Cho hàm số
. Công thức nào sau đây đúng?
Ta có:
Khi đó
Cho hàm số
. Công thức nào sau đây đúng?
Ta có:
Khi đó
Cho hàm số
với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Cho hàm số với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Ta có:
Để phương trình (*) luôn đúng với thì
TH1:
TH2:
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Tính giá trị của f’(0)
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Đạo hàm bậc hai của hàm số
là:
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề đúng?
Ta có:
Cho hàm số
. Tìm tập nghiệm bất phương trình
.
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng -1 là:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9
=>
Với x0 = −1, ta có:
=> Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)
với x0 = 3 thì
Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Tìm đạo hàm cấp hai của hàm số
?
Ta có:
Cho
. Tính ![]()
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là . Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Ta có:
Vận tốc tức thời của vật tại thời điểm là:
Cho hàm số
có đạo hàm tại
là
. Mệnh đề nào sau đây sai?
Mệnh đề sai là
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Phương trình chuyển động của một chất điểm được biểu diễn là
. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?
Ta có:
Suy ra vận tốc của chuyển động là
Bảng biến thiên
Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm .
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Viết phương trình tiếp tuyến của đồ thị hàm số
. Biết
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Do song song với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Cho đường cong có phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 0:
Ta có:
=> Phương trình tiếp tuyền tại điểm có hoành độ bằng 0 là:
Dễ thấy phương trình tiếp tuyến vuông góc với đường thẳng (vì tích hai hệ số góc bằng -1).
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
đi qua điểm
?
Phương trình đường thẳng đi qua điểm có dạng
Đường thẳng (d) là tiếp tuyến khi hệ có nghiệm
Dễ thấy hệ phương trình có ba nghiệm phân biệt nên có ba tiếp tuyến thỏa mãn.
Cho hàm số
. Tính giá trị của f''(2).
Ta có: