Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 2: Nhận biết

    Giải bất phương trình 3^{x} < 5 ta được nghiệm:

    Ta có:

    3^{x} < 5 \Leftrightarrow x <
log_{3}5

  • Câu 3: Nhận biết

    Tìm tập xác định của hàm số y = - \log\left( 2x - x^{2} ight)?

    Điều kiên xác định:

    2x - x^{2} > 0 \Leftrightarrow 0 <
x < 2

    Vậy tập xác định của hàm số là: D = (0;2)

  • Câu 4: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 5: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 6: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight) và y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 7: Nhận biết

    Cho a,b >
0. Tìm khẳng định đúng trong các khẳng định dưới đây?

    Khẳng định đúng là: a^{\ln b} = b^{\ln
a}

  • Câu 8: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 10: Thông hiểu

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 11: Nhận biết

    Cho biểu thức F =2^{x}.2^{y};\left( x;y\in \mathbb{R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    F = 2^{x}.2^{y} = 2^{x + y}

  • Câu 12: Vận dụng

    Cho hàm số f(x) =
\frac{4^{x}}{4^{x} + 2}. Tính giá trị của biểu thức:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{4^{x}}{4^{x} +
2} + \frac{4^{1 - x}}{4^{1 - x} + 2} = 1

    Khi đó:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    A = \frac{2007}{2}

  • Câu 13: Nhận biết

    Cho các số thực dương a,b bất kì thỏa mãn \log a = x;logb = y. Tính giá trị biểu thức H = \log\left( a^{2}b^{3}
ight).

    Ta có:

    H = \log\left( a^{2}b^{3} ight) =
\log\left( a^{2} ight) + \log\left( b^{3} ight)

    = 2\log a + 3\log b = 2x + 3y

  • Câu 14: Nhận biết

    Cho hai số thực a và b với a > 0;a eq 1;b eq 0. Chọn khẳng định sai?

    Ta có: \dfrac{1}{2}\log_{a}b^{2} =\log_{a}b sai vì chưa biết b > 0 hay b < 0.

  • Câu 15: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 16: Vận dụng

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5

    \Leftrightarrow {\log _b}5 = 3{\log _a}5

    \Leftrightarrow {\log _b}5 = \frac{1}{3}{\log _5}a \Leftrightarrow a = {b^3}

  • Câu 17: Nhận biết

    Tập nghiệm của bất phương trình 2^{2m} < 2^{m + 4} là:

    Ta có:

    2^{2m} < 2^{m + 4} \Leftrightarrow 2m
< m + 4 \Leftrightarrow m < 4

    Vậy tập nghiệm của bất phương trình là: m
\in ( - \infty;4)

  • Câu 18: Thông hiểu

    Thu gọn biểu thức B = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}}với a > 0 ta được:

    Ta có:

    \left\{ \begin{matrix}
a^{\sqrt{3} + 1}.a^{2 - \sqrt{3}} \\
\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{\sqrt{3} + 1 + 2 - \sqrt{3}} = a^{3} \\
a^{\left( \sqrt{2} - 2 ight)\left( \sqrt{2} + 2 ight)} = a^{2 - 4} =
a^{- 2} \\
\end{matrix} ight.

    \Rightarrow B = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 19: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 20: Thông hiểu

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Đáp án là:

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất

    Sau 1 tháng, số tiền cả gốc và lãi là: a(1 + r)

    Sau n tháng, số tiền cả gốc và lãi là: a(1 + r)^{n}

    Số tiền sau 10 năm với lãi suất 6% một năm là:

    10^{8}.(1 + 6\%)^{10} =
179084769,7 (triệu đồng).

  • Câu 21: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 23: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Điều kiện xác định của hàm số y = \dfrac{1}{\sqrt{\log_{9}\dfrac{2x}{x + 1} -\dfrac{1}{2}}} là:

    Điều kiện xác định của hàm số:

    \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  { l o g{ _9}\dfrac{{2x}}{{x + 1}} - \dfrac{1}{2} > 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  {\dfrac{{2x}}{{x + 1}} > 3} 
\end{array}} ight.} ight.

    \Leftrightarrow \frac{2x}{x + 1} > 3
\Leftrightarrow \frac{x + 3}{x + 1} < 0 \Leftrightarrow - 3 < x
< - 1

  • Câu 25: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 26: Thông hiểu

    Xác định tất cả các giá trị của tham số m để phương trình 3^{x^{2} + 1} = m - 1 có nghiệm?

    Ta có:

    3^{x^{2}} \geq 3^{0} \Leftrightarrow
3^{x^{2} + 1} \geq 3^{1}

    Phương trình 3^{x^{2} + 1} = m -
1 có nghiệm khi và chỉ khi m - 1
\geq 3 \Leftrightarrow m \geq 4(tm)

    Vậy m \in \lbrack 4; + \infty) thỏa mãn yêu cầu bài toán.

  • Câu 27: Thông hiểu

    Cho số thực a
> 1. Mệnh đề nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
a > 1 \\
m > n \\
\end{matrix} ight.\  \Rightarrow a^{m} > a^{n}

    Với \left\{ \begin{matrix}
a > 1 \\
\frac{1}{3} < \frac{1}{2} \\
\end{matrix} ight.\  \Rightarrow a^{\frac{1}{3}} < a^{\frac{1}{2}}
\Rightarrow a^{\frac{1}{3}} < a^{\sqrt{2}}

    Vậy đáp án sai là: \sqrt{a} <
a^{\frac{1}{3}}

  • Câu 28: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 29: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 30: Thông hiểu

    Xác định số nghiệm của phương trình \ln\left( x^{2} - 6x + 7 ight) - \ln(x - 3) =
0?

    Điều kiện xác định: \left\{
\begin{matrix}
x^{2} - 6x + 7 > 0 \\
x - 3 > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \ln\left( x^{2} - 6x + 7
ight) = \ln(x - 3)

    \Leftrightarrow x^{2} - 6x + 7 = x -
3

    \Leftrightarrow x^{2} - 7x + 10 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 2 \\
\end{matrix} ight.

    Kết hợp với điều kiện thấy rằng x =
5 thỏa mãn điều kiện.

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 31: Nhận biết

    Trong các hàm số sau: y = 0,5^{x};y = \log_{\frac{1}{2}}x;y =\log_{\frac{5}{2}}x;y = \left( \frac{4}{5} ight)^{x}. Hàm số nào đồng biến trên tập xác định?

    Ta có: \frac{5}{2} > 1 nên hàm số y =\log_{\frac{5}{2}}x đồng biến trên tập xác định của nó.

  • Câu 32: Nhận biết

    Biết a,b là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?

    Theo quy tắc Logarit ta có:

    \ln(ab) = \ln a + \ln b

  • Câu 33: Thông hiểu

    Giá trị của biểu thức

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}ight) - 4\ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(\sqrt{2} - 1 ight)

    Ta có:

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}
ight) - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} - 1 ight)

    C = \frac{7}{16}\ln\left( \sqrt{2} + 1
ight)^{2} - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)^{- 1}

    C = \frac{7}{8}\ln\left( \sqrt{2} + 1
ight) - 4ln\left( \sqrt{2} + 1 ight) + \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)

    C = \left( \frac{7}{8} - 4 +
\frac{25}{8} ight).ln\left( \sqrt{2} + 1 ight) = 0

  • Câu 34: Thông hiểu

    Với các số a,b
> 0 thỏa mãn a^{2} + b^{2} =
6ab, biểu thức \log_{2}(a +b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Leftrightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow\log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a +\log_{2}b ight)

  • Câu 35: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 36: Thông hiểu

    Rút gọn biểu thức D =
log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}. (Giả sử tất cả các điều kiện đều xác định).

    Ta có:

    D =\log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}= \log_{a^{-1}}\frac{a.a^{\frac{3}{4}}.a^{\frac{2}{3}}}{a^{\frac{1}{2}}.a^{\frac{1}{4}}}

    = \log_{a^{-1}}\frac{a^{\frac{29}{12}}}{a^{\frac{3}{4}}} = \log_{a^{-1}}a^{\frac{5}{3}} = - \frac{5}{3}

  • Câu 37: Nhận biết

    Hàm số nào dưới đây đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{e} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{e} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 38: Nhận biết

    Cho phương trình 2^{m^{2} - 2m - 3} = 1. Tìm tập nghiệm S của phương trình đã cho.

    Ta có:

    2^{m^{2} - 2m - 3} = 1

    \Leftrightarrow 2^{m^{2} - 2m - 3} =
2^{0}

    \Leftrightarrow m^{2} - 2m - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 3 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm của phương trình là S =
\left\{ - 1;3 ight\}

  • Câu 39: Thông hiểu

    Tính giá trị của biểu thức A = \log_{mn}x. Biết \log_{m}x = 3;\log_{n}x = 4 với m,n là các số thực dương lớn hơn 1?

    Ta có:

    A = \log_{mn}x =\frac{1}{\log_{x}mn}

    = \frac{1}{\log_{x}m +\log_{x}n}

    = \dfrac{1}{\dfrac{1}{\log_{m}x} +\dfrac{1}{\log_{n}x}}

    = \dfrac{\log_{m}x.\log_{n}x}{\log_{m}x +\log_{n}x} = \dfrac{12}{7}

  • Câu 40: Vận dụng

    Cho biết a,b >
0,a eq 1;b eq 1;n \in \mathbb{N}^{*}. Một học sinh đã thực hiện tính giá trị biểu thức P =\frac{1}{\log_{a}b} + \frac{1}{\log_{a^{2}}b} + ... +\frac{1}{\log_{a^{n}}b} như sau:

    Bước 1: P = \log_{b}a + \log_{b}a^{2} + ...+ \log_{b}a^{n}

    Bước 2: P = \log_{b}\left( a.a^{2}...a^{n}ight)

    Bước 3: P = \log_{b}\left( a^{1 + 2 + 3 +.... + n} ight)

    Bước 4: P = n(n -1)\log_{b}\sqrt{a}

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    P = \dfrac{1}{\log_{a}b} +\dfrac{1}{\log_{a^{2}}b} + ... + \dfrac{1}{\log_{a^{n}}b}

    P = \log_{b}a + \log_{b}a^{2} + ... +\log_{b}a^{n}

    P = \log_{b}\left( a.a^{2}...a^{n}ight)

    P = \log_{b}\left( a^{1 + 2 + 3 + .... +n} ight)

    P = n(n + 1)\log_{b}\sqrt{a}

    Vậy bài toán sai từ bước 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo