Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Đáp án là:

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Điều kiện xác định \left\{ \begin{matrix}(x - 4)^{2} > 0 \\x - 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 4 \\x > 2 \\\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3^{\frac{1}{2}}}(x- 2) + 2\log_{3}|x - 4| = 0

    \Leftrightarrow 2\log_{3}(x - 2) +2\log_{3}|x - 4| = 0

    \Leftrightarrow \log_{3}\left\lbrack (x -2).|x - 4| ightbrack = \log_{3}1

    \Leftrightarrow (x - 2).|x - 4| =1

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\(x - 2)(x - 4) = 1 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\(x - 2)(x - 4) = - 1 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\x^{2} - 6x + 7 = 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\x^{2} - 6x + 9 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = 3 + \sqrt{2} \\x_{2} = 3 \\\end{matrix} ight.\  \Rightarrow S = 2

  • Câu 2: Nhận biết

    Cho a,b là hai số thực dương bất kì và b eq1. Kết luận nào sau đây đúng?

    Theo tính chất ta suy ra kết luận đúng là: {\log _b}a = \frac{{\ln a}}{{\ln b}}

  • Câu 3: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 4: Nhận biết

    Giá trị của biểu thức A = \log_{2^{2018}}4 - \dfrac{1}{1009} + \ln e^{2018} bằng:

    Ta có:

    A = \log_{2^{2018}}4 - \frac{1}{1009} +\ln e^{2018}

    = \log_{2^{2018}}2^{2} - \frac{1}{1009} +2018.\ln e

    = \frac{1}{1009} - \frac{1}{1009} + 2018
= 2018

  • Câu 5: Vận dụng

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Đáp án là:

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Giả sử bà A đã gửi ngân hàng trong x năm

    Số tiền bà nhận được là 250 triệu đồng

    Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là T = 100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow 250.10^{6} =
100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow n = \log_{1,1}2,5\Leftrightarrow n \approx 9,61

    Vậy bà A đã gửi tiết kiệm trong 10 năm.

  • Câu 6: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 7: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight)y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 8: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 9: Thông hiểu

    Cho a,b >
0;log_{3}a = p;log_{3}b = q. Biểu thức \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) được biểu diễn như thế nào theo các ẩn số?

    Ta có:

    \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) = \log_{3}3^{r} - \log_{3}a^{m} - \log_{3}b^{d}

    = r\log_{3}3 - m\log_{3}a -d\log_{3}b

    = r - m\log_{3}a - d\log_{3}b

    = r - mp - dq

  • Câu 10: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 11: Nhận biết

    Kết quả nào sau đấy là nghiệm của phương trình \log_{2}(x - 2) = 3?

    Điều kiện xác định: x > 2

    \log_{2}(x - 2) = 3 \Leftrightarrow x - 2= 2^{3}

    \Leftrightarrow x - 2 = 8
\Leftrightarrow x = 10(tm)

    Vậy phương trình có nghiệm x =
10.

  • Câu 12: Nhận biết

    Rút gọn biểu thức: D = x^{\frac{2}{5}}.\sqrt[6]{x} với x > 0 ta được kết quả là:

    Ta có: D = x^{\frac{2}{5}}.\sqrt[6]{x} =
x^{\frac{2}{5}}.x^{\frac{1}{6}} = x^{\frac{2}{5} + \frac{1}{6}} =
x^{\frac{17}{30}}.

  • Câu 13: Vận dụng cao

    Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức

    P = \frac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}

    có dạng P = m\sqrt[4]{a} + n\sqrt[4]{b}. Khi đó biểu thức liên hệ giữa n và m là:

    Ta có:

    \begin{matrix}  P = \dfrac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{{{\left( {\sqrt[4]{a}} ight)}^2} - {{\left( {\sqrt[4]{b}} ight)}^2}}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\sqrt[4]{a} + 2\sqrt[4]{a}\sqrt[4]{b}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{\left( {\sqrt[4]{a} - \sqrt[4]{b}} ight)\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \sqrt[4]{a} + \sqrt[4]{b} - 2\sqrt[4]{a} = \sqrt[4]{b} - \sqrt[4]{a} \hfill \\   \Rightarrow m =  - 1;n = 1 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực \mathbb{R}?

    Hàm số y = \left( \frac{2}{e}
ight)^{x}là hàm số mũ có cơ số bằng \frac{2}{e} \in (0;1) nghịch biến trên \mathbb{R}.

    Hàm số y = \left( \frac{\pi}{3}
ight)^{x}là hàm số mũ có cơ số \frac{\pi}{3} > 1 nên đồng biến trên \mathbb{R}.

    Hàm số y = \log_{\frac{1}{2}}x chỉ xác định trên (0; +
\infty).

    Hàm số y = log_{\frac{\pi}{4}}\left(
2x^{2} + 1 ight)y' =\dfrac{4x}{\left( 2x^{2} + 1 ight)\ln\dfrac{\pi}{4}} nên nghịch biến trên (0; + \infty).

  • Câu 15: Nhận biết

    Trong các hàm số dưới đây, hàm số nào là hàm số mũ?

    Các hàm số y = \left( \sin x
ight)^{3}; y = x^{3}; y = \sqrt[3]{x} là các hàm số lũy thừa với số mũ hữu tỉ, hàm số y =
3^{x} là hàm số mũ với cơ số là 3.

  • Câu 16: Nhận biết

    Biết các số a,b,c là các số thực dương và a,b eq 1. Tìm khẳng định sai trong các khẳng định dưới đây?

    Ta có:

    \log_{a}c = \frac{1}{\log_{c}a} eq -\log_{c}a

    Vậy khẳng định sai là: \log_{a}c = -\log_{c}a

  • Câu 17: Nhận biết

    Giá trị của \log_{a}\frac{1}{\sqrt[3]{a}} với a > 0;a eq 1 bằng:

    Ta có: \log_{a}\frac{1}{\sqrt[3]{a}} =\log_{a}a^{\frac{- 3}{2}} = - \frac{3}{2}

  • Câu 18: Thông hiểu

    Cho phương trình \log_{2}(2x - 1)^{2} = 2\log_{2}(x - 2). Số nghiệm thực của phương trình là:

    Điều kiện x > 2

    Ta có:

    \log_{2}(2x - 1)^{2} = 2\log_{2}(x -2)

    \Leftrightarrow 2\log_{2}(2x - 1) =2\log_{2}(x - 2)

    \Leftrightarrow 2x - 1 = x - 2
\Leftrightarrow x = - 1

    Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.

    Vậy tập nghiệm của bất phương trình là: S
= \lbrack - 2;2brack

  • Câu 19: Thông hiểu

    Giả sử \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
2^{\frac{a}{b}}, với \frac{a}{b} là phân số tối giản. Gọi K = a^{2} + b^{2}. Kết luận nào dưới đây đúng?

    Ta có:

    \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
\sqrt[5]{8\sqrt{2.2^{\frac{1}{3}}}} = \sqrt[5]{8\sqrt{2^{\frac{4}{3}}}}
= \sqrt[5]{2^{3}.2^{\frac{2}{3}}}

    = \sqrt[5]{2^{\frac{11}{3}}} =
2^{\frac{11}{15}} \Rightarrow \frac{a}{b} = \frac{11}{15} \Rightarrow
\left\{ \begin{matrix}
a = 11 \\
b = 15 \\
\end{matrix} ight.

    \Rightarrow K = 11^{2} + 15^{2} = 346
\in (340;350)

  • Câu 20: Nhận biết

    Tập nghiệm của bất phương trình 4^{x} \geq 2 là:

    Ta có:

    4^{x} \geq 2 \Leftrightarrow \left(
2^{2} ight)^{x} \geq 2 \Leftrightarrow 2^{2x} \geq 2

    \Leftrightarrow 2x \geq 1 \Leftrightarrow
x \geq \frac{1}{2} hay x \in
\left\lbrack \frac{1}{2}; + \infty ight)

  • Câu 21: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 22: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 23: Vận dụng

    Số 20182019^{20192020} có bao nhiêu chữ số?

    Ta có:

    Số tự nhiên Mk chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20182019^{20192020}suy ra

    \log M = \log\left( 20182019^{20192020}
ight)

    \Leftrightarrow M = 10^{\log\left(
20182019^{20192020} ight)}

    \Leftrightarrow M =10^{20192020.\log(20182019)}

    \Leftrightarrow M \approx
10^{147501991,5} < 10^{147501992}

    Vậy số các chữ số của 20182019^{20192020} là 147501992.

  • Câu 24: Nhận biết

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

  • Câu 25: Thông hiểu

    Tìm giá trị của x biết \log_{7}\frac{1}{x} = 2\log_{7}a -6\log_{49}b.

    Ta có:

    \log_{7}\frac{1}{x} = 2\log_{7}a -6\log_{49}b

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}a^{2} - 6\log_{7^{2}}b

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}a^{2} - 3\log_{7}b

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}a^{2} - \log_{7}b^{3}

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}\frac{a^{2}}{b^{3}}

    \Leftrightarrow x =
\frac{b^{3}}{a^{2}}

  • Câu 26: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 27: Nhận biết

    Tập nghiệm của bất phương trình \log_{0,25}\left( x^{2} - 3x ight) = -1? là:

    Điều kiện x^{2} - 3x > 0
\Leftrightarrow x \in ( - \infty;0) \cup (3; + \infty)

    \log_{0,25}\left( x^{2} - 3x ight) = -1

    \Leftrightarrow x^{2} - 3x =
4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = 4(tm) \\
\end{matrix} ight.

    Vậy phương trình có nghiệm x = -1 hoặc x = 4.

  • Câu 28: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

  • Câu 29: Thông hiểu

    Cho \left(
\sqrt{5} - 2 ight)^{x} > \left( \sqrt{5} - 2 ight)^{y}. Khẳng định nào sau đây đúng?

    Ta có: \sqrt{5} - 2 < 1 do đó nếu \left( \sqrt{5} - 2 ight)^{x} >
\left( \sqrt{5} - 2 ight)^{y} \Rightarrow x < y

  • Câu 30: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

  • Câu 32: Thông hiểu

    Tính giá trị biểu thức G = \log_{a^{2}}a^{10}.b^{2} + \log_{\sqrt{a}}\left(\frac{a}{\sqrt{b}} ight) + \log_{\sqrt[3]{5}}b^{- 2} với (0 < a eq 1;0 < b eq 1).

    Ta có:

    G = \log_{a^{2}}a^{10}.b^{2} +\log_{\sqrt{a}}\left( \frac{a}{\sqrt{b}} ight) + \log_{\sqrt[3]{b}}b^{-2}

    G = \log_{a^{2}}a^{10} + \log_{a^{2}}b^{2}+ \log_{\sqrt{a}}a - \log_{\sqrt{a}}\sqrt{b} -2\log_{\frac{1}{3}}b

    G = 5 + \log_{a}b + 2 - \log_{a}b - 6 =1

  • Câu 33: Vận dụng

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Thông hiểu

    Đơn giản biểu thức F =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được F =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    F =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{6 - \frac{23}{7}} =
a^{\frac{19}{7}}

    \Rightarrow m^{2} - n^{2} =
312

  • Câu 35: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 36: Thông hiểu

    Xác định nghiệm của phương trình

    \left\lbrack \left( 3 - 2\sqrt{2}
ight)^{\left( a^{2} + 1 ight)x} - \left( 3 + 2\sqrt{2} ight)
ightbrack.\left\lbrack 4^{x} - \left( b^{2} + 2 ight)
ightbrack = 0

    Phương trình tương đương:

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 3 - 2\sqrt{2} ight)^{\left( a^{2} + 1 ight)x} - \left( 3 +
2\sqrt{2} ight) = 0 \\
4^{x} - \left( b^{2} + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = - \dfrac{1}{a^{2} + 2} \\x = \log_{4}\left( b^{2} + 2 ight) \\\end{matrix} ight.

  • Câu 37: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 38: Thông hiểu

    Cho a =\log_{3}2;b = \log_{3}5. Khi đó \log60 có giá trị là:

    Ta có:

    \log60 =\frac{\log_{3}60}{\log_{3}10}= \frac{\log_{3}2^{2} + \log_{3}3 +\log_{3}5}{\log_{3}2 + \log_{3}5}

    = \frac{\log_{3}2^{2} + 1 +\log_{3}5}{\log_{3}2 + \log_{3}5}= \dfrac{2a + b + 1}{a + b}

  • Câu 39: Thông hiểu

    Phương trình 5^{2x^{4} - 5x^{2} + 3} - 7^{x^{2} - \frac{3}{2}}
= 0 có bao nhiêu nghiệm?

    Ta có:

    Logarit cơ số 7 hai vế ta có:

    {5^{2{x^4} - 5{x^2} + 3}} = {7^{{x^2} - \frac{3}{2}}}

    \Leftrightarrow \left( 2x^{4} - 5x^{2} +3 ight)\log_{7}5 = \left( x^{2} - \frac{3}{2} ight)

    \Leftrightarrow 2\left( x^{2} - 1ight)\left( x^{2} - \frac{3}{2} ight)\log_{7}5 - \left( x^{2} -\frac{3}{2} ight) = 0

    \Leftrightarrow \left\lbrack 2\left(x^{2} - 1 ight)\log_{7}5 - 1 ightbrack.\left( x^{2} - \frac{3}{2}ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}2\left( x^{2} - 1 ight)\log_{7}5 - 1 = 0 \\x^{2} - \dfrac{3}{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}2\left( x^{2} - 1 ight)\log_{7}5 - 1 = 0 \\x^{2} - \dfrac{3}{2} = 0 \\\end{matrix} ight.

    Giải phương trình x^{2} =
\frac{3}{2} ta được x = \pm
\frac{\sqrt{6}}{2}

    Giải phương trình 2\left( x^{2} - 1ight)\log_{7}5 - 1 = 0

    \Leftrightarrow x^{2} =\frac{\log_{5}7}{2} + 1

    \Leftrightarrow x = \pm\sqrt{\frac{\log_{5}175}{2}}

    Vậy tập nghiệm của phương trình là:S =\left\{ \pm \frac{\sqrt{6}}{2}; \pm \sqrt{\frac{\log_{5}175}{2}}ight\}

  • Câu 40: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 1)?

    Điều kiện xác định của hàm số y = \log(x
- 1) là:

    x - 1 > 0 \Rightarrow x >
1

    Vậy tập xác định của hàm số là D = (1; +
\infty)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo