Tính giá trị biểu thức
với
?
Ta có:
Tính giá trị biểu thức
với
?
Ta có:
Tính
với
?
Ta có:
Cho phương trình
với
là tham số. Hỏi có tất cả các giá trị nguyên của tham số
để phương trình có nghiệm thực?
Ta có:
Để phương trình đã cho có nghiệm thực thì
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?
Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:
(triệu đồng)
Quan sát đồ thị hàm số sau:

Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại
và ta thấy
Vậy
Phương trình
có hai nghiệm
. Khi đó giá trị biểu thức
bằng bao nhiêu? Biết rằng
.
Ta có:
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số
luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Ta có:
suy ra
Sai||Đúng
d) Với
thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Cho các số thức a, b thỏa mãn
và
. Tính giá trị của biểu thức
?
Ta có:
Đặt . Do
Khi đó
Với ta có:
=>
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Cho các số thực dương
bất kì thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Cho phương trình
. Tính tổng giá trị các nghiệm phương trình đã cho.
Ta có:
Vậy tổng tất cả các nghiệm của phương trình là
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Tính giá trị biểu thức
với a là một số thực dương.
Ta có:
Cho hai số thực dương
. Tính giá trị biểu thức:
biết
?
Ta có:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy là khẳng định đúng.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho hàm số
. Tìm tập xác định của hàm số.
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chọn mệnh đề sai trong các mệnh đều dưới đây.
Mệnh đề sai là:
Vì
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Tìm tập nghiệm của bất phương trình:
.
Điều kiện
Bất phương trình tương đương
Kết hợp với điều kiện ta được tập nghiệm bất phương trình là:
Rút gọn biểu thức
. (Giả sử tất cả các điều kiện đều xác định).
Ta có:
Tính giá trị biểu thức:
biết
?
Ta có:
Đặt
. Khi đó
biểu diễn là:
Ta có:
Cho
. Tính ![]()
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Ta có:
Vậy phương trình đã cho có hai nghiệm.
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?
Số tiền còn lại trong tài khoản sau tháng thứ 1 là: (triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 2 là:
(triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 3 là:
(triệu đồng)
Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:
(triệu đồng).
Cho số thực a dương tùy ý. Đặt
. Giá trị của x tương ứng là:
Ta có:
Vậy giá trị của x tương ứng là: .
Rút gọn biểu thức

Với ta có:
Khi đó:
Giải phương trình
.
Vậy phương trình có nghiệm .
Cho đồ thị hàm số
như hình vẽ:

Xác định giá trị
?
Đồ thị hàm số đi qua điểm (2; -1) nên
Khi đó
Giả sử phương trình
có nghiệm là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm của phương trình là
Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì: