Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 2: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 2)^{2}.

    Điều kiện xác định (x - 2)^{2} > 0
\Rightarrow x eq 2

    Vậy tập xác định của hàm số là D=\mathbb{R}\backslash\left\{ 2 ight\}.

  • Câu 3: Thông hiểu

    Hãy biểu diễn \log_{6}45 theo hai giá trị x,y biết x =\log_{2}3;y = \log_{5}3?

    Ta có:

    \log_{6}45 = \frac{\log_{3}\left( 5.3^{2}ight)}{\log_{3}(2.3)} = \frac{\log_{3}5 + 2}{\log_{3}2 + 1}

    = \dfrac{\dfrac{1}{y} + 2}{\dfrac{1}{x} +1} = \dfrac{x + 2xy}{xy + y}

  • Câu 4: Thông hiểu

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Đáp án là:

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Ta có:

    \left\{ \begin{matrix}\log_{\sqrt{x}}y = \dfrac{2y}{5} \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}log_{x}y^{2} = \dfrac{2y}{5} \\ \log_{x}25 = \dfrac{2y}{5} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}y^{2} = 25 \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5;(y > 0) \\ \log_{25}x = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5 \\x = 5 \\\end{matrix} ight.

    Vậy giá trị của biểu thức y^{2} - 2x^{2}
= - 25

  • Câu 5: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 6: Nhận biết

    Giá trị của biểu thức A = \log_{2^{2018}}4 - \dfrac{1}{1009} + \ln e^{2018} bằng:

    Ta có:

    A = \log_{2^{2018}}4 - \frac{1}{1009} +\ln e^{2018}

    = \log_{2^{2018}}2^{2} - \frac{1}{1009} +2018.\ln e

    = \frac{1}{1009} - \frac{1}{1009} + 2018
= 2018

  • Câu 7: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Giải phương trình 2^{3a} = 64 ta được:

    Ta có:

    2^{3a} = 64 \Leftrightarrow 2^{3a} =
2^{6} \Leftrightarrow 3a = 6 \Leftrightarrow a = 2(tm)

    Vậy phương trình đã cho có nghiệm a =
2

  • Câu 9: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 10: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 11: Nhận biết

    Tìm tập nghiệm của bất phương trình 2^{a} \leq 4?

    Ta có: 2^{a} \leq 4 \Leftrightarrow 2^{a}
\leq 2^{2} \Leftrightarrow a \leq 2

    Vậy tập nghiệm của bất phương trình là a
\in ( - \infty;2brack

  • Câu 12: Nhận biết

    Đặt \log_{5}2 =a. Khi đó \log_{25}800 biểu diễn là:

    Ta có:

    \log_{25}800 =\dfrac{\log_{5}800}{\log_{5}25} =\dfrac{\log_{5}2^{5}.5^{2}}{\log_{5}5^{2}}

    = \frac{5\log_{5}2 + 2}{2} = \frac{5a +2}{2}

  • Câu 13: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hai số thực dương a,b thỏa mãn 2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4. Tìm khẳng định đúng dưới đây?

    Ta có:

    2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4

    \Leftrightarrow 2\log_{3}a -3.\log_{3^{\frac{1}{2}}}b = 4

    \Leftrightarrow \log_{3}a - 3.\log_{3}b =2

    \Leftrightarrow \log_{3}a - \log_{3}b^{3}= 2

    \Leftrightarrow \log_{3}\frac{a}{b^{3}} =2 \Leftrightarrow \frac{a}{b^{3}} = 9

  • Câu 15: Nhận biết

    Biết a \in
\mathbb{R}^{+}, \sqrt{a^{3}} bằng:

    Ta có: \sqrt{a^{3}} =
a^{\frac{3}{2}}

  • Câu 16: Vận dụng

    Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền x;\left( x\mathbb{\in N} ight) tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu

    Áp dụng công thức tính lãi kép: T_{n} =
x(1 + x)^{n}

    Với T_{n} là tổng giá trị đạt được sau n kì, x là số vốn gốc, r là lãi suất mỗi kì.

    Số tiền lãi thu được sau n kì là:

    P_{n} -
x = x(1 + r)^{n} - x = x\left\lbrack (1 + r)^{n} - 1
ightbrack

    Khi dó:

    30 = x\left\lbrack (1 + 6,5\%)^{3} - 1
ightbrack

    \Leftrightarrow x \approx
144,27 triệu đồng

  • Câu 17: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Chọn khẳng định đúng?

    Quan sát đồ thị ta thấy

    Hai hàm số y = n^{x};y = t^{x} đồng biến nên n,t > 1

    Hàm số y = m^{x} nghịch biến nên 0 < m < 1

    Vậy \left\{ \begin{matrix}
0 < m < 1 \\
n,t > 1 \\
\end{matrix} ight.

    Đường thẳng x = 1 cắt hai đồ thị hàm số y
= n^{x};y = t^{x} lần lượt tại n,t và ta thấy n > t

    Vậy m < t < n

  • Câu 18: Thông hiểu

    Đơn giản biểu thức N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >
0) ta được N =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =
\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{\frac{-
2}{7}}}

    = \frac{a^{\frac{5}{3} +
\frac{7}{3}}}{a^{4 - \frac{2}{7}}} = \frac{a^{4}}{a^{\frac{26}{7}}} =
a^{4 - \frac{26}{7}} = a^{\frac{2}{7}}

    \Rightarrow \frac{m}{n} = \frac{2}{7}
\Rightarrow 2m^{2} + n = 15

  • Câu 19: Thông hiểu

    Xác định tập nghiệm của bất phương trình \log_{3}(2x - 3) > 1?

    Điều kiện x > \frac{3}{2}

    Ta có: \log_{3}(2x - 3) >1

    \Leftrightarrow 2x - 3 > 3
\Leftrightarrow x > 3

    Vậy tập nghiệm bất phương trình là S =
(3; + \infty)

  • Câu 20: Thông hiểu

    Cho số thực dương a tùy ý. Viết biểu thức M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} dưới dạng a^{\frac{x}{y}} trong đó \frac{x}{y} là phân số tối giản, x,y \in \mathbb{N}^{*}. Tính giá trị biểu thức H = x^{2} +
y^{2}?

    Ta có:

    M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} =
a\sqrt{a^{3}\sqrt{a.a^{\frac{1}{2}}}} =
a\sqrt{a^{3}\sqrt{a^{\frac{3}{2}}}}

    = a\sqrt{a^{3}.a^{\frac{3}{4}}} =
a.a^{\frac{15}{8}} = a^{\frac{23}{8}}

    \Rightarrow \frac{x}{y} = \frac{23}{8}
\Rightarrow H = x^{2} + y^{2} = 593

  • Câu 21: Thông hiểu

    Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{3} - 1 < 1 \\
2018 > 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{3} - 1
ight)^{2018} < \left( \sqrt{3} - 1 ight)^{2017}

  • Câu 22: Nhận biết

    Cho a\in\mathbb{R}\backslash\left\{ 1 ight\}. Mệnh đề nào sau đây đúng với mọi số thực dương x,y?

    Theo quy tắc Logarit của một thương ta só:

    \log_{a}\left( \frac{x}{y} ight) =\log_{a}x - \log_{b}y với \forall x,y
> 0

  • Câu 23: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 24: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 25: Thông hiểu

    Rút gọn biểu thức P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >0) thu được kết quả a^{\frac{m}{n}}, trong đó m,n \in \mathbb{N}^{*} và phân số \frac{m}{n} tối giản. Chọn khẳng định đúng?

    Ta có:

    P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{- \frac{2}{7}}} =\frac{a^{4}}{a^{4}.a^{- \frac{2}{7}}} = a^{\frac{2}{7}}

    \Rightarrow \left\{ \begin{matrix}m = 2 \\n = 7 \\\end{matrix} ight.\  \Rightarrow 2m^{2} + n = 15.

  • Câu 26: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 27: Vận dụng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = m^{x} là hàm số đồng biến nên m > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = \log_{t}x là hàm nghịch biến nên 0 < t < 1

    Vậy ta có: \left\{ \begin{matrix}
0 < t < m \\
0 < t < n \\
\end{matrix} ight.

    Khi thay x = 1 vào hai hàm số y = m^{x};y
= n^{x} ta thu được m > n

    Vậy t < n < m.

  • Câu 28: Thông hiểu

    Cho a =\log_{12}18;b = \log_{24}54 . Tính giá trị biểu thức T = 5(a - b) + ab.

    Ta có: \left\{ \begin{matrix}a = log_{12}18 = \dfrac{log_{3}18}{log_{3}12} = \dfrac{log_{3}2 +2}{2log_{3}2 + 1} \\b = log_{24}54 = \dfrac{log_{3}54}{log_{3}24} = \dfrac{log_{3}2 +3}{3log_{3}2 + 1} \\\end{matrix} ight.

    Đặt x = log_{3}2 khi đó \left\{ \begin{matrix}a = \dfrac{x + 2}{2x + 1} \\b = \dfrac{x + 3}{3x + 1} \\\end{matrix} ight.

    Ta có: T = 5(a - b) + ab

    T = 5\left( \frac{x - 2}{2x + 1} -
\frac{x + 3}{3x + 1} ight) + \frac{x + 2}{2x + 1}.\frac{x + 3}{3x +
1}

    T = \frac{5\left\lbrack (x + 2)(3x + 1)
- (x + 3)(2x + 1) ightbrack + (x + 2)(x + 3)}{(2x + 1)(3x +
1)}

    T = \frac{6x^{2} + 3x + 1}{(2x + 1)(3x +
1)} = 1

  • Câu 29: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 30: Vận dụng

    Cho biết a,b >
0,a eq 1;b eq 1;n \in \mathbb{N}^{*}. Một học sinh đã thực hiện tính giá trị biểu thức P =\frac{1}{\log_{a}b} + \frac{1}{\log_{a^{2}}b} + ... +\frac{1}{\log_{a^{n}}b} như sau:

    Bước 1: P = \log_{b}a + \log_{b}a^{2} + ...+ \log_{b}a^{n}

    Bước 2: P = \log_{b}\left( a.a^{2}...a^{n}ight)

    Bước 3: P = \log_{b}\left( a^{1 + 2 + 3 +.... + n} ight)

    Bước 4: P = n(n -1)\log_{b}\sqrt{a}

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    P = \dfrac{1}{\log_{a}b} +\dfrac{1}{\log_{a^{2}}b} + ... + \dfrac{1}{\log_{a^{n}}b}

    P = \log_{b}a + \log_{b}a^{2} + ... +\log_{b}a^{n}

    P = \log_{b}\left( a.a^{2}...a^{n}ight)

    P = \log_{b}\left( a^{1 + 2 + 3 + .... +n} ight)

    P = n(n + 1)\log_{b}\sqrt{a}

    Vậy bài toán sai từ bước 4.

  • Câu 31: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 32: Vận dụng

    Biết phương trình 8lo{g_{2}}^{2}\sqrt[3]{x} + 2(m -
1)log_{\frac{1}{4}}x - 2019 = 0 có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4. Chọn mệnh đề đúng.

    Ta có:

    8\log{_{2}}^{2}\sqrt[3]{x} + 2(m -1)\log_{\frac{1}{4}}x - 2019 = 0

    \Leftrightarrow\frac{8}{9}\log{_{2}}^{2}x - (m - 1)\log_{2}x - 2019 = 0

    Đặt t = \log_{2}x \Leftrightarrow x =2^{t} ta được:

    \Leftrightarrow \frac{8}{9}t^{2} - (m -
1)t - 2019 = 0

    Phương trình đã cho có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4 khi và chỉ khi

    \frac{8}{9}t^{2} - (m - 1)t - 2019 =
0 có hai nghiệm phân biệt thỏa mãn.

    2^{t_{1} + t_{2}} = 4 \Leftrightarrow
t_{1} + t_{2} = 2

    \Leftrightarrow \frac{9(m - 1)}{8} = 2
\Rightarrow m = \frac{25}{9} \in (2;5).

  • Câu 33: Nhận biết

    Hãy xác định tập xác định D của hàm số y = \log_{2}(3 - x)?

    Điều kiện xác định của hàm số y =
log_{2}(3 - x) là:

    3 - x > 0 \Leftrightarrow x <
3

    Vậy tập xác định của hàm số đã cho là D =
( - \infty;3).

  • Câu 34: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. (đúng) vì 0 < a < 1.

    Tập xác định của hàm số y = \log(x -
1)(1; + \infty).

    Xét hàm số y = \log\left\lbrack (6 - x)(x
+ 2) ightbrack có điều kiện xác định là:

    (6 - x)(x + 2) > 0 \Leftrightarrow x
\in ( - 2;6)

    Vậy có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack.

    Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = x

  • Câu 35: Thông hiểu

    Cho phương trình 5^{x} + m^{2} = 9 với m là tham số. Hỏi có tất cả các giá trị nguyên của tham số m để phương trình có nghiệm thực?

    Ta có: 5^{x} + m^{2} = 9 \Leftrightarrow
5^{x} = 9 - m^{2}

    Để phương trình đã cho có nghiệm thực thì 9 - m^{2} > 0 \Leftrightarrow m \in ( -
3;3)

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 36: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 37: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 38: Nhận biết

    Tìm nghiệm của phương trình \log_{9}(2a) = \frac{1}{2}?

    Điều kiện xác định: a > 0

    \log_{9}(2a) = \frac{1}{2}\Leftrightarrow 2a = 9^{\frac{1}{2}}

    \Leftrightarrow 2a = 3 \Leftrightarrow a
= \frac{3}{2}(tm)

    Vậy phương trình có nghiệm a =
\frac{3}{2}.

  • Câu 39: Nhận biết

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

  • Câu 40: Nhận biết

    Tính giá trị biểu thức K = \log_{\frac{x}{5}}\left( \frac{x^{3}}{125}ight) với x \in
\mathbb{R}^{+}\backslash\left\{ 5 ight\}?

    Ta có:

    K = \log_{\frac{x}{5}}\left(\frac{x^{3}}{125} ight) = \log_{\frac{x}{5}}\left( \frac{x}{5}ight)^{3} = 3\log_{\frac{x}{5}}\left( \frac{x}{5} ight) =3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo