Tìm giá trị của x biết
.
Điều kiện
Ta có:
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Biết đồ thị hàm số
đối xứng với đồ thị hàm số
qua điểm
. Giá trị của
là:
Gọi là điểm thuộc đồ thị hàm số
thì điểm đối xứng với
qua
là
thuộc đồ thị hàm số
=>
Rút gọn biểu thức:
với
ta được kết quả là:
Ta có: .
Tìm số nghiệm của phương trình
?
Điều kiện xác định
Phương trình đã cho tương đương:
Vậy phương trình có 1 nghiệm duy nhất.
Cho
. Khi đó
có giá trị là:
Ta có:
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Cho
và
. Tính giá trị biểu thức
?
Ta có:
Khi đó:
Tính giá trị biểu thức
?
Ta có:
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Cho các số thức a, b thỏa mãn
và
. Tính giá trị của biểu thức
?
Ta có:
Đặt . Do
Khi đó
Với ta có:
=>
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Tìm tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là: .
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Xác định tập nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có tập nghiệm .
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho số thực dương
. Tính
.
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Số nghiệm nguyên của bất phương trình
là:
Ta có:
Tập nghiệm của bất phương trình là S = (3; 7].
Từ đó suy ra bất phương trình có 4 nghiệm nguyên.
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Phương trình
có bao nhiêu nghiệm?
Ta có:
Logarit cơ số 7 hai vế ta có:
Giải phương trình ta được
Giải phương trình
Vậy tập nghiệm của phương trình là:
Cho số thực a dương tùy ý. Đặt
. Giá trị của x tương ứng là:
Ta có:
Vậy giá trị của x tương ứng là: .
Cho hàm số
. Với
, giá trị của biểu thức
bằng:
Ta có:
Biết phương trình
có hai nghiệm phân biệt thỏa mãn
. Chọn mệnh đề đúng.
Ta có:
Đặt ta được:
Phương trình đã cho có hai nghiệm phân biệt thỏa mãn khi và chỉ khi
có hai nghiệm phân biệt thỏa mãn.
.
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .
Quan sát đồ thị hàm số sau:

Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại
và ta thấy
Vậy
Cho phương trình
. Xác định nghiệm của phương trình đã cho?
Ta có:
Vậy phương trình có nghiệm x = 2.
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Xác định hàm số đồng biến trên
?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Rút gọn biểu thức
.
Ta có:
Tính giá trị của
với mọi giá trị
?
Ta có:
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Tính
.
Ta có: