Tính đạo hàm của hàm số
tại ![]()
Tập xác định
Ta có:
Tính đạo hàm của hàm số
tại ![]()
Tập xác định
Ta có:
Viết phương trình tiếp tuyến của đường cong
tại điểm -1.
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số tại
?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Đạo hàm bậc hai của hàm số
là:
Ta có:
Cho hàm số
có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của
-3|| - 3
Cho hàm số có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của -3|| - 3
Tập xác định
Ta có:
Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1
Do y’ < 0 nên k = -1
Gọi tọa độ tiếp điểm là ta có:
Với
Với
Vậy
Cho hàm số
có đồ thị hàm số
. Tìm các giá trị của tham số m để tiếp tuyến của
tại điểm có hoành độ bằng
song song với đường thẳng
?
Giá trị của tham số
là: -2|| - 2
Cho hàm số có đồ thị hàm số
. Tìm các giá trị của tham số m để tiếp tuyến của
tại điểm có hoành độ bằng
song song với đường thẳng
?
Giá trị của tham số là: -2|| - 2
Tập xác định
Ta có:
Gọi ; k là hệ số góc tiếp tuyến của
tại M và
Do tiếp tuyến M song song với nên
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Tính vận tốc trung bình của chất điểm trong khoảng thời gian từ
tới
?
Ta có:
Trong khoảng thời gian từ tới
thì chất điểm di chuyển được quãng đường
Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm t = 0 là:
Cho hàm số xác định bởi công thức
. Tìm tập hợp các giá trị của
để
?
Tập xác định
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Biết
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
kết hợp với
Cho hàm số
. Tính ![]()
Ta có:
Một vật rơi tự do theo phương trình
, trong đó
là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.
Ta có:
Vậy vận tốc trung bình của chuyển động là 49,0049m/s.
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Cho đồ thị hàm số
. Hỏi có bao nhiêu tiếp tuyến của
có hệ số góc
?
Ta có:
Hoành độ tiếp điểm là nghiệm của phương trình
Phương trình có 1 nghiệm nên có 1 tiếp tuyến có hệ số góc bằng 7
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Cho đồ thị hàm số
. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm
sao cho
?
Giả sử tiếp tuyến của (C) tại điểm cắt Ox tại A và cắt Oy tại B sao cho
.
Do tam giác OAB vuông tại O nên
Suy ra hệ số góc tiếp tuyến bằng
Hệ số góc tiếp tuyến là
Vậy có hai tiếp tuyến thỏa mãn điều kiện.
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Cho hàm số . Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Vậy giá trị của biểu thức
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Hàm số
có đạo hàm là:
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Một viên đạn được bắn lên với tốc độ ban đầu từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Ta có vận tốc tại thời điểm t là:
Từ thời điểm , viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:
Đạo hàm của hàm số: ![]()
Ta có:
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình
với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Vậy gia tốc đạt giá trị nhỏ nhất khi . Khi đó vận tốc là
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Cho hàm số
. Xác định công thức đạo hàm cấp hai của hàm số đã cho?
Tập xác định
Ta có:
Cho đường cong
với
là tham số. Gọi
là tập các giá trị của tham số
sao cho đồ thị hàm số
có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập
là:
Ta có:
Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0
Gọi tiếp điểm là khi đó
Để có đúng 1 tiếp tuyến song song với trục hoàn thì
Vậy tổng các giá trị m là 5.
Cho hàm số
. Tính giá trị
?
Ta có:
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Khi đó:
Cho hàm số
. Tính giá trị của
.
Ta có: