Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Cho hàm số
có đồ thị như hình vẽ,
có đồ thị đối xứng với đồ thị hàm số
qua đường thẳng
. Xác định hàm số
.

Ta có:
Phép đối xứng trục qua đường thẳng biến mỗi điểm có tọa độ
thành điểm có tọa độ
.
Mỗi điểm trên đồ thị hàm số có dạng
, lấy đối xứng qua
ta được điểm có tọa độ
thuộc đồ thị hàm số
.
Do đó . Đặt
, khi đó
. Vậy
.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho biết
, biểu thức
có giá trị là:
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Chọn phát biểu sai?
Ta có: là phát biểu sai do
Với
thì biểu thức
có giá trị bằng bao nhiêu?
Ta có:
đều xác định và
khi đó:
Rút gọn biểu thức
.
Ta có:
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Tìm tập nghiệm của bất phương trình
.
Điều kiện:
Bất phương trình đã cho tương đương với
Kết hợp điều kiện, suy ra bất phương trình có nghiệm
Vậy tập nghiệm của bất phương trình là:
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Xác định tất cả các giá trị của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi
Vậy thỏa mãn yêu cầu bài toán.
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Có bao nhiêu số thực dương
để
?
Ta có:
Để thì
Vậy có tất cả 8 số thực dương thỏa mãn yêu cầu bài toán.
Biết đồ thị hàm số
đối xứng với đồ thị hàm số
qua điểm
. Giá trị của
là:
Gọi là điểm thuộc đồ thị hàm số
thì điểm đối xứng với
qua
là
thuộc đồ thị hàm số
=>
Tìm công bội
của một cấp số nhân. Biết ba số
theo thứ tự lập thành cấp số nhân.
Theo giả thiết ta có:
Vậy công bội của cấp số nhân là:
Tổng các nghiệm của phương trình
bằng 3||-3||-4||5
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Ta có:
Vậy tổng các nghiệm của phương trình là 3
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Với các số
là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Giải phương trình
ta thu được nghiệm là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số
luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Ta có:
suy ra
Sai||Đúng
d) Với
thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Thực hiện giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có: