Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) =
\frac{9^{x} - 2}{9^{x} + 3}. Tính giá trị của biểu thức:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{9^{x} - 2}{9^{x}
+ 3} + \frac{9^{1 - x} - 2}{9^{1 - x} + 3} = \frac{1}{3}

    Khi đó:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\left\lbrack
f\left( \frac{k}{2017} ight) + f\left( 1 - \frac{k}{2017} ight)
ightbrack + f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\frac{1}{3} +
f(1) = \frac{4039}{12}

  • Câu 2: Thông hiểu

    Cho bất phương trình \left( \frac{1}{3} ight)^{\frac{2}{x}} +
3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12 có tập nghiệm S = (a;b). Giá trị của biểu thức T = 3a + 10b bằng:

    Ta có:

    \left( \frac{1}{3} ight)^{\frac{2}{x}}
+ 3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12

    Đặt t = \left( \frac{1}{3}
ight)^{\frac{1}{x}};(t > 0) khi đó bất phương trình trở thành:

    \Leftrightarrow t^{2} + t > 12
\Leftrightarrow (t - 3)(t - 4) > 0

    \Leftrightarrow t > 3\ (do\ t >
0)

    Từ đó suy ra \left( \frac{1}{3}
ight)^{\frac{1}{x}} > 3 \Leftrightarrow \frac{1}{x} < - 1
\Leftrightarrow - 1 < x < 0

    Tập nghiệm của bất phương trình là: ( -
1;0) \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
\end{matrix} ight.

    Vậy T = 3a + 10b = - 3

  • Câu 3: Nhận biết

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 4: Thông hiểu

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hai hàm số y = \left( \sqrt{2} ight)^{x};y =
\left( \sqrt{3} ight)^{x}

    Đồ thị hàm số đi qua điểm ( -
1;3) nên hàm số y = \left(
\frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 5: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 6: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 7: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 9: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 10: Thông hiểu

    Tính giá trị biểu thức D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    Ta có:

    D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    D = 3^{1 - \sqrt{2} + 2 + \sqrt{2} + 1}
= 3^{4} = 81

  • Câu 11: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 12: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 13: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 14: Nhận biết

    Hàm số nào sau đây được gọi là hàm số lũy thừa?

    Hàm số y = x^{- 3} là hàm số lũy thừa.

    Hàm số y = 3^{- x} và hàm số y = e^{x} là hàm số mũ.

    Hàm số y = \ln x là hàm số lôgarit.

  • Câu 15: Nhận biết

    Tìm điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1}?

    Điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1} là:

    \left\{ \begin{matrix}x > 0 \\ \log_{2}x - 1 eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\ \log_{2}x eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x eq 2 \\\end{matrix} ight.

    Vậy tập xác định của hàm số đã cho là D =
(0; + \infty)\backslash\left\{ 2 ight\}.

  • Câu 16: Thông hiểu

    Đơn giản biểu thức F =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được F =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    F =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{6 - \frac{23}{7}} =
a^{\frac{19}{7}}

    \Rightarrow m^{2} - n^{2} =
312

  • Câu 17: Nhận biết

    Cho a,b,c >
0,a eq 1,b eq 1. Trong các khẳng định dưới đây, khẳng định nào sai?

    \log_{a^{c}}b = c\log_{a}b sai vì \log_{a^{c}}b =\frac{1}{c}\log_{a}b

  • Câu 18: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 19: Nhận biết

    Tính giá trị biểu thức 4^{\log_{2}\sqrt{3}} ?

    Ta có:

    4^{\log_{2}\sqrt{3}} = \left( 2^{2}ight)^{\log_{2}\sqrt{3}} = \left( 2^{\log_{2}\sqrt{3}} ight)^{2} =\left( \sqrt{3} ight)^{2} = 3

  • Câu 20: Nhận biết

    Giải phương trình 3^{2x} - 5 = 0 ta được nghiệm phương trình là:

    Ta có:

    3^{2x} - 5 = 0 \Leftrightarrow 2x =\log_{3}5 \Leftrightarrow x = \frac{1}{2}.\log_{3}5

    Vậy phương trình đã cho có nghiệm là x =\frac{1}{2}.\log_{3}5.

  • Câu 21: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

  • Câu 22: Thông hiểu

    Cho a,b\in\mathbb{ R} thỏa mãn \log_{4}a = \log_{9}b = \log_{6}(a - 2b). Xác định tỉ số \frac{a}{b}?

    Điều kiện a > 0;b > 0;a >
2b

    \left\{ \begin{matrix}
a = 4^{t} \\
b = 9^{t} \\
a - 2b = 6^{t} \\
\end{matrix} ight.\  \Rightarrow 4^{t} - 2.9^{t} = 6^{t}

    \Leftrightarrow \left( \frac{4}{9}
ight)^{t} - \left( \frac{2}{3} ight)^{t} - 2 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left( \dfrac{2}{3} ight)^{t} = - 1(ktm) \\\left( \dfrac{2}{3} ight)^{t} = 2 \\\end{matrix} ight.

    Với \left( \frac{2}{3} ight)^{t} = 2
\Rightarrow \frac{x}{y} = \left( \frac{4}{9} ight)^{t} = \left\lbrack
\left( \frac{2}{3} ight)^{t} ightbrack^{2} = 4

  • Câu 23: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 25: Nhận biết

    Tính giá trị biểu thức M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) với điều kiện a > 0;a
eq 1?

    Ta có:

    M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) = a + b

  • Câu 26: Vận dụng

    Cho a,b,c là các số thực dương khác 1. Các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x có đồ thị như hình vẽ bên.

    Tìm khẳng định đúng.

    Kí hiệu hình vẽ như sau:

    Kẻ đường thẳng y = 1 cắt đồ thị của các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x lần lượt tại các điểm có hoành độ là a;b;c.

    Từ đồ thị ta có a > c >
b.

  • Câu 27: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 28: Nhận biết

    Xác định hàm số đồng biến trên \mathbb{R}?

    Ta có: y = 1,25^{x}1,25 > 1 nên hàm số đồng biến trên tập số thực.

  • Câu 29: Thông hiểu

    Cho a =\log_{3}2;b = \log_{3}5. Khi đó \log60 có giá trị là:

    Ta có:

    \log60 =\frac{\log_{3}60}{\log_{3}10}= \frac{\log_{3}2^{2} + \log_{3}3 +\log_{3}5}{\log_{3}2 + \log_{3}5}

    = \frac{\log_{3}2^{2} + 1 +\log_{3}5}{\log_{3}2 + \log_{3}5}= \dfrac{2a + b + 1}{a + b}

  • Câu 30: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 31: Nhận biết

    Tìm nghiệm phương trình 5^{x - 1} - \frac{1}{25} = 0?

    Ta có:

    5^{x - 1} - \frac{1}{25} = 0
\Leftrightarrow 5^{x - 1} = 5^{- 2}

    \Leftrightarrow x - 1 = - 2
\Leftrightarrow x = - 1(tm)

    Vậy phương trình có nghiệm x = -
1.

  • Câu 32: Nhận biết

    Giá trị của 27^{\frac{1}{3}} là:

    Ta có: 27^{\frac{1}{3}} = \left( 3^{3}
ight)^{\frac{1}{3}} = 3^{3.\frac{1}{3}} = 3

  • Câu 33: Nhận biết

    Giải phương trình 4^{x^{2} - 2} = 16.

    4^{x^{2} - 2} = 16

    \Leftrightarrow x^{2} - 2 =\log_{4}16

    \Leftrightarrow x^{2} = 4

    \Leftrightarrow x = \pm 2

    Vậy phương trình có nghiệm x = \pm
2.

  • Câu 34: Thông hiểu

    Cho hai số thực dương a và b. Đơn giản biểu thức K = \frac{a^{\frac{1}{4}}\sqrt[3]{b} +
b^{\frac{1}{4}}.\sqrt[3]{a}}{\sqrt[12]{a} + \sqrt[12]{b}} ta được K = a^{x}.b^{y}. Tích x.y là:

    Ta có:

    K = \frac{a^{\frac{1}{4}}\sqrt[3]{b} +
b^{\frac{1}{4}}.\sqrt[3]{a}}{\sqrt[12]{a} + \sqrt[12]{b}} =
\frac{a^{\frac{1}{4}}.b^{\frac{1}{4}}.\left( b^{\frac{1}{12}} +
a^{\frac{1}{12}} ight)}{b^{\frac{1}{12}} + a^{\frac{1}{12}}} =
a^{\frac{1}{4}}.b^{\frac{1}{4}}

    \Rightarrow \left\{ \begin{matrix}
x = \frac{1}{4} \\
y = \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow xy = \frac{1}{16}

  • Câu 35: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 36: Thông hiểu

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln(A + B) = \ln A + \lnB với mọi A > 0;B >0.

    (iv) \log_{a}b.\log_{b}c.\log_{c}a =1 với mọi a,b,c\in\mathbb{R}

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của \log_{a}b chỉ cần thỏa mãn 0 < a eq0

    (ii) Đúng vì điều kiện có nghĩa của \log_{a}b là b> 0

    (iii) Sai vì \ln(A + B) = \ln A.\ln B với mọi A > 0;B >0.

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức \log_{a}b;\log_{b}c;\log_{c}a không có nghĩa.

  • Câu 37: Vận dụng

    Biết rằng các chữ số p khi viết trong hệ thập phân biết p = 2^{759839} - 1 là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?

    Ta có:

    \log p < \log 2^{756839} = 756839log2
\approx 227831,2409

    \Rightarrow 10^{227831} \leq p <
10^{227832}

    Vậy p có 227832 chữ số.

  • Câu 38: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 40: Nhận biết

    Cho hai số thực ab với a >
0,a eq 1;b eq 0. Kết luận nào sau đây sai?

    Theo tính chất Logarit dễ thấy

    \log_{a^{3}}|b| =\frac{1}{2}\log_{a}|b|

    \frac{1}{2}\log_{a}b^{2} =\log_{a}|b|

    \frac{1}{2}log_{a}a^{2} = 1

    Do thiếu điều kiện của b nên \frac{1}{2}log_{a}b^{2} = log_{a}b là đáp án sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo