Ta có:
. Biểu thức
có giá trị là:
Ta có:
Ta có:
. Biểu thức
có giá trị là:
Ta có:
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng
khi và chỉ khi hàm số
đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Thực hiện thu gọn biểu thức
với
ta được kết quả là:
Ta có:
Ta cũng có:
Khi đó:
Tính giá trị biểu thức:
. Biết
là các số thực dương khác 1 và thỏa mãn
?
Ta có:
Lại có
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.
Mỗi tháng anh B phải trả số tiền cho ngân hàng là:
Cho phương trình
. Tìm tập nghiệm
của phương trình đã cho.
Ta có:
Vậy tập nghiệm của phương trình là
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Cho biết
. Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Đơn giản biểu thức
với
được kết quả là:
Ta có:
Xác định nghiệm của phương trình
![]()
Phương trình tương đương:
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.
Trong bốn phương án đã cho, chỉ có hàm số thỏa mãn.
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Cho các số thức a, b thỏa mãn
và
. Tính giá trị của biểu thức
?
Ta có:
Đặt . Do
Khi đó
Với ta có:
=>
Quan sát đồ thị hàm số sau:

Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại
và ta thấy
Vậy
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Biết rằng hai số tự nhiên
thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Biết rằng hai số tự nhiên thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Ta có:
Với
là một số thực dương, biểu thức
có giá trị là:
Ta có:
NB
Với
, kết luận nào sau đây sai?
Với ta có:
Là các kết luận đúng
Ta lại có: sai.
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Xác định các nghiệm phương trình
rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Xác định các nghiệm phương trình rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Điều kiện
Ta có:
Tổng tất cả các nghiệm của phương trình là: .
Với
thì giá trị của
bằng bao nhiêu?
Ta có:
Kết quả nào sau đấy là nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Gọi
là các nghiệm của phương trình
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Khi đó:
Tính
?
Ta có:
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Khẳng định nào sau đây sai?
Ta có:
Giải phương trình
. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy
Giải bất phương trình
được tập nghiệm là:
Ta có:
Vậy tập nghiệm của bất phương trình là
Tính giá trị của biểu thức
.
Ta có:
Ta có:
. Biểu thức
có giá trị là:
Ta có:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Biết
là các số thực dương khác 1 thỏa mãn
. Biến đổi biểu thức
ta được kết quả là:
Ta có: