Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Cho hai số thực a và b với
. Chọn khẳng định sai?
Ta có: sai vì chưa biết b > 0 hay b < 0.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Với các số thực dương x, y ta có:
theo thứ tự lập thành một cấp số nhân và các số
theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:
Từ theo thứ tự lập thành một cấp số nhân nên công bội
Mặt khác theo thứ tự lập thành một cấp số cộng nên
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Quan sát đồ thị hàm số sau:

Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại
và ta thấy
Vậy
Cho số thực dương
và số nguyên dương
tùy ý. Mệnh đề nào sau đây đúng?
Ta có: .
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Giá trị của
với
bằng:
Ta có:
Giải phương trình
ta được nghiệm phương trình là:
Ta có:
Vậy phương trình đã cho có nghiệm là .
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Tính
.
Ta có:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Chọn phát biểu sai?
Ta có: là phát biểu sai do
Biết
,
bằng:
Ta có:
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy là khẳng định đúng.
Giả sử tập nghiệm của bất phương trình
có dạng
với
. Tính tổng
.
Ta có:
Vậy S = 2
Thực hiện giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Giả sử phương trình
có nghiệm là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm của phương trình là
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là
Phương trình
có bao nhiêu nghiệm nguyên?
Điều kiện
Ta có:
(vì nghiệm cần xét là nghiệm nguyên)
Vậy phương trình không có nghiệm nguyên.
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Đồ thị hàm số
đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Đồ thị hàm số đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Với các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có: nên
sai.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho
thỏa mãn
. Xác định tỉ số
?
Điều kiện
Với
Biết
là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?
Theo quy tắc Logarit ta có:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Cho phương trình
. Kết quả nào dưới đây là nghiệm phương trình đã cho?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng
khi và chỉ khi hàm số
đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Thực hiện thu gọn biểu thức
với
ta được kết quả là:
Ta có:
Ta cũng có:
Khi đó:
Rút gọn biểu thức
. (Giả sử tất cả các điều kiện đều xác định).
Ta có: