Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Tìm điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Với
thì biểu thức
có giá trị bằng bao nhiêu?
Ta có:
đều xác định và
khi đó:
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là: .
Cho đồ thị hàm số:

Xác định hàm số tương ứng?
Đồ thị hàm số đi lên và qua điểm có tọa độ nên hàm số thỏa mãn là
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm x = 1.
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Giả sử
thì giá trị của
biểu diễn theo
là:
Ta có:
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho phương trình
. Chọn khẳng định đúng.
Điều kiện xác định
Lấy logarit cơ số 3 hai vế phương trình ta được:
Trường hợp 1: ta có:
. Phương trình vô nghiệm.
Trường hợp 2: ta có:
vô nghiệm
Vậy phương trình đã cho vô nghiệm.
Rút gọn biểu thức
với x > 0
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho phương trình
. Tính tổng giá trị các nghiệm phương trình đã cho.
Ta có:
Vậy tổng tất cả các nghiệm của phương trình là
Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Nếu
là hai số thực dương bất kì thỏa mãn
thì khẳng định nào dưới đây đúng?
Ta có:
Cho hàm số
có đồ thị như hình vẽ,
có đồ thị đối xứng với đồ thị hàm số
qua đường thẳng
. Xác định hàm số
.

Ta có:
Phép đối xứng trục qua đường thẳng biến mỗi điểm có tọa độ
thành điểm có tọa độ
.
Mỗi điểm trên đồ thị hàm số có dạng
, lấy đối xứng qua
ta được điểm có tọa độ
thuộc đồ thị hàm số
.
Do đó . Đặt
, khi đó
. Vậy
.
Giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Với a là số thực dương tùy ý,
bằng:
Ta có:
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Cho
. Mệnh đề nào sau đây đúng với mọi số thực dương
?
Theo quy tắc Logarit của một thương ta só:
với
Hàm số nào sau đây được gọi là hàm số lũy thừa?
Hàm số là hàm số lũy thừa.
Hàm số và hàm số
là hàm số mũ.
Hàm số là hàm số lôgarit.
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Vì nên
Cho
. Khi đó
có giá trị là:
Ta có:
Xác định tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm bất phương trình là
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Kết quả nào dưới đây là nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .