Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Tính đạo hàm của hàm số
?
Ta có:
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
VD
1
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Đạo hàm của hàm số
là
Ta có:
Tìm số tiếp tuyến của đồ thị hàm số
song song với trục hoành.
Ta có:
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số
khi đó ta có: k = 0
Suy ra
Với
Với
Với
Vậy có 2 tiếp tuyến song song với trục hoành.
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Đạo hàm cấp hai của hàm số
có dạng
. Tính giá trị biểu thức
.
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức
, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.
Ta có:
Ta có:
Gia tốc của chất điểm là:
Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm
?
TXĐ:
Ta có:
Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số ứng với
bằng
. Đúng||Sai
b) Cho hàm số . Giá trị
Đúng||Sai
c) Đạo hàm của hàm số trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Ta có
. Khi đó đa thức M là:
Ta có:
Vậy
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Vậy
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Tính đạo hàm của hàm số
?
Ta có:
Một viên đạn được bắn lên cao theo phương trình
trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Tìm đạo hàm cấp hai của hàm số
?
Ta có:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Khi đó:
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Tính tổng
![]()
Xét
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho xác định trên tập số thực?
Để hàm số có tập xác định khi và chỉ khi
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình
với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Vậy gia tốc đạt giá trị nhỏ nhất khi . Khi đó vận tốc là
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Khi đó ![]()
Với xét:
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có: