Cho hàm số
và hai số
thỏa mãn
. Khi đó
bằng bao nhiêu?
Ta có:
Cho hàm số
và hai số
thỏa mãn
. Khi đó
bằng bao nhiêu?
Ta có:
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có:
Tìm giá trị của x để hàm số
có nghĩa.
Hàm số xác định với mọi
Vật tập xác định của hàm số là: .
Xác định tất cả các giá trị của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi
Vậy thỏa mãn yêu cầu bài toán.
Cho các số thực a và b thỏa mãn
. Tìm khẳng định đúng?
Xét tính đúng sai của từng đáp án như sau
Ta có (vì
) =>
=> Đáp án
đúng
Vì
=> Đáp án sai
Vì => Đáp án
Sai
Ta có: => Đáp án
sai.
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm x = 1.
Cho bất phương trình
. Xác định nghiệm của bất phương trình đã cho?
Ta có:
Vậy tập nghiệm của bất phương trình là
Giá trị của
với
bằng:
Ta có:
Tìm tập nghiệm của bất phương trình:
.
Điều kiện
Bất phương trình tương đương
Kết hợp với điều kiện ta được tập nghiệm bất phương trình là:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Cho
. Tính giá trị biểu thức
.
Ta có:
Đặt khi đó
Ta có:
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Biết
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
. Hỏi có bao nhiêu giá trị
thuộc tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Mà
Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.
Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền
tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu
Áp dụng công thức tính lãi kép:
Với là tổng giá trị đạt được sau
kì, x là số vốn gốc, r là lãi suất mỗi kì.
Số tiền lãi thu được sau n kì là:
Khi dó:
triệu đồng
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Vậy phương trình có hai nghiệm.
Tính giá trị biểu thức
với điều kiện
?
Ta có:
Với
thì
bằng:
Ta có:
Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Cho
là các số thực dương lớn hơn 1 thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Xác định tập nghiệm của bất phương trình
?
Điều kiện
Ta có:
Vậy tập nghiệm bất phương trình là
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Cho số thực a dương tùy ý. Đặt
. Giá trị của x tương ứng là:
Ta có:
Vậy giá trị của x tương ứng là: .
Rút gọn biểu thức

Với ta có:
Khi đó:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Cho
là số nguyên dương và một số
bất kì với
. Biết
![]()
Khi đó giá trị của
là bao nhiêu?
Ta có:
Vậy
Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Thực hiện thu gọn biểu thức
với
ta được kết quả là:
Ta có:
Ta cũng có:
Khi đó:
Rút gọn biểu thức
ta được:
Ta có:
Với a là số thực dương tùy ý,
bằng:
Ta có:
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi