Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định tập xác định D của hàm số y = \sqrt{- 2x^{2} + 5x - 2} +
\ln\sqrt[4]{\frac{1}{x^{2} - 1}}.

    Hàm số đã cho xác định khi và chỉ khi:

    \left\{ \begin{matrix}- 2x^{2} + 5x - 2 \geq 0 \\\dfrac{1}{x^{2} - 1} > 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  \dfrac{1}{2} \leqslant x \leqslant 2 \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {x <  - 1} \\ 
  {x > 1} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow 1 < x \leqslant 2

    Vậy tập xác định của hàm số là: D =
(1;2brack

  • Câu 2: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số f(x) = \left( 1 + \ln might)^{x} đồng biến trên tập số thực.

    Ta có hàm số f(x) = \left( 1 + \ln m
ight)^{x} đồng biến trên \mathbb{R}

    Khi và chỉ khi 1 + \ln m > 1\Leftrightarrow m > 1

  • Câu 4: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 5: Vận dụng

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5

    \Leftrightarrow {\log _b}5 = 3{\log _a}5

    \Leftrightarrow {\log _b}5 = \frac{1}{3}{\log _5}a \Leftrightarrow a = {b^3}

  • Câu 6: Thông hiểu

    Tìm giá trị của x biết \log_{3}\left( x^{2} - 1 ight) + \log_{9}\left(x^{2} - 1 ight) = \frac{3}{2}.

    Điều kiện x^{2} - 1 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
x > 1 \\
\end{matrix} ight.

    Ta có:

    \log_{3}\left( x^{2} - 1 ight) +\log_{9}\left( x^{2} - 1 ight) = \frac{3}{2}

    \Leftrightarrow \log_{3}\left( x^{2} - 1ight) + \frac{1}{2}\log_{3}\left( x^{2} - 1 ight) =\frac{3}{2}

    \Leftrightarrow \log_{3}\left( x^{2} - 1ight) = 1

    \Leftrightarrow x^{2} - 1 =
3

    \Leftrightarrow x^{2} = 4
\Leftrightarrow x = \pm 2

  • Câu 7: Thông hiểu

    Biết rằng 4^{x}+ 4^{- x} = 7. Khi đó biểu thức G =\frac{5 - 2^{x} - 2^{- x}}{3 + 2^{x + 1} + 2^{1 - x}} =\frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 3(tm) \\2^{x} + 2^{- x} = - 3(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =3

    G = \frac{5 - \left( 2^{x} + 2^{- x}ight)}{3 + 2\left( 2^{x} + 2^{- x} ight)} = \frac{5 - 3}{3 + 2.3} =\frac{2}{9}

    \Rightarrow p = 2;q = 9 \Rightarrow p+q = 11

  • Câu 8: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\frac{1}{2}}\left( x^{2} - 3x + 2ight)

    Điều kiện xác định {x^2} - 3x + 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x < 1} \\ 
  {x > 2} 
\end{array}} ight.

    => Tập xác định của hàm số là: ( -
\infty;1) \cup (2; + \infty)

  • Câu 10: Vận dụng

    Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.

    Ta có: T = \frac{M}{r}\left\lbrack (1 +r)^{n} - 1 ightbrack(1 + r)

    Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:

    \frac{4}{0,5\%}\left\lbrack (1 +0,5\%)^{n} - 1 ightbrack(1 + 0,5\%) > 100

    \Rightarrow n > 23,5

    Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.

  • Câu 11: Nhận biết

    Giá trị của \log_{a}\frac{1}{\sqrt[3]{a}} với a > 0;a eq 1 bằng:

    Ta có: \log_{a}\frac{1}{\sqrt[3]{a}} =\log_{a}a^{\frac{- 3}{2}} = - \frac{3}{2}

  • Câu 12: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 13: Nhận biết

    Với số thực dương a bất kì ta có \sqrt{\frac{1}{a^{3}}} tương ứng với:

    Với a > 0 ta có: \sqrt{\frac{1}{a^{3}}} = \left( \frac{1}{a^{3}}
ight)^{\frac{1}{2}} = \left( a^{- 3} ight)^{\frac{1}{2}} = a^{-
\frac{3}{2}}

  • Câu 14: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 15: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 16: Nhận biết

    Cho đồ thị của hàm số y = f(x)

    Hàm số tương ứng với đồ thị trên là:

    Đồ thị hàm số đi qua điểm A(2; 1) nên hàm số tương ứng với đồ thị là: y = \log_{3}(x + 1)

  • Câu 17: Nhận biết

    Xác định nghiệm của bất phương trình (0,7)^{x} < 3?

    Ta có:

    (0,7)^{x} < 3 \Leftrightarrow x >
log_{0,7}3 hay x \in \left(\log_{0,7}3; + \infty ight)

  • Câu 18: Thông hiểu

    Xác định nghiệm của phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}.

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} +
\frac{x}{3} - \frac{1}{2x} = \frac{7}{3}

    \Leftrightarrow \left\lbrack\begin{matrix}x = 3(tm) \\x = - \dfrac{1}{5}(ktm) \\\end{matrix} ight.

    Vậy phương trình có nghiệm x =
3.

  • Câu 19: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 20: Thông hiểu

    Cho biết m =\log_{25}7;n =\log_{2}5 . Tính giá trị biểu thức \log_{5}\frac{49}{8} theo các giá trị m,n?

    Ta có:

    m = \log_{25}7 = \log_{5^{2}}7 =\frac{1}{2}\log_{5}7

    \Rightarrow \log_{5}7 = 2m

    n = \log_{2}5 \Rightarrow \frac{1}{n} =\log_{5}2

    Ta có:

    \log_{5}\frac{49}{8} = \log_{5}49 -\log_{5}8

    = \log_{5}7^{2} - \log_{5}2^{3} =2\log_{5}7 - 3\log_{5}2

    = 2.2m - 3.\frac{1}{n} = \frac{4mn -
3}{n}

  • Câu 21: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 23: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x - \log_{2}3 = 1 bằng:

    Điều kiện x eq 0

    Ta có:

    \log_{4}x - \log_{2}3 = 1 \Leftrightarrow\frac{1}{2}\log_{2}x^{2} = 1 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} = 2\log_{2}6\Leftrightarrow x^{2} = 6^{2}

    Khi đó tổng bình phương các nghiệm của phương trình bằng 0

  • Câu 24: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 25: Thông hiểu

    Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực \mathbb{R}?

    Hàm số y = \left( \frac{2}{e}
ight)^{x}là hàm số mũ có cơ số bằng \frac{2}{e} \in (0;1) nghịch biến trên \mathbb{R}.

    Hàm số y = \left( \frac{\pi}{3}
ight)^{x}là hàm số mũ có cơ số \frac{\pi}{3} > 1 nên đồng biến trên \mathbb{R}.

    Hàm số y = \log_{\frac{1}{2}}x chỉ xác định trên (0; +
\infty).

    Hàm số y = log_{\frac{\pi}{4}}\left(
2x^{2} + 1 ight)y' =\dfrac{4x}{\left( 2x^{2} + 1 ight)\ln\dfrac{\pi}{4}} nên nghịch biến trên (0; + \infty).

  • Câu 26: Vận dụng

    Tìm cặp số (a;b). Biết \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018} =
a^{b}.

    Ta có:

    \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018}

    = \frac{1}{2019!}\left( \frac{1}{2}
ight)^{1}.\left( \frac{2}{3} ight)^{2}.\left( \frac{3}{4}
ight)^{3}...\left( \frac{2018}{2019} ight)^{2018}

    =
\frac{1}{2019!}.\frac{1.2.3...2018}{2019^{2018}}

    = \frac{1}{2019^{2019}} = 2019^{-
2019}

  • Câu 27: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 28: Nhận biết

    Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: \sqrt{a^{3}.\sqrt[4]{a}} = ...

    Ta có:

    \sqrt{a^{3}.\sqrt[4]{a}} =
\sqrt{a^{3}.a^{\frac{1}{4}}} = \sqrt{a^{3 + \frac{1}{4}}} =
\sqrt{a^{\frac{13}{4}}} = a^{\frac{13}{8}}.

  • Câu 29: Nhận biết

    Tính giá trị của biểu thức A = \log_{3}2.\log_{4}3...\log_{16}15.

    Ta có:

    A =\log_{3}2.\log_{4}3...\log_{16}15

    A =\log_{16}15.\log_{5}14....\log_{3}2.\log_{4}3 = \log_{16}2 =\frac{1}{4}

  • Câu 30: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Cho các số thực dương a, b với a eq 1;\log_{a}b > 0. Khẳng định nào sau đây đúng?

    Trường hợp 1:

    0 < a < 1 \Rightarrow
log_{a}b > 0 = log_{a}1 \Rightarrow 0 < b < 1

    Trường hợp 2:

    a > 1 \Rightarrow
log_{a}b > 0 = log_{a}1 \Rightarrow b > 1

    Vậy \left\lbrack \begin{matrix}
0 < a,b < 1 \\
1 < a;b \\
\end{matrix} ight. là khẳng định đúng.

  • Câu 32: Thông hiểu

    Với các số a,b
> 0 thỏa mãn a^{2} + b^{2} =
6ab, biểu thức \log_{2}(a +b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Leftrightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow\log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a +\log_{2}b ight)

  • Câu 33: Nhận biết

    Tập xác định của hàm số y = \log(2x - 3)^{2} là:

    Hàm số y = \log(2x - 3)^{2} xác định nếu (2x - 3)^{2} > 0 \Leftrightarrow
x eq \frac{3}{2}

    Vậy tập xác định D\mathbb{=
R}\backslash\left\{ \frac{3}{2} ight\}.

  • Câu 34: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 35: Nhận biết

    Tìm nghiệm của phương trình \left( \sqrt{3} ight)^{3t - 6} = 1?

    Ta có:

    \left( \sqrt{3} ight)^{3t - 6} = 1
\Leftrightarrow \left( \sqrt{3} ight)^{3t - 6} = \left( \sqrt{3}
ight)^{0}

    \Leftrightarrow 3t - 6 = 0
\Leftrightarrow t = 2(tm)

    Vậy phương trình có nghiệm t = 2.

  • Câu 36: Thông hiểu

    Phương trình \log_{2}(x - 1) = \log_{2}(2x + 1) có tập nghiệm là:

    Điều kiện \left\{ \begin{matrix}x - 1 > 0 \\2x + 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 1 \\x > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow x > 1

    Ta có:

    \log_{2}(x - 1) = \log_{2}(2x +1)

    \Leftrightarrow x - 1 = 2x + 1
\Leftrightarrow x = - 2(ktm)

    Vậy phương trình vô nghiệm hay S =
\varnothing.

  • Câu 37: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

  • Câu 38: Nhận biết

    Giải phương trình 5^{x} = 10 thu được nghiệm:

    Ta có:

    5^{x} = 10 \Leftrightarrow x =\log_{5}10(tm)

    Vậy phương trình có nghiệm x =\log_{5}10.

  • Câu 39: Nhận biết

    Biết \forall n
\in \mathbb{R}^{+}. Kết luận nào dưới đây đúng?

    Ta có: \log_{4}n^{4} = 4\log_{4}|n| =4\log_{4}n

  • Câu 40: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo