) kẻ PQ//AD;Q \in CD

    => Hình \wp là hình thang MNPQ.

    Ta có: MN là đường trung bình của tam giác SAD

    => MN = \frac{AD}{2} =
\frac{3\sqrt{2}}{2}

    Ta có: AB^{2} + SA^{2} = SB^{2} nên tam giác SAB vuông tại A

    Lại có: MA = \frac{3}{2};AP =
2

    \Rightarrow MP^{2} = AP^{2} + MA^{2} =
\frac{25}{4}

    \Rightarrow MP =
\frac{5}{2}

    PQ//AD \Rightarrow PQ = AD =
3\sqrt{2}

    Chứng minh tương tự MP ta tính được NQ = \frac{5}{2}

    => Chu vi hình \wp là: MN + NQ + PQ + PM = 5 +
\frac{9\sqrt{2}}{2}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Giả sử (\alpha) là một mặt phẳng tùy ý. Giao tuyến của (\alpha) với các mặt của hình chóp S.ABCD không thể tạo thành hình nào dưới đây?

    Hình chóp tứ giác đã cho có 5 mặt

    Do đó có tối đa 5 giao tuyến được tạo thành bởi mặt phẳng (\alpha) tùy ý với các mặt của hình chóp S.ABCD.

    Vậy đáp án là hình lục giác.

  • Câu 18: Thông hiểu

    Cho tứ diện ABCDI,J lần lượt là trọng tâm tam giác ABCABD. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm của BD và BC

    Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)

    Do I, J là trọng tâm tam giác ABC và ABD suy ra \frac{AI}{AM} = \frac{AJ}{AN} = \frac{2}{3}
\Rightarrow JI//MN(**)

    Từ (*) và (**) suy ra TH

     

    1

  • Câu 19: Nhận biết

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.

  • Câu 20: Thông hiểu

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng (\alpha) qua O, song song với SA,CD. Thiết diện tạo bởi (\alpha) và hình chóp là hình gì?

    Hình vẽ minh họa

    Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.

    Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.

    Gọi I là giao điểm của a với SD.

    Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.

    Gọi J lần lượt là giao điểm của b với SC.

    Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJGH // IJ //CD.

  • Câu 21: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 22: Vận dụng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O, M là trung điểm của BC. Các giao tuyến của hình chóp S.ABCD với mặt phẳng đi qua điểm M và song song với ACSB là hình gì?

    Hình vẽ minh họa:

    Gọi mặt phẳng đi qua điểm M và song song với ACSB là mặt phẳng (\alpha).

    \Rightarrow (\alpha) \cap (ABCD) =
MN với MN//AC hay MN//AC là trung điểm của AC.

    (\alpha)//SB,N \in (\alpha)

    Suy ra (\alpha) \cap (SAB) = NP với NP//SB hay P là trung điểm của SA.

    (\alpha)//AC,P \in (\alpha)

    Suy ra (\alpha) \cap (SAC) = PQ với PQ//AC hay Q là trung điểm của SC.

    Xét mặt phẳng (ABCD) gọi I = MN \cap
CD, trong (SCD) gọi H = QI \cap
SD suy ra (\alpha) \cap (SCD) =
QH

    Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng (\alpha) là ngũ giác MNPHQ.

  • Câu 23: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 24: Thông hiểu

    Cho hình chóp tứ giác S.ABCD. Gọi M,N lần lượt là trung điểm của SASC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Xét \Delta SACM,N lần lượt là trung điểm SA,SC

    => MN là đường trung bình của \Delta SAC

    => MN//ACAC \subset (ABCD)

    \Rightarrow MN//(ABCD)

  • Câu 25: Vận dụng

    Cho hình chóp S.ABCD, biết AC \cap BD \equiv MAB \cap CD \equiv N. Tìm giao tuyến của hai mặt phẳng (SAC)(SBD).

    Hình vẽ minh họa

    Ta có S là điểm chung của hai mặt phẳng (SAC)(SBD).

    AC \cap BD \equiv Mnên M là điểm chung của hai mặt phẳng (SAC)(SBD).

    Do đó giao tuyến của hai mặt phẳng (SAC)(SBD)SM.

  • Câu 26: Thông hiểu

    Cho hình chóp tam giác S.ABC. Gọi điểm I là trung điểm của AB, lấy điểm M di động trên đoạn AI. Mặt phẳng (\alpha) qua M song song với (SIC). Xác định hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với các mặt của tứ diện.

    Hình vẽ minh họa

    Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.

    Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.

    Thiết diện là tam giác MNP.

    Ta có: \frac{MP}{SI} = \frac{MN}{CI}
\Rightarrow MP = MN

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với tứ diện là tam giác MNP cân tại M.

  • Câu 27: Nhận biết

    Tứ diện ABCD có thể xem là hình chóp tam giác bằng bao nhiêu cách?

    Có 4 cách là: A.BCD,B.ACD,C.ABD,D.ABC.

  • Câu 28: Nhận biết

    Để kết luận đường thẳng a song song với đường thẳng b ta cần giả thiết nào dưới đây?

    Ta có tính chất:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy \left\{ \begin{matrix}
a//(\alpha);a//(\beta) \\
(\alpha) \cap (\beta) = b \\
\end{matrix} ight.\  \Rightarrow a//b

  • Câu 29: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau đây.

    Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều.

  • Câu 30: Vận dụng

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Đáp án là:

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Áp dụng định lý Thales trong không gian, do A,B,C,D cách đều nhau nên E,F,G,H cũng cách đều nhau.

    Ta có EF = FG = GH = 35\ cmnên HE = 35.3 = 105\ cm.

  • Câu 31: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D', gọi I là trung điểm của AB. Xác định hình tạo bởi các giao tuyến của mặt phẳng (B'D'I) với hình hộp.

    Hình vẽ minh họa

    Ta có: \left\{
\begin{matrix}
B'D' \subset (B'D'I) \\
BD \subset (ABCD) \\
BD//B'D' \\
\end{matrix} ight.

    Suy ra giao tuyến của (B'D'I)(ABCD) là đường thẳng IE qua I song song với BD; (E \in
AD).

    IE//B'D' nên hình tạo bởi các giao tuyến của mặt phẳng (B'D'I) với hình hộp ABCD.A'B'C'D' là hình thang IED'B'.

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD) \\
BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua S và d // AD // BC.

  • Câu 33: Nhận biết

    Cho hai đường thẳng trong không gian không có điểm chung, khẳng định nào sau đây là đúng?

    Cho hai đường thẳng trong không gian không có điểm chung có hai trường hợp xảy ra là hai đường thẳng song song hoặc chéo nhau

  • Câu 34: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 35: Nhận biết

    Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề
    nào dưới đây đúng?

    Hình vẽ minh họa

    Hai đường thẳng chéo nhau và hai đường thẳng song song

    Gọi M là trung điểm của AB.

    Ta có: \frac{{GM}}{{MD}} = \frac{{ME}}{{MC}} = \frac{1}{3}

    => GE // CD

     

  • Câu 36: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.

  • Câu 37: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 38: Nhận biết

    Cho hai đường thẳng a; b cắt nhau và không đi qua điểm A. Xác định được nhiều nhất bao nhiêu mặt phẳng tạo bởi a, b và A?

    Có 3 mặt phẳng gồm (a,b),(A,a),(B,b).

  • Câu 39: Nhận biết

    Hình chóp ngũ giác có bao nhiêu cạnh?

    Hình chóp ngũ giác có 10 cạnh.

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCD. Gọi MN lần lượt là trung điểm của SA SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    MNlà đường trung bình của tam giác SAC nên MN//ACAC
\in (ABCD) \Rightarrow MN//(ABCD).

  • Câu 41: Thông hiểu

    Cho lăng trụ ABC.A'B'C'. Lấy M là trung điểm của AC. Xác định hình chiếu của điểm M lên mặt phẳng (AA'B') theo phương chiếu CB là:

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song. Hình biểu diễn của một hình không gian

    Gọi N là trung điểm của  AB . Ta có: MN//CB

    Vậy hình chiếu song song của điểm  M  lên \left( {AA'B'} ight) theo phương chiếu CB là điểm N.

  • Câu 42: Nhận biết

    Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta thấy:

    Hình chiếu của hình chữ nhật không thể là hình thang có hai đáy không bằng nhau.

  • Câu 43: Nhận biết

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 44: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Các điểm A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC) ta thu được ảnh lần lượt là M,N. Khi đó tứ giác BCMN là hình gì?

    Hình vẽ minh họa

    Theo bài ra ta có: M,N lần lượt là ảnh của A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC).

    Ta có: \left\{ \begin{matrix}
SO//AM \\
SO//DN \\
OA = OC \\
\end{matrix} ight.

    => SO là đường trung bình của các tam giác CAM,BDN

    => \left\{ \begin{matrix}
AM//DN \\
AM = DN \\
\end{matrix} ight.

    => ADMN là hình bình hành

    \Rightarrow \left\{ \begin{matrix}
MN//BC \\
MN = BC \\
\end{matrix} ight. => BCMN là hình bình hành.

  • Câu 45: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 46: Vận dụng

    Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC

    => IJ // AB

    2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung

    => Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.

    Vậy IJ // KH // AB.

    Ta có ∆BJK = ∆AIH ⇒ JK = IH

    Mặt khác KH ≠ IJ

    Vậy thiết diện là hình thang cân IJKH.

  • Câu 47: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 48: Thông hiểu

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 49: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I,\ \
J lần lượt là trung điểm của SASC. Đường thẳng IJ song song với đường thẳng nào?

    Hình vẽ minh họa:

    Dễ dàng thấy được: IJ là đường trung bình của tam giác SAC \Rightarrow IJ // AC.

  • Câu 50: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, I =
AC \cap BD. Giả sử mặt phẳng (\alpha) bất kì cắt các cạnh SA,SB,SC,SD lần lượt tại A',B',C',D'. Chọn khẳng định đúng trong các khẳng định sau.

    Hình vẽ minh hoạ

    Ta thấy: \left\{ \begin{matrix}
A'C' = (\alpha) \cap (SAC) \\
B'D' = (\alpha) \cap (SBD) \\
SI = (SBD) \cap (SAC) \\
\end{matrix} ight.

    => Các đường thẳng A'C',B'D',SI đồng quy.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo