Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính đạo hàm của hàm số y = \sqrt{\frac{1}{2} +
\frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} +
\frac{1}{2}\cos x}}} với x \in
(0;\pi)?

    Ta có:

    y = \sqrt{\frac{1}{2} +
\frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} +
\frac{1}{2}\cos x}}}

    = \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\cos^{2}\frac{x}{2}}}}

    = \sqrt{\frac{1}{2} +
\frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos\frac{x}{2}}}

    = \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\cos^{2}\frac{x}{4}}}

    = \sqrt{\frac{1}{2} +\frac{1}{2}\cos\frac{x}{4}} = \sqrt{\cos^{2}\frac{x}{8}} =\cos\frac{x}{8}

    \Rightarrow y' = \left(
\cos\frac{x}{8} ight)' = - \frac{1}{8}\sin\frac{x}{8}

  • Câu 2: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 3: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho hàm số y =\log_{2}(3x). Khẳng định nào sau đây đúng?

    Ta có:

    y = \log_{2}(3x)

    \Rightarrow y' = \left( \log_{2}(3x)ight)' = \frac{(3x)'}{3x.\ln2} = \frac{1}{x\ln2}

  • Câu 5: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Cho hàm số y =
x^{2} - x + 2. Tính y'(1)?

    Ta có: y = x^{2} - x + 2

    \Rightarrow y' = 2x - 1

    \Rightarrow y'(1) = 2.1 - 1 =
1

  • Câu 7: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 1\ \ khi\ x \geq 1 \\ax + b\ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại điểm x = 1 (với a,b\mathbb{\in R}). Giá trị của biểu thức P = 2a - 5b bằng bao nhiêu?

    Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:

    Hàm số phải liên tục tại điểm x = 1:

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)

    \Rightarrow a + b = 2

    \lim_{x ightarrow 1}\frac{f(x) -f(1)}{x - 1} = f'(1)

    \Leftrightarrow f'\left( 1^{+}ight) = f'\left( 1^{-} ight)

    \Leftrightarrow a = 3

    \Rightarrow b = - 1

    Vậy giá trị của biểu thức P = 2a - 5b =11

  • Câu 8: Vận dụng

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Đáp án là:

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Ta có:

    S(t) = - t^{3} + 9t^{2} + t +
10

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 18t + 1

    Dễ thấy hàm số v(t) là hàm số bậc hai có đồ thị dạng Parabol với hệ số a =
- 3 < 0

    Ta có hoành độ đỉnh của Parabol là t = 3
\in \lbrack 0;5brack

    Do đó v_{\max} = v(3) = 28

    Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là 28m/s

  • Câu 9: Thông hiểu

    Cho hàm số y =
x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn f''\left( x_{0} ight) =
0 là:

    Ta có:

    y = x^{3} - 3x^{2} + 1

    \Rightarrow f'(x) = 3x^{2} - 6x
\Rightarrow f''(x) = 6x - 6

    \Rightarrow f''(x) = 0
\Leftrightarrow x = 1

    Khi đó f'(1) = 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; - 1) là: y = f'(1)(x - 1) + f(1)

    \Rightarrow y = - 3(x - 1) - 1
\Rightarrow 3x + y - 2 = 0

  • Câu 10: Vận dụng

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Đáp án là:

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Vận tốc của vật là: v = s^{'} = -
2t^{2} + 14t.

    Vận tốc của vật đạt 12m/s thì - 2t^{2} + 14t = 12 \Leftrightarrow 2t^{2} -
14t + 12 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight.

    \Rightarrow Vật đạt vận tốc là 12\ m/s lần thứ 2 khi t = 6.

    Lúc đó quãng đường vật đi được là:

    s(6) = - \frac{2}{3}.6^{4} + 7.6^{2} + 3
= 111 (mét)

  • Câu 11: Nhận biết

    Tính vi phân của hàm số f\left( x ight) = \frac{{{{\left( {\sqrt x  - 1} ight)}^2}}}{x} tại điểm x=4 ứng với \Delta x=0,002

    Ta có:

    \begin{matrix}  f\left( x ight) = 1 + \dfrac{2}{{\sqrt x }} + \dfrac{1}{x} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{1}{{x\sqrt x }} - \dfrac{1}{{{x^2}}} \hfill \\   \Rightarrow f'\left( 4 ight) = \dfrac{1}{{16}} \hfill \\   \Rightarrow df\left( 4 ight) = f'\left( 4 ight)\Delta x = \dfrac{1}{{16}}.0,002 = \dfrac{1}{{800}} \hfill \\ \end{matrix}

  • Câu 12: Vận dụng cao

    Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn f(x) > 0;\forall x\mathbb{\inR}. Biết f(0) = 1(2 - x).f(x) - f'(x) = 0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt:

    Xét phương trình:

    \begin{matrix}(2 - x).f(x) - f'(x) = 0 \hfill \\\Leftrightarrow (2 - x).e^{\frac{x^{2}}{2} - 2x}.f(x) -e^{\frac{x^{2}}{2} - 2x}.f'(x) = 0 \hfill\\\Leftrightarrow \left\lbrack f(x).e^{\frac{x^{2}}{2} - 2x}ightbrack' = 0 \hfill\\\Leftrightarrow f(x).e^{\frac{x^{2}}{2} - 2x} = C\hfill\ \ \ \ \ (*)\hfill \\\end{matrix}

    Do f(0) = 1 thay vào (*) ta được C = 1

    => f(x) = e^{- \frac{x^{2}}{2} +2x}

    \Rightarrow f'(x) = ( - x + 2).e^{-\frac{x^{2}}{2} + 2x}

    Dễ thấy hàm số f(x) đồng biến trên ( -\infty;2brack.

    Ta có bảng biến thiên của hàm số f(x) như sau:

    Do - \frac{x^{2}}{2} + 2x \leq 2\Rightarrow 0 < f(x) \leq e^{2}. Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi - \frac{x^{2}}{2} + 2x = \lnm có hai nghiệm thực phân biệt. khi đó \ln m \in ( - \infty;2)

    Đồ thị của hàm số y = f(x)y = m luôn cắt nhau tại một điểm với mọi m \in \left( 0;e^{2}ightbrack.

    Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt thì 0 < m < e^{2}.

  • Câu 13: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 14: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 15: Thông hiểu

    Cho đồ thị hàm số (C):y = \frac{1}{3}x^{3} - x +
\frac{2}{3} . Tìm điểm A có hoành độ âm trên đồ thị (C) sao cho tiếp tuyến tại A vuông góc với đường thẳng x + 3y - 2 = 0?

    Tiếp tuyến tại A vuông góc với đường thẳng x + 3y - 2 = 0 nên tiếp tuyến có hệ số góc k = 3

    Ta có: y'(x) = x^{2} - 1

    Xét phương trình y'(x) = 3
\Leftrightarrow x^{2} - 1 = 3 \Leftrightarrow x = \pm 2

    Do A có hoành độ âm nên x = -2 thỏa mãn

    Với x = -2 thay vào phương trình (C) => y = 0

    Vậy điểm A cần tìm là A(-2; 0).

  • Câu 16: Thông hiểu

    Tính đạo hàm của hàm số y = \cot \sqrt {{x^2} + 1}

     Ta có:

    \begin{matrix}  y' = \dfrac{{\left( {\sqrt {{x^2} + 1} } ight)'}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} =  - \dfrac{{\dfrac{x}{{\sqrt {{x^2} + 1} }}}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\   =  - \dfrac{x}{{\sqrt {{x^2} + 1} .{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Tính đạo hàm của hàm số f(x)=\frac{2x}{x-1} tại điểm x = -1

    \begin{matrix}  f(x) = \dfrac{{2x}}{{x - 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {2x} ight)'\left( {x - 1} ight) - \left( {2x} ight).\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{2\left( {x - 1} ight) - 2x.1}}{{{{\left( {x - 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   \Rightarrow f'\left( { - 1} ight) = \dfrac{{ - 2}}{{{{\left( { - 1 - 1} ight)}^2}}} = \dfrac{{ - 1}}{2} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

  • Câu 19: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 20: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 21: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số sau: y = {\left( {{x^2} + 1} ight)^3}

     Ta có: y = {\left( {{x^2} + 1} ight)^3} = {x^6} + 3{x^4} + 3{x^2} + 1

    \begin{matrix}   \Rightarrow y' = 6{x^5} + 12{x^3} + 6x \hfill \\   =  > y'' = \left( {y'} ight)' = \left( {6{x^5} + 12{x^3} + 6x} ight)' = 30{x^4} + 36{x^2} + 6 \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 2021) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack (x
- 1)(x - 2)(x - 3)...(x - 2021) ightbrack

    = ( - 1)( - 2).....( - 2021) = -
2021!

    Vậy f'(0) = - 2021!

  • Câu 23: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 24: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 25: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 26: Vận dụng cao

    Cho hàm số y =
\frac{x + 2}{1 - x} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số m để có đúng một tiếp tuyến của (C) đi qua điểm P(m,1)S . Tính tổng bình phương các phần tử của tập hợp S ?

    Kết quả: 13/4

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{x + 2}{1 - x} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số m để có đúng một tiếp tuyến của (C) đi qua điểm P(m,1)S . Tính tổng bình phương các phần tử của tập hợp S ?

    Kết quả: 13/4

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có: f'(x) = \frac{1 - x + x -
2}{(1 - x)^{2}} = \frac{- 1}{(1 - x)^{2}}

    Phương trình tiếp tuyến d với đồ thị hàm số tại M\left( x_{0};y_{0} ight) là:

    y - \frac{x_{0} - 2}{1 - x_{0}} =
\frac{- 1}{\left( 1 - x_{0} ight)^{2}}\left( x - x_{0}
ight)

    Tiếp tuyến đi qua P(m,1) nên 1 - \frac{x_{0} - 2}{1 - x_{0}} = \frac{-
1}{\left( 1 - x_{0} ight)^{2}}\left( m - x_{0} ight)

    \Leftrightarrow 2{x_{0}}^{2} - 6x_{0} +
m + 3 = 0;\left( x_{0} eq 1 ight)(*)

    Để có 1 tiếp tuyến đi qua P(m,1) suy ra phương trình (*) có 1 nghiệm x_{0}
eq 1

    \Leftrightarrow \left[ \begin{gathered}
  \Delta  = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  2 - 6 + m + 3 = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{3}{2} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{3}{2} \hfill \\
  m = 1 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{3}{2} \hfill \\
  m = 1 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow S = \left\{ 1;\frac{3}{2}
ight\} \Rightarrow 1^{2} + \left( \frac{3}{2} ight)^{2} =
\frac{13}{4}

  • Câu 27: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 28: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = 4t^{3} - 10t + 9,(t
> 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc bằng 2m/s thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 12t^{2} -
10

    v(t) = 2 \Leftrightarrow 12t^{2} - 10 =
2

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1(ktm) \\
t = 1(tm) \\
\end{matrix} ight.

    a(t) = S''(t) = v'(t) =
\left( 12t^{2} - 10 ight)' = 24t

    Gia tốc tức thời tại thời điểm vận tốc bằng 2 là

    a(1) = 24.1 = 24\left( m/s^{2}
ight)

  • Câu 29: Thông hiểu

    Tính đạo hàm cấp hai của hàm số y = \sin x.\sin2x.\sin3x?

    Ta có:

    y = \sin x.\sin2x.\sin3x

    = \frac{1}{4}\sin2x + \frac{1}{4}\sin4x -\frac{1}{4}\sin6x

    Khi đó:

    y' = \frac{1}{2}\cos2x + \cos4x -\frac{3}{2}\cos6x

    y'' = - \sin2x - 4\sin4x +9\sin6x

  • Câu 30: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 31: Thông hiểu

    Đạo hàm của hàm số y=\frac{3}{x}+\frac{2}{x^{2}}-\frac{7}{x^{3}}+\frac{6}{x^{5}} bằng biểu thức nào dưới đây?

    Ta có:

    \begin{matrix}  y = \dfrac{3}{x} + \dfrac{2}{{{x^2}}} - \dfrac{7}{{{x^3}}} + \dfrac{6}{{{x^5}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3}}{{{x^2}}} - \dfrac{{2.2x}}{{{x^4}}} + \dfrac{{7.3.{x^2}}}{{{x^6}}} - \dfrac{{6.5.{x^4}}}{{{x^{10}}}} \hfill \\   = \dfrac{{ - 3}}{{{x^2}}} - \dfrac{4}{{{x^3}}} + \dfrac{{21}}{{{x^4}}} - \dfrac{{30}}{{{x^6}}} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 33: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 35: Thông hiểu

    Đạo hàm của hàm số y = \sqrt {3 + 2\tan x} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {3 + 2\tan x}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\left( {3 + 2\tan x} ight)\prime  \hfill \\   = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\dfrac{2}{{{{\cos }^2}x}} \hfill \\   = \dfrac{1}{{{{\cos }^2}x\sqrt {3 + 2\tan x} }} \hfill \\ \end{matrix}

  • Câu 36: Thông hiểu

    Tính đạo hàm của hàm số f(x) = \left( x^{3} - 2x^{2}
ight)^{2}?

    Ta có:

    f(x) = \left( x^{3} - 2x^{2}
ight)^{2}

    \Rightarrow f'(x) = \left\lbrack
\left( x^{3} - 2x^{2} ight)^{2} ightbrack'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( x^{3} - 2x^{2} ight)'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( 3x^{2} - 4x ight)

    \Rightarrow f'(x) = 6x^{5} - 8x^{4}
- 12x^{4} + 16x^{3}

    \Rightarrow f'(x) = 6x^{5} - 20x^{4}
+ 16x^{3}

  • Câu 37: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 39: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 40: Thông hiểu

    Cho hàm số f(x) = k\sqrt[3]{x} +
\sqrt{x}. Với giá trị nào của k thì f^{'}(1) = \frac{3}{2} ?

    Ta có: f(x) = k.\sqrt[3]{x} + \sqrt{x} =
k.x^{\frac{1}{3}} + \sqrt{x}.

    f^{'}(x) = \frac{k}{3}x^{-
\frac{2}{3}} + \frac{1}{2\sqrt{x}} = \frac{k}{3\sqrt[3]{x^{2}}} +
\frac{1}{2\sqrt{x}}.

    Để f'(1) = \frac{3}{2}
\Leftrightarrow \frac{k}{3} + \frac{1}{2} = \frac{3}{2} \Leftrightarrow
k = 3.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo