Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Xác định nghiệm của bất phương trình
?
Ta có:
hay
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Khẳng định nào sau đây đúng?
Ta có:
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Tìm cặp số
. Biết
.
Ta có:
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là: .
Xác định tập nghiệm của phương trình
?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình có tập nghiệm là
Tính giá trị biểu thức
?
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định:
Vậy tập xác định của hàm số đã cho là:
Thu gọn biểu thức
với
là các số thực dương:
Ta có:
Hãy biểu diễn
theo hai giá trị
biết
?
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Với a và b là hai số thực dương tùy ý, giá trị
bằng:
Ta có:
Biết
với
. Chọn khẳng định đúng?
Ta có:
Cho
là các số thực dương khác 1. Các hàm số
có đồ thị như hình vẽ bên.

Tìm khẳng định đúng.
Kí hiệu hình vẽ như sau:
Kẻ đường thẳng cắt đồ thị của các hàm số
lần lượt tại các điểm có hoành độ là
.
Từ đồ thị ta có .
Phương trình
có tập nghiệm là:
Điều kiện
Ta có:
Vậy phương trình vô nghiệm hay .
Cho tam giác vuông ABC có
là độ dài hai cạnh góc vuông,
là độ dài cạnh huyền với điều kiện
. Chọn kết luận đúng.
Do tam giác ABC vuông nên ta có:
Tính giá trị của biểu thức
biết
?
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Với các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có: nên
sai.
Xác định nghiệm của phương trình ![]()
Ta có:
Vậy phương trình có nghiệm .
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Giá trị
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.
Đáp án: 179084769,7||179084769.7
Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.
Đáp án: 179084769,7||179084769.7
Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất
Sau 1 tháng, số tiền cả gốc và lãi là:
Sau n tháng, số tiền cả gốc và lãi là:
Số tiền sau 10 năm với lãi suất 6% một năm là:
(triệu đồng).
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Cho hai hàm số
với
là các số thực dương khác có đồ thị hàm số lần lượt là
như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây.
Từ hình vẽ ta thấy đồ thị tăng suy ra hàm số
có cơ số
.
Đồ thị giảm suy ra hàm số
có cơ số
Tập nghiệm của bất phương trình
là:
Ta có:
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng
khi và chỉ khi hàm số
đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Chọn phát biểu sai?
Ta có: là phát biểu sai do
Xác định hàm số nghịch biến trên tập số thực trong các hàm số sau?
Hàm số nghịch biến trên
khi
.
Rút gọn biểu thức
biết
.
Ta có:
Cho
thỏa mãn
. Chọn khẳng định đúng?
Ta có:
Lôgarit cơ số 10 cho hai vế ta được:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Cho
là số thực dương. Biểu thức
được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hàm số có tập xác định
Cơ số do đó hàm số đồng biến trên
Giá trị của biểu thức
bằng:
Ta có: