Giá trị của
là:
Ta có:
Giá trị của
là:
Ta có:
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Tập nghiệm của bất phương trình
là:
Ta có:
hay
Biết rằng
là các số thực dương thỏa mãn
. Tìm khẳng định đúng trong các khẳng định sau?
Ta có:
Rút gọn biểu thức
với
ta được kết quả:
Ta có:
Cho ba số thực dương
khác 1. Đồ thị các hàm số
được cho trong hình vẽ.

Chọn mệnh đề đúng?
Do hàm số nghịch biến trên
suy ra
.
Do hàm số đồng biến trên
suy ra
Ta có: :
Vậy .
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Tính giá trị
biết
?
Ta có:
Mặt khác
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Tính giá trị biểu thức
với
.
Ta có:
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Tìm tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là: .
Giá trị của biểu thức
bằng:
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Phương trình
có bao nhiêu nghiệm thực?
Ta có:
Vậy phương trình có duy nhất 1 nghiệm.
Với a là số thực dương tùy ý,
tương ứng với:
Với ta có:
Giả sử
là hai nghiệm của phương trình
. Xác định giá trị biểu thức
biết
?
Ta có:
Với điều kiện
, đơn giản biểu thức
thu được kết quả là:
Ta có:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Cho phương trình
. Tính tổng giá trị các nghiệm phương trình đã cho.
Ta có:
Vậy tổng tất cả các nghiệm của phương trình là
Cho
là hai số thực dương bất kì và
. Kết luận nào sau đây đúng?
Theo tính chất ta suy ra kết luận đúng là:
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số
luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Ta có:
suy ra
Sai||Đúng
d) Với
thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Tính giá trị của biểu thức
.
Ta có:
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị hàm số đi qua điểm (0; 1) và hàm số nghịch biến nên hàm số thỏa mãn hình vẽ.
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số là
Cho đồ thị hàm số
như hình vẽ:

Xác định giá trị
?
Đồ thị hàm số đi qua điểm (2; -1) nên
Khi đó
Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:
![]()
Ta có:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Biết rằng
. Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
(vì
)
Tính giá trị của
với mọi giá trị
?
Ta có:
Rút gọn biểu thức

Với ta có:
Khi đó:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương