Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 2: Nhận biết

    Cho f là hàm số liên tục tại x_{0}. Đạo hàm của f tại x_{0} là: 

    Đạo hàm của f tại x_{0} là \underset{h \to 0}{lim}\frac{f(x_{0}+h)-f(x_{0})}{h} (nếu tồn tại giới hạn)

  • Câu 3: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 4: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 5: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 6: Nhận biết

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 7: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 8: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 9: Nhận biết

    Đạo hàm của hàm số y = 5^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 5^{x} \Rightarrow y' =5^{x}.\ln5

  • Câu 10: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = t^{3} - 3t^{2} - 9t +
2,(t > 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc bằng 0 thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 3t^{2} - 6t - 9 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1(ktm) \\
t = 3(tm) \\
\end{matrix} ight.

    Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:

    a(t) = S''(t) = v'(t) =
\left( 3t^{2} - 6t - 9 ight)' = 6t - 6

    Gia tốc tức thời tại thời điểm vận tốc bằng 0 là

    a(3) = 6.3 - 6 = 12\left( m/s^{2}
ight)

  • Câu 11: Thông hiểu

    Biết điểm P thuộc đồ thị hàm số y = f(x) = x^{3} + 1 sao cho tiếp tuyến của đồ thị hàm số y = f(x) tại P song song với đường thẳng \Delta:y = 3x - 1 . Có thể xác định được bao nhiêu điểm P thỏa mãn yêu cầu đề bài?

    Gọi điểm P\left( a;a^{3} + 1
ight) là điểm thuộc đồ thị hàm số y = f(x) = x^{3} + 1\ \ \ (C)

    Ta có: f'(x) = 3x^{2} suy ra phương trình tiếp tuyến của (C) tại điểm (P) là:

    y = 3a^{2}(x - a) + a^{3} +
1

    \Rightarrow y = 3a^{2}x - 2a^{3} + a\ \
\ \ \ (d)

    Do (d)//(\Delta) nên \left\{ \begin{matrix}
3a^{2} = 3 \\
- 2a^{3} + 1 eq - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = \pm 1 \\
a eq - 1 \\
\end{matrix} ight.\  \Rightarrow a = - 1

    Vậy có duy nhất một điểm P thỏa mãn yêu cầu đề bài.

  • Câu 12: Nhận biết

    Đạo hàm của hàm số f(x) = x^{4} - 4mx^{2} - 3m - 1 (với m là tham số) là:

    Ta có:

    f(x) = x^{4} - 4mx^{2} - 3m -
1

    f'(x) = 4x^{3} - 8mx

  • Câu 13: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 14: Vận dụng

    Cho hàm số y =
\sqrt{3}\cos x + \sin x - x^{2} + 2021x + 2022. Có bao nhiêu nghiệm thuộc \lbrack 0;4\pibrack thỏa mãn phương trình y'' =
0?

    Ta có:

    y = \sqrt{3}\cos x + \sin x - x^{2} +
2021x + 2022

    \Rightarrow y' = \sqrt{3}\sin x +
\cos x - 2x + 2021

    \Rightarrow y'' = \sqrt{3}\cos x
- \sin x - 2

    Lại có y'' = 0 \Leftrightarrow
\sqrt{3}\cos x - \sin x - 2 = 0

    \Leftrightarrow \frac{1}{2}\sin x -
\frac{\sqrt{3}}{2}\cos x = - 1

    \Leftrightarrow \sin\left( x -
\frac{\pi}{3} ight) = - 1

    \Leftrightarrow x - \frac{\pi}{3} =
\frac{- \pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{- \pi}{6} +
k2\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{6} + k2\pi \leq 4\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{12} \leq k \leq \dfrac{25}{12} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2ight\}

    Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 15: Nhận biết

    Đạo hàm của hàm số y=-\frac{x^{3}}{3}+\frac{x^{2}}{2}-x+5 bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y =  - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + 5 \hfill \\   \Rightarrow y' =  - \dfrac{{3{x^2}}}{3} + \dfrac{{2x}}{2} - 1 \hfill \\   \Rightarrow y' =  - {x^2} + x - 1 \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 17: Thông hiểu

    Cho hàm số y=\frac{2}{1+x}. Tính giá trị của y^{(3)}(1)

    Ta có:

    \begin{matrix}  y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{4\left( {1 + x} ight)}}{{{{\left( {1 + x} ight)}^4}}} = \dfrac{4}{{{{\left( {1 + x} ight)}^3}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {1 + x} ight)}^2}}}{{{{\left( {1 + x} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {1 + x} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} =  - \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu

    Tính đạo hàm của hàm số y = 2{\sin ^2}x-\cos 2x + x

    Ta có:

    \begin{matrix}  y = 2{\sin ^2}x - \cos 2x + x \hfill \\  y = 1 - \cos 2x - \cos 2x + x \hfill \\  y = 1 - 2\cos 2x + x \hfill \\   \Rightarrow y' = 4\sin 2x + 1 \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 21: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 22: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 23: Vận dụng cao

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Điều kiện x eq 1

    Ta có: f'(x) = \frac{- 1}{(x -
1)^{2}}

    Đường thẳng d đi qua Q có hệ số góc k là y = k(x - a) + 1

    Đường thẳng d tiếp xúc với (C) \Leftrightarrow \left\{ \begin{matrix}k(x - a) + 1 = \dfrac{x + 2}{x - 1}(*) \\k = - \dfrac{1}{(x - 1)^{2}}(**) \\\end{matrix} ight. có nghiệm

    Thế (**) vào (*) ta có: - \frac{1}{(x -
1)^{2}}(x - a) + 1 = \frac{- x + 2}{x - 1}

    \Leftrightarrow - x + a + x^{2} - 2x + 1
= - x^{2} + 3x - 2;x eq 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0\
\ \ (1)

    Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất

    Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 = 0 \\2 - 6 + a + 3 eq 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 > 0 \\2 - 6 + a + 3 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{3}{2} \\a = 1 \\\end{matrix} ight.

    Vậy 1 + \frac{3}{2} =
\frac{5}{2}

  • Câu 24: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 25: Vận dụng

    Cho hàm số y =\sin2x.\cos x. Xác định giá trị y^{(4)}\left( \frac{\pi}{6} ight)?

    Ta có:

    y =\sin2x.\cos x = \frac{1}{2}\left( \sin3x+ \sin x ight)

    \Rightarrow y' = \frac{1}{2}\left(3\cos3x + \cos x ight)

    \Rightarrow y'' =\frac{1}{2}\left( - 9\sin3x - \sin x ight)

    \Rightarrow y''' =\frac{1}{2}\left( - 27\cos3x - \cos x ight)

    \Rightarrow y^{(4)} = \frac{1}{2}\left(81\sin3x + \sin x ight)

    \Rightarrow y^{(4)}\left( \frac{\pi}{6}
ight) = \frac{1}{2}\left\lbrack 81sin\left( \frac{3.\pi}{6} ight) +
\sin\left( \frac{\pi}{6} ight) ightbrack = \frac{1}{2}.\left(
3^{4} - \frac{1}{2} ight)

  • Câu 26: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Đáp án là:

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Vận tốc của chuyển động là v(t) =
S'(t) = 3t^{2} - 6t + 5

    Dễ thấy v(t) = 3t^{2} - 6t + 5 = 3(t -
1)^{2} + 2 \geq 2 với mọi t.

    Dấu “=” xảy ra khi và chỉ khi t =
1

    Khi đó quãng đường vật đi được là: S(1) =
1^{3} - 3.1^{2} + 5.1 + 7 = 10m

  • Câu 27: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 28: Nhận biết

    Cho f(x) = \sin x
+ \cos x. Khi đó f'\left(
\frac{\pi}{6} ight) bằng:

    Ta có:

    f(x) = \sin x + \cos x

    \Rightarrow f'(x) = \cos x - \sin
x

    \Rightarrow f'\left( \frac{\pi}{6}
ight) = \cos\frac{\pi}{6} - \sin\frac{\pi}{6} = \frac{\sqrt{3} -
1}{2}

  • Câu 29: Vận dụng cao

    Trên đồ thị hàm số y = \frac{x + 3}{x +2} tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?

    Ta có:

    Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến k = \pm1.

    Ta có: f'(x) = - \frac{1}{(x +2)^{2}}

    => Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:

    - \frac{1}{(x + 2)^{2}} = - 1\Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight.

    Hai điểm thỏa mãn ( - 3;0),( -1;2)

  • Câu 30: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 31: Thông hiểu

    Cho hàm số f(x)
= \left\{ \begin{matrix}
(x - 1)^{2}\ \ khi\ x \geq 0 \\
- x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x_{0} = 0?

    Ta có:

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}(x - 1)^{2} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( - x^{2} ight) = 0

    Suy ra f(0) = \lim_{x ightarrow
0^{+}}f(x) eq \lim_{x ightarrow 0^{-}}f(x)

    Nên hàm số không liên tục tại x_{0} =
0

    Vậy không tồn tại đạo hàm của hàm số y =
f(x) tại điểm x_{0} =
0.

  • Câu 32: Thông hiểu

    Cho hàm số y =
f(x) = \frac{x + 1}{3x} . Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của (C) và đường thẳng y = x + 1 là đường thẳng nào dưới đây?

    Hoành độ giao điểm là nghiệm của phương trình

    \frac{x + 1}{3x} = x + 1 \Leftrightarrow
3x^{2} + 2x - 1 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \Rightarrow y = 0 \\x = \dfrac{1}{3} \Rightarrow y = \dfrac{4}{3} \\\end{matrix} ight.

    Phương trình tiếp tuyến tại điểm ( -
1;0)

    y = y'( - 1)(x + 1) + 0 \Rightarrow
y = - \frac{1}{3}x - \frac{1}{3}

    Phương trình tiếp tuyến tại điểm \left(
\frac{1}{3};\frac{4}{3} ight)

    y = y'\left( \frac{1}{3}
ight)\left( x - \frac{1}{3} ight) + \frac{4}{3} \Rightarrow y = - 3x
+ \frac{7}{3}

  • Câu 33: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 34: Thông hiểu

    Đạo hàm của hàm số y = 2^{x^{2} + 2} là:

    Ta có:

    y = 2^{x^{2} + 2}

    \Rightarrow y' = \left( x^{2} + 2ight)'.2^{x^{2} + 2}.\ln2

    = 2x.2^{x^{2} + 2}.ln2 = x.2^{x^{2} +3}.\ln2

  • Câu 35: Thông hiểu

    Một chất điểm chuyển động thẳng có phương trình S=\frac{1}{2}t^{2} ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm t_{0}=5(s) 

    Ta có: 

    \begin{matrix}  v\left( t ight) = s'\left( t ight) = t \hfill \\   \Rightarrow v\left( {{t_0}} ight) = v\left( 5 ight) = 5\left( {m/s} ight) \hfill \\ \end{matrix}

  • Câu 36: Thông hiểu

    Cho hàm số f(x)=\frac{x^{3}}{x-1}. Giải bất phương trình f'(x) = 0 có tập nghiệm S là:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{{x^3}}}{{x - 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {{x^3}} ight)'\left( {x - 1} ight) - \left( {{x^3}} ight).\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{3{x^2}\left( {x - 1} ight) - {x^3}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{3{x^3} - 3{x^2} - {x^3}}}{{{{\left( {x - 1} ight)}^2}}} = \dfrac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Xét phương trình f'(x) = 0 ta có:

    Điều kiện xác định x e 1

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \dfrac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} ight)}^2}}} = 0 \hfill \\   \Leftrightarrow 2{x^3} - 3{x^2} = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{3}{2}} \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

    Vậy phương trình có tập nghiệm S=\left \{ 0;\frac{3}{2} ight \}

  • Câu 37: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 38: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{2 - \sqrt {4 - x} }}{x}{\text{  }};0 < x < 4} \\ 
  {m{\text{          }};x = 0} \\ 
  {\dfrac{n}{x}{\text{         }};x \geqslant 4} 
\end{array}} ight.. Biết hàm số liên tục trên nửa khoảng \lbrack 0; + \infty). Tích của mn bằng bao nhiêu?

    Tập xác định D = \lbrack 0; +
\infty)

    Hàm số liên tục trên \lbrack 0; +
\infty) nên ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{2 - \sqrt{4 - x}}{x}

    = \lim_{x ightarrow
0^{+}}\frac{x}{x\left( 2 + \sqrt{4 - x} ight)} =
\frac{1}{4}

    f(0) = m

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \dfrac{n}{x} = \dfrac{n}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2 - \sqrt {4 - x} }}{x} = \dfrac{1}{2} \hfill \\
  f\left( 4 ight) = \dfrac{n}{4} \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \\\dfrac{n}{4} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \ = 2 \\\end{matrix} ight.\  \Rightarrow m.n = \dfrac{1}{2}

  • Câu 39: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 40: Thông hiểu

    Đạo hàm của hàm số y=(\frac{3}{x}-2x)(\sqrt{x}-4) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {\dfrac{3}{x} - 2x} ight)\left( {\sqrt x  - 4} ight) \hfill \\   \Rightarrow y' = \left( {\dfrac{3}{x} - 2x} ight)'\left( {\sqrt x  - 4} ight) + \left( {\sqrt x  - 4} ight)'\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \left( {\dfrac{{ - 3}}{{{x^2}}} - 2} ight)\left( {\sqrt x  - 4} ight) + \left( {\dfrac{1}{{2\sqrt x }}} ight)\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3\sqrt x }}{{{x^2}}} + \dfrac{{12}}{{{x^2}}} - 2\sqrt x  + 8 + \dfrac{3}{{2x\sqrt x }} - \sqrt x  \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3}}{{2x\sqrt x }} - 3\sqrt x  + \dfrac{{12}}{{{x^2}}} + 8 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo