Tính
với
?
Ta có:
Tính
với
?
Ta có:
Kết luận nào đúng khi biểu diễn tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho
là hai số thực dương thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Hãy xác định tập xác định
của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Cho biểu thức
với
. Kết quả sau khi đơn giản biểu thức C là:
Ta có:
Tìm hàm số nghịch biến trên tập số thực?
Ta có:
Hàm số có cơ số
nên hàm số nghịch biến trên
Hàm số có tập xác định
nên hàm số đồng biến trên
Hàm số có
nên hàm số nghịch biến trên
.
Hàm số có
nên hàm số đồng biến trên
.
Tính giá trị của biểu thức
.
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Giá trị của biểu thức
![]()
Ta có:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Bác X gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 7%/ 1 năm. Biết rằng bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo (hoặc gọi tắt là hình thức lãi kép). Chọn công thức ứng với số tiền cả gốc và lãi bác X nhận được sau 10 năm?
Áp dụng công thức lại kép thì sau 10 năm số tiền bác X nhận được là
Cho phương trình
. Số nghiệm thực của phương trình là:
Điều kiện
Ta có:
Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.
Vậy tập nghiệm của bất phương trình là:
Biết rằng các chữ số p khi viết trong hệ thập phân biết
là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?
Ta có:
Vậy p có 227832 chữ số.
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Giải phương trình
ta được:
Ta có:
Vậy phương trình đã cho có nghiệm
Cho hàm số
trên
trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

Ta có:
thì
Với thì
Chọn khẳng định sai trong các khẳng định sau?
Hàm số đồng biến trên khoảng
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số:
Cho bất phương trình
. Khẳng định nào sau đây đúng?
Ta có
Vì cơ số nên
Kết hợp với điều kiện ra có tập nghiệm của bất phương trình là:
Cho hai số thực
và
với
. Kết luận nào sau đây sai?
Theo tính chất Logarit dễ thấy
Do thiếu điều kiện của nên
là đáp án sai.
Cho số dương
và các số thực
. Đẳng thức nào sau đây sai?
Ta có:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Có bao nhiêu số thực dương
để
?
Ta có:
Để thì
Vậy có tất cả 8 số thực dương thỏa mãn yêu cầu bài toán.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Cho phương trình
. Tổng bình phương các nghiệm của phương trình đã cho bằng 10
Cho phương trình . Tổng bình phương các nghiệm của phương trình đã cho bằng 10
Ta có:
Vậy giá trị cần tìm bằng 10
Khẳng định nào sau đây sai?
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền
tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu
Áp dụng công thức tính lãi kép:
Với là tổng giá trị đạt được sau
kì, x là số vốn gốc, r là lãi suất mỗi kì.
Số tiền lãi thu được sau n kì là:
Khi dó:
triệu đồng
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Giả sử tập nghiệm của bất phương trình
có dạng
với
. Tính tổng
.
Ta có:
Vậy S = 2
Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm
diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?
Diện tích đất phục vụ nông nghiệp ban đầu là , diện tích đất nông nghiệp sau 4 năm sẽ là
;
Rút gọn biểu thức
với x > 0
Ta có:
Với
, khẳng định nào sau đây đúng?
Mệnh đề đúng là:
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có: