Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định nghiệm của phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}.

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} +
\frac{x}{3} - \frac{1}{2x} = \frac{7}{3}

    \Leftrightarrow \left\lbrack\begin{matrix}x = 3(tm) \\x = - \dfrac{1}{5}(ktm) \\\end{matrix} ight.

    Vậy phương trình có nghiệm x =
3.

  • Câu 2: Nhận biết

    Giải phương trình 3^{2x} - 5 = 0 ta được nghiệm phương trình là:

    Ta có:

    3^{2x} - 5 = 0 \Leftrightarrow 2x =\log_{3}5 \Leftrightarrow x = \frac{1}{2}.\log_{3}5

    Vậy phương trình đã cho có nghiệm là x =\frac{1}{2}.\log_{3}5.

  • Câu 3: Nhận biết

    Cho biết \log_{2}a= x;\log_{2}b = y, biểu thức \log_{2}\left( 4a^{2}b^{3} ight) có giá trị là:

    Ta có:

    \log_{2}\left( 4a^{2}b^{3} ight) =\log_{2}4 + \log_{2}a^{2} + \log_{2}b^{3}

    = 2 + 2\log_{2}a + 3\log_{2}b = 2x + 3y +2

  • Câu 4: Nhận biết

    Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm số y = \log_{\frac{e}{2\pi}}x có 0 < \frac{e}{2\pi} < 1 là hàm số nghịch biến trên tập xác định của nó.

    Các hàm số y = \log_{\sqrt{2}}x; y = \log_{\pi}2x; y = \log_{2}x có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.

  • Câu 5: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 6: Thông hiểu

    Cho phương trình (2,4)^{3x + 1} = \left( \frac{5}{12} ight)^{x -
9}. Xác định nghiệm của phương trình đã cho?

    Ta có:

    (2,4)^{3x + 1} = \left( \frac{5}{12}
ight)^{x - 9} \Leftrightarrow \left( \frac{12}{5} ight)^{3x + 1} =
\left( \frac{12}{5} ight)^{- x + 9}

    \Leftrightarrow 3x + 1 = - x + 9
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x = 2.

  • Câu 7: Nhận biết

    Giá trị của biểu thức \log_{2}5.\log_{5}64

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 8: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 9: Thông hiểu

    Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3.

    Ta có:

    \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3

    \Leftrightarrow \log_{3}x = \log_{3}8 +\log_{3}5 - \log_{3}9

    \Leftrightarrow \log_{3}x =\log_{3}\frac{40}{9} \Leftrightarrow x = \frac{40}{9}

  • Câu 10: Thông hiểu

    Cho hai số thực dương a và b thỏa mãn log_{9}a^{4} + log_{3}b = 8log_{3}a + log_{\sqrt[3]{3}}b = 9. Giá trị của biểu thức P = ab + 1 là:

    Theo điều kiện ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2\log_{9}a + \log_{3}b = 8 \\\log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{9}a = 3 \\\log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight. \Rightarrow
P = ab + 1 = 244

  • Câu 11: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 12: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình \left(
\frac{1}{3} ight)^{x} < 2?

    Ta có:

    \left( \frac{1}{3} ight)^{x} < 2
\Leftrightarrow x > log_{\frac{1}{3}}2

    Vậy tập nghiệm của bất phương trình đã cho là x \in \left(\log_{\frac{1}{3}}2; + \inftyight)

  • Câu 14: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Giải bất phương trình 2^{x + 2} - 2^{x + 3} - 2^{x + 4} > 5^{x + 1} -
5^{x + 2} thu được tập nghiệm là:

    Ta có:

    2^{x + 2} - 2^{x + 3} - 2^{x + 4} >
5^{x + 1} - 5^{x + 2}

    \Leftrightarrow - 20.2^{x} > -
20.5^{x}

    \Leftrightarrow 2^{x} <
5^{x}

    \Leftrightarrow \left( \frac{2}{5}
ight)^{x} < 1 \Leftrightarrow x > 0

    Vậy tập nghiệm bất phương trình là: S =
(0; + \infty)

  • Câu 16: Vận dụng

    Cho các hàm số y
= log_{a}x;y = log_{b}x;y = log_{c}x có đồ thị như hình vẽ dưới đây:

    Kết luận nào sau đây đúng?

    Dựa vào đồ thị hàm số y =
log_{b}x là một hàm số nghịch biến trên tập xác định của nó nên 0 < b < 1

    Hàm số y = log_{a}x;y = log_{c}x là các hàm số đồng biến trên tập xác định của nó nên a;c > 1

    Kẻ đường thẳng y = 1 cắt đồ thị hàm số y = log_{c}x;y = log_{a}x lần lượt tại các điểm A(c;1),B(a;1)

    Dựa vào đồ thị ta thấy x_{A} < x_{B}
\Leftrightarrow c < a

    Vậy kết luận đúng là: a > c >
b

  • Câu 17: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Biết khi rút gọn biểu thức \frac{6 + 3\left( 3^{x} + 3^{- x} ight)}{2 -
3^{x + 1} - 3^{1 - x}} thu được phân số \frac{a}{b} tối giản và 9^{x} + 9^{- x} = 14 . Tính giá trị biểu thức M = a.b.

    Ta có:

    9^{x} + 9^{- x} = 14 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 16

    \Leftrightarrow 3^{x} + 3^{- x} =
4

    Ta lại có:

    \frac{6 + 3\left( 3^{x} + 3^{- x}
ight)}{2 - 3^{x + 1} - 3^{1 - x}} = \frac{6 + 3.4}{2 - 3.4} =
\frac{18}{- 10} = \frac{9}{- 5}

    \Rightarrow M = a.b = - 45

  • Câu 19: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 20: Vận dụng

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Đáp án là:

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Giả sử bà A đã gửi ngân hàng trong x năm

    Số tiền bà nhận được là 250 triệu đồng

    Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là T = 100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow 250.10^{6} =
100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow n = \log_{1,1}2,5\Leftrightarrow n \approx 9,61

    Vậy bà A đã gửi tiết kiệm trong 10 năm.

  • Câu 21: Thông hiểu

    Tìm hàm số nghịch biến trên tập số thực?

    Ta có:

    Hàm số y = \log_{- 3 +\sqrt{10}}x có cơ số a = - 3 +
\sqrt{10} nên hàm số nghịch biến trên (0; + \infty)

    Hàm số y = \log_{2}\left( x^{2} - xight) có tập xác định D = ( -
\infty;0) \cup (1; + \infty) nên hàm số đồng biến trên \mathbb{R}

    Hàm số y = \left( \frac{e}{3}
ight)^{2x}\frac{e}{3} <
1 nên hàm số nghịch biến trên \mathbb{R}.

    Hàm số y = \left( \frac{\pi}{3}
ight)^{x}\frac{\pi}{3} >
1 nên hàm số đồng biến trên \mathbb{R}.

  • Câu 22: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 23: Thông hiểu

    Tính giá trị biểu thức D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    Ta có:

    D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    D = 3^{1 - \sqrt{2} + 2 + \sqrt{2} + 1}
= 3^{4} = 81

  • Câu 24: Thông hiểu

    Tính giá trị của biểu thức Q = \log_{m^{2}n}\left( m^{3} ight) -3\log_{m^{2}}2.\log_{4}\left( \frac{m}{n} ight) biết m,n \in \mathbb{R}^{+},m > 1,n > 1 thỏa mãn \log_{m}n = 3?

    Ta có:

    log_{m}n = 3 \Rightarrow n = m^{3};(m
> 1,n > 1)

    Thay vào biểu thức Q ta được:

    Q = \log_{m^{5}}\left( m^{3} ight) -3\log_{m^{2}}2.\log_{4}\left( m^{- 2} ight)

    Q = \frac{3}{5} +\frac{3}{2}\log_{2}m.\log_{m}2 = \frac{3}{5} + \frac{3}{2} =\frac{21}{10}

  • Câu 25: Nhận biết

    Cho hàm số y =
\ln\left( 15 - x^{2} ight). Hỏi có bao nhiêu giá trị x\in \mathbb{Z} thuộc tập xác định D của hàm số?

    Điều kiện xác định của hàm số y =
\ln\left( 15 - x^{2} ight) là:

    15 - x^{2} > 0 \Leftrightarrow -
\sqrt{15} < x < \sqrt{15}

    x\mathbb{\in Z \Rightarrow}x = \left\{
\pm 3; \pm 2; \pm 1;0 ight\}

    Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.

  • Câu 26: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Chọn khẳng định đúng?

    Quan sát đồ thị ta thấy

    Hai hàm số y = n^{x};y = t^{x} đồng biến nên n,t > 1

    Hàm số y = m^{x} nghịch biến nên 0 < m < 1

    Vậy \left\{ \begin{matrix}
0 < m < 1 \\
n,t > 1 \\
\end{matrix} ight.

    Đường thẳng x = 1 cắt hai đồ thị hàm số y
= n^{x};y = t^{x} lần lượt tại n,t và ta thấy n > t

    Vậy m < t < n

  • Câu 27: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 28: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 29: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 30: Vận dụng

    Hai số thực dương m,n thỏa mãn m > n > 1\dfrac{1}{\log_{n}m} + \dfrac{1}{\log_{m}n} =\sqrt{2022}. Hãy xác định giá trị biểu thức \dfrac{1}{\log_{mn}n} -\dfrac{1}{\log_{mn}m}?

    Ta có: \dfrac{1}{\log_{n}m} +\dfrac{1}{\log_{m}n} = \sqrt{2022}

    \Leftrightarrow \log_{m}n + \log_{n}m =\sqrt{2022}(*)

    Lại có:

    \frac{1}{\log_{mn}n} -\frac{1}{\log_{mn}m}

    = \log_{n}(mn) - \log_{m}(mn)

    = \log_{m}n - \log_{n}m

    Đặt t = \log_{m}n khi đó (*) trở thành:

    t + \frac{1}{t} = \sqrt{2022}
\Leftrightarrow t^{2} - t.\sqrt{2022} + 1 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{\sqrt{2022} + \sqrt{2018}}{2} \\t = \dfrac{\sqrt{2022} - \sqrt{2018}}{2} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}P = \dfrac{1}{t} - t = - \sqrt{2018} \\P = \dfrac{1}{t} - t = \sqrt{2018} \\\end{matrix} ight.

    Với m > n > 1 \Leftrightarrow 0
< log_{m}n < 1

    \Rightarrow 0 < t < 1 \Rightarrow
\frac{1}{t} > 1 \Rightarrow P > 0 \Rightarrow P =
\sqrt{2018}

  • Câu 31: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \log_{2}\frac{x + \sqrt{x} - 2}{x -2}?

    Hàm số xác định khi

    \frac{x + \sqrt{x} - 2}{x - 2} =\frac{\left( \sqrt{x} - 1 ight)\left( \sqrt{x} + 2 ight)}{x - 2}> 0

    \Leftrightarrow \frac{\sqrt{x} - 1}{x -2} > 0 \Leftrightarrow \left\lbrack \begin{matrix}0 \leq x < 1 \\2 < x \\\end{matrix} ight.

    Vậy tập xác định của hàm số là D =\lbrack 0;1) \cup (2; + \infty)

  • Câu 32: Thông hiểu

    Giả sử tập nghiệm của bất phương trình \log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 -x) có dạng S = (a,b) \cup
(c;d) với a,b,c,d\in\mathbb{R}. Tính tổng S = a + b + c +
d.

    Ta có:

    \left\{ \begin{matrix}x + 1 > 0 \\2 - x > 0 \\\log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 - x) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x >  - 1 \hfill \\
  x < 2 \hfill \\
   - {\log _3}\left( {x + 1} ight) > 2{\log _3}\left( {2 - x} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 1 < x < 2 \hfill \\
  0 > 2{\log _3}\left( {2 - x} ight) + {\log _3}\left( {x + 1} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  { - 1 < x < 2} \\ 
  {{x^2} + x + 1 > 0} 
\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  { - 1 < x < 2} \\ 
  {\left[ {\begin{array}{*{20}{l}}
  {x > \dfrac{{1 + \sqrt 5 }}{2}} \\ 
  {x < \dfrac{{1 - \sqrt 5 }}{2}} 
\end{array}} ight.} 
\end{array}} ight.} ight.

    \Rightarrow S = \left( - 1;\frac{1 -
\sqrt{5}}{2} ight) \cup \left( \frac{1 + \sqrt{5}}{2};2
ight)

    \Leftrightarrow a + b + c + d = - 1 +
\frac{1 - \sqrt{5}}{2} + \frac{1 + \sqrt{5}}{2} + 2 = 2

    Vậy S = 2

  • Câu 33: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 34: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 35: Thông hiểu

    Cho a,b >
0;log_{3}a = p;log_{3}b = q. Biểu thức \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) được biểu diễn như thế nào theo các ẩn số?

    Ta có:

    \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) = \log_{3}3^{r} - \log_{3}a^{m} - \log_{3}b^{d}

    = r\log_{3}3 - m\log_{3}a -d\log_{3}b

    = r - m\log_{3}a - d\log_{3}b

    = r - mp - dq

  • Câu 36: Nhận biết

    Với số thực dương a bất kì ta có \sqrt{\frac{1}{a^{3}}} tương ứng với:

    Với a > 0 ta có: \sqrt{\frac{1}{a^{3}}} = \left( \frac{1}{a^{3}}
ight)^{\frac{1}{2}} = \left( a^{- 3} ight)^{\frac{1}{2}} = a^{-
\frac{3}{2}}

  • Câu 37: Nhận biết

    Giải bất phương trình 2^{x + 1} \geq \frac{1}{16}. Kết luận nào sau đây đúng?

    Ta có:

    2^{x + 1} \geq \frac{1}{16}
\Leftrightarrow 2^{x + 1} \geq 2^{- 4}

    \Leftrightarrow x + 1 \geq - 4
\Leftrightarrow x \geq - 5 hay x
\in \lbrack - 5; + \infty)

  • Câu 38: Nhận biết

    Cho đồ thị của hàm số y = f(x)

    Hàm số tương ứng với đồ thị trên là:

    Đồ thị hàm số đi qua điểm A(2; 1) nên hàm số tương ứng với đồ thị là: y = \log_{3}(x + 1)

  • Câu 39: Nhận biết

    Tìm giá trị của x để hàm số y = e^{x^{2} - 2x} có nghĩa.

    Hàm số y = e^{x^{2} - 2x} xác định với mọi x\in\mathbb{ R}

    Vật tập xác định của hàm số là: D=\mathbb{ R}.

  • Câu 40: Vận dụng

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Đáp án là:

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Phương trình đã cho tương đương

    \left\{ \begin{matrix}
x + 2 > 0 \\
x^{2} - (a - 1)x + a^{2} - 6a + 2 = x + 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > - 2 \\
x^{2} - ax + a^{2} - 6a = 0(*) \\
\end{matrix} ight.

    Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm x_{1};x_{2} thỏa mãn - 2 < x_{1} < 0 < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
\left( x_{1} + 2 ight)\left( x_{2} + 2 ight) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
x_{1}.x_{2} + 2\left( x_{1} + x_{2} ight) + 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a < 0 \\
a^{2} - 4a + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
0 < a < 6 \\
a eq 2 \\
\end{matrix} ight.

    Mặt khác a\mathbb{\in Z \Rightarrow}a \in
\left\{ 1;3;4;5 ight\}

    Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo