Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?
Hàm số nghịch biến trên
khi
.
Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?
Hàm số nghịch biến trên
khi
.
Giá trị của biểu thức
là:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Hàm số
có đồ thị hàm số như hình vẽ:

Đường thẳng
cắt hai đồ thị tại các điểm có hoành độ
. Tính giá trị của
, biết rằng
?
Xét phương trình hoành độ giao điểm
Ta có:
Vậy tỉ số .
Xác định nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Biết các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có:
Vậy khẳng định sai là:
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Khẳng định nào dưới đây sai?
Ta có: (do
)
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Cho số thực dương a tùy ý. Viết biểu thức
dưới dạng
trong đó
là phân số tối giản,
. Tính giá trị biểu thức
?
Ta có:
Tính giá trị
biết
?
Ta có:
Mặt khác
Biết
. Tính
?
Ta có:
Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm
diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?
Diện tích đất phục vụ nông nghiệp ban đầu là , diện tích đất nông nghiệp sau 4 năm sẽ là
;
Tổng các nghiệm của phương trình
bằng 3||-3||-4||5
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Ta có:
Vậy tổng các nghiệm của phương trình là 3
Cho biết
. Một học sinh đã thực hiện tính giá trị biểu thức
như sau:
Bước 1: ![]()
Bước 2: ![]()
Bước 3: ![]()
Bước 4: ![]()
Hỏi bạn học sinh giải toán sai từ bước nào?
Ta có:
Vậy bài toán sai từ bước 4.
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Rút gọn biểu thức
.
Ta có:
Cho hàm số
với
. Hãy xác định giá trị
?
Ta có:
Khi đó:
Rút gọn biểu thức
với x > 0
Ta có:
Tính tổng tất cả các nghiệm của phương trình
?
Ta có:
Vậy phương trình có tổng nghiệm bằng 4.
Giả sử
là hai nghiệm của phương trình
. Xác định giá trị biểu thức
biết
?
Ta có:
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Chọn khẳng định sai trong các khẳng định sau?
Hàm số đồng biến trên khoảng
Giả sử
thì giá trị của
biểu diễn theo
là:
Ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Cho
là một số thực dương. Giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Cho hàm số
trên
trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

Ta có:
thì
Với thì
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Nếu
là hai số thực dương bất kì thỏa mãn
thì khẳng định nào dưới đây đúng?
Ta có:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Vậy tổng số tiền nhận được là: triệu đồng.
Cho
. Khi đó
có giá trị là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số
và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số
là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số
Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Tập xác định của hàm số là
. Đúng||Sai
d) Có 6 giá trị nguyên thuộc tập xác định của hàm số Sai||Đúng
Đồ thị của hàm số và hàm số
đối xứng với nhau qua trục hoành sai vì hai hàm số đối xứng với nhau qua trục tung.
Hàm số đồng biến trên khoảng
đúng vì
.
Tập xác định của hàm số là
đúng.
Xét hàm số có điều kiện xác định
Vì
Vậy có 7 giá trị nguyên thuộc điều kiện xác định của hàm số .