Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm tập xác định của hàm số y = - \log\left( 2x - x^{2} ight)?

    Điều kiên xác định:

    2x - x^{2} > 0 \Leftrightarrow 0 <
x < 2

    Vậy tập xác định của hàm số là: D = (0;2)

  • Câu 2: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 3: Nhận biết

    Biết m,n là hai số dương tùy ý thì \log\left( m^{3}n^{2} ight) có giá trị tương ứng với biểu thức nào sau đây?

    Ta có: m,n > 0

    \log\left( m^{3}n^{2} ight) = \log m^{3} + \log n^{2} = 3\log m + 2\log n

  • Câu 4: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 2)^{2}.

    Điều kiện xác định (x - 2)^{2} > 0
\Rightarrow x eq 2

    Vậy tập xác định của hàm số là D=\mathbb{R}\backslash\left\{ 2 ight\}.

  • Câu 5: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m \in \lbrack - 2019;2019brack để hàm số y = \frac{\ln x - 6}{\ln x -
3m} đồng biến trên khoảng \left(
1;e^{6} ight)?

    Đặt t = \ln x. Khi đó hàm số đã cho đồng biến trên khoảng \left( 1;e^{6}
ight) khi và chỉ khi hàm số y =
\frac{t - 6}{t - 3m} đồng biến trên khoảng (0;6).

    Hàm số f(t) đồng biến trên khoảng (0;6) khi và chỉ khi:

    \left\{ \begin{matrix}
- 3m + 6 > 0 \\
3m otin (0;6) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \leq 0 \\
m \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2019; - 2018;...;0 ight\}

    Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.

  • Câu 6: Vận dụng

    Biết khi rút gọn biểu thức \frac{6 + 3\left( 3^{x} + 3^{- x} ight)}{2 -
3^{x + 1} - 3^{1 - x}} thu được phân số \frac{a}{b} tối giản và 9^{x} + 9^{- x} = 14 . Tính giá trị biểu thức M = a.b.

    Ta có:

    9^{x} + 9^{- x} = 14 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 16

    \Leftrightarrow 3^{x} + 3^{- x} =
4

    Ta lại có:

    \frac{6 + 3\left( 3^{x} + 3^{- x}
ight)}{2 - 3^{x + 1} - 3^{1 - x}} = \frac{6 + 3.4}{2 - 3.4} =
\frac{18}{- 10} = \frac{9}{- 5}

    \Rightarrow M = a.b = - 45

  • Câu 7: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    \log_{2}\left(\frac{1}{16} ight) = ...

    Ta có: \log_{2}\left( \dfrac{1}{16} ight)= \log_{2}2^{- 4} = - 4

  • Câu 9: Thông hiểu

    Xác định tập nghiệm của bất phương trình \log_{3}(2x - 3) > 1?

    Điều kiện x > \frac{3}{2}

    Ta có: \log_{3}(2x - 3) >1

    \Leftrightarrow 2x - 3 > 3
\Leftrightarrow x > 3

    Vậy tập nghiệm bất phương trình là S =
(3; + \infty)

  • Câu 10: Thông hiểu

    Biết \log_{2}\sqrt{m} - \log_{2}n = 3 với m,n > 0. Chọn khẳng định đúng?

    Ta có:

    \log_{2}\sqrt{m} - \log_{2}n =3

    \Leftrightarrow \log_{2}\dfrac{\sqrt{m}}{n} = 3 \Leftrightarrow \dfrac{\sqrt{m}}{n} =2^{3}

    \Leftrightarrow \frac{\sqrt{m}}{n} = 8
\Leftrightarrow m = 64n^{2}

  • Câu 11: Nhận biết

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

  • Câu 12: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 13: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 15: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 16: Nhận biết

    Cho số thực dương a và số nguyên dương n tùy ý. Mệnh đề nào sau đây đúng?

    Ta có: \sqrt{a^{n}} =
a^{\frac{n}{2}}.

  • Câu 17: Thông hiểu

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 18: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 19: Thông hiểu

    Giải phương trình \log_{2}\left( x^{2} + x + 1 ight) = 2 +\log_{2}x. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:

    Điều kiện xác định:

    \left\{ \begin{matrix}
x^{2} + x + 1 > 0 \\
x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\forall x\mathbb{\in R} \\
x > 0 \\
\end{matrix} ight.\  \Rightarrow x > 0

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}4 + \log_{2}x

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}(4x)

    \Leftrightarrow x^{2} + x + 1 =
4x

    \Leftrightarrow x^{2} - 3x + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{3 + \sqrt{5}}{2}(tm) \\x = \dfrac{3 - \sqrt{5}}{2}(tm) \\\end{matrix} ight.

    \Rightarrow S = \frac{3 + \sqrt{5}}{2} +
\frac{3 - \sqrt{5}}{2} = 3

    Vậy S = 3

  • Câu 20: Vận dụng

    Số 20182019^{20192020} có bao nhiêu chữ số?

    Ta có:

    Số tự nhiên Mk chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20182019^{20192020}suy ra

    \log M = \log\left( 20182019^{20192020}
ight)

    \Leftrightarrow M = 10^{\log\left(
20182019^{20192020} ight)}

    \Leftrightarrow M =10^{20192020.\log(20182019)}

    \Leftrightarrow M \approx
10^{147501991,5} < 10^{147501992}

    Vậy số các chữ số của 20182019^{20192020} là 147501992.

  • Câu 21: Nhận biết

    Tìm hàm số đồng biến trên \mathbb{R} trong các hàm số dưới đây?

    Xét hàm số y = \left( \frac{\pi}{2}
ight)^{x}\frac{\pi}{2} >
1 nên hàm số y = \left(
\frac{\pi}{2} ight)^{x}đồng biến trên \mathbb{R}?

  • Câu 22: Thông hiểu

    Cho số thực dương a tùy ý. Viết biểu thức M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} dưới dạng a^{\frac{x}{y}} trong đó \frac{x}{y} là phân số tối giản, x,y \in \mathbb{N}^{*}. Tính giá trị biểu thức H = x^{2} +
y^{2}?

    Ta có:

    M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} =
a\sqrt{a^{3}\sqrt{a.a^{\frac{1}{2}}}} =
a\sqrt{a^{3}\sqrt{a^{\frac{3}{2}}}}

    = a\sqrt{a^{3}.a^{\frac{3}{4}}} =
a.a^{\frac{15}{8}} = a^{\frac{23}{8}}

    \Rightarrow \frac{x}{y} = \frac{23}{8}
\Rightarrow H = x^{2} + y^{2} = 593

  • Câu 23: Thông hiểu

    Biết \log_{2}m =6\log_{4}a - 4\log_{2}\sqrt{b} - \log_{\frac{1}{2}}c. Biểu diễn m theo a,b,c?

    Ta có:

    \log_{2}m = 6\log_{4}a - 4\log_{2}\sqrt{b}- \log_{\frac{1}{2}}c

    \Leftrightarrow \log_{2}m = \log_{2}a^{3}- \log_{2}b^{2} + \log_{2}c

    \Leftrightarrow \log_{2}m =\log_{2}\frac{a^{3}.c}{b^{2}} \Leftrightarrow m =\frac{a^{3}.c}{b^{2}}

  • Câu 24: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 25: Nhận biết

    Tìm điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2}?

    Điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

  • Câu 26: Nhận biết

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Đáp án là:

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Ta có:

    3^{x^{2} - 4x + 5} = 9 \Leftrightarrow
3^{x^{2} - 4x + 5} = 3^{2}

    \Leftrightarrow x^{2} - 4x + 5 = 2
\Leftrightarrow x^{2} - 4x + 3 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = 1 \\
x_{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow {x_{1}}^{2} + {x_{2}}^{2} =
10

    Vậy giá trị cần tìm bằng 10

  • Câu 27: Thông hiểu

    Cho phương trình (2,4)^{3x + 1} = \left( \frac{5}{12} ight)^{x -
9}. Xác định nghiệm của phương trình đã cho?

    Ta có:

    (2,4)^{3x + 1} = \left( \frac{5}{12}
ight)^{x - 9} \Leftrightarrow \left( \frac{12}{5} ight)^{3x + 1} =
\left( \frac{12}{5} ight)^{- x + 9}

    \Leftrightarrow 3x + 1 = - x + 9
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x = 2.

  • Câu 28: Nhận biết

    Giải phương trình 5^{x} = 10 thu được nghiệm:

    Ta có:

    5^{x} = 10 \Leftrightarrow x =\log_{5}10(tm)

    Vậy phương trình có nghiệm x =\log_{5}10.

  • Câu 29: Vận dụng

    Cho hàm số y =
a^{x} có đồ thị như hình vẽ, y =
f(x) có đồ thị đối xứng với đồ thị hàm số y = a^{x} qua đường thẳng y = - x. Xác định hàm số f(x).

    Ta có:

    Phép đối xứng trục qua đường thẳng y = -
x biến mỗi điểm có tọa độ (x;y) thành điểm có tọa độ ( - y; - x).

    Mỗi điểm trên đồ thị hàm số y =
a^{x} có dạng \left( u;a^{u}
ight), lấy đối xứng qua d ta được điểm có tọa độ \left( - a^{u};u ight) thuộc đồ thị hàm số y = f(x).

    Do đó f\left( - a^{u} ight) = -
u. Đặt x = - a^{u}, khi đó x = log_{a}( - x). Vậy f(x) = - \log_{a}( - x).

  • Câu 30: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Chọn khẳng định đúng?

    Quan sát đồ thị ta thấy

    Hai hàm số y = n^{x};y = t^{x} đồng biến nên n,t > 1

    Hàm số y = m^{x} nghịch biến nên 0 < m < 1

    Vậy \left\{ \begin{matrix}
0 < m < 1 \\
n,t > 1 \\
\end{matrix} ight.

    Đường thẳng x = 1 cắt hai đồ thị hàm số y
= n^{x};y = t^{x} lần lượt tại n,t và ta thấy n > t

    Vậy m < t < n

  • Câu 31: Nhận biết

    Tính giá trị biểu thức a^{log_{\sqrt{a}}4} với a > 0,a eq 1.

    Ta có:

    a^{log_{\sqrt{a}}4} = a^{2log_{a}4} =
a^{log_{a}4^{2}} = 16

  • Câu 32: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

  • Câu 34: Nhận biết

    Xác định nghiệm phương trình 3^{t - 1} - 27 = 0?

    Ta có:

    3^{t - 1} - 27 = 0 \Leftrightarrow 3^{t
- 1} = 3^{3}

    \Leftrightarrow t - 1 = 3
\Leftrightarrow t = 4(tm)

    Vậy phương trình có nghiệm t =
4

  • Câu 35: Thông hiểu

    Biết \log_{m^{2}}\left( \frac{m^{3}}{\sqrt[5]{n^{3}}}ight) = 3 với m,n > 0;m eq
1. Hỏi giá trị của biểu thức \log_{m}n bằng bao nhiêu?

    Ta có:

    \log_{m^{2}}\left(\frac{m^{3}}{\sqrt[5]{n^{3}}} ight) = 3

    \Leftrightarrow \frac{1}{2}\left(\log_{m}m^{3} - \log_{m}n^{\frac{3}{5}} ight) = 3

    \Leftrightarrow 3 - \frac{3}{5}\log_{m}n= 6

    \Leftrightarrow \log_{m}n = -5

  • Câu 36: Nhận biết

    Nếu m^{2x} =
3 thì giá trị 3m^{6x} là:

    Ta có: 3m^{6x} = 3.\left( m^{2x}
ight)^{3} = 3.3^{3} = 81

  • Câu 37: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 38: Thông hiểu

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 39: Nhận biết

    Cho a,b >
0. Tìm khẳng định đúng trong các khẳng định dưới đây?

    Khẳng định đúng là: a^{\ln b} = b^{\ln
a}

  • Câu 40: Thông hiểu

    Rút gọn biểu thức D =
log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}. (Giả sử tất cả các điều kiện đều xác định).

    Ta có:

    D =\log_{\frac{1}{2}}\frac{a.\sqrt[4]{a^{3}}.\sqrt[3]{2}}{\sqrt{a}.\sqrt[4]{a}}= \log_{a^{-1}}\frac{a.a^{\frac{3}{4}}.a^{\frac{2}{3}}}{a^{\frac{1}{2}}.a^{\frac{1}{4}}}

    = \log_{a^{-1}}\frac{a^{\frac{29}{12}}}{a^{\frac{3}{4}}} = \log_{a^{-1}}a^{\frac{5}{3}} = - \frac{5}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo