Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 2: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 3: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{x + 1}{x - 1}. Gọi A;B là các điểm thuộc đồ thị (C) mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm A;B thỏa mãn điều kiện trên?

    Ta có: y' = \frac{- 2}{(x -
1)^{2}}

    Giả sử A\left( x_{1};y_{1}
ight);B\left( x_{2};y_{2} ight) với x_{1} eq x_{2}

    Tiếp tuyến tại A và B song song với nhau nên y'\left( x_{1} ight) = y'\left( x_{2}
ight)

    \Leftrightarrow \frac{1}{\left( x_{1} -
1 ight)^{2}} = \frac{1}{\left( x_{2} - 1 ight)^{2}}

    \Leftrightarrow \left( x_{1} - 1
ight)^{2} = \left( x_{2} - 1 ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} - 1 = x_{2} - 1 \\
x_{1} - 1 = - x_{2} + 1 \\
\end{matrix} ight.\  \Leftrightarrow x_{1} + x_{2} = 2

    Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn x_{1} + x_{2} = 2 thì các tiếp tuyến tại A và B song song với nhau.

  • Câu 4: Thông hiểu

    Phương trình chuyển động của một chất điểm là S(t) = 4t^{2} - 2t^{3} + 5 với t là khoảng thời gian tính từ lúc bắt đầu chuyển động và S là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là x(m/s) tại thời điểm t = y(s) . Xác định giá trị biểu thức H = x.y .

    H = 16/9

    (Kết quả được ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Phương trình chuyển động của một chất điểm là S(t) = 4t^{2} - 2t^{3} + 5 với t là khoảng thời gian tính từ lúc bắt đầu chuyển động và S là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là x(m/s) tại thời điểm t = y(s) . Xác định giá trị biểu thức H = x.y .

    H = 16/9

    (Kết quả được ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    S(t) = 4t^{2} - 2t^{3} + 5

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 6t^{2} + 8t;(a = - 6;b = 8)

    Vận tốc của chuyển động đạt giá trị lớn nhất khi t = - \frac{b}{2a} = \frac{2}{3}(s)

    \Rightarrow v_{\max} = v\left(
\frac{2}{3} ight) = \frac{8}{3}

    Vậy H = x.y = \frac{2}{3}.\frac{8}{3} =
\frac{16}{9}

  • Câu 5: Thông hiểu

    Cho f(x) =\sin3x. Giá trị của f''\left( - \frac{\pi}{2} ight) bằng bao nhiêu?

    Ta có: f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow f''\left( -\frac{\pi}{2} ight) = - 9.\sin\left( - \frac{3\pi}{2} ight) =9

  • Câu 6: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 7: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 8: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - 2x^{2} - x. Tập nghiệm của bất phương trình y' \geq 0 là:

    Ta có:

    y = \frac{1}{3}x^{3} - 2x^{2} -
x

    \Rightarrow y' = x^{2} - 4x -
5

    \Rightarrow y' \geq 0
\Leftrightarrow x^{2} - 4x - 5 \geq 0

    \Leftrightarrow x \in ( - \infty; -
1brack \cup \lbrack 5; + \infty)

  • Câu 9: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 10: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 1}}}&{{\text{ khi }}x > 1} \\   {x - 1}&{{\text{ khi }}x \leqslant 1} \end{array}} ight.. Khẳng định nào sau đây đúng trong các khẳng định sau?

    Ta có:

    f\left( { - 2} ight) =  - 2 - 1 =  - 3

  • Câu 11: Nhận biết

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 12: Vận dụng cao

    Một vật rơi tự do theo phương trình s =\frac{1}{3}gt^{2}, trong đó g =9,8m/s^{2} là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.

    Ta có:

    v_{tb} = \frac{s(t + \Delta t) -s(t)}{\Delta t}

    \Rightarrow v_{tb} =\dfrac{\dfrac{1}{2}g(t + \Delta t)^{2} - \dfrac{1}{2}gt^{2}}{\Delta t}

    \Rightarrow v_{tb} = gt +\frac{1}{2}g\Delta t = 49,0049m/s

    Vậy vận tốc trung bình của chuyển động là 49,0049m/s.

  • Câu 13: Nhận biết

    Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = x^{4} - 6x^{2} + 5 tại điểm có hoành độ x_{0} = 2 là:

    Ta có: y' = 4x^{3} - 12x \Rightarrow
y'(2) = 8

    \Rightarrow k = 8

  • Câu 14: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 15: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 16: Nhận biết

    Cho hàm số y =
f(x) = \frac{3x + 5}{- 1 + 2x}. Mệnh đề nào dưới đây là mệnh đề đúng?

    Ta có:

    f(x) = \frac{3x + 5}{- 1 +
2x}

    \Rightarrow f'(x) = \frac{(3x +
5)'( - 1 + 2x) - ( - 1 + 2x)'(3x + 5)}{( - 1 +
2x)^{2}}

    \Rightarrow f'(x) = \frac{3(2x - 1)
- 2(3x + 5)}{( - 1 + 2x)^{2}}

    \Rightarrow f'(x) = \frac{- 13}{( -
1 + 2x)^{2}}

  • Câu 17: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 18: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 19: Thông hiểu

    Cho hàm số y=sin2x-cos2x. Giải phương trình y" = 0

     Ta có:

    \begin{matrix}  y = \sin 2x - \cos 2x \hfill \\   \Rightarrow y' = 2\cos 2x + 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4\sin 2x + 4\cos 2x \hfill \\  y'' = 0 \hfill \\   \Leftrightarrow  - 4\sin 2x + 4\cos 2x = 0 \hfill \\   \Leftrightarrow \sin 2x = \cos 2x \hfill \\   \Leftrightarrow \tan 2x = 1 \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{4} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{8} + k\dfrac{\pi }{2},\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c. Tính giá trị biểu thức M = a + b + c?

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow M = 8

  • Câu 21: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 22: Thông hiểu

    Cho hàm số y =
e^{2x} + 2e^{- x}. Khẳng định nào dưới đây đúng?

    Ta có:

    y = e^{2x} + 2e^{- x}

    \Rightarrow y' = 2e^{2x} - 2e^{-
x}

    \Rightarrow y'' = \left( 2e^{2x}
- 2e^{- x} ight)' = 4e^{2x} + 2e^{- x}

    \Rightarrow y''' =
(y'')' = 8e^{2x} - 2e^{- x}

    \Rightarrow y''' -
y'' = 2y'

  • Câu 23: Thông hiểu

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 24: Thông hiểu

    Xác định đạo hàm của hàm số y = \sqrt{1 + 2 \tan x }.

    Ta có:

    y = \sqrt{1 + 2\tan x}

    \Rightarrow y' =\dfrac{(2\tan x)'}{2\sqrt{1 + 2\tan x}} =\dfrac{\dfrac{2}{\cos^{2}x}}{2\sqrt{1 + 2\tan x}}

    \Rightarrow y' =\dfrac{1}{\cos^{2}x.\sqrt{1 + 2\tan x}}

  • Câu 25: Thông hiểu

    Đạo hàm của hàm số f(x)=\frac{ax^{2}+b}{c+d} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{a{x^2} + b}}{{c + d}} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {\dfrac{{a{x^2} + b}}{{c + d}}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {a{x^2} + b} ight)'\left( {c + d} ight) - \left( {c + d} ight)'\left( {a{x^2} + b} ight)}}{{{{\left( {c + d} ight)}^2}}} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2ax\left( {c + d} ight)}}{{{{\left( {c + d} ight)}^2}}} = \dfrac{{2ax}}{{c + d}} \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 27: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 28: Vận dụng

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

    Vậy giá trị của biểu thức T = a - b =
0

  • Câu 29: Nhận biết

    Đạo hàm của hàm số f(x) = x^{4} - 4mx^{2} - 3m - 1 (với m là tham số) là:

    Ta có:

    f(x) = x^{4} - 4mx^{2} - 3m -
1

    f'(x) = 4x^{3} - 8mx

  • Câu 30: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 31: Thông hiểu

    Tính đạo hàm của hàm số y = \tan3x - \cot3x.

    Ta có:

    y =\tan3x - \cot3x

    \Rightarrow y' = \frac{3}{\cos^{2}3x}+ \frac{3}{\sin^{2}3x} = \frac{3}{\sin^{2}3x.\cos^{2}3x}

    = \dfrac{3}{\dfrac{1}{4}\sin^{2}6x} =\dfrac{12}{\sin^{2}6x}

  • Câu 32: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 33: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 34: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 35: Thông hiểu

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

    Ta có:

    \begin{matrix}  y = {x^2}\tan x + \sqrt x  \hfill \\   \Rightarrow y\prime  = \left( {{x^2}} ight)\prime \tan x + {x^2}\left( {\tan x} ight)\prime  + \left( {\sqrt x } ight)\prime  \hfill \\   = 2x.\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 37: Nhận biết

    Tính đạo hàm của hàm số y = \tan \frac{{x + 1}}{2}

    Ta có:

    \begin{matrix}  y = \tan \dfrac{{x + 1}}{2} \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}}.\left( {\dfrac{{x + 1}}{2}} ight)\prime  \hfill \\   = \dfrac{1}{2}.\dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} = \dfrac{1}{{2{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 39: Thông hiểu

    Ta có \left(
\frac{x^{2} + 4x - 1}{2x + 3} ight)' = \frac{M}{(2x +
3)^{2}}. Khi đó đa thức M là:

    Ta có:

    y = \frac{x^{2} + 4x - 1}{2x +
3}

    \Rightarrow y' = \frac{(2x + 3)(2x +
4) - 2\left( x^{2} + 4x - 1 ight)}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{4x^{3} + 14x
+ 12 - 2x^{2} - 8x + 2}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{2x^{2} + 6x +
14}{(2x + 3)^{2}}

    Vậy M=2x^{2} + 6x +14

  • Câu 40: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo