Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ song song trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

    Hình vẽ minh họa

    Gọi d = (GMN) \cap (BCD)

    Khi đó d đi qua G. Xét ba mặt phẳng (GMN),(BCD),(ACD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,CD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,CD,MN đồng quy hoặc đôi một song song.

    MN//CD\  = > \ d//CD

    Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.

  • Câu 2: Vận dụng

    Cho tứ diện ABCDP,Q lần lượt là trung điểm của AB,CD. Lấy R
\in BC sao cho BR = 2RC. Biết S = AD \cap (PQR), chọn khẳng định đúng dưới đây.

    Hình vẽ minh họa

    Gọi M = RQ \cap BD

    Xét mặt phẳng (ABD) gọi S = PM \cap AD

    => S = AD \cap (PQR)

    Áp dụng định lí Menelaus trong tam giác ABD với cát tuyến PSM ta được:

    \frac{PA}{PB}.\frac{MB}{MD}.\frac{SD}{SA} =
1

    \Leftrightarrow
1.\frac{MB}{MD}.\frac{SD}{SA} = 1 (*)

    Áp dụng định lí Menelaus trong tam giác BCD với cát tuyến RQM ta được:

    \frac{RC}{RB}.\frac{MB}{MD}.\frac{QD}{QA} =
1

    \Leftrightarrow
\frac{1}{2}.\frac{MB}{MD}.1 = 1

    \Leftrightarrow \frac{MB}{MD} =
2(**)

    Từ (*) và (**) suy ra SA =
2SD

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?

    Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD

    Suy ra SN là đường trung bình của tam giác CAD

    => SN // AD (1)

    Tương tự MR cũng là đường trung bình của tam giác ABD

    => MR // AD (2)

    Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"

    Chứng minh tương tự ta cũng có: SM // NR //BC

    Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"

    Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.

    Lại có: NQ // MP (//AC) và MQ // NP //BD

    => Tứ giác MQNP là hình bình hành

    => Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường

    Mà G là trung điểm của MN

    Do đó G cũng là trung điểm của QP

    Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.

    Đáp án "MN, PQ, RS đồng quy'

    Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.

  • Câu 4: Nhận biết

    Có bao nhiêu hình chóp tứ giác trong các hình sau?

    Có 2 hình chóp tứ giác

  • Câu 5: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD, đáy là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm SA,SB,SCSD. Chọn khẳng định sai.

    Hình vẽ minh họa

    Ta có N là điểm chung của (SBD)(MNP).

    Do M,N,P,Q lần lượt là trung điểm SA,SB,SCSD nên ta có

    \left\{ \begin{matrix}MN = \dfrac{1}{2}AB = \dfrac{1}{2}CD = PQ \\MN//AB//CD//PQ \\\end{matrix} \Rightarrow MNPQ ight. là hình bình hành.

    BD//NQ \Rightarrow
BD//(MNPQ).

    Khi đó (SBD) cắt (MNP) theo giao tuyến đi qua N và song song với BDNQ.

    Từ đó ta thấy đáp án

    NT = (SBD) \cap (MNP), với T là trung điểm MP.

    NT = (SBD) \cap (MNP), với T là trung điểm NQ.

    NT = (SBD) \cap (MNP), với T là trung điểm SD.

    Là các đáp án đúng

    T là trung điểm SB suy ra T
\equiv N \Rightarrow (SBD) \cap (MNP) = N.

  • Câu 7: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD mặt phẳng chiếu (BCC'B') lần lượt là:

    Hình vẽ minh họa

    Ta có: AB//CD nên ảnh của điểm A qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B.

    Mặt khác điểm B' \in
(BCC'B') nên ảnh của B' qua qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B'.

  • Câu 8: Nhận biết

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 9: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD  là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (\alpha) cắt SC tại K. Tính tỉ số \frac{SK}{KC}.

    Hình vẽ minh họa

    Gọi O = AC \cap BD.

    Trong (SAC), kẻ OK//SA\ \ (K \in SC).

    Do đó (\alpha) là mặt phẳng (KBD).

    Vì ABCD là hình bình hành nên O là trung điểm của AC \Rightarrow
\frac{OC}{OA} = 1.

    Do OK//SA \Rightarrow \frac{OC}{OA} =
\frac{KC}{KS} = 1 \Rightarrow \frac{SK}{KC} = 1.

  • Câu 11: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho tam giác ABC nằm trong mặt phẳng (\alpha) và phương l. Biết hình chiếu (theo phương l) của tam giác ABC lên mặt phẳng (\beta) là một đoạn thẳng. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song KNTT

    Phương án (\alpha)//(\beta): Hình chiếu của tam giác  ABC  vẫn là một tam giác trên mặt phẳng .

    Phương án (\alpha) \equiv
(\beta): Hình chiếu của tam giác  ABC  vẫn là tam giác  ABC .

    Phương án \left\lbrack \begin{matrix}
(\alpha)//l \\
(\alpha) \supset l \\
\end{matrix} ight. : Khi phương chiếu  l  song song với  (\alpha)  hoặc chứa trong mặt phẳng  (\alpha) . Thì hình chiếu của tam giác  ABC  là một đoạn thẳng trên mặt phẳng (\alpha) .

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình bình hành. Hình chiếu song song của điểm A theo phương CD lên mặt phẳng (SBC) là điểm nào sau đây?

    Hình vẽ minh họa

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương CD\ \ (CD//AB) lên mặt phẳng (SBC) là điểm B.

  • Câu 14: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng (\alpha) đi qua M, song song với AB và AD. Thiết diện (\alpha) với tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    (\alpha) // (AB) => Giao tuyến của (\alpha) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.

    (\alpha) // AD => Giao tuyến của (\alpha) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.

    Vậy thiết diện là tam giác MNP.

  • Câu 17: Vận dụng cao

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Đáp án là:

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Hình vẽ minh họa

    Gọi I là trung điểm cạnh AD

    Trong mặt phẳng (ABCD) giả sử IE và BC cắt nhau tại điểm Q. 

    Dễ thấy SQ = (IGE) \cap
(SBC).

    Do đó: GE//(SBC) \Leftrightarrow GE//SQ \Leftrightarrow \frac{IE}{IQ} =
\frac{IG}{IS} \Rightarrow
\frac{IE}{IQ} = \frac{1}{3}.

    Mặt khác, tam giác EIA đồng dạng với tam giác EQC nên \frac{EI}{EQ} = \frac{EA}{EC} = \frac{EA}{xEA} =\frac{1}{x}

    Suy ra EQ = x.EI.

    \Rightarrow \frac{IE}{IQ} = \frac{IE}{IE
+ EQ} = \frac{IE}{IE + x.IE} = \frac{1}{1 + x}.

    Từ và \Rightarrow \frac{1}{1 + x} =
\frac{1}{3} \Leftrightarrow x =
2.

    Vậy GE//(SBC) \Leftrightarrow x = 2.

  • Câu 18: Thông hiểu

    Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?

    (1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.

    (2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.

    (3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.

    Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song

    Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c

    Phát biểu (3) Sai vì có thể xảy ra b trùng c.

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của AC và BM

    Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)

    => Giao tuyến cần tìm chính là đường thẳng SI.

  • Câu 20: Nhận biết

    Hình chiếu của hình vuông không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta được

    Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.

  • Câu 21: Thông hiểu

    Cho tứ diện ABCD. Gọi E,F lần lượt là trung điểm của ADBC, G là trọng tâm tam giác BCD. Khi đó, giao điểm của EG(ABC) là:

    Hình vẽ minh họa

    Kéo dài EG cắt AF tại I.

    Khi đó I là giao điểm của EG(ABC).

  • Câu 22: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trọng tâm tam giác ABDACD. Xét các mệnh đề sau:

    \ (i):MN//(ABC)

    (ii):MN//(BCD)

    (iii):MN//(ACD)

    Các mệnh đề đúng là:

    Gọi E,F lần lượt là trung điểm CD,BD.

    Ta có \frac{AN}{AE} = \frac{AM}{AF} =
\frac{2}{3} \Rightarrow MN//EF

    \Rightarrow MN//(BCD)nên mệnh đề (ii):MN//(BCD) đúng.

    Ta lại có:

    EF//BC \Rightarrow MN//BC

    \Rightarrow MN//(ABC)

    => Mệnh đề\
(i):MN//(ABC) đúng

    Mặt khác MN \cap (ACD) = \left\{ N
ight\} nên mệnh đề (iii):MN//(ACD) sai.

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E;F;G lần lượt là trung điểm của SA;SB;SC. Mệnh đề nào dưới đây là mệnh đề sai?

    Hình vẽ minh họa:

    Ta có: (EFG)//(ACD) \Rightarrow (EFG)\cap (ACD) = \varnothing

    Ta có: EG là đường trung bình trong tam giác SAC

    EG//AC

    Ta có: EF là đường trung bình trong tam giác SAB

    => EF//AB

    => EF//CD

    Dễ thấy SD cắt (EFG) tại trung điểm H của SD.

    Do đó mệnh đề SD \cap (EFG) =\varnothing là mệnh đề sai.

  • Câu 24: Vận dụng

    Cho hình lăng trụ tam giác ABC.A'B'C' , tâm của các mặt bên (ABB'A');(BCC'B');(ACC'A') lần lượt là M,N,P. Hình chiếu của điểm P qua phép chiếu song song phương BC', mặt phẳng chiếu (AB'C) là:

    Hình vẽ minh họa

    Gọi Q là ảnh của P qua phép chiếu song song phương BC' lên mặt phẳng (AB'C).

    Ta có PQ//BC'PQ \subset (ABC').

    AN là giao tuyến của hai mặt phẳng (ABC')(AB'C) nên Q \in AN.

    Lại có P là trung điểm của AC' nên PQ là đường trung bình của tam giác ANC'

    => P là trung điểm của AN.

  • Câu 25: Nhận biết

    Chọn mệnh đề sai. Trong không gian:

    Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.

  • Câu 26: Nhận biết

    Có bao nhiêu vị trí tương đối của hai mặt phẳng tùy ý?

    Có 3 vị trí tương đối của hai mặt phẳng trong không gian, đó là “cắt nhau”, “trùng nhau ”và “song song nhau”.

  • Câu 27: Vận dụng

    Cho hình thang ABCD AD//BC,AD = 3BC. Lấy điểm S bất kì, S
otin (ABCD). Gọi M,N lần lượt là trung điểm của AB,AC, G là trọng tâm tam giác (SAD). Khi đó giao tuyến được tạo bởi mặt phẳng (GMN) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Gọi (GMN) \cap (SAD) = d

    Xét ba mặt phẳng (GMN);(SAD);(ABCD).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AD,MN đồng quy hoặc đôi một song song. Mà AD//MN \Rightarrow d//AD

    Giả sử: d cắt SA;SD lần lượt tại E;F.

    Khi đó thiết diện của hình chóp S.ABCD cắt bởi (GMN) là hình thang MNFE.

    Ta có:

    MN = \frac{AD + BC}{2} = \frac{AD +
\frac{1}{3}AD}{2} = \frac{2}{3}AD

    Ta có: G là trọng tâm tam giác SAD

    => MN = EF

    => Hình thang MNFE là hình bình hành.

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm giao tuyến của MA và SD.

    Hình vẽ minh họa:

    Tìm giao tuyến của MA và SD

    Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:

    IJ là đường trung bình hình thang ABCD => IJ // AB

    Hai mặt phẳng (GIJ) và (SAB): lần lượt chứa hai đường thẳng song song (là IJ và AB) và có điểm G chung

    => Giao tuyến của chúng là đường thẳng đi qua G và song song với AB.

    Đường thẳng này cắt SA tại M và cắt SB tại N.

  • Câu 29: Thông hiểu

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của ADACG là trọng tâm của tam giác BCD. Khi đó giao tuyến của mặt phẳng (IJG) và mặt phẳng (BCD) là đường thẳng đi qua điểm

    Hình vẽ minh họa

    Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.

    Gọi d = (GIJ) \cap (BCD)

    Ta có: \left\{ \begin{matrix}
G \in (GIJ);G \in (BCD) \\
IJ \subset (GIJ);CD \subset (BCD) \\
IJ//CD \\
\end{matrix} ight.

    Suy ra d đi qua G và song song với CD,.

  • Câu 30: Nhận biết

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q lần lượt là trung điểm của BC,CD,SB,SD. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có MN là đường trung bình tam giác BDC \Rightarrow MN//BD (1)

    Ta có PQ là đường trung bình của tam giác SBD \Rightarrow
PQ//BD(2).

    \Rightarrow MN//PQ.

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 32: Nhận biết

    Cho các đoạn thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng cùng nằm trên một đường thẳng hoặc nằm trên hai đường thẳng song song."

  • Câu 33: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 34: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

    Đáp án \left\{ \begin{matrix}
a//b \\
b//(\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//b \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//(\alpha) \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//b sai: Trường hợp a,b chéo nhau.

  • Câu 35: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 36: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 37: Vận dụng

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Đáp án là:

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Hình vẽ minh họa

    Không mất tính tổng quát, xét mặt bên \Delta ABC.

    Giả sử MN song song với BC. Khi đó, số tam giác có cạnh MN nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm \Delta PMN, \Delta QMN, \Delta IMN,\Delta JMN, \Delta KMN, \Delta LMN.

    Trong mặt bên \Delta ABC, nối các điểm chia đều các cạnh AB,BC,CA ta thấy có 3 đoạn thẳng song song với AB, 3 đoạn thẳng song song với BC và 3 đoạn thẳng song song với CA.

    Mặt khác, vai trò 4 mặt của tứ diện là như nhau.

    Vậy, số tam giác thỏa mãn yêu cầu đề bài là 6.(3 + 3 + 3).4 = 216.

  • Câu 38: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề đúng là “Hai đường thẳng chéo nhau thì không có điểm chung ”.

  • Câu 39: Nhận biết

    Cho hai đường thẳng phân biệt ab trong không gian. Có bao nhiêu vị trí tương đối giữa ab?

    Hai đường thẳng trong không gian có 4 VTTĐ: trùng nhau, cắt nhau, song song, chéo nhau.

    Vì hai đường thẳng phân biệt nên hai đường thẳng có 3 vị trí tương đối: cắt nhau, song song, chéo nhau.

  • Câu 40: Thông hiểu

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Đáp án là:

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Xét từng mệnh đề ta có

    a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.

    b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.

    c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).

    d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).

    Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo