Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính đạo hàm của hàm số y = f(x) = 2^{2x}?

    Ta có:

    y = f(x) = 2^{2x}

    \Rightarrow f'(x) = \left( 2^{2x}ight)' = (2x)'.2^{2x}.\ln2 = 2^{2x + 1}.\ln2

  • Câu 2: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 3: Thông hiểu

    Một chất điểm chuyển động thẳng có phương trình S=\frac{1}{2}t^{2} ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm t_{0}=5(s) 

    Ta có: 

    \begin{matrix}  v\left( t ight) = s'\left( t ight) = t \hfill \\   \Rightarrow v\left( {{t_0}} ight) = v\left( 5 ight) = 5\left( {m/s} ight) \hfill \\ \end{matrix}

  • Câu 4: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 5: Vận dụng

    Cho hàm số y =
\sqrt{3}\cos x + \sin x - x^{2} + 2021x + 2022. Có bao nhiêu nghiệm thuộc \lbrack 0;4\pibrack thỏa mãn phương trình y'' =
0?

    Ta có:

    y = \sqrt{3}\cos x + \sin x - x^{2} +
2021x + 2022

    \Rightarrow y' = \sqrt{3}\sin x +
\cos x - 2x + 2021

    \Rightarrow y'' = \sqrt{3}\cos x
- \sin x - 2

    Lại có y'' = 0 \Leftrightarrow
\sqrt{3}\cos x - \sin x - 2 = 0

    \Leftrightarrow \frac{1}{2}\sin x -
\frac{\sqrt{3}}{2}\cos x = - 1

    \Leftrightarrow \sin\left( x -
\frac{\pi}{3} ight) = - 1

    \Leftrightarrow x - \frac{\pi}{3} =
\frac{- \pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{- \pi}{6} +
k2\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{6} + k2\pi \leq 4\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{12} \leq k \leq \dfrac{25}{12} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2ight\}

    Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 6: Thông hiểu

    Cho hàm số y = \left\{ \begin{matrix}
x\ \ \ \ \ \ \ khi\ x \geq 0 \\
- x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Khẳng định nào dưới đây đúng?

    Ta có: y' = \left\{ \begin{matrix}
1\ \ \ \ \ \ \ khi\ x \geq 0 \\
- 1\ \ \ \ khi\ x < 0 \\
\end{matrix} ight.

    Do \left\{ \begin{matrix}
y'_{\left( 0^{+} ight)} = 1 \\
y'_{\left( 0^{-} ight)} = - 1 \\
\end{matrix} ight.

    \Rightarrow Hàm số không có đạo hàm tại x = 0.

  • Câu 7: Thông hiểu

    Cho hàm số f(x)=\left | x-2 ight |. Khẳng định nào sau đây là sai?

    Ta có: f(2)= 0 (đúng)

    f(x) = \left| {x - 2} ight| \geqslant 0,\forall x => Hàm số nhận giá trị không âm

    Ta lại có:

    \begin{matrix}  f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {x - 2{\text{   khi }}x \geqslant 2} \\   {2 - x{\text{   khi }}x < 2} \end{array}} ight. \hfill \\  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2 - x} ight) = 0 \hfill \\  f\left( 2 ight) = 0 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f\left( 2 ight) \hfill \\ \end{matrix}

    => Hàm số liên tục tại x = 2

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 2}}{{x - 2}} = 1 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2 - x}}{{x - 2}} =  - 1 \hfill \\ \end{matrix}

    Vậy không tồn tại giới hạn \frac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} khi x tiến tới 2

    Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"

  • Câu 8: Nhận biết

    Tính vi phân của hàm số y = {x^3} + 9{x^2} + 12x - 5

     Ta có:

    \begin{matrix}  y' = {x^2} - 18x + 12 \hfill \\   \Rightarrow dy = \left( {3{x^2} - 18x + 12} ight)dx \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số y = x^{4} - 4x^{2} + 5 tại điểm có hoành độ x_{0} = - 1?

    Ta có:

    y = x^{4} - 4x^{2} + 5

    \Rightarrow y' = 4x^{3} - 8x
\Rightarrow y'( - 1) = 4

    Điểm thuộc đồ thị đã cho có hoành độ x_{0} = - 1M( - 1;2)

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại M( - 1;2) là:

    y = y'( - 1)(x + 1) + 2

    \Rightarrow y = 4(x + 1) + 2 \Rightarrow
y = 4x + 6

  • Câu 10: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 11: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{x + 1}{x - 2} là:

    Ta có:

    y = \frac{x + 1}{x - 2} = 1 + \frac{3}{x
- 2}

    \Rightarrow y' = - \frac{3}{(x -
2)^{2}}

    \Rightarrow y'' = - \frac{3.( -
2)(x - 2)}{(x - 2)^{4}} = \frac{6}{(x - 2)^{3}}

  • Câu 12: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 13: Vận dụng

    Cho hàm số y =\sin2x.\cos x. Xác định giá trị y^{(4)}\left( \frac{\pi}{6} ight)?

    Ta có:

    y =\sin2x.\cos x = \frac{1}{2}\left( \sin3x+ \sin x ight)

    \Rightarrow y' = \frac{1}{2}\left(3\cos3x + \cos x ight)

    \Rightarrow y'' =\frac{1}{2}\left( - 9\sin3x - \sin x ight)

    \Rightarrow y''' =\frac{1}{2}\left( - 27\cos3x - \cos x ight)

    \Rightarrow y^{(4)} = \frac{1}{2}\left(81\sin3x + \sin x ight)

    \Rightarrow y^{(4)}\left( \frac{\pi}{6}
ight) = \frac{1}{2}\left\lbrack 81sin\left( \frac{3.\pi}{6} ight) +
\sin\left( \frac{\pi}{6} ight) ightbrack = \frac{1}{2}.\left(
3^{4} - \frac{1}{2} ight)

  • Câu 14: Thông hiểu

    Cho hàm số f(x)=sin^{3}x+x^{2}. Tính giá trị của f"(-\frac{\pi}{2}).

    Ta có:

    \begin{matrix}  f(x) = si{n^3}x + {x^2} \hfill \\   \Rightarrow f'\left( x ight) = 3.{\sin ^2}x.\cos x + 2x \hfill \\   \Rightarrow f''\left( x ight) = 6\sin x.{\cos ^2}x - 3.{\sin ^3}x + 2 \hfill \\   \Rightarrow f''\left( { - \dfrac{\pi }{2}} ight) = 5 \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 16: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 17: Nhận biết

    Đạo hàm của hàm số y = (1 - 2x)^{3} là:

    Ta có: y = (1 - 2x)^{3}

    \Rightarrow y' = 3(1 - 2x)^{2}(1 -
2x)'

    \Rightarrow y' = 3(1 - 2x)^{2}( - 2)
= - 6(1 - 2x)^{2}

  • Câu 18: Thông hiểu

    Tính đạo hàm của hàm số y = \cos \sqrt {2x + 1}

    Ta có: 

    \begin{matrix}  y = \cos \sqrt {2x + 1}  \hfill \\   \Rightarrow y' =  - \left( {\sqrt {2x + 1} } ight)'.\sin \sqrt {2x + 1}  \hfill \\   =  - \dfrac{2}{{2\sqrt {2x + 1} }}.\sin \sqrt {2x + 1}  \hfill \\   =  - \dfrac{{\sin \sqrt {2x + 1} }}{{\sqrt {2x + 1} }} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 20: Thông hiểu

    Xác định công thức đạo hàm của hàm số y = \sin\left( x^{2} - 3x + 2
ight)?

    Ta có:

    y = \sin\left( x^{2} - 3x + 2
ight)

    \Rightarrow y' = \left\lbrack
\sin\left( x^{2} - 3x + 2 ight) ightbrack'

    = \left( x^{2} - 3x + 2ight)'.\cos\left( x^{2} - 3x + 2 ight)

    = (2x - 3)\cos\left( x^{2} - 3x + 2
ight)

  • Câu 21: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 22: Nhận biết

    Số gia của hàm số f(x)=2x^{2}-1 tại x_{0}=1 ứng với số gia \Delta x=0,1 bằng:

    Ta có:

    ∆f = f(1 + 0,1) - f(1)

    = 2(1,1)^2 - 1 - (2 - 1) = 0,42

  • Câu 23: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Với x \in \lbrack 0; + \infty) ta có: \left\{ \begin{matrix}
x + 1 > 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > - 4 \\
\end{matrix} ight.

    f(x) = \ln\left( \frac{x + 1}{x + 4}
ight) = \ln(x + 1) - \ln(x + 4)

    \Rightarrow f'(x) = \frac{1}{x + 1}
- \frac{1}{x + 4}

    Khi đó:

    T = f'(0) + f'(3) + f'(6) +
... + f'(2019)

    P = \left( 1 - \frac{1}{4} ight) +
\left( \frac{1}{4} - \frac{1}{7} ight) + \left( \frac{1}{7} -
\frac{1}{10} ight) + ... + \left( \frac{1}{2020} - \frac{1}{2023}
ight)

    P = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 24: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{2 - \sqrt {4 - x} }}{x}{\text{  }};0 < x < 4} \\ 
  {m{\text{          }};x = 0} \\ 
  {\dfrac{n}{x}{\text{         }};x \geqslant 4} 
\end{array}} ight.. Biết hàm số liên tục trên nửa khoảng \lbrack 0; + \infty). Tích của mn bằng bao nhiêu?

    Tập xác định D = \lbrack 0; +
\infty)

    Hàm số liên tục trên \lbrack 0; +
\infty) nên ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{2 - \sqrt{4 - x}}{x}

    = \lim_{x ightarrow
0^{+}}\frac{x}{x\left( 2 + \sqrt{4 - x} ight)} =
\frac{1}{4}

    f(0) = m

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \dfrac{n}{x} = \dfrac{n}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2 - \sqrt {4 - x} }}{x} = \dfrac{1}{2} \hfill \\
  f\left( 4 ight) = \dfrac{n}{4} \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \\\dfrac{n}{4} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \ = 2 \\\end{matrix} ight.\  \Rightarrow m.n = \dfrac{1}{2}

  • Câu 25: Thông hiểu

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Vận tốc tức thời là

    v(t) = s'(t) = \frac{1}{3}t^{3} -
3t^{2} + 12t + 10

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = t^{2} - 6t + 12 = (t
- 3)^{2} + 3 \geq 3

    Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là v(3) = \frac{1}{3}.(3)^{3} -
3.(3)^{2} + 12.3 + 10 = 28(m/s)

  • Câu 26: Vận dụng

    Phương trình chuyển động của một chất điểm được biểu diễn là S(t) = - t^{3} +
6t^{2}. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?

    Ta có:

    S(t) = - t^{3} + 6t^{2}

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = - 6t +
12

    v'(t) = 0 \Leftrightarrow 12 - 6t =
0 \Leftrightarrow t = 2

    v(t) = 0 \Leftrightarrow 12t - 3t^{2} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm t = 2(s).

  • Câu 27: Nhận biết

    Tìm hệ số góc k của tiếp tuyến của parabol y = x^{2} tại điểm có hoành độ \frac{1}{2}.

    Ta có:

    y'\left( \dfrac{1}{2} ight) =\lim_{\Delta x ightarrow 0}\dfrac{f\left( \dfrac{1}{2} + \Delta xight) - f\left( \dfrac{1}{2} ight)}{\Delta x}

    = \lim_{\Delta x ightarrow0}\dfrac{\left( \dfrac{1}{2} + \Delta x ight)^{2} - \left( \dfrac{1}{2}ight)^{2}}{\Delta x}

    = \lim_{\Delta x ightarrow 0}(1 +\Delta x) = 1

  • Câu 28: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 29: Thông hiểu

    Cho hàm số y = -
x^{2} + 3x^{2} + 9x - 1 có đồ thị (C) . Tìm hệ số góc lớn nhất của tiếp tuyến với đồ thị (C) ?

    Kết quả: 12

    Đáp án là:

    Cho hàm số y = -
x^{2} + 3x^{2} + 9x - 1 có đồ thị (C) . Tìm hệ số góc lớn nhất của tiếp tuyến với đồ thị (C) ?

    Kết quả: 12

    Tập xác định D\mathbb{= R}

    Ta có hệ số góc của tiếp tuyến với đồ thị hàm số (C) là:

    y' = - 3x^{2} + 6x + 9 = 12 - 3(x +
1)^{2} \leq 12

    Vậy hệ số góc lớn nhất của tiếp tuyến với đồ thị hàm số (C) là 12.

  • Câu 30: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 31: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 32: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 33: Thông hiểu

    Cho hàm số y =
f(x) = (3x - 7)^{5}. Xác định f''(2)?

    Ta có: y = f(x) = (3x -
7)^{5}

    \Rightarrow f'(x) = 15(3x -
7)^{4}

    \Rightarrow f''(x) = 180.(3x -
7)^{3}

    \Rightarrow f''(2) = 180.(3.2 -
7)^{3} = - 180

  • Câu 34: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 35: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 37: Nhận biết

    Đạo hàm của hàm số y = f(x) = \frac{1}{2}x^{4} + \frac{5}{3}x^{3} -
\sqrt{2x} + m^{2} (với m = const) là:

    Ta có:

    y = f(x) = \frac{1}{2}x^{4} +
\frac{5}{3}x^{3} - \sqrt{2x} + m^{2}

    \Rightarrow f'(x) =
\frac{1}{2}.4x^{3} + \frac{5}{3}.3x^{2} - \frac{1}{\sqrt{2x}} +
0

    \Rightarrow f'(x) = 2x^{3} + 5x^{2}
- \frac{1}{\sqrt{2x}}

  • Câu 38: Thông hiểu

    Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số y = f(x) = \frac{x + 1}{2x
- 3} tại điểm có hoành độ x_{0} = -
1?

    TXĐ: D\mathbb{= R}\backslash\left\{
\frac{3}{2} ight\}

    Ta có: f'(x) = \frac{- 5}{(2x -
3)^{2}}

    Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x_{0} = - 1 là:

    f'(-1) = \frac{- 5}{\left\lbrack 2.(- 1) - 3 ightbrack^{2}} = - \frac{1}{5}

  • Câu 39: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 40: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo