Cho các số dương
thỏa mãn
. Chọn khẳng định đúng.
Xét tính đúng sai của từng đáp án dựa vào điểu kiện của
(vì
) nên
đúng
Vì nên
. Vậy
sai.
Vì nên
. Vậy
sai.
Vì nên
. vậy
sai.
Cho các số dương
thỏa mãn
. Chọn khẳng định đúng.
Xét tính đúng sai của từng đáp án dựa vào điểu kiện của
(vì
) nên
đúng
Vì nên
. Vậy
sai.
Vì nên
. Vậy
sai.
Vì nên
. vậy
sai.
Kết quả nào dưới đây là nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Phương trình
có bao nhiêu nghiệm?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm .
Biểu thức
bằng với biểu thức nào dưới đây?
Ta có:
Với a là số thực dương tùy ý,
bằng:
Ta có:
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Biết
là số thực dương khác 1. Viết và thu gọn biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Tìm giá trị của x biết
.
Ta có:
Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Tìm hàm số đồng biến trên
trong các hàm số dưới đây?
Xét hàm số có
nên hàm số
đồng biến trên
?
Với các số thực dương x, y ta có:
theo thứ tự lập thành một cấp số nhân và các số
theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:
Từ theo thứ tự lập thành một cấp số nhân nên công bội
Mặt khác theo thứ tự lập thành một cấp số cộng nên
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Giá trị của
với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Giá trị của với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho đồ thị của ba hàm số
như hình vẽ:

Chọn kết luận đúng về mối quan hệ giữa
?
Quan sát đồ thị ta thấy
Hàm số là hàm số đồng biến nên
Hàm số là hàm số đồng biến nên
Hàm số là hàm nghịch biến nên
Vậy ta có:
Khi thay x = 1 vào hai hàm số ta thu được m > n
Vậy .
Tính giá trị biểu thức
.
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Tìm số nghiệm của phương trình
?
Điều kiện xác định
Phương trình đã cho tương đương:
Vậy phương trình có 1 nghiệm duy nhất.
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Tập nghiệm của bất phương trình
là:
Điều kiện:
Bất phương trình tương đương:
Kết hợp với điều kiện ta được nghiệm bất phương trình là:
Vậy tập nghiệm bất phương trình là:
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Cho biểu thức
. Mệnh đề nào sau đây đúng?
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Rút gọn biểu thức
biết
.
Ta có:
Xác định tập xác định D của hàm số
.
Hàm số đã cho xác định khi và chỉ khi:
Vậy tập xác định của hàm số là:
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Với
, khẳng định nào sau đây đúng?
Mệnh đề đúng là:
Cho
. Tìm khẳng định đúng trong các khẳng định dưới đây?
Khẳng định đúng là:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .