Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Mệnh đề nào trong các mệnh đề sau đây là sai?
Mệnh đề sai: "Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy."
Cho hình hộp
. Ảnh của
qua phép chiếu song song với phương
mặt phẳng chiếu
lần lượt là:
Hình vẽ minh họa
Ta có: nên ảnh của điểm
qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Mặt khác điểm nên ảnh của
qua qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Cho tứ diện
có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Giả sử tứ giác ABCD là hình biểu diễn của một hình vuông. Nếu ABCD là một hình bình hành, thì đường tròn ngoại tiếp hình vuông cho trước được biểu diễn là hình gì, có tính chất như thế nào với hình bình hành ABCD:
Hình biểu diễn của hình vuông thành hình bình hành nên sẽ hình biểu diễn của đường tròn ngoại tiếp hình vuông đó là đường elip đồng thời giữ nguyên mối quan hệ liên thuộc của đỉnh hình vuông với đường tròn ngoại tiếp nên hình biểu diễn của đường tròn ngoại tiếp hình vuông là đường elip đi qua các đỉnh của hình bình hành ABCD.
Cho hình chóp tứ giác
,
. Giả sử mặt phẳng
bất kì cắt các cạnh
lần lượt tại
. Chọn khẳng định đúng trong các khẳng định sau.
Hình vẽ minh hoạ
Ta thấy:
=> Các đường thẳng đồng quy.
Cho hộp chữ nhật
. Các điểm
tương ứng trên
sao cho
song song với
. Tính tỉ số
?
Xét phép chiếu song song lên mặt phẳng theo phương chiếu
.
Ta có: là ảnh của
hay
chính là giao điểm của
và ảnh
qua phép chiếu này.
Do đó ta xác định như sau:
Trên kéo dài lấy điểm
sao cho
suy ra
là ảnh của
trên
qua phép chiếu song song.
Gọi . Đường thẳng qua
và song song với
cắt
tại
. Ta có:
là các điểm cần xác định.
Theo định lí Thales ta có:
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB, CD và G là trọng tâm của tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
Hình vẽ minh họa

Ta có và
=> Giao điểm của đường thẳng EG và mặt phẳng (ACD) là giao điểm của đường thẳng EG và AF.
Cho tứ diện
. Gọi
lần lượt là trung điểm các cạnh
và
;
là trọng tâm tam giác
. Khi đó giao điểm của đường thẳng
và
là
Hình vẽ minh họa
Trong gọi
, mà
Cho hình hộp
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó tỉ số độ dài
là:
Hình vẽ minh họa
Gọi lần lượt là tâm của các hình bình hành
Vì là hình bình hành nên
Từ đó ta có:
(*)
(**)
Từ (*) và (**) suy ra hay
Cho hình chóp
có đáy
là hình thang có đáy nhỏ là
, lấy điểm
, sao cho
. Gọi
. Tính tỉ số giữa hai cạnh
và
.
Hình vẽ minh họa
Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Do đó
Tìm phát biểu sai trong các phát biểu sau?
Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng
Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng
Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.
Cho tứ diện
có tất cả các cạnh bằng
. Lấy
là trung điểm của
,
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Xác định các giao tuyến của mặt phẳng
với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh hoạ
Trong mp(ABD) kẻ
Trong mp(ABC) kẻ
Gọi P là điểm đối xứng của C qua D.
Khi đó
=> Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.
Ta lại có:
Mặt khác
Trong tam giác PAC vuông tại A ta có:
Diện tích tam giác PIM
Với
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d)
cắt mặt phẳng
Sai||Đúng
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Hình vẽ minh họa
a) Đúng
Vì lần lượt là trung điểm các cạnh
và
nên
là hình bình hành nên
.
b) Sai
Do không đồng phẳng nên
không thể song song với
c) Đúng
Do mà
.
d) Sai
Do là đường trung bình của tam giác
nên
, mà
nên
.
Cho hình chóp
có đáy
là hình thang với
là đáy lớn. Biết
. Gọi
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 13
Cho hình chóp có đáy
là hình thang với
là đáy lớn. Biết
. Gọi
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 13
Hình vẽ minh họa
Gọi là giao điểm của
và
trong mặt phẳng
.
Theo hệ quả Talet, ta có:
Ta có:
.
Cho hình chóp
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có:
Cho hình thang
và
. Lấy điểm
bất kì,
. Gọi
lần lượt là trung điểm của
,
là trọng tâm tam giác
. Khi đó giao tuyến được tạo bởi mặt phẳng
với các mặt của
là hình gì?

Hình vẽ minh họa
Gọi
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song. Mà
Giả sử: cắt
lần lượt tại
.
Khi đó thiết diện của hình chóp cắt bởi
là hình thang
.
Ta có:
Ta có: là trọng tâm tam giác
=> Hình thang là hình bình hành.
Cho hình chóp
có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề
nào dưới đây đúng?
Hình vẽ minh họa

Gọi M là trung điểm của AB.
Ta có:
=>
Cho ba mặt phẳng
đôi một song song. Hai đường thẳng
lần lượt cắt ba mặt phẳng tại
và
, (
nằm giữa
và
,
nằm giữa
và
). Biết rằng
. Tính
.
Ta có:
Cho hình chóp
có đáy là tứ giác
. Giả sử
là một mặt phẳng tùy ý. Giao tuyến của
với các mặt của hình chóp
không thể tạo thành hình nào dưới đây?
Hình chóp tứ giác đã cho có 5 mặt
Do đó có tối đa 5 giao tuyến được tạo thành bởi mặt phẳng tùy ý với các mặt của hình chóp
.
Vậy đáp án là hình lục giác.
Cho tứ diện
. Gọi
là trọng tâm của tam giác
và
là điểm trên cạnh
sao cho
. Đường thẳng
song song với
Hình vẽ minh họa
Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho nên trong mặt phẳng (BCE) ta có:
Cho hình chóp tam giác
. Trên các cạnh
và
lần lượt lấy các điểm
sao cho
và
. Khi đó mặt phẳng nào song song với đường thẳng
?
Hình vẽ minh họa
Theo giả thiết ta có:
Xét tam giác ta có:
mà
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
. Gọi
là giao điểm của
và
. Giao điểm của
với
là điểm
. Hãy chọn cách xác định điểm
đúng nhất trong bốn phương án sau.
Hình vẽ minh họa
Trong mặt phẳng gọi
.
Mà nên
Cho tứ diện
. Gọi
theo thứ tự là trọng tâm của tam giác
và
(tham khảo hình vẽ). Khẳng định nào sau đây đúng?

Hình vẽ minh họa
Gọi lần lượt là trung điểm của
Vì theo thứ tự là trọng tâm của tam giác
, và
nên ta có:
. Mà
(do
là đường trung bình của tam giác
).
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Mặt phẳng song song với mặt phẳng
.
Vì và
.
Cho lăng trụ
có đáy
là hình vuông,
. Gọi
là trung điểm
, mặt phẳng
qua
và song song
lần lượt cắt
tại
.

Đặt
. Khi
thì
bằng (Làm tròn đến hàng phần trăm).
Đáp án: 2,01
Cho lăng trụ có đáy
là hình vuông,
. Gọi
là trung điểm
, mặt phẳng
qua
và song song
lần lượt cắt
tại
.
Đặt . Khi
thì
bằng (Làm tròn đến hàng phần trăm).
Đáp án: 2,01
Hình vẽ minh họa
Trong mặt phẳng ,
.
Trong mặt phẳng ,
.
là đường trung bình của tam giác
nên
.
là đường trung bình của tam giác
nên
.
Từ ,
suy ra tứ giác
là hình bình hành nên
là trung điểm
.
Ta có nên để
thì
.
Từ ,
suy ra
.
Vậy .
Cho hai đường thẳng a; b cắt nhau và không đi qua điểm A. Xác định được nhiều nhất bao nhiêu mặt phẳng tạo bởi a, b và A?
Có 3 mặt phẳng gồm
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Cho tứ diện
. Lấy
lần lượt là trung điểm của các cạnh
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có: MN // PQ (vì cùng song song với BC)
Ta có: (vì
lần lượt là các đường trung bình của
.
Từ hai kết quả trên ta suy ra tứ giác MNPQ là hình bình hành nên MQ, PN không thể chéo nhau.
Trong các phát biểu sau, phát biểu nào đúng?
Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất." sai vì nếu hai mặt phẳng trùng nhau thì chúng có vô số đường thẳng chung.
Phương án "Hai mặt phẳng có thể có đúng hai điểm chung." sai vì nếu hai mặt phẳng có hai điểm chung thì chúng có chung một đường thẳng.
Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có chung một đường thẳng duy nhất hoặc mọi điểm thuộc mặt phẳng này đều thuộc mặt phẳng kia." đúng vì hai mặt phẳng có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.
Phương án "Hai mặt phẳng luôn có điểm chung." sai vì hai mặt phẳng đáy của hình hộp thì không có điểm chung.
Trong các mệnh đề sau, những mệnh đề nào đúng? (Có thể chọn nhiều đáp án)
"Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau." sai vì hai mặt phẳng đó có thể cắt nhau.
"Hai mặt phẳng cùng song song với một mặt phảng thứ ba thì song song với nhau." sai vì hai mặt phẳng có thể trùng nhau.
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí
và
. Biết
và
cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn
.

Đáp án: 105
Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí và
. Biết
và
cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn
.
Đáp án: 105
Áp dụng định lý Thales trong không gian, do cách đều nhau nên
cũng cách đều nhau.
Ta có nên
.