Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hai số thực dương a,b thỏa mãn 2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4. Tìm khẳng định đúng dưới đây?

    Ta có:

    2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4

    \Leftrightarrow 2\log_{3}a -3.\log_{3^{\frac{1}{2}}}b = 4

    \Leftrightarrow \log_{3}a - 3.\log_{3}b =2

    \Leftrightarrow \log_{3}a - \log_{3}b^{3}= 2

    \Leftrightarrow \log_{3}\frac{a}{b^{3}} =2 \Leftrightarrow \frac{a}{b^{3}} = 9

  • Câu 2: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 3: Nhận biết

    Tập nghiệm của bất phương trình \left( \frac{2}{3} ight)^{4x} \leq \left(\frac{3}{2} ight)^{2 - x} là:

    Ta có:

    \left( \frac{2}{3} ight)^{4x} \leq\left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow \left( \frac{3}{2}ight)^{- 4x} \leq \left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow - 4x \leq 2 -x

    \Leftrightarrow x \geq -\frac{2}{3}

  • Câu 4: Nhận biết

    Tìm nghiệm của phương trình \left( \sqrt{3} ight)^{3t - 6} = 1?

    Ta có:

    \left( \sqrt{3} ight)^{3t - 6} = 1
\Leftrightarrow \left( \sqrt{3} ight)^{3t - 6} = \left( \sqrt{3}
ight)^{0}

    \Leftrightarrow 3t - 6 = 0
\Leftrightarrow t = 2(tm)

    Vậy phương trình có nghiệm t = 2.

  • Câu 5: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 6: Thông hiểu

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 7: Thông hiểu

    Tính giá trị K =
xy + z biết \log_{15}30 = \dfrac{1 +x\log2}{y\log3 + z\log5};\left( x,y,z\in\mathbb{ Z} ight)?

    Ta có:

    \log_{15}30 = \dfrac{1 + x\log2}{y\log3 +z\log5}

    Mặt khác

    \log_{15}30 =\frac{\log30}{\log15}

    = \frac{\log10 + \log3}{\log3 + \log5} =\frac{1 + \log3}{\log3 + \log5}

    \Rightarrow x = 1;y = 1;z = 1
\Rightarrow K = 2

  • Câu 8: Thông hiểu

    Cho a,b >
0. Nếu viết \log_{3}\left(\sqrt[5]{a^{3}b} ight)^{\frac{2}{3}} = \frac{x}{15}\log_{3}a +\frac{y}{15}\log_{3}b thì giá trị x
+ y bằng bao nhiêu?

    Ta có:

    \log_{3}\left( \sqrt[5]{a^{3}b}ight)^{\frac{2}{3}} = \log_{3}a^{\frac{2}{5}} +\log_{3}b^{\frac{2}{15}}

    = \frac{2}{5}\log_{3}a +\frac{2}{15}\log_{3}b = \frac{6}{15}\log_{3}a +\frac{2}{15}\log_{3}b

    \Rightarrow x + y = 8

  • Câu 9: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 10: Nhận biết

    Với a,b \in
\mathbb{R}^{+} thỏa mãn biểu thức 3\log a + 2\log b = 1. Khẳng định nào dưới đây đúng?

    Ta có:

    3\log a + 2\log b = 1 \Leftrightarrow \log a^{3} + \log b^{2} = 1

    \Leftrightarrow \log\left( a^{3}b^{2}
ight) = 1 \Leftrightarrow a^{3}b^{2} = 10

  • Câu 11: Thông hiểu

    Giả sử x_{1};x_{2} là hai nghiệm của phương trình 2^{x^{2} - x + 8} - 4^{1 - 3x} =
0. Xác định giá trị biểu thức M =
4{x_{1}}^{2} - {x_{2}}^{2} biết x_{1} > x_{2}?

    Ta có:

    2^{x^{2} - x + 8} - 4^{1 - 3x} = 0
\Leftrightarrow 2^{x^{2} - x + 8} = \left( 2^{2} ight)^{1 -
3x}

    \Leftrightarrow 2^{x^{2} - x + 8} =
2^{2.(1 - 3x)}

    \Leftrightarrow x^{2} - x + 8 = 2.(1 -
3x)

    \Leftrightarrow x^{2} + 5x + 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x_{1} = - 2 \\
x_{2} = - 3 \\
\end{matrix} ight.\ (tm)

    \Rightarrow M = 4{x_{1}}^{2} -
{x_{2}}^{2} = 7

  • Câu 12: Vận dụng

    Cho hàm số f(x) =
\frac{4^{x}}{4^{x} + 2}. Tính giá trị của biểu thức:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{4^{x}}{4^{x} +
2} + \frac{4^{1 - x}}{4^{1 - x} + 2} = 1

    Khi đó:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    A = \frac{2007}{2}

  • Câu 13: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 14: Thông hiểu

    Cho hàm số y =\log_{2}x. Tìm mệnh đề nào sai?

    Mệnh đề sai là: “Tập xác định của hàm số là D = \mathbb{R}

    Sửa lại như sau: “Tập xác định của hàm số là D = (0; + \infty).

  • Câu 15: Nhận biết

    Tìm tập xác định của hàm số y = \ln(1 - x)?

    Điều kiện xác định của hàm số y = \ln(1 -
x) là:

    1 - x > 0 \Rightarrow x <
1

    Vậy tập xác định của hàm số là D = ( -
\infty;1)

  • Câu 16: Thông hiểu

    Rút gọn biểu thức E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{-
2}} với a,b là hai số thực dương.

    Ta có:

    E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{- 2}} =
\frac{\left( a^{2}.a^{- 4} ight).\left( b^{6}.b^{- 1} ight)}{\left(
a^{- 3}.a^{- 5} ight)\left( b^{3}.b^{- 2} ight)} =
a^{6}b^{4}

  • Câu 17: Nhận biết

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị hàm số đi qua điểm (0; 1) và hàm số nghịch biến nên hàm số y = {\left( {\frac{\pi }{5}} ight)^x} thỏa mãn hình vẽ.

  • Câu 18: Thông hiểu

    Cho phương trình \log_{5}(2m + 3) - \log_{5}(m + 2) = 0. Xác định nghiệm phương trình đã cho?

    Điều kiện xác định:

    \left\{ \begin{matrix}2m + 3 > 0 \\m + 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{3}{2} \\m > - 2 \\\end{matrix} ight.\  \Leftrightarrow m > - \dfrac{3}{2}

    Ta có:

    \log_{5}(2m + 3) - \log_{5}(m + 2) =0

    \Leftrightarrow \log_{5}(2m + 3) =\log_{5}(m + 2)

    \Leftrightarrow 2m + 3 = m + 2
\Leftrightarrow m = - 1(tm)

    Vậy phương trình có nghiệm là m = -
1.

  • Câu 19: Nhận biết

    Tập nghiệm của bất phương trình \log_{3}\left( 18 - x^{2} ight) \geq 2 là:

    Điều kiện: 18 - x^{2} > 0
\Leftrightarrow x \in \left( - 3\sqrt{2};3\sqrt{2}
ight)(*)

    Ta có:

    \log_{3}\left( 18 - x^{2} ight) \geq 2\Leftrightarrow 18 - x^{2} \geq 9 \Leftrightarrow - 3 \leq x \leq3

    Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: \lbrack -
3;3brack.

  • Câu 20: Thông hiểu

    Trong các hàm số sau đây, hàm số nào có tập xác định D=\mathbb{ R}?

    Ta có:

    Hàm số y = \left( 2 + \sqrt{x}
ight)^{\pi} có tập xác định D =
\lbrack 0; + \infty)

    Hàm số y = \left( 2 + \frac{1}{x^{2}}
ight)^{\pi} có tập xác định D=\mathbb{ R}\backslash\left\{ 0ight\}

    Hàm số y = \left( 2 + x^{2}
ight)^{\pi}có tập xác định D= \mathbb{R}

    Hàm số y = (2 + x)^{\pi}có tập xác định D = ( - 2; + \infty)

  • Câu 21: Thông hiểu

    Tìm tập xác định của hàm số y = \sqrt[3]{2x - 9} + (x -
3)^{\frac{5}{3}}.

    Điều kiện xác định của hàm số x - 3 >
0 \Rightarrow x > 3

    Vậy tập xác định của hàm số là D = (3; +
\infty).

  • Câu 22: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

  • Câu 23: Vận dụng

    Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận

    Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:

    T_{1} = 100.(1 + 0,02)^{4} =
108,24 triệu đồng

    Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:

    T_{2} = 100.(1 + 0,02)^{2} =
104,04 triệu đồng

    Vậy tổng số tiền nhận được là: T = T_{1}
+ T_{2} = 212,28 triệu đồng.

  • Câu 24: Nhận biết

    Cho biểu thức F =2^{x}.2^{y};\left( x;y\in \mathbb{R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    F = 2^{x}.2^{y} = 2^{x + y}

  • Câu 25: Thông hiểu

    Giả sử phương trình \log_{\sqrt{2}}x + \log_{\frac{1}{2}}(2x - 1) =1 có nghiệm lớn nhất là x = m +
n\sqrt{2};\left( m,n\mathbb{\in Z} ight). Tính giá trị biểu thức A = m + 2n?

    Điều kiện xác định \left\{ \begin{matrix}x > 0 \\2x - 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x > \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow x > \frac{1}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow 2\log_{2}x - \log_{2}(2x -1) = 1

    \Leftrightarrow \log_{2}\left(\frac{x^{2}}{2x - 1} ight) = 1

    \Leftrightarrow \frac{x^{2}}{2x - 1} = 2
\Leftrightarrow x^{2} - 4x + 2 = 0

    Nghiệm lớn nhất của phương trình là

    x = 2 + \sqrt{2} \Rightarrow \left\{
\begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.\  \Rightarrow A = m + 2n = 4

  • Câu 26: Thông hiểu

    Cho phương trình (2,4)^{3x + 1} = \left( \frac{5}{12} ight)^{x -
9}. Xác định nghiệm của phương trình đã cho?

    Ta có:

    (2,4)^{3x + 1} = \left( \frac{5}{12}
ight)^{x - 9} \Leftrightarrow \left( \frac{12}{5} ight)^{3x + 1} =
\left( \frac{12}{5} ight)^{- x + 9}

    \Leftrightarrow 3x + 1 = - x + 9
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x = 2.

  • Câu 27: Nhận biết

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

  • Câu 28: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Cho số thực dương a tùy ý. Viết biểu thức M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} dưới dạng a^{\frac{x}{y}} trong đó \frac{x}{y} là phân số tối giản, x,y \in \mathbb{N}^{*}. Tính giá trị biểu thức H = x^{2} +
y^{2}?

    Ta có:

    M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} =
a\sqrt{a^{3}\sqrt{a.a^{\frac{1}{2}}}} =
a\sqrt{a^{3}\sqrt{a^{\frac{3}{2}}}}

    = a\sqrt{a^{3}.a^{\frac{3}{4}}} =
a.a^{\frac{15}{8}} = a^{\frac{23}{8}}

    \Rightarrow \frac{x}{y} = \frac{23}{8}
\Rightarrow H = x^{2} + y^{2} = 593

  • Câu 30: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Tính giá trị biểu thức: N = 2\log_{2}a + 5\log_{2}b biết a,b \in \mathbb{R}^{+};a^{2}b^{5} =
64?

    Ta có: a,b > 0

    a^{2}b^{5} = 64 \Leftrightarrow \log_{2}\left( a^{2}b^{5} ight) = \log_{2}64

    \Leftrightarrow 2\log_{2}a + 5\log_{2}b =6

    \Leftrightarrow N = 6

  • Câu 32: Nhận biết

    Cho hàm số y =\log_{\frac{1}{2}}(x + 1). Tìm tập xác định của hàm số.

    Điều kiện xác định của hàm số y =\log_{\frac{1}{2}}(x + 1) là:

    x + 1 > 0 \Rightarrow x > -
1

    Vậy tập xác định của hàm số là: D = ( -
1; + \infty)

  • Câu 33: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 34: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 35: Thông hiểu

    Cho hàm số f(x)
= \frac{x^{\frac{2}{3}}.\left( \sqrt[3]{x^{- 2}} - \sqrt[3]{x}
ight)}{x^{\frac{1}{8}}.\left( \sqrt[8]{x^{3}} - \sqrt[8]{x}
ight)} với x > 0;x eq
1. Hãy xác định giá trị f\left(
2021^{2022} ight)?

    Ta có:

    f(x) = \frac{x^{\frac{2}{3}}.\left(
\sqrt[3]{x^{- 2}} - \sqrt[3]{x} ight)}{x^{\frac{1}{8}}.\left(
\sqrt[8]{x^{3}} - \sqrt[8]{x} ight)} = \frac{x^{\frac{2}{3}}.\left(
x^{- \frac{2}{3}} - x^{\frac{1}{3}} ight)}{x^{\frac{1}{8}}.\left(
x^{\frac{3}{8}} - x^{\frac{1}{8}} ight)}

    = \frac{- \left( x^{\frac{1}{2}} - 1
ight)\left( x^{\frac{1}{2}} + 1 ight)}{x^{\frac{1}{2}} - 1} = -
x^{\frac{1}{2}} - 1

    Khi đó: f\left( 2021^{2022} ight) =
\left( 2021^{2022} ight)^{\frac{1}{2}} - 1 = - 2021^{1011} -
1

  • Câu 36: Nhận biết

    Với các số a, b, c là các số thực dương tùy ý khác 1 và \log_{a}c = x;\log_{b}c =y. Khi đó giá trị của \log_{a}(ab) bằng:

    Với a, b, c là các số thực dương tùy ý khác 1 ta có:

    \log_{c}a = \frac{1}{x};\log_{c}b =\frac{1}{y}

    Khi đó ta có: \log_{c}(ab) = \log_{c}a +\log_{c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 37: Vận dụng

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Đáp án là:

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Theo bài ra: a eq 1,b eq 1,c eq
1

    \Rightarrow \log_{a}b eq 0;\log_{b}c eq0;\log_{c}a eq 0

    Khi đó ta có:

    \log_{a}b = 2\log_{b}c

    \Rightarrow \log_{a}c.\log_{c}b =2\log_{b}c

    \Rightarrow \log_{a}c =2\log_{b}^{2}c

    \log_{a}b = 4\log_{c}a

    \Rightarrow \log_{a}c.\log_{c}b =4\log_{c}a

    \Rightarrow \log_{c}b =4\log_{c}^{2}a

    Nên \log_{a}c.\log_{c}b =8\log_{b}^{2}c.\log_{c}^{2}a

    \Leftrightarrow \log_{a}b =8\log_{b}^{2}a

    \Leftrightarrow \log_{a}^{3}b = 8\Leftrightarrow \log_{a}b = 2 \Leftrightarrow b = a^{2}

    \log_{a}b = 2\log_{b}c

    \Leftrightarrow \log_{a}b = 2\log_{a^{2}}c\Leftrightarrow b = c

    Ta lại có: a + 2b + 3c = 48

    \Leftrightarrow a + 2a^{2} + 3a^{2} =
48

    \Leftrightarrow \left\lbrack\begin{matrix}a = - \dfrac{16}{5}(ktm) \\a = 3(tm) \\\end{matrix} ight.

    Vậy \left\{ \begin{matrix}
a = 3 \\
b = 9 \\
c = 9 \\
\end{matrix} ight.\  \Rightarrow P = a.b.c = 243

  • Câu 38: Nhận biết

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

  • Câu 39: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 40: Nhận biết

    Với \forall
m\mathbb{\in R}, khẳng định nào sau đây đúng?

    Mệnh đề đúng là: \ln m^{4} =4\ln m

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo