Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của
và đường thẳng
là đường thẳng nào dưới đây?
Hoành độ giao điểm là nghiệm của phương trình
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của
và đường thẳng
là đường thẳng nào dưới đây?
Hoành độ giao điểm là nghiệm của phương trình
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Cho hàm số
. Giải bất phương trình y'' < 0.
Ta có:
Một vật rơi tự do theo phương trình
, trong đó
là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.
Ta có:
Vậy vận tốc trung bình của chuyển động là 49,0049m/s.
Cho hàm số
. Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm vận tốc bằng 2 là
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho
. Tính ![]()
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Tính đạo hàm hàm số
?
Ta có:
Tính đạo hàm của hàm số
tại ![]()
Tập xác định:
Ta có:
Suy ra đạo hàm của hàm số tại
là:
Cho hàm số
. Công thức tính
là:
Ta có:
….
Cho hàm số
. Tính giá trị của
.
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Điều kiện
Ta có:
Đường thẳng d đi qua Q có hệ số góc k là
Đường thẳng d tiếp xúc với (C) có nghiệm
Thế (**) vào (*) ta có:
Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất
Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1
Vậy
Biết
. Tính tỉ số
?
Với
Cho parabol
. Khẳng định nào sai trong các khẳng định sau?
Ta có:
=> Phương trình tiếp tuyến tại điểm M(1; 6) là:
hay
Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng .
Mặt khác ta có:
Vậy tiếp tuyến không đi qua điểm N(0; -1).
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Cho hàm số
. Giải bất phương trình
có tập nghiệm S là:
Ta có:
Xét phương trình ta có:
Điều kiện xác định
Vậy phương trình có tập nghiệm
Hàm số
có đạo hàm là:
Ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Cho hàm số
. Xác định công thức đạo hàm cấp hai của hàm số đã cho?
Tập xác định
Ta có:
Biết đồ thị hàm số
tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số
thỏa mãn điều kiện trên?
Ta không xét vì giá trị này không ảnh hưởng đến tổng S.
Với đồ thị hàm số
tiếp xúc với trục hoành khi và chỉ khi
có nghiệm
Với thay vào (**) ta được x = 1 thỏa mãn
Với thay vào (**) ta được
Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Khi đó ta có:
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Tìm số tiếp tuyến của đồ thị hàm số
song song với trục hoành.
Ta có:
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số
khi đó ta có: k = 0
Suy ra
Với
Với
Với
Vậy có 2 tiếp tuyến song song với trục hoành.
Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn phương trình
?
Ta có:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Cho hàm số . Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Tập xác định:
Ta có:
Ta có:
Với
Ta có:
Kết hợp với điều kiện ta có:
Mà nên suy ra
Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là