Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Cho
. Khẳng định nào sau đây đúng?
Ta có: do đó nếu
Giá trị của biểu thức ![]()
Ta có:
Cho phương trình
. Chọn khẳng định đúng.
Điều kiện xác định
Lấy logarit cơ số 3 hai vế phương trình ta được:
Trường hợp 1: ta có:
. Phương trình vô nghiệm.
Trường hợp 2: ta có:
vô nghiệm
Vậy phương trình đã cho vô nghiệm.
Đồ thị hàm số sau là của hàm số nào?

Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại và
.
Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án thỏa mãn.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho số dương
và các số thực
. Đẳng thức nào sau đây sai?
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Phương trình
có bao nhiêu nghiệm?
Ta có:
Logarit cơ số 7 hai vế ta có:
Giải phương trình ta được
Giải phương trình
Vậy tập nghiệm của phương trình là:
Số thực
thỏa mãn
với
. Giá trị của
bằng bao nhiêu?
Ta có:
Cho hàm số
. Hỏi có bao nhiêu giá trị
thuộc tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Mà
Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.
Với
thì giá trị của
bằng bao nhiêu?
Ta có:
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?
Hàm số có
là hàm số nghịch biến trên tập xác định của nó.
Các hàm số ;
;
có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.
Cho phương trình phương trình
. Số nghiệm của phương trình là:
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có duy nhất 1 nghiệm x = 3.
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số đồng biến trên khoảng
.
Cho phương trình
. Số nghiệm thực của phương trình là:
Điều kiện
Ta có:
Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.
Vậy tập nghiệm của bất phương trình là:
Cho biết
, biểu thức
có giá trị là:
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Tính tổng các nghiệm nguyên thuộc đoạn
của bất phương trình:
![]()
Tính tổng các nghiệm nguyên thuộc đoạn của bất phương trình:
Cho các số thực dương
và biểu thức

Tính giá trị biểu thức
?
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Vậy phương trình có hai nghiệm.
Kết quả nào dưới đây đúng khi đơn giản biểu thức
?
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định:
Vậy tập xác định của hàm số đã cho là:
Biết
. Biểu diễn
theo
?
Ta có:
Số nghiệm nguyên của bất phương trình
là:
Ta có:
Tập nghiệm của bất phương trình là S = (3; 7].
Từ đó suy ra bất phương trình có 4 nghiệm nguyên.
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Cho
là hai số thực dương và
là hai số thực tùy ý. Đẳng thức nào sau đây sai?
Biểu thức sai là:
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Cho bất phương trình
. Xác định nghiệm của bất phương trình đã cho?
Ta có:
Vậy tập nghiệm của bất phương trình là
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho hàm số
có đồ thị như hình vẽ,
có đồ thị đối xứng với đồ thị hàm số
qua đường thẳng
. Xác định hàm số
.

Ta có:
Phép đối xứng trục qua đường thẳng biến mỗi điểm có tọa độ
thành điểm có tọa độ
.
Mỗi điểm trên đồ thị hàm số có dạng
, lấy đối xứng qua
ta được điểm có tọa độ
thuộc đồ thị hàm số
.
Do đó . Đặt
, khi đó
. Vậy
.
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.