Giá trị của biểu thức
![]()
Ta có:
Giá trị của biểu thức
![]()
Ta có:
Trong các hàm số sau hàm số nào có cùng tập xác định với hàm số
?
Ta có tập xác định hàm số là
.
Hàm số cũng có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Tìm tập xác định của hàm số
?
Điều kiên xác định:
Vậy tập xác định của hàm số là:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.
Áp dụng công thức tính lãi kép ta có:
Vậy lãi suất ngân hàng là 6%.
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Cho biết
, biểu thức
có giá trị là:
Ta có:
Cho biết
. Một học sinh đã thực hiện tính giá trị biểu thức
như sau:
Bước 1: ![]()
Bước 2: ![]()
Bước 3: ![]()
Bước 4: ![]()
Hỏi bạn học sinh giải toán sai từ bước nào?
Ta có:
Vậy bài toán sai từ bước 4.
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Cho bất phương trình
. Khẳng định nào sau đây đúng?
Ta có
Vì cơ số nên
Kết hợp với điều kiện ra có tập nghiệm của bất phương trình là:
Tìm điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Hãy biểu diễn
theo hai giá trị
biết
?
Ta có:
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Với
, kết luận nào sau đây sai?
Với ta có:
Là các kết luận đúng
Ta lại có: sai.
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Chọn mệnh đề sai trong các mệnh đều dưới đây.
Mệnh đề sai là:
Vì
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Rút gọn biểu thức
thu được kết quả là:
Ta có:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.
Ta có:
Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:
Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.
Tìm tập nghiệm của bất phương trình
.
Điều kiện:
Bất phương trình đã cho tương đương với
Kết hợp điều kiện, suy ra bất phương trình có nghiệm
Vậy tập nghiệm của bất phương trình là:
Biết các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có:
Vậy khẳng định sai là:
Tìm nghiệm của phương trình ![]()
Vậy phương trình có nghiệm là
Ta có:
. Giá trị
là:
Ta có:
Rút gọn biểu thức:
với
ta được kết quả là:
Ta có: .
Biết
. Chọn khẳng định đúng?
Ta có:
Nên
Tìm tập nghiệm
của phương trình
?
Điều kiện xác định:
Vậy phương trình có tập nghiệm .
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.
Mỗi tháng anh B phải trả số tiền cho ngân hàng là:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Tìm số nghiệm phương trình
?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm.
Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền
tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu
Áp dụng công thức tính lãi kép:
Với là tổng giá trị đạt được sau
kì, x là số vốn gốc, r là lãi suất mỗi kì.
Số tiền lãi thu được sau n kì là:
Khi dó:
triệu đồng
Chọn khẳng định sai trong các khẳng định sau?
Hàm số đồng biến trên khoảng