Tính giá trị biểu thức
với
?
Ta có:
Tính giá trị biểu thức
với
?
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Cho hàm số
. Với
, giá trị của biểu thức
bằng:
Ta có:
Xác định số nghiệm của phương trình
?
Điều kiện xác định:
Phương trình đã cho tương đương:
Kết hợp với điều kiện thấy rằng thỏa mãn điều kiện.
Vậy phương trình đã cho có 1 nghiệm.
Rút gọn biểu thức
.
Ta có:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Biết rằng các chữ số p khi viết trong hệ thập phân biết
là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?
Ta có:
Vậy p có 227832 chữ số.
Cho
là các số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Ta có:
Cho phương trình phương trình
. Số nghiệm của phương trình là:
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có duy nhất 1 nghiệm x = 3.
Tìm nghiệm của phương trình ![]()
Vậy phương trình có nghiệm là
Biết a là một số thực dương bất kì, mệnh đề nào sau đây đúng?
Ta có: là mệnh đề đúng.
Giải bất phương trình
được tập nghiệm là:
Ta có:
Vậy tập nghiệm của bất phương trình là
Biểu thức
viết dưới dạng lũy thừa của một số hữu tỉ là
. Kết quả nào sau đây đúng?
Ta có:
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Giải phương trình
ta thu được nghiệm là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Hàm số nào dưới đây đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Khẳng định nào sau đây sai?
Ta có:
Đơn giản biểu thức
với
được kết quả là:
Ta có:
Cho hàm số
và hai số
thỏa mãn
. Khi đó
bằng bao nhiêu?
Ta có:
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có:
Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?
Hàm số nghịch biến trên
khi
.
Cho đồ thị hàm số:

Xác định hàm số tương ứng?
Đồ thị hàm số đi lên và qua điểm có tọa độ nên hàm số thỏa mãn là
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Thu gọn biểu thức
ta được kết quả ta được phân số tối giản
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra
Tìm hàm số nghịch biến trên tập số thực?
Ta có:
Hàm số có cơ số
nên hàm số nghịch biến trên
Hàm số có tập xác định
nên hàm số đồng biến trên
Hàm số có
nên hàm số nghịch biến trên
.
Hàm số có
nên hàm số đồng biến trên
.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình
?
Ta có:
Mà
Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Cho
. Rút gọn biểu thức 
Ta có:
Cho
, khi đó:
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy là khẳng định đúng.
Tìm điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
Cho biết
, biểu thức
có giá trị là:
Ta có:
Tính giá trị biểu thức
với
.
Ta có:
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.