Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ song song trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCH là trung điểm của đoạn thẳng SC. Tìm khẳng định sai dưới đây.

    Hình vẽ minh họa

    Ta có: BHAC không đồng phẳng nên khẳng định BHAC cắt nhau là sai.

  • Câu 2: Nhận biết

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Hình vẽ minh họa

    Ta có M là điểm trên cạnh SB, \frac{SM}{SB} = \frac{1}{3} nên \frac{MB}{MS} = 2.

    IK//BD nên IK//(SBD) suy ra (SBD) \cap (SIK) = Sx,\ \ Sx//IK//BD.

    Trong (SBD),\ \ DM \cap Sx =
N.

    N chính là giao điểm của DM(SIK).

    Trong (SBD), có Sx//BD nên hai tam giác \Delta SMN \Delta BMD đồng dạng.

    Do đó \frac{MD}{MN} = 2 \Rightarrow
\frac{ND}{NM} = 3.

  • Câu 5: Vận dụng

    Cho hộp chữ nhật ABCD.A'B'C'D'O,O' lần lượt là tâm của ABCD,A'B'C'D' . Trung điểm của AB,CD lần lượt là M,N. Xác định hình chiếu của tam giác C'MN qua phép chiếu song song phương AO' lên mặt phẳng (ABCD).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AO = C'O' \\
C'O'//AO \\
\end{matrix} ight. nên tứ giác O'C'OA là hình bình hành.

    \Rightarrow
C'O//AO'

    Do đó hình chiếu của điểm O' qua phép chiếu song song theo phương O'A lên mặt phẳng (ABCD) là điểm O.

    Mặt khác M,N thuộc mặt phẳng (ABCD) nên hình chiếu của M,N qua phép chiếu song song O'A lên mặt phẳng (ABCD) lần lượt là điểm MN.

    Vậy qua phép chiếu song song theo phương AO' lên mặt phẳng (ABCD) thì hình chiếu của tam giác C'MN là đoạn thẳng MN.

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?

    Hình vẽ minh họa

    Tìm thiết diện

    Tìm giao tuyến của 2 mp (MCD) và (SAB)

    CD// AB; CD ⊂ (MCD); AB ⊂ (SAB)

    Điểm M chung

    => Giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB.

    Vậy MN // CD

    Mặt khác MN ≠ CD ( vì MN= 1/2AB ; AB = CD)

    Vậy thiết diện là hình thang CNMD.

  • Câu 7: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 6\ cm. Lấy điểm M trên cạnh SA sao cho SM
= 2MA, lấy điểm N trên cạnh SB sao cho SN = 2NB. Các khẳng định dưới đây đúng hay sai?

    a) MN//(ABC). Đúng||Sai

    b) (MNP)//(ABC) với P là điểm thuộc SC sao cho SP
= 2PC. Đúng||Sai

    c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua M và song song với mp (ABC) là tứ giác. Sai||Đúng

    d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua M và song song với mp (ABC)4\sqrt{3}\ cm^{2}. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 6\ cm. Lấy điểm M trên cạnh SA sao cho SM
= 2MA, lấy điểm N trên cạnh SB sao cho SN = 2NB. Các khẳng định dưới đây đúng hay sai?

    a) MN//(ABC). Đúng||Sai

    b) (MNP)//(ABC) với P là điểm thuộc SC sao cho SP
= 2PC. Đúng||Sai

    c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua M và song song với mp (ABC) là tứ giác. Sai||Đúng

    d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua M và song song với mp (ABC)4\sqrt{3}\ cm^{2}. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng

    Ta có \frac{SM}{MA} = \frac{SN}{NB} =
2 nên MN//AB

    AB \subset (ABC)

    \Rightarrow MN//(ABC)

    b) Đúng

    Ta có: \frac{SM}{MA} = \frac{SN}{NB} =
\frac{SP}{PC} = 2

    \Rightarrow MN//AB,\ NP//BC

    \left\{ \begin{matrix}
MN \subset (MNP);NP \subset (MNP) \\
AB \subset (ABC);BC \subset (ABC) \\
\end{matrix} ight.

    \Rightarrow (MNP)//(ABC)

    c) Sai

    Gọi (\alpha) là mặt phẳng qua M và song song với (ABC)

    MN//(ABC) nên N \in (\alpha)

    Ta có: \left. \ \begin{matrix}
(\alpha)//(ABC) \\
(SAC) \cap (ABC) = AC \\
M \in (SAC) \cap (\alpha) \\
\end{matrix} ight\}

    \Rightarrow (SAC) \cap (\alpha) =
MP với MP//AC,\ P \in
SC

    Ta có: \left\{ \begin{matrix}
(\alpha) \cap (SAB) = MN \\
(\alpha) \cap (SBC) = NP \\
(\alpha) \cap (SAC) = MP \\
\end{matrix} ight.

    Vậy hình thu được khi cắt tứ diện bởi mặt phẳng qua M và song song với mp (ABC) là tam giác MNP.

    d) Đúng

    Thiết diện của mặt phẳng qua M và song song với (ABC) là tam giác MNP.

    Áp dụng định lý Ta-lét trong tam giác SAB ta có:

    \frac{MN}{AB} = \frac{SM}{SA} =
\frac{2}{3}

    \Rightarrow MN = \frac{2}{3}AB =\frac{2}{3}.6 = 4 cm

    Tương tự ta có NP = MP = 4\
cm

    Diện tích tam giác đều MNP có cạnh bằng 4\ cm là: S = 4^{2}.\frac{\sqrt{3}}{4} = 4\sqrt{3}\ \
cm^{2}.

  • Câu 8: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Cặp đường thẳng nào dưới đây song song với nhau?

    Ta có AB song song với CD theo tính chất hình bình hành.

  • Câu 9: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 10: Thông hiểu

    Cho tứ giác ABCD và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với SC.Gọi N là giao điểm của đường thẳng SD với mặt phẳng (ABM). Khi đó AN là giao tuyến của hai mặt phẳng nào sau đây?

    Hình vẽ minh họa

    Ta có B \in (ABM) \cap (SBD) (1)

    Gọi O = AC \cap BD,K = AM \cap SO.

    Khi đó: \left\{ \begin{matrix}
K \in AM \subset (ABM) \\
K \in SO \subset (SBD) \\
\end{matrix} \Rightarrow K \in (ABM) \cap (SBD) ight.

    Từ (1) và (2) suy ra (ABM) \cap (SBD) = BK

    Trong mặt phẳng (SBD). Gọi N = BK \cap SD.

    Khi đó: \left\{ \begin{matrix}N \in SD \\N \in BK \subset (ABM) \\\end{matrix} \Rightarrow N = (ABM) \cap SDight.

    Dễ thấy AN = (ABM) \cap(SAD)

  • Câu 11: Nhận biết

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình bình hành. Hình chiếu song song của điểm A theo phương CD lên mặt phẳng (SBC) là điểm nào sau đây?

    Hình vẽ minh họa

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương CD\ \ (CD//AB) lên mặt phẳng (SBC) là điểm B.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử G,G' lần lượt là trọng tâm của tam giác SAB;SCD. Cho các khẳng định sau:

    i) GG'//(SBC)

    ii) GG'//(SAD)

    iii) GG'//(SAC)

    iv) GG'//(ABD)

    Hỏi có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Gọi M,N lần lượt là trung điểm của AB và CD

    Do G,G' lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên \frac{SG}{SM} = \frac{SG'}{SN} = \frac{2}{3}
\Rightarrow GG'//MN

    MN \subset (ABCD) \Rightarrow
GG'//(ABCD)

    Ta có: MN//AD//BC \Rightarrow
GG'//AD//BC

    \left\{ \begin{matrix}
BC \subset (SBC) \\
AD \subset (SAD) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
GG'//(SBC) \\
GG'//(SAD) \\
\end{matrix} ight.

    Vậy có 3 khẳng định đúng.

  • Câu 15: Thông hiểu

    Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?

    Chọn phát biểu đúng

    Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.

    => AC và A’C’ cắt nhau.

    Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

    Hình vẽ minh họa

    Gọi d = (GMN) \cap (BCD)

    Khi đó d đi qua G. Xét ba mặt phẳng (GMN),(BCD),(ACD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,CD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,CD,MN đồng quy hoặc đôi một song song.

    MN//CD\  = > \ d//CD

    Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.

  • Câu 17: Nhận biết

    Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:

    Mệnh đề đúng A \in (P).

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành,G là trọng tâm của tam giác SAB. Lấy I
\in AB,M \in AD sao cho AI = IB;AD
= 3AM. Đường thẳng qua M và song song với ABcắt CI tại J. Xác định mặt phẳng song song với đường thẳng GJ?

    Hình vẽ minh họa

    Ta có: \frac{IJ}{IC} = \frac{AM}{AD} =
\frac{1}{2} = \frac{IG}{IS}

    \Rightarrow JG//SC

    \Rightarrow \left\{ \begin{matrix}JG\bot(SCD) \\JG\bot(SAC) \\SBC \\\end{matrix} ight.

  • Câu 19: Vận dụng cao

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
(BB'C'C)\ //\ (AA'D'D) \\
(MNP) \cap (BB'C'C) = NP \\
(MNP) \cap (AA'D'D) = MQ \\
\end{matrix} ight.\  \Rightarrow NP\ //\ MQ.

    Tương tự: \left\{ \begin{matrix}
(AA'B'B)\ //\ (CC'D'D) \\
(MNP) \cap (AA'B'B) = MN \\
(MNP) \cap (CC'D'D) = PQ \\
\end{matrix} ight.\  \Rightarrow MN\ //\ PQ

    Suy ra mặt phẳng (MNP) cắt hình hộp theo thiết diện là hình bình hành MNPQ.

    Mặt khác \left\{ \begin{matrix}
BN = \frac{1}{3}BB' = \frac{1}{3}AA' \\
AM = \frac{2}{3}AA' \\
\end{matrix} ight.\  \Rightarrow \frac{BN}{AM} =
\frac{1}{2}.

    Trong mặt phẳng (ABB'A'), gọi E là giao điểm của hai đường thẳng MNAB thì BN là đường trung bình của tam giác AME \Rightarrow N là trung điểm của đoạn thẳng ME.

    Trong mặt phẳng (MNPQ), gọi F là giao điểm của EPMQ thì NP là đường trung bình của tam giác MEF (vì NP\
//\ MQN là trung điểm EM) \Rightarrow NP = \frac{1}{2}MF

    Mà tứ giác MNPQ là hình bình hành nên NP = MQ \Rightarrow Q là trung điểm MF hay \frac{FQ}{FM} = \frac{1}{2}

    Lại có D'Q\ //\ A'M \Rightarrow
\frac{D'Q}{A'M} = \frac{FQ}{FM} = \frac{1}{2}

    \Leftrightarrow\dfrac{D'Q}{\dfrac{1}{3}AA'} = \dfrac{1}{2} \Leftrightarrow\dfrac{D'Q}{DD'} = \frac{1}{2}.\dfrac{1}{3} =\dfrac{1}{6}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABCE là điểm thuộc cạnh SA thỏa mãn SE = \frac{m}{n}.SA với \frac{m}{n} là phân số tối giản. Biết rằng GE song song với mặt phẳng (SCD). Giá trị của m.n bằng

    Đáp án: 6

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABCE là điểm thuộc cạnh SA thỏa mãn SE = \frac{m}{n}.SA với \frac{m}{n} là phân số tối giản. Biết rằng GE song song với mặt phẳng (SCD). Giá trị của m.n bằng

    Đáp án: 6

    Hình vẽ minh họa

    Gọi M là trung điểm của BC, F là giao điểm của AMCD trong mặt phẳng (ABCD).

    Theo định lý Talet, ta có: \frac{MA}{MF}
= \frac{MB}{MC} = 1 \Rightarrow MA = MF \Rightarrow M là trung điểm của AF

    \Rightarrow \frac{AG}{AF} =
\frac{AG}{2AM} = \frac{1}{3}

    Ta có:

    \left\{ \begin{matrix}
GE \subset (SAF) \\
GE//(SCD) \\
(SAF) \cap (SCD) = SF \\
\end{matrix} ight.\  \Rightarrow GE//SF

    \Rightarrow \frac{AE}{AS} =
\frac{AG}{AF} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS

    \Rightarrow SE = \frac{2}{3}SA
\Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6.

  • Câu 21: Thông hiểu

    Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.

    Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.

    Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.

  • Câu 22: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 23: Nhận biết

    Cho hình chóp S.ABC. Gọi J;K lần lượt là trung điểm của các đoạn thẳng SB,SC. Đường thẳng JK song song với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
JK//CB \\
JK ⊄ (ABC) \\
\end{matrix} ight.\  \Rightarrow JK//(ABC)

  • Câu 24: Thông hiểu

    Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?

    Gọi H là trung điểm của tam giác AB.

    M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.

    Khi đó ta có: \frac{{HM}}{{HC}} = \frac{{HQ}}{{HD}} = \frac{1}{3}

    Theo định lí Ta - lét ta có: MQ//CD

    Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.

  • Câu 25: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Hình vẽ minh họa

    Gọi N,P,Q lần lượt là trung điểm các cạnh SD,SC,BC.

    Gọi E = AD \cap BC,I = MN \cap
PQ ta có S,I,E thẳng hàng vì cùng thuộc giao tuyến của (SAD)(SBC).

    Thiết diện là hình thang MNPQ (vì NP \parallel AB \parallel
MQ).

    Ta có S_{MNPQ} = S_{\Delta IMQ} -
S_{\Delta INP}, mà \frac{NP}{DC} =
\frac{1}{2},\frac{DC}{MQ} = \frac{2}{3} \Rightarrow \frac{NP}{MQ} =
\frac{1}{3}

    \Rightarrow S_{\Delta INP} =
\frac{1}{9}S_{\Delta IMQ}

    \Rightarrow S_{MNPQ} = S_{\Delta IMQ} -
\frac{1}{9}S_{\Delta IMQ} = \frac{8}{9}S_{\Delta IMQ}.

    Ta có M là trung điểm AD, D là trung điểm của AE nên \frac{MI}{SA} = \frac{3}{4}

    \Rightarrow S_{\Delta IMQ} =
\frac{9}{16}S_{\Delta SAB}

    \Rightarrow S_{MNPQ} =
\frac{8}{9}.\frac{9}{16}S_{\Delta SAB} = \frac{1}{2}S_{\Delta
SAB}.

  • Câu 26: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 27: Nhận biết

    Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là

    Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD AD ∈ BC. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng SAB) tại J. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Xác định khẳng định sai

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  S \in \left( {SAB} ight) \cap \left( {SCD} ight) \hfill \\  I = AB \cap CD \hfill \\  AB \subset \left( {SAB} ight) \hfill \\  CD \subset \left( {SCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow \left( {SAB} ight) \cap \left( {SCD} ight) = SI \hfill \\  \left\{ \begin{gathered}  DM \cap \left( {SAB} ight) = J \hfill \\  DM \subset \left( {SCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow J \in \left( {SAB} ight) \cap \left( {SCD} ight) = SI \hfill \\ \end{matrix}

    Vậy ba điểm S, I, J thẳng hàng.

    Khẳng định sai là: "JM \in \left( {SAB} ight)"

  • Câu 29: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 30: Nhận biết

    Trong các mệnh đề sau mệnh đề nào sai?

    Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.

  • Câu 31: Nhận biết

    Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau không?

    Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.

  • Câu 32: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 33: Nhận biết

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

    Ta có: I \in (ABC);B \in
(ABC)

    => BI \subset (ABC)

    Do đó mệnh đề sai là: “BI không nằm trên mặt phẳng (ABC)”.

  • Câu 34: Thông hiểu

    Chọn khẳng định sai trong các khẳng định sau.

    Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”

    Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”

  • Câu 35: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (\alpha) song song với ACSB đồng thời cắt các đoạn SA,AB,BC,SC,SD,BD lần lượt tại M,N,E,F,I,J. Ta có các khẳng định sau:

    (i):IJ//AB

    (ii):MF//AC

    (iii): Tứ giác MNEF là hình bình hành.

    Có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Xét (\alpha) \equiv (MNEFI)

    (\alpha)//AC \Rightarrow
MF//AC

    (\alpha)//SB \Rightarrow
IJ//SB

    (\alpha)//SB nên MN,EF đều song song với SB điều này suy ra MNEF là hình bình hành.

    Vậy tất cả các khẳng định đều đúng.

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?

    Phương án "Giao tuyến của (SAC) và (SBD) là SO." đúng vì O là giao điểm của AC và BD nên O là điểm chung của (SAC) và (SBD). Hơn nữa, S là điểm chung của (SAC) và (SBD).

    Phương án "Giao tuyến của (SAB) và (SCD) là điểm S." sai vì giao tuyến của hai mặt phẳng không thể là điểm

    Phương án "Giao tuyến của (SBC) và (SCD) là SK, với K là giao điểm của SD và B" sai vì SD và BC không cắt nhau

    Phương án "Giao tuyến của (SOC) và (SAD) là SM, với M là giao điểm của AC và S." sai vì AC và SD không cắt nhau

  • Câu 37: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 38: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 39: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 40: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo