Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Hàm số
có đạo hàm là:
Ta có:
Tiếp tuyến của đồ thị hàm số
vuông góc với đường thẳng
tại điểm có hoành độ là:
Ta có:
Tiếp tuyến vuông góc với đường thẳng nên hệ số góc của tiếp tuyến là
Hoành độ tiếp điểm là nghiệm của phương trình
Vậy hoành độ tiếp điểm cần tìm là .
Cho hàm số
. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0
Ta có:
=> Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0
=> Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.
Biết rằng
. Giá trị của biểu thức
4
Biết rằng . Giá trị của biểu thức
4
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Gọi
là đồ thị hàm số
. Có bao nhiêu phương trình tiếp tuyến của
vuông góc với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Vì tiếp tuyến của vuông góc với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn điều kiện đề bài.
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Xác định công thức đạo hàm của hàm số
?
Ta có:
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng
của đồ thị hàm số
khi đó ta có:
Với ta được
có phương trình tiếp tuyến tương ứng là
Với ta được
có phương trình tiếp tuyến tương ứng là
Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Hãy tính ![]()
Ta có:
Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:
Khi đó: . Xét
Hàm số có đạo hàm tại thì
Vậy với thì hàm số có đạo hàm tại
khi đó
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Cho hàm số
. Khẳng định nào sau đây là sai?
Ta có: (đúng)
=> Hàm số nhận giá trị không âm
Ta lại có:
=> Hàm số liên tục tại x = 2
Ta có:
Vậy không tồn tại giới hạn khi x tiến tới 2
Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Tính tổng
![]()
Xét
Tính đạo hàm của hàm số sau:
.
Ta có:
Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Tính đạo hàm của hàm số ![]()
Ta có:
Xác định đạo hàm của hàm số
.
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm t = 2s là
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Xác định
?
Ta có:
Cho hàm số
. Tính
?
Ta có:
Vậy
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức
, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.
Ta có:
Ta có:
Gia tốc của chất điểm là:
Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là
Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Cho hàm số
xác định bởi công thức
. Chọn hệ thức đúng?
Ta có: