Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow x.y = 176

  • Câu 2: Vận dụng

    Hoàn thành mẫu dữ liệu ghép nhóm sau. 

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Ghép nối các nội dung thích hợp với nhau:

    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
    Đáp án đúng là:
    Trung vị
    Tứ phân vị thứ nhất
    Tứ phân vị thứ ba
    22,5
    13,2
    33,9
  • Câu 3: Thông hiểu

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 4: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

  • Câu 5: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

  • Câu 6: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 7: Nhận biết

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Cỡ mẫu của mẫu số liệu ghép nhóm là:

    N = 5 + 18 + 40 + 26 + 8 + 3 =100

  • Câu 8: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?

    Số cách chọn 1 học sinh nam là: C_{25}^1 = 25 cách

    Số cách chọn 2 học sinh nữ là: C_{15}^2 = 105 cách

    Áp dụng quy tắc nhân ta có:

    Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:

    C_{25}^1.C_{15}^2 = 25.105 = 2625 cách

  • Câu 9: Thông hiểu

    Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Do số cần tìm là số chẵn => d = {0; 2; 4}

    Trường hợp 1: d = 0 => Có 1 cách chọn d

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Trường hợp 1 lập được 5 . 4 . 3 . 1 = 60 số

    Trường hợp 2: d ∈ {2; 4} => Có 2 cách chọn d

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Trường hợp 2 lập được 4 . 4 . 3 . 2 = 96 số

    => Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: 60 + 96 = 156 số

  • Câu 10: Nhận biết

    Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Ta có:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tổng

    Tần số

    8

    12

    22

    17

    N = 59

    Tần số tích lũy

    8

    20

    42

    59

     

    Ta có: N = 59

    \Rightarrow \frac{3N}{4} =\frac{3.59}{4} = 44,25

    Vậy nhóm chứa tứ phân vị thứ ba là: [40; 50)

  • Câu 11: Nhận biết

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    2

    2

    Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?

    Giá trị đại diện nhóm [20; 25) là: \frac{20 + 25}{2} = 22,5

  • Câu 12: Thông hiểu

    Rút đồng thời ngẫu nhiên 2 thẻ từ hộp có 9 thẻ được đánh số từ 1 đến 9. Tính xác suất để tích các số ghi trên thẻ rút được là số chẵn?

    Ta có: 4 thẻ ghi số chẵn là {2; 4; 6; 8} và 5 thẻ ghi số lẻ là {1; 3; 5; 7; 9}

    Rút ngẫu nhiên 2 thẻ từ 9 thẻ thì ta có số cách là C_{9}^{2}

    Số phần tử của không gian mẫu là n(\Omega) = C_{9}^{2} = 36

    Gọi A là biến cố tích các số trên thẻ rút được là số chẵn

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2} + C_{4}^{1}.C_{5}^{1} = 26

    \Rightarrow P(A) = \frac{26}{36} =
\frac{13}{18}

  • Câu 13: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm thứ tư là:

    Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là \frac{60 + 80}{2} = 70.

  • Câu 14: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [145; 150)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    6

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 5 nhóm.

  • Câu 15: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 17: Thông hiểu

    Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):

    Lương

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số nhân viên

    18

    23

    30

    20

    12

    10

    Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Lương

    {f_i}{x_i}{f_i}{x_i}

    [0; 10)

    18

    5

    90

    [10; 20)

    23

    15

    345

    [20; 30)

    30

    25

    750

    [30; 40)

    20

    35

    700

    [40; 50)

    12

    45

    540

    [50; 60)

    10

    55

    550

     

    N = 113

     

    T = 2975

    Mức lương trung bình của nhân viên là:

    \overline{x} = \frac{\sum_{i =1}^{n}{f_{i}x_{i}}}{N} = \frac{2975}{113} \approx 26,33(triệu đồng)

  • Câu 18: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 20: Thông hiểu

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm chia hết cho 10 => e = 0 => Có 1 cách chọn e

    Số cách chọn a là 9 cách

    Số cách chọn b là 10 cách

    Số cách chọn c là 10 cách

    Số cách chọn d là 10 cách

    => Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là: 9 . 10 . 10 . 10 = 9000 số

  • Câu 21: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Có bao nhiêu học sinh có thời gian vui chơi từ 2 đến 8 tiếng?

    Số học sinh có thời gian vui chơi từ 2 đến 8 tiếng là:

    16 + 4 + 2 = 22 (học sinh)

  • Câu 22: Thông hiểu

    Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?

    Ta có:

    Giá trị lớn nhất: 25

    Giá trị nhỏ nhất: 4

    Khoảng biến thiên là: 25 – 4 = 21

  • Câu 23: Thông hiểu

    Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tần số tích lũy

    6

    20

    60

    94

    100

    Ta có: \frac{N}{2} = \frac{100}{2} =50

    => Trung vị nằm trong nhóm \lbrack700;750)(vì 50 nằm giữa hai tần số tích lũy là 20 và 60)

    \Rightarrow l = 700;\frac{N}{2} = 50;m =20;f = 40,c = 50

    \Rightarrow M_{e} = l + \frac{\left(\frac{N}{2} - m ight)}{f}.c

    = 700 + \frac{50 - 20}{40}.50 =737,5 (giờ)

  • Câu 24: Thông hiểu

    Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Ta có:

    Chiều cao h đại diện (cm)

    Số cây

    Tích các giá trị

    135

    3

    405

    145

    7

    1015

    155

    5

    775

    Tổng

    15

    2195

    Độ cao trung bình là:

    \overline{x} = \frac{2195}{15} =146,3(cm)

  • Câu 25: Nhận biết

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Đáp án là:

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Hoàn thành bảng

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

  • Câu 26: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 27: Nhận biết

    Thời gian chạy 50m của 20 học sinh được ghi lại trong bảng dưới đây:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Tần số

    2

    3

    9

    5

    1

    Số trung bình cộng thời gian chạy của học sinh là:

    Số trung bình cộng thời gian chạy của học sinh là:

    \overline{x} = \frac{8,3.2 + 8,4.3 +
8,5.9 + 8,7.5 + 8,8.1}{20} = 8,53.

  • Câu 28: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 29: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 30: Thông hiểu

    Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Giá trị đại diện của nhóm [150; 180) là bao nhiêu?

    Giá trị đại diện của nhóm [150; 180) là: \frac{150 + 180}{2} = 165

  • Câu 31: Nhận biết

    Tung một đồng xu hai lần liên tiếp. Tập hợp không gian mẫu là:

    Không gian mẫu là: \Omega = \left\{
SS;SN;NS;NN ight\}.

  • Câu 32: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''

    Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.

    Bộ các số tương ứng với số chấm có tổng bằng 2: không có.

    Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách

    Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách

    Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.

    Do đó số phần tử của biến cố B là \left|
\Omega_{B} ight| = 22

    Vậy xác suất cần tìm là: P(B) =
\frac{\left| \Omega_{B} ight|}{|\Omega|} = \frac{22}{216} =
\frac{11}{108}

  • Câu 33: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 34: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra đều là môn toán.

    Trên giá sách có 4 + 3 + 2 = 9 quyển sách

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = C_9^3 = 84

    Gọi B là biến cố "3 quyển được lấy ra đều là môn toán"

    => n\left( B ight) = C_4^3=4

    => Xác suất để 3 quyển được lấy ra đều là môn toán là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{4}}{{84}} = \frac{1}{21}

  • Câu 35: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 36: Vận dụng

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?

    Gọi A_{i} là biến cố bóng đèn thứ i sáng với i =
\overline{1;4}

    Gọi A là biến cố có ít nhất một bóng đèn sáng

    Để không có bóng đèn nào sáng ta có các trường hợp như sau:

    TH1: Cả 4 bóng đèn cùng hỏng

    B là biến cố bốn bóng đèn bị hỏng

    Khi đó xác suất để cả 4 bóng đèn bị hỏng là: P(B) = 0,05^{4} = 0,00000625

    TH2: Cả 3 bóng đèn cùng hỏng

    C là biến cố ba bóng đèn bị hỏng

    Khi đó xác suất để có 3 bóng đèn bị hỏng là: P(C) = 4.0,05^{3}.0,95 = 0,000475

    TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là: P(D) = 2.0,05^{2}.0,95^{2} =
0,0045125

    Vậy xác suất để có ít nhất 1 bóng đèn sáng là

    P(A) = 1 - \left\lbrack P(C) + P(B) +
P(D) ightbrack = 0,99500625

  • Câu 37: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 38: Vận dụng

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    Đáp án là:

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    a) Ta có cỡ mẫu n = 4 + 19 + 6 + 2 + 3 +
1 = 35. Vậy đáp án a) đúng.

    b) Gọi x_{1},x_{2},...,x_{35} được sắp xếp theo thứ tự không giảm.

    Khi đó, trung vị là x_{18}. Do x_{18} thuộc nhóm \lbrack 20;30) nên nhóm này chứa trung vị.

    Suy ra p = 2, a_{2} = 20, a_{3} = 30, m_{2} = 19, m_{1} = 4, a_{3} - a_{2} = 10.

    M_{e} = a_{p} + \dfrac{\dfrac{n}{2} -\left( m_{1} + ... + m_{p - 1} ight)}{m_{p}}.\left( a_{p + 1} - a_{p}ight)

    = 20 + \dfrac{\dfrac{35}{2} - 4}{19}.10 =\frac{515}{19} \approx 27,1.

    Vậy đáp án b) sai.

    c) Số trung bình của mẫu số liệu là

    \overline{x} = \frac{15 \times 4 + 25
\times 19 + 35 \times 6 + 45 \times 2 + 55 \times 3 + 65}{35} =
\frac{213}{7} \approx 30,4.

    Vậy đáp án c) sai.

    d) Điểm ngưỡng để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.

    Cỡ mẫu n = 35

    Tứ phân vị thứ ba Q_{3}x_{27}x_{27} thuộc nhóm [30;40) nên nhóm này chứa Q_{3}.

    Do đó, \left\{ \begin{matrix}
p = 3,a_{3} = 30,m_{3} = 6 \\
m_{1} + m_{2} = 4 + 19 = 23 \\
a_{4} - a_{3} = 10 \\
\end{matrix} ight. và ta có:

    Q_{3} = 30 + \dfrac{\dfrac{3 \times 35}{4}- 23}{6}.10 = 35,42.

    Vậy để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.

    Vậy đáp án d) đúng.

  • Câu 39: Nhận biết

    Cho 6 chữ số 4, 5, 6, 7, 8, 9.  Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}

    => Số cách chọn c là 3 cách

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    => Số các số các số  tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số

  • Câu 40: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 53 lượt xem
Sắp xếp theo