Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 2: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 3: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 4: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(x - 1)^{2}?

    Điều kiện xác định của hàm số y = \ln(x -
1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 1 ight\}.

  • Câu 5: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 6: Nhận biết

    Tìm tập xác định của hàm số y = \ln(1 - x)?

    Điều kiện xác định của hàm số y = \ln(1 -
x) là:

    1 - x > 0 \Rightarrow x <
1

    Vậy tập xác định của hàm số là D = ( -
\infty;1)

  • Câu 7: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 8: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 9: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 10: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 11: Nhận biết

    Tìm nghiệm phương trình 5^{x - 1} - \frac{1}{25} = 0?

    Ta có:

    5^{x - 1} - \frac{1}{25} = 0
\Leftrightarrow 5^{x - 1} = 5^{- 2}

    \Leftrightarrow x - 1 = - 2
\Leftrightarrow x = - 1(tm)

    Vậy phương trình có nghiệm x = -
1.

  • Câu 12: Vận dụng

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Đáp án là:

    Cho phương trình {\log _3}\left( {x + 2} ight) = {\log _3}\left[ {{x^2} - \left( {a - 1} ight)x + {a^2} - 6a + 2} ight] với a là tham số. Có bao nhiêu giá trị nguyên của tham số a để phương trình đã cho có hai nghiệm trái dấu?

    Đáp án: 4

    Phương trình đã cho tương đương

    \left\{ \begin{matrix}
x + 2 > 0 \\
x^{2} - (a - 1)x + a^{2} - 6a + 2 = x + 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > - 2 \\
x^{2} - ax + a^{2} - 6a = 0(*) \\
\end{matrix} ight.

    Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm x_{1};x_{2} thỏa mãn - 2 < x_{1} < 0 < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
\left( x_{1} + 2 ight)\left( x_{2} + 2 ight) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{1}.x_{2} < 0 \\
x_{1}.x_{2} + 2\left( x_{1} + x_{2} ight) + 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a < 0 \\
a^{2} - 4a + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
0 < a < 6 \\
a eq 2 \\
\end{matrix} ight.

    Mặt khác a\mathbb{\in Z \Rightarrow}a \in
\left\{ 1;3;4;5 ight\}

    Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

  • Câu 13: Thông hiểu

    Cho a,b là hai số thực dương thỏa mãn \log_{9}a^{4} +\log_{3}b = 8 và \log_{3}a +\log_{\sqrt[3]{3}}b = 9. Tính giá trị của biểu thức K = ab + 1.

    Ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2\log_{3}a + \log_{3}b = 8 \\ \log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{3}a = 3 \\ \log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight.

    \Leftrightarrow K = ab + 1 =
244

  • Câu 14: Thông hiểu

    Tính giá trị biểu thức S = \log_{\sqrt{a}}b^{2} +\frac{2}{\log_{\frac{a}{b^{2}}}a} với a,b > 0;a,b eq 1;a eq b^{2}.

    Ta có:

    S = \log_{\sqrt{a}}b^{2} +\frac{2}{\log_{\frac{a}{b^{2}}}a}

    S = 4\log_{a}b +2.\log_{a}\frac{a}{b^{2}}

    S = 4\log_{a}b + 2.\log_{a}a - 4\log_{a}b =2

  • Câu 15: Vận dụng

    Tính giá trị biểu thức C = \frac{a}{b}. Biết \log_{9}a = \log_{16}b = \log_{12}\frac{5b -a}{2};(a,b > 0).

    Giả sử \log_{9}a = \log_{16}b =\log_{12}\frac{5b - a}{2} = t khi đó:

    \Rightarrow \left\{ \begin{matrix}a = 9^{t} \\b = 16^{t} \\\dfrac{5b - a}{2} = 12^{t} \\\end{matrix} ight.\  \Rightarrow 12^{t} = \frac{5.16^{t} -9^{t}}{2}

    \Leftrightarrow 5.16^{t} - 2.12^{t} -
9^{t} = 0

    \Leftrightarrow 5 - 2.\left( \frac{3}{4}
ight)^{t} - \left( \frac{3}{4} ight)^{2t} = 0

    \Leftrightarrow \left( \frac{3}{4}
ight)^{t} = \sqrt{6} - 1

    \Leftrightarrow \frac{a}{b} =
\frac{9^{t}}{16^{t}} = \left( \frac{3}{4} ight)^{2t} = \left( \sqrt{6}
- 1 ight)^{2} = 7 - 2\sqrt{6}

  • Câu 16: Vận dụng

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\left( 4 - x^{2} ight).

    Điều kiện xác định 4 - x^{2} > 0
\Rightarrow x \in ( - 2;2)

    Vậy tập xác định của hàm số là D = ( -
2;2)

  • Câu 19: Thông hiểu

    Cho hai hàm số y= \log_{a}x;y = \log_{b}x với a;b là các số thực dương khác có đồ thị hàm số lần lượt là \left( C_{1}
ight);\left( C_{2} ight) như hình vẽ.

    Chọn khẳng định đúng trong các khẳng định dưới đây.

    Từ hình vẽ ta thấy đồ thị \left( C_{1}
ight) tăng suy ra hàm số y =\log_{a}x có cơ số a >
1.

    Đồ thị \left( C_{2} ight) giảm suy ra hàm số y = \log_{b}x có cơ số 0 < b < 1

  • Câu 20: Nhận biết

    Cho a,b là hai số thực dương bất kì và b eq1. Kết luận nào sau đây đúng?

    Theo tính chất ta suy ra kết luận đúng là: {\log _b}a = \frac{{\ln a}}{{\ln b}}

  • Câu 21: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 22: Nhận biết

    Bất phương trình \log_{\frac{1}{5}}f(x) >\log_{\frac{1}{5}}g(x) tương đương với khẳng định nào dưới đây?

    Do \frac{1}{5} < 1 nên ta phải đổi chiều bất phương trình, đồng thời chú ý đến điều kiện xác định.

    Vậy đáp án đúng là: g(x) > f(x) >
0

  • Câu 23: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 24: Thông hiểu

    Thu gọn biểu thức B = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}}với a > 0 ta được:

    Ta có:

    \left\{ \begin{matrix}
a^{\sqrt{3} + 1}.a^{2 - \sqrt{3}} \\
\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{\sqrt{3} + 1 + 2 - \sqrt{3}} = a^{3} \\
a^{\left( \sqrt{2} - 2 ight)\left( \sqrt{2} + 2 ight)} = a^{2 - 4} =
a^{- 2} \\
\end{matrix} ight.

    \Rightarrow B = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 25: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 26: Thông hiểu

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Đáp án là:

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Điều kiện xác định \left\{ \begin{matrix}(x - 4)^{2} > 0 \\x - 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 4 \\x > 2 \\\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3^{\frac{1}{2}}}(x- 2) + 2\log_{3}|x - 4| = 0

    \Leftrightarrow 2\log_{3}(x - 2) +2\log_{3}|x - 4| = 0

    \Leftrightarrow \log_{3}\left\lbrack (x -2).|x - 4| ightbrack = \log_{3}1

    \Leftrightarrow (x - 2).|x - 4| =1

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\(x - 2)(x - 4) = 1 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\(x - 2)(x - 4) = - 1 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\x^{2} - 6x + 7 = 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\x^{2} - 6x + 9 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = 3 + \sqrt{2} \\x_{2} = 3 \\\end{matrix} ight.\  \Rightarrow S = 2

  • Câu 27: Vận dụng

    Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?

    Số tiền còn lại trong tài khoản sau tháng thứ 1 là: 200.1,006 - 0,5 (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 2 là:

    (200.1,006 - 0,5).1,006 - 0,5 =
200.(1,006)^{2} - 0,5(1 + 1,006) (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 3 là:

    200.(1,006)^{3} - 0,5\left\lbrack 1 +
1,006 + (1,006)^{2} ightbrack(triệu đồng)

    Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:

    200.(1,006)^{3} - 0,5\left\lbrack 1 +
1,006 + (1,006)^{2} + ... + (1,006)^{35} ightbrack

    = 200.(1,006)^{36} - 0,5.\frac{1 -
(1,006)^{36}}{1 - 1,006} = 228,035(triệu đồng).

  • Câu 28: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x - \log_{2}3 = 1 bằng:

    Điều kiện x eq 0

    Ta có:

    \log_{4}x - \log_{2}3 = 1 \Leftrightarrow\frac{1}{2}\log_{2}x^{2} = 1 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} = 2\log_{2}6\Leftrightarrow x^{2} = 6^{2}

    Khi đó tổng bình phương các nghiệm của phương trình bằng 0

  • Câu 29: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 30: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty).

  • Câu 31: Thông hiểu

    Tìm giá trị x biết \log_{3}x = 4\log_{3}a + 7\log_{3}b.

    Ta có:

    \log_{3}x = 4\log_{3}a +7\log_{3}b

    \Leftrightarrow \log_{3}x = \log_{3}a^{4}+ \log_{3}b^{7}

    \Leftrightarrow \log_{3}x = \log_{3}\left(a^{4}.b^{7} ight)

    \Leftrightarrow x =
a^{4}.b^{7}

  • Câu 32: Thông hiểu

    Với các số a, b > 0 thỏa mãn a^{2} + b^{2} = 6ab, biểu thức \log_{2}(a + b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Rightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow \log_{2}(a + b) =\frac{1}{2}\left( \log_{2}8 + \log_{2}a + \log_{2}b ight)

    \Rightarrow \log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a + \log_{2}b ight)

  • Câu 33: Nhận biết

    Cho bất phương trình \left( \frac{1}{3} ight)^{x} > 9. Xác định nghiệm của bất phương trình đã cho?

    Ta có:

    \left( \frac{1}{3} ight)^{x} > 9\Leftrightarrow \left( 3^{- 1} ight)^{x} > 3^{2}

    \Leftrightarrow 3^{- x} > 3^{2}\Leftrightarrow x < - 2

    Vậy tập nghiệm của bất phương trình là x\in ( - \infty; - 2)

  • Câu 34: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 36: Nhận biết

    Nếu m^{2x} =
3 thì giá trị 3m^{6x} là:

    Ta có: 3m^{6x} = 3.\left( m^{2x}
ight)^{3} = 3.3^{3} = 81

  • Câu 37: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

  • Câu 38: Nhận biết

    Biết p > 0;p
eq 1. Tính \log_{p}\sqrt[1021]{p^{1022}}?

    Ta có:

    \log_{p}\sqrt[1021]{p^{1022}} =\log_{p}(p)^{\frac{1022}{1021}}

    = \frac{1022}{1021}log_{p}p =
\frac{1022}{1021}

  • Câu 39: Thông hiểu

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 40: Nhận biết

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo