Đề kiểm tra 45 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Giới hạn. Hàm số liên tục gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 2: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 3: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Xét \lim_{x ightarrow 1^{+}}f(x) =
\lim_{x ightarrow 1^{+}}\frac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x +
6}}{1 - x}

    = \lim_{x ightarrow1^{+}}\frac{\sqrt{5x - 1} - 2 + 2 - \sqrt[3]{x^{2} + x + 6}}{1 -x}

    = \lim_{x ightarrow 1^{+}}\left(\frac{\sqrt{5x - 1} - 2}{1 - x} + \frac{2 - \sqrt[3]{x^{2} + x + 6}}{1 -x} ight)

    = \lim_{x ightarrow 1^{+}}\left( \frac{5x - 5}{(1 -x)\left( \sqrt{5x - 1} + 2 ight)} + \frac{8 - \left( x^{2} + x + 6ight)}{(1 - x)\left( 4 + 2\sqrt[3]{x^{2} + x + 6} + \left(\sqrt[3]{x^{2} + x + 6} ight)^{2} ight)} ight)

    = \lim_{xightarrow 1^{+}}\left( \frac{- 5}{\left( \sqrt{5x - 1} + 2 ight)} +\frac{x + 2}{4 + 2\sqrt[3]{x^{2} + x + 6} + \left( \sqrt[3]{x^{2} + x +6} ight)^{2}} ight)

    = - \frac{5}{4} + \frac{1}{4} = -
1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}(ax + 2) = a + 2

    f(1) = a + 2

    Hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow a + 2 = - 1
\Leftrightarrow a = - 3.

  • Câu 4: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {{m^2}{x^2}{\text{        khi }}x \leqslant 2} \\ 
  {\left( {1 - m} ight)x{\text{   khi }}x > 2} 
\end{array}} ight. liên tục trên \mathbb{R}?

    Tập xác định D\mathbb{= R}

    Hàm số liên tục trên mỗi khoảng ( -
\infty;2);(2; + \infty)

    Khi đó hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi f(x) liên tục tại x = 2

    Hay \lim_{x ightarrow 2}f(x) =
f(2)

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)\ \ (*)

    Ta lại có:

    f(2) = 4m^{2}

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left\lbrack (1 - m)x ightbrack = 2(1 -
m)

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}\left( m^{2}x^{2} ight) = 4m^{2}

    Khi đó (*) \Leftrightarrow 4m^{2} = 2(1 -
m)

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 5: Nhận biết

    \lim_{x
ightarrow - \infty}\left( \frac{2x + 1}{x - 1} ight) bằng

    Ta có:

    \lim_{x ightarrow - \infty}\left(\dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow - \infty}\left(\dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) = 2

  • Câu 6: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 7: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 8: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 9: Thông hiểu

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Tính giới hạn \lim_{x ightarrow - 1}\frac{x^{5} + 1}{x^{3} +
1}.

    Ta có:

    \lim_{x ightarrow - 1}\frac{x^{5} +
1}{x^{3} + 1} = \lim_{x ightarrow - 1}\frac{(x + 1)\left( x^{4} -
x^{3} + x^{2} - x + 1 ight)}{(x + 1)\left( x^{2} - x + 1
ight)}

    = \lim_{x ightarrow - 1}\frac{x^{4} -
x^{3} + x^{2} - x + 1}{x^{2} - x + 1} = \frac{5}{3}

  • Câu 11: Thông hiểu

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x} - 1}{x - 1}\ khi\ x eq 1 \\k + 1\ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1. Xác định giá trị thực của tham số k.

    Tập xác định D = \lbrack 0; +
\infty)

    Theo giả thiết ta có:

    k + 1 = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow k + 1 = \lim_{x ightarrow
1}\left( \frac{\sqrt{x} - 1}{x - 1} ight)

    \Leftrightarrow k + 1 = \lim_{x
ightarrow 1}\left( \frac{1}{\sqrt{x} + 1} ight)

    \Leftrightarrow k + 1 = \frac{1}{2}
\Leftrightarrow k = - \frac{1}{2}

  • Câu 12: Thông hiểu

    Giá trị của C =\lim\ \frac{n^{3} + 1}{n(2n + 1)^{2}} bằng:

    C = \lim\ \frac{n^{3} + 1}{n(2n +1)^{2}}

    = \lim\frac{n^{3} + 1}{n(4n^{2} + 4n +1)} = \lim\frac{n^{3} + 1}{4n^{3} + 4n^{2} + n}

    = \lim\frac{1 + \dfrac{1}{n^{3}}}{4 +\dfrac{4}{n} + \dfrac{1}{n^{2}}} = \frac{1}{4}

  • Câu 13: Thông hiểu

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Ta có:

    \lim\dfrac{- 3n^{3} + 1}{2n + 5} =\lim\dfrac{n\left( - 3n^{2} + \dfrac{1}{n} ight)}{n\left( 2 +\dfrac{5}{n} ight)}

    = \lim\dfrac{- 3n^{2} + \dfrac{1}{n}}{2 +\dfrac{5}{n}} = - \infty

    Do \left\{ \begin{matrix}\lim\left( - 3n^{2} + \dfrac{1}{n} ight) = - \infty \\\lim\left( 2 + \dfrac{5}{n} ight) = 2 \\\end{matrix} ight.

    \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n}
+ 5^{2n}} = \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n} +
25^{n}}

    = \lim \dfrac{{{{25}^n} \cdot {{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{25}^n}\left[ {{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1} ight]}}= \lim \dfrac{{{{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1}} = 0

    Kết luận:

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 14: Nhận biết

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 15: Thông hiểu

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 16: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 17: Thông hiểu

    Biết rằng f(x) =\left\{ \begin{matrix}\dfrac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ khi\ x eq 1 \\\end{matrix} ight. liên tục trên \lbrack 0;1brack với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?

    Ta có:

    Hàm số xác định và liên tục trên \lbrack
0;1brack

    Khi đó f(x) liên tục trên \lbrack 0;1brack khi và chỉ khi \lim_{x ightarrow 1^{-}}f(x) = f(1)\ \ \
(*)

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} - 1}{\sqrt{x} - 1} = \lim_{x ightarrow 1^{-}}\left\lbrack (x +
1)\left( \sqrt{x} + 1 ight) ightbrack = 4

    (*) \Leftrightarrow a = 4

  • Câu 18: Nhận biết

    Hàm số nào trong các hàm số dưới đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{x}{x + 1} có tập xác định D\mathbb{= R}\backslash\left\{
- 1 ight\} nên hàm số không liên tục trên \mathbb{R}.

  • Câu 19: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 20: Nhận biết

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 21: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 22: Thông hiểu

    Giới hạn \lim_{}\frac{2^{n} -
3^{n}}{2^{n} + 1} bằng

    Ta có:

    \lim\dfrac{2^{n} - 3^{n}}{2^{n} + 1} =\lim\dfrac{1 - \left( \dfrac{3}{2} ight)^{n}}{1 + \left( \dfrac{1}{2}ight)^{n}}

    = \dfrac{\lim\left( 1 - \left(\dfrac{3}{2} ight)^{n} ight)}{\lim\left( 1 + \left( \dfrac{1}{2}ight)^{n} ight)} = \lim\left( 1 - \left( \dfrac{3}{2} ight)^{n}ight) = - \infty

  • Câu 23: Thông hiểu

    Tính giới hạn A =
\lim_{x ightarrow + \infty}\left( \frac{3x^{4} - 2x + 3}{5x^{4} + 3x +
1} ight).

    Ta có:

    A = \lim_{x ightarrow + \infty}\left(\dfrac{3x^{4} - 2x + 3}{5x^{4} + 3x + 1} ight)

    A = \lim_{x ightarrow +\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} + \dfrac{3}{x^{4}}ight)}{x^{4}\left( 5 + \dfrac{3}{x^{3}} + \dfrac{1}{x^{4}}ight)}

    A = \lim_{x ightarrow + \infty}\dfrac{3- \dfrac{2}{x^{3}} + \dfrac{3}{x^{4}}}{5 + \dfrac{3}{x^{3}} +\dfrac{1}{x^{4}}} = \dfrac{3}{5}

  • Câu 24: Thông hiểu

    Cho dãy số \left(
u_{n} ight) với u_{n} =
\frac{n}{4^{n}}\frac{u_{n +
1}}{u_{n}} < \frac{1}{2}. Chọn giá trị đúng của \lim u_{n} trong các số sau:

    Áp dụng phương pháp quy nạp toán học ta có n \leq 2^{n},\ \forall n \in N

    Nên ta có :

    n \leq 2^{n} \Leftrightarrow
\frac{n}{2^{n}} \leq 1 \Leftrightarrow \frac{n}{2^{n}.2^{n}} \leq
\frac{1}{2^{n}} \Leftrightarrow \frac{n}{4^{n}} \leq \left( \frac{1}{2}
ight)^{n}

    Suy ra : 0 < u_{n} \leq \left(
\frac{1}{2} ight)^{n}, mà \lim\left( \frac{1}{2} ight)^{n} = 0

    Vậy \lim u_{n} = 0.

  • Câu 25: Thông hiểu

    Xác định \lim_{x
ightarrow 0}\frac{|x|}{x^{2}}.

    Ta có: \lim_{x ightarrow 0}\frac{|x|}{x^{2}}
= \lim_{x ightarrow 0}\frac{1}{|x|} = + \infty.

  • Câu 26: Thông hiểu

    Chọn mệnh đề sai?

    Xét n = 2k

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k}

    = \lim\left\lbrack ( - 2)^{2}
ightbrack^{k} = \lim 4^{k} = + \infty

    Xét n = 2k + 1

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k + 1}

    = \lim\left\lbrack ( - 2)^{2k}.( - 2)
ightbrack = \lim\left\lbrack 4^{k}.( - 2) ightbrack = -
\infty

  • Câu 27: Nhận biết

    Tính giới hạn \lim_{x ightarrow 2^{-}}\frac{3x + 1}{2 -
x}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {2^ - }} \left( {3x + 1} ight) = 7 > 0 \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} ight) = 0 \hfill \\
  x - 2 < 0,x \mapsto 2 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \lim_{x ightarrow
2^{-}}\frac{3x + 1}{2 - x} = + \infty

  • Câu 28: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2}}}{x}{\text{           khi }}x < 1,x e 0} \\ 
  \begin{gathered}
  {\text{0      khi }}x = 0 \hfill \\
  \sqrt x {\text{   khi }}x \geqslant 1 \hfill \\ 
\end{gathered}  
\end{array}} ight.. Hàm số f(x) liên tục tại:

    Tập xác định D\mathbb{= R}

    Dễ thấy hàm số y = f(x) liên tục trên mỗi khoảng ( - \infty;0),(0;1);(1; +
\infty)

    Ta có:

    f(0) = 0

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{-}}(x) =
0

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{+}}(x) =
0

    Vậy hàm số liên tục tại x = 0

    Tương tự ta có:

    f(1) = 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 1^{-}}(x) =
1

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\sqrt{x} = 1

    Vậy hàm số liên tục tại x = 1

    Vậy hàm số đã cho liên tục trên tập số thực.

  • Câu 29: Nhận biết

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 30: Thông hiểu

    Biết rằng \lim_{x ightarrow
3}\frac{x^{2} - 5x + 6}{x^{2} - 9} = \frac{a}{b}, với \frac{a}{b} là phân số tối giản và a,b\mathbb{\in N}. Tính a + b.

    Ta có:

    \lim_{x ightarrow 3}\frac{x^{2} - 5x +
6}{x^{2} - 9} = \lim_{x ightarrow 3}\frac{(x - 2)(x - 3)}{(x - 3)(x +
3)}

    = \lim_{x ightarrow 3}\frac{x - 2}{x +3} = \frac{1}{6} = \frac{a}{b} \Rightarrow a = 1,b = 6.

    Vậy: a + b = 7.

  • Câu 31: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 32: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 33: Nhận biết

    Tính giới hạn \lim_{x ightarrow -
\infty}\frac{2x + 1}{x + 1}.

    Ta có: \lim_{x ightarrow -\infty}\dfrac{2x + 1}{x + 1} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{1}{x}}{1 + \dfrac{1}{x}} = 2.

  • Câu 34: Vận dụng

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 35: Vận dụng cao

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{x + x^{2} + ... + x^{n} - n}{x - 1}\ \ khi\ x eq 1 \\15\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm số tự nhiên n để hàm số liên tục tại x_{0} = 1.

    Ta có: f(1) = 15

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{x + x^{2} + ... + x^{n} - n}{x - 1}

    = \lim_{x ightarrow 1}\frac{x - 1 +
x^{2} - 1 + ... + x^{n} - 1}{x - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack 1 + (x + 1) + \left( x^{2} + x + 1 ight) + ... + \left(
x^{n - 1} + x^{n - 2} + ... + 1 ight) ightbrack}{x -
1}

    = 1 + 2 + ... + n = \frac{n(n +
1)}{2}

    Hàm số f(x) liên tục tại x_{0} =
1 khi và chỉ khi

    \lim_{x ightarrow 1}f(x) =
f(1)

    \Leftrightarrow \frac{n(n + 1)}{2} =
15

    \Leftrightarrow n = 5

  • Câu 36: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Hàm số xác định tại x = 1.

    Ta có f(1) = 2024m. Tính \lim_{x ightarrow 1}\frac{\sqrt[3]{6x - 5} -
\sqrt{4x - 3}}{(x - 1)^{2}}.

    Đặt t = x - 1 thì x = t + 1, x
ightarrow 1 thì t ightarrow
0

    \frac{\sqrt[3]{6x - 5} - \sqrt{4x -
3}}{(x - 1)^{2}} = \frac{\sqrt[3]{6t + 1} - \sqrt{4t +
1}}{t^{2}}

    = \frac{\sqrt[3]{6t + 1} - (2t +
1)}{t^{2}} + \frac{(2t + 1) - \sqrt{4t + 1}}{t^{2}}.

    = \frac{6t + 1 - (8t^{3} + 12t^{2} + 6t +
1)}{t^{2}\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1}
+ (2t + 1)^{2} ightbrack} +
\frac{(4t^{2} + 4t + 1) - (4t + 1)}{t^{2}(2t + 1 + \sqrt{4t +
1})}.

    = \frac{- 8t - 12}{\left\lbrack
\sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t + 1)^{2}
ightbrack} + \frac{4}{(2t + 1 +
\sqrt{4t + 1})}.

    Vậy \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    = \lim_{t ightarrow 0}\{\frac{- 8t -
12}{\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t
+ 1)^{2} ightbrack} +
\frac{4}{(2t + 1 + \sqrt{4t + 1})}\} = - 2.

    Để hàm số liên tục tại x = 1 khi f(1) = \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    \Leftrightarrow 2024m = - 2
\Leftrightarrow m = \frac{- 1}{1012}.

  • Câu 37: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 38: Vận dụng

    Cho f(x) là một đa thức thỏa mãn \lim_{x ightarrow
1}\frac{f(x) - 16}{x - 1} = 24. Tính giá trị

    F = \lim_{x ightarrow 1}\frac{f(x) - 16}{(x -
1)\left( \sqrt{2f(x) + 4} + 6 ight)}

    Ta có: \lim_{x ightarrow 1}\frac{f(x) -
16}{x - 1} = 24 \Rightarrow \lim_{x ightarrow 1}\left\lbrack f(x) - 16
ightbrack = 0

    \Rightarrow \lim_{x ightarrow 1}f(x) =
16

    \Rightarrow \lim_{x ightarrow
1}\frac{1}{\sqrt{2f(x) + 4} + 6} = \frac{1}{12}

    Khi đó

    F = \lim_{x ightarrow 1}\frac{f(x) -
16}{(x - 1)\left\lbrack \sqrt{2f(x) + 4} + 6 ightbrack}

    F = \lim_{x ightarrow 1}\frac{f(x) -
16}{x - 1}.\lim_{x ightarrow 1}\frac{1}{\sqrt{2f(x) + 4} + 6} =
24.\frac{1}{12} = 2

  • Câu 39: Thông hiểu

    Tìm tham số a để hàm số y = \left\{ {\begin{array}{*{20}{l}}
  {{x^2} + 3x + 2}&{{\text{khi}}}&{x \leqslant  - 1} \\ 
  {4x + a}&{{\text{khi}}}&{x >  - 1} 
\end{array}} ight. liên tục tại x = - 1.

    Hàm số xác định trên \mathbb{R}.

    Ta có f( - 1) = 0.

    \lim_{x ightarrow ( - 1)^{-}}f(x) =
\lim_{x ightarrow ( - 1)^{-}}\left( x^{2} + 3x + 2 ight) =
0\lim_{x ightarrow ( -1)^{+}}f(x) = \lim_{x ightarrow ( - 1)^{+}}(4x + a) = a -4.

    Hàm số đã cho liên tục tại x = -
1 khi và chỉ khi \lim_{x
ightarrow ( - 1)^{-}}f(x) = \lim_{x ightarrow ( - 1)^{+}}f(x) = f( -
1)

    \Leftrightarrow a - 4 = 0 \Leftrightarrow a = 4.

  • Câu 40: Vận dụng cao

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Đáp án là:

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Ta có:

    I = \lim_{x ightarrow 0}\frac{\sqrt{2x
+ 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} - \sqrt[3]{8 +
x}}

    = \lim_{x ightarrow 0}\left(
\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{x}.\frac{x}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}} ight)

    = \lim_{x ightarrow 0}\left\{ \left(
\frac{\sqrt{2x + 1} - 1}{x} + \frac{1 - \sqrt[3]{x^{2} + 1}}{x}
ight).\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}
ight\}

    Ta có:

    +) \lim_{x ightarrow 0}\frac{\sqrt{2x +
1} - 1}{x} = \lim_{x ightarrow 0}\frac{2x}{\left( \sqrt{2x + 1} + 1
ight).x} = \lim_{x ightarrow 0}\frac{2}{\left( \sqrt{2x + 1} + 1
ight)} = 1

    +) \lim_{x ightarrow 0}\frac{1 -
\sqrt[3]{x^{2} + 1}}{x} = \lim_{x ightarrow 0}\frac{-
x^{2}}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack.x}

    = \lim_{x ightarrow 0}\frac{-
x}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack} = 0.

    +) \lim_{x ightarrow
0}\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2}
ightbrack}{\left( \sqrt[3]{8 - x} ight)^{3} - \left( \sqrt[3]{8 +
x} ight)^{3}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2x}

    = \lim_{x ightarrow
0}\frac{\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2} = - 6.

    Vậy I = (1 + 0).( - 6) = - 6 \Rightarrow
100I = - 600.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo