Cho phương trình
. Số nghiệm thực của phương trình là:
Điều kiện
Ta có:
Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.
Vậy tập nghiệm của bất phương trình là:
Cho phương trình
. Số nghiệm thực của phương trình là:
Điều kiện
Ta có:
Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.
Vậy tập nghiệm của bất phương trình là:
Phương trình
có bao nhiêu nghiệm thực?
Ta có:
Vậy phương trình có duy nhất 1 nghiệm.
Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình đã cho là
Trong các hàm số sau:
. Hàm số nào đồng biến trên tập xác định?
Ta có: nên hàm số
đồng biến trên tập xác định của nó.
Cho hàm số
. Tìm tập xác định của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Tính giá trị biểu thức:
biết
?
Ta có:
Cho
. Rút gọn biểu thức 
Ta có:
Phương trình
có tập nghiệm là:
Ta có:
Vậy phương trình có tập nghiệm là: .
Tính giá trị của biểu thức
.
Ta có:
Cho
. Tính
theo
và
.
Ta có:
Mặt khác
Thay vào trên ta được
Từ đó ta biến đổi biểu thức về cơ số 7 ta được:
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Tính giá trị biểu thức
.
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Trong các khẳng định sau, khẳng định nào sai?
Vì nên
.
Vì nên
.
Vì nên
.
Vì nên
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Biết đồ thị hàm số
đối xứng với đồ thị hàm số
qua điểm
. Giá trị của
là:
Gọi là điểm thuộc đồ thị hàm số
thì điểm đối xứng với
qua
là
thuộc đồ thị hàm số
=>
Cho
là hai số thực dương bất kì và
. Kết luận nào sau đây đúng?
Theo tính chất ta suy ra kết luận đúng là:
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Vậy tổng số tiền nhận được là: triệu đồng.
Tìm điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.
Áp dụng công thức tính lãi kép ta có:
Vậy lãi suất ngân hàng là 6%.
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?
Hàm số có
là hàm số nghịch biến trên tập xác định của nó.
Các hàm số ;
;
có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho
thỏa mãn
. Xác định tỉ số
?
Điều kiện
Với
Tìm số nghiệm phương trình
?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm.
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Tổng các nghiệm của phương trình
bằng 3||-3||-4||5
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Ta có:
Vậy tổng các nghiệm của phương trình là 3
Cho hai số thực dương
. Viết biểu thức
về dạng
và biểu thức
về dạng
. Khi đó
có giá trị là bao nhiêu?
Ta có:
Rút gọn biểu thức

Với ta có:
Khi đó: