Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với các số a, b, c là các số thực dương tùy ý khác 1 và \log_{a}c = x;\log_{b}c =y. Khi đó giá trị của \log_{a}(ab) bằng:

    Với a, b, c là các số thực dương tùy ý khác 1 ta có:

    \log_{c}a = \frac{1}{x};\log_{c}b =\frac{1}{y}

    Khi đó ta có: \log_{c}(ab) = \log_{c}a +\log_{c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 2: Vận dụng

    Cho a và b là các số thực thỏa mãn điều kiện {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a}{b^{\dfrac{5}{4}}} > {b^{\dfrac{4}{3}}}. Chọn khẳng định đúng trong các khẳng định sau:

    Ta có:

    {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a} \Rightarrow a < 0

    {b^{\frac{5}{4}}} > {b^{\frac{4}{3}}} \Rightarrow 0 < b < 1

  • Câu 3: Nhận biết

    Tập nghiệm của bất phương trình \left( \frac{2}{3} ight)^{4x} \leq \left(\frac{3}{2} ight)^{2 - x} là:

    Ta có:

    \left( \frac{2}{3} ight)^{4x} \leq\left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow \left( \frac{3}{2}ight)^{- 4x} \leq \left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow - 4x \leq 2 -x

    \Leftrightarrow x \geq -\frac{2}{3}

  • Câu 4: Nhận biết

    Hàm số nào dưới đây đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{e} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{e} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 5: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 7: Thông hiểu

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 8: Nhận biết

    Tìm tập xác định của hàm số \log_{2}(x - 1)?

    Điều kiện xác định x - 1 > 0
\Rightarrow x > 1

    Suy ra tập xác định của hàm số là: D =
(1; + \infty).

  • Câu 9: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Cho hàm số y =\log_{\frac{1}{2}}(x + 1). Tìm tập xác định của hàm số.

    Điều kiện xác định của hàm số y =\log_{\frac{1}{2}}(x + 1) là:

    x + 1 > 0 \Rightarrow x > -
1

    Vậy tập xác định của hàm số là: D = ( -
1; + \infty)

  • Câu 11: Thông hiểu

    Tính giá trị biểu thức G = \frac{a - 3 - 4a^{- 1}}{a^{\frac{1}{2}} -
4a^{\frac{- 1}{2}}} - \frac{1}{a^{- \frac{1}{2}}} với a là một số thực dương.

    Ta có:

    G = \frac{a - 3 - 4a^{-
1}}{a^{\frac{1}{2}} - 4a^{\frac{- 1}{2}}} - \frac{1}{a^{-
\frac{1}{2}}}

    G = \frac{\frac{a^{2} - 3a -
4}{a}}{\frac{a - 4}{\sqrt{a}}} - \sqrt{a}

    G = \frac{a^{2} - 3a - 4}{\sqrt{a}(a -
4)} - \sqrt{a}

    G = \frac{a^{2} - 3a - 4 - a(a -
4)}{\sqrt{a}(a - 4)}

    G = \frac{a - 4}{\sqrt{a}(a - 4)} = a^{-
\frac{1}{2}}

  • Câu 12: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 13: Thông hiểu

    Nếu x,y là hai số thực dương bất kì thỏa mãn 4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y thì khẳng định nào dưới đây đúng?

    Ta có:

    4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y

    \Leftrightarrow (2\ln x - 3\ln y)^{2} =0

    \Leftrightarrow 2\ln x - 3\ln y =0

    \Leftrightarrow x^{2} =
y^{3}

  • Câu 14: Thông hiểu

    Với điều kiện a
\in \mathbb{R}^{+}, đơn giản biểu thức G = \frac{a^{\frac{4}{3}}.\left( a^{- \frac{1}{3}}
+ a^{\frac{2}{3}} ight)}{a^{\frac{1}{4}}.\left( a^{\frac{3}{4}} + a^{-
\frac{1}{4}} ight)} thu được kết quả là:

    Ta có:

    G = \frac{a^{\frac{4}{3}}.\left( a^{-
\frac{1}{3}} + a^{\frac{2}{3}} ight)}{a^{\frac{1}{4}}.\left(
a^{\frac{3}{4}} + a^{- \frac{1}{4}} ight)} =
\frac{a^{\frac{4}{3}}.a^{- \frac{1}{3}} +
a^{\frac{4}{3}}.a^{\frac{2}{3}}}{a^{\frac{1}{4}}.a^{\frac{3}{4}} +
a^{\frac{1}{4}}.a^{- \frac{1}{4}}}

    = \frac{a + a^{2}}{a + 1} = \frac{a(a +
1)}{a - 1} = a

  • Câu 15: Thông hiểu

    Cho phương trình phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2} . Số nghiệm của phương trình là:

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} + \frac{x}{3} - \frac{1}{{2x}} = \frac{7}{3}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x = 3\left( {tm} ight)} \\ 
  {x =  - \dfrac{1}{5}\left( {ktm} ight)} 
\end{array}} ight.

    Vậy phương trình có duy nhất 1 nghiệm x = 3.

  • Câu 16: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 17: Thông hiểu

    Trong các hàm số sau hàm số nào có cùng tập xác định với hàm số y =
x^{\frac{1}{5}}?

    Ta có tập xác định hàm số y =
x^{\frac{1}{5}}(0; +
\infty).

    Hàm số y = x^{\pi}cũng có tập xác định là (0; + \infty).

    Hàm số y = \frac{1}{\sqrt[5]{x}} có tập xác định là \mathbb{R}\backslash\left\{ 0
ight\}.

    Hàm số y = \sqrt{x} có tập xác định là \lbrack 0; + \infty).

    Hàm số y = \sqrt[3]{x} có tập xác định là \mathbb{R}.

  • Câu 18: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 19: Thông hiểu

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 20: Nhận biết

    Đặt \log_{5}2 =a. Khi đó \log_{25}800 biểu diễn là:

    Ta có:

    \log_{25}800 =\dfrac{\log_{5}800}{\log_{5}25} =\dfrac{\log_{5}2^{5}.5^{2}}{\log_{5}5^{2}}

    = \frac{5\log_{5}2 + 2}{2} = \frac{5a +2}{2}

  • Câu 21: Nhận biết

    Cho a\in\mathbb{R}\backslash\left\{ 1 ight\}. Mệnh đề nào sau đây đúng với mọi số thực dương x,y?

    Theo quy tắc Logarit của một thương ta só:

    \log_{a}\left( \frac{x}{y} ight) =\log_{a}x - \log_{b}y với \forall x,y
> 0

  • Câu 22: Nhận biết

    Kết quả nào dưới đây là nghiệm của phương trình \ln(3m) = 2?

    Điều kiện xác định: m > 0

    \ln(3m) = 2 \Leftrightarrow 3m = e^{2}
\Leftrightarrow m = \frac{e^{2}}{3}(tm)

    Vậy phương trình có nghiệm m =
\frac{e^{3}}{3}.

  • Câu 23: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 24: Vận dụng cao

    Cho S_{1} =\left( 2 + \sqrt{3} ight)^{2^{2} + 4^{2} + ... + 2018^{2}};S_{1} =\left( 2 - \sqrt{3} ight)^{1^{2} + 3^{2} + ... + 2017^{2}}. Kết quả của \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) là:

    Ta có:

    (2k)^{2} - (2k - 1)^{2} = 4k -
1

    \Rightarrow S_{1}S_{2} = (2 +
\sqrt{3})^{2^{2} - 1^{2} + 4^{2} - 3^{2} + ... + 2018^{2} -
2017^{2}}

    = (2 + \sqrt{3})^{4.1 - 1 + 4.2 - 1 +
... + 4.1009 - 1} = (2 + \sqrt{3})^{2037171}

    \Rightarrow \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) = \dfrac{1}{3}\log_{2 + \sqrt{3}}\left( 2 + \sqrt{3}ight)^{2037171} = 679057

  • Câu 25: Nhận biết

    Tập nghiệm của bất phương trình 4^{x} \geq 2 là:

    Ta có:

    4^{x} \geq 2 \Leftrightarrow \left(
2^{2} ight)^{x} \geq 2 \Leftrightarrow 2^{2x} \geq 2

    \Leftrightarrow 2x \geq 1 \Leftrightarrow
x \geq \frac{1}{2} hay x \in
\left\lbrack \frac{1}{2}; + \infty ight)

  • Câu 26: Nhận biết

    Trong các hàm số sau: y = 0,5^{x};y = \log_{\frac{1}{2}}x;y =\log_{\frac{5}{2}}x;y = \left( \frac{4}{5} ight)^{x}. Hàm số nào đồng biến trên tập xác định?

    Ta có: \frac{5}{2} > 1 nên hàm số y =\log_{\frac{5}{2}}x đồng biến trên tập xác định của nó.

  • Câu 27: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 28: Vận dụng cao

    Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức

    P = \frac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}

    có dạng P = m\sqrt[4]{a} + n\sqrt[4]{b}. Khi đó biểu thức liên hệ giữa n và m là:

    Ta có:

    \begin{matrix}  P = \dfrac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{{{\left( {\sqrt[4]{a}} ight)}^2} - {{\left( {\sqrt[4]{b}} ight)}^2}}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\sqrt[4]{a} + 2\sqrt[4]{a}\sqrt[4]{b}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{\left( {\sqrt[4]{a} - \sqrt[4]{b}} ight)\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \sqrt[4]{a} + \sqrt[4]{b} - 2\sqrt[4]{a} = \sqrt[4]{b} - \sqrt[4]{a} \hfill \\   \Rightarrow m =  - 1;n = 1 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Biết \log_{m^{2}}\left( \frac{m^{3}}{\sqrt[5]{n^{3}}}ight) = 3 với m,n > 0;m eq
1. Hỏi giá trị của biểu thức \log_{m}n bằng bao nhiêu?

    Ta có:

    \log_{m^{2}}\left(\frac{m^{3}}{\sqrt[5]{n^{3}}} ight) = 3

    \Leftrightarrow \frac{1}{2}\left(\log_{m}m^{3} - \log_{m}n^{\frac{3}{5}} ight) = 3

    \Leftrightarrow 3 - \frac{3}{5}\log_{m}n= 6

    \Leftrightarrow \log_{m}n = -5

  • Câu 30: Vận dụng

    Tìm giá trị tham số m để bất phương trình 1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight) có nghiệm đúng với mọi x.

    Ta có:

    1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight)

    \Leftrightarrow \log_{5}\left\lbrack5\left( x^{2} + 1 ight) ightbrack \geq \log_{5}\left( mx^{2} + 4x +m ight)

    \Leftrightarrow \left\{ \begin{matrix}
5\left( x^{2} + 1 ight) \geq mx^{2} + 4x + m \\
mx^{2} + 4x + m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(5 - m)x^{2} - 4x + 5 - m \geq 0\ \ \ (1) \\
mx^{2} + 4x + m > 0\ \ \ \ (2) \\
\end{matrix} ight.

    Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.

    Với m = 0 hoặc m = 5 không thỏa mãn đề bài.

    Với m eq 0 hoặc m eq 5 để thỏa mãn đề bài thì:

    \left\{ \begin{matrix}
5 - m > 0 \\
4 - (5 - m)^{2} \leq 0 \\
m > 0 \\
4 - m^{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
\left\lbrack \begin{matrix}
m \leq 3 \\
m \geq 7 \\
\end{matrix} ight.\  \\
m > 0 \\
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow 2 < m \leq
3

  • Câu 31: Vận dụng

    Cho a,b,c là các số thực dương khác 1. Các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x có đồ thị như hình vẽ bên.

    Tìm khẳng định đúng.

    Kí hiệu hình vẽ như sau:

    Kẻ đường thẳng y = 1 cắt đồ thị của các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x lần lượt tại các điểm có hoành độ là a;b;c.

    Từ đồ thị ta có a > c >
b.

  • Câu 32: Vận dụng

    Tìm công bội q của một cấp số nhân. Biết ba số x + \log_{2}3;x + \log_{4}3;x + \log_{8}3 theo thứ tự lập thành cấp số nhân.

    Theo giả thiết ta có:

    \left( x + \log_{4}3 ight)^{2} = \left(x + \log_{2}3 ight).\left( x + \log_{8}3 ight)

    \Leftrightarrow x\log_{2}3 + \left(\frac{1}{2}\log_{2}3 ight)^{2} = \frac{4}{3}x\log_{2}3 +\frac{1}{3}\left( \log_{2}3 ight)^{2}

    \Leftrightarrow \frac{1}{3}.x.\log_{2}3 =- \frac{1}{12}.\left( \log_{2}3 ight)^{2}

    \Leftrightarrow x = -\frac{1}{4}.\log_{2}3

    Vậy công bội của cấp số nhân là: q =\dfrac{x + \log_{4}3}{x + \log_{2}3} = \dfrac{- \dfrac{1}{4}.\log_{2}3 +\dfrac{1}{2}.\log_{2}3}{- \dfrac{1}{4}.\log_{2}3 + \log_{2}3} =\dfrac{1}{3}

  • Câu 33: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 34: Thông hiểu

    Tính giá trị biểu thức G = \log_{a^{2}}a^{10}.b^{2} + \log_{\sqrt{a}}\left(\frac{a}{\sqrt{b}} ight) + \log_{\sqrt[3]{5}}b^{- 2} với (0 < a eq 1;0 < b eq 1).

    Ta có:

    G = \log_{a^{2}}a^{10}.b^{2} +\log_{\sqrt{a}}\left( \frac{a}{\sqrt{b}} ight) + \log_{\sqrt[3]{b}}b^{-2}

    G = \log_{a^{2}}a^{10} + \log_{a^{2}}b^{2}+ \log_{\sqrt{a}}a - \log_{\sqrt{a}}\sqrt{b} -2\log_{\frac{1}{3}}b

    G = 5 + \log_{a}b + 2 - \log_{a}b - 6 =1

  • Câu 35: Thông hiểu

    Tìm số nghiệm phương trình \log_{2}x^{2} = 2\log_{2}(3x + 4)?

    Điều kiện \left\{ \begin{matrix}x^{2} > 0 \\3x + 4 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 0 \\x > - \dfrac{4}{3} \\\end{matrix} ight.

    Ta có:

    \log_{2}x^{2} = 2\log_{2}(3x +4)

    \Leftrightarrow \log_{2}x^{2} =\log_{2}(3x + 4)^{2}

    \Leftrightarrow x^{2} = (3x + 4)^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3x + 4 \\
x = - 3x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = - 2(ktm) \\
\end{matrix} ight.

    Vậy phương trình có 1 nghiệm.

  • Câu 36: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 37: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 38: Thông hiểu

    Giả sử phương trình \log_{3}(x - 1) + \log_{3}(x - 5) = 1 có nghiệm là x = p + \sqrt{q};\left(p;q\in\mathbb{ Z} ight). Tính giá trị biểu thức H = p + q?

    Điều kiện xác định \left\{ \begin{matrix}
x - 1 > 0 \\
x - 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
x > 5 \\
\end{matrix} ight.\  \Rightarrow x > 5

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = \log_{3}3

    \Leftrightarrow (x - 1).(x - 5) =
3

    \Leftrightarrow x^{2} - 6x + 5 = 3
\Leftrightarrow x^{2} - 6x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 - \sqrt{7}(ktm) \\
x = 3 + \sqrt{7}(tm) \\
\end{matrix} ight.

    Nghiệm của phương trình là

    x = 3 + \sqrt{7} \Rightarrow \left\{
\begin{matrix}
p = 3 \\
q = 7 \\
\end{matrix} ight.\  \Rightarrow H = 3 + 7 = 10

  • Câu 39: Thông hiểu

    Xác định nghiệm của phương trình 4^{2x + 1} = 64?

    Ta có:

    4^{2x + 1} = 64 \Leftrightarrow 4^{2x +
1} = 4^{3}

    \Leftrightarrow 2x + 1 = 3
\Leftrightarrow x = 1(tm)

    Vậy phương trình có nghiệm x = 1.

  • Câu 40: Nhận biết

    Tìm nghiệm phương trình \log_{2}(2x - 3) = \log_{2}(x + 1)?

    Điều kiện x > \frac{3}{2}

    Ta có:

    \log_{2}(2x - 3) = \log_{2}(x + 1)

    \Leftrightarrow 2x - 3 = x + 1
\Leftrightarrow x = 4(tm)

    Vậy phương trình có nghiệm x =
4.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo