Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho a,b\in\mathbb{ R} thỏa mãn \log_{4}a = \log_{9}b = \log_{6}(a - 2b). Xác định tỉ số \frac{a}{b}?

    Điều kiện a > 0;b > 0;a >
2b

    \left\{ \begin{matrix}
a = 4^{t} \\
b = 9^{t} \\
a - 2b = 6^{t} \\
\end{matrix} ight.\  \Rightarrow 4^{t} - 2.9^{t} = 6^{t}

    \Leftrightarrow \left( \frac{4}{9}
ight)^{t} - \left( \frac{2}{3} ight)^{t} - 2 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left( \dfrac{2}{3} ight)^{t} = - 1(ktm) \\\left( \dfrac{2}{3} ight)^{t} = 2 \\\end{matrix} ight.

    Với \left( \frac{2}{3} ight)^{t} = 2
\Rightarrow \frac{x}{y} = \left( \frac{4}{9} ight)^{t} = \left\lbrack
\left( \frac{2}{3} ight)^{t} ightbrack^{2} = 4

  • Câu 3: Vận dụng

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Đáp án là:

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Giả sử bà A đã gửi ngân hàng trong x năm

    Số tiền bà nhận được là 250 triệu đồng

    Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là T = 100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow 250.10^{6} =
100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow n = \log_{1,1}2,5\Leftrightarrow n \approx 9,61

    Vậy bà A đã gửi tiết kiệm trong 10 năm.

  • Câu 4: Thông hiểu

    Với x \geq0 thì \sqrt{x\sqrt{x\sqrt{x^{2}}}} bằng:

    Ta có: \sqrt{x\sqrt{x\sqrt{x^{2}}}} =\sqrt{x.\sqrt{x.x}} = \sqrt{x.x} = x

  • Câu 5: Thông hiểu

    Thu gọn biểu thức I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được kết quả ta được phân số tối giản \frac{x}{y};\left( x;y \in \mathbb{N}^{*}
ight). Khẳng định nào sau đây đúng?

    Ta có:

    I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{\frac{19}{7}}

    Suy ra \left\{ \begin{matrix}
x = 19 \\
y = 7 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x^{2} + y^{2} = 410 \\
x^{2} - y^{2} = 312 \\
\end{matrix} ight.

  • Câu 6: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 7: Nhận biết

    Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?

    Hàm số y = a^{x} nghịch biến trên \mathbb{R} khi 0 < a < 1.

  • Câu 8: Nhận biết

    Biết A = \left(
\frac{a^{12}}{\sqrt[5]{b^{3}}} ight)^{- 0,3} với a > 0;b > 0. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Ta có:

    A = \left(
\frac{a^{12}}{\sqrt[5]{b^{3}}} ight)^{- 0,3} = a^{-
\frac{18}{5}}.b^{\frac{9}{50}}

    \Rightarrow \log A = - \frac{18}{5}\log
a + \frac{9}{50}\log b

  • Câu 9: Nhận biết

    Tìm tập xác định của hàm số \log_{2}(x - 1)?

    Điều kiện xác định x - 1 > 0
\Rightarrow x > 1

    Suy ra tập xác định của hàm số là: D =
(1; + \infty).

  • Câu 10: Thông hiểu

    Biết rằng 9^{x}
+ 9^{- x} = 23. Khi đó biểu thức E
= \frac{5 + 3^{x} + 3^{- x}}{1 - 3^{x} - 3^{- x}} = \frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    9^{x} + 9^{- x} = 23 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 25

    \Leftrightarrow 3^{x} + 3^{- x} =
5 (vì 3^{x} + 3^{- x} > 0\forall
x\mathbb{\in R})

    \Rightarrow E = \frac{5 + 3^{x} + 3^{-
x}}{1 - 3^{x} - 3^{- x}} = \frac{5 + 3^{x} + 3^{- x}}{1 - \left( 3^{x} +
3^{- x} ight)} = \frac{5 + 5}{1 - 5} = \frac{- 5}{2}

    \Rightarrow \left\{ \begin{matrix}
p = - 5 \\
q = 2 \\
\end{matrix} ight.\  \Rightarrow p.q = - 10

  • Câu 11: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số f(x) = \left( 1 + \ln might)^{x} đồng biến trên tập số thực.

    Ta có hàm số f(x) = \left( 1 + \ln m
ight)^{x} đồng biến trên \mathbb{R}

    Khi và chỉ khi 1 + \ln m > 1\Leftrightarrow m > 1

  • Câu 12: Nhận biết

    Tính tổng các nghiệm phương trình 7^{x^{2} - 5x + 9} = 343 thu được kết quả là:

    Ta có:

    7^{x^{2} - 5x + 9} = 343

    \Leftrightarrow x^{2} - 5x + 9 =
3

    \Leftrightarrow x^{2} - 5x + 6 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.\ (tm)

    = > S = 2 + 3 = 5

  • Câu 13: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 1)?

    Điều kiện xác định của hàm số y = \log(x
- 1) là:

    x - 1 > 0 \Rightarrow x >
1

    Vậy tập xác định của hàm số là D = (1; +
\infty)

  • Câu 14: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 15: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 16: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 17: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 18: Nhận biết

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 19: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Với các số thực dương x, y ta có: 8^{x};a^{4};2 theo thứ tự lập thành một cấp số nhân và các số \log_{2}45;\log_{2}y;\log_{2}x theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:

    Từ 8^{x};a^{4};2 theo thứ tự lập thành một cấp số nhân nên công bội q =
\frac{2}{4^{4}} = \frac{1}{2^{7}}

    \Rightarrow 4^{4} =
8^{x}.\frac{1}{2^{7}} \Rightarrow x = 5

    Mặt khác \log_{2}45;\log_{2}y;\log_{2}x theo thứ tự lập thành một cấp số cộng nên

    \log_{2}y = \frac{\log_{2}45 +\log_{2}x}{2}

    \Leftrightarrow \log_{2}y =\frac{\log_{2}45 + \log_{2}5}{2}

    \Leftrightarrow \log_{2}y =\log_{2}\sqrt{255} \Rightarrow y = 15

  • Câu 21: Thông hiểu

    Xác định nghiệm của phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}.

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} +
\frac{x}{3} - \frac{1}{2x} = \frac{7}{3}

    \Leftrightarrow \left\lbrack\begin{matrix}x = 3(tm) \\x = - \dfrac{1}{5}(ktm) \\\end{matrix} ight.

    Vậy phương trình có nghiệm x =
3.

  • Câu 22: Thông hiểu

    Cho a,b,c >
0. Tính giá trị của biểu thức A =\log_{a}\left( b^{2} ight).\log_{b}\left( \sqrt{bc} ight) -\log_{a}(c)?

    Ta có:

    A =\log_{a}\left( b^{2}ight).\log_{b}\left( \sqrt{bc} ight) - \log_{a}(c)

    A = 2\log_{a}(b).\frac{1}{2}.\log_{b}(bc)- \log_{a}(c)

    A = \log_{a}(b).\log_{b}(bc) -\log_{a}(c)

    A = \log_{a}(b).\left\lbrack \log_{b}(b) +\log_{b}(c) ightbrack - \log_{a}(c)

    A = \log_{a}(b).\left\lbrack 1 +\log_{b}(c) ightbrack - \log_{a}(c)

    A = \log_{a}(b) + \log_{a}(b).\log_{b}(c) -\log_{a}(c)

    A = \log_{a}(b) + \log_{a}(c) -\log_{a}(c)

    A = \log_{a}(b)

  • Câu 23: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình 4^{x} - 2^{x + 3} + 15 = 0. Trong các khẳng định dưới đây khẳng định nào đúng?

    Đặt t = 2^{x} > 0 phương trình trở thành t^{2} - 8t + 15 =
0(*)

    Gọi t_{1};t_{2} là hai nghiệm của phương trình (*) suy ra \left\lbrack
\begin{matrix}
t_{1} = 2^{x_{1}} \\
t_{2} = 2^{x_{2}} \\
\end{matrix} ight.

    Theo định lí Vi – et phương trình (*) ta có:

    t_{1}t_{2} = 15 \Rightarrow
2^{x_{1}}.2^{x_{2}} = 15

    \Rightarrow x_{1} + x_{2} =\log_{2}15

  • Câu 24: Nhận biết

    Với các số a,b,c là các số thực dương và a eq 1. Tìm khẳng định sai trong các khẳng định dưới đây?

    Ta có: \log_{a}b = \frac{\ln b}{\ln a} nên \log_{a}b = \frac{\ln a}{\ln b} sai.

  • Câu 25: Thông hiểu

    Cho phương trình \log_{5}(2m + 3) - \log_{5}(m + 2) = 0. Xác định nghiệm phương trình đã cho?

    Điều kiện xác định:

    \left\{ \begin{matrix}2m + 3 > 0 \\m + 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{3}{2} \\m > - 2 \\\end{matrix} ight.\  \Leftrightarrow m > - \dfrac{3}{2}

    Ta có:

    \log_{5}(2m + 3) - \log_{5}(m + 2) =0

    \Leftrightarrow \log_{5}(2m + 3) =\log_{5}(m + 2)

    \Leftrightarrow 2m + 3 = m + 2
\Leftrightarrow m = - 1(tm)

    Vậy phương trình có nghiệm là m = -
1.

  • Câu 26: Thông hiểu

    Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?

    Hàm số y = \log_{\sqrt{5}}x có \sqrt{5} > 1 nên hàm số y = \log_{\sqrt{5}}x đồng biến trên tập xác định của nó là (0; +\infty).

    Hàm số y = \left( 3\sqrt{2} ight)^{-x}0 < \frac{1}{3\sqrt{2}}< 1 nên nghịch biến trên tập xác định của nó.

    Hàm số y = \left( \frac{e}{3\pi}ight)^{x}0 <\frac{e}{3\pi} < 1 nên hàm số nghịch biến trên tập xác định của nó.

    Hàm số y = \log_{\frac{\pi}{6}}x có 0 < \frac{\pi}{6} < 1 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 27: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 28: Thông hiểu

    Cho biểu thức F
= \frac{1}{2^{- x - 1}} + 3.{\sqrt{2}}^{2x} - 4^{\frac{x -
1}{2}}. Với 2^{x} =
\sqrt{3} thì giá trị của biểu thức F bằng:

    Ta có:

    F = \frac{1}{2^{- x - 1}} +
3.{\sqrt{2}}^{2x} - 4^{\frac{x - 1}{2}}

    F = 2^{x + 1} + 3.\left( {\sqrt{2}}^{2}
ight)^{x} - \left( 4^{\frac{1}{2}} ight)^{x - 1}

    F = 2.2^{x} + 3.2^{x} -
\frac{1}{2}.2^{x} = \frac{9}{2}.2^{x}

    Thay 2^{x} = \sqrt{3} vào biểu thức F vừa biến đổi ta được:

    F = \frac{9}{2}.\sqrt{3} =
\frac{9\sqrt{3}}{2}

  • Câu 29: Thông hiểu

    Rút gọn biểu thức B = \left( \frac{a + b}{\sqrt[3]{a} + \sqrt[3]{b}}
- \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2} biết a^{2} eq
b^{2}.

    Ta có:

    B = \left( \frac{a + b}{\sqrt[3]{a} +
\sqrt[3]{b}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
\sqrt[3]{ab} + \sqrt[3]{b^{2}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a}
- \sqrt[3]{b} ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
2\sqrt[3]{ab} + \sqrt[3]{b^{2}} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}:\left( \sqrt[3]{a} - \sqrt[3]{b} ight)^{2} =
1

  • Câu 30: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Với ab là hai số thực dương tùy ý, biểu thức \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 32: Nhận biết

    Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình \left(
\frac{1}{3} ight)^{x} < 2?

    Ta có:

    \left( \frac{1}{3} ight)^{x} < 2
\Leftrightarrow x > log_{\frac{1}{3}}2

    Vậy tập nghiệm của bất phương trình đã cho là x \in \left(\log_{\frac{1}{3}}2; + \inftyight)

  • Câu 33: Thông hiểu

    Rút gọn biểu thức D =
log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}. (Giả sử tất cả các điều kiện đều xác định).

    Ta có:

    D =\log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}= \log_{a^{-1}}\frac{a.a^{\frac{3}{4}}.a^{\frac{2}{3}}}{a^{\frac{1}{2}}.a^{\frac{1}{4}}}

    = \log_{a^{-1}}\frac{a^{\frac{29}{12}}}{a^{\frac{3}{4}}} = \log_{a^{-1}}a^{\frac{5}{3}} = - \frac{5}{3}

  • Câu 34: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 35: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 36: Thông hiểu

    Với các số a,b
> 0 thỏa mãn a^{2} + b^{2} =
6ab, biểu thức \log_{2}(a +b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Leftrightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow\log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a +\log_{2}b ight)

  • Câu 37: Nhận biết

    Xác định nghiệm phương trình \log_{2}x + 1 = 0?

    Điều kiện xác định: x > 0

    \log_{2}x + 1 = 0 \Leftrightarrow \log_{2}x = - 1

    \Leftrightarrow x = 2^{- 1} =
\frac{1}{2}(tm)

    Vậy phương trình có nghiệm x =
\frac{1}{2}.

  • Câu 38: Vận dụng

    Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?

    (1) Với số thực a và các số nguyên m,n, ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n}.

    (2) Với hai số thực a,b cùng khác 0 và số nguyên n, ta có (ab)^{n} =
a^{n}.b^{n};\left( \frac{a}{b} ight)^{n} =
\frac{a^{n}}{b^{n}}

    (3) Với hai số thực a,b thỏa mãn 0 < a < b và số nguyên n, ta có a^{n}
< b^{n} khi và chỉ khi n >
0.

    (4) Cho số thực a và các số nguyên m,n. Khi đó, với a > 0 thì a^{m} > a^{n} khi và chỉ khi m > n.

    Khẳng định sai: "Với số thực a và các số nguyên m,n , ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n} "
  • Câu 39: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 40: Nhận biết

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo