Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho phương trình 2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5} =
2^{2x^{2} + 3x + 7} + 1. Tính tổng giá trị các nghiệm phương trình đã cho.

    Ta có:

    2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5}
= 2^{2x^{2} + 3x + 7} + 1

    \Leftrightarrow 2^{x^{2} - 3x + 2} +
2^{x^{2} + 6x + 5} = 2^{x^{2} - 3x + 2}.2^{x^{2} + 6x + 5} +
1

    \Leftrightarrow \left( 2^{x^{2} - 3x +
2} - 1 ight) - 2^{x^{2} + 6x + 5}.\left( 2^{x^{2} - 3x + 2} - 1
ight) = 0

    \Leftrightarrow \left( 2^{x^{2} + 6x +
5} - 1 ight).\left( 2^{x^{2} - 3x + 2} - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{x^{2} + 6x + 5} - 1 = 0 \\
2^{x^{2} - 3x + 2} - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
2^{x^{2} + 6x + 5} = 1 \\
2^{x^{2} - 3x + 2} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} + 6x + 5 = 0 \\
x^{2} - 3x + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = - 5 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm của phương trình là S = 1 + 2 + ( - 1) + ( - 5) = - 3

  • Câu 2: Thông hiểu

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 3: Thông hiểu

    Đơn giản biểu thức N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >
0) ta được N =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =
\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{\frac{-
2}{7}}}

    = \frac{a^{\frac{5}{3} +
\frac{7}{3}}}{a^{4 - \frac{2}{7}}} = \frac{a^{4}}{a^{\frac{26}{7}}} =
a^{4 - \frac{26}{7}} = a^{\frac{2}{7}}

    \Rightarrow \frac{m}{n} = \frac{2}{7}
\Rightarrow 2m^{2} + n = 15

  • Câu 4: Vận dụng cao

    Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức

    P = \frac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}

    có dạng P = m\sqrt[4]{a} + n\sqrt[4]{b}. Khi đó biểu thức liên hệ giữa n và m là:

    Ta có:

    \begin{matrix}  P = \dfrac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{{{\left( {\sqrt[4]{a}} ight)}^2} - {{\left( {\sqrt[4]{b}} ight)}^2}}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\sqrt[4]{a} + 2\sqrt[4]{a}\sqrt[4]{b}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{\left( {\sqrt[4]{a} - \sqrt[4]{b}} ight)\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \sqrt[4]{a} + \sqrt[4]{b} - 2\sqrt[4]{a} = \sqrt[4]{b} - \sqrt[4]{a} \hfill \\   \Rightarrow m =  - 1;n = 1 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Xác định hàm số tương ứng với đồ thị dưới đây:

    Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là y =\log_{2}x

  • Câu 6: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 7: Thông hiểu

    Tính giá trị K =
xy + z biết \log_{15}30 = \dfrac{1 +x\log2}{y\log3 + z\log5};\left( x,y,z\in\mathbb{ Z} ight)?

    Ta có:

    \log_{15}30 = \dfrac{1 + x\log2}{y\log3 +z\log5}

    Mặt khác

    \log_{15}30 =\frac{\log30}{\log15}

    = \frac{\log10 + \log3}{\log3 + \log5} =\frac{1 + \log3}{\log3 + \log5}

    \Rightarrow x = 1;y = 1;z = 1
\Rightarrow K = 2

  • Câu 8: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 9: Nhận biết

    Tập nghiệm của bất phương trình \left( \frac{2}{3} ight)^{4x} \leq \left(\frac{3}{2} ight)^{2 - x} là:

    Ta có:

    \left( \frac{2}{3} ight)^{4x} \leq\left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow \left( \frac{3}{2}ight)^{- 4x} \leq \left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow - 4x \leq 2 -x

    \Leftrightarrow x \geq -\frac{2}{3}

  • Câu 10: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 11: Thông hiểu

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c\mathbb{\in N}. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    Suy ra 3^{a}.2^{b}.5^{c} = 5

    a,b,c\mathbb{\in N} nên chỉ có 1 bộ số (a,b,c) = (0;0;1) thỏa mãn.

    Vậy a = b

  • Câu 12: Vận dụng

    Biết đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = \log_{a}x;\ (0 < a eq 1) qua điểm I(2;2). Giá trị của f\left( 4 - a^{2018} ight) là:

    Gọi M\left( x;\log_{a}x ight) là điểm thuộc đồ thị hàm số y =\log_{a}x thì điểm đối xứng với M qua IM'\left( 4 - x;4 - \log_{a}x ight) thuộc đồ thị hàm số y = f(x)

    => f(4 - x) = 4 \log_{a}x

    \Rightarrow f\left( 4 - a^{2018} ight)= 4 - \log_{a}^{2018} = - 2014

  • Câu 13: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 14: Thông hiểu

    Tìm hàm số nghịch biến trên tập số thực?

    Ta có:

    Hàm số y = \log_{- 3 +\sqrt{10}}x có cơ số a = - 3 +
\sqrt{10} nên hàm số nghịch biến trên (0; + \infty)

    Hàm số y = \log_{2}\left( x^{2} - xight) có tập xác định D = ( -
\infty;0) \cup (1; + \infty) nên hàm số đồng biến trên \mathbb{R}

    Hàm số y = \left( \frac{e}{3}
ight)^{2x}\frac{e}{3} <
1 nên hàm số nghịch biến trên \mathbb{R}.

    Hàm số y = \left( \frac{\pi}{3}
ight)^{x}\frac{\pi}{3} >
1 nên hàm số đồng biến trên \mathbb{R}.

  • Câu 15: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 17: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 18: Vận dụng

    Cho a,b >0 thỏa mãn a^{2} + 4b^{2} =5ab. Chọn khẳng định đúng?

    Ta có: a^{2} + 4b^{2} = 5ab \Rightarrow(a + 2b)^{2} = 9ab

    Lôgarit cơ số 10 cho hai vế ta được:

    \log(a + 2b)^{2} =\log(9ab)

    \Leftrightarrow 2\log(a + 2b) = \log9 +\log a + \log b

    \Leftrightarrow 2\left\lbrack \log(a +2b) - \log3 ightbrack = \log a + \log b

    \Leftrightarrow \log\left( \frac{a +2b}{3} ight) = \frac{\log a + \log b}{2}

  • Câu 19: Nhận biết

    Tìm hàm số nghịch biến trên \mathbb{R} trong các hàm số sau?

    Ta có:

    0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} nghịch biến trên \mathbb{R}.

  • Câu 20: Thông hiểu

    Hãy biểu diễn \log_{6}45 theo hai giá trị x,y biết x =\log_{2}3;y = \log_{5}3?

    Ta có:

    \log_{6}45 = \frac{\log_{3}\left( 5.3^{2}ight)}{\log_{3}(2.3)} = \frac{\log_{3}5 + 2}{\log_{3}2 + 1}

    = \dfrac{\dfrac{1}{y} + 2}{\dfrac{1}{x} +1} = \dfrac{x + 2xy}{xy + y}

  • Câu 21: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\frac{x - 3}{2x}là:

    Hàm số đã cho xác định khi \frac{x -
3}{2x} > 0 \Rightarrow x \in (3; + \infty)

    Vậy tập xác định của hàm số là D = (3; +
\infty).

  • Câu 22: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 23: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 24: Vận dụng

    Cho ba số thực dương a,b,c khác 1. Đồ thị các hàm số y = a^{x};y = b^{x};y = c^{x} được cho trong hình vẽ.

    Chọn mệnh đề đúng?

    Do hàm số y = a^{x} nghịch biến trên \mathbb{R} suy ra a < 1.

    Do hàm số y = b^{x};y = c^{x} đồng biến trên \mathbb{R} suy ra b,c > 1

    Ta có: \forall x \in (0; +
\infty): b^{x} > c^{x}
\Leftrightarrow \left( \frac{b}{c} ight)^{x} > 1

    \Leftrightarrow \frac{b}{c} > 1
\Rightarrow b > c

    Vậy a < 1 < c < b.

  • Câu 25: Thông hiểu

    Biến đổi biểu thức T = \sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}};(x >
0)thành dạng lũy thừa với số mũ hữu tỉ, ta được:

    Ta có:

    T =
\sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}} =
\sqrt{x^{\frac{4}{3}}.x^{\frac{4}{6}}} = \sqrt{x^{2}} = x

  • Câu 26: Nhận biết

    Tìm tập xác định của hàm số y=\log_{\frac{1}{2}}\left( x^{2} - 3x + 2ight)?

    Điều kiện xác định x^{2} - 3x + 2 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    => Tập xác định của hàm số là D = ( -
\infty;1) \cup (2; + \infty).

  • Câu 27: Thông hiểu

    Tính giá trị biểu thức: W = x^{2} - y^{2}. Biết x,y là các số thực dương khác 1 và thỏa mãn \log_{\sqrt[3]{x}}y =\dfrac{3y}{8};\log_{\sqrt{2}}x = \dfrac{32}{y}?

    Ta có:

    \log_{\sqrt{2}}x = \dfrac{32}{y}\Leftrightarrow 2\log_{2}x = \dfrac{32}{y}

    \Leftrightarrow y = \dfrac{16}{\log_{2}x}= 16\log_{x}2(*)

    Lại có \log_{\sqrt[3]{x}}y = \dfrac{3y}{8}\Leftrightarrow 3\log_{x}y = \dfrac{3y}{8}

    \Leftrightarrow \log_{x}y = \frac{y}{8}\Leftrightarrow \log_{x}\left( 16\log_{x}2 ight) =2\log_{x}2

    \Leftrightarrow \log_{x}\left( 16\log_{x}2ight) = \log_{x}2^{2}

    \Leftrightarrow 16\log_{x}2 = 4\Leftrightarrow \log_{x}2 = \frac{1}{4}

    \Leftrightarrow \log_{2}x = 4\Leftrightarrow x = 16 \Rightarrow y = 4

    \Rightarrow W = x^{2} - y^{2} =
240

  • Câu 28: Nhận biết

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

  • Câu 29: Thông hiểu

    Cho phương trình 5^{x} + m^{2} = 9 với m là tham số. Hỏi có tất cả các giá trị nguyên của tham số m để phương trình có nghiệm thực?

    Ta có: 5^{x} + m^{2} = 9 \Leftrightarrow
5^{x} = 9 - m^{2}

    Để phương trình đã cho có nghiệm thực thì 9 - m^{2} > 0 \Leftrightarrow m \in ( -
3;3)

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 30: Nhận biết

    Tập nghiệm của bất phương trình 5^{2x + 3} > \frac{1}{25} là:

    Ta có:

    5^{2x + 3} > \frac{1}{25}
\Leftrightarrow 5^{2x + 3} > 5^{- 2}

    \Leftrightarrow 2x + 3 > - 2
\Leftrightarrow x > - \frac{5}{2} hay x \in \left( - \frac{5}{2}; + \infty
ight)

  • Câu 31: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 32: Thông hiểu

    Phương trình \log_{2}x +\log_{\frac{1}{2}}(2x - 1) = 0 có nghiệm thuộc khoảng nào sau đây?

    Điều kiện xác định \left\{ \begin{matrix}
x > 0 \\
2x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
x > \frac{1}{2} \\
\end{matrix} ight.\  \Rightarrow x > \frac{1}{2}

    Phương trình đã cho:

    \log_{2}x + \log_{\frac{1}{2}}(2x - 1) =0

    \Leftrightarrow \log_{2}x - \log_{2}(2x -1) = 0

    \Leftrightarrow \log_{2}x = \log_{2}(2x -1)

    \Leftrightarrow x = 2x - 1
\Leftrightarrow x = 1(tm)

    Vậy nghiệm của phương trình thuộc khoảng x \in (0;2)

  • Câu 33: Nhận biết

    Trong các hàm số sau: y = 0,5^{x};y = \log_{\frac{1}{2}}x;y =\log_{\frac{5}{2}}x;y = \left( \frac{4}{5} ight)^{x}. Hàm số nào đồng biến trên tập xác định?

    Ta có: \frac{5}{2} > 1 nên hàm số y =\log_{\frac{5}{2}}x đồng biến trên tập xác định của nó.

  • Câu 34: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 35: Thông hiểu

    Cho hàm số y =\log_{2}x. Tìm mệnh đề nào sai?

    Mệnh đề sai là: “Tập xác định của hàm số là D = \mathbb{R}

    Sửa lại như sau: “Tập xác định của hàm số là D = (0; + \infty).

  • Câu 36: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 37: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 38: Nhận biết

    Tìm nghiệm phương trình \log_{5}(2x - 1) = \log_{5}3?

    Điều kiện x > \frac{1}{2}

    Ta có:

    \log_{5}(2x - 1) = \log_{5}3

    \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x =
2.

  • Câu 39: Nhận biết

    Cho a,b >
0. Tìm khẳng định đúng trong các khẳng định dưới đây?

    Khẳng định đúng là: a^{\ln b} = b^{\ln
a}

  • Câu 40: Thông hiểu

    Biết rằng 4^{x}+ 4^{- x} = 7. Khi đó biểu thức G =\frac{5 - 2^{x} - 2^{- x}}{3 + 2^{x + 1} + 2^{1 - x}} =\frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 3(tm) \\2^{x} + 2^{- x} = - 3(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =3

    G = \frac{5 - \left( 2^{x} + 2^{- x}ight)}{3 + 2\left( 2^{x} + 2^{- x} ight)} = \frac{5 - 3}{3 + 2.3} =\frac{2}{9}

    \Rightarrow p = 2;q = 9 \Rightarrow p+q = 11

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo