Tính giá trị biểu thức
.
Ta có:
Tính giá trị biểu thức
.
Ta có:
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Trong các phương trình sau đây, phương trình nào vô nghiệm?
Ta có:
Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình
Ta có:
. Biểu thức
có giá trị là:
Ta có:
Biểu thức
bằng với biểu thức nào dưới đây?
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Tìm nghiệm phương trình
?
Điều kiện
Ta có:
Vậy phương trình có nghiệm .
Cho
. Khẳng định nào sau đây đúng?
Ta có: do đó nếu
Đồ thị hàm số sau là của hàm số nào?

Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại và
.
Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án thỏa mãn.
Cho số dương
và các số thực
. Đẳng thức nào sau đây sai?
Ta có:
Cho
và
. Tính giá trị biểu thức
?
Ta có:
Khi đó:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số có tập xác định
Cơ số do đó hàm số đồng biến trên
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Với a và b là hai số thực dương tùy ý, giá trị
bằng:
Ta có:
Tìm giá trị
biết
.
Ta có:
Một người gửi 150 triệu đồng vào ngân hàng theo hình thức lãi kép với lãi suất 0,8%/tháng. Kể từ ngày gửi nếu mỗi cuối tháng người đó rút đều đặn 3 triệu đồng (trừ tháng cuối) thì sau bao nhiêu tháng số tiền đó sẽ được tút hết? (Tháng cuối cùng là tháng mà số tiền còn trong ngân hàng không vượt quá 3 triệu đồng và khi đó người đó rút hết toàn bộ số tiền còn lại).
Gọi là số tiền còn lại sau khi người đó rút đến tháng thứ n,
là số tiền gửi vào,
là lãi suất hàng tháng và
là số tiền rút ra hàng tháng.
Ta có:
….
Vậy n = 64 tháng.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Tìm hàm số nghịch biến trên tập số thực?
Ta có:
Hàm số có cơ số
nên hàm số nghịch biến trên
Hàm số có tập xác định
nên hàm số đồng biến trên
Hàm số có
nên hàm số nghịch biến trên
.
Hàm số có
nên hàm số đồng biến trên
.
Cho
. Mệnh đề nào sau đây đúng với mọi số thực dương
?
Theo quy tắc Logarit của một thương ta só:
với
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Biết
là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Biết là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Ta có:
Vậy giá trị của biểu thức
Biết
là các số thực dương khác 1 thỏa mãn
. Tính giá trị
?
Ta có:
Khi đó:
Giả sử phương trình
có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Giả sử phương trình có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Điều kiện xác định
Phương trình đã cho tương đương:
Cho phương trình
. Xác định nghiệm phương trình đã cho?
Điều kiện xác định:
Ta có:
Vậy phương trình có nghiệm là .
Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm là:
Rút gọn biểu thức
biết
.
Ta có:
Số
có bao nhiêu chữ số?
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147278481.
Biết
. Biểu diễn
theo
?
Ta có:
Cho đồ thị của ba hàm số
như hình vẽ:

Chọn kết luận đúng về mối quan hệ giữa
?
Quan sát đồ thị ta thấy
Hàm số là hàm số đồng biến nên
Hàm số là hàm số đồng biến nên
Hàm số là hàm nghịch biến nên
Vậy ta có:
Xét hàm số ta có
Xét hàm số ta có
Vậy .
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Trong các phương trình sau đây, phương trình nào nhận
làm nghiệm?
Thay vào các phương trình ta được:
(tm)
Vậy x = 2 là nghiệm của phương trình .
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.