Tìm giá trị của x biết
.
Điều kiện
Ta có:
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Số thực
thỏa mãn
với
. Giá trị của
bằng bao nhiêu?
Ta có:
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?
Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:
(triệu đồng)
Cho x là số thực dương. Biết rằng
với
là các số tự nhiên và
là phân số tối giản. Chọn khẳng định đúng?
Ta có:
Rút gọn biểu thức
.
Ta có:
Xác định nghiệm của phương trình
.
Ta có:
Vậy phương trình có nghiệm là .
Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:
![]()
Ta có:
Có bao nhiêu số thực dương
để
?
Ta có:
Để thì
Vậy có tất cả 8 số thực dương thỏa mãn yêu cầu bài toán.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Tìm tập xác định của hàm số
?
Điều kiện xác định
=> Tập xác định của hàm số là .
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Biết rằng
. Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
(vì
)
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số
và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số
là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số
Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số Sai||Đúng
Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.
Hàm số đồng biến trên khoảng
đúng vì
.
Tập xác định của hàm số là
đúng.
Xét hàm số có điều kiện xác định
Vì
Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số .
Cho biết
, biểu thức
có giá trị là:
Ta có:
Rút gọn biểu thức

Với ta có:
Khi đó:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Phương trình
có nghiệm thuộc khoảng nào sau đây?
Điều kiện xác định
Phương trình đã cho:
Vậy nghiệm của phương trình thuộc khoảng
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Với a là số thực dương tùy ý,
bằng:
Ta có:
Chọn khẳng định sai trong các khẳng định sau?
Hàm số đồng biến trên khoảng
Cho hàm số
và hai số
thỏa mãn
. Khi đó
bằng bao nhiêu?
Ta có:
Cho số thực dương
. Tính
.
Ta có:
Cho hàm số
trên
trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

Ta có:
thì
Với thì
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Quan sát đồ thị hàm số sau:

Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại
và ta thấy
Vậy
Tính giá trị
biết
?
Ta có:
Mặt khác
Phương trình
có tập nghiệm là:
Ta có:
Vậy phương trình có tập nghiệm là: .
Xác định nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Biết
. Kết luận nào dưới đây đúng?
Ta có:
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Tính giá trị của biểu thức
.
Ta có: