Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giải phương trình 4^{x^{2} - 2} = 16.

    4^{x^{2} - 2} = 16

    \Leftrightarrow x^{2} - 2 =\log_{4}16

    \Leftrightarrow x^{2} = 4

    \Leftrightarrow x = \pm 2

    Vậy phương trình có nghiệm x = \pm
2.

  • Câu 2: Nhận biết

    Tính giá trị của biểu thức B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150.

    Ta có:

    B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150

    B = \log_{2}12^{2}.5^{3} - \log_{2}15.150= \log_{2}\frac{18000}{2250} = \log_{2}8 = 3

  • Câu 3: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 4: Thông hiểu

    Cho tam giác vuông ABC có a,b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền với điều kiện c - b eq 1;c + b eq 1. Chọn kết luận đúng.

    Do tam giác ABC vuông nên ta có:

    c^{2} = a^{2} + b^{2}

    \Rightarrow a^{2} = c^{2} -b^{2}

    \Rightarrow a^{2} = (c - b)(c +b)

    \Rightarrow log_{a}a^{2} =log_{a}\left\lbrack (c - b)(c + b) ightbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = \frac{1}{log_{c - b}a} +\frac{1}{log_{c + b}a}

    \Rightarrow \log_{c + b}a + \log_{c - b}a= 2\log_{c + b}a.\log_{c - b}a

  • Câu 5: Nhận biết

    Tìm tập nghiệm của phương trình 3^{a^{2} - 3a + 2} = 1?

    Ta có:

    3^{a^{2} - 3a + 2} = 1 \Leftrightarrow
3^{a^{2} - 3a + 2} = 3^{0}

    \Leftrightarrow a^{2} - 3a + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 1 \\
a = 2 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm của phương trình là S =
\left\{ 1;2 ight\}.

  • Câu 6: Thông hiểu

    Phương trình 3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x - 5)^{3} =3 có bao nhiêu nghiệm nguyên?

    Điều kiện x > 5

    Ta có:

    3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x -5)^{3} = 3

    \Leftrightarrow 3\log_{3}(x - 1) +3\log_{3}(x - 5) = 3

    \Leftrightarrow \log_{3}(x - 1) +\log_{3}(x - 5) = 1

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = 1

    \Leftrightarrow (x - 1).(x - 5) =
3^{1}

    \Leftrightarrow x^{2} - 6x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 + \sqrt{7} \\
x = 3 - \sqrt{7} \\
\end{matrix} ight.\ (ktm) (vì nghiệm cần xét là nghiệm nguyên)

    Vậy phương trình không có nghiệm nguyên.

  • Câu 7: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 8: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(x - 1)^{2}?

    Điều kiện xác định của hàm số y = \ln(x -
1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 1 ight\}.

  • Câu 9: Thông hiểu

    Cho a,b >
0;log_{3}a = p;log_{3}b = q. Biểu thức \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) được biểu diễn như thế nào theo các ẩn số?

    Ta có:

    \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) = \log_{3}3^{r} - \log_{3}a^{m} - \log_{3}b^{d}

    = r\log_{3}3 - m\log_{3}a -d\log_{3}b

    = r - m\log_{3}a - d\log_{3}b

    = r - mp - dq

  • Câu 10: Nhận biết

    Biết x > 0;x
eq 1. Chọn khẳng định đúng?

    Ta có: \log_{x}\sqrt[5]{x} =\log_{x}(x)^{\frac{1}{5}} = \frac{1}{5}\log_{x}x =\frac{1}{5}

  • Câu 11: Thông hiểu

    Bác X gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 7%/ 1 năm. Biết rằng bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo (hoặc gọi tắt là hình thức lãi kép). Chọn công thức ứng với số tiền cả gốc và lãi bác X nhận được sau 10 năm?

    Áp dụng công thức lại kép thì sau 10 năm số tiền bác X nhận được là

    T = 10^{8}.(1 + 7\%)^{10} = 10^{8}.(1 +
0,07)^{10}

  • Câu 12: Nhận biết

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

  • Câu 13: Nhận biết

    Nếu m^{2x} =
3 thì giá trị 3m^{6x} là:

    Ta có: 3m^{6x} = 3.\left( m^{2x}
ight)^{3} = 3.3^{3} = 81

  • Câu 14: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 15: Vận dụng

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Rút gọn biểu thức P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >0) thu được kết quả a^{\frac{m}{n}}, trong đó m,n \in \mathbb{N}^{*} và phân số \frac{m}{n} tối giản. Chọn khẳng định đúng?

    Ta có:

    P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{- \frac{2}{7}}} =\frac{a^{4}}{a^{4}.a^{- \frac{2}{7}}} = a^{\frac{2}{7}}

    \Rightarrow \left\{ \begin{matrix}m = 2 \\n = 7 \\\end{matrix} ight.\  \Rightarrow 2m^{2} + n = 15.

  • Câu 17: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 18: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 19: Nhận biết

    Với 0 < a eq
1,x > 0, kết luận nào sau đây sai?

    Với 0 < a eq 1,x > 0 ta có:

    \log_{a}a = 1

    \log_{a}a^{x} = x

    \log_{a}1 = 0

    Là các kết luận đúng

    Ta lại có: a^{\log_{a}x} = x \Rightarrow x^{\log_{a}x} = x sai.

  • Câu 20: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 21: Vận dụng

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Đáp án là:

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Giả sử bà A đã gửi ngân hàng trong x năm

    Số tiền bà nhận được là 250 triệu đồng

    Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là T = 100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow 250.10^{6} =
100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow n = \log_{1,1}2,5\Leftrightarrow n \approx 9,61

    Vậy bà A đã gửi tiết kiệm trong 10 năm.

  • Câu 22: Nhận biết

    Với một số thực dương a tùy ý, khi đó \sqrt{a^{2}.\sqrt[5]{a}} bằng:

    Với a > 0 ta có: \sqrt{a^{2}.\sqrt[5]{a}} =
\sqrt{a^{2}.a^{\frac{1}{5}}} = \sqrt{a^{2 + \frac{1}{5}}} =
\sqrt{a^{\frac{11}{5}}} = a^{\frac{11}{10}}

  • Câu 23: Nhận biết

    Biết \forall n
\in \mathbb{R}^{+}. Kết luận nào dưới đây đúng?

    Ta có: \log_{4}n^{4} = 4\log_{4}|n| =4\log_{4}n

  • Câu 24: Nhận biết

    Cho phương trình \log_{2}(x - 1) = 3. Kết quả nào dưới đây là nghiệm phương trình đã cho?

    Điều kiện xác định: x > 1

    \log_{2}(x - 1) = 3 \Leftrightarrow x - 1= 2^{3}

    \Leftrightarrow x - 1 = 8
\Leftrightarrow x = 9(tm)

    Vậy phương trình có nghiệm x =
9.

  • Câu 25: Nhận biết

    Tìm tập xác định của hàm số y = \ln(1 - x)?

    Điều kiện xác định của hàm số y = \ln(1 -
x) là:

    1 - x > 0 \Rightarrow x <
1

    Vậy tập xác định của hàm số là D = ( -
\infty;1)

  • Câu 26: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 27: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 28: Thông hiểu

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 29: Thông hiểu

    Xác định tất cả các giá trị của tham số m để phương trình 3^{x^{2} + 1} = m - 1 có nghiệm?

    Ta có:

    3^{x^{2}} \geq 3^{0} \Leftrightarrow
3^{x^{2} + 1} \geq 3^{1}

    Phương trình 3^{x^{2} + 1} = m -
1 có nghiệm khi và chỉ khi m - 1
\geq 3 \Leftrightarrow m \geq 4(tm)

    Vậy m \in \lbrack 4; + \infty) thỏa mãn yêu cầu bài toán.

  • Câu 30: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 31: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 1)?

    Điều kiện xác định của hàm số y = \log(x
- 1) là:

    x - 1 > 0 \Rightarrow x >
1

    Vậy tập xác định của hàm số là D = (1; +
\infty)

  • Câu 32: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 34: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 36: Thông hiểu

    Tìm tập nghiệm S của phương trình \ln\left( 2a^{2} - a + 1 ight) = 0?

    Điều kiện xác định: 2a^{2} - a + 1 >
0

    \ln\left( 2a^{2} - a + 1 ight) = 0
\Leftrightarrow 2a^{2} - a + 1 = e^{0}

    \Leftrightarrow 2a^{2} - a + 1 = 1
\Leftrightarrow a.(2a - 1) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}2a - 1 = 0 \\a = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{1}{2} \\a = 0 \\\end{matrix} ight.\ (tm)

    Vậy phương trình có tập nghiệm S =
\left\{ 0;\frac{1}{2} ight\}.

  • Câu 37: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 38: Thông hiểu

    Cho số thực dương a tùy ý. Viết biểu thức M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} dưới dạng a^{\frac{x}{y}} trong đó \frac{x}{y} là phân số tối giản, x,y \in \mathbb{N}^{*}. Tính giá trị biểu thức H = x^{2} +
y^{2}?

    Ta có:

    M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} =
a\sqrt{a^{3}\sqrt{a.a^{\frac{1}{2}}}} =
a\sqrt{a^{3}\sqrt{a^{\frac{3}{2}}}}

    = a\sqrt{a^{3}.a^{\frac{3}{4}}} =
a.a^{\frac{15}{8}} = a^{\frac{23}{8}}

    \Rightarrow \frac{x}{y} = \frac{23}{8}
\Rightarrow H = x^{2} + y^{2} = 593

  • Câu 39: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

  • Câu 40: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo