Cho biết mệnh đề nào sau đây sai?
Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.
Cho biết mệnh đề nào sau đây sai?
Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.
Cho hộp chữ nhật
. Các điểm
tương ứng trên
sao cho
song song với
. Tính tỉ số
?
Xét phép chiếu song song lên mặt phẳng theo phương chiếu
.
Ta có: là ảnh của
hay
chính là giao điểm của
và ảnh
qua phép chiếu này.
Do đó ta xác định như sau:
Trên kéo dài lấy điểm
sao cho
suy ra
là ảnh của
trên
qua phép chiếu song song.
Gọi . Đường thẳng qua
và song song với
cắt
tại
. Ta có:
là các điểm cần xác định.
Theo định lí Thales ta có:
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: "Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác." sai. Vì trong trường hợp 2 đường thẳng cắt nhau thì chúng chỉ có 1 điểm chung.
Mệnh đề: "Hai đường thẳng song song khi và chỉ khi chúng không điểm chung." và "Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng." sai. Vì hai đường thẳng song song khi và chỉ khi chúng đồng phẳng và không có điểm chung.
Vậy mệnh đề đúng là: "Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng."
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.
Cho lăng trụ
có đáy
là hình vuông,
. Gọi
là trung điểm
, mặt phẳng
qua
và song song
lần lượt cắt
tại
.

Đặt
. Khi
thì
bằng (Làm tròn đến hàng phần trăm).
Đáp án: 2,01
Cho lăng trụ có đáy
là hình vuông,
. Gọi
là trung điểm
, mặt phẳng
qua
và song song
lần lượt cắt
tại
.
Đặt . Khi
thì
bằng (Làm tròn đến hàng phần trăm).
Đáp án: 2,01
Hình vẽ minh họa
Trong mặt phẳng ,
.
Trong mặt phẳng ,
.
là đường trung bình của tam giác
nên
.
là đường trung bình của tam giác
nên
.
Từ ,
suy ra tứ giác
là hình bình hành nên
là trung điểm
.
Ta có nên để
thì
.
Từ ,
suy ra
.
Vậy .
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.
Cho hình hộp
. Khẳng định nào sau đây sai?
Hình vẽ minh họa

Từ hình vẽ ta thấy => "
chéo nhau" sai.
Trong các phát biểu sau, phát biểu nào đúng?
Hình tứ diện có 4 mặt, 6 cạnh và 4 đỉnh.
Vậy phát biểu đúng: "Hình tứ diện có 4 mặt."
Cho tứ diện
. Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Cho tứ diện . Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Hình vẽ minh họa
Trong mặt phẳng , gọi
.
Trong , gọi
.
Trong mặt phẳng , dựng
là đường trung bình của tam giác
.
là trung điểm của
.
Trong , dựng
.
Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:
Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.
Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED
Lại có: MD // SI => (1)
ME // IC => (2)
Từ (1) và (2) suy ra:
Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)
Suy ra MD = ME
Vậy tam giác MED cân tại M.
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Mặt phẳng song song với mặt phẳng
.
Vì và
.
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Cho các đường thẳng
và các mặt phẳng
. Giả thiết nào sau đây đủ để kết luận đường thẳng
song song với đường thẳng
?
Nếu thì a // b hoặc a, b chéo nhau.
Nếu thì a // b hoặc a ≡ b.
Nếu thì không kết luận được quan hệ giữa a và b.
Tìm số cạnh của một hình chóp có đáy là một bát giác:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Khẳng định nào sau đây là sai.
Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."
Cho hình chóp
có đáy
là hình thang
. Gọi
lần lượt là trung điểm của
. Giao tuyến của mặt phẳng
và
là:
Hình vẽ minh họa
Ta có:
nên Q là điểm chung thứ nhất của mặt phẳng
và
Mặt khác
Vậy giao tuyến của mặt phẳng và
là đường thẳng qua Q và song song với AB.
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Cho hình lăng trụ
. Gọi
lần lượt là trung điểm của
và
. Giao của
với
là:
Hình vẽ minh họa
Vì là trung điểm của
và
nên
Suy ra cùng thuộc một mặt phẳng.
Trong mặt phẳng gọi
là giao điểm của
và
.
Ta có:
Vậy giao của với
là giao của
với
.
Cho tứ diện
. Gọi
là trọng tâm của tam giác
và
là điểm trên cạnh
sao cho
. Đường thẳng
song song với
Hình vẽ minh họa
Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho nên trong mặt phẳng (BCE) ta có:
Cho hình chóp
có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm
là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có
. Sai||Đúng
c) Cho
thì
. Sai||Đúng
d) Trong mặt phẳng
, gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có . Sai||Đúng
c) Cho thì
. Sai||Đúng
d) Trong mặt phẳng , gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
- Xác định :
Trong mặt phẳng , kẻ
cắt
tại
;
Trong mặt phẳng , kẻ
cắt
tại
.
Vì .
Tương tự: .
-Tính theo
:
Gọi là trung điểm
là đường trung bình của tam giác
.
Trong tam giác , ta có
qua trung điểm
của
và
là trung điểm của
.
Hình vẽ minh họa
-Vậy hay
.
Hoàn toàn tương tự, ta chứng minh được .
Khi đó hai tam giác đồng dạng vì có góc
chung và
.
Xét tam giác , theo định lí Thalès, ta có:
- Chứng minh :
Dễ thấy là điểm chung của hai mặt phẳng
và
.
Ta có: .
Vì vậy .
Khi đó:
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường nào trong các đường thẳng sau đây?
Hình vẽ minh họa

Xét tam giác SAB có:
M và N lần lượt là trung điểm của SA và SB
=> MN là đường trung bình của tam giác SAB
=>
Ta lại có
=> Giao tuyến của hai măt phẳng (MNO) và (ABCD) là đường thẳng đi qua O và song song với AB.
Qua phép chiếu song song, tính chất nào không được bảo toàn?
Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.
Suy ra tính chất chéo nhau không được bảo toàn.
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
(1)
Ta có là đường trung bình của tam giác
.
.
Cho tam giác
là hình biểu diễn của một tam giác đều. Hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là:
Tâm của đường tròn ngoại tiếp tam giác đều đồng thời là trọng tâm tam giác đó.
Do tam giác ABC là hình biểu diễn của tam giác đều, kết hợp với tính chất bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số hai đoạn thẳng nằm trên hai đường thẳng song song hoặc nằm trên cùng một đường thẳng ta được hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác .
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Cho hình chóp
. Gọi
và
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
là đường trung bình của tam giác
nên
mà
.
Cho hai đường thẳng a; b cắt nhau và không đi qua điểm A. Xác định được nhiều nhất bao nhiêu mặt phẳng tạo bởi a, b và A?
Có 3 mặt phẳng gồm
Cho hình chóp
có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a)
. Đúng||Sai
b)
với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là
. Đúng||Sai
Cho hình chóp có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a) . Đúng||Sai
b) với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là
. Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có nên
Mà
b) Đúng
Ta có:
Mà
c) Sai
Gọi là mặt phẳng qua
và song song với
Vì nên
Ta có:
với
Ta có:
Vậy hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tam giác
.
d) Đúng
Thiết diện của mặt phẳng qua và song song với
là tam giác
.
Áp dụng định lý Ta-lét trong tam giác ta có:
Tương tự ta có
Diện tích tam giác đều có cạnh bằng
là:
.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
"Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?
Hình vẽ minh họa

Khẳng định sai là "CE song song với FH"
Tìm mệnh đề sai trong các mệnh đề sau?
Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.
Mệnh đề nào sau đây đúng?
Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.
Vậy khẳng định đúng là: “Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm
,
. Đường thẳng
song song với đường thẳng nào trong các đường thẳng sau?
Hình vẽ minh họa
Do là đường trung bình của tam giác
.
Cho tứ giác
và một điểm
không thuộc mặt phẳng
. Trên đoạn
lấy một điểm
không trùng với
và
.Gọi
là giao điểm của đường thẳng
với mặt phẳng
. Khi đó
là giao tuyến của hai mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có (1)
Gọi .
Khi đó:
Từ (1) và (2) suy ra
Trong mặt phẳng . Gọi
.
Khi đó:
Dễ thấy
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
. Gọi
là giao điểm của
và
. Giao điểm của
với
là điểm
. Hãy chọn cách xác định điểm
đúng nhất trong bốn phương án sau.
Hình vẽ minh họa
Trong mặt phẳng gọi
.
Mà nên
Cho tứ diện
có tất cả các cạnh bằng
. Lấy
là trung điểm của
,
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Xác định các giao tuyến của mặt phẳng
với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh hoạ
Trong mp(ABD) kẻ
Trong mp(ABC) kẻ
Gọi P là điểm đối xứng của C qua D.
Khi đó
=> Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.
Ta lại có:
Mặt khác
Trong tam giác PAC vuông tại A ta có:
Diện tích tam giác PIM
Với