Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 2: Nhận biết

    Giá trị của 27^{\frac{1}{3}} là:

    Ta có: 27^{\frac{1}{3}} = \left( 3^{3}
ight)^{\frac{1}{3}} = 3^{3.\frac{1}{3}} = 3

  • Câu 3: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 4: Nhận biết

    Biết x > 0;x
eq 1. Chọn khẳng định đúng?

    Ta có: \log_{x}\sqrt[5]{x} =\log_{x}(x)^{\frac{1}{5}} = \frac{1}{5}\log_{x}x =\frac{1}{5}

  • Câu 5: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{1}{3} ight)^{x + 2} \geq
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x + 2} \geq
9 \Leftrightarrow \left( 3^{- 1} ight)^{x + 2} \geq 3^{2}

    \Leftrightarrow 3^{- x - 2} \geq 3^{2}
\Leftrightarrow - x - 2 \geq 2 \Leftrightarrow x \leq - 4

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty; - 4brack

  • Câu 6: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 7: Nhận biết

    Giá trị của biểu thức A = \log_{2^{2018}}4 - \dfrac{1}{1009} + \ln e^{2018} bằng:

    Ta có:

    A = \log_{2^{2018}}4 - \frac{1}{1009} +\ln e^{2018}

    = \log_{2^{2018}}2^{2} - \frac{1}{1009} +2018.\ln e

    = \frac{1}{1009} - \frac{1}{1009} + 2018
= 2018

  • Câu 8: Nhận biết

    Cho các số thực dương a,b bất kì thỏa mãn \log a = x;logb = y. Tính giá trị biểu thức H = \log\left( a^{2}b^{3}
ight).

    Ta có:

    H = \log\left( a^{2}b^{3} ight) =
\log\left( a^{2} ight) + \log\left( b^{3} ight)

    = 2\log a + 3\log b = 2x + 3y

  • Câu 9: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

  • Câu 10: Thông hiểu

    Hãy biểu diễn \log_{6}45 theo hai giá trị x,y biết x =\log_{2}3;y = \log_{5}3?

    Ta có:

    \log_{6}45 = \frac{\log_{3}\left( 5.3^{2}ight)}{\log_{3}(2.3)} = \frac{\log_{3}5 + 2}{\log_{3}2 + 1}

    = \dfrac{\dfrac{1}{y} + 2}{\dfrac{1}{x} +1} = \dfrac{x + 2xy}{xy + y}

  • Câu 11: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 12: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    a) Ta có: \left( \sqrt{16} ight)^{6} =
16^{3};\left( \sqrt[3]{60} ight)^{6} = 60^{2}

    \Rightarrow \sqrt{16} >
\sqrt[3]{60} mà cơ số 0,2 <
1

    (0,2)^{\sqrt{16}} <
(0,2)^{\sqrt[3]{60}}

    b) Điều kiện xác định: - 3x^{2} + 23x -
20 > 0 \Leftrightarrow 1 < x < \frac{20}{3}

    Vậy tập xác định có 5 giá trị nguyên.

    c) Điều kiện xác định: x > - 2;x eq
5

    \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0

    \Leftrightarrow \log_{2}(x + 2) +\log_{2}|x - 5| - \log_{2}8 = 0

    \Leftrightarrow \log_{2}\left\lbrack (x +2).|x - 5| ightbrack = \log_{2}8

    \Leftrightarrow (x + 2).|x - 5| = 8
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 5 \\
(x + 2).(x - 5) = 8 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
- 2 < x < 5 \\
(x + 2).(x - 5) = - 8 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 6 \\x = \dfrac{3 \pm \sqrt{17}}{2} \\\end{matrix} ight.\ (tm)

    Vậy tổng tất cả các nghiệm của phương trình là: S = 9

    d) Ta có:

    16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}

    \Leftrightarrow 4^{2x} + 5^{2x} + 6^{2x}
\leq 4^{x}.5^{x} + 4^{x}.6^{x} + 5^{x}.6^{x}

    \Leftrightarrow 2\left\lbrack 4^{2x} +
5^{2x} + 6^{2x} ightbrack - 2\left( 4^{x}.5^{x} + 4^{x}.6^{x} +
5^{x}.6^{x} ight) \leq 0

    \Leftrightarrow \left( 4^{x} - 5^{x}
ight)^{2} + \left( 4^{x} - 6^{x} ight)^{2} + \left( 5^{x} - 6^{x}
ight)^{2} \leq 0

    \Leftrightarrow \left\lbrack\begin{matrix}4^{x} - 5^{x} = 0 \\4^{x} - 6^{x} = 0 \\5^{x} - 6^{x} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\left( \dfrac{4}{5} ight)^{x} = 1 \\\left( \dfrac{4}{6} ight)^{x} = 1 \\\left( \dfrac{5}{6} ight)^{x} = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 0 \in \lbrack0;2020brack

    Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 13: Vận dụng

    Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?

    Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:

    T_{60} = 10^{7}.(1 + 0,5\%)\left\lbrack
\frac{(1 + 0,5\%)^{60} - 1}{0,5\%} ightbrack \approx 701 (triệu đồng)

  • Câu 14: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 15: Thông hiểu

    Tính giá trị K =
xy + z biết \log_{15}30 = \dfrac{1 +x\log2}{y\log3 + z\log5};\left( x,y,z\in\mathbb{ Z} ight)?

    Ta có:

    \log_{15}30 = \dfrac{1 + x\log2}{y\log3 +z\log5}

    Mặt khác

    \log_{15}30 =\frac{\log30}{\log15}

    = \frac{\log10 + \log3}{\log3 + \log5} =\frac{1 + \log3}{\log3 + \log5}

    \Rightarrow x = 1;y = 1;z = 1
\Rightarrow K = 2

  • Câu 16: Nhận biết

    Trong các hàm số sau: y = 0,5^{x};y = \log_{\frac{1}{2}}x;y =\log_{\frac{5}{2}}x;y = \left( \frac{4}{5} ight)^{x}. Hàm số nào đồng biến trên tập xác định?

    Ta có: \frac{5}{2} > 1 nên hàm số y =\log_{\frac{5}{2}}x đồng biến trên tập xác định của nó.

  • Câu 17: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 19: Nhận biết

    Cho a > 0;a
eq 1 khi đó \log_{a^{3}}a có giá trị bằng bao nhiêu?

    Ta có: \log_{a^{3}}a = \frac{1}{3}\log_{a}a= \frac{1}{3}

  • Câu 20: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 21: Thông hiểu

    Xác định số nghiệm của phương trình \ln\left( x^{2} - 6x + 7 ight) - \ln(x - 3) =
0?

    Điều kiện xác định: \left\{
\begin{matrix}
x^{2} - 6x + 7 > 0 \\
x - 3 > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \ln\left( x^{2} - 6x + 7
ight) = \ln(x - 3)

    \Leftrightarrow x^{2} - 6x + 7 = x -
3

    \Leftrightarrow x^{2} - 7x + 10 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 2 \\
\end{matrix} ight.

    Kết hợp với điều kiện thấy rằng x =
5 thỏa mãn điều kiện.

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 22: Vận dụng

    Cho hàm số y =
a^{x} có đồ thị như hình vẽ, y =
f(x) có đồ thị đối xứng với đồ thị hàm số y = a^{x} qua đường thẳng y = - x. Xác định hàm số f(x).

    Ta có:

    Phép đối xứng trục qua đường thẳng y = -
x biến mỗi điểm có tọa độ (x;y) thành điểm có tọa độ ( - y; - x).

    Mỗi điểm trên đồ thị hàm số y =
a^{x} có dạng \left( u;a^{u}
ight), lấy đối xứng qua d ta được điểm có tọa độ \left( - a^{u};u ight) thuộc đồ thị hàm số y = f(x).

    Do đó f\left( - a^{u} ight) = -
u. Đặt x = - a^{u}, khi đó x = log_{a}( - x). Vậy f(x) = - \log_{a}( - x).

  • Câu 23: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 24: Thông hiểu

    Tìm hàm số nghịch biến trên tập số thực?

    Ta có:

    Hàm số y = \log_{- 3 +\sqrt{10}}x có cơ số a = - 3 +
\sqrt{10} nên hàm số nghịch biến trên (0; + \infty)

    Hàm số y = \log_{2}\left( x^{2} - xight) có tập xác định D = ( -
\infty;0) \cup (1; + \infty) nên hàm số đồng biến trên \mathbb{R}

    Hàm số y = \left( \frac{e}{3}
ight)^{2x}\frac{e}{3} <
1 nên hàm số nghịch biến trên \mathbb{R}.

    Hàm số y = \left( \frac{\pi}{3}
ight)^{x}\frac{\pi}{3} >
1 nên hàm số đồng biến trên \mathbb{R}.

  • Câu 25: Nhận biết

    Trong các phương trình sau đây, phương trình nào vô nghiệm?

    Ta có:

    Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình 2^{x} = 0

  • Câu 26: Thông hiểu

    Cho hai số thực dương a và b. Đơn giản biểu thức E = \frac{a^{\frac{1}{3}}\sqrt{b} +
b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} ta được E = a^{x}.b^{y}. Tích x.y là:

    Ta có:

    K = E = \frac{a^{\frac{1}{3}}\sqrt{b} +
b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} =
\frac{a^{\frac{1}{3}}.b^{\frac{1}{2}} +
b^{\frac{1}{3}}.a^{\frac{1}{2}}}{a^{\frac{1}{6}} +
b^{\frac{1}{6}}}

    =
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}\left( a^{\frac{1}{6}} +
b^{\frac{1}{6}} ight)}{a^{\frac{1}{6}} + b^{\frac{1}{6}}} =
a^{\frac{1}{3}}.b^{\frac{1}{3}}

    \Rightarrow \left\{ \begin{matrix}
x = \frac{1}{3} \\
y = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow xy = \frac{1}{9}

  • Câu 27: Nhận biết

    Cho a là số thực dương. Biểu thức a^{3}\sqrt[3]{a^{2}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    a^{3}\sqrt[3]{a^{2}} =
a^{3}.a^{\frac{2}{3}} = a^{3 + \frac{2}{3}} =
a^{\frac{11}{3}}

  • Câu 28: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 29: Thông hiểu

    Cho phương trình phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2} . Số nghiệm của phương trình là:

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} + \frac{x}{3} - \frac{1}{{2x}} = \frac{7}{3}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x = 3\left( {tm} ight)} \\ 
  {x =  - \dfrac{1}{5}\left( {ktm} ight)} 
\end{array}} ight.

    Vậy phương trình có duy nhất 1 nghiệm x = 3.

  • Câu 30: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 31: Thông hiểu

    Rút gọn biểu thức E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{-
2}} với a,b là hai số thực dương.

    Ta có:

    E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{- 2}} =
\frac{\left( a^{2}.a^{- 4} ight).\left( b^{6}.b^{- 1} ight)}{\left(
a^{- 3}.a^{- 5} ight)\left( b^{3}.b^{- 2} ight)} =
a^{6}b^{4}

  • Câu 32: Nhận biết

    Tìm tập xác định của hàm số y = \log_{4}x là:

    Điều kiện xác định x > 0

    Suy ra tập xác định của hàm số là: D =
(0; + \infty).

  • Câu 33: Thông hiểu

    Cho đồ thị hàm số y = f(x) = \log_{a}x;(a > 0,a eq 1) như hình vẽ:

    Xác định giá trị a?

    Đồ thị hàm số y = f(x) =\log_{a}x đi qua điểm (2; -1) nên \log_{a}2 = - 1

    Khi đó a^{- 1} = 2 \Leftrightarrow\frac{1}{a} = 2 \Leftrightarrow a = \frac{1}{2}

  • Câu 34: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{3}{4} ight)^{x - 1} > \left(
\frac{3}{4} ight)^{- x + 3}?

    Ta có:

    \left( \frac{3}{4} ight)^{x - 1} >
\left( \frac{3}{4} ight)^{- x + 3} \Leftrightarrow x - 1 > - x + 3
\Leftrightarrow x < 2

  • Câu 35: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 36: Vận dụng

    Tìm giá trị tham số m để bất phương trình 1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight) có nghiệm đúng với mọi x.

    Ta có:

    1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight)

    \Leftrightarrow \log_{5}\left\lbrack5\left( x^{2} + 1 ight) ightbrack \geq \log_{5}\left( mx^{2} + 4x +m ight)

    \Leftrightarrow \left\{ \begin{matrix}
5\left( x^{2} + 1 ight) \geq mx^{2} + 4x + m \\
mx^{2} + 4x + m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(5 - m)x^{2} - 4x + 5 - m \geq 0\ \ \ (1) \\
mx^{2} + 4x + m > 0\ \ \ \ (2) \\
\end{matrix} ight.

    Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.

    Với m = 0 hoặc m = 5 không thỏa mãn đề bài.

    Với m eq 0 hoặc m eq 5 để thỏa mãn đề bài thì:

    \left\{ \begin{matrix}
5 - m > 0 \\
4 - (5 - m)^{2} \leq 0 \\
m > 0 \\
4 - m^{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
\left\lbrack \begin{matrix}
m \leq 3 \\
m \geq 7 \\
\end{matrix} ight.\  \\
m > 0 \\
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow 2 < m \leq
3

  • Câu 37: Thông hiểu

    Xác định các nghiệm phương trình \log_{2}(2x - 5)^{2} = 2\log_{2}(x - 2) rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Xác định các nghiệm phương trình \log_{2}(2x - 5)^{2} = 2\log_{2}(x - 2) rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Điều kiện

    \left\{ \begin{matrix}
(2x - 5)^{2} > 0 \\
x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(2x - 5)^{2} > 0\forall x\mathbb{\in R} \\
x > 2 \\
\end{matrix} ight.

    \Rightarrow x > 2

    Ta có:

    \log_{2}(2x - 5)^{2} = 2\log_{2}(x -2)

    \Leftrightarrow \log_{2}(2x - 5)^{2} =\log_{2}(x - 2)^{2}

    \Leftrightarrow (2x - 5)^{2} = (x -
2)^{2}

    \Leftrightarrow \left\lbrack\begin{matrix}2x - 5 = x - 2 \\2x - 5 = - x + 2 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 3 \\x = \dfrac{7}{3} \\\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là: S = 3 + \frac{7}{3} = \frac{16}{3}.

  • Câu 38: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \ln( - x) có tập xác định D = ( - \infty;0)

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0)

  • Câu 39: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 40: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo