Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có:
Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có:
Biết rằng
. Giá trị của biểu thức
4
Biết rằng . Giá trị của biểu thức
4
Ta có:
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Cho hàm số
. Khẳng định nào sau đây đúng trong các khẳng định sau?
Ta có:
Hệ số góc của tiếp tuyến của đồ thị hàm số
tại giao điểm của đồ thị hàm số với trục tung là:
Ta có:
Giao điểm của đồ thị hàm số với trục tung là
Vậy hệ số góc cần tìm là
Cho hàm số
. Khi đó ![]()
Với xét:
Cho đồ thị hàm số
. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm
sao cho
?
Giả sử tiếp tuyến của (C) tại điểm cắt Ox tại A và cắt Oy tại B sao cho
.
Do tam giác OAB vuông tại O nên
Suy ra hệ số góc tiếp tuyến bằng
Hệ số góc tiếp tuyến là
Vậy có hai tiếp tuyến thỏa mãn điều kiện.
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Cho hàm số
. Với giá trị nào của
thì
?
Ta có: .
.
Để .
Đạo hàm cấp hai của hàm số
có dạng
. Tính giá trị biểu thức
.
Ta có:
Cho hàm số
và
. Tính giá trị
?
Ta có:
Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Cho hàm số
. Tính giá trị của ![]()
Tính đạo hàm của hàm số ![]()
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Cho hàm số
có đạo hàm tại điểm
. Tìm giá trị biểu thức
?
Do hàm số có đạo hàm tại điểm
nên suy ra
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số
bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số
âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số song song với đường thẳng
là
. Sai||Đúng
a) Với số gia của đối số x tại ta có:
b) Ta có:
c) Ta có:
.
d) Ta có:
Tiếp tuyến song song với đường thẳng
Vì
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
, có đạo hàm
. Tìm tất cả các giá trị của
để
với ![]()
Ta có:
Để bất phương trình với
ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Cho hàm số
. Tính giá trị của biểu thức
?
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số đã cho?
Ta có:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Đạo hàm của biểu thức
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Cho hàm số
có đạo hàm tại
là
. Mệnh đề nào sau đây sai?
Mệnh đề sai là
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm vận tốc bằng 2 là
Cho hàm số
xác định bởi công thức
. Biết hàm số liên tục trên nửa khoảng
. Tích của
và
bằng bao nhiêu?
Tập xác định
Hàm số liên tục trên nên ta có:
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?