Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ song song trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tìm đường thẳng song song với giao tuyến hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Xét hai mặt phẳng (SAB)(SCD) ta có:

    S là điểm chung

    \left\{ \begin{matrix}
AB//CD \\
AB \subset (SAB) \\
CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow d = (SAB) \cap (SCD) với d là đường thẳng đi qua S và song song với AB,CD.

  • Câu 2: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 3: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 4: Nhận biết

    Chọn mệnh đề sai.

    Qua phép chiếu song song không thể biến một tứ diện thành một đường thẳng vì các cạnh của tứ diện đều là đoạn thẳng.

    Nó cũng không thể biến tứ diện thành một đoạn thẳng vì khi đó các cạnh của tứ diện nằm trong một mặt phẳng.

  • Câu 5: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 6: Nhận biết

    Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?

    Có 3 vị trí tương đối có thể có giữa a và b là:

    a cắt b

    a song song với b

    a chéo nhau với b

  • Câu 7: Thông hiểu

    Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:

    Hình vẽ minh họa

    Tìm khẳng định đúng

    Xét ΔBFD có OO’ là đường trung bình => OO’ // DF

    Mà DF ⊂ (ADF)

    => OO' // (ADF)

  • Câu 8: Vận dụng cao

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Đáp án là:

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Hình vẽ minh họa

    Gọi I là trung điểm cạnh AD

    Trong mặt phẳng (ABCD) giả sử IE và BC cắt nhau tại điểm Q. 

    Dễ thấy SQ = (IGE) \cap
(SBC).

    Do đó: GE//(SBC) \Leftrightarrow GE//SQ \Leftrightarrow \frac{IE}{IQ} =
\frac{IG}{IS} \Rightarrow
\frac{IE}{IQ} = \frac{1}{3}.

    Mặt khác, tam giác EIA đồng dạng với tam giác EQC nên \frac{EI}{EQ} = \frac{EA}{EC} = \frac{EA}{xEA} =\frac{1}{x}

    Suy ra EQ = x.EI.

    \Rightarrow \frac{IE}{IQ} = \frac{IE}{IE
+ EQ} = \frac{IE}{IE + x.IE} = \frac{1}{1 + x}.

    Từ và \Rightarrow \frac{1}{1 + x} =
\frac{1}{3} \Leftrightarrow x =
2.

    Vậy GE//(SBC) \Leftrightarrow x = 2.

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi có AC \cap BD = MAB \cap CD = N. Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng:

    Hình vẽ minh họa

    Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng SM.

  • Câu 10: Vận dụng

    Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SABC, P là điểm trên cạnhAB sao cho \frac{AP}{AB} = \frac{1}{3}. Gọi Qlà giao điểm của SC với mặt phẳng (MNP). Tính \frac{SQ}{SC}( làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Đáp án là:

    Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SABC, P là điểm trên cạnhAB sao cho \frac{AP}{AB} = \frac{1}{3}. Gọi Qlà giao điểm của SC với mặt phẳng (MNP). Tính \frac{SQ}{SC}( làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Hình vẽ minh họa

    Tìm giao điểm Q của SC với mặt phẳng (MNP)

    Chọn mặt phẳng phụ (SAC) chứa SC

    Trong (ABC) gọi H = AC \cap NP

    Suy ra (MNP) \cap (SAC) = HM. Khi đó Q là giao điểm của HMSC.

    Gọi L là trung điểm AC

    Ta có \frac{HA}{HL} = \frac{AP}{LN} =
\frac{\frac{1}{3}AB}{\frac{1}{2}AB} = \frac{2}{3}(vì M,\ N là trung điểm của ACBC nên LN =
\frac{1}{2}AB)

    \Rightarrow HA =
\frac{2}{3}HL

    LC = AL = HL - HA = HL - \frac{2}{3}HL
= \frac{1}{3}HL nên HL =
\frac{3}{4}HC

    Mặt khác ta có\frac{HC}{HL} =
\frac{QC}{ML} = \frac{4}{3} (vì ML//SC)

    2ML = SC nên\frac{QC}{SC} = \frac{2}{3} \Rightarrow
\frac{SQ}{SC} = \frac{1}{3}.

  • Câu 11: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD, lấy M là trung điểm của AD. Qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) biến điểm M thành điểm nào sau đây?

    Hình vẽ minh họa

    Gọi N là trung điểm của CD. Khi đó MN là đường trung bình của tam giác ACD

    \Rightarrow MN//AC.

    Do đó hình chiếu của điểm M qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) là điểm N.

  • Câu 13: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 14: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau.

    Mệnh đề đúng: "Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). "

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

     Xác định giao tuyến

    Xét (SAD) và (SBC) có:

    S là điểm chung

    AD // BC

    => Giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song với AD

  • Câu 16: Thông hiểu

    Cho lăng trụ ABC.A'B'C'. Lấy M là trung điểm của AC. Xác định hình chiếu của điểm M lên mặt phẳng (AA'B') theo phương chiếu CB là:

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song. Hình biểu diễn của một hình không gian

    Gọi N là trung điểm của  AB . Ta có: MN//CB

    Vậy hình chiếu song song của điểm  M  lên \left( {AA'B'} ight) theo phương chiếu CB là điểm N.

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của AC và BM

    Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)

    => Giao tuyến cần tìm chính là đường thẳng SI.

  • Câu 18: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD \subset (SAD) \\
BC \subset (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d//AD//BC và d đi qua S

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD. Trung điểm của các cạnh AB,BC,CD lần lượt là các điểm P,Q,R. Giả sử (ACD) \cap (PQR) = d. Hỏi đường thẳng d đi qua trung điểm của đoạn thẳng nào?

    Hình vẽ minh họa

    Ta có: PQ//AC nên giao tuyến của hai mặt phẳng (ACD);(PQR) sẽ đi qua điểm R và song song với AC.

    Do đó giao tuyến d sẽ đi qua trung điểm của AD.

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Xác định phát biểu đúng

    Ta có: (SAB) ∩ (A’B’C’) = A’B’

    (SBC) ∩ (A’B’C’) = B’C’

    Gọi O là giao điểm của AC và BD

    Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO

    Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD

    Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’

    (SAD) ∩ (A’B’C’) = A’D’

    => Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

  • Câu 22: Thông hiểu

    Cho tứ diện ABCD. Lấy M,N,P,Q lần lượt là trung điểm của các cạnh AB,AC,BD,CD. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: MN // PQ (vì cùng song song với BC)

    Ta có: MN = PQ = \frac{1}{2}BC (vì MN//PQ lần lượt là các đường trung bình của ABC,DBC.

    Từ hai kết quả trên ta suy ra tứ giác MNPQ là hình bình hành nên MQ, PN không thể chéo nhau.

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.

  • Câu 24: Thông hiểu

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 25: Thông hiểu

    Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?

    Gọi H là trung điểm của tam giác AB.

    M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.

    Khi đó ta có: \frac{{HM}}{{HC}} = \frac{{HQ}}{{HD}} = \frac{1}{3}

    Theo định lí Ta - lét ta có: MQ//CD

    Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.

  • Câu 26: Vận dụng

    Cho hình chóp tứ giác S.ABCD. Gọi A_{1} là trung điểm của SA, B_{1} \in
SB. Xác định các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight)với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:

    Trường hợp 1:

    Hình vẽ minh hoạ

    Nếu B_{1} eq S. Gọi O = AC \cap BD,\ I = SO \cap A_{1}C

    Nếu P = IB_{1} \cap SD

    => Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CP

    Nếu P = IB \cap BD. Gọi Q = CP \cap AD

    Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CQ

    Trường hợp 2:

    Hình vẽ minh hoạ

    Nếu B_{1} \equiv S. Hình tạo bởi các giao tuyến của mặt phẳng \left(
A_{1}B_{1}C ight) với hình chóp là tam giác SAC.

    Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.

  • Câu 27: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 28: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 29: Vận dụng

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm K,L là trung điểm, trên cạnh CD lấy điểm N sao cho \frac{CN}{DN} = 2. Gọi P = AD \cap (NKL), khi đó tỉ số độ dài giữa APDP là:

    Hình vẽ minh họa

    Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d

    => d // AC

    Xét mặt phẳng (DAB) qua N dựng d song song AC

    => {P} = AD ∩ d

    Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:

    \frac{DP}{DA} = \frac{DN}{DC} =
\frac{PN}{AC}

    Ta lại có: \frac{CN}{DN} = 2 \Rightarrow
\frac{DN}{DC} = \frac{1}{3} \Rightarrow \frac{DP}{DA} =
\frac{1}{3}

    \Rightarrow \frac{AP}{DP} =
2

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD. Gọi I;J lần lượt là trọng tâm tam giác ABC;ABD. Khi đó đường thẳng IJ song song với đường thẳng:

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm các cạnh BD và BC nên ta có MN // CD (1)

    Vì I; J lần lượt là trọng tâm tam giác ABC và ABD nên ta có:

    \frac{AI}{AN} = \frac{AJ}{AM} =
\frac{2}{3} \Rightarrow IJ//MN\ (2)

    Từ (1) và (2) suy ra IJ//CD.

  • Câu 31: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trọng tâm tam giác ABDACD. Xét các mệnh đề sau:

    \ (i):MN//(ABC)

    (ii):MN//(BCD)

    (iii):MN//(ACD)

    Các mệnh đề đúng là:

    Gọi E,F lần lượt là trung điểm CD,BD.

    Ta có \frac{AN}{AE} = \frac{AM}{AF} =
\frac{2}{3} \Rightarrow MN//EF

    \Rightarrow MN//(BCD)nên mệnh đề (ii):MN//(BCD) đúng.

    Ta lại có:

    EF//BC \Rightarrow MN//BC

    \Rightarrow MN//(ABC)

    => Mệnh đề\
(i):MN//(ABC) đúng

    Mặt khác MN \cap (ACD) = \left\{ N
ight\} nên mệnh đề (iii):MN//(ACD) sai.

  • Câu 32: Nhận biết

    Cho \Delta
ABC. Số mặt phẳng chứa tất cả các đỉnh của tam giác ABC là:

    Do ba điểm A,B,C không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.

  • Câu 33: Nhận biết

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 34: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.

    Vậy khẳng định đúng là: Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”

  • Câu 35: Vận dụng

    Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC

    => IJ // AB

    2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung

    => Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.

    Vậy IJ // KH // AB.

    Ta có ∆BJK = ∆AIH ⇒ JK = IH

    Mặt khác KH ≠ IJ

    Vậy thiết diện là hình thang cân IJKH.

  • Câu 36: Nhận biết

    Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề
    nào dưới đây đúng?

    Hình vẽ minh họa

    Hai đường thẳng chéo nhau và hai đường thẳng song song

    Gọi M là trung điểm của AB.

    Ta có: \frac{{GM}}{{MD}} = \frac{{ME}}{{MC}} = \frac{1}{3}

    => GE // CD

     

  • Câu 37: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 38: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.

    Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.

  • Câu 39: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD, đáy là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm SA,SB,SCSD. Chọn khẳng định sai.

    Hình vẽ minh họa

    Ta có N là điểm chung của (SBD)(MNP).

    Do M,N,P,Q lần lượt là trung điểm SA,SB,SCSD nên ta có

    \left\{ \begin{matrix}MN = \dfrac{1}{2}AB = \dfrac{1}{2}CD = PQ \\MN//AB//CD//PQ \\\end{matrix} \Rightarrow MNPQ ight. là hình bình hành.

    BD//NQ \Rightarrow
BD//(MNPQ).

    Khi đó (SBD) cắt (MNP) theo giao tuyến đi qua N và song song với BDNQ.

    Từ đó ta thấy đáp án

    NT = (SBD) \cap (MNP), với T là trung điểm MP.

    NT = (SBD) \cap (MNP), với T là trung điểm NQ.

    NT = (SBD) \cap (MNP), với T là trung điểm SD.

    Là các đáp án đúng

    T là trung điểm SB suy ra T
\equiv N \Rightarrow (SBD) \cap (MNP) = N.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo