Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 2: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 3: Vận dụng

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 4: Thông hiểu

    Cho hàm số f(x)=2x^{2}+16cosx-cos2x. Tính giá trị của f"(\pi)

    Ta có: 

    \begin{matrix}  f(x) = 2{x^2} + 16cosx - cos2x \hfill \\   \Rightarrow f'\left( x ight) = 4x - 16\sin x + 2\sin 2x \hfill \\   \Rightarrow f'\left( x ight) = 4 - 16\cos x + 4\cos 2x \hfill \\   \Rightarrow f'\left( \pi  ight) = 24 \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Công thức đạo hàm của hàm số y = f(x) = 2^{3x + 1} là:

    Ta có:

    y = f(x) = 2^{3x + 1}

    \Rightarrow f'(x) = (3x +4)'.2^{3x + 4}.\ln2

    \Rightarrow f'(x) = 3.2^{3x +4}.\ln2

  • Câu 6: Vận dụng

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Do \lim_{x ightarrow 2}\frac{f(x) -
16}{x - 2} = 12\lim_{x
ightarrow 2}(x - 2) = 0 \Rightarrow \lim_{x ightarrow 2}\left\lbrack
f(x) - 16 ightbrack = 0

    \Rightarrow \lim_{x ightarrow 2}f(x) =
16

    Ta có:

    \lim_{x ightarrow
2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x - 8}

    = \lim_{x ightarrow 2}\frac{5f(x) - 16
- 4^{3}}{(x - 2)(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow
2}\frac{5\left\lbrack f(x) - 16 ightbrack}{(x - 2)(x +
4)\left\lbrack \left( \sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x)
- 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow 2}\left\{
\frac{f(x) - 16}{(x - 2)}.\frac{5}{(x + 4)\left\lbrack \left(
\sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2}
ightbrack} ight\} = T

    \lim_{x ightarrow 2}\frac{f(x) -
16}{(x - 2)} = 12\lim_{x
ightarrow 2}\frac{5}{(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack} =
\frac{5}{288}

    Nên T = 12.\frac{5}{288} =
\frac{5}{24}

  • Câu 7: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 8: Nhận biết

    Cho f là hàm số liên tục tại x_{0}. Đạo hàm của f tại x_{0} là: 

    Đạo hàm của f tại x_{0} là \underset{h \to 0}{lim}\frac{f(x_{0}+h)-f(x_{0})}{h} (nếu tồn tại giới hạn)

  • Câu 9: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 11: Thông hiểu

    Công thức đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x + 5}?

    Ta có:

    y = f(x) = \sqrt{2x + 5}

    \Rightarrow f'(x) =
\frac{2}{2\sqrt{2x + 5}} = \frac{1}{\sqrt{2x + 5}}

    \Rightarrow f''(x) = -\dfrac{\dfrac{2}{2\sqrt{2x + 5}}}{2x + 5} = - \dfrac{1}{(2x + 5)\sqrt{2x +5}}

  • Câu 12: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 13: Thông hiểu

    Cho hàm số y =
f(x) = \frac{x - 2}{x + 3}. Xác định công thức đạo hàm cấp hai của hàm số đã cho?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y = f(x) = \frac{x - 2}{x +
3}

    \Rightarrow f'(x) = \frac{5}{(x +
3)^{2}}

    \Rightarrow f''(x) = 5.\frac{-
2.(x + 3)}{(x + 3)^{4}} = \frac{- 10}{(x + 3)^{3}}

  • Câu 14: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 15: Vận dụng cao

    Cho hàm số y = f(x) = x^{3} + 6x^{2} + 9x+ 3 có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?

    Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.

    => Hệ phương trình (I):\left\{\begin{matrix}y = x^{3} + 6x^{2} + 9x + 3\ \ (1) \\k = 3x^{2} + 12x + 9\ \ \ (2) \\\end{matrix} ight.có hai nghiệm phân biệt

    \begin{matrix}\Rightarrow \Delta'_{(2)} = 6^{2} - 3(9 - k) = 9 + 3k > 0 \\\Rightarrow k > - 3 \\\end{matrix}

    Từ hệ \left\{ \begin{matrix}y = \left( \frac{1}{3}x + \frac{2}{3} ight)\left( 3x^{2} + 12x + 9ight) - 2x - 3 \\k = 3x^{2} + 12x + 9 \\\end{matrix} ight.

    \Rightarrow y = \left( \frac{k}{3} - 2ight)x + \frac{2}{3}k - 3(*)

    Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.

    Khi đó A\left( \frac{- 2k + 9}{k - 6};0ight),B\left( 0;\frac{2k - 9}{3} ight);(k eq 6)

    Theo bài ra ta có:

    OA = 2017.OB

    \Leftrightarrow \left| \frac{2k - 9}{k -6} ight| = 2017.\left| \frac{- 2k + 9}{3} ight|

    \Leftrightarrow \left\lbrack\begin{matrix}k = \dfrac{9}{2} \\k = 6057 \\k = - 6045(ktm) \\\end{matrix} ight.

    Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.

  • Câu 16: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

    Ta có: 

    \begin{matrix}  y = \sin \left( {\sin x} ight) \hfill \\   \Rightarrow y\prime  = \left[ {\sin \left( {\sin x} ight)} ight]\prime  \hfill \\   = \left( {\sin x} ight)'\cos \left( {\sin x} ight) \hfill \\   = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng

    Cho hàm số y =\sin2x.\cos x. Xác định giá trị y^{(4)}\left( \frac{\pi}{6} ight)?

    Ta có:

    y =\sin2x.\cos x = \frac{1}{2}\left( \sin3x+ \sin x ight)

    \Rightarrow y' = \frac{1}{2}\left(3\cos3x + \cos x ight)

    \Rightarrow y'' =\frac{1}{2}\left( - 9\sin3x - \sin x ight)

    \Rightarrow y''' =\frac{1}{2}\left( - 27\cos3x - \cos x ight)

    \Rightarrow y^{(4)} = \frac{1}{2}\left(81\sin3x + \sin x ight)

    \Rightarrow y^{(4)}\left( \frac{\pi}{6}
ight) = \frac{1}{2}\left\lbrack 81sin\left( \frac{3.\pi}{6} ight) +
\sin\left( \frac{\pi}{6} ight) ightbrack = \frac{1}{2}.\left(
3^{4} - \frac{1}{2} ight)

  • Câu 19: Nhận biết

    Đạo hàm của hàm số y = f(x) = \frac{1}{2}x^{4} + \frac{5}{3}x^{3} -
\sqrt{2x} + m^{2} (với m = const) là:

    Ta có:

    y = f(x) = \frac{1}{2}x^{4} +
\frac{5}{3}x^{3} - \sqrt{2x} + m^{2}

    \Rightarrow f'(x) =
\frac{1}{2}.4x^{3} + \frac{5}{3}.3x^{2} - \frac{1}{\sqrt{2x}} +
0

    \Rightarrow f'(x) = 2x^{3} + 5x^{2}
- \frac{1}{\sqrt{2x}}

  • Câu 20: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 21: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)(x - 3)...(x - 2020)}. Tính đạo hàm của hàm số tại x = 0?.

    Ta có:

    Đặt g(x) = (x - 1)(x - 2)(x - 3)...(x -
2020)

    Khi đó: f(x) =
\frac{x}{g(x)}

    \Rightarrow f'(x) = \frac{x'g(x)
- g'(x).x}{g^{2}(x)} = \frac{1}{g(x)} -
x.\frac{g'(x)}{g^{2}(x)}

    \Rightarrow f'(0) = \frac{1}{g(0)} -
x.\frac{g'(0)}{g^{2}(0)} = \frac{1}{g(0)}

    = \frac{1}{( - 1)( - 2)...( - 2020)} =
\frac{1}{2020!}

  • Câu 22: Thông hiểu

    Đạo hàm của hàm số y=(\frac{3}{x}-2x)(\sqrt{x}-4) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {\dfrac{3}{x} - 2x} ight)\left( {\sqrt x  - 4} ight) \hfill \\   \Rightarrow y' = \left( {\dfrac{3}{x} - 2x} ight)'\left( {\sqrt x  - 4} ight) + \left( {\sqrt x  - 4} ight)'\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \left( {\dfrac{{ - 3}}{{{x^2}}} - 2} ight)\left( {\sqrt x  - 4} ight) + \left( {\dfrac{1}{{2\sqrt x }}} ight)\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3\sqrt x }}{{{x^2}}} + \dfrac{{12}}{{{x^2}}} - 2\sqrt x  + 8 + \dfrac{3}{{2x\sqrt x }} - \sqrt x  \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3}}{{2x\sqrt x }} - 3\sqrt x  + \dfrac{{12}}{{{x^2}}} + 8 \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Xác định công thức đạo hàm của hàm số y = f(x) = \frac{2x - 1}{x + 1}?

    Ta có: y = f(x) = \frac{2x - 1}{x +
1}

    \Rightarrow f'(x) = \frac{(2x -
1)'(x + 1) - (x + 1)'(2x - 1)}{(x + 1)^{2}}

    \Rightarrow f'(x) = \frac{2(x + 1) -
(2x - 1)}{(x + 1)^{2}} = \frac{3}{(x + 1)^{2}}

  • Câu 24: Thông hiểu

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức \frac{\sqrt{x}}{x + 1}. Thực hiện tính đạo hàm của hàm số ta được y' =
\frac{...}{(x + 1)^{2}}. Biểu thức cần điền vào chỗ trống.

    Ta có:

    y = \frac{\sqrt{x}}{x + 1}

    \Rightarrow y' =\dfrac{\dfrac{1}{2\sqrt{x}}(x + 1) - \sqrt{x}}{(x + 1)^{2}} = \dfrac{1 -x}{2\sqrt{x}(x + 1)^{2}}

  • Câu 26: Vận dụng

    Cho hàm số y =
x^{3} - 2x + 1. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục Oxy một tam giác vuông cân tại O?

    Gọi M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d)

    Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng \frac{x}{a} + \frac{y}{b} = 1

    \Rightarrow y = b\left( 1 - \frac{x}{a}
ight) = - \frac{b}{a} + b;\left( a,b eq 0;|a| = |b|
ight)(d)

    M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d) khi đó:

    3{x_{0}}^{2} - 2 = -
\frac{b}{a}

    |a| = |b| \Rightarrow \left\lbrack
\begin{matrix}
3{x_{0}}^{2} - 2 = 1 \\
3{x_{0}}^{2} - 2 = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 1 \Rightarrow y_{0} = 0 \\\begin{matrix}x_{0} = - 1 \Rightarrow y_{0} = 2 \\x_{0} = \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 - 5\sqrt{3}}{9}\\x_{0} = - \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 + 5\sqrt{3}}{9}\\\end{matrix} \\\end{matrix} ight.

    Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:

    y = 1(x - 1) + 0 \Rightarrow y = x -
1

    y = 1(x - 1) + 2 \Rightarrow y = x +
3

    y = - 1\left( x - \frac{\sqrt{3}}{3}
ight) + \frac{9 - 5\sqrt{3}}{9} \Rightarrow y = x + \frac{9 -
2\sqrt{3}}{9}

    y = - 1\left( x + \frac{\sqrt{3}}{3}
ight) + \frac{9 + 5\sqrt{3}}{9} \Rightarrow y = - x + \frac{9 +
2\sqrt{3}}{9}

  • Câu 27: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 28: Vận dụng cao

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 30: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 31: Thông hiểu

    Tính vận tốc tức thời của chuyển động tại t = 3(s) của một chất điểm chuyển động được xác định bởi phương trình S(t) =
2t^{3} + 6t^{2} - t, trong đó t tính bằng giây và S được tính bằng mét.

    Ta có:

    v(t) = S'(t) = 6t^{2} + 12t -
1

    Vận tốc tức thời của chuyển động khi t =
3(s) là:

    v(3) = 6.3^{2} + 12.3 - 1 =
89(m/s)

  • Câu 32: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 33: Thông hiểu

    Đạo hàm bậc hai của hàm số y = x\sqrt{1 +
x^{2}} là:

    Ta có:

    y = x\sqrt{1 + x^{2}}

    \Rightarrow y' = \frac{2x^{2} +
1}{\sqrt{1 + x^{2}}}

    \Rightarrow y'' = \frac{2x^{3} +
3x}{\left( 1 + x^{2} ight)\sqrt{1 + x^{2}}}

  • Câu 34: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 35: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 36: Nhận biết

    Tính đạo hàm của hàm số y = \frac{1}{6}.x^{6} - \frac{1}{4}.x^{4} + a^{3}
+ b với a;b là hằng số)?

    Ta có:

    y = \frac{1}{6}.x^{6} -
\frac{1}{4}.x^{4} + a^{3} + b

    \Rightarrow y' = 6.\frac{1}{6}.x^{6
- 1} - 4.\frac{1}{4}.x^{4 - 1} + 0 + 0

    \Rightarrow y' = x^{5} -
x^{3}

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

     Ta có:

    \begin{matrix}  y' = \left( {{x^2}} ight)\prime \tan x + \left( {\tan x} ight)'.{x^2} + \left( {\sqrt x } ight)\prime \hfill \\   = 2x\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 39: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 40: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo