Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho x là số thực dương. Viết x^{\frac{1}{3}}:\sqrt{x} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: x^{\frac{1}{3}}:\sqrt{x} =
x^{\frac{1}{3}}:x^{\frac{1}{2}} = x^{\frac{1}{3} - \frac{1}{2}} = x^{-
\frac{1}{6}}

  • Câu 2: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Xác định nghiệm của phương trình 4^{2x + 1} = 64?

    Ta có:

    4^{2x + 1} = 64 \Leftrightarrow 4^{2x +
1} = 4^{3}

    \Leftrightarrow 2x + 1 = 3
\Leftrightarrow x = 1(tm)

    Vậy phương trình có nghiệm x = 1.

  • Câu 4: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 5: Nhận biết

    Cho phương trình \log_{2}(x - 1) = 3. Kết quả nào dưới đây là nghiệm phương trình đã cho?

    Điều kiện xác định: x > 1

    \log_{2}(x - 1) = 3 \Leftrightarrow x - 1= 2^{3}

    \Leftrightarrow x - 1 = 8
\Leftrightarrow x = 9(tm)

    Vậy phương trình có nghiệm x =
9.

  • Câu 6: Nhận biết

    Cho a > 0;a
eq 1 khi đó \log_{a^{3}}a có giá trị bằng bao nhiêu?

    Ta có: \log_{a^{3}}a = \frac{1}{3}\log_{a}a= \frac{1}{3}

  • Câu 7: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 8: Nhận biết

    Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?

    Hàm số y = a^{x} nghịch biến trên \mathbb{R} khi 0 < a < 1.

  • Câu 9: Vận dụng

    Tìm công bội q của một cấp số nhân. Biết ba số x + \log_{2}3;x + \log_{4}3;x + \log_{8}3 theo thứ tự lập thành cấp số nhân.

    Theo giả thiết ta có:

    \left( x + \log_{4}3 ight)^{2} = \left(x + \log_{2}3 ight).\left( x + \log_{8}3 ight)

    \Leftrightarrow x\log_{2}3 + \left(\frac{1}{2}\log_{2}3 ight)^{2} = \frac{4}{3}x\log_{2}3 +\frac{1}{3}\left( \log_{2}3 ight)^{2}

    \Leftrightarrow \frac{1}{3}.x.\log_{2}3 =- \frac{1}{12}.\left( \log_{2}3 ight)^{2}

    \Leftrightarrow x = -\frac{1}{4}.\log_{2}3

    Vậy công bội của cấp số nhân là: q =\dfrac{x + \log_{4}3}{x + \log_{2}3} = \dfrac{- \dfrac{1}{4}.\log_{2}3 +\dfrac{1}{2}.\log_{2}3}{- \dfrac{1}{4}.\log_{2}3 + \log_{2}3} =\dfrac{1}{3}

  • Câu 10: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 11: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 12: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Bác X gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 7%/ 1 năm. Biết rằng bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo (hoặc gọi tắt là hình thức lãi kép). Chọn công thức ứng với số tiền cả gốc và lãi bác X nhận được sau 10 năm?

    Áp dụng công thức lại kép thì sau 10 năm số tiền bác X nhận được là

    T = 10^{8}.(1 + 7\%)^{10} = 10^{8}.(1 +
0,07)^{10}

  • Câu 14: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Cho hàm số y =\log_{a}x;y = \log_{b}x có đồ thị như hình vẽ:

    Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số y = \log_{a}x;y =\log_{b}x lần lượt tại H,M,N. Biết rằng HM = MN. Khẳng định nào sau đây đúng?

    Ta có:\left\{ \begin{matrix}HM = y_{M} = \log_{a}7 \\MN = y_{N} - y_{M} = \log_{b}7 - \log_{a}7 \\\end{matrix} ight.

    Mặt khác HM = MN nên \log_{b}7 - \log_{a}7 = \log_{a}7

    \Leftrightarrow \log_{b}7 =\log_{\sqrt{a}}7

    \Leftrightarrow b = \sqrt{a}
\Leftrightarrow b^{2} = a

  • Câu 16: Vận dụng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = m^{x} là hàm số đồng biến nên m > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = \log_{t}x là hàm nghịch biến nên 0 < t < 1

    Vậy ta có: \left\{ \begin{matrix}
0 < t < m \\
0 < t < n \\
\end{matrix} ight.

    Khi thay x = 1 vào hai hàm số y = m^{x};y
= n^{x} ta thu được m > n

    Vậy t < n < m.

  • Câu 17: Nhận biết

    Hàm số nào sau đây không phải là hàm số mũ?

    Hàm số y = x^{\pi} là hàm số lũy thừa, không phải hàm số mũ.

  • Câu 18: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Đồ thị của hàm số y = 2^{x} và hàm số y = \frac{1}{2^{x}} đối xứng với nhau qua trục hoành. Sai||Đúng

    b) Hàm số y = \log_{\sqrt{3}}x đồng biến trên khoảng (0; +
\infty). Đúng||Sai

    c) Tập xác định của hàm số y =\frac{1}{\log_{x} - 1} là (0; +
\infty)\backslash\left\{ 1 ight\}. Đúng||Sai

    d) Có 6 giá trị nguyên thuộc tập xác định của hàm số y = \ln\left( 15 - x^{2} ight) Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Đồ thị của hàm số y = 2^{x} và hàm số y = \frac{1}{2^{x}} đối xứng với nhau qua trục hoành. Sai||Đúng

    b) Hàm số y = \log_{\sqrt{3}}x đồng biến trên khoảng (0; +
\infty). Đúng||Sai

    c) Tập xác định của hàm số y =\frac{1}{\log_{x} - 1} là (0; +
\infty)\backslash\left\{ 1 ight\}. Đúng||Sai

    d) Có 6 giá trị nguyên thuộc tập xác định của hàm số y = \ln\left( 15 - x^{2} ight) Sai||Đúng

    Đồ thị của hàm số 2^{x} và hàm số \frac{1}{2^{x}} đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.

    Hàm số y = log_{\sqrt{3}}x đồng biến trên khoảng (0; + \infty) đúng vì a > 1.

    Tập xác định của hàm số y =
\frac{1}{log_{x} - 1}(0; +
\infty)\backslash\left\{ 1 ight\} đúng.

    Xét hàm số y = \ln\left( 15 - x^{2}
ight) có điều kiện xác định 15 -
x^{2} > 0 \Leftrightarrow - \sqrt{15} < x <
\sqrt{15}

    x\mathbb{\in Z \Rightarrow}x = \left\{
\pm 3; \pm 2; \pm 1;0 ight\}

    Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số y = \ln\left( 15 - x^{2} ight).

  • Câu 19: Thông hiểu

    Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

    Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số y = \log_{\frac{1}{2}}x

    Lại từ hình vẽ suy đồ thị hàm số đi qua điểm \left( \frac{1}{2}; - 1 ight)

    Kiểm tra ta thấy \left\{ \begin{matrix}- 1 eq \log_{2}\left( 2.\dfrac{1}{2} ight) \\- 1 = \log_{2}\dfrac{1}{2} \\- 1 eq \log_{\sqrt{2}}\dfrac{1}{2} \\\end{matrix} ight. nên loại các hàm số y = \log_{2}(2x), y = \log_{\sqrt{2}}x.

  • Câu 20: Nhận biết

    Cho bất phương trình {\log _{\frac{e}{\pi }}}\left( {x + 1} ight) < {\log _{\frac{e}{\pi }}}\left( {3x - 1} ight). Khẳng định nào sau đây đúng?

    Ta có x > \frac{1}{3}

    Vì cơ số 0 < \frac{e}{\pi} <
1 nên {\log _{\frac{e}{\pi }}}\left( {x + 1} ight) < {\log _{\frac{e}{\pi }}}\left( {3x - 1} ight)

    \Leftrightarrow x + 1 > 3x -
1

    \Leftrightarrow x < 1

    Kết hợp với điều kiện ra có tập nghiệm của bất phương trình là: S = \left( \frac{1}{3};1 ight)

  • Câu 21: Thông hiểu

    Rút gọn biểu thức A = \frac{\sqrt{a} + \sqrt[4]{ab}}{\sqrt[4]{a} +
\sqrt[4]{b}} - \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} -
\sqrt[4]{b}} với a > 0;b >
0 ta được kết quả:

    Ta có:

    A = \frac{\sqrt{a} +
\sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\sqrt{a} -
\sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \frac{\left( \sqrt[4]{a} ight)^{2}
+ \sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left( \sqrt[4]{a}
ight)^{2} - \left( \sqrt[4]{b} ight)^{2}}{\sqrt[4]{a} -
\sqrt[4]{b}}

    A = \frac{\sqrt[4]{a}\left( \sqrt[4]{a}
+ \sqrt[4]{b} ight)}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left(
\sqrt[4]{a} - \sqrt[4]{b} ight)\left( \sqrt[4]{a} + \sqrt[4]{b}
ight)}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \sqrt[4]{a} - \left( \sqrt[4]{a} +
\sqrt[4]{b} ight) = - \sqrt[4]{b}

  • Câu 22: Thông hiểu

    Xác định tập nghiệm của phương trình \log_{2}\left( - x^{2} + 4x - 3 ight) =\log_{2}\left( \frac{5}{2} - x ight) + 1?

    Điều kiện xác định: \left\{
\begin{matrix}
- x^{2} + 4x - 3 > 0 \\
\frac{5}{2} - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x <
\frac{5}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}\left( \frac{5}{2} - x ight) +\log_{2}2

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}(5 - 2x)

    \Leftrightarrow - x^{2} + 4x - 3 = 5 -
2x

    \Leftrightarrow x^{2} - 6x + 8 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2(tm) \\
x = 4(ktm) \\
\end{matrix} ight.

    Vậy phương trình có tập nghiệm là S =
\left\{ 2 ight\}

  • Câu 23: Nhận biết

    Với m là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?

    Theo định nghĩa và các tính chất của lũy thừa ta thấy:

    \sqrt{10^{m}} = \left( \sqrt{10}
ight)^{m}; \sqrt{10^{m}} = \left(
\sqrt{10} ight)^{m}; \left(
10^{m} ight)^{2} = 100^{m} là các mệnh đề đúng.

    Xét mệnh đề \left( 10^{m} ight)^{2} =
(10)^{m^{2}} với m = 1 ta có: \left( 10^{1} ight)^{2} = 100 eq
(10)^{1^{2}} nên mệnh đề sai.

  • Câu 24: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 25: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(x - 1)^{2}?

    Điều kiện xác định của hàm số y = \ln(x -
1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 1 ight\}.

  • Câu 26: Thông hiểu

    Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?

    Ta có:

    \log_{2}(3ab)^{3} = 3.\left( \log_{3}3 +\log_{3}a + \log_{3}b ight)

    = 3.\left( 1 + \log_{3}a + \log_{3}bight)

    = 3 + 3\log_{3}ab

    = 3 + \log_{3}(ab)^{3}

    Vậy mệnh đề sai là: \log_{2}(3ab)^{3} =\left( 1 + \log_{3}a + \log_{3}b ight)^{3}

  • Câu 27: Thông hiểu

    Cho m,n là các số thực dương lớn hơn 1 thỏa mãn m^{2} + 9n^{2} = 6mn. Tính giá trị biểu thức T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)}?

    Ta có: m^{2} + 9n^{2} = 6mn

    \Leftrightarrow (m - 3n)^{2} = 0
\Leftrightarrow m = 3n

    \Rightarrow T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)} = \dfrac{\log_{12}36n^{2}}{\log_{12}36n^{2}}= 1

  • Câu 28: Nhận biết

    Biết p > 0;p
eq 1. Tính \log_{p}\sqrt[1021]{p^{1022}}?

    Ta có:

    \log_{p}\sqrt[1021]{p^{1022}} =\log_{p}(p)^{\frac{1022}{1021}}

    = \frac{1022}{1021}log_{p}p =
\frac{1022}{1021}

  • Câu 29: Thông hiểu

    Cho a =\log_{7}11;b = \log_{2}7. Biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a,b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9\log_{7}2

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 30: Thông hiểu

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Đáp án là:

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Ta có:

    m\log_{28}2 + n\log_{28}7 = 2

    \Leftrightarrow \log_{28}\left(2^{x}.7^{y} ight) = 2 \Leftrightarrow 2^{x}.7^{y} =28^{2}

    \Leftrightarrow 2^{x}.7^{y} = \left(2^{2}.7 ight)^{2} \Leftrightarrow 2^{x}.7^{y} =2^{4}.7^{2}

    \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 2 \\\end{matrix} ight.\  \Rightarrow x + y = 6

  • Câu 31: Nhận biết

    Giá trị của biểu thức A = \log_{2^{2018}}4 - \dfrac{1}{1009} + \ln e^{2018} bằng:

    Ta có:

    A = \log_{2^{2018}}4 - \frac{1}{1009} +\ln e^{2018}

    = \log_{2^{2018}}2^{2} - \frac{1}{1009} +2018.\ln e

    = \frac{1}{1009} - \frac{1}{1009} + 2018
= 2018

  • Câu 32: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 33: Nhận biết

    \log_{2}\left(\frac{1}{16} ight) = ...

    Ta có: \log_{2}\left( \dfrac{1}{16} ight)= \log_{2}2^{- 4} = - 4

  • Câu 34: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 36: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 37: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 38: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 39: Thông hiểu

    Tính giá trị biểu thức K = \frac{6^{3 + \sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1
+ \sqrt{5}}}.

    Ta có:

    K = \frac{6^{3 + \sqrt{5}}}{2^{2 +
\sqrt{5}}.3^{1 + \sqrt{5}}} = \frac{2^{3 + \sqrt{5}}.3^{3 +
\sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1 + \sqrt{5}}} = 2.3^{2} =
18

  • Câu 40: Nhận biết

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo