Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Tìm nghiệm nguyên nhỏ nhất của bất phương trình
.
Điều kiện:
Bất phương trình tương đương
Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.
Giả sử
thì giá trị của
biểu diễn theo
là:
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Giá trị của biểu thức
bằng:
Ta có:
Giả sử
là tổng các nghiệm của phương trình
. Giá trị của
là:
Điều kiện xác định
Phương trình đã cho tương đương:
Cho đồ thị hàm số
như hình vẽ:

Hàm số
có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là
.
Cho đồ thị hàm số:

Xác định hàm số tương ứng?
Đồ thị hàm số đi lên và qua điểm có tọa độ nên hàm số thỏa mãn là
Tìm nghiệm phương trình
?
Ta có:
Vậy phương trình có nghiệm .
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Cho phương trình với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Phương trình đã cho tương đương
Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm thỏa mãn
Mặt khác
Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Cho
là hai số thực dương thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Tính giá trị biểu thức
với
.
Ta có:
Tính giá trị biểu thức
. Biết
.
Giả sử khi đó:
Tính tổng các nghiệm nguyên thuộc đoạn
của bất phương trình:
![]()
Tính tổng các nghiệm nguyên thuộc đoạn của bất phương trình:
Giá trị của biểu thức
là:
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho hai hàm số
với
là các số thực dương khác có đồ thị hàm số lần lượt là
như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây.
Từ hình vẽ ta thấy đồ thị tăng suy ra hàm số
có cơ số
.
Đồ thị giảm suy ra hàm số
có cơ số
Cho
là hai số thực dương bất kì và
. Kết luận nào sau đây đúng?
Theo tính chất ta suy ra kết luận đúng là:
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Bất phương trình
tương đương với khẳng định nào dưới đây?
Do nên ta phải đổi chiều bất phương trình, đồng thời chú ý đến điều kiện xác định.
Vậy đáp án đúng là:
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Thu gọn biểu thức
với
ta được:
Ta có:
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Giả sử phương trình
có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Giả sử phương trình có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Điều kiện xác định
Phương trình đã cho tương đương:
Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?
Số tiền còn lại trong tài khoản sau tháng thứ 1 là: (triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 2 là:
(triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 3 là:
(triệu đồng)
Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:
(triệu đồng).
Tổng các nghiệm của phương trình
bằng:
Điều kiện
Ta có:
Khi đó tổng bình phương các nghiệm của phương trình bằng 0
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số đồng biến trên khoảng
.
Tìm giá trị
biết
.
Ta có:
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Cho bất phương trình
. Xác định nghiệm của bất phương trình đã cho?
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Nếu
thì giá trị
là:
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Biết
. Tính
?
Ta có:
Khẳng định nào sau đây đúng?
Ta có:
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có: