Cho hai hàm số
với
là các số thực dương khác có đồ thị hàm số lần lượt là
như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây.
Từ hình vẽ ta thấy đồ thị tăng suy ra hàm số
có cơ số
.
Đồ thị giảm suy ra hàm số
có cơ số
Cho hai hàm số
với
là các số thực dương khác có đồ thị hàm số lần lượt là
như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây.
Từ hình vẽ ta thấy đồ thị tăng suy ra hàm số
có cơ số
.
Đồ thị giảm suy ra hàm số
có cơ số
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?
Ta có:
Vậy mệnh đề sai là:
Biết
, xác định giá trị của biểu thức
theo
?
Ta có:
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Số
có bao nhiêu chữ số?
Ta có:
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147501992.
Xác định nghiệm của phương trình
![]()
Phương trình tương đương:
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Cho bất phương trình
có tập nghiệm
. Giá trị của biểu thức
bằng:
Ta có:
Đặt khi đó bất phương trình trở thành:
Từ đó suy ra
Tập nghiệm của bất phương trình là:
Vậy
Cho hàm số
. Tìm tập xác định của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Tính tổng tất cả các nghiệm của phương trình
?
Ta có:
Vậy phương trình có tổng nghiệm bằng 4.
Nếu
và
thì:
Ta có:
nên
(do
)
Ta có:
(vì
)
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Tính giá trị biểu thức
với
.
Ta có:
Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Chọn phát biểu sai?
Ta có: là phát biểu sai do
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Rút gọn biểu thức
thu được kết quả là:
Ta có:
Cho biểu thức
với
. Kết quả sau khi đơn giản biểu thức C là:
Ta có:
Cho hàm số
và hai số
thỏa mãn
. Khi đó
bằng bao nhiêu?
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm x = 1.
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số đồng biến trên khoảng
.
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Với
là một số thực dương, biểu thức
có giá trị là:
Ta có:
NB
Gọi
là các nghiệm của phương trình
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Khi đó:
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Giá trị của biểu thức
bằng:
Ta có:
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình đã cho là
Tính giá trị biểu thức
với
?
Ta có:
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Rút gọn biểu thức

Với ta có:
Khi đó:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Tính giá trị biểu thức
?
Ta có: