Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 2: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 3: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 4: Nhận biết

    Cho a,b là hai số thực dương bất kì và b eq1. Kết luận nào sau đây đúng?

    Theo tính chất ta suy ra kết luận đúng là: {\log _b}a = \frac{{\ln a}}{{\ln b}}

  • Câu 5: Thông hiểu

    Cho a,b >
0;log_{3}a = p;log_{3}b = q. Biểu thức \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) được biểu diễn như thế nào theo các ẩn số?

    Ta có:

    \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) = \log_{3}3^{r} - \log_{3}a^{m} - \log_{3}b^{d}

    = r\log_{3}3 - m\log_{3}a -d\log_{3}b

    = r - m\log_{3}a - d\log_{3}b

    = r - mp - dq

  • Câu 6: Thông hiểu

    Cho số thực a
> 1. Mệnh đề nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
a > 1 \\
m > n \\
\end{matrix} ight.\  \Rightarrow a^{m} > a^{n}

    Với \left\{ \begin{matrix}
a > 1 \\
\frac{1}{3} < \frac{1}{2} \\
\end{matrix} ight.\  \Rightarrow a^{\frac{1}{3}} < a^{\frac{1}{2}}
\Rightarrow a^{\frac{1}{3}} < a^{\sqrt{2}}

    Vậy đáp án sai là: \sqrt{a} <
a^{\frac{1}{3}}

  • Câu 7: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 8: Nhận biết

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 9: Thông hiểu

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 10: Nhận biết

    Giá trị của biểu thức \log_{2}5.\log_{5}64

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 11: Thông hiểu

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Đáp án là:

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất

    Sau 1 tháng, số tiền cả gốc và lãi là: a(1 + r)

    Sau n tháng, số tiền cả gốc và lãi là: a(1 + r)^{n}

    Số tiền sau 10 năm với lãi suất 6% một năm là:

    10^{8}.(1 + 6\%)^{10} =
179084769,7 (triệu đồng).

  • Câu 12: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x - 4 ight)^{\sqrt{2 -
\sqrt{3}}}.

    Điều kiện xác định của hàm số x^{2} - 3x
- 4 > 0 \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < - 1 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số là C = ( -
\infty; - 1) \cup (4; + \infty)

  • Câu 13: Vận dụng

    Đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;\left( {0 < a e 1} ight) đi qua điểm I\left( {2;1} ight). Giá trị của biểu thức f\left( {4 - {a^{2019}}} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;\left( {0 < a e 1} ight) đi qua điểm I\left( {2;1} ight). Giá trị của biểu thức f\left( {4 - {a^{2019}}} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Biết a,b là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?

    Theo quy tắc Logarit ta có:

    \ln(ab) = \ln a + \ln b

  • Câu 15: Nhận biết

    Kết quả nào dưới đây là nghiệm của phương trình \ln(3m) = 2?

    Điều kiện xác định: m > 0

    \ln(3m) = 2 \Leftrightarrow 3m = e^{2}
\Leftrightarrow m = \frac{e^{2}}{3}(tm)

    Vậy phương trình có nghiệm m =
\frac{e^{3}}{3}.

  • Câu 16: Thông hiểu

    Với x \geq0 thì \sqrt{x\sqrt{x\sqrt{x^{2}}}} bằng:

    Ta có: \sqrt{x\sqrt{x\sqrt{x^{2}}}} =\sqrt{x.\sqrt{x.x}} = \sqrt{x.x} = x

  • Câu 17: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 18: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 19: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 21: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho hai số thực dương x;y. Viết biểu thức x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} về dạng x^{p} và biểu thức y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}} về dạng y^{q}. Khi đó p - q có giá trị là bao nhiêu?

    Ta có:

    x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} =
x^{\frac{4}{5}}\sqrt[6]{x^{5}x^{\frac{1}{2}}} =
x^{\frac{4}{5}}\sqrt[6]{x^{\frac{11}{2}}} =
x^{\frac{4}{5}}.x^{\frac{11}{12}} = x^{\frac{103}{60}}

    \Rightarrow p =
\frac{103}{60}

    y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}}
= y^{\frac{4}{5}}:\sqrt[6]{y^{\frac{11}{2}}} = y^{\frac{-
7}{60}}

    \Rightarrow q = \frac{-
7}{60}

    \Rightarrow p - q =
\frac{11}{6}

  • Câu 23: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 24: Nhận biết

    Xác định nghiệm của bất phương trình 5^{x - 2} \leq \frac{1}{5}?

    Ta có:

    5^{x - 2} \leq \frac{1}{5}
\Leftrightarrow 5^{x - 2} \leq 5^{- 1}

    \Leftrightarrow x - 2 \leq - 1
\Leftrightarrow x \leq 1 hay x \in
( - \infty;1brack

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức G = \log_{a^{2}}a^{10}.b^{2} + \log_{\sqrt{a}}\left(\frac{a}{\sqrt{b}} ight) + \log_{\sqrt[3]{5}}b^{- 2} với (0 < a eq 1;0 < b eq 1).

    Ta có:

    G = \log_{a^{2}}a^{10}.b^{2} +\log_{\sqrt{a}}\left( \frac{a}{\sqrt{b}} ight) + \log_{\sqrt[3]{b}}b^{-2}

    G = \log_{a^{2}}a^{10} + \log_{a^{2}}b^{2}+ \log_{\sqrt{a}}a - \log_{\sqrt{a}}\sqrt{b} -2\log_{\frac{1}{3}}b

    G = 5 + \log_{a}b + 2 - \log_{a}b - 6 =1

  • Câu 26: Thông hiểu

    Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.

    Mỗi tháng anh B phải trả số tiền cho ngân hàng là:

    x = \frac{a.(1 + r)^{n}.r}{(1 + r)^{n} -
1} = \frac{200.(1 + 1,15\%)^{12}.1,15\%}{(1 + 1,15\%)^{12} -
1}

    =
\frac{200.(1,0115)^{12}.0,0115}{(1,0115)^{12} - 1} \approx
17,94

  • Câu 27: Nhận biết

    Tính giá trị biểu thức K = \log_{\frac{x}{5}}\left( \frac{x^{3}}{125}ight) với x \in
\mathbb{R}^{+}\backslash\left\{ 5 ight\}?

    Ta có:

    K = \log_{\frac{x}{5}}\left(\frac{x^{3}}{125} ight) = \log_{\frac{x}{5}}\left( \frac{x}{5}ight)^{3} = 3\log_{\frac{x}{5}}\left( \frac{x}{5} ight) =3

  • Câu 28: Nhận biết

    Xác định tập nghiệm của phương trình \log_{3}(2x + 3) = 1?

    Điều kiện xác định: x > -
\frac{3}{2}

    \log_{3}(2x + 3) = 1 \Leftrightarrow 2x +3 = 3 \Leftrightarrow x = 0(tm)

    Vậy phương trình có tập nghiệm S =
\left\{ 0 ight\}.

  • Câu 29: Thông hiểu

    Xác định tất cả các giá trị của tham số m để phương trình 3^{x^{2} + 1} = m - 1 có nghiệm?

    Ta có:

    3^{x^{2}} \geq 3^{0} \Leftrightarrow
3^{x^{2} + 1} \geq 3^{1}

    Phương trình 3^{x^{2} + 1} = m -
1 có nghiệm khi và chỉ khi m - 1
\geq 3 \Leftrightarrow m \geq 4(tm)

    Vậy m \in \lbrack 4; + \infty) thỏa mãn yêu cầu bài toán.

  • Câu 30: Nhận biết

    Tìm hàm số đồng biến trên \mathbb{R} trong các hàm số dưới đây?

    Xét hàm số y = \left( \frac{\pi}{2}
ight)^{x}\frac{\pi}{2} >
1 nên hàm số y = \left(
\frac{\pi}{2} ight)^{x}đồng biến trên \mathbb{R}?

  • Câu 31: Thông hiểu

    Tìm giá trị x biết \log_{3}x = 4\log_{3}a + 7\log_{3}b.

    Ta có:

    \log_{3}x = 4\log_{3}a +7\log_{3}b

    \Leftrightarrow \log_{3}x = \log_{3}a^{4}+ \log_{3}b^{7}

    \Leftrightarrow \log_{3}x = \log_{3}\left(a^{4}.b^{7} ight)

    \Leftrightarrow x =
a^{4}.b^{7}

  • Câu 32: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 33: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 34: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 35: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 36: Nhận biết

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{\sqrt{2} + \sqrt{3}}{2} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{2} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 37: Vận dụng

    Cho hàm số y =\log_{a}x;y = \log_{b}x có đồ thị như hình vẽ:

    Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số y = \log_{a}x;y =\log_{b}x lần lượt tại H,M,N. Biết rằng HM = MN. Khẳng định nào sau đây đúng?

    Ta có:\left\{ \begin{matrix}HM = y_{M} = \log_{a}7 \\MN = y_{N} - y_{M} = \log_{b}7 - \log_{a}7 \\\end{matrix} ight.

    Mặt khác HM = MN nên \log_{b}7 - \log_{a}7 = \log_{a}7

    \Leftrightarrow \log_{b}7 =\log_{\sqrt{a}}7

    \Leftrightarrow b = \sqrt{a}
\Leftrightarrow b^{2} = a

  • Câu 38: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 40: Thông hiểu

    Biết \log_{2}m =6\log_{4}a - 4\log_{2}\sqrt{b} - \log_{\frac{1}{2}}c. Biểu diễn m theo a,b,c?

    Ta có:

    \log_{2}m = 6\log_{4}a - 4\log_{2}\sqrt{b}- \log_{\frac{1}{2}}c

    \Leftrightarrow \log_{2}m = \log_{2}a^{3}- \log_{2}b^{2} + \log_{2}c

    \Leftrightarrow \log_{2}m =\log_{2}\frac{a^{3}.c}{b^{2}} \Leftrightarrow m =\frac{a^{3}.c}{b^{2}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo