Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Xác định các nghiệm phương trình
rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Xác định các nghiệm phương trình rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Điều kiện
Ta có:
Tổng tất cả các nghiệm của phương trình là: .
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là .
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Rút gọn biểu thức

Với ta có:
Khi đó:
Tính giá trị biểu thức:
biết
?
Ta có:
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho
thỏa mãn
. Xác định tỉ số
?
Điều kiện
Với
Giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Giải bất phương trình
. Kết luận nào sau đây đúng?
Ta có:
hay
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Với
, kết luận nào sau đây sai?
Với ta có:
Là các kết luận đúng
Ta lại có: sai.
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Kết luận nào đúng khi biểu diễn tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Trong các hàm số sau đây, hàm số nào đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Rút gọn biểu thức
với
ta được kết quả:
Ta có:
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Giả sử
là tổng các nghiệm của phương trình
. Giá trị của
là:
Điều kiện xác định
Phương trình đã cho tương đương:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Tìm hàm số đồng biến trên
trong các hàm số dưới đây?
Xét hàm số có
nên hàm số
đồng biến trên
?
Cho hàm số
. Tìm mệnh đề nào sai?
Mệnh đề sai là: “Tập xác định của hàm số là ”
Sửa lại như sau: “Tập xác định của hàm số là .
Cho
là hai số thực dương bất kì và
. Kết luận nào sau đây đúng?
Theo tính chất ta suy ra kết luận đúng là:
Cho biết
. Một học sinh đã thực hiện tính giá trị biểu thức
như sau:
Bước 1: ![]()
Bước 2: ![]()
Bước 3: ![]()
Bước 4: ![]()
Hỏi bạn học sinh giải toán sai từ bước nào?
Ta có:
Vậy bài toán sai từ bước 4.
Cho
. Khi đó
có giá trị là:
Ta có:
Cho các hàm số
có đồ thị như hình vẽ dưới đây:

Kết luận nào sau đây đúng?
Dựa vào đồ thị hàm số là một hàm số nghịch biến trên tập xác định của nó nên
Hàm số là các hàm số đồng biến trên tập xác định của nó nên
Kẻ đường thẳng cắt đồ thị hàm số
lần lượt tại các điểm
Dựa vào đồ thị ta thấy
Vậy kết luận đúng là:
Rút gọn biểu thức
biết
.
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Cho phương trình
với
là tham số. Hỏi có tất cả các giá trị nguyên của tham số
để phương trình có nghiệm thực?
Ta có:
Để phương trình đã cho có nghiệm thực thì
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Khẳng định nào sau đây sai?
Ta có:
Với
, khẳng định nào sau đây đúng?
Mệnh đề đúng là:
Tính
với
?
Ta có:
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có: