Cho biết
. Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Cho biết
. Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Cho hình vẽ:

Ta có:
, đường thẳng
song song trục hoành cắt trục tung và đồ thị hai hàm số
lần lượt tại
. Biết
. Chọn khẳng định đúng?
Ta có:
Đường thẳng d cắt đồ thị hàm số tại điểm
Đường thẳng d cắt đồ thị hàm số tại điểm
Mà
Lại có
Tìm cặp số
. Biết
.
Ta có:
Cho x là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Cho
. Rút gọn biểu thức 
Ta có:
Tính giá trị biểu thức
với
?
Ta có:
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực
?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
.
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
.
Hàm số chỉ xác định trên
.
Hàm số có
nên nghịch biến trên
.
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Phương trình
có bao nhiêu nghiệm nguyên?
Điều kiện
Ta có:
(vì nghiệm cần xét là nghiệm nguyên)
Vậy phương trình không có nghiệm nguyên.
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Giải phương trình
ta thu được tập nghiệm
là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Cho hai số thực
và
với
. Kết luận nào sau đây sai?
Theo tính chất Logarit dễ thấy
Do thiếu điều kiện của nên
là đáp án sai.
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Rút gọn biểu thức
thu được kết quả
, trong đó
và phân số
tối giản. Chọn khẳng định đúng?
Ta có:
.
Tìm nghiệm của phương trình
.
Điều kiện xác định
Vậy phương trình có nghiệm .
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Cho hai số thực a và b với
. Chọn khẳng định sai?
Ta có: sai vì chưa biết b > 0 hay b < 0.
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Đặt
. Biểu diễn biểu thức
, với
là các phân số tối giản. Tính
.
Ta có:
Tính giá trị biểu thức
.
Ta có:
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng
khi và chỉ khi hàm số
đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Tính giá trị của
với mọi giá trị
?
Ta có:
Tính giá trị
biết
?
Ta có:
Mặt khác
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số:
Xác định nghiệm phương trình
?
Ta có:
Vậy phương trình có nghiệm
Cho
với
. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Suy ra
Vì nên chỉ có 1 bộ số
thỏa mãn.
Vậy
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Giá trị của
là:
Ta có:
Ta có:
. Biểu thức
có giá trị là:
Ta có:
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
để hàm số
có tập xác định
?
Hàm số xác định trên
khi và chỉ khi
Do
Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Gọi
là các nghiệm của phương trình
. Trong các khẳng định dưới đây khẳng định nào đúng?
Đặt phương trình trở thành
Gọi là hai nghiệm của phương trình (*) suy ra
Theo định lí Vi – et phương trình (*) ta có:
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là