Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho phương trình \log_{2}(x - 1) = 3. Kết quả nào dưới đây là nghiệm phương trình đã cho?

    Điều kiện xác định: x > 1

    \log_{2}(x - 1) = 3 \Leftrightarrow x - 1= 2^{3}

    \Leftrightarrow x - 1 = 8
\Leftrightarrow x = 9(tm)

    Vậy phương trình có nghiệm x =
9.

  • Câu 2: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 3: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 4: Nhận biết

    Tìm điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2}?

    Điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

  • Câu 5: Nhận biết

    Tìm điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1}?

    Điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1} là:

    \left\{ \begin{matrix}x > 0 \\ \log_{2}x - 1 eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\ \log_{2}x eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x eq 2 \\\end{matrix} ight.

    Vậy tập xác định của hàm số đã cho là D =
(0; + \infty)\backslash\left\{ 2 ight\}.

  • Câu 6: Thông hiểu

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 7: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 8: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

  • Câu 9: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 10: Nhận biết

    Nếu m^{2x} =
3 thì giá trị 3m^{6x} là:

    Ta có: 3m^{6x} = 3.\left( m^{2x}
ight)^{3} = 3.3^{3} = 81

  • Câu 11: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \ln\left( x^{2} - 2mx + 4ight) xác định với mọi x\in\mathbb{ R}.

    Hàm số xác định với mọi x thuộc tập số thực:

    \Leftrightarrow x^{2} - 2mx + 4 >
0;\forall x\mathbb{\in R}

    \Leftrightarrow m^{2} - 4 < 0
\Leftrightarrow m \in ( - 2;2)

  • Câu 12: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x - 4 ight)^{\sqrt{2 -
\sqrt{3}}}.

    Điều kiện xác định của hàm số x^{2} - 3x
- 4 > 0 \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < - 1 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số là C = ( -
\infty; - 1) \cup (4; + \infty)

  • Câu 13: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 14: Nhận biết

    Tính tổng các nghiệm phương trình 7^{x^{2} - 5x + 9} = 343 thu được kết quả là:

    Ta có:

    7^{x^{2} - 5x + 9} = 343

    \Leftrightarrow x^{2} - 5x + 9 =
3

    \Leftrightarrow x^{2} - 5x + 6 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.\ (tm)

    = > S = 2 + 3 = 5

  • Câu 15: Nhận biết

    Xác định số nghiệm của phương trình: \left( \frac{1}{3} ight)^{x^{2} - 4x} =
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x^{2} - 4x}
= 9 \Leftrightarrow \left( 3^{- 1} ight)^{x^{2} - 4x} =
3^{2}

    \Leftrightarrow - \left( x^{2} - 4x
ight) = 2 \Leftrightarrow x^{2} - 4x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2} \\
x = 2 - \sqrt{2} \\
\end{matrix} ight.\ (tm)

    Vậy phương trình đã cho có 2 nghiệm.

  • Câu 16: Thông hiểu

    Tập nghiệm của bất phương trình \log_{3}\left( 31 - x^{2} ight) \geq 3 là:

    Điều kiện: 31 - x^{2} > 0
\Leftrightarrow x \in \left( - \sqrt{31};\sqrt{31}
ight)(*)

    Ta có:

    \log_{3}\left( 31 - x^{2} ight) \geq 3\Leftrightarrow 31 - x^{2} \geq 27 \Leftrightarrow - 2 \leq x \leq2

    Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: \lbrack -
2;2brack.

  • Câu 17: Nhận biết

    Chọn mệnh đề sai trong các mệnh đều dưới đây.

    Mệnh đề sai là: 3^{\frac{x}{y}} =
\frac{3^{x}}{3^{y}}

    \frac{3^{x}}{3^{y}} = 3^{x -
y}

  • Câu 18: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 19: Thông hiểu

    Tìm tập nghiệm của bất phương trình \frac{{1 - {{\log }_{\frac{1}{2}}}x}}{{\sqrt {2 - 6x} }} < 0.

    Điều kiện: 0 < x <\frac{1}{3}

    Bất phương trình đã cho tương đương với 1 - {\log _{\frac{1}{2}}}x < 0 \Leftrightarrow 0 < x < \frac{1}{2}

    Kết hợp điều kiện, suy ra bất phương trình có nghiệm 0 < x < \frac{1}{3}

    Vậy tập nghiệm của bất phương trình là: \left( 0;\frac{1}{3} ight)

  • Câu 20: Thông hiểu

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 21: Thông hiểu

    Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?

    Hàm số y = \log_{\sqrt{5}}x có \sqrt{5} > 1 nên hàm số y = \log_{\sqrt{5}}x đồng biến trên tập xác định của nó là (0; +\infty).

    Hàm số y = \left( 3\sqrt{2} ight)^{-x}0 < \frac{1}{3\sqrt{2}}< 1 nên nghịch biến trên tập xác định của nó.

    Hàm số y = \left( \frac{e}{3\pi}ight)^{x}0 <\frac{e}{3\pi} < 1 nên hàm số nghịch biến trên tập xác định của nó.

    Hàm số y = \log_{\frac{\pi}{6}}x có 0 < \frac{\pi}{6} < 1 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 22: Nhận biết

    Với ab là hai số thực dương tùy ý, biểu thức \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 23: Nhận biết

    Giá trị của biểu thức A = \log_{2^{2018}}4 - \dfrac{1}{1009} + \ln e^{2018} bằng:

    Ta có:

    A = \log_{2^{2018}}4 - \frac{1}{1009} +\ln e^{2018}

    = \log_{2^{2018}}2^{2} - \frac{1}{1009} +2018.\ln e

    = \frac{1}{1009} - \frac{1}{1009} + 2018
= 2018

  • Câu 24: Vận dụng

    Cho hàm số y =
f(x) = \frac{2016^{x}}{2016^{x} + \sqrt{2016}}. Tính giá trị của biểu thức:

    S = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017}
ight)

    f(1 - x) = \frac{\sqrt{2016}}{2016^{x}
+ \sqrt{2016}} nên f(x) + f(1 - x)
= 1

    \Rightarrow S = f\left( \frac{1}{2017}
ight) + f\left( \frac{2}{2017} ight) + ... + f\left(
\frac{2016}{2017} ight)

    \Rightarrow S = \left\lbrack f\left(
\frac{1}{2017} ight) + f\left( \frac{2016}{2017} ight) ightbrack
+ \left\lbrack f\left( \frac{2}{2017} ight) + f\left(
\frac{2015}{2017} ight) ightbrack

    + ... + \left\lbrack f\left(
\frac{1008}{2017} ight) + f\left( \frac{1009}{2017} ight)
ightbrack

    = 1008

  • Câu 25: Thông hiểu

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Đáp án là:

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Ta có:

    \left\{ \begin{matrix}\log_{\sqrt{x}}y = \dfrac{2y}{5} \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}log_{x}y^{2} = \dfrac{2y}{5} \\ \log_{x}25 = \dfrac{2y}{5} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}y^{2} = 25 \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5;(y > 0) \\ \log_{25}x = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5 \\x = 5 \\\end{matrix} ight.

    Vậy giá trị của biểu thức y^{2} - 2x^{2}
= - 25

  • Câu 26: Thông hiểu

    Thu gọn biểu thức I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được kết quả ta được phân số tối giản \frac{x}{y};\left( x;y \in \mathbb{N}^{*}
ight). Khẳng định nào sau đây đúng?

    Ta có:

    I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{\frac{19}{7}}

    Suy ra \left\{ \begin{matrix}
x = 19 \\
y = 7 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x^{2} + y^{2} = 410 \\
x^{2} - y^{2} = 312 \\
\end{matrix} ight.

  • Câu 27: Thông hiểu

    Tính giá trị biểu thức K = \frac{6^{3 + \sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1
+ \sqrt{5}}}.

    Ta có:

    K = \frac{6^{3 + \sqrt{5}}}{2^{2 +
\sqrt{5}}.3^{1 + \sqrt{5}}} = \frac{2^{3 + \sqrt{5}}.3^{3 +
\sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1 + \sqrt{5}}} = 2.3^{2} =
18

  • Câu 28: Thông hiểu

    Cho phương trình 2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2. Giả sử T là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của T là:

    Điều kiện \left\{ \begin{matrix}
2x - 2 > 0 \\
(x - 3)^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
\forall x\mathbb{\in R} \\
\end{matrix} ight.\  \Rightarrow x > 1

    Ta có:

    2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2

    \Leftrightarrow \log_{2}(2x - 2)^{2} +\log_{2}(x - 3)^{2} = 2

    \Leftrightarrow \log_{2}\left\lbrack (2x- 2)^{2}(x - 3)^{2} ightbrack = 2

    \Leftrightarrow log_{2}\left\lbrack
\left( 4x^{2} - 8x + 4 ight)\left( x^{2} - 6x + 9 ight)
ightbrack = 2

    \Leftrightarrow 4x^{4} - 32x^{3} +
88x^{2} - 96x + 32 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2}(tm) \\
x = 2(tm) \\
x = 2 - \sqrt{2}(ktm) \\
\end{matrix} ight.

    \Rightarrow T = 2 + \sqrt{2} + 2 = 4 +
\sqrt{2}

  • Câu 29: Thông hiểu

    Ta có: 4^{x} +4^{- x} = 14. Biểu thức 2^{x} +2^{- x} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 14 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 16

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 4(tm) \\2^{x} + 2^{- x} = - 4(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =4

  • Câu 30: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x - \log_{2}3 = 1 bằng:

    Điều kiện x eq 0

    Ta có:

    \log_{4}x - \log_{2}3 = 1 \Leftrightarrow\frac{1}{2}\log_{2}x^{2} = 1 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} = 2\log_{2}6\Leftrightarrow x^{2} = 6^{2}

    Khi đó tổng bình phương các nghiệm của phương trình bằng 0

  • Câu 31: Thông hiểu

    Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?

    Ta có:

    \log_{2}(3ab)^{3} = 3.\left( \log_{3}3 +\log_{3}a + \log_{3}b ight)

    = 3.\left( 1 + \log_{3}a + \log_{3}bight)

    = 3 + 3\log_{3}ab

    = 3 + \log_{3}(ab)^{3}

    Vậy mệnh đề sai là: \log_{2}(3ab)^{3} =\left( 1 + \log_{3}a + \log_{3}b ight)^{3}

  • Câu 32: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 33: Thông hiểu

    Cho m,n là các số thực dương lớn hơn 1 thỏa mãn m^{2} + 9n^{2} = 6mn. Tính giá trị biểu thức T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)}?

    Ta có: m^{2} + 9n^{2} = 6mn

    \Leftrightarrow (m - 3n)^{2} = 0
\Leftrightarrow m = 3n

    \Rightarrow T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)} = \dfrac{\log_{12}36n^{2}}{\log_{12}36n^{2}}= 1

  • Câu 34: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 35: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 36: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

  • Câu 37: Vận dụng

    Tìm công bội q của một cấp số nhân. Biết ba số x + \log_{2}3;x + \log_{4}3;x + \log_{8}3 theo thứ tự lập thành cấp số nhân.

    Theo giả thiết ta có:

    \left( x + \log_{4}3 ight)^{2} = \left(x + \log_{2}3 ight).\left( x + \log_{8}3 ight)

    \Leftrightarrow x\log_{2}3 + \left(\frac{1}{2}\log_{2}3 ight)^{2} = \frac{4}{3}x\log_{2}3 +\frac{1}{3}\left( \log_{2}3 ight)^{2}

    \Leftrightarrow \frac{1}{3}.x.\log_{2}3 =- \frac{1}{12}.\left( \log_{2}3 ight)^{2}

    \Leftrightarrow x = -\frac{1}{4}.\log_{2}3

    Vậy công bội của cấp số nhân là: q =\dfrac{x + \log_{4}3}{x + \log_{2}3} = \dfrac{- \dfrac{1}{4}.\log_{2}3 +\dfrac{1}{2}.\log_{2}3}{- \dfrac{1}{4}.\log_{2}3 + \log_{2}3} =\dfrac{1}{3}

  • Câu 38: Vận dụng

    Đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;\left( {0 < a e 1} ight) đi qua điểm I\left( {2;1} ight). Giá trị của biểu thức f\left( {4 - {a^{2019}}} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;\left( {0 < a e 1} ight) đi qua điểm I\left( {2;1} ight). Giá trị của biểu thức f\left( {4 - {a^{2019}}} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 40: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo