Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho a,b là hai số thực dương thỏa mãn \log_{9}a^{4} +\log_{3}b = 8 và \log_{3}a +\log_{\sqrt[3]{3}}b = 9. Tính giá trị của biểu thức K = ab + 1.

    Ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2\log_{3}a + \log_{3}b = 8 \\ \log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{3}a = 3 \\ \log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight.

    \Leftrightarrow K = ab + 1 =
244

  • Câu 2: Thông hiểu

    Biết \log_{2}\sqrt{m} - \log_{2}n = 3 với m,n > 0. Chọn khẳng định đúng?

    Ta có:

    \log_{2}\sqrt{m} - \log_{2}n =3

    \Leftrightarrow \log_{2}\dfrac{\sqrt{m}}{n} = 3 \Leftrightarrow \dfrac{\sqrt{m}}{n} =2^{3}

    \Leftrightarrow \frac{\sqrt{m}}{n} = 8
\Leftrightarrow m = 64n^{2}

  • Câu 3: Nhận biết

    Biết a,b là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?

    Theo quy tắc Logarit ta có:

    \ln(ab) = \ln a + \ln b

  • Câu 4: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 5: Thông hiểu

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 6: Nhận biết

    Biết a là số thực dương khác 1. Viết và thu gọn biểu thức a^{\frac{3}{2022}}.\sqrt[2022]{a} dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?

    Ta có:

    a^{\frac{3}{2022}}.\sqrt[2022]{a} =
a^{\frac{3}{2022}}.a^{\frac{1}{2022}} = a^{\frac{3}{2022} +
\frac{1}{2022}} = a^{\frac{4}{2022}} = a^{\frac{2}{1011}}

  • Câu 7: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 8: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 9: Nhận biết

    Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?

    Hàm số y = a^{x} nghịch biến trên \mathbb{R} khi 0 < a < 1.

  • Câu 10: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 11: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 12: Thông hiểu

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c\mathbb{\in N}. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    Suy ra 3^{a}.2^{b}.5^{c} = 5

    a,b,c\mathbb{\in N} nên chỉ có 1 bộ số (a,b,c) = (0;0;1) thỏa mãn.

    Vậy a = b

  • Câu 13: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình 4^{x} - 2^{x + 3} + 15 = 0. Trong các khẳng định dưới đây khẳng định nào đúng?

    Đặt t = 2^{x} > 0 phương trình trở thành t^{2} - 8t + 15 =
0(*)

    Gọi t_{1};t_{2} là hai nghiệm của phương trình (*) suy ra \left\lbrack
\begin{matrix}
t_{1} = 2^{x_{1}} \\
t_{2} = 2^{x_{2}} \\
\end{matrix} ight.

    Theo định lí Vi – et phương trình (*) ta có:

    t_{1}t_{2} = 15 \Rightarrow
2^{x_{1}}.2^{x_{2}} = 15

    \Rightarrow x_{1} + x_{2} =\log_{2}15

  • Câu 15: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 16: Thông hiểu

    Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

    Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số y = \log_{\frac{1}{2}}x

    Lại từ hình vẽ suy đồ thị hàm số đi qua điểm \left( \frac{1}{2}; - 1 ight)

    Kiểm tra ta thấy \left\{ \begin{matrix}- 1 eq \log_{2}\left( 2.\dfrac{1}{2} ight) \\- 1 = \log_{2}\dfrac{1}{2} \\- 1 eq \log_{\sqrt{2}}\dfrac{1}{2} \\\end{matrix} ight. nên loại các hàm số y = \log_{2}(2x), y = \log_{\sqrt{2}}x.

  • Câu 17: Nhận biết

    Cho phương trình \log_{2}(x - 1) = 3. Kết quả nào dưới đây là nghiệm phương trình đã cho?

    Điều kiện xác định: x > 1

    \log_{2}(x - 1) = 3 \Leftrightarrow x - 1= 2^{3}

    \Leftrightarrow x - 1 = 8
\Leftrightarrow x = 9(tm)

    Vậy phương trình có nghiệm x =
9.

  • Câu 18: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 19: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 21: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 22: Thông hiểu

    Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.

    Áp dụng công thức tính lãi kép ta có:

    T = a.(1 + x\%)^{n}

    \Leftrightarrow 252495392 = 2.10^{8}.(1
+ x\%)^{4}

    \Leftrightarrow x = 6(tm)

    Vậy lãi suất ngân hàng là 6%.

  • Câu 23: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 24: Nhận biết

    Cho các số thực dương a,b bất kì thỏa mãn \log a = x;logb = y. Tính giá trị biểu thức H = \log\left( a^{2}b^{3}
ight).

    Ta có:

    H = \log\left( a^{2}b^{3} ight) =
\log\left( a^{2} ight) + \log\left( b^{3} ight)

    = 2\log a + 3\log b = 2x + 3y

  • Câu 25: Nhận biết

    Cho hai số thực a và b với a > 0;a eq 1;b eq 0. Chọn khẳng định sai?

    Ta có: \dfrac{1}{2}\log_{a}b^{2} =\log_{a}b sai vì chưa biết b > 0 hay b < 0.

  • Câu 26: Thông hiểu

    Đơn giản biểu thức N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >
0) ta được N =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =
\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{\frac{-
2}{7}}}

    = \frac{a^{\frac{5}{3} +
\frac{7}{3}}}{a^{4 - \frac{2}{7}}} = \frac{a^{4}}{a^{\frac{26}{7}}} =
a^{4 - \frac{26}{7}} = a^{\frac{2}{7}}

    \Rightarrow \frac{m}{n} = \frac{2}{7}
\Rightarrow 2m^{2} + n = 15

  • Câu 27: Thông hiểu

    Xác định tập nghiệm của bất phương trình \log_{3}(2x - 3) > 1?

    Điều kiện x > \frac{3}{2}

    Ta có: \log_{3}(2x - 3) >1

    \Leftrightarrow 2x - 3 > 3
\Leftrightarrow x > 3

    Vậy tập nghiệm bất phương trình là S =
(3; + \infty)

  • Câu 28: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 29: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 30: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 31: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho hai số thực dương a,b thỏa mãn 2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4. Tìm khẳng định đúng dưới đây?

    Ta có:

    2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4

    \Leftrightarrow 2\log_{3}a -3.\log_{3^{\frac{1}{2}}}b = 4

    \Leftrightarrow \log_{3}a - 3.\log_{3}b =2

    \Leftrightarrow \log_{3}a - \log_{3}b^{3}= 2

    \Leftrightarrow \log_{3}\frac{a}{b^{3}} =2 \Leftrightarrow \frac{a}{b^{3}} = 9

  • Câu 33: Vận dụng

    Cho n là số nguyên dương và một số a bất kì với a > 0,a eq 1. Biết

    \log_{a}2019 + \log_{\sqrt{a}}2019 +\log_{\sqrt[3]{a}}2019 + ... + \log_{\sqrt[n]{a}}2019 =2033136\log_{a}2019

    Khi đó giá trị của n là bao nhiêu?

    Ta có:

    \log_{a}2019 + \log_{\sqrt{a}}2019 +\log_{\sqrt[3]{a}}2019 + ... + \log_{\sqrt[n]{a}}2019 =2033136\log_{a}2019

    \Leftrightarrow \log_{a}2019 +2\log_{a}2019 + 3\log_{a}2019 + ... + n\log_{a}2019 =2033136\log_{a}2019

    \Leftrightarrow (1 + 2 + 3 + ... +n)\log_{a}2019 = 2033136\log_{a}2019

    \Leftrightarrow 1 + 2 + 3 + ... + n =
2033136

    \Leftrightarrow \frac{n(n + 1)}{2} =
2033136

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 2016(tm) \\
n = - 2017(ktm) \\
\end{matrix} ight.

    Vậy n = 2016

  • Câu 34: Nhận biết

    Tập xác định của hàm số y = \log(2x - 3)^{2} là:

    Hàm số y = \log(2x - 3)^{2} xác định nếu (2x - 3)^{2} > 0 \Leftrightarrow
x eq \frac{3}{2}

    Vậy tập xác định D\mathbb{=
R}\backslash\left\{ \frac{3}{2} ight\}.

  • Câu 35: Thông hiểu

    Cho số thực a dương tùy ý. Đặt a^{\frac{5}{4}}\sqrt{a.\sqrt[3]{a}} =
a^{x}. Giá trị của x tương ứng là:

    Ta có:

    a^{\frac{5}{4}}\sqrt{a.\sqrt[3]{a}} =
a^{\frac{5}{4}}.\sqrt{a.a^{\frac{1}{3}}} =
a^{\frac{5}{4}}.\sqrt{a^{\frac{4}{3}}}

    = a^{\frac{5}{4}}.a^{\frac{4}{6}} =
a^{\frac{5}{4} + \frac{4}{6}} = a^{\frac{23}{12}}

    \Rightarrow x =
\frac{23}{12}

    Vậy giá trị của x tương ứng là: \frac{23}{12}.

  • Câu 36: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 37: Thông hiểu

    Xác định các nghiệm phương trình \log_{2}(2x - 5)^{2} = 2\log_{2}(x - 2) rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Xác định các nghiệm phương trình \log_{2}(2x - 5)^{2} = 2\log_{2}(x - 2) rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Điều kiện

    \left\{ \begin{matrix}
(2x - 5)^{2} > 0 \\
x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(2x - 5)^{2} > 0\forall x\mathbb{\in R} \\
x > 2 \\
\end{matrix} ight.

    \Rightarrow x > 2

    Ta có:

    \log_{2}(2x - 5)^{2} = 2\log_{2}(x -2)

    \Leftrightarrow \log_{2}(2x - 5)^{2} =\log_{2}(x - 2)^{2}

    \Leftrightarrow (2x - 5)^{2} = (x -
2)^{2}

    \Leftrightarrow \left\lbrack\begin{matrix}2x - 5 = x - 2 \\2x - 5 = - x + 2 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 3 \\x = \dfrac{7}{3} \\\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là: S = 3 + \frac{7}{3} = \frac{16}{3}.

  • Câu 38: Nhận biết

    Xác định số nghiệm của phương trình: \left( \frac{1}{3} ight)^{x^{2} - 4x} =
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x^{2} - 4x}
= 9 \Leftrightarrow \left( 3^{- 1} ight)^{x^{2} - 4x} =
3^{2}

    \Leftrightarrow - \left( x^{2} - 4x
ight) = 2 \Leftrightarrow x^{2} - 4x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2} \\
x = 2 - \sqrt{2} \\
\end{matrix} ight.\ (tm)

    Vậy phương trình đã cho có 2 nghiệm.

  • Câu 39: Nhận biết

    Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình 2^{x} >
6?

    Ta có:

    2^{x} > 6 \Leftrightarrow x >\log_{2}6

    \Rightarrow x \in \left( \log_{2}6; +\infty ight)

    Vậy tập nghiệm của bất phương trình đã cho là \left( \log_{2}6; + \infty ight)

  • Câu 40: Vận dụng

    Cho hình vẽ:

    Ta có đường thẳng d = 3 song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y = n^{x};m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\} lần lượt tại H,M,N. Biết \frac{MH}{MN} = \frac{3}{2}. Chọn khẳng định đúng?

    Ta có:\frac{MH}{MN} = \frac{3}{2}
\Rightarrow \frac{HM}{HN} = \frac{3}{5}

    Gọi M\left( x_{1};3 ight) \in y = m^{x}\Rightarrow x_{1} = \log_{m}3

    N\left( x_{2};3 ight) \in y = n^{x}\Rightarrow x_{2} = \log_{n}3

    Khi đó \frac{HM}{HN} = \frac{3}{5}\Leftrightarrow \log_{m}3 = \frac{3}{5}\log_{n}3

    \Leftrightarrow \frac{1}{\log_{3}m} =\frac{3}{5}\frac{1}{\log_{3}n}

    \Leftrightarrow log_{3}m =
\frac{5}{3}.log_{3}n

    \Leftrightarrow m = n^{\frac{5}{3}}\Leftrightarrow m^{3} = n^{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo