Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Tìm tập xác định của hàm số
?
Hàm số xác định khi
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Với
thì biểu thức
có giá trị bằng bao nhiêu?
Ta có:
đều xác định và
khi đó:
Tính giá trị biểu thức:
biết
?
Ta có:
Cho số thực dương
. Tính
.
Ta có:
Với các số thực dương x, y ta có:
theo thứ tự lập thành một cấp số nhân và các số
theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:
Từ theo thứ tự lập thành một cấp số nhân nên công bội
Mặt khác theo thứ tự lập thành một cấp số cộng nên
Xác định tập nghiệm của phương trình
?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình có tập nghiệm là
Cho
. Rút gọn biểu thức 
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định
=> Tập xác định của hàm số là .
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Đơn giản biểu thức
với
được kết quả là:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Kết quả nào dưới đây đúng khi đơn giản biểu thức
?
Ta có:
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Xác định tập nghiệm của bất phương trình
?
Điều kiện
Ta có:
Vậy tập nghiệm bất phương trình là
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Giá trị của
là:
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Xác định nghiệm của phương trình
.
Ta có:
Vậy phương trình có nghiệm là .
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Giá trị của biểu thức ![]()
Ta có:
Xác định tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm bất phương trình là
Đơn giản biểu thức
ta được:
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Vậy phương trình có hai nghiệm.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Giá trị của biểu thức
![]()
Ta có:
Biết
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Ta có:
Rút gọn biểu thức
.
Ta có:
Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.