Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
. Xác định giá trị
?
Ta có:
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Cho hàm số
. Biểu thức nào dưới đây đúng?
Ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Xác định đạo hàm của hàm số
.
Ta có:
Vậy
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Biết đồ thị hàm số
tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số
thỏa mãn điều kiện trên?
Ta không xét vì giá trị này không ảnh hưởng đến tổng S.
Với đồ thị hàm số
tiếp xúc với trục hoành khi và chỉ khi
có nghiệm
Với thay vào (**) ta được x = 1 thỏa mãn
Với thay vào (**) ta được
Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Đạo hàm cấp hai của hàm số
là:
Ta có:
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Cho hàm số
. Chọn hệ thức đúng?
Ta có:
Khi đó ta có:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Tính đạo hàm của hàm số ![]()
Ta có:
Cho đường cong của phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:
Ta có:
=> Phương trình tiếp tuyến là:
Hay
Và phương trình đi qua điểm M (1;-3).
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Khi đó ta có:
Cho hàm số
. Giá trị của
bằng:
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Tìm đường thẳng tiếp tuyến kẻ từ điểm
đến đồ thị hàm số
?
Phương trình đường thẳng đi qua B có dạng
là tiếp tuyến của parabol
khi và chỉ khi
có nghiệm
Vậy
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho đường cong có phương trình
. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:
Ta có:
Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Cho hàm số
. Biết
. Xác định giá trị của tham số
?
Ta có:
Lại có:
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có: