Rút gọn biểu thức
với x > 0
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Tìm tập nghiệm của bất phương trình
?
Ta có:
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Biết
khi đó
có giá trị là:
Ta có:
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
![]()
Ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Tính giá trị biểu thức
với
.
Ta có:
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Có bao nhiêu giá trị nguyên của dương của tham số
để hàm số
đồng biến trên tập số thực?
Đáp án: 4
Có bao nhiêu giá trị nguyên của dương của tham số để hàm số
đồng biến trên tập số thực?
Đáp án: 4
Hàm số đồng biến trên
khi và chỉ khi
Mà
Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Cho
là hai số thực dương và
là hai số thực tùy ý. Đẳng thức nào sau đây sai?
Biểu thức sai là:
Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm
Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm
Giả sử bà A đã gửi ngân hàng trong x năm
Số tiền bà nhận được là 250 triệu đồng
Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là
Vậy bà A đã gửi tiết kiệm trong 10 năm.
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Phương trình
có bao nhiêu nghiệm?
Ta có:
Logarit cơ số 7 hai vế ta có:
Giải phương trình ta được
Giải phương trình
Vậy tập nghiệm của phương trình là:
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Tìm giá trị của x để hàm số
có nghĩa.
Hàm số xác định với mọi
Vật tập xác định của hàm số là: .
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi ![]()
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
.
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Cho
. Tìm khẳng định đúng trong các khẳng định dưới đây?
Khẳng định đúng là:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Tìm tập nghiệm của bất phương trình
.
Điều kiện:
Bất phương trình đã cho tương đương với
Kết hợp điều kiện, suy ra bất phương trình có nghiệm
Vậy tập nghiệm của bất phương trình là:
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Cho hàm số
. Hỏi có bao nhiêu giá trị
thuộc tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Mà
Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.
Biết rằng
là các số thực dương thỏa mãn
. Tìm khẳng định đúng trong các khẳng định sau?
Ta có:
Ta có:
. Biểu thức
có giá trị là:
Ta có:
Kết quả nào dưới đây đúng khi đơn giản biểu thức
?
Ta có:
Tìm nghiệm của phương trình
.
Điều kiện xác định
Vậy phương trình có nghiệm .
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Nếu
thì giá trị
là:
Ta có:
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Hàm số nào sau đây phù hợp với hình vẽ:

Ta có: và hàm số đồng biến trên
nên chỉ có hàm số
thỏa mãn.
Biết khi rút gọn biểu thức
thu được phân số
tối giản và
. Tính giá trị biểu thức
.
Ta có:
Ta lại có:
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là