Mệnh đề nào trong các mệnh đề sau đây là sai?
Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.
Mệnh đề nào trong các mệnh đề sau đây là sai?
Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.
Cho hình chóp có
lần lượt là trọng tâm tam giác
và
. Lấy các điểm
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Gọi là trung điểm của
.
Xét tam giác có:
Theo định lí đảo của định lí Thales, ta có (1).
Mặt khác là đường trung bình của tam giác
=> (2)
Từ (1) và (2) ta có .
Cho hình lăng trụ tam giác , tâm của các mặt bên
lần lượt là
. Hình chiếu của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
là:
Hình vẽ minh họa
Gọi là ảnh của
qua phép chiếu song song phương
lên mặt phẳng
.
Ta có và
.
Mà là giao tuyến của hai mặt phẳng
và
nên
.
Lại có là trung điểm của
nên
là đường trung bình của tam giác
=> là trung điểm của
.
Cho tứ diện có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Cho hình chóp tứ giác , đáy
là tứ giác lồi. Gọi
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình hộp . Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Cho hình hộp . Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Ta có .
Tương tự:
Suy ra mặt phẳng cắt hình hộp theo thiết diện là hình bình hành
.
Mặt khác .
Trong mặt phẳng , gọi
là giao điểm của hai đường thẳng
và
thì
là đường trung bình của tam giác
là trung điểm của đoạn thẳng
.
Trong mặt phẳng , gọi
là giao điểm của
và
thì
là đường trung bình của tam giác
(vì
và
là trung điểm
)
Mà tứ giác là hình bình hành nên
là trung điểm
hay
Lại có
Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.
Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.
Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.
Cho tứ diện có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Khẳng định nào sau đây là sai.
Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."
Cho hình chóp . Trên các cạnh
và
lần lượt lấy các điểm
sao cho
. Hỏi
song song với mặt phẳng nào dưới đây?
Hình vẽ minh họa:
Ta có: là đường trung bình của tam giác ABD suy ra MN//BD
Mặt khác
Cho hình hộp . Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa
Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Mệnh đề nào sau đây đúng?
Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.
Vậy khẳng định đúng là: “Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Giả sử đường thẳng cắt mặt phẳng chiếu
tại điểm
thì hình chiếu song song của
trên mặt phẳng
là:
Nếu phương chiếu song song hoặc trùng với đường thẳng thì hình chiếu là điểm
.
Nếu phương chiếu không song song hoặc không trùng với đường thẳng thì hình chiếu là đường thẳng đi qua điểm
.
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Cho hình chóp có
là hình bình hành. Lấy
sao cho
. Giả sử
qua M và song song với hai đường thẳng
. Tìm khẳng định đúng.
Hình vẽ minh họa:
Trong mặt phẳng (ABCD), kẻ đường thẳng qua M và song song với BD cắt các cạnh CD, CB lần lượt tại E, F.
Xét mặt phẳng (SBC), kẻ FG // SC (G ∈ SB).
Xét mặt phẳng (SCD), kẻ EK // SC (K ∈ SD).
Gọi I là giao điểm của AC và EF, trong mặt phẳng (SAC) kẻ đường thẳng qua I và song song với SC cắt SA tại điểm H.
Khi đó EFGHK là hình tạo bởi các giao tuyến của mặt phẳng (P) với các mặt của hình chóp.
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
. Gọi
là giao điểm của
và
. Giao điểm của
với
là điểm
. Hãy chọn cách xác định điểm
đúng nhất trong bốn phương án sau.
Hình vẽ minh họa
Trong mặt phẳng gọi
.
Mà nên
Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa
Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA
Vì M, N, P, Q lần lượt là trọng tâm của các tam giác
=>
Khi đó:
Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)
=>
Chứng minh tương tự ta có: GH // BD
=>
Tương tự
=> và
Vậy tứ giác MNPQ là hình bình hành.
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Cho tứ diện . Trên các cạnh
lần lượt lấy các điểm
làm trung điểm, lấy
sao cho
và
sao cho bốn điểm
đồng phẳng. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa
Xét mặt phẳng ta có:
=>
Vì lần lượt là trung điểm của
do đó
Mà hay
.
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình vẽ minh họa
Xét ΔBFD có OO’ là đường trung bình => OO’ // DF
Mà DF ⊂ (ADF)
=> OO' // (ADF)
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Hình vẽ minh họa
Không mất tính tổng quát, xét mặt bên .
Giả sử song song với
. Khi đó, số tam giác có cạnh
nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm
,
,
,
,
.
Trong mặt bên , nối các điểm chia đều các cạnh
ta thấy có 3 đoạn thẳng song song với
, 3 đoạn thẳng song song với
và 3 đoạn thẳng song song với
.
Mặt khác, vai trò 4 mặt của tứ diện là như nhau.
Vậy, số tam giác thỏa mãn yêu cầu đề bài là .
Cho . Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?
Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.
Có bao nhiêu vị trí tương đối của hai đường thẳng phân biệt và
trong không gian?
Có 3 vị trí tương đối có thể có giữa hai đường thẳng phân biệt và
là:
cắt
song song với
chéo nhau với
Cho tứ diện . Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.
Cho hình bình hành tâm
. Gọi
lần lượt là các đường thẳng đi qua
và song song với nhau. Mặt phẳng
đi qua điểm
cắt các đường
lần lượt tại
sao cho
. Độ dài cạnh
là: 2
Cho hình bình hành tâm
. Gọi
lần lượt là các đường thẳng đi qua
và song song với nhau. Mặt phẳng
đi qua điểm
cắt các đường
lần lượt tại
sao cho
. Độ dài cạnh
là: 2
Hình vẽ minh họa
Gọi là trung điểm của
.
. Mà
nên
Hình thang có
là đường trung bình nên
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Đường thẳng
song song với đường thẳng nào?
Hình vẽ minh họa:
Dễ dàng thấy được: là đường trung bình của tam giác
.
Cho hình hộp và điểm
nằm giữa
và
. Giả sử
là mặt phẳng đi qua
và song song với mặt phẳng
. Xác định các giao tuyến của mặt phẳng
tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Nhận thấy
Do (1), ta giả sử (P) cắt BB’ tại N, suy ra , kết hợp với
suy ra
, suy ra N thuộc cạnh BB’.
Tương tự, giả sử suy ra
.
Kết hợp với (1) suy ra
Tương tự, sao cho
;
sao cho
;
sao cho
.
Từ đó suy ra thiết diện là lục giác .
Cho hình chóp . Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có:
Trong không gian, cho ba đường thẳng phân biệt trong đó
. Khẳng định nào sau đây sai?
Nếu c cắt a thì c cắt b hoặc c chéo b.
Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."
Cho hình chóp có đáy
là hình bình hành. Lấy điểm
, mặt phẳng
đi qua
và song song với
. Giao điểm của mặt phẳng
với các cạnh
lần lượt tại
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Trong các mệnh đề sau mệnh đề nào sai?
Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Cho hình chóp có đáy
là một tứ giác lồi có
và
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng:
Hình vẽ minh họa
Giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.
Cho hình chóp có đáy
là hình bình hành tâm O. Lấy
là trọng tâm tam giác
,
sao cho
. Xác định tỉ số
với
.
Hình vẽ minh họa:
Gọi là trung điểm
.
Ta có: =>
là đường trung bình tam giác
(tính chất đường trung bình).
Do đó qua kẻ đường thẳng song song
cắt
tại
=> .
Mà theo giả thiết là trọng tâm tam giác
Cho hình chóp có đáy
là hình thang;
.
là trung điểm của cạnh
; mặt phẳng
qua
và song song với mp
cắt hình chóp
theo một thiết diện là hình
. Biết
. Giá trị của
là:
Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)
Cho hình chóp có đáy
là hình thang;
.
là trung điểm của cạnh
; mặt phẳng
qua
và song song với mp
cắt hình chóp
theo một thiết diện là hình
. Biết
. Giá trị của
là:
Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)
Hình vẽ minh họa
Gọi lần lượt là trung điểm các cạnh
.
Gọi ta có
thẳng hàng vì cùng thuộc giao tuyến của
và
.
Thiết diện là hình thang (vì
).
Ta có , mà
.
Ta có là trung điểm
,
là trung điểm của
nên
.
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.