Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập nghiệm của bất phương trình 4^{x} \geq 2 là:

    Ta có:

    4^{x} \geq 2 \Leftrightarrow \left(
2^{2} ight)^{x} \geq 2 \Leftrightarrow 2^{2x} \geq 2

    \Leftrightarrow 2x \geq 1 \Leftrightarrow
x \geq \frac{1}{2} hay x \in
\left\lbrack \frac{1}{2}; + \infty ight)

  • Câu 2: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 3: Thông hiểu

    Thực hiện thu gọn biểu thức C = \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2}.\left( 1 - 2\sqrt{\frac{x}{y}} + \frac{y}{x} ight)^{-
1} với x > 0;y > 0 ta được kết quả là:

    Ta có:

    \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2} = \left( \sqrt{x} - \sqrt{y} ight)^{2}

    Ta cũng có:

    \left( 1 - 2\sqrt{\frac{x}{y}} +
\frac{y}{x} ight)^{- 1} = \left\lbrack \left( \sqrt{\frac{y}{x}} - 1
ight)^{2} ightbrack^{- 1}

    = \left( \frac{\sqrt{y} -
\sqrt{x}}{\sqrt{x}} ight)^{- 2} = \left( \frac{\sqrt{x}}{\sqrt{y} -
\sqrt{x}} ight)^{2}

    Khi đó:

    C = \left( \sqrt{x} - \sqrt{y}
ight)^{2}.\left( \frac{\sqrt{x}}{\sqrt{x} - \sqrt{y}} ight)^{2} =
x

  • Câu 4: Vận dụng

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Đáp án là:

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Theo bài ra: a eq 1,b eq 1,c eq
1

    \Rightarrow \log_{a}b eq 0;\log_{b}c eq0;\log_{c}a eq 0

    Khi đó ta có:

    \log_{a}b = 2\log_{b}c

    \Rightarrow \log_{a}c.\log_{c}b =2\log_{b}c

    \Rightarrow \log_{a}c =2\log_{b}^{2}c

    \log_{a}b = 4\log_{c}a

    \Rightarrow \log_{a}c.\log_{c}b =4\log_{c}a

    \Rightarrow \log_{c}b =4\log_{c}^{2}a

    Nên \log_{a}c.\log_{c}b =8\log_{b}^{2}c.\log_{c}^{2}a

    \Leftrightarrow \log_{a}b =8\log_{b}^{2}a

    \Leftrightarrow \log_{a}^{3}b = 8\Leftrightarrow \log_{a}b = 2 \Leftrightarrow b = a^{2}

    \log_{a}b = 2\log_{b}c

    \Leftrightarrow \log_{a}b = 2\log_{a^{2}}c\Leftrightarrow b = c

    Ta lại có: a + 2b + 3c = 48

    \Leftrightarrow a + 2a^{2} + 3a^{2} =
48

    \Leftrightarrow \left\lbrack\begin{matrix}a = - \dfrac{16}{5}(ktm) \\a = 3(tm) \\\end{matrix} ight.

    Vậy \left\{ \begin{matrix}
a = 3 \\
b = 9 \\
c = 9 \\
\end{matrix} ight.\  \Rightarrow P = a.b.c = 243

  • Câu 5: Nhận biết

    Tính giá trị của \log_{t}\sqrt{t} với mọi giá trị t > 0,t eq 1?

    Ta có: \log_{t}\sqrt{t} =\log_{t}t^{\frac{1}{2}} = \frac{1}{2}\log_{t}t = \frac{1}{2}

  • Câu 6: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu

    Biết rằng 4^{x}+ 4^{- x} = 7. Khi đó biểu thức G =\frac{5 - 2^{x} - 2^{- x}}{3 + 2^{x + 1} + 2^{1 - x}} =\frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 3(tm) \\2^{x} + 2^{- x} = - 3(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =3

    G = \frac{5 - \left( 2^{x} + 2^{- x}ight)}{3 + 2\left( 2^{x} + 2^{- x} ight)} = \frac{5 - 3}{3 + 2.3} =\frac{2}{9}

    \Rightarrow p = 2;q = 9 \Rightarrow p+q = 11

  • Câu 10: Thông hiểu

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 11: Thông hiểu

    Phương trình \log_{2}(x - 1) = \log_{2}(2x + 1) có tập nghiệm là:

    Điều kiện \left\{ \begin{matrix}x - 1 > 0 \\2x + 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 1 \\x > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow x > 1

    Ta có:

    \log_{2}(x - 1) = \log_{2}(2x +1)

    \Leftrightarrow x - 1 = 2x + 1
\Leftrightarrow x = - 2(ktm)

    Vậy phương trình vô nghiệm hay S =
\varnothing.

  • Câu 12: Vận dụng

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 13: Thông hiểu

    Cho phương trình (2,4)^{3x + 1} = \left( \frac{5}{12} ight)^{x -
9}. Xác định nghiệm của phương trình đã cho?

    Ta có:

    (2,4)^{3x + 1} = \left( \frac{5}{12}
ight)^{x - 9} \Leftrightarrow \left( \frac{12}{5} ight)^{3x + 1} =
\left( \frac{12}{5} ight)^{- x + 9}

    \Leftrightarrow 3x + 1 = - x + 9
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x = 2.

  • Câu 14: Thông hiểu

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 15: Thông hiểu

    Xác định tập xác định D của hàm số y = \sqrt{- 2x^{2} + 5x - 2} +
\ln\sqrt[4]{\frac{1}{x^{2} - 1}}.

    Hàm số đã cho xác định khi và chỉ khi:

    \left\{ \begin{matrix}- 2x^{2} + 5x - 2 \geq 0 \\\dfrac{1}{x^{2} - 1} > 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  \dfrac{1}{2} \leqslant x \leqslant 2 \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {x <  - 1} \\ 
  {x > 1} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow 1 < x \leqslant 2

    Vậy tập xác định của hàm số là: D =
(1;2brack

  • Câu 16: Thông hiểu

    Với các số a,b
> 0 thỏa mãn a^{2} + b^{2} =
6ab, biểu thức \log_{2}(a +b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Leftrightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow\log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a +\log_{2}b ight)

  • Câu 17: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 18: Nhận biết

    Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?

    Hàm số y = a^{x} nghịch biến trên \mathbb{R} khi 0 < a < 1.

  • Câu 19: Thông hiểu

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 20: Thông hiểu

    Tính giá trị biểu thức D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    Ta có:

    D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    D = 3^{1 - \sqrt{2} + 2 + \sqrt{2} + 1}
= 3^{4} = 81

  • Câu 21: Nhận biết

    Với a,b \in
\mathbb{R}^{+} thỏa mãn biểu thức 3\log a + 2\log b = 1. Khẳng định nào dưới đây đúng?

    Ta có:

    3\log a + 2\log b = 1 \Leftrightarrow \log a^{3} + \log b^{2} = 1

    \Leftrightarrow \log\left( a^{3}b^{2}
ight) = 1 \Leftrightarrow a^{3}b^{2} = 10

  • Câu 22: Thông hiểu

    Cho biết m =\log_{25}7;n =\log_{2}5 . Tính giá trị biểu thức \log_{5}\frac{49}{8} theo các giá trị m,n?

    Ta có:

    m = \log_{25}7 = \log_{5^{2}}7 =\frac{1}{2}\log_{5}7

    \Rightarrow \log_{5}7 = 2m

    n = \log_{2}5 \Rightarrow \frac{1}{n} =\log_{5}2

    Ta có:

    \log_{5}\frac{49}{8} = \log_{5}49 -\log_{5}8

    = \log_{5}7^{2} - \log_{5}2^{3} =2\log_{5}7 - 3\log_{5}2

    = 2.2m - 3.\frac{1}{n} = \frac{4mn -
3}{n}

  • Câu 23: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 24: Thông hiểu

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hai hàm số y = \left( \sqrt{2} ight)^{x};y =
\left( \sqrt{3} ight)^{x}

    Đồ thị hàm số đi qua điểm ( -
1;3) nên hàm số y = \left(
\frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 25: Thông hiểu

    Cho tam giác vuông ABC có a,b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền với điều kiện c - b eq 1;c + b eq 1. Chọn kết luận đúng.

    Do tam giác ABC vuông nên ta có:

    c^{2} = a^{2} + b^{2}

    \Rightarrow a^{2} = c^{2} -b^{2}

    \Rightarrow a^{2} = (c - b)(c +b)

    \Rightarrow log_{a}a^{2} =log_{a}\left\lbrack (c - b)(c + b) ightbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = \frac{1}{log_{c - b}a} +\frac{1}{log_{c + b}a}

    \Rightarrow \log_{c + b}a + \log_{c - b}a= 2\log_{c + b}a.\log_{c - b}a

  • Câu 26: Nhận biết

    Giá trị của \log_{a}\frac{1}{\sqrt[3]{a}} với a > 0;a eq 1 bằng:

    Ta có: \log_{a}\frac{1}{\sqrt[3]{a}} =\log_{a}a^{\frac{- 3}{2}} = - \frac{3}{2}

  • Câu 27: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 28: Thông hiểu

    Tính giá trị của biểu thức \log_{\sqrt[6]{x}}\left(x^{\frac{7}{4}}.\sqrt[6]{y} ight) biết \left\{ \begin{matrix}
x,y > 0,x eq 1 \\
log_{x}y = \sqrt{2022} \\
\end{matrix} ight.?

    Ta có:

    \log_{\sqrt[6]{x}}\left(x^{\frac{7}{4}}.\sqrt[6]{y} ight) = \log_{\sqrt[6]{x}}x^{\frac{7}{4}} +\log_{\sqrt[6]{x}}\sqrt[6]{y}

    = 6.\frac{7}{4} + \sqrt{2022} =
\frac{21}{2} + \sqrt{2022}

  • Câu 29: Thông hiểu

    Giải bất phương trình 2^{x + 2} - 2^{x + 3} - 2^{x + 4} > 5^{x + 1} -
5^{x + 2} thu được tập nghiệm là:

    Ta có:

    2^{x + 2} - 2^{x + 3} - 2^{x + 4} >
5^{x + 1} - 5^{x + 2}

    \Leftrightarrow - 20.2^{x} > -
20.5^{x}

    \Leftrightarrow 2^{x} <
5^{x}

    \Leftrightarrow \left( \frac{2}{5}
ight)^{x} < 1 \Leftrightarrow x > 0

    Vậy tập nghiệm bất phương trình là: S =
(0; + \infty)

  • Câu 30: Nhận biết

    Cho biết \log_{2}a= x;\log_{2}b = y, biểu thức \log_{2}\left( 4a^{2}b^{3} ight) có giá trị là:

    Ta có:

    \log_{2}\left( 4a^{2}b^{3} ight) =\log_{2}4 + \log_{2}a^{2} + \log_{2}b^{3}

    = 2 + 2\log_{2}a + 3\log_{2}b = 2x + 3y +2

  • Câu 31: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Xác định nghiệm của phương trình \left( 7 + 4\sqrt{3} ight)^{2x + 1} = 2 -
\sqrt{3}?

    Ta có:

    \left( 7 + 4\sqrt{3} ight)^{2x + 1} =
2 - \sqrt{3}

    \Leftrightarrow 2x + 1 = \log_{7 +4\sqrt{3}}\left( 2 - \sqrt{3} ight)

    \Leftrightarrow 2x + 1 = -
\frac{1}{2}

    \Leftrightarrow x = -
\frac{3}{4}(tm)

    Vậy phương trình có nghiệm là: x = -
\frac{3}{4}

  • Câu 33: Nhận biết

    Xác định nghiệm của bất phương trình \left( \frac{1}{7} ight)^{x^{2} + x} >
\frac{1}{49}?

    Ta có:

    \left( \frac{1}{7} ight)^{x^{2} + x}
> \frac{1}{49} \Leftrightarrow \left( \frac{1}{7} ight)^{x^{2} + x}
> \left( \frac{1}{7} ight)^{2}

    \Leftrightarrow x^{2} + x < 2
\Leftrightarrow x^{2} + x - 2 < 0

    \Leftrightarrow - 2 < x <
1

    Vậy tập nghiệm của bất phương trình là x
\in ( - 2;1)

  • Câu 34: Vận dụng

    Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?

    Số tiền còn lại trong tài khoản sau tháng thứ 1 là: 200.1,006 - 0,5 (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 2 là:

    (200.1,006 - 0,5).1,006 - 0,5 =
200.(1,006)^{2} - 0,5(1 + 1,006) (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 3 là:

    200.(1,006)^{3} - 0,5\left\lbrack 1 +
1,006 + (1,006)^{2} ightbrack(triệu đồng)

    Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:

    200.(1,006)^{3} - 0,5\left\lbrack 1 +
1,006 + (1,006)^{2} + ... + (1,006)^{35} ightbrack

    = 200.(1,006)^{36} - 0,5.\frac{1 -
(1,006)^{36}}{1 - 1,006} = 228,035(triệu đồng).

  • Câu 35: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 36: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 37: Nhận biết

    Trong các hàm số dưới đây, hàm số nào là hàm số mũ?

    Các hàm số y = \left( \sin x
ight)^{3}; y = x^{3}; y = \sqrt[3]{x} là các hàm số lũy thừa với số mũ hữu tỉ, hàm số y =
3^{x} là hàm số mũ với cơ số là 3.

  • Câu 38: Nhận biết

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị hàm số đi qua điểm (0; 1) và hàm số nghịch biến nên hàm số y = {\left( {\frac{\pi }{5}} ight)^x} thỏa mãn hình vẽ.

  • Câu 39: Thông hiểu

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 40: Nhận biết

    Với một số thực dương a tùy ý, khi đó \sqrt{a^{2}.\sqrt[5]{a}} bằng:

    Với a > 0 ta có: \sqrt{a^{2}.\sqrt[5]{a}} =
\sqrt{a^{2}.a^{\frac{1}{5}}} = \sqrt{a^{2 + \frac{1}{5}}} =
\sqrt{a^{\frac{11}{5}}} = a^{\frac{11}{10}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo