Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 2: Vận dụng cao

    Cho S_{1} =\left( 2 + \sqrt{3} ight)^{2^{2} + 4^{2} + ... + 2018^{2}};S_{1} =\left( 2 - \sqrt{3} ight)^{1^{2} + 3^{2} + ... + 2017^{2}}. Kết quả của \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) là:

    Ta có:

    (2k)^{2} - (2k - 1)^{2} = 4k -
1

    \Rightarrow S_{1}S_{2} = (2 +
\sqrt{3})^{2^{2} - 1^{2} + 4^{2} - 3^{2} + ... + 2018^{2} -
2017^{2}}

    = (2 + \sqrt{3})^{4.1 - 1 + 4.2 - 1 +
... + 4.1009 - 1} = (2 + \sqrt{3})^{2037171}

    \Rightarrow \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) = \dfrac{1}{3}\log_{2 + \sqrt{3}}\left( 2 + \sqrt{3}ight)^{2037171} = 679057

  • Câu 3: Thông hiểu

    Với x \geq0 thì \sqrt{x\sqrt{x\sqrt{x^{2}}}} bằng:

    Ta có: \sqrt{x\sqrt{x\sqrt{x^{2}}}} =\sqrt{x.\sqrt{x.x}} = \sqrt{x.x} = x

  • Câu 4: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 5: Thông hiểu

    Xác định nghiệm của phương trình 4^{2x + 1} = 64?

    Ta có:

    4^{2x + 1} = 64 \Leftrightarrow 4^{2x +
1} = 4^{3}

    \Leftrightarrow 2x + 1 = 3
\Leftrightarrow x = 1(tm)

    Vậy phương trình có nghiệm x = 1.

  • Câu 6: Thông hiểu

    Tính giá trị K =
xy + z biết \log_{15}30 = \dfrac{1 +x\log2}{y\log3 + z\log5};\left( x,y,z\in\mathbb{ Z} ight)?

    Ta có:

    \log_{15}30 = \dfrac{1 + x\log2}{y\log3 +z\log5}

    Mặt khác

    \log_{15}30 =\frac{\log30}{\log15}

    = \frac{\log10 + \log3}{\log3 + \log5} =\frac{1 + \log3}{\log3 + \log5}

    \Rightarrow x = 1;y = 1;z = 1
\Rightarrow K = 2

  • Câu 7: Nhận biết

    Trong các hàm số dưới đây, hàm số nào là hàm số mũ?

    Các hàm số y = \left( \sin x
ight)^{3}; y = x^{3}; y = \sqrt[3]{x} là các hàm số lũy thừa với số mũ hữu tỉ, hàm số y =
3^{x} là hàm số mũ với cơ số là 3.

  • Câu 8: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức K = \frac{6^{3 + \sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1
+ \sqrt{5}}}.

    Ta có:

    K = \frac{6^{3 + \sqrt{5}}}{2^{2 +
\sqrt{5}}.3^{1 + \sqrt{5}}} = \frac{2^{3 + \sqrt{5}}.3^{3 +
\sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1 + \sqrt{5}}} = 2.3^{2} =
18

  • Câu 10: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 11: Nhận biết

    Tính giá trị biểu thức 4^{\log_{2}\sqrt{3}} ?

    Ta có:

    4^{\log_{2}\sqrt{3}} = \left( 2^{2}ight)^{\log_{2}\sqrt{3}} = \left( 2^{\log_{2}\sqrt{3}} ight)^{2} =\left( \sqrt{3} ight)^{2} = 3

  • Câu 12: Thông hiểu

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 13: Nhận biết

    Nghiệm của phương trình 7^{x} = 2 là:

    Ta có:

    7^{x} = 2 \Leftrightarrow x =\log_{7}2

    Vậy phương trình có nghiệm x =\log_{7}2.

  • Câu 14: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 15: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 16: Vận dụng

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 18: Vận dụng

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Đáp án là:

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Phương trình đã cho tương đương

    \left\{ \begin{matrix}
x + 2 > 0 \\
x^{2} - (a - 1)x + a^{2} - 6a + 2 = x + 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > - 2 \\
x^{2} - ax + a^{2} - 6a = 0(*) \\
\end{matrix} ight.

    Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm x_{1};x_{2} thỏa mãn - 2 < x_{1} < 0 < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
\left( x_{1} + 2 ight)\left( x_{2} + 2 ight) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
x_{1}.x_{2} + 2\left( x_{1} + x_{2} ight) + 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a < 0 \\
a^{2} - 4a + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
0 < a < 6 \\
a eq 2 \\
\end{matrix} ight.

    Mặt khác a\mathbb{\in Z \Rightarrow}a \in
\left\{ 1;3;4;5 ight\}

    Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

  • Câu 19: Nhận biết

    Tập nghiệm của bất phương trình \log_{0,25}\left( x^{2} - 3x ight) = -1? là:

    Điều kiện x^{2} - 3x > 0
\Leftrightarrow x \in ( - \infty;0) \cup (3; + \infty)

    \log_{0,25}\left( x^{2} - 3x ight) = -1

    \Leftrightarrow x^{2} - 3x =
4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = 4(tm) \\
\end{matrix} ight.

    Vậy phương trình có nghiệm x = -1 hoặc x = 4.

  • Câu 20: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Tìm số nghiệm của phương trình \log_{3}(2a + 1) + \log_{3}(a - 3) = 2?

    Điều kiện xác định \left\{ \begin{matrix}2a + 1 > 0 \\a - 3 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a > - \dfrac{1}{2} \\a > 3 \\\end{matrix} ight.\  \Rightarrow a > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (2a+ 1)(a - 3) ightbrack = \log_{3}9

    \Leftrightarrow (2a + 1)(a - 3) =
9

    \Leftrightarrow 2a^{2} - 5a - 12 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 4(tm) \\a = - \dfrac{3}{2}(ktm) \\\end{matrix} ight.

    Vậy phương trình có 1 nghiệm duy nhất.

  • Câu 22: Thông hiểu

    Phương trình 2^{\sqrt{x}} = 2^{2 - x} có bao nhiêu nghiệm thực?

    Ta có:

    2^{\sqrt{x}} = 2^{2 - x} \Leftrightarrow
\left\{ \begin{matrix}
x \geq 0 \\
\sqrt{x} = 2 - x \\
\end{matrix} ight.\  \Leftrightarrow x = 1

    Vậy phương trình có duy nhất 1 nghiệm.

  • Câu 23: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 24: Vận dụng

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    \Leftrightarrow 3^{a}.2^{b}.5^{c} =
5

    Do a,b,c\in\mathbb{ N} nên chỉ có một bộ số (a,b,c) = (0,0,1) thỏa mãn.

    Khẳng định đúng là a = b.

  • Câu 25: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Thông hiểu

    Cho a,b là hai số thực dương thỏa mãn \log_{9}a^{4} +\log_{3}b = 8 và \log_{3}a +\log_{\sqrt[3]{3}}b = 9. Tính giá trị của biểu thức K = ab + 1.

    Ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2\log_{3}a + \log_{3}b = 8 \\ \log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{3}a = 3 \\ \log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight.

    \Leftrightarrow K = ab + 1 =
244

  • Câu 27: Nhận biết

    Cho hàm số y =
\ln\left( 15 - x^{2} ight). Hỏi có bao nhiêu giá trị x\in \mathbb{Z} thuộc tập xác định D của hàm số?

    Điều kiện xác định của hàm số y =
\ln\left( 15 - x^{2} ight) là:

    15 - x^{2} > 0 \Leftrightarrow -
\sqrt{15} < x < \sqrt{15}

    x\mathbb{\in Z \Rightarrow}x = \left\{
\pm 3; \pm 2; \pm 1;0 ight\}

    Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.

  • Câu 28: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 29: Nhận biết

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Đáp án là:

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Ta có:

    3^{x^{2} - 4x + 5} = 9 \Leftrightarrow
3^{x^{2} - 4x + 5} = 3^{2}

    \Leftrightarrow x^{2} - 4x + 5 = 2
\Leftrightarrow x^{2} - 4x + 3 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = 1 \\
x_{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow {x_{1}}^{2} + {x_{2}}^{2} =
10

    Vậy giá trị cần tìm bằng 10

  • Câu 30: Nhận biết

    Tính giá trị biểu thức A = \sqrt[5]{- 4}.\sqrt[5]{8}.

    Ta có:

    A = \sqrt[5]{- 4}.\sqrt[5]{8} =
\sqrt[5]{- 4.8} = \sqrt[5]{- 32} = - 2

  • Câu 31: Thông hiểu

    Cho hai số thực dương a,b. Tính giá trị biểu thức: M = \log_{\sqrt{2}}a - \log_{2}b biết a^{2} - 16b = 0?

    Ta có: a^{2} - 16b = 0 \Rightarrow b =
\frac{a^{2}}{16}

    M = \log_{\sqrt{2}}a - \log_{2}b =\log_{\sqrt{2}}a - \log_{2}\frac{a^{2}}{16}

    = 2\log_{a}a - 2\log_{2}a + \log_{2}16 =\log_{2}16 = 4

  • Câu 32: Thông hiểu

    Cho đồ thị hàm số y = f(x) = \log_{a}x;(a > 0,a eq 1) như hình vẽ:

    Xác định giá trị a?

    Đồ thị hàm số y = f(x) =\log_{a}x đi qua điểm (2; -1) nên \log_{a}2 = - 1

    Khi đó a^{- 1} = 2 \Leftrightarrow\frac{1}{a} = 2 \Leftrightarrow a = \frac{1}{2}

  • Câu 33: Thông hiểu

    Cho hai số thực dương a và b. Đơn giản biểu thức E = \frac{a^{\frac{1}{3}}\sqrt{b} +
b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} ta được E = a^{x}.b^{y}. Tích x.y là:

    Ta có:

    K = E = \frac{a^{\frac{1}{3}}\sqrt{b} +
b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} =
\frac{a^{\frac{1}{3}}.b^{\frac{1}{2}} +
b^{\frac{1}{3}}.a^{\frac{1}{2}}}{a^{\frac{1}{6}} +
b^{\frac{1}{6}}}

    =
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}\left( a^{\frac{1}{6}} +
b^{\frac{1}{6}} ight)}{a^{\frac{1}{6}} + b^{\frac{1}{6}}} =
a^{\frac{1}{3}}.b^{\frac{1}{3}}

    \Rightarrow \left\{ \begin{matrix}
x = \frac{1}{3} \\
y = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow xy = \frac{1}{9}

  • Câu 34: Nhận biết

    Biết m,n là hai số dương tùy ý thì \log\left( m^{3}n^{2} ight) có giá trị tương ứng với biểu thức nào sau đây?

    Ta có: m,n > 0

    \log\left( m^{3}n^{2} ight) = \log m^{3} + \log n^{2} = 3\log m + 2\log n

  • Câu 35: Thông hiểu

    Tính giá trị biểu thức: N = 2\log_{2}a + 5\log_{2}b biết a,b \in \mathbb{R}^{+};a^{2}b^{5} =
64?

    Ta có: a,b > 0

    a^{2}b^{5} = 64 \Leftrightarrow \log_{2}\left( a^{2}b^{5} ight) = \log_{2}64

    \Leftrightarrow 2\log_{2}a + 5\log_{2}b =6

    \Leftrightarrow N = 6

  • Câu 36: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \log_{2}\frac{x + \sqrt{x} - 2}{x -2}?

    Hàm số xác định khi

    \frac{x + \sqrt{x} - 2}{x - 2} =\frac{\left( \sqrt{x} - 1 ight)\left( \sqrt{x} + 2 ight)}{x - 2}> 0

    \Leftrightarrow \frac{\sqrt{x} - 1}{x -2} > 0 \Leftrightarrow \left\lbrack \begin{matrix}0 \leq x < 1 \\2 < x \\\end{matrix} ight.

    Vậy tập xác định của hàm số là D =\lbrack 0;1) \cup (2; + \infty)

  • Câu 37: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 38: Nhận biết

    Cho bất phương trình 2^{x + 2} < \left( \frac{1}{4} ight)^{-
x}. Tập nghiệm của bất phương trình là:

    Ta có:

    2^{x + 2} < \left( \frac{1}{4}
ight)^{- x} \Leftrightarrow 2^{x + 2} < 2^{2x}

    \Leftrightarrow x + 2 <
2x

    \Leftrightarrow x > 2

  • Câu 39: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(x - 1)^{2}?

    Điều kiện xác định của hàm số y = \ln(x -
1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 1 ight\}.

  • Câu 40: Nhận biết

    Hàm số nào sau đây được gọi là hàm số lũy thừa?

    Hàm số y = x^{- 3} là hàm số lũy thừa.

    Hàm số y = 3^{- x} và hàm số y = e^{x} là hàm số mũ.

    Hàm số y = \ln x là hàm số lôgarit.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo