Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Biết rằng các chữ số p khi viết trong hệ thập phân biết p = 2^{759839} - 1 là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?

    Ta có:

    \log p < \log 2^{756839} = 756839log2
\approx 227831,2409

    \Rightarrow 10^{227831} \leq p <
10^{227832}

    Vậy p có 227832 chữ số.

  • Câu 2: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 3: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 4: Thông hiểu

    Tính B =
\sqrt{\left( x^{\pi} + y^{\pi} ight)^{2} - \left( 4^{\frac{1}{\pi}}xy
ight)^{\pi}}?

    Ta có:

    B = \sqrt{\left( x^{\pi} + y^{\pi}
ight)^{2} - \left( 4^{\frac{1}{\pi}}xy ight)^{\pi}}

    B = \sqrt{x^{2\pi} + y^{2\pi} +
2x^{\pi}y^{\pi} - 4x^{\pi}y^{\pi}}

    B = \sqrt{x^{2\pi} + y^{2\pi} -
2x^{\pi}y^{\pi}}

    B = \sqrt{\left( x^{\pi} - y^{\pi}
ight)^{2}} = \left| x^{\pi} - y^{\pi} ight|

  • Câu 5: Nhận biết

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 6: Thông hiểu

    Giải phương trình \log_{2}\left( x^{2} + x + 1 ight) = 2 +\log_{2}x. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:

    Điều kiện xác định:

    \left\{ \begin{matrix}
x^{2} + x + 1 > 0 \\
x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\forall x\mathbb{\in R} \\
x > 0 \\
\end{matrix} ight.\  \Rightarrow x > 0

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}4 + \log_{2}x

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}(4x)

    \Leftrightarrow x^{2} + x + 1 =
4x

    \Leftrightarrow x^{2} - 3x + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{3 + \sqrt{5}}{2}(tm) \\x = \dfrac{3 - \sqrt{5}}{2}(tm) \\\end{matrix} ight.

    \Rightarrow S = \frac{3 + \sqrt{5}}{2} +
\frac{3 - \sqrt{5}}{2} = 3

    Vậy S = 3

  • Câu 7: Thông hiểu

    Rút gọn biểu thức B = \left( \frac{a + b}{\sqrt[3]{a} + \sqrt[3]{b}}
- \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2} biết a^{2} eq
b^{2}.

    Ta có:

    B = \left( \frac{a + b}{\sqrt[3]{a} +
\sqrt[3]{b}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
\sqrt[3]{ab} + \sqrt[3]{b^{2}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a}
- \sqrt[3]{b} ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
2\sqrt[3]{ab} + \sqrt[3]{b^{2}} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}:\left( \sqrt[3]{a} - \sqrt[3]{b} ight)^{2} =
1

  • Câu 8: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 9: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

  • Câu 10: Vận dụng cao

    Cho S_{1} =\left( 2 + \sqrt{3} ight)^{2^{2} + 4^{2} + ... + 2018^{2}};S_{1} =\left( 2 - \sqrt{3} ight)^{1^{2} + 3^{2} + ... + 2017^{2}}. Kết quả của \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) là:

    Ta có:

    (2k)^{2} - (2k - 1)^{2} = 4k -
1

    \Rightarrow S_{1}S_{2} = (2 +
\sqrt{3})^{2^{2} - 1^{2} + 4^{2} - 3^{2} + ... + 2018^{2} -
2017^{2}}

    = (2 + \sqrt{3})^{4.1 - 1 + 4.2 - 1 +
... + 4.1009 - 1} = (2 + \sqrt{3})^{2037171}

    \Rightarrow \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) = \dfrac{1}{3}\log_{2 + \sqrt{3}}\left( 2 + \sqrt{3}ight)^{2037171} = 679057

  • Câu 11: Thông hiểu

    Điều kiện xác định của hàm số y = \dfrac{1}{\sqrt{\log_{9}\dfrac{2x}{x + 1} -\dfrac{1}{2}}} là:

    Điều kiện xác định của hàm số:

    \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  { l o g{ _9}\dfrac{{2x}}{{x + 1}} - \dfrac{1}{2} > 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  {\dfrac{{2x}}{{x + 1}} > 3} 
\end{array}} ight.} ight.

    \Leftrightarrow \frac{2x}{x + 1} > 3
\Leftrightarrow \frac{x + 3}{x + 1} < 0 \Leftrightarrow - 3 < x
< - 1

  • Câu 12: Thông hiểu

    Chọn mệnh đề đúng trong các khẳng định dưới đây.

    Xét hàm số y = a^{x} y = \left( \frac{1}{a} ight)^{x}

    Với \forall x\in\mathbb{ R} ta có: f( - x) = a^{- x} = \left( \frac{1}{a}
ight)^{x} = g(x)

    Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.

  • Câu 13: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 14: Nhận biết

    Tìm điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2}?

    Điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

  • Câu 15: Nhận biết

    Tập xác định của hàm số y = \log_{2}(x - 2) là:

    Điều kiện xác định của hàm số y = \log_{2}(x - 2) là:

    x - 2 > 0 \Rightarrow x >
2

    Vậy tập xác định của hàm số là D = (2; +
\infty)

  • Câu 16: Thông hiểu

    Xác định tập xác định D của hàm số y = \sqrt{- 2x^{2} + 5x - 2} +
\ln\sqrt[4]{\frac{1}{x^{2} - 1}}.

    Hàm số đã cho xác định khi và chỉ khi:

    \left\{ \begin{matrix}- 2x^{2} + 5x - 2 \geq 0 \\\dfrac{1}{x^{2} - 1} > 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  \dfrac{1}{2} \leqslant x \leqslant 2 \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {x <  - 1} \\ 
  {x > 1} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow 1 < x \leqslant 2

    Vậy tập xác định của hàm số là: D =
(1;2brack

  • Câu 17: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 18: Thông hiểu

    Tính giá trị của biểu thức A = \log_{mn}x. Biết \log_{m}x = 3;\log_{n}x = 4 với m,n là các số thực dương lớn hơn 1?

    Ta có:

    A = \log_{mn}x =\frac{1}{\log_{x}mn}

    = \frac{1}{\log_{x}m +\log_{x}n}

    = \dfrac{1}{\dfrac{1}{\log_{m}x} +\dfrac{1}{\log_{n}x}}

    = \dfrac{\log_{m}x.\log_{n}x}{\log_{m}x +\log_{n}x} = \dfrac{12}{7}

  • Câu 19: Nhận biết

    Tính giá trị biểu thức A = \sqrt[5]{- 4}.\sqrt[5]{8}.

    Ta có:

    A = \sqrt[5]{- 4}.\sqrt[5]{8} =
\sqrt[5]{- 4.8} = \sqrt[5]{- 32} = - 2

  • Câu 20: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 21: Thông hiểu

    Trong các hàm số sau đây, hàm số nào có tập xác định D=\mathbb{ R}?

    Ta có:

    Hàm số y = \left( 2 + \sqrt{x}
ight)^{\pi} có tập xác định D =
\lbrack 0; + \infty)

    Hàm số y = \left( 2 + \frac{1}{x^{2}}
ight)^{\pi} có tập xác định D=\mathbb{ R}\backslash\left\{ 0ight\}

    Hàm số y = \left( 2 + x^{2}
ight)^{\pi}có tập xác định D= \mathbb{R}

    Hàm số y = (2 + x)^{\pi}có tập xác định D = ( - 2; + \infty)

  • Câu 22: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 23: Thông hiểu

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 24: Vận dụng

    Cho x > 0;y > 0. Viết biểu thức {x^{\frac{4}{5}}}.\sqrt[6]{{{x^5}\sqrt x }} = {x^m}{y^{\frac{4}{5}}}:\sqrt[6]{{{y^5}\sqrt y }} = {y^n}. Tính T = m - n

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{{\left( {{x^m}} ight)}^6} = {x^{\frac{{24}}{5}}}.{x^5}.{x^{\frac{1}{2}}} = {x^{\frac{{103}}{{10}}}} \Rightarrow m = \dfrac{{103}}{{60}}} \\   {{{\left( {{y^n}} ight)}^6} = {y^{\frac{{24}}{5}}}:\left( {{y^5}.{y^{\frac{1}{2}}}} ight) = {y^{ - \frac{7}{{10}}}} \Rightarrow n =  - \dfrac{7}{{60}}} \end{array}} ight. \Rightarrow T = m - n = \frac{{11}}{6}

  • Câu 25: Vận dụng

    Cho hàm số f(x) =
\frac{9^{x} - 2}{9^{x} + 3}. Tính giá trị của biểu thức:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{9^{x} - 2}{9^{x}
+ 3} + \frac{9^{1 - x} - 2}{9^{1 - x} + 3} = \frac{1}{3}

    Khi đó:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\left\lbrack
f\left( \frac{k}{2017} ight) + f\left( 1 - \frac{k}{2017} ight)
ightbrack + f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\frac{1}{3} +
f(1) = \frac{4039}{12}

  • Câu 26: Nhận biết

    Tìm nghiệm phương trình \log_{2}(2x - 3) = \log_{2}(x + 1)?

    Điều kiện x > \frac{3}{2}

    Ta có:

    \log_{2}(2x - 3) = \log_{2}(x + 1)

    \Leftrightarrow 2x - 3 = x + 1
\Leftrightarrow x = 4(tm)

    Vậy phương trình có nghiệm x =
4.

  • Câu 27: Nhận biết

    Xác định tập nghiệm của phương trình \log_{3}(2x + 3) = 1?

    Điều kiện xác định: x > -
\frac{3}{2}

    \log_{3}(2x + 3) = 1 \Leftrightarrow 2x +3 = 3 \Leftrightarrow x = 0(tm)

    Vậy phương trình có tập nghiệm S =
\left\{ 0 ight\}.

  • Câu 28: Nhận biết

    Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình \left(
\frac{1}{3} ight)^{x} < 2?

    Ta có:

    \left( \frac{1}{3} ight)^{x} < 2
\Leftrightarrow x > log_{\frac{1}{3}}2

    Vậy tập nghiệm của bất phương trình đã cho là x \in \left(\log_{\frac{1}{3}}2; + \inftyight)

  • Câu 29: Thông hiểu

    Cho số thực a dương tùy ý. Đặt a^{\frac{5}{4}}\sqrt{a.\sqrt[3]{a}} =
a^{x}. Giá trị của x tương ứng là:

    Ta có:

    a^{\frac{5}{4}}\sqrt{a.\sqrt[3]{a}} =
a^{\frac{5}{4}}.\sqrt{a.a^{\frac{1}{3}}} =
a^{\frac{5}{4}}.\sqrt{a^{\frac{4}{3}}}

    = a^{\frac{5}{4}}.a^{\frac{4}{6}} =
a^{\frac{5}{4} + \frac{4}{6}} = a^{\frac{23}{12}}

    \Rightarrow x =
\frac{23}{12}

    Vậy giá trị của x tương ứng là: \frac{23}{12}.

  • Câu 30: Nhận biết

    Tập xác định của hàm số y = \log(2x - 3)^{2} là:

    Hàm số y = \log(2x - 3)^{2} xác định nếu (2x - 3)^{2} > 0 \Leftrightarrow
x eq \frac{3}{2}

    Vậy tập xác định D\mathbb{=
R}\backslash\left\{ \frac{3}{2} ight\}.

  • Câu 31: Nhận biết

    Với 0 < a eq
1,x > 0, kết luận nào sau đây sai?

    Với 0 < a eq 1,x > 0 ta có:

    \log_{a}a = 1

    \log_{a}a^{x} = x

    \log_{a}1 = 0

    Là các kết luận đúng

    Ta lại có: a^{\log_{a}x} = x \Rightarrow x^{\log_{a}x} = x sai.

  • Câu 32: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 33: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 34: Thông hiểu

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Đáp án là:

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Ta có:

    3^{x^{2} - 3x} = 81 \Leftrightarrow
3^{x^{2} - 3x} = 3^{4}

    \Leftrightarrow x^{2} - 3x = 4
\Leftrightarrow x^{2} - 3x = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    Vậy tổng các nghiệm của phương trình là 3

  • Câu 35: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x - \log_{2}3 = 1 bằng:

    Điều kiện x eq 0

    Ta có:

    \log_{4}x - \log_{2}3 = 1 \Leftrightarrow\frac{1}{2}\log_{2}x^{2} = 1 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} = 2\log_{2}6\Leftrightarrow x^{2} = 6^{2}

    Khi đó tổng bình phương các nghiệm của phương trình bằng 0

  • Câu 36: Nhận biết

    Tính giá trị của biểu thức A = \log_{3}2.\log_{4}3...\log_{16}15.

    Ta có:

    A =\log_{3}2.\log_{4}3...\log_{16}15

    A =\log_{16}15.\log_{5}14....\log_{3}2.\log_{4}3 = \log_{16}2 =\frac{1}{4}

  • Câu 37: Thông hiểu

    Cho a =\log_{7}11;b = \log_{2}7. Biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a,b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9\log_{7}2

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 38: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Đồ thị hàm số sau là của hàm số nào?

    Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại y = \left( \sqrt{2} ight)^{x}y = \left( \sqrt{3} ight)^{x}.

    Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án y = \left( \frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 40: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\left( 4 - x^{2} ight).

    Điều kiện xác định 4 - x^{2} > 0
\Rightarrow x \in ( - 2;2)

    Vậy tập xác định của hàm số là D = ( -
2;2)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo