Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    \Leftrightarrow 3^{a}.2^{b}.5^{c} =
5

    Do a,b,c\in\mathbb{ N} nên chỉ có một bộ số (a,b,c) = (0,0,1) thỏa mãn.

    Khẳng định đúng là a = b.

  • Câu 2: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 3: Thông hiểu

    Cho \left(
\sqrt{5} - 2 ight)^{x} > \left( \sqrt{5} - 2 ight)^{y}. Khẳng định nào sau đây đúng?

    Ta có: \sqrt{5} - 2 < 1 do đó nếu \left( \sqrt{5} - 2 ight)^{x} >
\left( \sqrt{5} - 2 ight)^{y} \Rightarrow x < y

  • Câu 4: Nhận biết

    Giá trị của biểu thức \log_{2}5.\log_{5}64

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 5: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 6: Thông hiểu

    Đồ thị hàm số sau là của hàm số nào?

    Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại y = \left( \sqrt{2} ight)^{x}y = \left( \sqrt{3} ight)^{x}.

    Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án y = \left( \frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 7: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 8: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 9: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 10: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Phương trình 5^{2x^{4} - 5x^{2} + 3} - 7^{x^{2} - \frac{3}{2}}
= 0 có bao nhiêu nghiệm?

    Ta có:

    Logarit cơ số 7 hai vế ta có:

    {5^{2{x^4} - 5{x^2} + 3}} = {7^{{x^2} - \frac{3}{2}}}

    \Leftrightarrow \left( 2x^{4} - 5x^{2} +3 ight)\log_{7}5 = \left( x^{2} - \frac{3}{2} ight)

    \Leftrightarrow 2\left( x^{2} - 1ight)\left( x^{2} - \frac{3}{2} ight)\log_{7}5 - \left( x^{2} -\frac{3}{2} ight) = 0

    \Leftrightarrow \left\lbrack 2\left(x^{2} - 1 ight)\log_{7}5 - 1 ightbrack.\left( x^{2} - \frac{3}{2}ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}2\left( x^{2} - 1 ight)\log_{7}5 - 1 = 0 \\x^{2} - \dfrac{3}{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}2\left( x^{2} - 1 ight)\log_{7}5 - 1 = 0 \\x^{2} - \dfrac{3}{2} = 0 \\\end{matrix} ight.

    Giải phương trình x^{2} =
\frac{3}{2} ta được x = \pm
\frac{\sqrt{6}}{2}

    Giải phương trình 2\left( x^{2} - 1ight)\log_{7}5 - 1 = 0

    \Leftrightarrow x^{2} =\frac{\log_{5}7}{2} + 1

    \Leftrightarrow x = \pm\sqrt{\frac{\log_{5}175}{2}}

    Vậy tập nghiệm của phương trình là:S =\left\{ \pm \frac{\sqrt{6}}{2}; \pm \sqrt{\frac{\log_{5}175}{2}}ight\}

  • Câu 12: Thông hiểu

    Số thực x thỏa mãn \log_{2}\left( \log_{4}x ight) = \log_{4}\left(\log_{3}x ight) - a với a\mathbb{\in R}. Giá trị của \log_{2}x bằng bao nhiêu?

    Ta có:

    \log_{2}\left( \log_{4}x ight) =\log_{4}\left( \log_{3}x ight) - a

    \Leftrightarrow \log_{2}\left(\frac{1}{2}\log_{2}x ight) = \frac{1}{2}\log_{2}\left( \log_{2}x ight)- a

    \Leftrightarrow \log_{2}\left( \log_{2}xight) = 2 - 2a

    \Leftrightarrow \log_{2}x = 4^{1 -a}

  • Câu 13: Nhận biết

    Cho hàm số y =
\ln\left( 15 - x^{2} ight). Hỏi có bao nhiêu giá trị x\in \mathbb{Z} thuộc tập xác định D của hàm số?

    Điều kiện xác định của hàm số y =
\ln\left( 15 - x^{2} ight) là:

    15 - x^{2} > 0 \Leftrightarrow -
\sqrt{15} < x < \sqrt{15}

    x\mathbb{\in Z \Rightarrow}x = \left\{
\pm 3; \pm 2; \pm 1;0 ight\}

    Vậy có 7 giá trị nguyên của x thỏa mãn điều kiện đề bài.

  • Câu 14: Nhận biết

    Với m > 0;m
eq 1 thì giá trị của \log_{\sqrt[3]{m}}m bằng bao nhiêu?

    Ta có: \log_{\sqrt[3]{m}}m =\log_{m^{\frac{1}{3}}}m = 3\log_{m}m = 3

  • Câu 15: Thông hiểu

    Với các số a,b
> 0 thỏa mãn a^{2} + b^{2} =
6ab, biểu thức \log_{2}(a +b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Leftrightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow\log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a +\log_{2}b ight)

  • Câu 16: Nhận biết

    Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm số y = \log_{\frac{e}{2\pi}}x có 0 < \frac{e}{2\pi} < 1 là hàm số nghịch biến trên tập xác định của nó.

    Các hàm số y = \log_{\sqrt{2}}x; y = \log_{\pi}2x; y = \log_{2}x có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.

  • Câu 17: Thông hiểu

    Cho phương trình phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2} . Số nghiệm của phương trình là:

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} + \frac{x}{3} - \frac{1}{{2x}} = \frac{7}{3}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x = 3\left( {tm} ight)} \\ 
  {x =  - \dfrac{1}{5}\left( {ktm} ight)} 
\end{array}} ight.

    Vậy phương trình có duy nhất 1 nghiệm x = 3.

  • Câu 18: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty).

  • Câu 19: Thông hiểu

    Cho phương trình \log_{2}(2x - 1)^{2} = 2\log_{2}(x - 2). Số nghiệm thực của phương trình là:

    Điều kiện x > 2

    Ta có:

    \log_{2}(2x - 1)^{2} = 2\log_{2}(x -2)

    \Leftrightarrow 2\log_{2}(2x - 1) =2\log_{2}(x - 2)

    \Leftrightarrow 2x - 1 = x - 2
\Leftrightarrow x = - 1

    Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.

    Vậy tập nghiệm của bất phương trình là: S
= \lbrack - 2;2brack

  • Câu 20: Nhận biết

    Cho biết \log_{2}a= x;\log_{2}b = y, biểu thức \log_{2}\left( 4a^{2}b^{3} ight) có giá trị là:

    Ta có:

    \log_{2}\left( 4a^{2}b^{3} ight) =\log_{2}4 + \log_{2}a^{2} + \log_{2}b^{3}

    = 2 + 2\log_{2}a + 3\log_{2}b = 2x + 3y +2

  • Câu 21: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 22: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 23: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 24: Vận dụng

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 26: Nhận biết

    Phương trình \log_{3}\left( x^{2} + 2 ight) = 3 có tất cả bao nhiêu nghiệm?

    Điều kiện xác định: x^{2} + 2 >
0;\forall x\mathbb{\in R}

    \log_{3}\left( x^{2} + 2 ight) = 3\Leftrightarrow x^{2} + 2 = 3^{3}

    \Leftrightarrow x^{2} = 25
\Leftrightarrow x = \pm 5(tm)

    Vậy phương trình có hai nghiệm.

  • Câu 27: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

  • Câu 28: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{x - 3}{x + 2}?

    Điều kiện xác định:

    \frac{x - 3}{x + 2} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 3 \\
x < - 2 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số đã cho là: D
= ( - \infty; - 2) \cup (3; + \infty)

  • Câu 29: Thông hiểu

    Biết \log_{2}m =6\log_{4}a - 4\log_{2}\sqrt{b} - \log_{\frac{1}{2}}c. Biểu diễn m theo a,b,c?

    Ta có:

    \log_{2}m = 6\log_{4}a - 4\log_{2}\sqrt{b}- \log_{\frac{1}{2}}c

    \Leftrightarrow \log_{2}m = \log_{2}a^{3}- \log_{2}b^{2} + \log_{2}c

    \Leftrightarrow \log_{2}m =\log_{2}\frac{a^{3}.c}{b^{2}} \Leftrightarrow m =\frac{a^{3}.c}{b^{2}}

  • Câu 30: Nhận biết

    Số nghiệm nguyên của bất phương trình \log_{\frac{1}{2}}(x - 3) \geq  \log_{\frac{1}{2}}4 là:

    Ta có:

    \log_{\frac{1}{2}}(x - 3) \geq  \log_{\frac{1}{2}}4

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 > 0 \\
x - 3 \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x \leq 7 \\
\end{matrix} ight.

    Tập nghiệm của bất phương trình là S = (3; 7].

    Từ đó suy ra bất phương trình có 4 nghiệm nguyên.

  • Câu 31: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 32: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 33: Nhận biết

    Với ab là hai số thực dương tùy ý, biểu thức \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 34: Nhận biết

    Cho bất phương trình \left( \frac{1}{3} ight)^{x} > 9. Xác định nghiệm của bất phương trình đã cho?

    Ta có:

    \left( \frac{1}{3} ight)^{x} > 9\Leftrightarrow \left( 3^{- 1} ight)^{x} > 3^{2}

    \Leftrightarrow 3^{- x} > 3^{2}\Leftrightarrow x < - 2

    Vậy tập nghiệm của bất phương trình là x\in ( - \infty; - 2)

  • Câu 35: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Thông hiểu

    Chọn mệnh đề đúng trong các khẳng định dưới đây.

    Xét hàm số y = a^{x} y = \left( \frac{1}{a} ight)^{x}

    Với \forall x\in\mathbb{ R} ta có: f( - x) = a^{- x} = \left( \frac{1}{a}
ight)^{x} = g(x)

    Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.

  • Câu 37: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\left( 4 - x^{2} ight).

    Điều kiện xác định 4 - x^{2} > 0
\Rightarrow x \in ( - 2;2)

    Vậy tập xác định của hàm số là D = ( -
2;2)

  • Câu 38: Vận dụng

    Cho hàm số y =
a^{x} có đồ thị như hình vẽ, y =
f(x) có đồ thị đối xứng với đồ thị hàm số y = a^{x} qua đường thẳng y = - x. Xác định hàm số f(x).

    Ta có:

    Phép đối xứng trục qua đường thẳng y = -
x biến mỗi điểm có tọa độ (x;y) thành điểm có tọa độ ( - y; - x).

    Mỗi điểm trên đồ thị hàm số y =
a^{x} có dạng \left( u;a^{u}
ight), lấy đối xứng qua d ta được điểm có tọa độ \left( - a^{u};u ight) thuộc đồ thị hàm số y = f(x).

    Do đó f\left( - a^{u} ight) = -
u. Đặt x = - a^{u}, khi đó x = log_{a}( - x). Vậy f(x) = - \log_{a}( - x).

  • Câu 39: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 40: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo