Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{3} - 1 < 1 \\
2018 > 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{3} - 1
ight)^{2018} < \left( \sqrt{3} - 1 ight)^{2017}

  • Câu 2: Nhận biết

    Hàm số nào sau đây được gọi là hàm số lũy thừa?

    Hàm số y = x^{- 3} là hàm số lũy thừa.

    Hàm số y = 3^{- x} và hàm số y = e^{x} là hàm số mũ.

    Hàm số y = \ln x là hàm số lôgarit.

  • Câu 3: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Nhận biết

    Xác định tập nghiệm của bất phương trình \left( \frac{1}{3} ight)^{3x} > \left(
\frac{1}{3} ight)^{2x + 6}.

    Ta có: \left( \frac{1}{3} ight)^{3x}
> \left( \frac{1}{3} ight)^{2x + 6} \Leftrightarrow 3x < 2x +
6

    \Leftrightarrow x < 6

    Vậy tập nghiệm bất phương trình là: ( -
\infty;6)

  • Câu 5: Thông hiểu

    Cho bất phương trình: \left( \frac{2}{3} ight)^{2x^{2} + 4x} \leq\left( \frac{3}{2} ight)^{x + 3}. Chọn khẳng định đúng về tập nghiệm của bất phương trình.

    Ta có:

    \left( \frac{2}{3} ight)^{2x^{2} + 4x}\leq \left( \frac{3}{2} ight)^{x + 3}

    \Leftrightarrow \left( \frac{2}{3}ight)^{2x^{2} + 4x} \leq \left( \frac{2}{3} ight)^{- x -3}

    \Leftrightarrow 2x^{2} + 4x \geq - x -3

    \Leftrightarrow 2x^{2} + 4x + 3 \geq0

    \Leftrightarrow \left\lbrack\begin{matrix}x \leq - \dfrac{3}{2} \\x \geq - 1 \\\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình là: S= \left( - \infty;\frac{- 3}{2} ight) \cup \lbrack - 1; +\infty)

  • Câu 6: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 7: Nhận biết

    Cho biết \log_{2}a= x;\log_{2}b = y, biểu thức \log_{2}\left( 4a^{2}b^{3} ight) có giá trị là:

    Ta có:

    \log_{2}\left( 4a^{2}b^{3} ight) =\log_{2}4 + \log_{2}a^{2} + \log_{2}b^{3}

    = 2 + 2\log_{2}a + 3\log_{2}b = 2x + 3y +2

  • Câu 8: Thông hiểu

    Tính giá trị của biểu thức Q = \log_{m^{2}n}\left( m^{3} ight) -3\log_{m^{2}}2.\log_{4}\left( \frac{m}{n} ight) biết m,n \in \mathbb{R}^{+},m > 1,n > 1 thỏa mãn \log_{m}n = 3?

    Ta có:

    log_{m}n = 3 \Rightarrow n = m^{3};(m
> 1,n > 1)

    Thay vào biểu thức Q ta được:

    Q = \log_{m^{5}}\left( m^{3} ight) -3\log_{m^{2}}2.\log_{4}\left( m^{- 2} ight)

    Q = \frac{3}{5} +\frac{3}{2}\log_{2}m.\log_{m}2 = \frac{3}{5} + \frac{3}{2} =\frac{21}{10}

  • Câu 9: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 10: Thông hiểu

    Rút gọn biểu thức A = \frac{\sqrt{a} + \sqrt[4]{ab}}{\sqrt[4]{a} +
\sqrt[4]{b}} - \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} -
\sqrt[4]{b}} với a > 0;b >
0 ta được kết quả:

    Ta có:

    A = \frac{\sqrt{a} +
\sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\sqrt{a} -
\sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \frac{\left( \sqrt[4]{a} ight)^{2}
+ \sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left( \sqrt[4]{a}
ight)^{2} - \left( \sqrt[4]{b} ight)^{2}}{\sqrt[4]{a} -
\sqrt[4]{b}}

    A = \frac{\sqrt[4]{a}\left( \sqrt[4]{a}
+ \sqrt[4]{b} ight)}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left(
\sqrt[4]{a} - \sqrt[4]{b} ight)\left( \sqrt[4]{a} + \sqrt[4]{b}
ight)}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \sqrt[4]{a} - \left( \sqrt[4]{a} +
\sqrt[4]{b} ight) = - \sqrt[4]{b}

  • Câu 11: Thông hiểu

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 12: Thông hiểu

    Biết rằng 4^{x}+ 4^{- x} = 7. Khi đó biểu thức G =\frac{5 - 2^{x} - 2^{- x}}{3 + 2^{x + 1} + 2^{1 - x}} =\frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 3(tm) \\2^{x} + 2^{- x} = - 3(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =3

    G = \frac{5 - \left( 2^{x} + 2^{- x}ight)}{3 + 2\left( 2^{x} + 2^{- x} ight)} = \frac{5 - 3}{3 + 2.3} =\frac{2}{9}

    \Rightarrow p = 2;q = 9 \Rightarrow p+q = 11

  • Câu 13: Thông hiểu

    Với điều kiện a
\in \mathbb{R}^{+}, đơn giản biểu thức G = \frac{a^{\frac{4}{3}}.\left( a^{- \frac{1}{3}}
+ a^{\frac{2}{3}} ight)}{a^{\frac{1}{4}}.\left( a^{\frac{3}{4}} + a^{-
\frac{1}{4}} ight)} thu được kết quả là:

    Ta có:

    G = \frac{a^{\frac{4}{3}}.\left( a^{-
\frac{1}{3}} + a^{\frac{2}{3}} ight)}{a^{\frac{1}{4}}.\left(
a^{\frac{3}{4}} + a^{- \frac{1}{4}} ight)} =
\frac{a^{\frac{4}{3}}.a^{- \frac{1}{3}} +
a^{\frac{4}{3}}.a^{\frac{2}{3}}}{a^{\frac{1}{4}}.a^{\frac{3}{4}} +
a^{\frac{1}{4}}.a^{- \frac{1}{4}}}

    = \frac{a + a^{2}}{a + 1} = \frac{a(a +
1)}{a - 1} = a

  • Câu 14: Nhận biết

    Phương trình \log_{3}\left( x^{2} + 2 ight) = 3 có tất cả bao nhiêu nghiệm?

    Điều kiện xác định: x^{2} + 2 >
0;\forall x\mathbb{\in R}

    \log_{3}\left( x^{2} + 2 ight) = 3\Leftrightarrow x^{2} + 2 = 3^{3}

    \Leftrightarrow x^{2} = 25
\Leftrightarrow x = \pm 5(tm)

    Vậy phương trình có hai nghiệm.

  • Câu 15: Vận dụng

    Biết \left(
\sqrt{5} - 2 ight)^{- a} > \left( \sqrt{5} + 2
ight)^{b}. Chọn khẳng định đúng?

    Ta có:

    \sqrt{5} - 2 = \frac{1}{\sqrt{5} +
2};\sqrt{5} + 2 > 1

    Nên \left( \sqrt{5} - 2 ight)^{- a}
> \left( \sqrt{5} + 2 ight)^{b}

    \Leftrightarrow \left( \sqrt{5} + 2
ight)^{a} > \left( \sqrt{5} + 2 ight)^{b} \Leftrightarrow a >
b

  • Câu 16: Nhận biết

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị hàm số đi qua điểm (0; 1) và hàm số nghịch biến nên hàm số y = {\left( {\frac{\pi }{5}} ight)^x} thỏa mãn hình vẽ.

  • Câu 17: Thông hiểu

    Điều kiện xác định của hàm số y = \dfrac{1}{\sqrt{\log_{9}\dfrac{2x}{x + 1} -\dfrac{1}{2}}} là:

    Điều kiện xác định của hàm số:

    \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  { l o g{ _9}\dfrac{{2x}}{{x + 1}} - \dfrac{1}{2} > 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  {\dfrac{{2x}}{{x + 1}} > 3} 
\end{array}} ight.} ight.

    \Leftrightarrow \frac{2x}{x + 1} > 3
\Leftrightarrow \frac{x + 3}{x + 1} < 0 \Leftrightarrow - 3 < x
< - 1

  • Câu 18: Thông hiểu

    Cho biết m =\log_{25}7;n =\log_{2}5 . Tính giá trị biểu thức \log_{5}\frac{49}{8} theo các giá trị m,n?

    Ta có:

    m = \log_{25}7 = \log_{5^{2}}7 =\frac{1}{2}\log_{5}7

    \Rightarrow \log_{5}7 = 2m

    n = \log_{2}5 \Rightarrow \frac{1}{n} =\log_{5}2

    Ta có:

    \log_{5}\frac{49}{8} = \log_{5}49 -\log_{5}8

    = \log_{5}7^{2} - \log_{5}2^{3} =2\log_{5}7 - 3\log_{5}2

    = 2.2m - 3.\frac{1}{n} = \frac{4mn -
3}{n}

  • Câu 19: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 20: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho phương trình \log_{5}(2m + 3) - \log_{5}(m + 2) = 0. Xác định nghiệm phương trình đã cho?

    Điều kiện xác định:

    \left\{ \begin{matrix}2m + 3 > 0 \\m + 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{3}{2} \\m > - 2 \\\end{matrix} ight.\  \Leftrightarrow m > - \dfrac{3}{2}

    Ta có:

    \log_{5}(2m + 3) - \log_{5}(m + 2) =0

    \Leftrightarrow \log_{5}(2m + 3) =\log_{5}(m + 2)

    \Leftrightarrow 2m + 3 = m + 2
\Leftrightarrow m = - 1(tm)

    Vậy phương trình có nghiệm là m = -
1.

  • Câu 22: Nhận biết

    Cho a,b là hai số thực dương bất kì và b eq1. Kết luận nào sau đây đúng?

    Theo tính chất ta suy ra kết luận đúng là: {\log _b}a = \frac{{\ln a}}{{\ln b}}

  • Câu 23: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 24: Nhận biết

    Trong các biểu thức sau, biểu thức nào không có nghĩa?

    Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức ( - 4)^{- \frac{1}{3}} không có nghĩa.

  • Câu 25: Thông hiểu

    Cơ số x bằng bao nhiêu để \log_{x}\sqrt[10]{3} = - 0,1?

    Điều kiện x > 0;x eq 1

    Ta có:

    \log_{x}\sqrt[10]{3} = - 0,1

    \Leftrightarrow x^{- 0,1} =3^{0,1}

    \Leftrightarrow x^{- 1} = 3\Leftrightarrow x = \frac{1}{3}(tm)

    Vậy x=\dfrac{1}{3} là giá trị cần tìm.

  • Câu 26: Thông hiểu

    Tính giá trị của biểu thức \log_{\sqrt[6]{x}}\left(x^{\frac{7}{4}}.\sqrt[6]{y} ight) biết \left\{ \begin{matrix}
x,y > 0,x eq 1 \\
log_{x}y = \sqrt{2022} \\
\end{matrix} ight.?

    Ta có:

    \log_{\sqrt[6]{x}}\left(x^{\frac{7}{4}}.\sqrt[6]{y} ight) = \log_{\sqrt[6]{x}}x^{\frac{7}{4}} +\log_{\sqrt[6]{x}}\sqrt[6]{y}

    = 6.\frac{7}{4} + \sqrt{2022} =
\frac{21}{2} + \sqrt{2022}

  • Câu 27: Vận dụng

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Đáp án là:

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Theo bài ra: a eq 1,b eq 1,c eq
1

    \Rightarrow \log_{a}b eq 0;\log_{b}c eq0;\log_{c}a eq 0

    Khi đó ta có:

    \log_{a}b = 2\log_{b}c

    \Rightarrow \log_{a}c.\log_{c}b =2\log_{b}c

    \Rightarrow \log_{a}c =2\log_{b}^{2}c

    \log_{a}b = 4\log_{c}a

    \Rightarrow \log_{a}c.\log_{c}b =4\log_{c}a

    \Rightarrow \log_{c}b =4\log_{c}^{2}a

    Nên \log_{a}c.\log_{c}b =8\log_{b}^{2}c.\log_{c}^{2}a

    \Leftrightarrow \log_{a}b =8\log_{b}^{2}a

    \Leftrightarrow \log_{a}^{3}b = 8\Leftrightarrow \log_{a}b = 2 \Leftrightarrow b = a^{2}

    \log_{a}b = 2\log_{b}c

    \Leftrightarrow \log_{a}b = 2\log_{a^{2}}c\Leftrightarrow b = c

    Ta lại có: a + 2b + 3c = 48

    \Leftrightarrow a + 2a^{2} + 3a^{2} =
48

    \Leftrightarrow \left\lbrack\begin{matrix}a = - \dfrac{16}{5}(ktm) \\a = 3(tm) \\\end{matrix} ight.

    Vậy \left\{ \begin{matrix}
a = 3 \\
b = 9 \\
c = 9 \\
\end{matrix} ight.\  \Rightarrow P = a.b.c = 243

  • Câu 28: Vận dụng

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Đáp án là:

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Phương trình đã cho tương đương

    \left\{ \begin{matrix}
x + 2 > 0 \\
x^{2} - (a - 1)x + a^{2} - 6a + 2 = x + 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > - 2 \\
x^{2} - ax + a^{2} - 6a = 0(*) \\
\end{matrix} ight.

    Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm x_{1};x_{2} thỏa mãn - 2 < x_{1} < 0 < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
\left( x_{1} + 2 ight)\left( x_{2} + 2 ight) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
x_{1}.x_{2} + 2\left( x_{1} + x_{2} ight) + 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a < 0 \\
a^{2} - 4a + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
0 < a < 6 \\
a eq 2 \\
\end{matrix} ight.

    Mặt khác a\mathbb{\in Z \Rightarrow}a \in
\left\{ 1;3;4;5 ight\}

    Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

  • Câu 29: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    a) Vì 0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực đúng.

    b) Điều kiện xác định của hàm số:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Rightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là D =
(2;9brack

    c) Ta có: 2 < \sqrt{5} <
\sqrt{6} nên 3^{2} <
3^{\sqrt{5}} < 3^{\sqrt{6}} hay b < a < c

    d) Điều kiện xác định:

    mx - m + 2 > 0 \Leftrightarrow mx
> m - 2\ \ (*)

    TH1: m = 0 \Rightarrow (*)0 > -
1(tm)

    TH2: m > 0 \Rightarrow (*)
\Leftrightarrow x > \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
\frac{m - 2}{2}; + \infty ight)

    Khi đó yêu cầu bài toán trở thành \frac{m
- 2}{2} < 1 \Leftrightarrow m - 2 < m \Leftrightarrow - 2 <
0(tm)

    Th3: m < 0 \Rightarrow (*)
\Leftrightarrow x < \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
- \infty;\frac{m - 2}{2} ight)

    Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 30: Nhận biết

    Cho phương trình 2^{x^{2} + 2x} = 8^{2 - x}. Giải phương trình và tính tổng tất cả các nghiệm vừa tìm được.

    Ta có:

    2^{x^{2} + 2x} = 8^{2 - x}
\Leftrightarrow 2^{x^{2} + 2x} = \left( 2^{3} ight)^{2 -
x}

    \Leftrightarrow x^{2} + 2x = 3.(2 -
x)

    \Leftrightarrow x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là S = 1 + ( - 6) = - 5

  • Câu 31: Nhận biết

    Xác định hàm số đồng biến trên \mathbb{R}?

    Ta có: y = 1,25^{x}1,25 > 1 nên hàm số đồng biến trên tập số thực.

  • Câu 32: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 34: Nhận biết

    Giá trị của \log_{a}\frac{1}{\sqrt[3]{a}} với a > 0;a eq 1 bằng:

    Ta có: \log_{a}\frac{1}{\sqrt[3]{a}} =\log_{a}a^{\frac{- 3}{2}} = - \frac{3}{2}

  • Câu 35: Vận dụng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = m^{x} là hàm số đồng biến nên m > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = \log_{t}x là hàm nghịch biến nên 0 < t < 1

    Vậy ta có: \left\{ \begin{matrix}
0 < t < m \\
0 < t < n \\
\end{matrix} ight.

    Khi thay x = 1 vào hai hàm số y = m^{x};y
= n^{x} ta thu được m > n

    Vậy t < n < m.

  • Câu 36: Nhận biết

    Giá trị của 27^{\frac{1}{3}} là:

    Ta có: 27^{\frac{1}{3}} = \left( 3^{3}
ight)^{\frac{1}{3}} = 3^{3.\frac{1}{3}} = 3

  • Câu 37: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 38: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    a) Ta có: \left( \sqrt{16} ight)^{6} =
16^{3};\left( \sqrt[3]{60} ight)^{6} = 60^{2}

    \Rightarrow \sqrt{16} >
\sqrt[3]{60} mà cơ số 0,2 <
1

    (0,2)^{\sqrt{16}} <
(0,2)^{\sqrt[3]{60}}

    b) Điều kiện xác định: - 3x^{2} + 23x -
20 > 0 \Leftrightarrow 1 < x < \frac{20}{3}

    Vậy tập xác định có 5 giá trị nguyên.

    c) Điều kiện xác định: x > - 2;x eq
5

    \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0

    \Leftrightarrow \log_{2}(x + 2) +\log_{2}|x - 5| - \log_{2}8 = 0

    \Leftrightarrow \log_{2}\left\lbrack (x +2).|x - 5| ightbrack = \log_{2}8

    \Leftrightarrow (x + 2).|x - 5| = 8
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 5 \\
(x + 2).(x - 5) = 8 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
- 2 < x < 5 \\
(x + 2).(x - 5) = - 8 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 6 \\x = \dfrac{3 \pm \sqrt{17}}{2} \\\end{matrix} ight.\ (tm)

    Vậy tổng tất cả các nghiệm của phương trình là: S = 9

    d) Ta có:

    16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}

    \Leftrightarrow 4^{2x} + 5^{2x} + 6^{2x}
\leq 4^{x}.5^{x} + 4^{x}.6^{x} + 5^{x}.6^{x}

    \Leftrightarrow 2\left\lbrack 4^{2x} +
5^{2x} + 6^{2x} ightbrack - 2\left( 4^{x}.5^{x} + 4^{x}.6^{x} +
5^{x}.6^{x} ight) \leq 0

    \Leftrightarrow \left( 4^{x} - 5^{x}
ight)^{2} + \left( 4^{x} - 6^{x} ight)^{2} + \left( 5^{x} - 6^{x}
ight)^{2} \leq 0

    \Leftrightarrow \left\lbrack\begin{matrix}4^{x} - 5^{x} = 0 \\4^{x} - 6^{x} = 0 \\5^{x} - 6^{x} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\left( \dfrac{4}{5} ight)^{x} = 1 \\\left( \dfrac{4}{6} ight)^{x} = 1 \\\left( \dfrac{5}{6} ight)^{x} = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 0 \in \lbrack0;2020brack

    Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 39: Nhận biết

    Với các số a,b,c là các số thực dương và a eq 1. Tìm khẳng định sai trong các khẳng định dưới đây?

    Ta có: \log_{a}b = \frac{\ln b}{\ln a} nên \log_{a}b = \frac{\ln a}{\ln b} sai.

  • Câu 40: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo