Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    a) Điều kiện xác định của hàm số y =\ln\left( - x^{2} + 5x - 6 ight) là:

    - x^{2} + 5x - 6 > 0 \Leftrightarrow2 < x < 3

    Vậy tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3).

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực đúng vì a > 1.

    c) Ta có:

    \log_{2}a^{3} + \log_{2}b = 8

    \log_{2}a^{3} + \log_{2}b = 8\Leftrightarrow \log_{2}\left( a^{3}b ight) = 8

    \Leftrightarrow a^{3}b = 2^{8} =256

    d) Hàm số y = \ln\left( x^{2} - 2x - m +1 ight) có tập xác định trên tập số thực khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forallx\mathbb{\in R}

    \Leftrightarrow \Delta' < 0\Leftrightarrow 1 + m - 1 < 0 < 0 \Leftrightarrow m <0

    Kết hợp với điều kiện m\mathbb{\in Z},m\in \lbrack - 2018;2018brack ta được 2018 giá trị của tham số m thỏa mãn.

  • Câu 2: Nhận biết

    Giá trị của \log_{a}\frac{1}{\sqrt[3]{a}} với a > 0;a eq 1 bằng:

    Ta có: \log_{a}\frac{1}{\sqrt[3]{a}} =\log_{a}a^{\frac{- 3}{2}} = - \frac{3}{2}

  • Câu 3: Thông hiểu

    Tính giá trị biểu thức: N = 2\log_{2}a + 5\log_{2}b biết a,b \in \mathbb{R}^{+};a^{2}b^{5} =
64?

    Ta có: a,b > 0

    a^{2}b^{5} = 64 \Leftrightarrow \log_{2}\left( a^{2}b^{5} ight) = \log_{2}64

    \Leftrightarrow 2\log_{2}a + 5\log_{2}b =6

    \Leftrightarrow N = 6

  • Câu 4: Nhận biết

    Tính giá trị biểu thức H = \log_{\frac{m}{2}}\left( \frac{m^{2}}{4}ight) với m \in
\mathbb{R}^{+}\backslash\left\{ 2 ight\}?

    Ta có:

    H = \log_{\frac{m}{2}}\left(\frac{m^{2}}{4} ight) = \log_{\frac{m}{2}}\left( \frac{m}{2}ight)^{2} = 2\log_{\frac{m}{2}}\left( \frac{m}{2} ight) =2

  • Câu 5: Thông hiểu

    Biểu thức L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}};(x > 0) viết dưới dạng lũy thừa của một số hữu tỉ là x^{m}. Kết quả nào sau đây đúng?

    Ta có:

    L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{\frac{5}{2}}}}

    = \sqrt[6]{x^{3}.x^{\frac{5}{6}}} =
\sqrt[6]{x^{\frac{23}{6}}} = x^{\frac{23}{36}} \Rightarrow m =
\frac{23}{36}

  • Câu 6: Thông hiểu

    Cho \left(
\sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y}, khi đó:

    Ta có:\left\{ \begin{matrix}
0 < \sqrt{2} - 1 < 1 \\
\left( \sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y} \\
\end{matrix} ight.\  \Rightarrow x > y

  • Câu 7: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Xác định hàm số đồng biến trên \mathbb{R}?

    Ta có: y = 1,25^{x}1,25 > 1 nên hàm số đồng biến trên tập số thực.

  • Câu 9: Nhận biết

    Tìm số nghiệm của phương trình 2^{2x^{2} - 4x + 3} = 2

    Ta có: 2^{2x^{2} - 4x + 3} =
2

    \Leftrightarrow 2x^{2} - 4x + 3 = 1
\Leftrightarrow x = 1

    Vậy phương trình có 1 nghiệm.

  • Câu 10: Nhận biết

    Đơn giản biểu thức E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} với a >
0 được kết quả là:

    Ta có:

    E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} = a^{\sqrt{2}}.a^{- \sqrt{2} + 1} = a^{\sqrt{2} -
\sqrt{2} + 1} = a

  • Câu 11: Thông hiểu

    Giải bất phương trình 2^{x + 2} - 2^{x + 3} - 2^{x + 4} > 5^{x + 1} -
5^{x + 2} thu được tập nghiệm là:

    Ta có:

    2^{x + 2} - 2^{x + 3} - 2^{x + 4} >
5^{x + 1} - 5^{x + 2}

    \Leftrightarrow - 20.2^{x} > -
20.5^{x}

    \Leftrightarrow 2^{x} <
5^{x}

    \Leftrightarrow \left( \frac{2}{5}
ight)^{x} < 1 \Leftrightarrow x > 0

    Vậy tập nghiệm bất phương trình là: S =
(0; + \infty)

  • Câu 12: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight)y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 13: Vận dụng

    Cho hàm số f(x) =
\frac{4^{x}}{4^{x} + 2}. Tính giá trị của biểu thức:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{4^{x}}{4^{x} +
2} + \frac{4^{1 - x}}{4^{1 - x} + 2} = 1

    Khi đó:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    A = \frac{2007}{2}

  • Câu 14: Thông hiểu

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln(A + B) = \ln A + \lnB với mọi A > 0;B >0.

    (iv) \log_{a}b.\log_{b}c.\log_{c}a =1 với mọi a,b,c\in\mathbb{R}

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của \log_{a}b chỉ cần thỏa mãn 0 < a eq0

    (ii) Đúng vì điều kiện có nghĩa của \log_{a}b là b> 0

    (iii) Sai vì \ln(A + B) = \ln A.\ln B với mọi A > 0;B >0.

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức \log_{a}b;\log_{b}c;\log_{c}a không có nghĩa.

  • Câu 15: Nhận biết

    Tập nghiệm của bất phương trình \log_{3}\left( 18 - x^{2} ight) \geq 2 là:

    Điều kiện: 18 - x^{2} > 0
\Leftrightarrow x \in \left( - 3\sqrt{2};3\sqrt{2}
ight)(*)

    Ta có:

    \log_{3}\left( 18 - x^{2} ight) \geq 2\Leftrightarrow 18 - x^{2} \geq 9 \Leftrightarrow - 3 \leq x \leq3

    Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: \lbrack -
3;3brack.

  • Câu 16: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{1}{3} ight)^{x + 2} \geq
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x + 2} \geq
9 \Leftrightarrow \left( 3^{- 1} ight)^{x + 2} \geq 3^{2}

    \Leftrightarrow 3^{- x - 2} \geq 3^{2}
\Leftrightarrow - x - 2 \geq 2 \Leftrightarrow x \leq - 4

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty; - 4brack

  • Câu 17: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 18: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 19: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 20: Nhận biết

    Cho a > 0;a
eq 1 khi đó \log_{a^{3}}a có giá trị bằng bao nhiêu?

    Ta có: \log_{a^{3}}a = \frac{1}{3}\log_{a}a= \frac{1}{3}

  • Câu 21: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?

    Đáp án: 24 năm

    Đáp án là:

    Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?

    Đáp án: 24 năm

    Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là T = 10^{8}.1,06^{n}

    Để nhận được số tiền hơn 400 triệu thì

    T > 4.10^{8} \Leftrightarrow
10^{8}.1,06^{n} > 4.10^{8}

    \Leftrightarrow 1,06^{n} > 4
\Leftrightarrow n > log_{1,06}4 \approx 23,79

    Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.

  • Câu 23: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 24: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 25: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 26: Nhận biết

    Giá trị của biểu thức \log_{2}5.\log_{5}64

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 27: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    a) Vì 0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực đúng.

    b) Điều kiện xác định của hàm số:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Rightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là D =
(2;9brack

    c) Ta có: 2 < \sqrt{5} <
\sqrt{6} nên 3^{2} <
3^{\sqrt{5}} < 3^{\sqrt{6}} hay b < a < c

    d) Điều kiện xác định:

    mx - m + 2 > 0 \Leftrightarrow mx
> m - 2\ \ (*)

    TH1: m = 0 \Rightarrow (*)0 > -
1(tm)

    TH2: m > 0 \Rightarrow (*)
\Leftrightarrow x > \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
\frac{m - 2}{2}; + \infty ight)

    Khi đó yêu cầu bài toán trở thành \frac{m
- 2}{2} < 1 \Leftrightarrow m - 2 < m \Leftrightarrow - 2 <
0(tm)

    Th3: m < 0 \Rightarrow (*)
\Leftrightarrow x < \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
- \infty;\frac{m - 2}{2} ight)

    Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 28: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

  • Câu 30: Thông hiểu

    Cho bất phương trình: \left( \frac{2}{3} ight)^{2x^{2} + 4x} \leq\left( \frac{3}{2} ight)^{x + 3}. Chọn khẳng định đúng về tập nghiệm của bất phương trình.

    Ta có:

    \left( \frac{2}{3} ight)^{2x^{2} + 4x}\leq \left( \frac{3}{2} ight)^{x + 3}

    \Leftrightarrow \left( \frac{2}{3}ight)^{2x^{2} + 4x} \leq \left( \frac{2}{3} ight)^{- x -3}

    \Leftrightarrow 2x^{2} + 4x \geq - x -3

    \Leftrightarrow 2x^{2} + 4x + 3 \geq0

    \Leftrightarrow \left\lbrack\begin{matrix}x \leq - \dfrac{3}{2} \\x \geq - 1 \\\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình là: S= \left( - \infty;\frac{- 3}{2} ight) \cup \lbrack - 1; +\infty)

  • Câu 31: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 32: Thông hiểu

    Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{3} - 1 < 1 \\
2018 > 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{3} - 1
ight)^{2018} < \left( \sqrt{3} - 1 ight)^{2017}

  • Câu 33: Thông hiểu

    Giải phương trình \log_{\frac{1}{3}}\left( x^{2} - 3x - 1 ight) +\log_{3}(2 - x) = 0 và cho biết phương trình có tất cả bao nhiêu nghiệm nguyên dương?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 1 > 0 \\
2 - x > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow - \log_{3}\left( x^{2} -3x - 1 ight) = - \log_{3}(2 - x)

    \Leftrightarrow \log_{3}\left( x^{2} - 3x- 1 ight) = \log_{3}(2 - x)

    \Leftrightarrow x^{2} - 3x - 1 = 2 - x
\Leftrightarrow x^{2} - 2x - 3 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Kết hợp điều kiện đề bài ta thấy không có giá trị nào thỏa mãn

    Vậy phương trình không có nghiệm nguyên dương.

  • Câu 34: Vận dụng

    Tìm giá trị tham số m để bất phương trình 1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight) có nghiệm đúng với mọi x.

    Ta có:

    1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight)

    \Leftrightarrow \log_{5}\left\lbrack5\left( x^{2} + 1 ight) ightbrack \geq \log_{5}\left( mx^{2} + 4x +m ight)

    \Leftrightarrow \left\{ \begin{matrix}
5\left( x^{2} + 1 ight) \geq mx^{2} + 4x + m \\
mx^{2} + 4x + m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(5 - m)x^{2} - 4x + 5 - m \geq 0\ \ \ (1) \\
mx^{2} + 4x + m > 0\ \ \ \ (2) \\
\end{matrix} ight.

    Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.

    Với m = 0 hoặc m = 5 không thỏa mãn đề bài.

    Với m eq 0 hoặc m eq 5 để thỏa mãn đề bài thì:

    \left\{ \begin{matrix}
5 - m > 0 \\
4 - (5 - m)^{2} \leq 0 \\
m > 0 \\
4 - m^{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
\left\lbrack \begin{matrix}
m \leq 3 \\
m \geq 7 \\
\end{matrix} ight.\  \\
m > 0 \\
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow 2 < m \leq
3

  • Câu 35: Thông hiểu

    Cho hàm số y =f(x) = \log_{2}\left( x^{2} - 2x + 2022 - a ight) với a là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a để hàm số đã y = f(x) xác định với mọi x\mathbb{\in R} ?

    Đáp án: 2020

    Đáp án là:

    Cho hàm số y =f(x) = \log_{2}\left( x^{2} - 2x + 2022 - a ight) với a là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a để hàm số đã y = f(x) xác định với mọi x\mathbb{\in R} ?

    Đáp án: 2020

    Hàm số y = f(x) = \log_{2}\left( x^{2} -2x + 2022 - a ight) xác định với mọi x\in\mathbb{ R} khi và chỉ khi

    x^{2} - 2x + 2022 - a > 0;\forall
x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 - (2022 - a) < 0 \\
\end{matrix} ight.\  \Leftrightarrow a < 2021

    a \in \mathbb{Z}^{+}

    Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.

  • Câu 36: Thông hiểu

    Rút gọn biểu thức P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >0) thu được kết quả a^{\frac{m}{n}}, trong đó m,n \in \mathbb{N}^{*} và phân số \frac{m}{n} tối giản. Chọn khẳng định đúng?

    Ta có:

    P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{- \frac{2}{7}}} =\frac{a^{4}}{a^{4}.a^{- \frac{2}{7}}} = a^{\frac{2}{7}}

    \Rightarrow \left\{ \begin{matrix}m = 2 \\n = 7 \\\end{matrix} ight.\  \Rightarrow 2m^{2} + n = 15.

  • Câu 37: Nhận biết

    Nếu m^{2x} =
3 thì giá trị 3m^{6x} là:

    Ta có: 3m^{6x} = 3.\left( m^{2x}
ight)^{3} = 3.3^{3} = 81

  • Câu 38: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 39: Nhận biết

    Hãy xác định tập xác định D của hàm số y = \log_{2}(3 - x)?

    Điều kiện xác định của hàm số y =
log_{2}(3 - x) là:

    3 - x > 0 \Leftrightarrow x <
3

    Vậy tập xác định của hàm số đã cho là D =
( - \infty;3).

  • Câu 40: Vận dụng

    Cho a,b >0 thỏa mãn a^{2} + 4b^{2} =5ab. Chọn khẳng định đúng?

    Ta có: a^{2} + 4b^{2} = 5ab \Rightarrow(a + 2b)^{2} = 9ab

    Lôgarit cơ số 10 cho hai vế ta được:

    \log(a + 2b)^{2} =\log(9ab)

    \Leftrightarrow 2\log(a + 2b) = \log9 +\log a + \log b

    \Leftrightarrow 2\left\lbrack \log(a +2b) - \log3 ightbrack = \log a + \log b

    \Leftrightarrow \log\left( \frac{a +2b}{3} ight) = \frac{\log a + \log b}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo