Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Cho các số thực dương
bất kì thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Cho
thỏa mãn
. Xác định tỉ số
?
Điều kiện
Với
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Đặt
. Khi đó
biểu diễn là:
Ta có:
Cho
và
. Tính giá trị biểu thức
?
Ta có:
Khi đó:
Giải phương trình
thu được nghiệm là:
Điều kiện xác định:
Vậy phương trình có nghiệm là .
Rút gọn biểu thức
biết
.
Ta có:
Hàm số nào sau đây đồng biến trên
?
Do nên hàm số
đồng biến trên
.
Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình
?
Ta có:
Mà
Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Biết
là số thực dương khác 1. Viết và thu gọn biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho các số thức a, b thỏa mãn
và
. Tính giá trị của biểu thức
?
Ta có:
Đặt . Do
Khi đó
Với ta có:
=>
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Gọi a là giá trị nhỏ nhất của
. Có bao nhiêu số
để
?
Ta thấy bé nhất khi và chỉ khi:
Vậy có hai giá trị của n thỏa mãn điều kiện đề bài.
Cho phương trình
. Kết quả nào dưới đây là nghiệm phương trình đã cho?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Vậy phương trình có hai nghiệm.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.
Trong bốn phương án đã cho, chỉ có hàm số thỏa mãn.
Phương trình
có bao nhiêu nghiệm nguyên?
Điều kiện
Ta có:
(vì nghiệm cần xét là nghiệm nguyên)
Vậy phương trình không có nghiệm nguyên.
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Số
có bao nhiêu chữ số?
Ta có:
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147501992.
Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là:
Tính giá trị của biểu thức
biết
?
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Gọi
là các nghiệm của phương trình
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Khi đó:
Biết các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có:
Vậy khẳng định sai là:
Tìm nghiệm nguyên nhỏ nhất của bất phương trình
.
Điều kiện:
Bất phương trình tương đương
Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số
và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số
là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số
Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số Sai||Đúng
Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.
Hàm số đồng biến trên khoảng
đúng vì
.
Tập xác định của hàm số là
đúng.
Xét hàm số có điều kiện xác định
Vì
Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số .
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Tính giá trị biểu thức
.
Ta có:
Giá trị của
là:
Ta có:
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Giá trị của
với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Giá trị của với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Giả sử
là các số thực sao cho
đúng với mọi các số dương
thỏa mãn
và
. Tính giá trị của
bằng:
Ta có:
Khi đó:
Vậy