Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 2: Nhận biết

    Giải bất phương trình 2^{x + 1} \geq \frac{1}{16}. Kết luận nào sau đây đúng?

    Ta có:

    2^{x + 1} \geq \frac{1}{16}
\Leftrightarrow 2^{x + 1} \geq 2^{- 4}

    \Leftrightarrow x + 1 \geq - 4
\Leftrightarrow x \geq - 5 hay x
\in \lbrack - 5; + \infty)

  • Câu 3: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 4: Vận dụng

    Cho biết a,b >
0,a eq 1;b eq 1;n \in \mathbb{N}^{*}. Một học sinh đã thực hiện tính giá trị biểu thức P =\frac{1}{\log_{a}b} + \frac{1}{\log_{a^{2}}b} + ... +\frac{1}{\log_{a^{n}}b} như sau:

    Bước 1: P = \log_{b}a + \log_{b}a^{2} + ...+ \log_{b}a^{n}

    Bước 2: P = \log_{b}\left( a.a^{2}...a^{n}ight)

    Bước 3: P = \log_{b}\left( a^{1 + 2 + 3 +.... + n} ight)

    Bước 4: P = n(n -1)\log_{b}\sqrt{a}

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    P = \dfrac{1}{\log_{a}b} +\dfrac{1}{\log_{a^{2}}b} + ... + \dfrac{1}{\log_{a^{n}}b}

    P = \log_{b}a + \log_{b}a^{2} + ... +\log_{b}a^{n}

    P = \log_{b}\left( a.a^{2}...a^{n}ight)

    P = \log_{b}\left( a^{1 + 2 + 3 + .... +n} ight)

    P = n(n + 1)\log_{b}\sqrt{a}

    Vậy bài toán sai từ bước 4.

  • Câu 5: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 6: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    a) Điều kiện xác định của hàm số y =\ln\left( - x^{2} + 5x - 6 ight) là:

    - x^{2} + 5x - 6 > 0 \Leftrightarrow2 < x < 3

    Vậy tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3).

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực đúng vì a > 1.

    c) Ta có:

    \log_{2}a^{3} + \log_{2}b = 8

    \log_{2}a^{3} + \log_{2}b = 8\Leftrightarrow \log_{2}\left( a^{3}b ight) = 8

    \Leftrightarrow a^{3}b = 2^{8} =256

    d) Hàm số y = \ln\left( x^{2} - 2x - m +1 ight) có tập xác định trên tập số thực khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forallx\mathbb{\in R}

    \Leftrightarrow \Delta' < 0\Leftrightarrow 1 + m - 1 < 0 < 0 \Leftrightarrow m <0

    Kết hợp với điều kiện m\mathbb{\in Z},m\in \lbrack - 2018;2018brack ta được 2018 giá trị của tham số m thỏa mãn.

  • Câu 7: Thông hiểu

    Giả sử phương trình \log_{\sqrt{2}}x + \log_{\frac{1}{2}}(2x - 1) =1 có nghiệm lớn nhất là x = m +
n\sqrt{2};\left( m,n\mathbb{\in Z} ight). Tính giá trị biểu thức A = m + 2n?

    Điều kiện xác định \left\{ \begin{matrix}x > 0 \\2x - 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x > \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow x > \frac{1}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow 2\log_{2}x - \log_{2}(2x -1) = 1

    \Leftrightarrow \log_{2}\left(\frac{x^{2}}{2x - 1} ight) = 1

    \Leftrightarrow \frac{x^{2}}{2x - 1} = 2
\Leftrightarrow x^{2} - 4x + 2 = 0

    Nghiệm lớn nhất của phương trình là

    x = 2 + \sqrt{2} \Rightarrow \left\{
\begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.\  \Rightarrow A = m + 2n = 4

  • Câu 8: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 9: Vận dụng

    Cho hàm số y =\log_{a}x;y = \log_{b}x có đồ thị như hình vẽ:

    Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số y = \log_{a}x;y =\log_{b}x lần lượt tại H,M,N. Biết rằng HM = MN. Khẳng định nào sau đây đúng?

    Ta có:\left\{ \begin{matrix}HM = y_{M} = \log_{a}7 \\MN = y_{N} - y_{M} = \log_{b}7 - \log_{a}7 \\\end{matrix} ight.

    Mặt khác HM = MN nên \log_{b}7 - \log_{a}7 = \log_{a}7

    \Leftrightarrow \log_{b}7 =\log_{\sqrt{a}}7

    \Leftrightarrow b = \sqrt{a}
\Leftrightarrow b^{2} = a

  • Câu 10: Nhận biết

    Tìm hàm số nghịch biến trên \mathbb{R} trong các hàm số sau?

    Ta có:

    0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} nghịch biến trên \mathbb{R}.

  • Câu 11: Nhận biết

    Rút gọn biểu thức: D = x^{\frac{2}{5}}.\sqrt[6]{x} với x > 0 ta được kết quả là:

    Ta có: D = x^{\frac{2}{5}}.\sqrt[6]{x} =
x^{\frac{2}{5}}.x^{\frac{1}{6}} = x^{\frac{2}{5} + \frac{1}{6}} =
x^{\frac{17}{30}}.

  • Câu 12: Nhận biết

    Tìm giá trị của x để hàm số y = e^{x^{2} - 2x} có nghĩa.

    Hàm số y = e^{x^{2} - 2x} xác định với mọi x\in\mathbb{ R}

    Vật tập xác định của hàm số là: D=\mathbb{ R}.

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức: W = x^{2} - y^{2}. Biết x,y là các số thực dương khác 1 và thỏa mãn \log_{\sqrt[3]{x}}y =\dfrac{3y}{8};\log_{\sqrt{2}}x = \dfrac{32}{y}?

    Ta có:

    \log_{\sqrt{2}}x = \dfrac{32}{y}\Leftrightarrow 2\log_{2}x = \dfrac{32}{y}

    \Leftrightarrow y = \dfrac{16}{\log_{2}x}= 16\log_{x}2(*)

    Lại có \log_{\sqrt[3]{x}}y = \dfrac{3y}{8}\Leftrightarrow 3\log_{x}y = \dfrac{3y}{8}

    \Leftrightarrow \log_{x}y = \frac{y}{8}\Leftrightarrow \log_{x}\left( 16\log_{x}2 ight) =2\log_{x}2

    \Leftrightarrow \log_{x}\left( 16\log_{x}2ight) = \log_{x}2^{2}

    \Leftrightarrow 16\log_{x}2 = 4\Leftrightarrow \log_{x}2 = \frac{1}{4}

    \Leftrightarrow \log_{2}x = 4\Leftrightarrow x = 16 \Rightarrow y = 4

    \Rightarrow W = x^{2} - y^{2} =
240

  • Câu 14: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    a) Vì 0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực đúng.

    b) Điều kiện xác định của hàm số:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Rightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là D =
(2;9brack

    c) Ta có: 2 < \sqrt{5} <
\sqrt{6} nên 3^{2} <
3^{\sqrt{5}} < 3^{\sqrt{6}} hay b < a < c

    d) Điều kiện xác định:

    mx - m + 2 > 0 \Leftrightarrow mx
> m - 2\ \ (*)

    TH1: m = 0 \Rightarrow (*)0 > -
1(tm)

    TH2: m > 0 \Rightarrow (*)
\Leftrightarrow x > \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
\frac{m - 2}{2}; + \infty ight)

    Khi đó yêu cầu bài toán trở thành \frac{m
- 2}{2} < 1 \Leftrightarrow m - 2 < m \Leftrightarrow - 2 <
0(tm)

    Th3: m < 0 \Rightarrow (*)
\Leftrightarrow x < \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
- \infty;\frac{m - 2}{2} ight)

    Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 15: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 16: Thông hiểu

    Giả sử x_{1};x_{2} là hai nghiệm của phương trình 2^{x^{2} - x + 8} - 4^{1 - 3x} =
0. Xác định giá trị biểu thức M =
4{x_{1}}^{2} - {x_{2}}^{2} biết x_{1} > x_{2}?

    Ta có:

    2^{x^{2} - x + 8} - 4^{1 - 3x} = 0
\Leftrightarrow 2^{x^{2} - x + 8} = \left( 2^{2} ight)^{1 -
3x}

    \Leftrightarrow 2^{x^{2} - x + 8} =
2^{2.(1 - 3x)}

    \Leftrightarrow x^{2} - x + 8 = 2.(1 -
3x)

    \Leftrightarrow x^{2} + 5x + 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x_{1} = - 2 \\
x_{2} = - 3 \\
\end{matrix} ight.\ (tm)

    \Rightarrow M = 4{x_{1}}^{2} -
{x_{2}}^{2} = 7

  • Câu 17: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 18: Thông hiểu

    Thu gọn biểu thức B = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}}với a > 0 ta được:

    Ta có:

    \left\{ \begin{matrix}
a^{\sqrt{3} + 1}.a^{2 - \sqrt{3}} \\
\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{\sqrt{3} + 1 + 2 - \sqrt{3}} = a^{3} \\
a^{\left( \sqrt{2} - 2 ight)\left( \sqrt{2} + 2 ight)} = a^{2 - 4} =
a^{- 2} \\
\end{matrix} ight.

    \Rightarrow B = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 19: Thông hiểu

    Phương trình 7^{x + 1} = \left( \frac{1}{7} ight)^{x^{2} - 2x
- 3} có hai nghiệm x_{1};x_{2}. Khi đó giá trị biểu thức T = 2{x_{1}}^{2} + 3{x_{2}}^{2} bằng bao nhiêu? Biết rằng x_{1} <
x_{2}.

    Ta có:

    7^{x + 1} = \left( \frac{1}{7}
ight)^{x^{2} - 2x - 3} \Leftrightarrow 7^{x + 1} = 7^{- \left( x^{2} -
2x - 3 ight)}

    \Leftrightarrow x + 1 = - \left( x^{2} -
2x - 3 ight) \Leftrightarrow x^{2} - x - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = - 1 \\
x_{2} = 2 \\
\end{matrix} ight.\ (tm) \Rightarrow T = 2{x_{1}}^{2} + 3{x_{2}}^{2} =
16

  • Câu 20: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 21: Thông hiểu

    Tìm giá trị x biết \log_{3}x = 4\log_{3}a + 7\log_{3}b.

    Ta có:

    \log_{3}x = 4\log_{3}a +7\log_{3}b

    \Leftrightarrow \log_{3}x = \log_{3}a^{4}+ \log_{3}b^{7}

    \Leftrightarrow \log_{3}x = \log_{3}\left(a^{4}.b^{7} ight)

    \Leftrightarrow x =
a^{4}.b^{7}

  • Câu 22: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 23: Vận dụng

    Biết phương trình 8lo{g_{2}}^{2}\sqrt[3]{x} + 2(m -
1)log_{\frac{1}{4}}x - 2019 = 0 có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4. Chọn mệnh đề đúng.

    Ta có:

    8\log{_{2}}^{2}\sqrt[3]{x} + 2(m -1)\log_{\frac{1}{4}}x - 2019 = 0

    \Leftrightarrow\frac{8}{9}\log{_{2}}^{2}x - (m - 1)\log_{2}x - 2019 = 0

    Đặt t = \log_{2}x \Leftrightarrow x =2^{t} ta được:

    \Leftrightarrow \frac{8}{9}t^{2} - (m -
1)t - 2019 = 0

    Phương trình đã cho có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4 khi và chỉ khi

    \frac{8}{9}t^{2} - (m - 1)t - 2019 =
0 có hai nghiệm phân biệt thỏa mãn.

    2^{t_{1} + t_{2}} = 4 \Leftrightarrow
t_{1} + t_{2} = 2

    \Leftrightarrow \frac{9(m - 1)}{8} = 2
\Rightarrow m = \frac{25}{9} \in (2;5).

  • Câu 24: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight)y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 25: Nhận biết

    Hãy xác định tập xác định D của hàm số y = \log_{2}(3 - x)?

    Điều kiện xác định của hàm số y =
log_{2}(3 - x) là:

    3 - x > 0 \Leftrightarrow x <
3

    Vậy tập xác định của hàm số đã cho là D =
( - \infty;3).

  • Câu 26: Nhận biết

    Cho các số thực a và b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng?

    Xét tính đúng sai của từng đáp án như sau

    Ta có \log_{a}b < \log_{a}1 = 0 (vì 0 < a < 1;b > 1) => \log_{a}b < 0 => Đáp án \log_{a}b < 0 đúng

    a < b \Rightarrow \ln a < \ln
b

    => Đáp án \ln a > \ln b sai

    \left\{ \begin{matrix}
0 < 0,5 < 1 \\
a < b \\
\end{matrix} ight.\  \Rightarrow (0,5)^{a} > (0,5)^{b} => Đáp án (0,5)^{a} <
(0,5)^{b} Sai

    Ta có: \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight.\  \Rightarrow 2^{a} < 2^{b}=> Đáp án 2^{a} > 2^{b} sai.

  • Câu 27: Vận dụng

    Cho hàm số y =
a^{x} có đồ thị như hình vẽ, y =
f(x) có đồ thị đối xứng với đồ thị hàm số y = a^{x} qua đường thẳng y = - x. Xác định hàm số f(x).

    Ta có:

    Phép đối xứng trục qua đường thẳng y = -
x biến mỗi điểm có tọa độ (x;y) thành điểm có tọa độ ( - y; - x).

    Mỗi điểm trên đồ thị hàm số y =
a^{x} có dạng \left( u;a^{u}
ight), lấy đối xứng qua d ta được điểm có tọa độ \left( - a^{u};u ight) thuộc đồ thị hàm số y = f(x).

    Do đó f\left( - a^{u} ight) = -
u. Đặt x = - a^{u}, khi đó x = log_{a}( - x). Vậy f(x) = - \log_{a}( - x).

  • Câu 28: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 29: Thông hiểu

    Cho hai số thực dương x;y. Viết biểu thức x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} về dạng x^{p} và biểu thức y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}} về dạng y^{q}. Khi đó p - q có giá trị là bao nhiêu?

    Ta có:

    x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} =
x^{\frac{4}{5}}\sqrt[6]{x^{5}x^{\frac{1}{2}}} =
x^{\frac{4}{5}}\sqrt[6]{x^{\frac{11}{2}}} =
x^{\frac{4}{5}}.x^{\frac{11}{12}} = x^{\frac{103}{60}}

    \Rightarrow p =
\frac{103}{60}

    y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}}
= y^{\frac{4}{5}}:\sqrt[6]{y^{\frac{11}{2}}} = y^{\frac{-
7}{60}}

    \Rightarrow q = \frac{-
7}{60}

    \Rightarrow p - q =
\frac{11}{6}

  • Câu 30: Nhận biết

    Cho bất phương trình \left( \frac{1}{3} ight)^{x} > 9. Xác định nghiệm của bất phương trình đã cho?

    Ta có:

    \left( \frac{1}{3} ight)^{x} > 9\Leftrightarrow \left( 3^{- 1} ight)^{x} > 3^{2}

    \Leftrightarrow 3^{- x} > 3^{2}\Leftrightarrow x < - 2

    Vậy tập nghiệm của bất phương trình là x\in ( - \infty; - 2)

  • Câu 31: Nhận biết

    Tính \log_{x}\sqrt[3]{x} với \forall x > 0;x eq 1?

    Ta có: \log_{x}\sqrt[3]{x} =\log_{x}x^{\frac{1}{3}} = \frac{1}{3}\log_{x}x = \frac{1}{3}

  • Câu 32: Nhận biết

    Cho bất phương trình {\log _{\frac{e}{\pi }}}\left( {x + 1} ight) < {\log _{\frac{e}{\pi }}}\left( {3x - 1} ight). Khẳng định nào sau đây đúng?

    Ta có x > \frac{1}{3}

    Vì cơ số 0 < \frac{e}{\pi} <
1 nên {\log _{\frac{e}{\pi }}}\left( {x + 1} ight) < {\log _{\frac{e}{\pi }}}\left( {3x - 1} ight)

    \Leftrightarrow x + 1 > 3x -
1

    \Leftrightarrow x < 1

    Kết hợp với điều kiện ra có tập nghiệm của bất phương trình là: S = \left( \frac{1}{3};1 ight)

  • Câu 33: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

  • Câu 34: Nhận biết

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 35: Nhận biết

    Biết a \in
\mathbb{R}^{+}, \sqrt{a^{3}} bằng:

    Ta có: \sqrt{a^{3}} =
a^{\frac{3}{2}}

  • Câu 36: Thông hiểu

    Cho a =\log_{7}11;b = \log_{2}7. Biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a,b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9\log_{7}2

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 37: Nhận biết

    Biết a,b là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?

    Theo quy tắc Logarit ta có:

    \ln(ab) = \ln a + \ln b

  • Câu 38: Thông hiểu

    Cho số thực a
> 1. Mệnh đề nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
a > 1 \\
m > n \\
\end{matrix} ight.\  \Rightarrow a^{m} > a^{n}

    Với \left\{ \begin{matrix}
a > 1 \\
\frac{1}{3} < \frac{1}{2} \\
\end{matrix} ight.\  \Rightarrow a^{\frac{1}{3}} < a^{\frac{1}{2}}
\Rightarrow a^{\frac{1}{3}} < a^{\sqrt{2}}

    Vậy đáp án sai là: \sqrt{a} <
a^{\frac{1}{3}}

  • Câu 39: Thông hiểu

    Cho hàm số y =\log_{2}x. Tìm mệnh đề nào sai?

    Mệnh đề sai là: “Tập xác định của hàm số là D = \mathbb{R}

    Sửa lại như sau: “Tập xác định của hàm số là D = (0; + \infty).

  • Câu 40: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo