Cho hình chóp có
là trung điểm của đoạn thẳng
. Tìm khẳng định sai dưới đây.
Hình vẽ minh họa
Ta có: và
không đồng phẳng nên khẳng định
và
cắt nhau là sai.
Cho hình chóp có
là trung điểm của đoạn thẳng
. Tìm khẳng định sai dưới đây.
Hình vẽ minh họa
Ta có: và
không đồng phẳng nên khẳng định
và
cắt nhau là sai.
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho hình chóp có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Cho hộp chữ nhật có
lần lượt là tâm của
. Trung điểm của
lần lượt là
. Xác định hình chiếu của tam giác
qua phép chiếu song song phương
lên mặt phẳng
.
Hình vẽ minh họa
Ta có: nên tứ giác
là hình bình hành.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Mặt khác thuộc mặt phẳng
nên hình chiếu của
qua phép chiếu song song
lên mặt phẳng
lần lượt là điểm
và
.
Vậy qua phép chiếu song song theo phương lên mặt phẳng
thì hình chiếu của tam giác
là đoạn thẳng
.
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?
Hình vẽ minh họa
Tìm giao tuyến của 2 mp (MCD) và (SAB)
Điểm M chung
=> Giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB.
Vậy
Mặt khác ( vì
)
Vậy thiết diện là hình thang CNMD.
Cho hình chóp có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a) . Đúng||Sai
b) với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là
. Đúng||Sai
Cho hình chóp có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a) . Đúng||Sai
b) với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là
. Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có nên
Mà
b) Đúng
Ta có:
Mà
c) Sai
Gọi là mặt phẳng qua
và song song với
Vì nên
Ta có:
với
Ta có:
Vậy hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tam giác
.
d) Đúng
Thiết diện của mặt phẳng qua và song song với
là tam giác
.
Áp dụng định lý Ta-lét trong tam giác ta có:
Tương tự ta có
Diện tích tam giác đều có cạnh bằng
là:
.
Cho hình chóp tứ giác có đáy
là hình bình hành. Cặp đường thẳng nào dưới đây song song với nhau?
Ta có song song với
theo tính chất hình bình hành.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."
Cho tứ giác và một điểm
không thuộc mặt phẳng
. Trên đoạn
lấy một điểm
không trùng với
và
.Gọi
là giao điểm của đường thẳng
với mặt phẳng
. Khi đó
là giao tuyến của hai mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có (1)
Gọi .
Khi đó:
Từ (1) và (2) suy ra
Trong mặt phẳng . Gọi
.
Khi đó:
Dễ thấy
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."
Cho hình chóp có đáy là hình bình hành. Hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm nào sau đây?
Hình vẽ minh họa
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Cho hình chóp có đáy
là hình bình hành. Giả sử
lần lượt là trọng tâm của tam giác
. Cho các khẳng định sau:
i)
ii)
iii)
iv)
Hỏi có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Gọi lần lượt là trung điểm của AB và CD
Do lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên
Mà
Ta có:
Mà
Vậy có 3 khẳng định đúng.
Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?
Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.
=> AC và A’C’ cắt nhau.
Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là
Hình vẽ minh họa
Gọi
Khi đó đi qua
. Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.
Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:
Mệnh đề đúng .
Cho hình chóp có đáy
là hình bình hành,
là trọng tâm của tam giác
. Lấy
sao cho
. Đường thẳng qua
và song song với
cắt
tại
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Ta có:
Cho hình hộp . Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Cho hình hộp . Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Ta có .
Tương tự:
Suy ra mặt phẳng cắt hình hộp theo thiết diện là hình bình hành
.
Mặt khác .
Trong mặt phẳng , gọi
là giao điểm của hai đường thẳng
và
thì
là đường trung bình của tam giác
là trung điểm của đoạn thẳng
.
Trong mặt phẳng , gọi
là giao điểm của
và
thì
là đường trung bình của tam giác
(vì
và
là trung điểm
)
Mà tứ giác là hình bình hành nên
là trung điểm
hay
Lại có
Cho hình chóp có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Cho hình chóp có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Hình vẽ minh họa
Gọi là trung điểm của
,
là giao điểm của
và
trong mặt phẳng
.
Theo định lý Talet, ta có: là trung điểm của
Ta có:
.
Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.
Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.
Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.
Cho hình hộp và điểm
nằm giữa
và
. Giả sử
là mặt phẳng đi qua
và song song với mặt phẳng
. Xác định các giao tuyến của mặt phẳng
tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Nhận thấy
Do (1), ta giả sử (P) cắt BB’ tại N, suy ra , kết hợp với
suy ra
, suy ra N thuộc cạnh BB’.
Tương tự, giả sử suy ra
.
Kết hợp với (1) suy ra
Tương tự, sao cho
;
sao cho
;
sao cho
.
Từ đó suy ra thiết diện là lục giác .
Cho hình chóp . Gọi
lần lượt là trung điểm của các đoạn thẳng
. Đường thẳng
song song với mặt phẳng nào trong các mặt phẳng dưới đây?
Hình vẽ minh họa
Ta có:
Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?
Gọi H là trung điểm của tam giác AB.
M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.
Khi đó ta có:
Theo định lí Ta - lét ta có:
Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.
Cho hình chóp có đáy
là hình thang;
.
là trung điểm của cạnh
; mặt phẳng
qua
và song song với mp
cắt hình chóp
theo một thiết diện là hình
. Biết
. Giá trị của
là:
Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)
Cho hình chóp có đáy
là hình thang;
.
là trung điểm của cạnh
; mặt phẳng
qua
và song song với mp
cắt hình chóp
theo một thiết diện là hình
. Biết
. Giá trị của
là:
Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)
Hình vẽ minh họa
Gọi lần lượt là trung điểm các cạnh
.
Gọi ta có
thẳng hàng vì cùng thuộc giao tuyến của
và
.
Thiết diện là hình thang (vì
).
Ta có , mà
.
Ta có là trung điểm
,
là trung điểm của
nên
.
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là
Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.
Cho hình chóp S.ABCD có đáy là hình thang ABCD AD ∈ BC. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng SAB) tại J. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có:
Vậy ba điểm S, I, J thẳng hàng.
Khẳng định sai là: ""
Cho hình chóp tứ giác , đáy
là tứ giác lồi. Gọi
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Trong các mệnh đề sau mệnh đề nào sai?
Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau không?
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.
Cho tứ diện . Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Trong không gian, cho tam giác , lấy điểm
trên cạnh
kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?
Ta có:
=>
Do đó mệnh đề sai là: “ không nằm trên mặt phẳng
”.
Chọn khẳng định sai trong các khẳng định sau.
Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”
Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”
Cho hình chóp tứ giác có đáy
là hình bình hành. Mặt phẳng
song song với
và
đồng thời cắt các đoạn
lần lượt tại
. Ta có các khẳng định sau:
: Tứ giác
là hình bình hành.
Có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Xét
Vì
Vì
Vì nên
đều song song với
điều này suy ra
là hình bình hành.
Vậy tất cả các khẳng định đều đúng.
Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?
Phương án "Giao tuyến của (SAC) và (SBD) là SO." đúng vì O là giao điểm của AC và BD nên O là điểm chung của (SAC) và (SBD). Hơn nữa, S là điểm chung của (SAC) và (SBD).
Phương án "Giao tuyến của (SAB) và (SCD) là điểm S." sai vì giao tuyến của hai mặt phẳng không thể là điểm
Phương án "Giao tuyến của (SBC) và (SCD) là SK, với K là giao điểm của SD và B" sai vì SD và BC không cắt nhau
Phương án "Giao tuyến của (SOC) và (SAD) là SM, với M là giao điểm của AC và S." sai vì AC và SD không cắt nhau
Cho hình chóp tứ giác , đáy
là tứ giác lồi. Gọi
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình lập phương cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?
Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho tứ diện . Các cạnh
có trung điểm lần lượt là
. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Ta có:
,
=> MPNQ là hình bình hành
=> thuộc một mặt phẳng.
,
=> MRNS là hình bình hành
=> thuộc một mặt phẳng.
,
=> PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.
Vậy không thuộc cùng một mặt phẳng.
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .