Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =
\tan x. Tính y''\left(
\frac{\pi}{4} ight) thu được kết quả là:

    Ta có:

    y = \tan x

    \Rightarrow y' = \frac{1}{\cos^{2}x}= 1 + \tan^{2}x

    \Rightarrow y' = \left( 1 + \tan^{2}xight)' = 2\tan x.\left( \tan x ight)'

    = 2\tan x.\left( 1 + \tan^{2}xight)

    \Rightarrow y''\left(\frac{\pi}{4} ight) = 2\tan\left( \frac{\pi}{4} ight).\left\lbrack 1+ \tan^{2}\left( \dfrac{\pi}{4} ight) ightbrack = 2.1.(1 + 1) =4

  • Câu 2: Vận dụng

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Đáp án là:

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Ta có: f'(x) = \frac{2}{x(x + 1)(x -
1)} = \frac{1}{x(x - 1)} - \frac{1}{x(x + 1)}

    Khi đó:

    f'(2) + f'(3) + f'(4) + ....
+ f'(2020)

    = \frac{1}{1.2} - \frac{1}{2.3} +
\frac{1}{2.3} - \frac{1}{2.3} + ... + \frac{1}{2019.2020} -
\frac{1}{2020.2021}

    = \frac{1}{2} - \frac{1}{2020.2021} =
\frac{1010.2021 - 1}{2020.2021}

    \Rightarrow \left\{ \begin{matrix}
m = 1010.2021 - 1 \\
n = 2020.2021 \\
\end{matrix} ight.\  \Rightarrow A = - 2

  • Câu 3: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Đáp án là:

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Ta có:

    y' = 3(m + 2)x^{2} + 3(m + 2)x + 3
\geq 0

    \Leftrightarrow (m + 2)x^{2} + (m + 2)x
+ 1 \geq 0(*)

    Để phương trình (*) luôn đúng với \forall
x\mathbb{\in R} thì

    TH1: m + 2 = 0 \Rightarrow m = -
2

    \Rightarrow y' = 1 \geq 0;\forall
x\mathbb{\in R}

    TH2: m + 2 eq 0 \Rightarrow m eq -
2

    \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
- 2 \leq m \leq 2 \\
\end{matrix} ight.\  \Rightarrow - 2 < m \leq 2

    \Rightarrow m \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.

  • Câu 6: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 7: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 8: Nhận biết

    Số gia của hàm số f(x)=2x^{2}-1 tại x_{0}=1 ứng với số gia \Delta x=0,1 bằng:

    Ta có:

    ∆f = f(1 + 0,1) - f(1)

    = 2(1,1)^2 - 1 - (2 - 1) = 0,42

  • Câu 9: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 10: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 11: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 12: Thông hiểu

    Cho hàm số y =
\frac{x^{2}}{1 - x}. Xác định biểu thức của y''?

    Ta có:

    y = \frac{x^{2}}{1 - x} = - x - 1 +
\frac{1}{1 - x}

    \Rightarrow y' = - 1 + \frac{1}{(1 -
x)^{2}}

    \Rightarrow y'' = \frac{- 2}{(1
- x)^{3}}

  • Câu 13: Nhận biết

    Tính đạo hàm của hàm số y = \log(2x - 1) trên khoảng \left( \frac{1}{2}; + \infty ight)?

    Trên khoảng \left( \frac{1}{2}; + \infty
ight) ta có:

    y = \log(2x - 1) \Rightarrow y' =\frac{(2x - 1)'}{(2x - 1)\ln10}

    \Rightarrow y' = \frac{2}{(2x -1)\ln10}

  • Câu 14: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 15: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 16: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 17: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 18: Thông hiểu

    Tìm số tiếp tuyến của đồ thị hàm số y = - x^{4} + 2x^{2} song song với trục hoành.

    Ta có:

    y' = - 4x^{3} + 4x

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số y = - x^{4} + 2x^{2} khi đó ta có: k = 0

    Suy ra y'\left( x_{0} ight) =
0

    \Leftrightarrow - 4{x_{0}}^{3} + 4x_{0}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = - 1 \\
x_{0} = 1 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = 0
\Rightarrow PTTT:y = 0

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Với x_{0} = 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Vậy có 2 tiếp tuyến song song với trục hoành.

  • Câu 19: Thông hiểu

    Cho hàm số yy=-\frac{1}{3}mx^{3}+(m-1)x^{2}-mx+3, có đạo hàm là y'. Tìm tất cả các giá trị của m để phương trình y' = 0 có hai nghiệm phân biệt là x_{1},x_{2} thỏa mãn x_{1}^{2}+x_{2}^{2}=6.

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{3}m{x^3} + (m - 1){x^2} - mx + 3 \hfill \\   \Rightarrow y' = m{x^2} - 2\left( {m - 1} ight)x - m \hfill \\  y' = 0 \hfill \\   \Leftrightarrow m{x^2} - 2\left( {m - 1} ight)x - m = 0 \hfill \\ \end{matrix}

    Để phương trình y'=0 có hai nghiệm phân biệt thì

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {m e 0} \end{array} \Leftrightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {{{\left( {m - 1} ight)}^2} + {m^2} > 0} \\   {m e 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{m^2} - 2m + 1 > 0} \\   {m e 0} \end{array}} ight. \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi - et ta có

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{2\left( {m - 1} ight)}}{m}} \\   {{x_1}.{x_2} = \dfrac{{ - 1}}{m}} \end{array}} ight. \hfill \\  x_1^2 + x_2^2 = 6 \hfill \\   \Leftrightarrow {\left( {{x_1} + {x_2}} ight)^2} - 2{x_1}{x_2} = 6 \hfill \\   \Leftrightarrow {\left[ {\dfrac{{2\left( {m - 1} ight)}}{m}} ight]^2} + \dfrac{2}{m} = 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1 + \sqrt 2 } \\   {m =  - 1 - \sqrt 2 } \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 22: Vận dụng cao

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 24: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 25: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 26: Thông hiểu

    Đạo hàm của biểu thức f(x) = \sqrt{2 - 3x^{2}} bằng biểu thức nào sau đây?

    Ta có:

    f(x) = \sqrt{2 - 3x^{2}}

    \Rightarrow f'(x) = \left( \sqrt{2 -
3x^{2}} ight)' = \frac{\left( 2 - 3x^{2} ight)'}{2\sqrt{2 -
3x^{2}}}

    = \frac{- 6x}{2\sqrt{2 - 3x^{2}}} =
\frac{- 3x}{\sqrt{2 - 3x^{2}}}

  • Câu 27: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 28: Vận dụng

    Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình s(t) = t^{3} - 3t^{2} - 5 trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?

    Ta có: a(t) = \left\lbrack v(t)ightbrack' = \left\lbrack s(t) ightbrack'' = 6t -6

    Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là a(10) = 54m/s^{2}

  • Câu 29: Vận dụng

    Cho hàm số y = x^{2018} - 1009x^{2} +2019x. Giá trị của \lim_{\Delta xightarrow 0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} bằng:

    Ta có:

    f'(x) = 2018.x^{2017} - 2.1009x +2019

    \Rightarrow \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = f'(1)

    = 2018.1 - 2.2019.1 + 2019 =2019

    Vậy \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = 2019

  • Câu 30: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 31: Thông hiểu

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Vận tốc tức thời là

    v(t) = s'(t) = \frac{1}{3}t^{3} -
3t^{2} + 12t + 10

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = t^{2} - 6t + 12 = (t
- 3)^{2} + 3 \geq 3

    Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là v(3) = \frac{1}{3}.(3)^{3} -
3.(3)^{2} + 12.3 + 10 = 28(m/s)

  • Câu 32: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 33: Vận dụng cao

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 34: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 35: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

  • Câu 36: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 37: Thông hiểu

    Cho f(x) =\sin3x. Giá trị của f''\left( - \frac{\pi}{2} ight) bằng bao nhiêu?

    Ta có: f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow f''\left( -\frac{\pi}{2} ight) = - 9.\sin\left( - \frac{3\pi}{2} ight) =9

  • Câu 38: Thông hiểu

    Hàm số y = -
x^{3} + 3x - 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung?

    Ta có: y' = - 3x^{2} + 3

    Giao điểm của (C) với trục tung có tọa độ là B(0; - 2)

    Tiếp tuyến của (C) tại điểm B(0; - 2) có phương trình là:

    y = y'(0)(x - 0) - 2 \Leftrightarrow
y = 3x - 2

  • Câu 39: Nhận biết

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

  • Câu 40: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo