Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Tính đạo hàm của hàm số: ![]()
Ta có:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
và
. Tính giá trị
?
Ta có:
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
là:
Ta có:
Tính tổng
![]()
Xét
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Cho hàm số
có đồ thị hàm số
. Tìm các giá trị của tham số m để tiếp tuyến của
tại điểm có hoành độ bằng
song song với đường thẳng
?
Giá trị của tham số
là: -2|| - 2
Cho hàm số có đồ thị hàm số
. Tìm các giá trị của tham số m để tiếp tuyến của
tại điểm có hoành độ bằng
song song với đường thẳng
?
Giá trị của tham số là: -2|| - 2
Tập xác định
Ta có:
Gọi ; k là hệ số góc tiếp tuyến của
tại M và
Do tiếp tuyến M song song với nên
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Đạo hàm f'(x) có tập xác định là:
Ta có:
=> Tập xác định của hàm số f'(x) là:
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là
Cho đồ thị hàm số
. Gọi
là các điểm thuộc đồ thị
mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm
thỏa mãn điều kiện trên?
Ta có:
Giả sử với
Tiếp tuyến tại A và B song song với nhau nên
Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn thì các tiếp tuyến tại A và B song song với nhau.
Đạo hàm của hàm số
là
Ta có:
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Cho hàm số
. Chọn biểu thức đúng?
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho đường cong của phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:
Ta có:
=> Phương trình tiếp tuyến là:
Hay
Và phương trình đi qua điểm M (1;-3).
Đạo hàm bậc hai của hàm số
là:
Ta có:
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Một vật chuyển động theo quy luật
với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Tính đạo hàm của hàm số ![]()
Ta có:
Một chất điểm chuyển động biến đổi đều được biểu thị bởi phương trình
với
được tính bằng giây và
tính bằng mét. Tính gia tốc của chất điểm tại thời điểm
?
Vận tốc của chất điểm là:
Gia tốc của chất điểm là:
Tại thời điểm gia tốc của chất điểm là:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm
có dạng
. Chọn khẳng định đúng?
Điều kiện xác định
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Cho hàm số
. Tính đạo hàm của hàm số tại
?.
Ta có:
Đặt
Khi đó:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
có đạo hàm liên tục trên
và thỏa mãn
. Biết
và
. Tìm tất cả các giá trị thực của tham số m để phương trình
có hai nghiệm thực phân biệt:
Xét phương trình:
Do thay vào (*) ta được
=>
Dễ thấy hàm số f(x) đồng biến trên .
Ta có bảng biến thiên của hàm số như sau:
Do . Phương trình
có hai nghiệm thực phân biệt khi và chỉ khi
có hai nghiệm thực phân biệt. khi đó
Đồ thị của hàm số và
luôn cắt nhau tại một điểm với mọi
.
Suy ra để phương trình có hai nghiệm thực phân biệt thì
.
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số
bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số
âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số song song với đường thẳng
là
. Sai||Đúng
a) Với số gia của đối số x tại ta có:
b) Ta có:
c) Ta có:
.
d) Ta có:
Tiếp tuyến song song với đường thẳng
Vì
Tính đạo hàm của hàm số
trên khoảng
?
Trên khoảng ta có:
Đạo hàm cấp hai của hàm số
có dạng
. Tính giá trị biểu thức
.
Ta có: