Trong các biểu thức sau, biểu thức nào không có nghĩa?
Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức không có nghĩa.
Trong các biểu thức sau, biểu thức nào không có nghĩa?
Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức không có nghĩa.
Phương trình
có tập nghiệm là:
Điều kiện
Ta có:
Vậy phương trình vô nghiệm hay .
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Khẳng định nào sau đây đúng?
Ta có:
Cho
. Tính giá trị biểu thức
.
Ta có:
Đặt khi đó
Ta có:
Phương trình
có bao nhiêu nghiệm thực?
Ta có:
Vậy phương trình có duy nhất 1 nghiệm.
Giải phương trình
được nghiệm
8
Giải phương trình được nghiệm
8
Điều kiện xác định:
Vậy phương trình có nghiệm .
Biết
là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Biết là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Ta có:
Vậy giá trị của biểu thức
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Cho phương trình với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Phương trình đã cho tương đương
Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm thỏa mãn
Mặt khác
Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Cho phương trình phương trình
. Số nghiệm của phương trình là:
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có duy nhất 1 nghiệm x = 3.
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số có tập xác định
Cơ số do đó hàm số đồng biến trên
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .
Biết
. Tính
?
Ta có:
Với a là số thực dương tùy ý,
bằng:
Ta có:
Cho
là hai số thực dương bất kì và
. Kết luận nào sau đây đúng?
Theo tính chất ta suy ra kết luận đúng là:
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Cơ số x bằng bao nhiêu để
?
Điều kiện
Ta có:
Vậy là giá trị cần tìm.
Cho
là số nguyên dương và một số
bất kì với
. Biết
![]()
Khi đó giá trị của
là bao nhiêu?
Ta có:
Vậy
Tính giá trị biểu thức
?
Ta có:
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Tìm tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm của phương trình là .
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có:
Số thực
thỏa mãn
với
. Giá trị của
bằng bao nhiêu?
Ta có:
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Cho x là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có:
Kết quả nào dưới đây là nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Tìm giá trị của x biết
.
Ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy