Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Ta có:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tổng

    Tần số

    8

    12

    22

    17

    N = 59

    Tần số tích lũy

    8

    20

    42

    59

     

    Ta có: N = 59

    \Rightarrow \frac{3N}{4} =\frac{3.59}{4} = 44,25

    Vậy nhóm chứa tứ phân vị thứ ba là: [40; 50)

  • Câu 2: Nhận biết

    Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số tự nhiên cần tìm là số chẵn => c = {2; 4; 6}

    => Số cách chọn c là 3 cách

    Số cách chọn a là 6 cách

    Số cách chọn b là 6 cách

    => Số các số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đã cho là: 3 . 6 . 6 = 108 số

  • Câu 3: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, . . ., 9?

    Mỗi cách xếp số tự nhiên có 5 chữ số khác nhau từ các số 1, 2, . . . , 9 là một chỉnh hợp chập 5 của 9 phần tử.

    Vậy có A_9^5 = 15120 số được tạo thành.

  • Câu 4: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 5: Vận dụng

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Đáp án là:

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.

    Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ

    Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.

    Ta có các trường hợp như sau:

    TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn

    C_{6}^{1}.C_{6}^{4} = 90

    TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn

    C_{6}^{2}.C_{6}^{3} = 300

    TH3: 5 thẻ đều ghi số lẻ C_{6}^{5} =
6

    \Rightarrow n(A) = 90 + 300 + 6 =
396

  • Câu 6: Nhận biết

    Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?

    Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.

    Nếu chọn một quả trắng có 6 cách.

    Nếu chọn một quả đen có 3 cách.

    Theo quy tắc cộng, ta có 6 + 3 = 9 cách chọn.

  • Câu 7: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 8: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Cỡ mẫu của mẫu số liệu là:

    Cỡ mẫu của mẫu số liệu là:

    N = 5 + 12 + 10 + 6 + 5 + 8 = 46

  • Câu 9: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 10: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

  • Câu 11: Thông hiểu

    Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.

    Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".

    Tìm |\Omega|

    Chọn 10 tấm thẻ trong 30 tấm thẻ: có C_{30}^{10} cách chọn \Rightarrow |\Omega| = C_{30}^{10}

    Tìm \left| \Omega_{A}
ight|

    Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có C_{15}^{5} cách chọn.

    Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.

    Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có C_{12}^{4} cách chọn.

    Vậy số kết quả thuận lợi cho biến cố A là \left| \Omega_{A} ight| =
3.C_{15}^{5}C_{12}^{4}

    Vậy xác suất cần tìm là: P(A) =
\frac{3.C_{15}^{5}C_{12}^{4}}{C_{30}^{10}} = \frac{99}{667}

  • Câu 12: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 13: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 14: Nhận biết

    Điểm kiểm tra môn Toán của một nhóm học sinh được thể hiện trong bảng dưới đây:

    Điểm số

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh

    3

    7

    8

    12

    9

    Mẫu dữ liệu trên có bao nhiêu nhóm?

    Quan sát bảng dữ liệu ta thấy mẫu dữ liệu được chia thành 5 nhóm:

    Nhóm có điểm số [0; 2) có 3 học sinh

    Nhóm có điểm số [2; 4) có 7 học sinh

    Nhóm có điểm số [4; 6) có 8 học sinh

    Nhóm có điểm số [6; 8) có 12 học sinh

    Nhóm có điểm số [8; 10) có 9 học sinh

  • Câu 15: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 16: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 17: Thông hiểu

    Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:

    Bảng chữ cái Tiếng Anh có 26 chữ cái.

    Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là: C_{26}^{5} = 65780 cách chọn.

  • Câu 18: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 19: Nhận biết

    Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Nhóm chứa trung vị là:

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    N = 15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

  • Câu 20: Vận dụng

    Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.

    Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m

    Số cách chọn được m là: A_3^2

    Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6

    Gọi \overline {abcd} ;\left( {a,b,c,d \in \left\{ {m,0;2;4;6} ight\}} ight) là số thỏa mãn yêu cầu bài toán

    Trường hợp 1:  Nếu a = m ta có:

    Số cách chọn a là 1 cách

    Số cách chọn b, c, d là A_4^3 cách

    Trướng hợp 2: Nếu a khác m thì ta có:

    Số cách chọn a là 3 cách

    Nếu b = m thì có 1 cách chọn b và A_3^2 cách chọn c, d

    Nếu c = m thì có 1 cách chọn c và A_3^2 cach chọn b, d

    => Số các số được tạo thành là: A_3^2.\left[ {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} ight)} ight] = 360

  • Câu 21: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 22: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

  • Câu 23: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Số học sinh lớp 11A là:

    Số học sinh lớp 11A là:

    4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)

  • Câu 24: Thông hiểu

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có số học sinh đạt điểm (6; 8] nhiều nhất?

    Số học sinh lớp 11A đạt điểm từ (6; 8] là:

    12 + 10 = 22 (học sinh)

    Số học sinh lớp 11B đạt điểm từ (6; 8] là:

    10 + 8 = 18 (học sinh)

    Số học sinh lớp 11C đạt điểm từ (6; 8] là:

    15 + 9 = 24 (học sinh)

    Số học sinh lớp 11D đạt điểm từ (6; 8] là:

    16 + 11 = 27 (học sinh)

    Vậy lớp 11D có nhiều học sinh đạt điểm từ (6; 8] nhất.

  • Câu 25: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 26: Thông hiểu

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".

    Các kết quả thuận lợi cho biến cố B là

    (1;1;2) và 2 hoán vị của nó,

    (1;1;3) và 2 hoán vị của nó,

    (2;2;1) và 2 hoán vị của nó,

    (2;2;3) và hai hoán vị của nó,

    (3;3;1) và 2 hoán vị của nó,

    (3;3;2) và 2 hoán vị của nó.

    Khi đó các kết quả thuận lợi cho biến cố B là: 3.6 = 18

    Vậy xác suất của biến cố này là P(B) =
\frac{18}{27} = \frac{2}{3}

  • Câu 27: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

    Tổng

    N = 30

     
    Đáp án là:

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

    Tổng

    N = 30

     

     Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

  • Câu 28: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 29: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm [300; 400)

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

     

    [100; 200)

    7

     

    [200; 300)

    12

    {f_0}

    [300; 400)

    18

    {f_1}

    [400; 500)

    16

    {f_2}

    [500; 600)

    10

     

    [600; 700)

    5

     

    \Rightarrow l = 300;f_{0} = 12;f_{1} =18;f_{2} = 16;c = 400 - 300 = 100

    Khi đó ta tính mốt như sau:

    \begin{matrix}  {M_0} = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}}.c \hfill \\   \Rightarrow {M_0} = 300 + \dfrac{{18 - 12}}{{2.18 - 12 - 16}}.100 = 375 \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.

    Điểm

    Số học sinh

    [0; 10)

    2

    [10; 20)

    6

    [20; 30)

    8

    [30; 40)

    x

    [40; 50)

    30

    [50; 60)

    22

    [60; 70)

    18

    [70; 80)

    8

    [80; 90)

    4

    [90; 100)

    2

    Biết trung vị bằng 47. Tìm tổng số học sinh.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    [0; 10)

    2

    2

    [10; 20)

    6

    8

    [20; 30)

    8

    16

    [30; 40)

    x

    16 + x

    [40; 50)

    30

    46 + x

    [50; 60)

    22

    68 + x

    [60; 70)

    18

    86 + x

    [70; 80)

    8

    94 + x

    [80; 90)

    4

    98 + x

    [90; 100)

    2

    100 + x

     

    N = 100 + x

     

    Trung vị là 47 => Nhóm chứa trung vị là [40; 50)

    \Rightarrow \left\{ \begin{matrix}l = 40;\dfrac{N}{2} = \dfrac{100 + x}{2} \\m = 16 + x;f = 30,c = 50 - 40 = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 47 = 40 + \dfrac{\left(\dfrac{100 + x}{2} - 16 - x ight)}{30}.10

    \Leftrightarrow 21 = \frac{100 + x - 32- 2x}{2}

    \Leftrightarrow x = 26

    Vậy số học sinh là 126 học sinh.

  • Câu 31: Nhận biết

    Cho dãy số liệu thống kê: 21, 23, 24,25, 22, 20. Số trung bình cộng của dãy số liệu thống kê đã cho là

    Số trung bình là:

    \overline{x} =
\frac{21 + 23 + 24 + 25 + 22 + 20}{6} = 22,5

  • Câu 32: Vận dụng

    Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow x.y = 176

  • Câu 33: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính cân nặng trung bình của học sinh lớp 11H?

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

  • Câu 34: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 35: Thông hiểu

    Hoàn thành bảng số liệu sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    43

    7

    [45,5; 50,5)

    48

    16

    [50,5; 55,5)

    53

    10

    [55,5; 60,5)

    58

    5

    [60,5; 65,5)

    63

    4

    [65,5; 70,5)

    68

    2

    Đáp án là:

    Hoàn thành bảng số liệu sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    43

    7

    [45,5; 50,5)

    48

    16

    [50,5; 55,5)

    53

    10

    [55,5; 60,5)

    58

    5

    [60,5; 65,5)

    63

    4

    [65,5; 70,5)

    68

    2

    Trong mỗi khoảng cân nặng, giá trị đại diện là giá trị trung bình của giá trị hai đầu mút nên ta hoàn thành bảng số liệu như sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    \frac{40,5 + 45,5}{2} =43

    7

    [45,5; 50,5)

    \frac{45,5 + 50,5}{2} =48

    16

    [50,5; 55,5)

    \frac{50,5 + 55,5}{2} =53

    10

    [55,5; 60,5)

    \frac{55,5 + 60,5}{2} =58

    5

    [60,5; 65,5)

    \frac{60,5 + 65,5}{2} =63

    4

    [65,5; 70,5)

    \frac{65,5 + 70,5}{2} =68

    2

     

  • Câu 36: Vận dụng

    Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6.6 = 36

    Giả sử N là biến cố " Tổng số chấm trên hai mặt chia hết cho 3" 

    Trường hợp 1: Số chấm xuất hiện trong hai lần gieo là giống nhau

    (3; 3), (6; 6)

    Trường hợp 2: Số chấm xuất hiện trong hai lần gieo là khác nhau

    (1; 2), (1; 5); (2; 4), (3; 6), (4; 5)

    Mỗi khả năng xảy ra có 2 hoán vị nên số phần tử của biến cố là 10 khả năng xảy ra.

    => Số khả năng xảy ra của biến cố N là: 10 + 2 = 12 

    => Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là: P\left( N ight) = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 37: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

  • Câu 38: Thông hiểu

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?

    Xác suất để học sinh thi được 9 điểm là: C_{10}^{5}.(0,25)^{5}.(0,75)^{5}.

    Xác suất để học sinh thi được 9,2 điểm là: C_{10}^{6}.(0,25)^{6}.(0,75)^{4}.

    Xác suất để học sinh thi được 9,4 điểm là: C_{10}^{7}.(0,25)^{7}.(0,75)^{3}.

    Xác suất để học sinh thi được 9,6 điểm là: C_{10}^{8}.(0,25)^{8}.(0,75)^{2}.

    Xác suất để học sinh thi được 9,8 điểm là: C_{10}^{9}.(0,25)^{9}.(0,75)^{1}.

    Xác suất để học sinh thi được 10 điểm là: (0,25)^{10}.

    Vậy xác suất để học sinh thi được không dưới 9 điểm là:

    \sum_{k = 5}^{10}{C_{10}^{k}.(0,25)^{k}.(0,75)^{10
- k}} \approx 0,0781

  • Câu 39: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 40: Thông hiểu

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Ta có: 1605632 =
2^{15}.7^{2}

    Suy ra số các ước nguyên dương của 1605632 là (15 + 1)(2 + 1) = 48.

    Số phần tử của không gian mẫu: n(\Omega)
= 48.

    Trong đó, số các số chia hết cho 7 là: (15 + 1).2 = 32.

    Xác xuất cần tìm là: P = \frac{32}{48} =
\frac{2}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 51 lượt xem
Sắp xếp theo