Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Viết phương trình tiếp tuyến của đồ thị hàm số
. Biết
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Do song song với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Biết đường thẳng
là tiếp tuyến của đồ thị hàm số
. Tìm các giá trị của tham số
.
Ta có:
Gọi là đồ thị của hàm số
khi đó
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Để đường thẳng là tiếp tuyến của
thì
.
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
có đạo hàm tại
là
. Mệnh đề nào sau đây sai?
Mệnh đề sai là
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số ứng với
bằng
. Đúng||Sai
b) Cho hàm số . Giá trị
Đúng||Sai
c) Đạo hàm của hàm số trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
?
Ta có:
Điểm thuộc đồ thị đã cho có hoành độ là
Vậy phương trình tiếp tuyến của đồ thị hàm số tại là:
Đạo hàm của hàm số
là:
Ta có:
Tìm đường thẳng tiếp tuyến kẻ từ điểm
đến đồ thị hàm số
?
Phương trình đường thẳng đi qua B có dạng
là tiếp tuyến của parabol
khi và chỉ khi
có nghiệm
Vậy
Tính đạo hàm của hàm số ![]()
Ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
với
xác định và liên tục trên
. Tính
.
Do hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
Cho
. Tính ![]()
Ta có:
Tìm tham số thực b để hàm số
có đạo hàm tại x = 2.
Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là
Thử b = 6 ta có:
Nên hàm số có đạo hàm tại x = 2
Hệ số góc của tiếp tuyến của đồ thị hàm số
tại giao điểm của đồ thị hàm số với trục tung là:
Ta có:
Giao điểm của đồ thị hàm số với trục tung là
Vậy hệ số góc cần tìm là
Đạo hàm của hàm số
là
Ta có:
Cho hàm số
. Tính giá trị của biểu thức
?
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số y = sin2x có đạo hàm là y’ và y’’. Mệnh đề nào sau đây đúng?
Ta có:
Tính đạo hàm cấp hai của hàm số
tại điểm
?
Ta có:
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là . Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Ta có:
Vận tốc tức thời của vật tại thời điểm là:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Giải phương trình y" = 0
Ta có:
Cho hàm số
. Tính giá trị biểu thức:
![]()
Ta có:
Suy ra
…
Vậy
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Cho hàm số
và
. Tính giá trị
?
Ta có:
Hàm số nào sau đây có đạo hàm bằng
?
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của
-3|| - 3
Cho hàm số có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của -3|| - 3
Tập xác định
Ta có:
Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1
Do y’ < 0 nên k = -1
Gọi tọa độ tiếp điểm là ta có:
Với
Với
Vậy
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Ta có
. Khi đó đa thức M là:
Ta có:
Vậy
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.