Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu giá trị nguyên của m để hàm số y = \frac{x + 2}{x + 5m} có đạo hàm dương trên ( - \infty; - 10)?

    Tập xác định D = ( - \infty;5m) \cup ( -
5m; + \infty)

    Ta có:

    y' = \frac{5m - 2}{(x +
5m)^{2}}

    Theo yêu cầu của đề bài

    \Leftrightarrow \left\{ \begin{matrix}
5m - 2 > 0 \\
- 10 \leq - 5m \\
\end{matrix} ight.\  \Leftrightarrow \frac{2}{5} \leq m \leq
2

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2 ight\}

    Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.

  • Câu 2: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 3: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 4: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 5: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 6: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =\frac{x^{2}}{2} tương ứng với số gia \Delta x của đối số x tại x_{0} =- 1\frac{1}{2}(\Delta x)^{2} -\Delta xĐúng||Sai

    b) Đạo hàm của hàm số y = \frac{x(1 -3x)}{x + 1} bằng biểu thức \frac{3x^{2} - 6x - 1}{(x + 1)^{2}}. Sai||Đúng

    c) Đạo hàm của hàm số f(x) = x^{3} -3x^{2} + 1 âm khi và chỉ khi x \in(0;2). Đúng||Sai

    d) Phương trình tiếp tuyến của đồ thị hàm số f(x) = \cos x - \frac{\sqrt{3}}{2};x \in\left\lbrack 0;\frac{\pi}{4} ightbrack song song với đường thẳng y = - \frac{1}{2}(x + 1)y = \frac{x}{12} + \frac{\pi}{12}. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =\frac{x^{2}}{2} tương ứng với số gia \Delta x của đối số x tại x_{0} =- 1\frac{1}{2}(\Delta x)^{2} -\Delta xĐúng||Sai

    b) Đạo hàm của hàm số y = \frac{x(1 -3x)}{x + 1} bằng biểu thức \frac{3x^{2} - 6x - 1}{(x + 1)^{2}}. Sai||Đúng

    c) Đạo hàm của hàm số f(x) = x^{3} -3x^{2} + 1 âm khi và chỉ khi x \in(0;2). Đúng||Sai

    d) Phương trình tiếp tuyến của đồ thị hàm số f(x) = \cos x - \frac{\sqrt{3}}{2};x \in\left\lbrack 0;\frac{\pi}{4} ightbrack song song với đường thẳng y = - \frac{1}{2}(x + 1)y = \frac{x}{12} + \frac{\pi}{12}. Sai||Đúng

    a) Với số gia của đối số x tại x_{0} = -1 ta có:

    \Delta y = \frac{(1 + \Delta x)^{2}}{2}- \frac{1}{2} = \frac{1 + (\Delta x)^{2} + 2\Delta x}{2} -\frac{1}{2}

    = \frac{1}{2}(\Delta x)^{2} + \Deltax

    b) Ta có: y = \frac{- 3x^{2} + x}{x +1}

    \Rightarrow y' = \frac{\left( -3x^{2} + x ight)'(x + 1) - \left( - 3x^{2} + x ight)(x +1)'}{(x + 1)^{2}}

    = \frac{( - 6x + 1)(x + 1) - \left( -3x^{2} + x ight)}{(x + 1)^{2}}

    = \frac{- 6x^{2} - 6x + x + 1 + 3x^{2} -x}{(x + 1)^{2}}

    = \frac{- 3x^{2} - 6x + 1}{(x +1)^{2}}

    c) Ta có: f'(x) = 3x^{2} -6x

    f'(x) < 0 \Rightarrow 3x^{2} - 6x< 0 \Leftrightarrow x \in (0;2).

    d) Ta có:

    f'(x) = - \sin x

    Tiếp tuyến song song với đường thẳng y =- \frac{1}{2}(x + 1)

    \Rightarrow f'\left( x_{0} ight) =- \frac{1}{2} \Rightarrow \sin x = - \frac{1}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in \left\lbrack 0;\frac{\pi}{4}ightbrack \Rightarrow x = \frac{\pi}{6};y = 0 \Rightarrow y = -\frac{x}{2} + \frac{\pi}{12}

  • Câu 7: Nhận biết

    Tính đạo hàm của hàm số y = \log(2x - 1) trên khoảng \left( \frac{1}{2}; + \infty ight)?

    Trên khoảng \left( \frac{1}{2}; + \infty
ight) ta có:

    y = \log(2x - 1) \Rightarrow y' =\frac{(2x - 1)'}{(2x - 1)\ln10}

    \Rightarrow y' = \frac{2}{(2x -1)\ln10}

  • Câu 8: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 9: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 10: Nhận biết

    Tính vi phân của hàm số y = {x^3} + 9{x^2} + 12x - 5

     Ta có:

    \begin{matrix}  y' = {x^2} - 18x + 12 \hfill \\   \Rightarrow dy = \left( {3{x^2} - 18x + 12} ight)dx \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Cho hàm số y = x
- \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}} + 1. Biểu thức nào dưới đây đúng?

    Ta có:

    y = x - \frac{1}{\sqrt{x}} -
\frac{1}{\sqrt[3]{x}} + 1

    \Rightarrow y' = 1 +
\frac{1}{2\sqrt[3]{x}} + \frac{1}{3\sqrt[4]{x^{4}}}

  • Câu 13: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng cao

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 15: Vận dụng

    Cho hàm số y =
f(x) = \sqrt{1 + 3x - x^{2}}. Khẳng định nào dưới đây đúng?

    Ta có: y = f(x) = \sqrt{1 + 3x -
x^{2}}

    \Rightarrow \left\{ \begin{matrix}y^{2} = 1 + 3x - x^{2} \\y' = \dfrac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} \\\end{matrix} ight.

    Ta có:

    2.y.y'' = 2.\sqrt{1 + 3x -
x^{2}}.\left( \frac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} ight) = 3 -
2x

    \Rightarrow 2(y')^{2} +
2y.y'' = - 2

    \Rightarrow (y')^{2} + y.y''
= - 1

  • Câu 16: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)...(x - 2022)}. Tính đạo hàm của hàm số y = f(x) tại x = 0?

    Đặt g(x) = (x - 1)(x - 2)...(x -
2022)

    Khi đó f(x) = \frac{x}{g(x)}

    \Rightarrow f'(x) =
\frac{x'.g(x) - x.g'(x)}{g^{2}(x)}

    = \frac{g(x) - x.g'(x)}{g^{2}(x)} =
\frac{1}{g(x)} - \frac{x.g'(x)}{g^{2}(x)}

    f'(0) = \frac{1}{g(0)} -
0.\frac{g'(0)}{g^{2}(x)} = \frac{1}{g(0)}

    = \frac{1}{( - 1).( - 2)...( - 2022)} =
\frac{1}{2022!}

  • Câu 18: Thông hiểu

    Cho đường cong có phương trình y=\frac{2x-1}{x+1}. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 0:

    Ta có: 

    \begin{matrix}  y = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{{2x - 1}}{{x + 1}}} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{{2\left( {x + 1} ight) - \left( {2x - 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{3}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( 0 ight) = 3} \\   {y\left( 0 ight) =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Phương trình tiếp tuyền tại điểm có hoành độ bằng 0 là: y = 3x - 1

    Dễ thấy phương trình tiếp tuyến vuông góc với đường thẳng y=-\frac{1}{3}x-6 (vì tích hai hệ số góc bằng -1).

  • Câu 19: Thông hiểu

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 20: Thông hiểu

    Ta có \left(
\frac{x^{2} + 4x - 1}{2x + 3} ight)' = \frac{M}{(2x +
3)^{2}}. Khi đó đa thức M là:

    Ta có:

    y = \frac{x^{2} + 4x - 1}{2x +
3}

    \Rightarrow y' = \frac{(2x + 3)(2x +
4) - 2\left( x^{2} + 4x - 1 ight)}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{4x^{3} + 14x
+ 12 - 2x^{2} - 8x + 2}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{2x^{2} + 6x +
14}{(2x + 3)^{2}}

    Vậy M=2x^{2} + 6x +14

  • Câu 21: Thông hiểu

    Tính đạo hàm của hàm số y = \cot \sqrt {{x^2} + 1}

     Ta có:

    \begin{matrix}  y' = \dfrac{{\left( {\sqrt {{x^2} + 1} } ight)'}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} =  - \dfrac{{\dfrac{x}{{\sqrt {{x^2} + 1} }}}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\   =  - \dfrac{x}{{\sqrt {{x^2} + 1} .{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = \frac{t^{3}}{3} -
2t^{2} + 3t - 5; trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm t = 4(s) thì vận tốc tức thời của chuyển động bằng bao nhiêu?

    Ta có:

    v(t) = S'(t) = t^{2} - 4t +
3

    Vận tốc tức thời của chuyển động khi t =
4(s) là:

    v(4) = 4^{2} - 4.4 + 3 =
3(m/s)

  • Câu 23: Thông hiểu

    Tính đạo hàm của hàm số y = (2x - 1)\sqrt{x^{2} + x}?

    Ta có:

    y = (2x - 1)\sqrt{x^{2} +
x}

    \Rightarrow y' = 2\sqrt{x^{2} + x} +
\frac{(2x - 1)(2x + 1)}{2\sqrt{x^{2} + x}}

    = \frac{4x^{3} + 4x + 4x^{2} -
1}{2\sqrt{x^{2} + x}} = \frac{8x^{2} + 4x - 1}{2\sqrt{x^{2} +
x}}

  • Câu 24: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 25: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 26: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 27: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 28: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 29: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 30: Thông hiểu

    Cho hàm số f(x)=\left | x-2 ight |. Khẳng định nào sau đây là sai?

    Ta có: f(2)= 0 (đúng)

    f(x) = \left| {x - 2} ight| \geqslant 0,\forall x => Hàm số nhận giá trị không âm

    Ta lại có:

    \begin{matrix}  f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {x - 2{\text{   khi }}x \geqslant 2} \\   {2 - x{\text{   khi }}x < 2} \end{array}} ight. \hfill \\  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2 - x} ight) = 0 \hfill \\  f\left( 2 ight) = 0 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f\left( 2 ight) \hfill \\ \end{matrix}

    => Hàm số liên tục tại x = 2

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 2}}{{x - 2}} = 1 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2 - x}}{{x - 2}} =  - 1 \hfill \\ \end{matrix}

    Vậy không tồn tại giới hạn \frac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} khi x tiến tới 2

    Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"

  • Câu 31: Thông hiểu

    Tính đạo hàm cấp 5 của hàm số y = \frac{x^{2} + x + 1}{x + 1} là:

    Ta có:

    y = \frac{x^{2} + x + 1}{x + 1} = x +
\frac{1}{x + 1}

    \Rightarrow y' = 1 - \frac{1}{(x +
1)^{2}}

    \Rightarrow y'' = \frac{2}{(x +
1)^{3}} \Rightarrow y^{(3)} = \frac{- 6}{(x + 1)^{4}}

    \Rightarrow y^{(4)} = \frac{24}{(x +
1)^{5}} \Rightarrow y^{(5)} = - \frac{120}{(x + 1)^{6}}

  • Câu 32: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 33: Thông hiểu

    Cho hàm số f(x)=sin^{3}x+x^{2}. Tính giá trị của f"(-\frac{\pi}{2}).

    Ta có:

    \begin{matrix}  f(x) = si{n^3}x + {x^2} \hfill \\   \Rightarrow f'\left( x ight) = 3.{\sin ^2}x.\cos x + 2x \hfill \\   \Rightarrow f''\left( x ight) = 6\sin x.{\cos ^2}x - 3.{\sin ^3}x + 2 \hfill \\   \Rightarrow f''\left( { - \dfrac{\pi }{2}} ight) = 5 \hfill \\ \end{matrix}

  • Câu 34: Vận dụng

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.

    Ta có:

    Cường độ dòng điện tại thời điểm t = 4s là:

    \begin{matrix}  I = Q'\left( t ight) = \mathop {\lim }\limits_{t \to 4} \dfrac{{Q\left( t ight) - Q\left( 4 ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {2{t^2} + t} ight) - \left( {{{2.4}^2} + 4} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{2{t^2} + t - 36}}{{t - 4}} = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {t - 4} ight)\left( {2t + 9} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \left( {2t + 9} ight) = 2.4 + 9 = 17 \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng y = -\frac{1}{45}x.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y= - \frac{1}{45}x nên ta có:

    => k\left( - \frac{1}{45} ight) = -1 \Leftrightarrow k = 45

    \Leftrightarrow 3{x_{0}}^{2} - 6x_{0} =45 \Leftrightarrow \left\lbrack \begin{matrix}x_{0} = 5 \\x_{0} = - 3 \\\end{matrix} ight.

    Với x0 = 5, ta có: \left\{\begin{matrix}y_{0} = 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x - 173

    với x0 = -2 thì \left\{\begin{matrix}y_{0} = - 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x + 83

    Vậy phương trình tiếp tuyến của đồ thị hàm số là: \left\lbrack \begin{matrix}y = 45x - 173 \\y = 45x + 83 \\\end{matrix} ight.

  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 37: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 38: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 40: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo