Số thực
thỏa mãn
với
. Giá trị của
bằng bao nhiêu?
Ta có:
Số thực
thỏa mãn
với
. Giá trị của
bằng bao nhiêu?
Ta có:
Xác định nghiệm của bất phương trình
?
Ta có:
hay
Tìm hàm số đồng biến trên
trong các hàm số dưới đây?
Xét hàm số có
nên hàm số
đồng biến trên
?
Tính tổng các nghiệm nguyên thuộc đoạn
của bất phương trình:
![]()
Tính tổng các nghiệm nguyên thuộc đoạn của bất phương trình:
Cho hàm số
. Tìm tập xác định của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Tìm tất cả các giá trị thực của tham số m để hàm số
xác định với mọi
.
Hàm số xác định với mọi x thuộc tập số thực:
Hãy xác định tập xác định
của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Cho ba số thực dương
thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Cho ba số thực dương thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Theo bài ra:
Khi đó ta có:
Nên
Mà
Ta lại có:
Vậy
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là .
Nếu
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Tính giá trị của biểu thức
biết
?
Ta có:
Rút gọn biểu thức
. (Giả sử tất cả các điều kiện đều xác định).
Ta có:
Thu gọn biểu thức
ta được kết quả ta được phân số tối giản
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Với các số thực dương x, y ta có:
theo thứ tự lập thành một cấp số nhân và các số
theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:
Từ theo thứ tự lập thành một cấp số nhân nên công bội
Mặt khác theo thứ tự lập thành một cấp số cộng nên
Đồ thị hàm số
đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Đồ thị hàm số đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Biết
. Tính
?
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Với
là một số thực dương, biểu thức
có giá trị là:
Ta có:
NB
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy
Cho phương trình
. Giả sử
là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của
là:
Điều kiện
Ta có:
Thu gọn biểu thức
với
ta được:
Ta có:
Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình đã cho là
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Với
thì
bằng:
Ta có:
Gọi
là các nghiệm của phương trình
. Trong các khẳng định dưới đây khẳng định nào đúng?
Đặt phương trình trở thành
Gọi là hai nghiệm của phương trình (*) suy ra
Theo định lí Vi – et phương trình (*) ta có:
Cho
với
. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Suy ra
Vì nên chỉ có 1 bộ số
thỏa mãn.
Vậy
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Giả sử tập nghiệm của bất phương trình
có dạng
với
. Tính tổng
.
Ta có:
Vậy S = 2
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Tính giá trị của biểu thức
.
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Cho
là các số thực thay đổi thỏa mãn
và
là các số thực dương thay đổi thỏa mãn
. Tính giá trị nhỏ nhất của biểu thức
?
Cho là các số thực thay đổi thỏa mãn
và
là các số thực dương thay đổi thỏa mãn
. Tính giá trị nhỏ nhất của biểu thức
?
Tìm số nghiệm của phương trình ![]()
Ta có:
Vậy phương trình có 1 nghiệm.
Xác định tập nghiệm của bất phương trình
?
Điều kiện
Ta có:
Vậy tập nghiệm bất phương trình là
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là