Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Biết
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Ta có:
Rút gọn biểu thức
biết
.
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm x = 1.
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền
tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu
Áp dụng công thức tính lãi kép:
Với là tổng giá trị đạt được sau
kì, x là số vốn gốc, r là lãi suất mỗi kì.
Số tiền lãi thu được sau n kì là:
Khi dó:
triệu đồng
Rút gọn biểu thức
với
ta được kết quả:
Ta có:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho
. Tính
theo
và
.
Ta có:
Mặt khác
Thay vào trên ta được
Từ đó ta biến đổi biểu thức về cơ số 7 ta được:
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Biết rằng hai số tự nhiên
thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Biết rằng hai số tự nhiên thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Ta có:
Cho
thỏa mãn
. Chọn khẳng định đúng?
Ta có:
Lôgarit cơ số 10 cho hai vế ta được:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Biết
là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Biết là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Ta có:
Vậy giá trị của biểu thức
Giải bất phương trình
được tập nghiệm là:
Ta có:
Vậy tập nghiệm của bất phương trình là
Biết
. Tính
?
Ta có:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Hàm số nào sau đây được gọi là hàm số lũy thừa?
Hàm số là hàm số lũy thừa.
Hàm số và hàm số
là hàm số mũ.
Hàm số là hàm số lôgarit.
Tính giá trị biểu thức
.
Ta có:
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là
Tìm nghiệm của phương trình
.
Điều kiện xác định
Vậy phương trình có nghiệm .
Tính giá trị của biểu thức
.
Ta có:
Xác định nghiệm phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Cho tam giác vuông ABC có
là độ dài hai cạnh góc vuông,
là độ dài cạnh huyền với điều kiện
. Chọn kết luận đúng.
Do tam giác ABC vuông nên ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Hàm số nào sau đây đồng biến trên
?
Do nên hàm số
đồng biến trên
.
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho các số dương
thỏa mãn
. Chọn khẳng định đúng.
Xét tính đúng sai của từng đáp án dựa vào điểu kiện của
(vì
) nên
đúng
Vì nên
. Vậy
sai.
Vì nên
. Vậy
sai.
Vì nên
. vậy
sai.
Tìm tập xác định của hàm số
là:
Điều kiện xác định:
Vậy tập xác định là:
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có: