Xác định hàm số đồng biến trên
?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Xác định hàm số đồng biến trên
?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Tìm giá trị
biết
.
Ta có:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Tính giá trị biểu thức
với
.
Ta có:
Xác định tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Xác định các nghiệm phương trình
rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Xác định các nghiệm phương trình rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Điều kiện
Ta có:
Tổng tất cả các nghiệm của phương trình là: .
Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là:
Cho
. Tính
theo
và
.
Ta có:
Mặt khác
Thay vào trên ta được
Từ đó ta biến đổi biểu thức về cơ số 7 ta được:
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có:
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Tìm số nghiệm của phương trình
?
Điều kiện xác định
Phương trình đã cho tương đương:
Vậy phương trình có 1 nghiệm duy nhất.
Xác định tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm bất phương trình là
Phương trình
có bao nhiêu nghiệm nguyên?
Điều kiện
Ta có:
(vì nghiệm cần xét là nghiệm nguyên)
Vậy phương trình không có nghiệm nguyên.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Rút gọn biểu thức
với
ta được:
Ta có:
Cho ba số thực dương
thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Cho ba số thực dương thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Theo bài ra:
Khi đó ta có:
Nên
Mà
Ta lại có:
Vậy
Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm
diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?
Diện tích đất phục vụ nông nghiệp ban đầu là , diện tích đất nông nghiệp sau 4 năm sẽ là
;
Cho hàm số
có đồ thị như hình vẽ,
có đồ thị đối xứng với đồ thị hàm số
qua đường thẳng
. Xác định hàm số
.

Ta có:
Phép đối xứng trục qua đường thẳng biến mỗi điểm có tọa độ
thành điểm có tọa độ
.
Mỗi điểm trên đồ thị hàm số có dạng
, lấy đối xứng qua
ta được điểm có tọa độ
thuộc đồ thị hàm số
.
Do đó . Đặt
, khi đó
. Vậy
.
Với
là một số thực dương, biểu thức
có giá trị là:
Ta có:
NB
Với các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có: nên
sai.
Thực hiện giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Cho
. Tìm khẳng định đúng trong các khẳng định dưới đây?
Khẳng định đúng là:
Cho
. Tính giá trị biểu thức
.
Ta có:
Đặt khi đó
Ta có:
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Cho hàm số
. Hỏi có bao nhiêu giá trị
thuộc tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Mà
Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Bác X gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 7%/ 1 năm. Biết rằng bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo (hoặc gọi tắt là hình thức lãi kép). Chọn công thức ứng với số tiền cả gốc và lãi bác X nhận được sau 10 năm?
Áp dụng công thức lại kép thì sau 10 năm số tiền bác X nhận được là
Rút gọn biểu thức
.
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Cho
. Trong các khẳng định dưới đây, khẳng định nào sai?
sai vì
Với điều kiện
, đơn giản biểu thức
thu được kết quả là:
Ta có: