Biết
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Ta có:
Biết
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số có tập xác định
Cơ số do đó hàm số đồng biến trên
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Xác định tập xác định D của hàm số
.
Hàm số đã cho xác định khi và chỉ khi:
Vậy tập xác định của hàm số là:
Với
thì
bằng:
Ta có:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Cho số thực dương
. Tính
.
Ta có:
Cho bất phương trình
có tập nghiệm
. Giá trị của biểu thức
bằng:
Ta có:
Đặt khi đó bất phương trình trở thành:
Từ đó suy ra
Tập nghiệm của bất phương trình là:
Vậy
Giá trị của
là:
Ta có:
Tính giá trị của biểu thức
biết
thỏa mãn
?
Ta có:
Thay vào biểu thức Q ta được:
Giải bất phương trình
được tập nghiệm là:
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Cho phương trình với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Phương trình đã cho tương đương
Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm thỏa mãn
Mặt khác
Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Cho
là hai số thực dương thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có:
Hàm số nào sau đây được gọi là hàm số lũy thừa?
Hàm số là hàm số lũy thừa.
Hàm số và hàm số
là hàm số mũ.
Hàm số là hàm số lôgarit.
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Giá trị của
với
bằng:
Ta có:
Rút gọn biểu thức
ta được:
Ta có:
Tính giá trị của biểu thức
.
Ta có:
Trong các biểu thức sau, biểu thức nào không có nghĩa?
Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức không có nghĩa.
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Với các số thực dương x, y ta có:
theo thứ tự lập thành một cấp số nhân và các số
theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:
Từ theo thứ tự lập thành một cấp số nhân nên công bội
Mặt khác theo thứ tự lập thành một cấp số cộng nên
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Thu gọn biểu thức
với
ta được:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Xác định hàm số đồng biến trên
?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.
Bất phương trình
tương đương với khẳng định nào dưới đây?
Do nên ta phải đổi chiều bất phương trình, đồng thời chú ý đến điều kiện xác định.
Vậy đáp án đúng là:
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số:
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Cho
với
. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Suy ra
Vì nên chỉ có 1 bộ số
thỏa mãn.
Vậy
Tính giá trị biểu thức:
biết
?
Ta có:
Tập nghiệm của phương trình
là:
Điều kiện
Ta có:
Vậy phương trình có tập nghiệm .
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Đồ thị hàm số
đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Đồ thị hàm số đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?