Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Khẳng định nào sau đây sai?
Ta có:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Tính tổng các nghiệm phương trình
thu được kết quả là:
Ta có:
Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là
mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).
Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).
Cho phương trình
. Xác định nghiệm phương trình đã cho?
Điều kiện xác định:
Ta có:
Vậy phương trình có nghiệm là .
Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.
Đáp án: 179084769,7||179084769.7
Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.
Đáp án: 179084769,7||179084769.7
Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất
Sau 1 tháng, số tiền cả gốc và lãi là:
Sau n tháng, số tiền cả gốc và lãi là:
Số tiền sau 10 năm với lãi suất 6% một năm là:
(triệu đồng).
Biết khi rút gọn biểu thức
thu được phân số
tối giản và
. Tính giá trị biểu thức
.
Ta có:
Ta lại có:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?
Hàm số có
là hàm số nghịch biến trên tập xác định của nó.
Các hàm số ;
;
có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Tập nghiệm của bất phương trình
là:
Ta có:
hay
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho hàm số
. Tìm tập xác định của hàm số.
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Ta có:
. Giá trị
là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi ![]()
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
.
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Giá trị của biểu thức
là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số có tập xác định
Cơ số do đó hàm số đồng biến trên
Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Giá trị của biểu thức
bằng:
Ta có:
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Biết
khi đó
có giá trị là:
Ta có:
Cho các số thực dương
bất kì thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Cho đồ thị hàm số
như hình vẽ:

Hàm số
có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là
.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số
và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số
là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số
Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số Sai||Đúng
Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.
Hàm số đồng biến trên khoảng
đúng vì
.
Tập xác định của hàm số là
đúng.
Xét hàm số có điều kiện xác định
Vì
Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số .
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Bác X gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 7%/ 1 năm. Biết rằng bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo (hoặc gọi tắt là hình thức lãi kép). Chọn công thức ứng với số tiền cả gốc và lãi bác X nhận được sau 10 năm?
Áp dụng công thức lại kép thì sau 10 năm số tiền bác X nhận được là
Tìm tập xác định của hàm số
là:
Điều kiện xác định:
Vậy tập xác định là:
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Cho ![]()
. Kết quả của
là:
Ta có:
Giá trị của biểu thức
là:
Ta có: