Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Biết
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy
Cho
. Mệnh đề nào sau đây đúng với mọi số thực dương
?
Theo quy tắc Logarit của một thương ta só:
với
Cho bất phương trình
. Xác định nghiệm của bất phương trình đã cho?
Ta có:
Vậy tập nghiệm của bất phương trình là
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Tính giá trị biểu thức
. Biết
.
Giả sử khi đó:
Cho phương trình
với
là tham số. Tìm tất cả các giá trị thực của
để phương trình đã cho có nghiệm thực?
Để phương trình có nghiệm thực thì
.
Tính giá trị của biểu thức
.
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số có tập xác định
Cơ số do đó hàm số đồng biến trên
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Đồ thị hàm số sau là của hàm số nào?

Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại và
.
Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án thỏa mãn.
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy bất phương trình đã cho có tập nghiệm là: .
Phương trình
có bao nhiêu nghiệm nguyên?
Điều kiện
Ta có:
(vì nghiệm cần xét là nghiệm nguyên)
Vậy phương trình không có nghiệm nguyên.
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Thu gọn biểu thức
với
là các số thực dương:
Ta có:
Cho hình vẽ:

Ta có:
, đường thẳng
song song trục hoành cắt trục tung và đồ thị hai hàm số
lần lượt tại
. Biết
. Chọn khẳng định đúng?
Ta có:
Đường thẳng d cắt đồ thị hàm số tại điểm
Đường thẳng d cắt đồ thị hàm số tại điểm
Mà
Lại có
Chọn mệnh đề sai trong các mệnh đều dưới đây.
Mệnh đề sai là:
Vì
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Có bao nhiêu số thực dương
để
?
Ta có:
Để thì
Vậy có tất cả 8 số thực dương thỏa mãn yêu cầu bài toán.
Rút gọn biểu thức

Với ta có:
Khi đó:
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Rút gọn biểu thức
với
ta được kết quả:
Ta có:
Cho hàm số
và hai số
thỏa mãn
. Khi đó
bằng bao nhiêu?
Ta có:
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?
(1) Với số thực
và các số nguyên
, ta có
.
(2) Với hai số thực
cùng khác 0 và số nguyên n, ta có ![]()
(3) Với hai số thực
thỏa mãn 0 < a < b và số nguyên n, ta có
khi và chỉ khi
.
(4) Cho số thực
và các số nguyên
. Khi đó, với
thì
khi và chỉ khi
.
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Biết
khi đó
có giá trị là:
Ta có:
Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm
Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm
Giả sử bà A đã gửi ngân hàng trong x năm
Số tiền bà nhận được là 250 triệu đồng
Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là
Vậy bà A đã gửi tiết kiệm trong 10 năm.
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có:
Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình
?
Ta có:
Mà
Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.