Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số:
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số:
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Tìm tất cả các giá trị thực của tham số m để hàm số
xác định với mọi
.
Hàm số xác định với mọi x thuộc tập số thực:
Biết
là số thực dương khác 1. Viết và thu gọn biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.
Trong bốn phương án đã cho, chỉ có hàm số thỏa mãn.
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Ta có:
Vậy phương trình đã cho có hai nghiệm.
Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có:
Cho
là một số thực dương. Giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Trong các hàm số dưới đây, hàm số nào là hàm số mũ?
Các hàm số ;
;
là các hàm số lũy thừa với số mũ hữu tỉ, hàm số
là hàm số mũ với cơ số là
.
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Xác định tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Tìm tập nghiệm của bất phương trình
.
Điều kiện:
Bất phương trình đã cho tương đương với
Kết hợp điều kiện, suy ra bất phương trình có nghiệm
Vậy tập nghiệm của bất phương trình là:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Ta có:
. Giá trị
là:
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số
luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Ta có:
suy ra
Sai||Đúng
d) Với
thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Phương trình
có tập nghiệm là:
Điều kiện
Ta có:
Vậy phương trình vô nghiệm hay .
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình
?
Ta có:
Mà
Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Cho
. Mệnh đề nào sau đây đúng với mọi số thực dương
?
Theo quy tắc Logarit của một thương ta só:
với
Cho biết
, biểu thức
có giá trị là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Rút gọn biểu thức

Với ta có:
Khi đó:
Số thực
thỏa mãn
với
. Giá trị của
bằng bao nhiêu?
Ta có: