Tập nghiệm của bất phương trình
là:
Ta có:
hay
Tập nghiệm của bất phương trình
là:
Ta có:
hay
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Thực hiện thu gọn biểu thức
với
ta được kết quả là:
Ta có:
Ta cũng có:
Khi đó:
Cho ba số thực dương
thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Cho ba số thực dương thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Theo bài ra:
Khi đó ta có:
Nên
Mà
Ta lại có:
Vậy
Tính giá trị của
với mọi giá trị
?
Ta có:
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Biết rằng
. Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Phương trình
có tập nghiệm là:
Điều kiện
Ta có:
Vậy phương trình vô nghiệm hay .
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho phương trình
. Xác định nghiệm của phương trình đã cho?
Ta có:
Vậy phương trình có nghiệm x = 2.
Thu gọn biểu thức
với
là các số thực dương:
Ta có:
Xác định tập xác định D của hàm số
.
Hàm số đã cho xác định khi và chỉ khi:
Vậy tập xác định của hàm số là:
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Giả sử
là tổng các nghiệm của phương trình
. Giá trị của
là:
Điều kiện xác định
Phương trình đã cho tương đương:
Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?
Hàm số nghịch biến trên
khi
.
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Tính giá trị biểu thức ![]()
Ta có:
Với
thỏa mãn biểu thức
. Khẳng định nào dưới đây đúng?
Ta có:
Cho biết
. Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Cho hình vẽ:

Đồ thị hình bên là của hàm số nào?
Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hai hàm số
Đồ thị hàm số đi qua điểm nên hàm số
thỏa mãn.
Cho tam giác vuông ABC có
là độ dài hai cạnh góc vuông,
là độ dài cạnh huyền với điều kiện
. Chọn kết luận đúng.
Do tam giác ABC vuông nên ta có:
Giá trị của
với
bằng:
Ta có:
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Tính giá trị của biểu thức
biết
?
Ta có:
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho biết
, biểu thức
có giá trị là:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm là:
Xác định nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?
Số tiền còn lại trong tài khoản sau tháng thứ 1 là: (triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 2 là:
(triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 3 là:
(triệu đồng)
Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:
(triệu đồng).
Biết
, khi đó
bằng:
Ta có:
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Trong các hàm số dưới đây, hàm số nào là hàm số mũ?
Các hàm số ;
;
là các hàm số lũy thừa với số mũ hữu tỉ, hàm số
là hàm số mũ với cơ số là
.
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị hàm số đi qua điểm (0; 1) và hàm số nghịch biến nên hàm số thỏa mãn hình vẽ.
Trong các hàm số sau đây, hàm số nào đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có: