Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Giải phương trình
ta được nghiệm phương trình là:
Ta có:
Vậy phương trình đã cho có nghiệm là .
Cho biết
, biểu thức
có giá trị là:
Ta có:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?
Hàm số có
là hàm số nghịch biến trên tập xác định của nó.
Các hàm số ;
;
có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.
Giá trị
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho phương trình
. Xác định nghiệm của phương trình đã cho?
Ta có:
Vậy phương trình có nghiệm x = 2.
Giá trị của biểu thức ![]()
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tìm tất cả các giá trị thực của
thỏa mãn đẳng thức
.
Ta có:
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình đã cho là
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho các hàm số
có đồ thị như hình vẽ dưới đây:

Kết luận nào sau đây đúng?
Dựa vào đồ thị hàm số là một hàm số nghịch biến trên tập xác định của nó nên
Hàm số là các hàm số đồng biến trên tập xác định của nó nên
Kẻ đường thẳng cắt đồ thị hàm số
lần lượt tại các điểm
Dựa vào đồ thị ta thấy
Vậy kết luận đúng là:
Rút gọn biểu thức

Với ta có:
Khi đó:
Biết khi rút gọn biểu thức
thu được phân số
tối giản và
. Tính giá trị biểu thức
.
Ta có:
Ta lại có:
Cho biểu thức
. Mệnh đề nào sau đây đúng?
Ta có:
Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm
Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm
Giả sử bà A đã gửi ngân hàng trong x năm
Số tiền bà nhận được là 250 triệu đồng
Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là
Vậy bà A đã gửi tiết kiệm trong 10 năm.
Tìm hàm số nghịch biến trên tập số thực?
Ta có:
Hàm số có cơ số
nên hàm số nghịch biến trên
Hàm số có tập xác định
nên hàm số đồng biến trên
Hàm số có
nên hàm số nghịch biến trên
.
Hàm số có
nên hàm số đồng biến trên
.
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Tính giá trị biểu thức ![]()
Ta có:
Tính giá trị của biểu thức
biết
thỏa mãn
?
Ta có:
Thay vào biểu thức Q ta được:
Cho hàm số
. Hỏi có bao nhiêu giá trị
thuộc tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Mà
Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.
Quan sát đồ thị hàm số sau:

Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại
và ta thấy
Vậy
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Cho đồ thị hàm số
như hình vẽ:

Hàm số
có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là
.
Rút gọn biểu thức
ta được:
Ta có:
Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Tìm tập xác định của hàm số
?
Hàm số xác định khi
Vậy tập xác định của hàm số là
Giả sử tập nghiệm của bất phương trình
có dạng
với
. Tính tổng
.
Ta có:
Vậy S = 2
Đơn giản biểu thức
ta được:
Ta có:
Giả sử
thì giá trị của
biểu diễn theo
là:
Ta có:
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có:
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có:
Giải bất phương trình
. Kết luận nào sau đây đúng?
Ta có:
hay
Cho đồ thị của hàm số ![]()

Hàm số tương ứng với đồ thị trên là:
Đồ thị hàm số đi qua điểm A(2; 1) nên hàm số tương ứng với đồ thị là:
Tìm giá trị của x để hàm số
có nghĩa.
Hàm số xác định với mọi
Vật tập xác định của hàm số là: .
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Cho phương trình với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Phương trình đã cho tương đương
Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm thỏa mãn
Mặt khác
Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.