Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho x = \left( 2
+ \sqrt{3} ight)^{- 1}y =
\left( 2 - \sqrt{3} ight)^{- 1}. Tính giá trị biểu thức B = (x + 1)^{- 1} + (y + 1)^{- 1}?

    Ta có:

    x = \left( 2 + \sqrt{3} ight)^{- 1} =
\frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{2^{2} - \left( \sqrt{3}
ight)^{2}} = 2 - \sqrt{3}

    y = \left( 2 - \sqrt{3} ight)^{- 1} =
\frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{2^{2} - \left( \sqrt{3}
ight)^{2}} = 2 + \sqrt{3}

    Khi đó:

    B = (x + 1)^{- 1} + (y + 1)^{-
1}

    B = \left( 2 - \sqrt{3} + 1 ight)^{-
1} + \left( 2 + \sqrt{3} + 1 ight)^{- 1}

    B = \left( 3 - \sqrt{3} ight)^{- 1} +
\left( 3 + \sqrt{3} ight)^{- 1}

    B = \frac{1}{3 - \sqrt{3}} + \frac{1}{3
+ \sqrt{3}}

    B = \frac{3 + \sqrt{3} + 3 -
\sqrt{3}}{\left( 3 - \sqrt{3} ight)\left( 3 + \sqrt{3} ight)} =
\frac{6}{9 - 3} = 1

  • Câu 2: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 3: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. (đúng) vì 0 < a < 1.

    Tập xác định của hàm số y = \log(x -
1)(1; + \infty).

    Xét hàm số y = \log\left\lbrack (6 - x)(x
+ 2) ightbrack có điều kiện xác định là:

    (6 - x)(x + 2) > 0 \Leftrightarrow x
\in ( - 2;6)

    Vậy có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack.

    Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = x

  • Câu 4: Vận dụng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = \log_{t}x là hàm số đồng biến nên t > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = m^{x} là hàm nghịch biến nên 0 < m < 1

    Vậy ta có: 0 < m < n,t <1

    Xét hàm số y =\log_{t}x ta có log_{t}2 = 1 \Rightarrow t <2

    Xét hàm số y = n^{x} ta có n^{1} > 2 \Rightarrow n > 2

    Vậy m < t < n.

  • Câu 5: Nhận biết

    Kết luận nào đúng khi biểu diễn tập xác định của hàm số y = \log\left( x^{4}
ight)?

    Điều kiện xác định của hàm số y =
\log\left( x^{4} ight) là:

    x^{4} > 0 \Rightarrow x eq
0

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 0 ight\}

  • Câu 6: Nhận biết

    Biết a là số thực dương khác 1. Viết và thu gọn biểu thức a^{\frac{3}{2022}}.\sqrt[2022]{a} dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?

    Ta có:

    a^{\frac{3}{2022}}.\sqrt[2022]{a} =
a^{\frac{3}{2022}}.a^{\frac{1}{2022}} = a^{\frac{3}{2022} +
\frac{1}{2022}} = a^{\frac{4}{2022}} = a^{\frac{2}{1011}}

  • Câu 7: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Cho các hàm số y
= log_{a}x;y = log_{b}x;y = log_{c}x có đồ thị như hình vẽ dưới đây:

    Kết luận nào sau đây đúng?

    Dựa vào đồ thị hàm số y =
log_{b}x là một hàm số nghịch biến trên tập xác định của nó nên 0 < b < 1

    Hàm số y = log_{a}x;y = log_{c}x là các hàm số đồng biến trên tập xác định của nó nên a;c > 1

    Kẻ đường thẳng y = 1 cắt đồ thị hàm số y = log_{c}x;y = log_{a}x lần lượt tại các điểm A(c;1),B(a;1)

    Dựa vào đồ thị ta thấy x_{A} < x_{B}
\Leftrightarrow c < a

    Vậy kết luận đúng là: a > c >
b

  • Câu 9: Thông hiểu

    Cho phương trình 2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5} =
2^{2x^{2} + 3x + 7} + 1. Tính tổng giá trị các nghiệm phương trình đã cho.

    Ta có:

    2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5}
= 2^{2x^{2} + 3x + 7} + 1

    \Leftrightarrow 2^{x^{2} - 3x + 2} +
2^{x^{2} + 6x + 5} = 2^{x^{2} - 3x + 2}.2^{x^{2} + 6x + 5} +
1

    \Leftrightarrow \left( 2^{x^{2} - 3x +
2} - 1 ight) - 2^{x^{2} + 6x + 5}.\left( 2^{x^{2} - 3x + 2} - 1
ight) = 0

    \Leftrightarrow \left( 2^{x^{2} + 6x +
5} - 1 ight).\left( 2^{x^{2} - 3x + 2} - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{x^{2} + 6x + 5} - 1 = 0 \\
2^{x^{2} - 3x + 2} - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
2^{x^{2} + 6x + 5} = 1 \\
2^{x^{2} - 3x + 2} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} + 6x + 5 = 0 \\
x^{2} - 3x + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = - 5 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm của phương trình là S = 1 + 2 + ( - 1) + ( - 5) = - 3

  • Câu 10: Thông hiểu

    Đơn giản biểu thức N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >
0) ta được N =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =
\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{\frac{-
2}{7}}}

    = \frac{a^{\frac{5}{3} +
\frac{7}{3}}}{a^{4 - \frac{2}{7}}} = \frac{a^{4}}{a^{\frac{26}{7}}} =
a^{4 - \frac{26}{7}} = a^{\frac{2}{7}}

    \Rightarrow \frac{m}{n} = \frac{2}{7}
\Rightarrow 2m^{2} + n = 15

  • Câu 11: Thông hiểu

    Rút gọn biểu thức D =
log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}. (Giả sử tất cả các điều kiện đều xác định).

    Ta có:

    D =\log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}= \log_{a^{-1}}\frac{a.a^{\frac{3}{4}}.a^{\frac{2}{3}}}{a^{\frac{1}{2}}.a^{\frac{1}{4}}}

    = \log_{a^{-1}}\frac{a^{\frac{29}{12}}}{a^{\frac{3}{4}}} = \log_{a^{-1}}a^{\frac{5}{3}} = - \frac{5}{3}

  • Câu 12: Nhận biết

    Cho số thực dương a và số nguyên dương n tùy ý. Mệnh đề nào sau đây đúng?

    Ta có: \sqrt{a^{n}} =
a^{\frac{n}{2}}.

  • Câu 13: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 14: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 15: Thông hiểu

    Tính giá trị biểu thức S = \log_{\sqrt{a}}b^{2} +\frac{2}{\log_{\frac{a}{b^{2}}}a} với a,b > 0;a,b eq 1;a eq b^{2}.

    Ta có:

    S = \log_{\sqrt{a}}b^{2} +\frac{2}{\log_{\frac{a}{b^{2}}}a}

    S = 4\log_{a}b +2.\log_{a}\frac{a}{b^{2}}

    S = 4\log_{a}b + 2.\log_{a}a - 4\log_{a}b =2

  • Câu 16: Nhận biết

    Tìm tập xác định của hàm số y = \log_{4}x là:

    Điều kiện xác định x > 0

    Suy ra tập xác định của hàm số là: D =
(0; + \infty).

  • Câu 17: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Tính \log_{x}\sqrt[3]{x} với \forall x > 0;x eq 1?

    Ta có: \log_{x}\sqrt[3]{x} =\log_{x}x^{\frac{1}{3}} = \frac{1}{3}\log_{x}x = \frac{1}{3}

  • Câu 19: Nhận biết

    Cho bất phương trình \left( \frac{1}{3} ight)^{x} > 9. Xác định nghiệm của bất phương trình đã cho?

    Ta có:

    \left( \frac{1}{3} ight)^{x} > 9\Leftrightarrow \left( 3^{- 1} ight)^{x} > 3^{2}

    \Leftrightarrow 3^{- x} > 3^{2}\Leftrightarrow x < - 2

    Vậy tập nghiệm của bất phương trình là x\in ( - \infty; - 2)

  • Câu 20: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight) và y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 21: Thông hiểu

    Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm n\% diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?

    Diện tích đất phục vụ nông nghiệp ban đầu là S, diện tích đất nông nghiệp sau 4 năm sẽ là S_{0}; n\% = \frac{n}{100}

    S = S_{0}\left( 1 - \frac{n}{100}
ight)^{n} = S_{0}\left( 1 - \frac{n}{100} ight)^{4}

    =>\frac{S}{S_{0}} = \left( 1 -\frac{n}{100} ight)^{4}

  • Câu 22: Nhận biết

    Giá trị của biểu thức \log_{2}5.\log_{5}64

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 23: Thông hiểu

    Giả sử tập nghiệm của bất phương trình \log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 -x) có dạng S = (a,b) \cup
(c;d) với a,b,c,d\in\mathbb{R}. Tính tổng S = a + b + c +
d.

    Ta có:

    \left\{ \begin{matrix}x + 1 > 0 \\2 - x > 0 \\\log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 - x) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x >  - 1 \hfill \\
  x < 2 \hfill \\
   - {\log _3}\left( {x + 1} ight) > 2{\log _3}\left( {2 - x} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 1 < x < 2 \hfill \\
  0 > 2{\log _3}\left( {2 - x} ight) + {\log _3}\left( {x + 1} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  { - 1 < x < 2} \\ 
  {{x^2} + x + 1 > 0} 
\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  { - 1 < x < 2} \\ 
  {\left[ {\begin{array}{*{20}{l}}
  {x > \dfrac{{1 + \sqrt 5 }}{2}} \\ 
  {x < \dfrac{{1 - \sqrt 5 }}{2}} 
\end{array}} ight.} 
\end{array}} ight.} ight.

    \Rightarrow S = \left( - 1;\frac{1 -
\sqrt{5}}{2} ight) \cup \left( \frac{1 + \sqrt{5}}{2};2
ight)

    \Leftrightarrow a + b + c + d = - 1 +
\frac{1 - \sqrt{5}}{2} + \frac{1 + \sqrt{5}}{2} + 2 = 2

    Vậy S = 2

  • Câu 24: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 25: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 26: Thông hiểu

    Đồ thị hàm số sau là của hàm số nào?

    Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại y = \left( \sqrt{2} ight)^{x}y = \left( \sqrt{3} ight)^{x}.

    Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án y = \left( \frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 27: Nhận biết

    Giải phương trình \log_{3}(x - 1) = 2 ta thu được nghiệm là:

    Điều kiện xác định: x > 1

    \log_{3}(x - 1) = 2 \Leftrightarrow x - 1= 3^{2} \Leftrightarrow x = 10(tm)

    Vậy phương trình có nghiệm x =
10.

  • Câu 28: Thông hiểu

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 29: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 30: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 31: Nhận biết

    Biết \forall n
\in \mathbb{R}^{+}. Kết luận nào dưới đây đúng?

    Ta có: \log_{4}n^{4} = 4\log_{4}|n| =4\log_{4}n

  • Câu 32: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 33: Nhận biết

    Với một số thực dương a tùy ý, khi đó \sqrt{a^{2}.\sqrt[5]{a}} bằng:

    Với a > 0 ta có: \sqrt{a^{2}.\sqrt[5]{a}} =
\sqrt{a^{2}.a^{\frac{1}{5}}} = \sqrt{a^{2 + \frac{1}{5}}} =
\sqrt{a^{\frac{11}{5}}} = a^{\frac{11}{10}}

  • Câu 34: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 35: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Giải bất phương trình 3^{x} > 9 thu được tập nghiệm là:

    Ta có:

    3^{x} > 9 \Leftrightarrow 3^{x} >
3^{2} \Leftrightarrow x > 2

    Vậy bất phương trình đã cho có tập nghiệm là: x \in (2; + \infty).

  • Câu 37: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 38: Thông hiểu

    Hãy biểu diễn \log_{6}45 theo hai giá trị x,y biết x =\log_{2}3;y = \log_{5}3?

    Ta có:

    \log_{6}45 = \frac{\log_{3}\left( 5.3^{2}ight)}{\log_{3}(2.3)} = \frac{\log_{3}5 + 2}{\log_{3}2 + 1}

    = \dfrac{\dfrac{1}{y} + 2}{\dfrac{1}{x} +1} = \dfrac{x + 2xy}{xy + y}

  • Câu 39: Thông hiểu

    Giải phương trình \log_{2}\left( x^{2} + x + 1 ight) = 2 +\log_{2}x. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:

    Điều kiện xác định:

    \left\{ \begin{matrix}
x^{2} + x + 1 > 0 \\
x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\forall x\mathbb{\in R} \\
x > 0 \\
\end{matrix} ight.\  \Rightarrow x > 0

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}4 + \log_{2}x

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}(4x)

    \Leftrightarrow x^{2} + x + 1 =
4x

    \Leftrightarrow x^{2} - 3x + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{3 + \sqrt{5}}{2}(tm) \\x = \dfrac{3 - \sqrt{5}}{2}(tm) \\\end{matrix} ight.

    \Rightarrow S = \frac{3 + \sqrt{5}}{2} +
\frac{3 - \sqrt{5}}{2} = 3

    Vậy S = 3

  • Câu 40: Vận dụng

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Đáp án là:

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Phương trình đã cho tương đương

    \left\{ \begin{matrix}
x + 2 > 0 \\
x^{2} - (a - 1)x + a^{2} - 6a + 2 = x + 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > - 2 \\
x^{2} - ax + a^{2} - 6a = 0(*) \\
\end{matrix} ight.

    Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm x_{1};x_{2} thỏa mãn - 2 < x_{1} < 0 < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
\left( x_{1} + 2 ight)\left( x_{2} + 2 ight) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
x_{1}.x_{2} + 2\left( x_{1} + x_{2} ight) + 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a < 0 \\
a^{2} - 4a + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
0 < a < 6 \\
a eq 2 \\
\end{matrix} ight.

    Mặt khác a\mathbb{\in Z \Rightarrow}a \in
\left\{ 1;3;4;5 ight\}

    Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo