Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Tập nghiệm của bất phương trình
là:
Ta có:
Tìm nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm t = 2.
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Tính giá trị
biết
?
Ta có:
Mặt khác
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Tính
.
Ta có:
Với
thỏa mãn biểu thức
. Khẳng định nào dưới đây đúng?
Ta có:
Giả sử
là hai nghiệm của phương trình
. Xác định giá trị biểu thức
biết
?
Ta có:
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Cho hàm số
. Tìm mệnh đề nào sai?
Mệnh đề sai là: “Tập xác định của hàm số là ”
Sửa lại như sau: “Tập xác định của hàm số là .
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị hàm số đi qua điểm (0; 1) và hàm số nghịch biến nên hàm số thỏa mãn hình vẽ.
Cho phương trình
. Xác định nghiệm phương trình đã cho?
Điều kiện xác định:
Ta có:
Vậy phương trình có nghiệm là .
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là .
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Vậy tổng số tiền nhận được là: triệu đồng.
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là
Cho phương trình
. Xác định nghiệm của phương trình đã cho?
Ta có:
Vậy phương trình có nghiệm x = 2.
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Tính giá trị biểu thức:
biết
?
Ta có:
Cho hàm số
. Tìm tập xác định của hàm số.
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Cho các số thực dương
và biểu thức

Tính giá trị biểu thức
?
Ta có:
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Với các số
là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Cho ba số thực dương
thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Cho ba số thực dương thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Theo bài ra:
Khi đó ta có:
Nên
Mà
Ta lại có:
Vậy
Cho hàm số
. Tìm tập xác định của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Với
, khẳng định nào sau đây đúng?
Mệnh đề đúng là: