Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Rút gọn biểu thức

Với ta có:
Khi đó:
Nếu
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Tìm tập xác định của hàm số
?
Hàm số xác định khi
Vậy tập xác định của hàm số là
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Ta có:
. Giá trị
là:
Ta có:
Tính giá trị biểu thức
với
?
Ta có:
Với a và b là hai số thực dương tùy ý, giá trị
bằng:
Ta có:
Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.
Cho phương trình
. Giả sử
là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của
là:
Điều kiện
Ta có:
Cho phương trình
với
là tham số. Tìm tất cả các giá trị thực của
để phương trình đã cho có nghiệm thực?
Để phương trình có nghiệm thực thì
.
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Khẳng định nào sau đây sai?
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số đồng biến trên khoảng
.
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Nếu
thì giá trị
là:
Ta có:
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Xác định số nghiệm của phương trình
?
Điều kiện xác định:
Phương trình đã cho tương đương:
Kết hợp với điều kiện thấy rằng thỏa mãn điều kiện.
Vậy phương trình đã cho có 1 nghiệm.
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Tính giá trị của biểu thức
.
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Cho phương trình
. Xác định nghiệm phương trình đã cho?
Điều kiện xác định:
Ta có:
Vậy phương trình có nghiệm là .
Cho biểu thức
. Mệnh đề nào sau đây đúng?
Ta có:
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là
Để nhận được số tiền hơn 400 triệu thì
Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Tính giá trị biểu thức
với a là một số thực dương.
Ta có:
Cho hàm số
trên
trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

Ta có:
thì
Với thì
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Biết
là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Biết là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Ta có:
Vậy giá trị của biểu thức
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Số
có bao nhiêu chữ số?
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147278481.
Tính giá trị biểu thức
với điều kiện
?
Ta có:
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số là