Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số

  • Câu 2: Thông hiểu

    Trong kho hàng có n sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}. Biến cố X cả n sản phẩm đều tốt là:

    Ta có:

    X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}

    Nên \overline{X_{i}} là biến cố sản phẩm thứ i tốt với i \in \overline{1,n}

    Biến cố X cả n sản phẩm đều tốt là: X =
\overline{X_{1}}.\overline{X_{2}}....\overline{X_{n}}

  • Câu 3: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 4: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 5: Thông hiểu

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có số học sinh đạt điểm (6; 8] nhiều nhất?

    Số học sinh lớp 11A đạt điểm từ (6; 8] là:

    12 + 10 = 22 (học sinh)

    Số học sinh lớp 11B đạt điểm từ (6; 8] là:

    10 + 8 = 18 (học sinh)

    Số học sinh lớp 11C đạt điểm từ (6; 8] là:

    15 + 9 = 24 (học sinh)

    Số học sinh lớp 11D đạt điểm từ (6; 8] là:

    16 + 11 = 27 (học sinh)

    Vậy lớp 11D có nhiều học sinh đạt điểm từ (6; 8] nhất.

  • Câu 6: Thông hiểu

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?

    Xác suất để học sinh thi được 9 điểm là: C_{10}^{5}.(0,25)^{5}.(0,75)^{5}.

    Xác suất để học sinh thi được 9,2 điểm là: C_{10}^{6}.(0,25)^{6}.(0,75)^{4}.

    Xác suất để học sinh thi được 9,4 điểm là: C_{10}^{7}.(0,25)^{7}.(0,75)^{3}.

    Xác suất để học sinh thi được 9,6 điểm là: C_{10}^{8}.(0,25)^{8}.(0,75)^{2}.

    Xác suất để học sinh thi được 9,8 điểm là: C_{10}^{9}.(0,25)^{9}.(0,75)^{1}.

    Xác suất để học sinh thi được 10 điểm là: (0,25)^{10}.

    Vậy xác suất để học sinh thi được không dưới 9 điểm là:

    \sum_{k = 5}^{10}{C_{10}^{k}.(0,25)^{k}.(0,75)^{10
- k}} \approx 0,0781

  • Câu 7: Vận dụng

    Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?

    Xác suất trả lời đúng trong một câu là: \frac{1}{4}

    Xác suất trả lời sai trong một câu là: \frac{3}{4}

    Gọi x là số câu Tuấn trả lời đúng.

    Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra

    5x - 2(10 - x) \leq 1 \Leftrightarrow 7x
\leq 21 \Leftrightarrow x \leq 3

    Do đó Tuấn cần trả lời đúng không quá 3 câu

    TH1: Học sinh trả lời đúng 3 câu: P_{1} =
C_{10}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{7}

    TH2: Học sinh trả lời đúng 2 câu: P_{2} =
C_{10}^{2}.\left( \frac{1}{4} ight)^{2}.\left( \frac{3}{4}
ight)^{8}

    TH3: Học sinh trả lời đúng 1 câu: P_{3} =
C_{10}^{1}.\left( \frac{1}{4} ight)^{1}.\left( \frac{3}{4}
ight)^{9}

    TH4: Học sinh trả lời không đúng câu nào: P_{4} = \left( \frac{3}{4}
ight)^{10}

    Vậy xác suất cần tìm là P(A) = P_{1} +
P_{2} + P_{3} + P_{4} \approx 0,7759

  • Câu 8: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 9: Vận dụng

    Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?

    Quy ước gene A: lông đen và gene a: lông trắng

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1

    Trong đàn vịt mới xác suất để được một con lông đen là \frac{3}{4} và con lông trắng là \frac{1}{4}

    Gọi A là biến cố có đúng 1 con lông đen trong 2 con được chọn

    \Rightarrow P(A) =
\frac{3}{4}.\frac{1}{4} = \frac{3}{16}

    Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn

    \Rightarrow P(B) =
\frac{3}{4}.\frac{3}{4} = \frac{9}{16}

    Khi đó A \cup B là biến cố có ít nhất 1 con lông đen trong 2 con được chọn

    Do A và B là hai biến cố xung khắc nên

    P(A \cup B) = P(A) + P(B) = \frac{3}{16}
+ \frac{9}{16} = \frac{3}{4}

  • Câu 10: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính trung vị của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

     

    N = 200

     

    Ta có: \frac{N}{2} = \frac{200}{2} =100

    => Trung vị nằm trong nhóm \lbrack440;450)(vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)

    \Rightarrow l = 440;\frac{N}{2} = 100;m= 76;f = 54,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c = 440 + \dfrac{100 - 76}{54}.10 =444,44

  • Câu 11: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Các nhóm số liệu trong bảng trên có độ dài là bao nhiêu?

    Độ dài các nhóm là 5.

  • Câu 12: Thông hiểu

    Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:

    7,8

    7,7

    7,5

    7,8

    7,7

    7,6

    8,7

    7,6

    7,5

    7,5

    7,3

    7,1

    8,1

    8,4

    7,0

    7,1

    7,2

    7,3

    7,4

    8,5

    8,3

    7,2

    7,1

    7,0

    6,7

    6,6

    8,6

    8,2

    6,9

    6,8

    6,5

    6,2

    6,3

      

    Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?

    Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:

    Thời gian (giây)

    Tần suất (%)

    [6,0; 6,5)

    6,06

    [6,5; 7,0)

    15,15

    [7,0; 7,5)

    30,3

    [7,5; 8,0)

    27,27

    [8,0; 8,5)

    12,12

    [8,5; 9)

    9,1

    Tổng

    100%

    Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:

    30,3\% + 27,27\% + 12,12\% =69,69\%

  • Câu 13: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Giá trị trung bình của đối tượng bằng 162,75||163,14||164,02||160,58

    Ta có:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 155)

    152,5

    15

    [155; 160)

    157,5

    11

    [160; 165)

    162,5

    39

    [165; 170)

    167,5

    27

    [170; 175)

    172,5

    5

    [175; 180)

    177,5

    3

    Giá trị trung bình của đối tượng là:

    \overline{x} = \frac{152,5.15 + 157,5.11+ 162,5.39 + 167,5.27 + 172,5.5 + 177,5.3}{100} = 162,75

  • Câu 14: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 15: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 16: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây. Tìm mốt.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

     

    N = 30

    Mốt của mẫu dữ liệu thuộc nhóm dữ liệu: (130; 135]

    Chiều cao (cm)

    Số học sinh

     

    (120; 125]

    3

     

    (125; 130]

    5

    f_{0}

    (130; 135]

    11

    f_{1}

    (135; 140]

    6

    f_{2}

    (140; 145]

    5

     

     

    N = 30

     

    Khi đó: \left\{ \begin{matrix}l = 130;f_{0} = 5;f_{1} = 11;f_{2} = 6 \\c = 135 - 130 = 5 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 130 +\frac{11 - 5}{2.11 - 5 - 6}.5 = 132,7

  • Câu 17: Thông hiểu

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Đáp án là:

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:

    8 + 16 + 4 = 28 (học sinh)

  • Câu 18: Nhận biết

    Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số

    Số các số có 1 chữ số là: 3

    Số các số có 2 chữ số là: 32 = 9

    Số các số có 3 chữ số là: 33 = 27

    => Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39

  • Câu 19: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?

    Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.

  • Câu 20: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.

    Lá thứ nhất có đúng 1 cách chọn.

    Lá thứ 2 có 4 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(B) = 24 \Rightarrow P(B) =
\frac{24}{120} = \frac{1}{5}

  • Câu 21: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 4 nhóm.

  • Câu 22: Vận dụng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Đáp án là:

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +
57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

    Nhóm chứa mốt là: [50; 55) suy ra 50 \leq
M_{e} < 55.

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 53

  • Câu 23: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: C = \left\{ (1;6),(6;1)
ight\}

    \Rightarrow n(C) = 2 \Rightarrow P(C) =
\frac{n(C)}{n(\Omega)} = \frac{2}{36} = \frac{1}{18}

  • Câu 24: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa mốt và tính giá trị mốt?

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 25: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.

    Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:

    Không gian mẫu \Omega = \left\{
TTT;TTG;TGT;TGG;GGG;GGT;GTG;GTT ight\}

    \Rightarrow n(\Omega) = 8

  • Câu 26: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 27: Thông hiểu

    Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.

    Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - \frac{1}{3} = \frac{2}{3}.

    Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 - \frac{1}{4} = \frac{3}{4}.

    Gọi biến cố A:"Có ít nhất một xạ thủ không bắn trúng bia ".

    Khi đó biến cố A có 3 khả năng xảy ra:

    +) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: \frac{1}{3}.\frac{3}{4} =
\frac{1}{4}.

    +) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: \frac{2}{3}.\frac{1}{4} =
\frac{1}{6}.

    +) Xác suất cả hai người đều bắn không trúng bia: \frac{2}{3}.\frac{3}{4} = \frac{1}{2}

    Khi đó P(A) = \frac{1}{3}.\frac{3}{4} +
\frac{2}{3}.\frac{1}{4} + \frac{2}{3}.\frac{3}{4} =
\frac{11}{12}.

  • Câu 28: Thông hiểu

    Có hai hộp, hộp thứ nhất đựng 3 bi đỏ, 2 bi xanh và 5 bi vàng, hộp thứ hai đựng 2 bi đỏ, 3 bi xanh và 2 bi vàng. Lấy ngẫu nhiên 2 bi, mỗi hộp một bi. Tính xác suất để trong một lần lấy ra được đúng một bi đỏ?

    Gọi A là biến cố “Trong một lần lấy ra được đúng một bi đỏ”, A_{1} là biến cố “Lấy được bi đỏ ở hộp thứ nhất”, A_{2} là biến cố “Lấy được bi đỏ ở hộp thứ hai”.

    Ta có: \left\{ \begin{matrix}A = A_{1}\overline{A_{2}} \cup \overline{A_{1}}A_{2} \\P\left( A_{1} ight) = \dfrac{3}{10};P\left( \overline{A_{1}} ight) =\dfrac{7}{10} \\P\left( A_{2} ight) = \dfrac{2}{7};P\left( \overline{A_{2}} ight) =\dfrac{5}{7} \\\end{matrix} ight.

    Suy ra

    P(A) = P\left( A_{1}\overline{A_{2}}
\cup \overline{A_{1}}A_{2} ight) = P\left( A_{1}\overline{A_{2}}
ight) + P\left( \overline{A_{1}}A_{2} ight)

    = \frac{3}{10}.\frac{5}{7} +
\frac{7}{10}.\frac{2}{7} = \frac{29}{70}

    = P\left( A_{1} ight)P\left(
\overline{A_{2}} ight) + P\left( \overline{A_{1}} ight)P\left( A_{2}
ight)

  • Câu 29: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu thuộc nhóm nào trong mẫu dữ liệu trên?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

  • Câu 30: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số:

    Số tự nhiên có 4 chữ số có dạng: \overline {abcd}

    Số cách chọn a là 4 cách 

    Số cách chọn b là 4 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 4 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số là 44 = 256 số

  • Câu 31: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 32: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Đáp án là:

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Ta có:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40 ≤ x < 50

    45

    4

    50 ≤ x < 60

    55

    5

    60 ≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

  • Câu 33: Nhận biết

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    21

    [15; 20)

    13

    [20; 25)

    8

    [25; 30)

    6

    Số nhân viên trong công ty đi muộn quá 15 phút là:

    Số nhân viên trong công ty đi muộn quá 15 phút là:

    13 + 8 + 6 = 27 (nhân viên)

  • Câu 34: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 35: Vận dụng cao

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

  • Câu 37: Nhận biết

    Độ tuổi của 112 cư dân được ghi như bảng sau:

    Tuổi

    Số học sinh

    [0; 9]

    20

    [10; 19]

    21

    [20; 29]

    23

    [30; 39]

    16

    [40; 49]

    11

    [50; 59]

    10

    [60; 69]

    7

    [70; 79]

    3

    [80; 89]

    1

    Hoàn thành bảng số liệu dưới đây?

    Tuổi

    Số đại diện tuổi

    Số học sinh 

    [0; 10)

    5

    20

    [10; 20)||[10;20)||[10,20)||[10, 20)

    15

    21

    [20; 30)

    25

    23

    [30; 40)||[30;40)||[30,40)||[30, 40)

    35

    16

    [40; 50)

    45

    11

    [50; 60)||[50;60)||[50,60)||[50, 60)

    55

    10

    [60; 70)||[60;70)||[60, 70)||[60,70)

    65

    7

    [70; 80)

    75

    3

    [80; 90)||[80;90)||[80,90)||[80, 90)

    85

    1

    Đáp án là:

    Độ tuổi của 112 cư dân được ghi như bảng sau:

    Tuổi

    Số học sinh

    [0; 9]

    20

    [10; 19]

    21

    [20; 29]

    23

    [30; 39]

    16

    [40; 49]

    11

    [50; 59]

    10

    [60; 69]

    7

    [70; 79]

    3

    [80; 89]

    1

    Hoàn thành bảng số liệu dưới đây?

    Tuổi

    Số đại diện tuổi

    Số học sinh 

    [0; 10)

    5

    20

    [10; 20)||[10;20)||[10,20)||[10, 20)

    15

    21

    [20; 30)

    25

    23

    [30; 40)||[30;40)||[30,40)||[30, 40)

    35

    16

    [40; 50)

    45

    11

    [50; 60)||[50;60)||[50,60)||[50, 60)

    55

    10

    [60; 70)||[60;70)||[60, 70)||[60,70)

    65

    7

    [70; 80)

    75

    3

    [80; 90)||[80;90)||[80,90)||[80, 90)

    85

    1

     Ta có:

    Tuổi

    Đại diện tuổi

    Số học sinh

    [0; 10)

    5

    20

    [10; 20)

    15

    21

    [20; 30)

    25

    23

    [30; 40)

    35

    16

    [40; 50)

    45

    11

    [50; 60)

    55

    10

    [60; 70)

    65

    7

    [70; 80)

    75

    3

    [80; 90)

    85

    1

  • Câu 38: Vận dụng

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    x

    [15; 20)

    13

    [20; 25)

    12

    [25; 30)

    y

    Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?

    Ta có: N = 100 \Rightarrow x + y =36

    Lại có:

    Thời gian (phút)

    Số nhân viên

    Tần số tích lũy

    [0; 5)

    25

    25

    [5; 10)

    14

    39

    [10; 15)

    x

    39 + x

    [15; 20)

    13

    52 + x

    [20; 25)

    12

    64 + x

    [25; 30)

    y

    64 + x + y

    Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)

    Khi đó:

    \Rightarrow \left\{ \begin{matrix}l = 10;\dfrac{N}{2} = 50,m = 39,f = x \\c = 15 - 10 = 5 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\frac{\frac{N}{2} - m}{f}.c

    \Leftrightarrow 12,5 = 10 + \frac{50 -39}{x}.5 \Leftrightarrow x = 22

    \Rightarrow y = 36 - 22 =14

  • Câu 39: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 40: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 52 lượt xem
Sắp xếp theo