Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đạo hàm của hàm số y = \frac{1}{2} - \frac{1}{3}x + x^{2} -
0,25x^{4} là:

    Ta có:

    y = \frac{1}{2} - \frac{1}{3}x + x^{2} -
0,25x^{4}

    \Rightarrow y' = \left( \frac{1}{2}
ight)' - \left( \frac{1}{3}x ight)' + \left( x^{2}
ight)' - \left( 0,25x^{4} ight)'

    y' = 0 - \frac{1}{3} + 2x^{2 - 1} -
4.0,25x^{4 - 1}

    y' = - \frac{1}{3} + 2x -
x^{3}

  • Câu 2: Thông hiểu

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Đáp án là:

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Ta có:

    y' = 3(m + 2)x^{2} + 3(m + 2)x + 3
\geq 0

    \Leftrightarrow (m + 2)x^{2} + (m + 2)x
+ 1 \geq 0(*)

    Để phương trình (*) luôn đúng với \forall
x\mathbb{\in R} thì

    TH1: m + 2 = 0 \Rightarrow m = -
2

    \Rightarrow y' = 1 \geq 0;\forall
x\mathbb{\in R}

    TH2: m + 2 eq 0 \Rightarrow m eq -
2

    \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
- 2 \leq m \leq 2 \\
\end{matrix} ight.\  \Rightarrow - 2 < m \leq 2

    \Rightarrow m \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.

  • Câu 3: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 1}
ight) + ln2018

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2017)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} -
\frac{1}{2018}

    S = 1 - \frac{1}{2018} =
\frac{2017}{2018}

  • Câu 4: Nhận biết

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 5: Nhận biết

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 2} ight) . Tính giá trị biểu thức: S = f'(1) + f'(3) + f'(5)
+ ... + f'(2021) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 2} ight) . Tính giá trị biểu thức: S = f'(1) + f'(3) + f'(5)
+ ... + f'(2021) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 2}
ight)

    \Rightarrow f'(x) = \frac{2}{x(x +
2)} = \frac{1}{x} - \frac{1}{x + 2}

    Khi đó:

    S = f'(1) + f'(3) + f'(5) +
... + f'(2021)

    S = \frac{1}{1} - \frac{1}{3} +
\frac{1}{3} - \frac{1}{5} + ... + \frac{1}{2021} -
\frac{1}{2023}

    S = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 7: Nhận biết

    Cho f là hàm số liên tục tại x_{0}. Đạo hàm của f tại x_{0} là: 

    Đạo hàm của f tại x_{0} là \underset{h \to 0}{lim}\frac{f(x_{0}+h)-f(x_{0})}{h} (nếu tồn tại giới hạn)

  • Câu 8: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{2 - \sqrt {4 - x} }}{x}{\text{  }};0 < x < 4} \\ 
  {m{\text{          }};x = 0} \\ 
  {\dfrac{n}{x}{\text{         }};x \geqslant 4} 
\end{array}} ight.. Biết hàm số liên tục trên nửa khoảng \lbrack 0; + \infty). Tích của mn bằng bao nhiêu?

    Tập xác định D = \lbrack 0; +
\infty)

    Hàm số liên tục trên \lbrack 0; +
\infty) nên ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{2 - \sqrt{4 - x}}{x}

    = \lim_{x ightarrow
0^{+}}\frac{x}{x\left( 2 + \sqrt{4 - x} ight)} =
\frac{1}{4}

    f(0) = m

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \dfrac{n}{x} = \dfrac{n}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2 - \sqrt {4 - x} }}{x} = \dfrac{1}{2} \hfill \\
  f\left( 4 ight) = \dfrac{n}{4} \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \\\dfrac{n}{4} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \ = 2 \\\end{matrix} ight.\  \Rightarrow m.n = \dfrac{1}{2}

  • Câu 9: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 10: Thông hiểu

    Biết \left\{ \begin{gathered}
  f\left( x ight) = \sqrt {{x^2} - 2x + 3}  \hfill \\
  f'\left( x ight) = \frac{{ax + b}}{{\sqrt {{x^2} - 2x + 3} }} \hfill \\ 
\end{gathered}  ight. . Khi đó giá trị biểu thức M = a.b = -1|| - 1

    Đáp án là:

    Biết \left\{ \begin{gathered}
  f\left( x ight) = \sqrt {{x^2} - 2x + 3}  \hfill \\
  f'\left( x ight) = \frac{{ax + b}}{{\sqrt {{x^2} - 2x + 3} }} \hfill \\ 
\end{gathered}  ight. . Khi đó giá trị biểu thức M = a.b = -1|| - 1

    Ta có:

    f(x) = \sqrt{x^{2} - 2x +
3}

    \Rightarrow f'(x) = \frac{\left(
x^{2} - 2x + 3 ight)'}{2\sqrt{x^{2} - 2x + 3}} = \frac{2x -
2}{2\sqrt{x^{2} - 2x + 3}}

    = \frac{x - 1}{\sqrt{x^{2} - 2x + 3}}
\Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow M = a.b = - 1

  • Câu 11: Thông hiểu

    Đạo hàm của hàm số y=x\cos2x-\frac{\sin3x}{x} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = x\cos 2x - \dfrac{{\sin 3x}}{x} \hfill \\   \Rightarrow y' = x'\cos 2x + x\left( {\cos 2x} ight)\prime  - \left( {\dfrac{{\sin 3x}}{x}} ight)\prime  \hfill \\   \Leftrightarrow y' = \cos 2x + x.\left( { - 2\sin 2x} ight) - \dfrac{{3x\cos 3x - \sin 3x}}{{{x^2}}} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

  • Câu 13: Nhận biết

    Đạo hàm của hàm số f(x)=t^{2}x+tx^{2} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = {t^2}x + t{x^2} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {{t^2}x + t{x^2}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = {t^2} + 2tx \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 15: Vận dụng

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Đáp án là:

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v = S' = - 3t^{2} + 6t + 9

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a = S'' = - 6t + 6

    Gia tốc triệt tiêu khi a = 0 \Rightarrow
S'' = 0 \Rightarrow t = 1

    Khi đó vận tốc của chuyển động là S'(1) = 12m/s

  • Câu 16: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 17: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 19: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 20: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 21: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 22: Thông hiểu

    Cho hình tròn bán kính r có diện tích là S(r). Mệnh đề nào sau đây đúng?

    Ta có:

    S(r) = \pi.r^{2} \Rightarrow S'(r) =
2\pi.r

    Suy ra S'\left( r_{0}
ight) là chu vi của đường tròn bán kính r_{0}.

  • Câu 23: Thông hiểu

    Cho hàm số y =
e^{2x} + 2e^{- x}. Khẳng định nào dưới đây đúng?

    Ta có:

    y = e^{2x} + 2e^{- x}

    \Rightarrow y' = 2e^{2x} - 2e^{-
x}

    \Rightarrow y'' = \left( 2e^{2x}
- 2e^{- x} ight)' = 4e^{2x} + 2e^{- x}

    \Rightarrow y''' =
(y'')' = 8e^{2x} - 2e^{- x}

    \Rightarrow y''' -
y'' = 2y'

  • Câu 24: Thông hiểu

    Đạo hàm của hàm số y = 2^{x^{2} + 2} là:

    Ta có:

    y = 2^{x^{2} + 2}

    \Rightarrow y' = \left( x^{2} + 2ight)'.2^{x^{2} + 2}.\ln2

    = 2x.2^{x^{2} + 2}.ln2 = x.2^{x^{2} +3}.\ln2

  • Câu 25: Thông hiểu

    Cho hàm số y=\frac{1}{(x+1)^{3}}. Giải bất phương trình y" < 0

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{{{(x + 1)}^3}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3.{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 3}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow y'' = \dfrac{{3.4.{{\left( {x + 1} ight)}^3}}}{{{{\left( {x + 1} ight)}^8}}} = \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' < 0 \hfill \\   \Leftrightarrow \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} < 0 \hfill \\   \Leftrightarrow {\left( {x + 1} ight)^5} < 0,\left( {{\text{Do }}12 > 0} ight) \hfill \\   \Leftrightarrow x <  - 1 \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 27: Thông hiểu

    Cho hàm số f(x)=\left | x-2 ight |. Khẳng định nào sau đây là sai?

    Ta có: f(2)= 0 (đúng)

    f(x) = \left| {x - 2} ight| \geqslant 0,\forall x => Hàm số nhận giá trị không âm

    Ta lại có:

    \begin{matrix}  f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {x - 2{\text{   khi }}x \geqslant 2} \\   {2 - x{\text{   khi }}x < 2} \end{array}} ight. \hfill \\  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2 - x} ight) = 0 \hfill \\  f\left( 2 ight) = 0 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f\left( 2 ight) \hfill \\ \end{matrix}

    => Hàm số liên tục tại x = 2

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 2}}{{x - 2}} = 1 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2 - x}}{{x - 2}} =  - 1 \hfill \\ \end{matrix}

    Vậy không tồn tại giới hạn \frac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} khi x tiến tới 2

    Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"

  • Câu 28: Vận dụng cao

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Thông hiểu

    Tính số gia của hàm số y =\frac{x^{2}}{2} tại điểm x0 = -1 ứng với số gia \Delta x

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f( - 1 + \Deltax) - f( - 1)

    \Rightarrow \Delta y = \frac{( - 1 +\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y = \frac{1 - 2\Deltax + (\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y =\frac{1}{2}(\Delta x)^{2} - \Delta x

  • Câu 30: Vận dụng cao

    Một vật rơi tự do theo phương trình s =\frac{1}{3}gt^{2}, trong đó g =9,8m/s^{2} là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.

    Ta có:

    v_{tb} = \frac{s(t + \Delta t) -s(t)}{\Delta t}

    \Rightarrow v_{tb} =\dfrac{\dfrac{1}{2}g(t + \Delta t)^{2} - \dfrac{1}{2}gt^{2}}{\Delta t}

    \Rightarrow v_{tb} = gt +\frac{1}{2}g\Delta t = 49,0049m/s

    Vậy vận tốc trung bình của chuyển động là 49,0049m/s.

  • Câu 31: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 32: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 33: Thông hiểu

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}
    Đáp án là:

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}

    Ta có:

    f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow \left\{ \begin{matrix}f''\left( - \dfrac{\pi}{2} ight) = - 9.\sin\left( -\dfrac{3\pi}{2} ight) = 9 \\f''(0) = - 9.
\sin(3.0) = 0 \\f''\left( \dfrac{\pi}{18} ight) = - 9.\sin\left( \dfrac{3\pi}{18}ight) = - \dfrac{9}{2} \\\end{matrix} ight.

  • Câu 35: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 36: Vận dụng

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 37: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 38: Thông hiểu

    Tính đạo hàm của hàm số y = \cos \sqrt {2x + 1}

    Ta có: 

    \begin{matrix}  y = \cos \sqrt {2x + 1}  \hfill \\   \Rightarrow y' =  - \left( {\sqrt {2x + 1} } ight)'.\sin \sqrt {2x + 1}  \hfill \\   =  - \dfrac{2}{{2\sqrt {2x + 1} }}.\sin \sqrt {2x + 1}  \hfill \\   =  - \dfrac{{\sin \sqrt {2x + 1} }}{{\sqrt {2x + 1} }} \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Cho hàm số f(x)
= \left\{ \begin{matrix}
(x - 1)^{2}\ \ khi\ x \geq 0 \\
- x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x_{0} = 0?

    Ta có:

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}(x - 1)^{2} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( - x^{2} ight) = 0

    Suy ra f(0) = \lim_{x ightarrow
0^{+}}f(x) eq \lim_{x ightarrow 0^{-}}f(x)

    Nên hàm số không liên tục tại x_{0} =
0

    Vậy không tồn tại đạo hàm của hàm số y =
f(x) tại điểm x_{0} =
0.

  • Câu 40: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo