Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \ln\left( x^{2} - 2mx + 4ight) xác định với mọi x\in\mathbb{ R}.

    Hàm số xác định với mọi x thuộc tập số thực:

    \Leftrightarrow x^{2} - 2mx + 4 >
0;\forall x\mathbb{\in R}

    \Leftrightarrow m^{2} - 4 < 0
\Leftrightarrow m \in ( - 2;2)

  • Câu 3: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 4: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 6: Nhận biết

    Với a là số thực dương tùy ý, a^{4}.a^{\frac{1}{2}} bằng:

    Ta có:

    a^{4}.a^{\frac{1}{2}} = a^{4 +
\frac{1}{2}} = a^{\frac{9}{2}}

  • Câu 7: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Đặt \log_{5}2 =a. Khi đó \log_{25}800 biểu diễn là:

    Ta có:

    \log_{25}800 =\dfrac{\log_{5}800}{\log_{5}25} =\dfrac{\log_{5}2^{5}.5^{2}}{\log_{5}5^{2}}

    = \frac{5\log_{5}2 + 2}{2} = \frac{5a +2}{2}

  • Câu 9: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty).

  • Câu 10: Nhận biết

    Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?

    Hàm số y = a^{x} nghịch biến trên \mathbb{R} khi 0 < a < 1.

  • Câu 11: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{x - 3}{x + 2}?

    Điều kiện xác định:

    \frac{x - 3}{x + 2} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 3 \\
x < - 2 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số đã cho là: D
= ( - \infty; - 2) \cup (3; + \infty)

  • Câu 12: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 13: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 14: Thông hiểu

    Cho hai số thực dương x;y. Viết biểu thức x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} về dạng x^{p} và biểu thức y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}} về dạng y^{q}. Khi đó p - q có giá trị là bao nhiêu?

    Ta có:

    x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} =
x^{\frac{4}{5}}\sqrt[6]{x^{5}x^{\frac{1}{2}}} =
x^{\frac{4}{5}}\sqrt[6]{x^{\frac{11}{2}}} =
x^{\frac{4}{5}}.x^{\frac{11}{12}} = x^{\frac{103}{60}}

    \Rightarrow p =
\frac{103}{60}

    y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}}
= y^{\frac{4}{5}}:\sqrt[6]{y^{\frac{11}{2}}} = y^{\frac{-
7}{60}}

    \Rightarrow q = \frac{-
7}{60}

    \Rightarrow p - q =
\frac{11}{6}

  • Câu 15: Thông hiểu

    Giả sử \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
2^{\frac{a}{b}}, với \frac{a}{b} là phân số tối giản. Gọi K = a^{2} + b^{2}. Kết luận nào dưới đây đúng?

    Ta có:

    \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
\sqrt[5]{8\sqrt{2.2^{\frac{1}{3}}}} = \sqrt[5]{8\sqrt{2^{\frac{4}{3}}}}
= \sqrt[5]{2^{3}.2^{\frac{2}{3}}}

    = \sqrt[5]{2^{\frac{11}{3}}} =
2^{\frac{11}{15}} \Rightarrow \frac{a}{b} = \frac{11}{15} \Rightarrow
\left\{ \begin{matrix}
a = 11 \\
b = 15 \\
\end{matrix} ight.

    \Rightarrow K = 11^{2} + 15^{2} = 346
\in (340;350)

  • Câu 16: Thông hiểu

    Ta có: \sqrt[3]{x^{5}\sqrt{x^{2}\sqrt{x}}} =
x^{\alpha}. Giá trị \alpha là:

    Ta có:

    \sqrt[3]{x\sqrt[5]{x^{2}\sqrt{x}}} =
\sqrt[3]{x\sqrt[5]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[3]{x\sqrt[5]{x^{\frac{5}{2}}}} = \sqrt[3]{x^{\frac{3}{2}}} =
x^{\frac{1}{2}}

    \Rightarrow \alpha =
\frac{1}{2}

  • Câu 17: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Phương trình 7^{x + 1} = \left( \frac{1}{7} ight)^{x^{2} - 2x
- 3} có hai nghiệm x_{1};x_{2}. Khi đó giá trị biểu thức T = 2{x_{1}}^{2} + 3{x_{2}}^{2} bằng bao nhiêu? Biết rằng x_{1} <
x_{2}.

    Ta có:

    7^{x + 1} = \left( \frac{1}{7}
ight)^{x^{2} - 2x - 3} \Leftrightarrow 7^{x + 1} = 7^{- \left( x^{2} -
2x - 3 ight)}

    \Leftrightarrow x + 1 = - \left( x^{2} -
2x - 3 ight) \Leftrightarrow x^{2} - x - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = - 1 \\
x_{2} = 2 \\
\end{matrix} ight.\ (tm) \Rightarrow T = 2{x_{1}}^{2} + 3{x_{2}}^{2} =
16

  • Câu 19: Thông hiểu

    Cho m,n là các số thực dương lớn hơn 1 thỏa mãn m^{2} + 9n^{2} = 6mn. Tính giá trị biểu thức T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)}?

    Ta có: m^{2} + 9n^{2} = 6mn

    \Leftrightarrow (m - 3n)^{2} = 0
\Leftrightarrow m = 3n

    \Rightarrow T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)} = \dfrac{\log_{12}36n^{2}}{\log_{12}36n^{2}}= 1

  • Câu 20: Nhận biết

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 21: Vận dụng

    Cho a,b,c là các số thực dương khác 1. Các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x có đồ thị như hình vẽ bên.

    Tìm khẳng định đúng.

    Kí hiệu hình vẽ như sau:

    Kẻ đường thẳng y = 1 cắt đồ thị của các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x lần lượt tại các điểm có hoành độ là a;b;c.

    Từ đồ thị ta có a > c >
b.

  • Câu 22: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 23: Nhận biết

    Rút gọn biểu thức: D = x^{\frac{2}{5}}.\sqrt[6]{x} với x > 0 ta được kết quả là:

    Ta có: D = x^{\frac{2}{5}}.\sqrt[6]{x} =
x^{\frac{2}{5}}.x^{\frac{1}{6}} = x^{\frac{2}{5} + \frac{1}{6}} =
x^{\frac{17}{30}}.

  • Câu 24: Nhận biết

    Hàm số nào sau đây không phải là hàm số mũ?

    Hàm số y = x^{\pi} là hàm số lũy thừa, không phải hàm số mũ.

  • Câu 25: Nhận biết

    Tìm nghiệm của phương trình \left( \sqrt{3} ight)^{3t - 6} = 1?

    Ta có:

    \left( \sqrt{3} ight)^{3t - 6} = 1
\Leftrightarrow \left( \sqrt{3} ight)^{3t - 6} = \left( \sqrt{3}
ight)^{0}

    \Leftrightarrow 3t - 6 = 0
\Leftrightarrow t = 2(tm)

    Vậy phương trình có nghiệm t = 2.

  • Câu 26: Thông hiểu

    Cho \left(
\sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y}, khi đó:

    Ta có:\left\{ \begin{matrix}
0 < \sqrt{2} - 1 < 1 \\
\left( \sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y} \\
\end{matrix} ight.\  \Rightarrow x > y

  • Câu 27: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 28: Thông hiểu

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Đáp án là:

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Ta có:

    m\log_{28}2 + n\log_{28}7 = 2

    \Leftrightarrow \log_{28}\left(2^{x}.7^{y} ight) = 2 \Leftrightarrow 2^{x}.7^{y} =28^{2}

    \Leftrightarrow 2^{x}.7^{y} = \left(2^{2}.7 ight)^{2} \Leftrightarrow 2^{x}.7^{y} =2^{4}.7^{2}

    \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 2 \\\end{matrix} ight.\  \Rightarrow x + y = 6

  • Câu 29: Nhận biết

    Cho biểu thức F =2^{x}.2^{y};\left( x;y\in \mathbb{R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    F = 2^{x}.2^{y} = 2^{x + y}

  • Câu 30: Vận dụng

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5

    \Leftrightarrow {\log _b}5 = 3{\log _a}5

    \Leftrightarrow {\log _b}5 = \frac{1}{3}{\log _5}a \Leftrightarrow a = {b^3}

  • Câu 31: Thông hiểu

    Phương trình 5^{2x^{4} - 5x^{2} + 3} - 7^{x^{2} - \frac{3}{2}}
= 0 có bao nhiêu nghiệm?

    Ta có:

    Logarit cơ số 7 hai vế ta có:

    {5^{2{x^4} - 5{x^2} + 3}} = {7^{{x^2} - \frac{3}{2}}}

    \Leftrightarrow \left( 2x^{4} - 5x^{2} +3 ight)\log_{7}5 = \left( x^{2} - \frac{3}{2} ight)

    \Leftrightarrow 2\left( x^{2} - 1ight)\left( x^{2} - \frac{3}{2} ight)\log_{7}5 - \left( x^{2} -\frac{3}{2} ight) = 0

    \Leftrightarrow \left\lbrack 2\left(x^{2} - 1 ight)\log_{7}5 - 1 ightbrack.\left( x^{2} - \frac{3}{2}ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}2\left( x^{2} - 1 ight)\log_{7}5 - 1 = 0 \\x^{2} - \dfrac{3}{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}2\left( x^{2} - 1 ight)\log_{7}5 - 1 = 0 \\x^{2} - \dfrac{3}{2} = 0 \\\end{matrix} ight.

    Giải phương trình x^{2} =
\frac{3}{2} ta được x = \pm
\frac{\sqrt{6}}{2}

    Giải phương trình 2\left( x^{2} - 1ight)\log_{7}5 - 1 = 0

    \Leftrightarrow x^{2} =\frac{\log_{5}7}{2} + 1

    \Leftrightarrow x = \pm\sqrt{\frac{\log_{5}175}{2}}

    Vậy tập nghiệm của phương trình là:S =\left\{ \pm \frac{\sqrt{6}}{2}; \pm \sqrt{\frac{\log_{5}175}{2}}ight\}

  • Câu 32: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 33: Nhận biết

    Cho bất phương trình {\log _{\frac{e}{\pi }}}\left( {x + 1} ight) < {\log _{\frac{e}{\pi }}}\left( {3x - 1} ight). Khẳng định nào sau đây đúng?

    Ta có x > \frac{1}{3}

    Vì cơ số 0 < \frac{e}{\pi} <
1 nên {\log _{\frac{e}{\pi }}}\left( {x + 1} ight) < {\log _{\frac{e}{\pi }}}\left( {3x - 1} ight)

    \Leftrightarrow x + 1 > 3x -
1

    \Leftrightarrow x < 1

    Kết hợp với điều kiện ra có tập nghiệm của bất phương trình là: S = \left( \frac{1}{3};1 ight)

  • Câu 34: Nhận biết

    Tính giá trị của biểu thức B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150.

    Ta có:

    B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150

    B = \log_{2}12^{2}.5^{3} - \log_{2}15.150= \log_{2}\frac{18000}{2250} = \log_{2}8 = 3

  • Câu 35: Nhận biết

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 36: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 37: Thông hiểu

    Cho \log_{a}b =2;\log_{a}c = 3. Tính giá trị của biểu thức P = \log_{a}\left( ab^{3}c^{3} ight)?

    Ta có:

    P = \log_{a}\left( ab^{3}c^{3}ight)

    = \log_{a}a + \log_{a}b^{3} +\log_{a}c^{3}

    = 1 + 3\log_{a}b + 5\log_{a}c

    = 1 + 3.2 + 5.3 = 22

  • Câu 38: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Với a,b \in
\mathbb{R}^{+} thỏa mãn biểu thức 3\log a + 2\log b = 1. Khẳng định nào dưới đây đúng?

    Ta có:

    3\log a + 2\log b = 1 \Leftrightarrow \log a^{3} + \log b^{2} = 1

    \Leftrightarrow \log\left( a^{3}b^{2}
ight) = 1 \Leftrightarrow a^{3}b^{2} = 10

  • Câu 40: Thông hiểu

    Cho x là số thực dương. Biết rằng \sqrt{x\sqrt[3]{x\sqrt{x\sqrt[3]{x}}}} =
x^{\frac{m}{n}} với m,n là các số tự nhiên và \frac{m}{n} là phân số tối giản. Chọn khẳng định đúng?

    Ta có:

    \sqrt{x\sqrt[3]{x\sqrt{x\sqrt[3]{x}}}} =
\sqrt{x\sqrt[3]{x\sqrt{x.x^{\frac{1}{3}}}}} =
\sqrt{x\sqrt[3]{x\sqrt{x^{\frac{4}{3}}}}}

    = \sqrt{x\sqrt[3]{x.x^{\frac{2}{3}}}} =
\sqrt{x\sqrt[3]{x^{\frac{5}{3}}}} = \sqrt{x.x^{\frac{5}{9}}} =
\sqrt{x^{\frac{14}{9}}} = x^{\frac{7}{9}}

    \Rightarrow m = 7,n = 9 \Rightarrow m +
n = 16

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo