Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 2: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 4: Nhận biết

    Cho hai số thực ab với a >
0,a eq 1;b eq 0. Kết luận nào sau đây sai?

    Theo tính chất Logarit dễ thấy

    \log_{a^{3}}|b| =\frac{1}{2}\log_{a}|b|

    \frac{1}{2}\log_{a}b^{2} =\log_{a}|b|

    \frac{1}{2}log_{a}a^{2} = 1

    Do thiếu điều kiện của b nên \frac{1}{2}log_{a}b^{2} = log_{a}b là đáp án sai.

  • Câu 5: Nhận biết

    Cho số thực dương a eq 1. Tính \log_{a\sqrt{a}}a\sqrt[3]{a}.

    Ta có:

    \log_{a\sqrt{a}}a\sqrt[3]{a} =\log_{a^{\frac{3}{2}}}a^{\frac{4}{3}} = \frac{\frac{4}{3}}{\frac{3}{2}} =\frac{8}{9}

  • Câu 6: Thông hiểu

    Số thực x thỏa mãn \log_{2}\left( \log_{4}x ight) = \log_{4}\left(\log_{3}x ight) - a với a\mathbb{\in R}. Giá trị của \log_{2}x bằng bao nhiêu?

    Ta có:

    \log_{2}\left( \log_{4}x ight) =\log_{4}\left( \log_{3}x ight) - a

    \Leftrightarrow \log_{2}\left(\frac{1}{2}\log_{2}x ight) = \frac{1}{2}\log_{2}\left( \log_{2}x ight)- a

    \Leftrightarrow \log_{2}\left( \log_{2}xight) = 2 - 2a

    \Leftrightarrow \log_{2}x = 4^{1 -a}

  • Câu 7: Nhận biết

    Điều kiện xác định của hàm số y = (2,5)^{x} là:

    Điều kiện xác định của hàm số y =
(2,5)^{x} là x\in\mathbb{ R}

  • Câu 8: Thông hiểu

    Cho a,b là hai số thực dương thỏa mãn \log_{9}a^{4} +\log_{3}b = 8 và \log_{3}a +\log_{\sqrt[3]{3}}b = 9. Tính giá trị của biểu thức K = ab + 1.

    Ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2\log_{3}a + \log_{3}b = 8 \\ \log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{3}a = 3 \\ \log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight.

    \Leftrightarrow K = ab + 1 =
244

  • Câu 9: Vận dụng

    Số 20172018^{20162017} có bao nhiêu chữ số?

    Số tự nhiên M k chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20172018^{20162017} suy ra

    \log M = \log\left( 20172018^{20162017}
ight)

    \Leftrightarrow M = 10^{\log\left(
20172018^{20162017} ight)}

    \Leftrightarrow M =
10^{20162017.log(20172018)}

    \Leftrightarrow M \approx
10^{1147278480,5} < 10^{147278481}

    Vậy số các chữ số của 20172018^{20162017} là 147278481.

  • Câu 10: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

  • Câu 11: Nhận biết

    Kết luận nào đúng khi biểu diễn tập xác định của hàm số y = \log\left( x^{4}
ight)?

    Điều kiện xác định của hàm số y =
\log\left( x^{4} ight) là:

    x^{4} > 0 \Rightarrow x eq
0

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 0 ight\}

  • Câu 12: Thông hiểu

    Xác định tập nghiệm của phương trình \log_{2}\left( - x^{2} + 4x - 3 ight) =\log_{2}\left( \frac{5}{2} - x ight) + 1?

    Điều kiện xác định: \left\{
\begin{matrix}
- x^{2} + 4x - 3 > 0 \\
\frac{5}{2} - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x <
\frac{5}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}\left( \frac{5}{2} - x ight) +\log_{2}2

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}(5 - 2x)

    \Leftrightarrow - x^{2} + 4x - 3 = 5 -
2x

    \Leftrightarrow x^{2} - 6x + 8 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2(tm) \\
x = 4(ktm) \\
\end{matrix} ight.

    Vậy phương trình có tập nghiệm là S =
\left\{ 2 ight\}

  • Câu 13: Nhận biết

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 14: Thông hiểu

    Xác định nghiệm của phương trình (2,5)^{5x - 7} = \left( \frac{2}{5} ight)^{x +
1}?

    Ta có:

    (2,5)^{5x - 7} = \left( \frac{2}{5}
ight)^{x + 1} \Leftrightarrow \left( \frac{5}{2} ight)^{5x - 7} =
\left( \frac{5}{2} ight)^{- (x + 1)}

    \Leftrightarrow 5x - 7 = - (x +
1)

    \Leftrightarrow x = 1(tm)

    Vậy phương trình đã cho có nghiệm x =
1.

  • Câu 15: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \ln\left( x^{2} - 2mx + 4ight) xác định với mọi x\in\mathbb{ R}.

    Hàm số xác định với mọi x thuộc tập số thực:

    \Leftrightarrow x^{2} - 2mx + 4 >
0;\forall x\mathbb{\in R}

    \Leftrightarrow m^{2} - 4 < 0
\Leftrightarrow m \in ( - 2;2)

  • Câu 16: Thông hiểu

    Cho x = \left( 2
+ \sqrt{3} ight)^{- 1}y =
\left( 2 - \sqrt{3} ight)^{- 1}. Tính giá trị biểu thức B = (x + 1)^{- 1} + (y + 1)^{- 1}?

    Ta có:

    x = \left( 2 + \sqrt{3} ight)^{- 1} =
\frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{2^{2} - \left( \sqrt{3}
ight)^{2}} = 2 - \sqrt{3}

    y = \left( 2 - \sqrt{3} ight)^{- 1} =
\frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{2^{2} - \left( \sqrt{3}
ight)^{2}} = 2 + \sqrt{3}

    Khi đó:

    B = (x + 1)^{- 1} + (y + 1)^{-
1}

    B = \left( 2 - \sqrt{3} + 1 ight)^{-
1} + \left( 2 + \sqrt{3} + 1 ight)^{- 1}

    B = \left( 3 - \sqrt{3} ight)^{- 1} +
\left( 3 + \sqrt{3} ight)^{- 1}

    B = \frac{1}{3 - \sqrt{3}} + \frac{1}{3
+ \sqrt{3}}

    B = \frac{3 + \sqrt{3} + 3 -
\sqrt{3}}{\left( 3 - \sqrt{3} ight)\left( 3 + \sqrt{3} ight)} =
\frac{6}{9 - 3} = 1

  • Câu 17: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 18: Thông hiểu

    Có bao nhiêu số thực dương a eq 1 để \log_{a}265\in\mathbb{ Z}?

    Ta có:

    \log_{a}265 = \log_{a}2^{8} = 8.\log_{a}2 =\frac{8}{\log_{2}a}

    Để \log_{a}265\in\mathbb{ Z} thì log_{2}a \in U(8) = \left\{ \pm 1; \pm 2;
\pm 4; \pm 8 ight\}

    \Rightarrow a \in \left\{
\frac{1}{2};\frac{1}{4};\frac{1}{16};\frac{1}{256};2;4;16;256
ight\}

    Vậy có tất cả 8 số thực dương a eq
1 thỏa mãn yêu cầu bài toán.

  • Câu 19: Nhận biết

    Với \forall
m\mathbb{\in R}, khẳng định nào sau đây đúng?

    Mệnh đề đúng là: \ln m^{4} =4\ln m

  • Câu 20: Vận dụng

    Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?

    (1) Với số thực a và các số nguyên m,n, ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n}.

    (2) Với hai số thực a,b cùng khác 0 và số nguyên n, ta có (ab)^{n} =
a^{n}.b^{n};\left( \frac{a}{b} ight)^{n} =
\frac{a^{n}}{b^{n}}

    (3) Với hai số thực a,b thỏa mãn 0 < a < b và số nguyên n, ta có a^{n}
< b^{n} khi và chỉ khi n >
0.

    (4) Cho số thực a và các số nguyên m,n. Khi đó, với a > 0 thì a^{m} > a^{n} khi và chỉ khi m > n.

    Khẳng định sai: "Với số thực a và các số nguyên m,n , ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n} "
  • Câu 21: Nhận biết

    Tính giá trị biểu thức a^{log_{\sqrt{a}}4} với a > 0,a eq 1.

    Ta có:

    a^{log_{\sqrt{a}}4} = a^{2log_{a}4} =
a^{log_{a}4^{2}} = 16

  • Câu 22: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 23: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 24: Nhận biết

    Xác định số nghiệm của phương trình: \left( \frac{1}{3} ight)^{x^{2} - 4x} =
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x^{2} - 4x}
= 9 \Leftrightarrow \left( 3^{- 1} ight)^{x^{2} - 4x} =
3^{2}

    \Leftrightarrow - \left( x^{2} - 4x
ight) = 2 \Leftrightarrow x^{2} - 4x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2} \\
x = 2 - \sqrt{2} \\
\end{matrix} ight.\ (tm)

    Vậy phương trình đã cho có 2 nghiệm.

  • Câu 25: Nhận biết

    Bất phương trình \log_{\frac{1}{5}}f(x) >\log_{\frac{1}{5}}g(x) tương đương với khẳng định nào dưới đây?

    Do \frac{1}{5} < 1 nên ta phải đổi chiều bất phương trình, đồng thời chú ý đến điều kiện xác định.

    Vậy đáp án đúng là: g(x) > f(x) >
0

  • Câu 26: Thông hiểu

    Phương trình 3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x - 5)^{3} =3 có bao nhiêu nghiệm nguyên?

    Điều kiện x > 5

    Ta có:

    3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x -5)^{3} = 3

    \Leftrightarrow 3\log_{3}(x - 1) +3\log_{3}(x - 5) = 3

    \Leftrightarrow \log_{3}(x - 1) +\log_{3}(x - 5) = 1

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = 1

    \Leftrightarrow (x - 1).(x - 5) =
3^{1}

    \Leftrightarrow x^{2} - 6x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 + \sqrt{7} \\
x = 3 - \sqrt{7} \\
\end{matrix} ight.\ (ktm) (vì nghiệm cần xét là nghiệm nguyên)

    Vậy phương trình không có nghiệm nguyên.

  • Câu 27: Nhận biết

    Cho x là số thực dương. Viết x^{\frac{1}{3}}:\sqrt{x} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: x^{\frac{1}{3}}:\sqrt{x} =
x^{\frac{1}{3}}:x^{\frac{1}{2}} = x^{\frac{1}{3} - \frac{1}{2}} = x^{-
\frac{1}{6}}

  • Câu 28: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 29: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. (đúng) vì 0 < a < 1.

    Tập xác định của hàm số y = \log(x -
1)(1; + \infty).

    Xét hàm số y = \log\left\lbrack (6 - x)(x
+ 2) ightbrack có điều kiện xác định là:

    (6 - x)(x + 2) > 0 \Leftrightarrow x
\in ( - 2;6)

    Vậy có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack.

    Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = x

  • Câu 30: Thông hiểu

    Giả sử phương trình \log_{\sqrt{2}}x + \log_{\frac{1}{2}}(2x - 1) =1 có nghiệm lớn nhất là x = m +
n\sqrt{2};\left( m,n\mathbb{\in Z} ight). Tính giá trị biểu thức A = m + 2n?

    Điều kiện xác định \left\{ \begin{matrix}x > 0 \\2x - 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x > \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow x > \frac{1}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow 2\log_{2}x - \log_{2}(2x -1) = 1

    \Leftrightarrow \log_{2}\left(\frac{x^{2}}{2x - 1} ight) = 1

    \Leftrightarrow \frac{x^{2}}{2x - 1} = 2
\Leftrightarrow x^{2} - 4x + 2 = 0

    Nghiệm lớn nhất của phương trình là

    x = 2 + \sqrt{2} \Rightarrow \left\{
\begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.\  \Rightarrow A = m + 2n = 4

  • Câu 31: Nhận biết

    Tính giá trị biểu thức A = \sqrt[5]{- 4}.\sqrt[5]{8}.

    Ta có:

    A = \sqrt[5]{- 4}.\sqrt[5]{8} =
\sqrt[5]{- 4.8} = \sqrt[5]{- 32} = - 2

  • Câu 32: Vận dụng

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Cho a,b là các số thực dương bất kì. Mệnh đề nào dưới đây đúng?

    Ta có:

    \log_{2}\left( \frac{2a^{3}}{b} ight) =\log_{2}\left( 2a^{3} ight) - \log_{2}b

    = \log_{2}2 + \log_{2}a^{3} -\log_{2}b

    = 1 + 3\log_{2}a - \log_{2}b

  • Câu 34: Thông hiểu

    Cho số thực a
> 1. Mệnh đề nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
a > 1 \\
m > n \\
\end{matrix} ight.\  \Rightarrow a^{m} > a^{n}

    Với \left\{ \begin{matrix}
a > 1 \\
\frac{1}{3} < \frac{1}{2} \\
\end{matrix} ight.\  \Rightarrow a^{\frac{1}{3}} < a^{\frac{1}{2}}
\Rightarrow a^{\frac{1}{3}} < a^{\sqrt{2}}

    Vậy đáp án sai là: \sqrt{a} <
a^{\frac{1}{3}}

  • Câu 35: Nhận biết

    Tìm điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2}?

    Điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

  • Câu 36: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 37: Vận dụng

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 40: Nhận biết

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo