Giá trị của
là:
Ta có:
Giá trị của
là:
Ta có:
Tính giá trị của biểu thức
biết
?
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Cho hàm số
. Với
, giá trị của biểu thức
bằng:
Ta có:
Tìm điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
Xác định tập xác định D của hàm số
.
Hàm số đã cho xác định khi và chỉ khi:
Vậy tập xác định của hàm số là:
Tập nghiệm của phương trình
là:
Điều kiện
Ta có:
Vậy phương trình có tập nghiệm .
Nghiệm của phương trình
là:
Ta có:
Vậy phương trình có nghiệm .
Hãy biểu diễn
theo hai giá trị
biết
?
Ta có:
Tính giá trị biểu thức
với
.
Ta có:
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho phương trình
với
là tham số. Tìm tất cả các giá trị thực của
để phương trình đã cho có nghiệm thực?
Để phương trình có nghiệm thực thì
.
Rút gọn biểu thức
với x > 0
Ta có:
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Biết rằng
. Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Cho đồ thị hàm số
như hình vẽ:

Hàm số
có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là
.
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Tính giá trị của biểu thức
.
Ta có:
Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:
![]()
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
![]()
Ta có:
Cho các hàm số
có đồ thị như hình vẽ dưới đây:

Kết luận nào sau đây đúng?
Dựa vào đồ thị hàm số là một hàm số nghịch biến trên tập xác định của nó nên
Hàm số là các hàm số đồng biến trên tập xác định của nó nên
Kẻ đường thẳng cắt đồ thị hàm số
lần lượt tại các điểm
Dựa vào đồ thị ta thấy
Vậy kết luận đúng là:
Cơ số x bằng bao nhiêu để
?
Điều kiện
Ta có:
Vậy là giá trị cần tìm.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Nếu
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Thu gọn biểu thức
ta được kết quả ta được phân số tối giản
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Giá trị của biểu thức
![]()
Ta có: