Giá trị của biểu thức
bằng:
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số
và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số
là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số
Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số Sai||Đúng
Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.
Hàm số đồng biến trên khoảng
đúng vì
.
Tập xác định của hàm số là
đúng.
Xét hàm số có điều kiện xác định
Vì
Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số .
Với a và b là hai số thực dương tùy ý, giá trị
bằng:
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tìm tập nghiệm
của phương trình
?
Điều kiện xác định:
Vậy phương trình có tập nghiệm .
Biết rằng
. Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
(vì
)
Trong các hàm số sau hàm số nào có cùng tập xác định với hàm số
?
Ta có tập xác định hàm số là
.
Hàm số cũng có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Tính giá trị biểu thức
với
.
Ta có:
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
để hàm số
có tập xác định
?
Hàm số xác định trên
khi và chỉ khi
Do
Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Chọn khẳng định sai trong các khẳng định sau?
Hàm số đồng biến trên khoảng
Ta có:
. Biểu thức
có giá trị là:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Đồ thị hàm số
đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Đồ thị hàm số đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Xác định nghiệm của phương trình ![]()
Ta có:
Vậy phương trình có nghiệm .
Cho phương trình
. Tổng bình phương các nghiệm của phương trình đã cho bằng 10
Cho phương trình . Tổng bình phương các nghiệm của phương trình đã cho bằng 10
Ta có:
Vậy giá trị cần tìm bằng 10
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Trong các biểu thức sau, biểu thức nào không có nghĩa?
Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức không có nghĩa.
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm x = 1.
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Thực hiện thu gọn biểu thức
với
ta được kết quả là:
Ta có:
Ta cũng có:
Khi đó:
Giả sử phương trình
có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Giả sử phương trình có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Điều kiện xác định
Phương trình đã cho tương đương:
Cho
là hai số thực dương bất kì và
. Kết luận nào sau đây đúng?
Theo tính chất ta suy ra kết luận đúng là:
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi ![]()
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
.
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Tính giá trị của
với mọi giá trị
?
Ta có:
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Biết
là các số thực dương khác 1 thỏa mãn
. Tính giá trị
?
Ta có:
Khi đó:
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy bất phương trình đã cho có tập nghiệm là: .
Cho
thỏa mãn
. Chọn khẳng định đúng?
Ta có:
Lôgarit cơ số 10 cho hai vế ta được:
Tìm tập nghiệm của bất phương trình
.
Điều kiện:
Bất phương trình đã cho tương đương với
Kết hợp điều kiện, suy ra bất phương trình có nghiệm
Vậy tập nghiệm của bất phương trình là:
Biểu thức
bằng với biểu thức nào dưới đây?
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Biết
là số thực dương khác 1. Viết và thu gọn biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Tính giá trị biểu thức
.
Ta có:
Tính giá trị biểu thức:
biết
?
Ta có: