Rút gọn biểu thức:
với
ta được kết quả là:
Ta có: .
Rút gọn biểu thức:
với
ta được kết quả là:
Ta có: .
Đơn giản biểu thức
với
được kết quả là:
Ta có:
Phương trình
có tập nghiệm là:
Điều kiện
Ta có:
Vậy phương trình vô nghiệm hay .
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Kết quả nào dưới đây đúng khi đơn giản biểu thức
?
Ta có:
Phương trình
có bao nhiêu nghiệm?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm .
Nếu
là hai số thực dương bất kì thỏa mãn
thì khẳng định nào dưới đây đúng?
Ta có:
Với điều kiện
, đơn giản biểu thức
thu được kết quả là:
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Giải phương trình
ta thu được tập nghiệm
là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Tìm tập xác định của hàm số
?
Hàm số xác định khi
Vậy tập xác định của hàm số là
Biết
là các số thực dương khác 1 thỏa mãn
. Biến đổi biểu thức
ta được kết quả là:
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Tính giá trị của biểu thức
. Biết
với
là các số thực dương lớn hơn
?
Ta có:
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Trong các hàm số sau:
. Hàm số nào đồng biến trên tập xác định?
Ta có: nên hàm số
đồng biến trên tập xác định của nó.
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Gọi
là các nghiệm của phương trình
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Khi đó:
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Cho
. Mệnh đề nào sau đây đúng với mọi số thực dương
?
Theo quy tắc Logarit của một thương ta só:
với
Với các số
thỏa mãn
. Xác định giá trị biểu thức
.
Ta có:
Vậy
Tính tổng các nghiệm phương trình
thu được kết quả là:
Ta có:
Hàm số nào sau đây đồng biến trên
?
Do nên hàm số
đồng biến trên
.
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Với
, kết luận nào sau đây sai?
Với ta có:
Là các kết luận đúng
Ta lại có: sai.
Với
, khẳng định nào sau đây đúng?
Mệnh đề đúng là:
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Nghiệm của phương trình
là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Xác định tập nghiệm của phương trình
?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình có tập nghiệm là
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là