Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Biết
khi đó
có giá trị là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Tìm nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm t = 2.
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có:
Kết quả nào sau đấy là nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Số
có bao nhiêu chữ số?
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147278481.
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Giả sử
là tổng các nghiệm của phương trình
. Giá trị của
là:
Điều kiện xác định
Phương trình đã cho tương đương:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Rút gọn biểu thức
.
Ta có:
Tìm số nghiệm của phương trình
?
Điều kiện xác định
Phương trình đã cho tương đương:
Vậy phương trình có 1 nghiệm duy nhất.
Cho hàm số
. Tìm tập xác định của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là
Để nhận được số tiền hơn 400 triệu thì
Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho các số dương
thỏa mãn
. Chọn khẳng định đúng.
Xét tính đúng sai của từng đáp án dựa vào điểu kiện của
(vì
) nên
đúng
Vì nên
. Vậy
sai.
Vì nên
. Vậy
sai.
Vì nên
. vậy
sai.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Tính giá trị của biểu thức
biết
?
Ta có:
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Rút gọn biểu thức

Với ta có:
Khi đó:
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Cho phương trình
. Giả sử
là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của
là:
Điều kiện
Ta có:
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình đã cho là
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Cho phương trình với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Đáp án: 4
Phương trình đã cho tương đương
Theo yêu cầu đề bai khi và chỉ khi (*) có hai nghiệm thỏa mãn
Mặt khác
Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Biết
. Biểu diễn
theo
?
Ta có:
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Tính giá trị biểu thức
với
.
Ta có:
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Cho hình vẽ:

Đồ thị hình bên là của hàm số nào?
Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hai hàm số
Đồ thị hàm số đi qua điểm nên hàm số
thỏa mãn.
Cho hàm số
. Với
, giá trị của biểu thức
bằng:
Ta có:
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là