Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Tính giá trị biểu thức
với
.
Ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Kết quả nào dưới đây đúng khi đơn giản biểu thức
?
Ta có:
Phương trình
có bao nhiêu nghiệm?
Ta có:
Logarit cơ số 7 hai vế ta có:
Giải phương trình ta được
Giải phương trình
Vậy tập nghiệm của phương trình là:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Xác định tập nghiệm của bất phương trình
?
Điều kiện
Ta có:
Vậy tập nghiệm bất phương trình là
Xác định nghiệm của phương trình
.
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có nghiệm .
Số
có bao nhiêu chữ số?
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147278481.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Biết
,
bằng:
Ta có:
Phương trình
có bao nhiêu nghiệm?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm .
Cho
, khi đó
có giá trị bằng:
Ta có:
Vậy
Nếu
và
thì:
Ta có:
nên
(do
)
Ta có:
(vì
)
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Tìm giá trị của x biết
.
Điều kiện
Ta có:
Cho đồ thị hàm số
như hình vẽ:

Hàm số
có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là
.
Trong các hàm số sau hàm số nào có cùng tập xác định với hàm số
?
Ta có tập xác định hàm số là
.
Hàm số cũng có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Với
, khẳng định nào sau đây đúng?
Mệnh đề đúng là:
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có:
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
để hàm số
có tập xác định
?
Hàm số xác định trên
khi và chỉ khi
Do
Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Vậy tổng số tiền nhận được là: triệu đồng.
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Tìm nghiệm phương trình
?
Điều kiện
Ta có:
Vậy phương trình có nghiệm .
Biết
là hai số dương tùy ý thì
có giá trị tương ứng với biểu thức nào sau đây?
Ta có: