Giá trị của
với
bằng:
Ta có:
Giá trị của
với
bằng:
Ta có:
Cho x là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Giải phương trình
ta thu được tập nghiệm
là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Xác định nghiệm của phương trình
.
Ta có:
Vậy phương trình có nghiệm là .
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số:
Biết
. Chọn khẳng định đúng?
Ta có:
Nên
Hàm số nào dưới đây đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Cho
. Khẳng định nào sau đây đúng?
Ta có: do đó nếu
Biết
. Tính
?
Ta có:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Cho đồ thị của hàm số ![]()

Hàm số tương ứng với đồ thị trên là:
Đồ thị hàm số đi qua điểm A(2; 1) nên hàm số tương ứng với đồ thị là:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Rút gọn biểu thức:
với
ta được kết quả là:
Ta có: .
Cho các số dương
thỏa mãn
. Chọn khẳng định đúng.
Xét tính đúng sai của từng đáp án dựa vào điểu kiện của
(vì
) nên
đúng
Vì nên
. Vậy
sai.
Vì nên
. Vậy
sai.
Vì nên
. vậy
sai.
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Cho
là các số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Ta có:
Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?
Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng
khi và chỉ khi hàm số
đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Cho
và
. Tính giá trị biểu thức
?
Ta có:
Khi đó:
Cho phương trình
. Chọn khẳng định đúng.
Điều kiện xác định
Lấy logarit cơ số 3 hai vế phương trình ta được:
Trường hợp 1: ta có:
. Phương trình vô nghiệm.
Trường hợp 2: ta có:
vô nghiệm
Vậy phương trình đã cho vô nghiệm.
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Tìm nghiệm của phương trình
.
Điều kiện xác định
Vậy phương trình có nghiệm .
Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.
Mỗi tháng anh B phải trả số tiền cho ngân hàng là:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Đặt
. Khi đó
biểu diễn là:
Ta có: