Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Tìm số nghiệm phương trình
?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm.
Với
thì giá trị của
bằng bao nhiêu?
Ta có:
Tính giá trị biểu thức:
. Biết
là các số thực dương khác 1 và thỏa mãn
?
Ta có:
Lại có
Với các số
là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Vậy phương trình có hai nghiệm.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là .
Tìm nghiệm nguyên nhỏ nhất của bất phương trình
.
Điều kiện:
Bất phương trình tương đương
Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.
Cho
là hai số thực dương và
là hai số thực tùy ý. Đẳng thức nào sau đây sai?
Biểu thức sai là:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Cho các hàm số
có đồ thị như hình vẽ dưới đây:

Kết luận nào sau đây đúng?
Dựa vào đồ thị hàm số là một hàm số nghịch biến trên tập xác định của nó nên
Hàm số là các hàm số đồng biến trên tập xác định của nó nên
Kẻ đường thẳng cắt đồ thị hàm số
lần lượt tại các điểm
Dựa vào đồ thị ta thấy
Vậy kết luận đúng là:
Xác định tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm bất phương trình là
Giá trị của
với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Giá trị của với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Biết a là một số thực dương bất kì, mệnh đề nào sau đây đúng?
Ta có: là mệnh đề đúng.
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Rút gọn biểu thức
biết
.
Ta có:
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Tính giá trị biểu thức ![]()
Ta có:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?
Hàm số có
là hàm số nghịch biến trên tập xác định của nó.
Các hàm số ;
;
có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Giả sử
là hai nghiệm của phương trình
. Xác định giá trị biểu thức
biết
?
Ta có:
Cho số thực a dương tùy ý. Đặt
. Giá trị của x tương ứng là:
Ta có:
Vậy giá trị của x tương ứng là: .
Cho hình vẽ:

Ta có:
, đường thẳng
song song trục hoành cắt trục tung và đồ thị hai hàm số
lần lượt tại
. Biết
. Chọn khẳng định đúng?
Ta có:
Đường thẳng d cắt đồ thị hàm số tại điểm
Đường thẳng d cắt đồ thị hàm số tại điểm
Mà
Lại có
Cho biết
. Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Tính giá trị của biểu thức
.
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho
thỏa mãn
. Xác định tỉ số
?
Điều kiện
Với
Chọn mệnh đề sai trong các mệnh đều dưới đây.
Mệnh đề sai là:
Vì
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Tập nghiệm của phương trình
là:
Điều kiện
Ta có:
Vậy phương trình có tập nghiệm .
Giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Tính giá trị biểu thức
với a là một số thực dương.
Ta có: