Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm x = 1.
Cho biểu thức
. Mệnh đề nào sau đây đúng?
Ta có:
Cho phương trình
. Kết quả nào dưới đây là nghiệm phương trình đã cho?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?
Hàm số nghịch biến trên
khi
.
Tìm công bội
của một cấp số nhân. Biết ba số
theo thứ tự lập thành cấp số nhân.
Theo giả thiết ta có:
Vậy công bội của cấp số nhân là:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Rút gọn biểu thức

Với ta có:
Khi đó:
Bác X gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 7%/ 1 năm. Biết rằng bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo (hoặc gọi tắt là hình thức lãi kép). Chọn công thức ứng với số tiền cả gốc và lãi bác X nhận được sau 10 năm?
Áp dụng công thức lại kép thì sau 10 năm số tiền bác X nhận được là
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
Cho đồ thị của ba hàm số
như hình vẽ:

Chọn kết luận đúng về mối quan hệ giữa
?
Quan sát đồ thị ta thấy
Hàm số là hàm số đồng biến nên
Hàm số là hàm số đồng biến nên
Hàm số là hàm nghịch biến nên
Vậy ta có:
Khi thay x = 1 vào hai hàm số ta thu được m > n
Vậy .
Hàm số nào sau đây không phải là hàm số mũ?
Hàm số là hàm số lũy thừa, không phải hàm số mũ.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số
và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số
là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số
Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số Sai||Đúng
Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.
Hàm số đồng biến trên khoảng
đúng vì
.
Tập xác định của hàm số là
đúng.
Xét hàm số có điều kiện xác định
Vì
Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số .
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Cho bất phương trình
. Khẳng định nào sau đây đúng?
Ta có
Vì cơ số nên
Kết hợp với điều kiện ra có tập nghiệm của bất phương trình là:
Rút gọn biểu thức
với
ta được kết quả:
Ta có:
Xác định tập nghiệm của phương trình
?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình có tập nghiệm là
Với
là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?
Theo định nghĩa và các tính chất của lũy thừa ta thấy:
;
;
là các mệnh đề đúng.
Xét mệnh đề với
ta có:
nên mệnh đề sai.
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?
Ta có:
Vậy mệnh đề sai là:
Cho
là các số thực dương lớn hơn 1 thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Biết
. Tính
?
Ta có:
Cho
. Biểu diễn
theo
.
Ta có:
Biết rằng hai số tự nhiên
thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Biết rằng hai số tự nhiên thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
![]()
Ta có:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Tìm tập nghiệm của bất phương trình:
.
Điều kiện
Bất phương trình tương đương
Kết hợp với điều kiện ta được tập nghiệm bất phương trình là:
Tìm nghiệm nguyên nhỏ nhất của bất phương trình
.
Điều kiện:
Bất phương trình tương đương
Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.
Đơn giản biểu thức
ta được:
Ta có:
Cho đồ thị hàm số
như hình vẽ:

Hàm số
có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là
.
Tính giá trị biểu thức
.
Ta có:
Cho hàm số
. Tìm tập xác định của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là: