Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Đồ thị của hàm số y = 2^{x} và hàm số y = \frac{1}{2^{x}} đối xứng với nhau qua trục hoành. Sai||Đúng

    b) Hàm số y = \log_{\sqrt{3}}x đồng biến trên khoảng (0; +
\infty). Đúng||Sai

    c) Tập xác định của hàm số y =\frac{1}{\log_{x} - 1} là (0; +
\infty)\backslash\left\{ 1 ight\}. Đúng||Sai

    d) Có 6 giá trị nguyên thuộc tập xác định của hàm số y = \ln\left( 15 - x^{2} ight) Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Đồ thị của hàm số y = 2^{x} và hàm số y = \frac{1}{2^{x}} đối xứng với nhau qua trục hoành. Sai||Đúng

    b) Hàm số y = \log_{\sqrt{3}}x đồng biến trên khoảng (0; +
\infty). Đúng||Sai

    c) Tập xác định của hàm số y =\frac{1}{\log_{x} - 1} là (0; +
\infty)\backslash\left\{ 1 ight\}. Đúng||Sai

    d) Có 6 giá trị nguyên thuộc tập xác định của hàm số y = \ln\left( 15 - x^{2} ight) Sai||Đúng

    Đồ thị của hàm số 2^{x} và hàm số \frac{1}{2^{x}} đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.

    Hàm số y = log_{\sqrt{3}}x đồng biến trên khoảng (0; + \infty) đúng vì a > 1.

    Tập xác định của hàm số y =
\frac{1}{log_{x} - 1}(0; +
\infty)\backslash\left\{ 1 ight\} đúng.

    Xét hàm số y = \ln\left( 15 - x^{2}
ight) có điều kiện xác định 15 -
x^{2} > 0 \Leftrightarrow - \sqrt{15} < x <
\sqrt{15}

    x\mathbb{\in Z \Rightarrow}x = \left\{
\pm 3; \pm 2; \pm 1;0 ight\}

    Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số y = \ln\left( 15 - x^{2} ight).

  • Câu 2: Nhận biết

    Cho các số thực a và b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng?

    Xét tính đúng sai của từng đáp án như sau

    Ta có \log_{a}b < \log_{a}1 = 0 (vì 0 < a < 1;b > 1) => \log_{a}b < 0 => Đáp án \log_{a}b < 0 đúng

    a < b \Rightarrow \ln a < \ln
b

    => Đáp án \ln a > \ln b sai

    \left\{ \begin{matrix}
0 < 0,5 < 1 \\
a < b \\
\end{matrix} ight.\  \Rightarrow (0,5)^{a} > (0,5)^{b} => Đáp án (0,5)^{a} <
(0,5)^{b} Sai

    Ta có: \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight.\  \Rightarrow 2^{a} < 2^{b}=> Đáp án 2^{a} > 2^{b} sai.

  • Câu 3: Thông hiểu

    Phương trình 3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x - 5)^{3} =3 có bao nhiêu nghiệm nguyên?

    Điều kiện x > 5

    Ta có:

    3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x -5)^{3} = 3

    \Leftrightarrow 3\log_{3}(x - 1) +3\log_{3}(x - 5) = 3

    \Leftrightarrow \log_{3}(x - 1) +\log_{3}(x - 5) = 1

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = 1

    \Leftrightarrow (x - 1).(x - 5) =
3^{1}

    \Leftrightarrow x^{2} - 6x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 + \sqrt{7} \\
x = 3 - \sqrt{7} \\
\end{matrix} ight.\ (ktm) (vì nghiệm cần xét là nghiệm nguyên)

    Vậy phương trình không có nghiệm nguyên.

  • Câu 4: Nhận biết

    Xác định nghiệm của phương trình 3^{x + 1} = \left( \frac{1}{9}
ight)^{2x}?

    Ta có:

    3^{x + 1} = \left( \frac{1}{9}
ight)^{2x} \Leftrightarrow 3^{x + 1} = \left( 3^{- 2}
ight)^{2x}

    \Leftrightarrow 3^{x + 1} = 3^{- 2.2x}
\Leftrightarrow 3^{x + 1} = 3^{- 4x}

    \Leftrightarrow x + 1 = - 4x
\Leftrightarrow x = - \frac{1}{5}(tm)

    Vậy phương trình có nghiệm là x = -
\frac{1}{5}

  • Câu 5: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 7: Thông hiểu

    Cho biết m =\log_{25}7;n =\log_{2}5 . Tính giá trị biểu thức \log_{5}\frac{49}{8} theo các giá trị m,n?

    Ta có:

    m = \log_{25}7 = \log_{5^{2}}7 =\frac{1}{2}\log_{5}7

    \Rightarrow \log_{5}7 = 2m

    n = \log_{2}5 \Rightarrow \frac{1}{n} =\log_{5}2

    Ta có:

    \log_{5}\frac{49}{8} = \log_{5}49 -\log_{5}8

    = \log_{5}7^{2} - \log_{5}2^{3} =2\log_{5}7 - 3\log_{5}2

    = 2.2m - 3.\frac{1}{n} = \frac{4mn -
3}{n}

  • Câu 8: Nhận biết

    Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?

    Hàm số y = a^{x} nghịch biến trên \mathbb{R} khi 0 < a < 1.

  • Câu 9: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 10: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x - 4 ight)^{\sqrt{2 -
\sqrt{3}}}.

    Điều kiện xác định của hàm số x^{2} - 3x
- 4 > 0 \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < - 1 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số là C = ( -
\infty; - 1) \cup (4; + \infty)

  • Câu 11: Nhận biết

    Cho số thực dương a eq 1. Tính \log_{a\sqrt{a}}a\sqrt[3]{a}.

    Ta có:

    \log_{a\sqrt{a}}a\sqrt[3]{a} =\log_{a^{\frac{3}{2}}}a^{\frac{4}{3}} = \frac{\frac{4}{3}}{\frac{3}{2}} =\frac{8}{9}

  • Câu 12: Thông hiểu

    Tìm tập nghiệm S của phương trình \ln\left( 2a^{2} - a + 1 ight) = 0?

    Điều kiện xác định: 2a^{2} - a + 1 >
0

    \ln\left( 2a^{2} - a + 1 ight) = 0
\Leftrightarrow 2a^{2} - a + 1 = e^{0}

    \Leftrightarrow 2a^{2} - a + 1 = 1
\Leftrightarrow a.(2a - 1) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}2a - 1 = 0 \\a = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{1}{2} \\a = 0 \\\end{matrix} ight.\ (tm)

    Vậy phương trình có tập nghiệm S =
\left\{ 0;\frac{1}{2} ight\}.

  • Câu 13: Thông hiểu

    Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực \mathbb{R}?

    Hàm số y = \left( \frac{2}{e}
ight)^{x}là hàm số mũ có cơ số bằng \frac{2}{e} \in (0;1) nghịch biến trên \mathbb{R}.

    Hàm số y = \left( \frac{\pi}{3}
ight)^{x}là hàm số mũ có cơ số \frac{\pi}{3} > 1 nên đồng biến trên \mathbb{R}.

    Hàm số y = \log_{\frac{1}{2}}x chỉ xác định trên (0; +
\infty).

    Hàm số y = log_{\frac{\pi}{4}}\left(
2x^{2} + 1 ight)y' =\dfrac{4x}{\left( 2x^{2} + 1 ight)\ln\dfrac{\pi}{4}} nên nghịch biến trên (0; + \infty).

  • Câu 14: Thông hiểu

    Chọn mệnh đề đúng trong các khẳng định dưới đây.

    Xét hàm số y = a^{x} y = \left( \frac{1}{a} ight)^{x}

    Với \forall x\in\mathbb{ R} ta có: f( - x) = a^{- x} = \left( \frac{1}{a}
ight)^{x} = g(x)

    Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.

  • Câu 15: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 17: Nhận biết

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

  • Câu 18: Thông hiểu

    Biết \log_{2}5 =p;\log_{5}3 = q, xác định giá trị của biểu thức \log_{5}24 theo p;q?

    Ta có:

    \log_{5}24 = \log_{5}(8.3) = \log_{5}8 +\log_{5}3

    = 3\log_{5}2 + \log_{5}3 =\frac{3}{\log_{2}5} + \log_{5}3

    = \frac{3}{p} + q = \frac{3 +
pq}{p}

  • Câu 19: Thông hiểu

    Cho bất phương trình: \left( \frac{2}{3} ight)^{2x^{2} + 4x} \leq\left( \frac{3}{2} ight)^{x + 3}. Chọn khẳng định đúng về tập nghiệm của bất phương trình.

    Ta có:

    \left( \frac{2}{3} ight)^{2x^{2} + 4x}\leq \left( \frac{3}{2} ight)^{x + 3}

    \Leftrightarrow \left( \frac{2}{3}ight)^{2x^{2} + 4x} \leq \left( \frac{2}{3} ight)^{- x -3}

    \Leftrightarrow 2x^{2} + 4x \geq - x -3

    \Leftrightarrow 2x^{2} + 4x + 3 \geq0

    \Leftrightarrow \left\lbrack\begin{matrix}x \leq - \dfrac{3}{2} \\x \geq - 1 \\\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình là: S= \left( - \infty;\frac{- 3}{2} ight) \cup \lbrack - 1; +\infty)

  • Câu 20: Nhận biết

    Cho hàm số y =\log_{\frac{1}{2}}(x + 1). Tìm tập xác định của hàm số.

    Điều kiện xác định của hàm số y =\log_{\frac{1}{2}}(x + 1) là:

    x + 1 > 0 \Rightarrow x > -
1

    Vậy tập xác định của hàm số là: D = ( -
1; + \infty)

  • Câu 21: Thông hiểu

    Ta có: 4^{x} +4^{- x} = 14. Biểu thức 2^{x} +2^{- x} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 14 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 16

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 4(tm) \\2^{x} + 2^{- x} = - 4(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =4

  • Câu 22: Thông hiểu

    Với \log_{2}x =\sqrt{5} thì biểu thức \log_{2x}x có giá trị bằng bao nhiêu?

    Ta có:

    \log_{2}x = \sqrt{5} \Rightarrow x =2^{\sqrt{5}} > 1

    \Rightarrow \log_{x}2;\log_{x}x;\log_{x}2x đều xác định và \log_{x}2x eq 0 khi đó:

    \log_{2x}x = \dfrac{1}{\log_{x}2x} =\dfrac{1}{\log_{x}2 + \log_{x}x}

    = \dfrac{1}{\dfrac{1}{\log_{2}x} + 1} =\dfrac{1}{\dfrac{1}{\sqrt{5}} + 1} = \dfrac{\sqrt{5}}{1 +\sqrt{5}}

  • Câu 23: Nhận biết

    Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình 2^{x} >
6?

    Ta có:

    2^{x} > 6 \Leftrightarrow x >\log_{2}6

    \Rightarrow x \in \left( \log_{2}6; +\infty ight)

    Vậy tập nghiệm của bất phương trình đã cho là \left( \log_{2}6; + \infty ight)

  • Câu 24: Vận dụng

    Cho biết a,b >
0,a eq 1;b eq 1;n \in \mathbb{N}^{*}. Một học sinh đã thực hiện tính giá trị biểu thức P =\frac{1}{\log_{a}b} + \frac{1}{\log_{a^{2}}b} + ... +\frac{1}{\log_{a^{n}}b} như sau:

    Bước 1: P = \log_{b}a + \log_{b}a^{2} + ...+ \log_{b}a^{n}

    Bước 2: P = \log_{b}\left( a.a^{2}...a^{n}ight)

    Bước 3: P = \log_{b}\left( a^{1 + 2 + 3 +.... + n} ight)

    Bước 4: P = n(n -1)\log_{b}\sqrt{a}

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    P = \dfrac{1}{\log_{a}b} +\dfrac{1}{\log_{a^{2}}b} + ... + \dfrac{1}{\log_{a^{n}}b}

    P = \log_{b}a + \log_{b}a^{2} + ... +\log_{b}a^{n}

    P = \log_{b}\left( a.a^{2}...a^{n}ight)

    P = \log_{b}\left( a^{1 + 2 + 3 + .... +n} ight)

    P = n(n + 1)\log_{b}\sqrt{a}

    Vậy bài toán sai từ bước 4.

  • Câu 25: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    a) Điều kiện xác định của hàm số y =\ln\left( - x^{2} + 5x - 6 ight) là:

    - x^{2} + 5x - 6 > 0 \Leftrightarrow2 < x < 3

    Vậy tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3).

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực đúng vì a > 1.

    c) Ta có:

    \log_{2}a^{3} + \log_{2}b = 8

    \log_{2}a^{3} + \log_{2}b = 8\Leftrightarrow \log_{2}\left( a^{3}b ight) = 8

    \Leftrightarrow a^{3}b = 2^{8} =256

    d) Hàm số y = \ln\left( x^{2} - 2x - m +1 ight) có tập xác định trên tập số thực khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forallx\mathbb{\in R}

    \Leftrightarrow \Delta' < 0\Leftrightarrow 1 + m - 1 < 0 < 0 \Leftrightarrow m <0

    Kết hợp với điều kiện m\mathbb{\in Z},m\in \lbrack - 2018;2018brack ta được 2018 giá trị của tham số m thỏa mãn.

  • Câu 26: Nhận biết

    Đơn giản biểu thức H = x^{\frac{1}{3}}.\sqrt[6]{x};(x >
0) với x > 0 ta được kết quả là:

    Ta có: H = x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{3} + \frac{1}{6}} =
\sqrt{x}

  • Câu 27: Thông hiểu

    Thu gọn biểu thức I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được kết quả ta được phân số tối giản \frac{x}{y};\left( x;y \in \mathbb{N}^{*}
ight). Khẳng định nào sau đây đúng?

    Ta có:

    I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{\frac{19}{7}}

    Suy ra \left\{ \begin{matrix}
x = 19 \\
y = 7 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x^{2} + y^{2} = 410 \\
x^{2} - y^{2} = 312 \\
\end{matrix} ight.

  • Câu 28: Nhận biết

    Biết p > 0;p
eq 1. Tính \log_{p}\sqrt[1021]{p^{1022}}?

    Ta có:

    \log_{p}\sqrt[1021]{p^{1022}} =\log_{p}(p)^{\frac{1022}{1021}}

    = \frac{1022}{1021}log_{p}p =
\frac{1022}{1021}

  • Câu 29: Vận dụng

    Tìm cặp số (a;b). Biết \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018} =
a^{b}.

    Ta có:

    \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018}

    = \frac{1}{2019!}\left( \frac{1}{2}
ight)^{1}.\left( \frac{2}{3} ight)^{2}.\left( \frac{3}{4}
ight)^{3}...\left( \frac{2018}{2019} ight)^{2018}

    =
\frac{1}{2019!}.\frac{1.2.3...2018}{2019^{2018}}

    = \frac{1}{2019^{2019}} = 2019^{-
2019}

  • Câu 30: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?

    Hàm số y = (0,25)^{x} nghịch biến trên \mathbb{R}0 < 0,25 < 1

  • Câu 32: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 33: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{1}{3} ight)^{x + 2} \geq
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x + 2} \geq
9 \Leftrightarrow \left( 3^{- 1} ight)^{x + 2} \geq 3^{2}

    \Leftrightarrow 3^{- x - 2} \geq 3^{2}
\Leftrightarrow - x - 2 \geq 2 \Leftrightarrow x \leq - 4

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty; - 4brack

  • Câu 35: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết

    Biết \forall n
\in \mathbb{R}^{+}. Kết luận nào dưới đây đúng?

    Ta có: \log_{4}n^{4} = 4\log_{4}|n| =4\log_{4}n

  • Câu 37: Thông hiểu

    Rút gọn biểu thức E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{-
2}} với a,b là hai số thực dương.

    Ta có:

    E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{- 2}} =
\frac{\left( a^{2}.a^{- 4} ight).\left( b^{6}.b^{- 1} ight)}{\left(
a^{- 3}.a^{- 5} ight)\left( b^{3}.b^{- 2} ight)} =
a^{6}b^{4}

  • Câu 38: Thông hiểu

    Tính B =
\sqrt{\left( x^{\pi} + y^{\pi} ight)^{2} - \left( 4^{\frac{1}{\pi}}xy
ight)^{\pi}}?

    Ta có:

    B = \sqrt{\left( x^{\pi} + y^{\pi}
ight)^{2} - \left( 4^{\frac{1}{\pi}}xy ight)^{\pi}}

    B = \sqrt{x^{2\pi} + y^{2\pi} +
2x^{\pi}y^{\pi} - 4x^{\pi}y^{\pi}}

    B = \sqrt{x^{2\pi} + y^{2\pi} -
2x^{\pi}y^{\pi}}

    B = \sqrt{\left( x^{\pi} - y^{\pi}
ight)^{2}} = \left| x^{\pi} - y^{\pi} ight|

  • Câu 39: Vận dụng

    Cho hàm số y =
f(x) = \frac{2016^{x}}{2016^{x} + \sqrt{2016}}. Tính giá trị của biểu thức:

    S = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017}
ight)

    f(1 - x) = \frac{\sqrt{2016}}{2016^{x}
+ \sqrt{2016}} nên f(x) + f(1 - x)
= 1

    \Rightarrow S = f\left( \frac{1}{2017}
ight) + f\left( \frac{2}{2017} ight) + ... + f\left(
\frac{2016}{2017} ight)

    \Rightarrow S = \left\lbrack f\left(
\frac{1}{2017} ight) + f\left( \frac{2016}{2017} ight) ightbrack
+ \left\lbrack f\left( \frac{2}{2017} ight) + f\left(
\frac{2015}{2017} ight) ightbrack

    + ... + \left\lbrack f\left(
\frac{1008}{2017} ight) + f\left( \frac{1009}{2017} ight)
ightbrack

    = 1008

  • Câu 40: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo