Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Cho
. Tìm khẳng định đúng trong các khẳng định dưới đây?
Khẳng định đúng là:
Cho đồ thị của hàm số ![]()

Hàm số tương ứng với đồ thị trên là:
Đồ thị hàm số đi qua điểm A(2; 1) nên hàm số tương ứng với đồ thị là:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là
Để nhận được số tiền hơn 400 triệu thì
Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.
Cho phương trình
. Số nghiệm thực của phương trình là:
Điều kiện
Ta có:
Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.
Vậy tập nghiệm của bất phương trình là:
Cho đồ thị hàm số
như hình vẽ:

Xác định giá trị
?
Đồ thị hàm số đi qua điểm (2; -1) nên
Khi đó
Cho
. Tính
theo
và
.
Ta có:
Mặt khác
Thay vào trên ta được
Từ đó ta biến đổi biểu thức về cơ số 7 ta được:
Giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Biết rằng các chữ số p khi viết trong hệ thập phân biết
là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?
Ta có:
Vậy p có 227832 chữ số.
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Biết rằng hai số tự nhiên
thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Biết rằng hai số tự nhiên thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Xác định nghiệm phương trình
?
Ta có:
Vậy phương trình có nghiệm
Thu gọn biểu thức
với
là các số thực dương:
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy
Cho hình vẽ:

Ta có đường thẳng
song song trục hoành cắt trục tung và đồ thị hai hàm số
lần lượt tại
. Biết
. Chọn khẳng định đúng?
Ta có:
Gọi
Khi đó
Phương trình
có nghiệm thuộc khoảng nào sau đây?
Điều kiện xác định
Phương trình đã cho:
Vậy nghiệm của phương trình thuộc khoảng
Xác định tất cả các giá trị của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi
Vậy thỏa mãn yêu cầu bài toán.
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Tìm tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là: .
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy là khẳng định đúng.
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Biết
là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?
Theo quy tắc Logarit ta có:
Tính giá trị biểu thức
với
.
Ta có:
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Cho
. Tính ![]()
Ta có:
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Biết
, xác định giá trị của biểu thức
theo
?
Ta có:
Đơn giản biểu thức
với
được kết quả là:
Ta có: