Tính đạo hàm của hàm số
trên khoảng
?
Trên khoảng ta có:
Tính đạo hàm của hàm số
trên khoảng
?
Trên khoảng ta có:
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Viết phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Ta có:
Vì tiếp tuyến song song với nên hệ số góc bằng 3 nên gọi tọa độ tiếp điểm là
Khi đó
Với
Với
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số ứng với
bằng
. Đúng||Sai
b) Cho hàm số . Giá trị
Đúng||Sai
c) Đạo hàm của hàm số trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Cho
. Giá trị của
bằng bao nhiêu?
Ta có:
Cho hàm số
. Giá trị của
bằng:
Ta có:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Tính đạo hàm của hàm số sau:
.
Ta có:
Đạo hàm bậc hai của hàm số
là:
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Tính đạo hàm hàm số
?
Ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
có đồ thị
. Xác định phương trình tiếp tuyến của
tại điểm
?
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho
. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.
=> Hệ phương trình có hai nghiệm phân biệt
Từ hệ
Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.
Khi đó
Theo bài ra ta có:
Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.
Biết
. Xác định công thức của
?
Ta có:
…
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Cho hàm số
. Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Cho hàm số . Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Tập xác định:
Ta có:
Ta có:
Với
Ta có:
Kết hợp với điều kiện ta có:
Mà nên suy ra
Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Xác định đạo hàm của hàm số
.
Ta có:
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Cho hàm số
với
xác định và liên tục trên
. Tính
.
Do hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục
một tam giác vuông cân tại
?
Gọi là hoành độ tiếp xúc của (C) và (d)
Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng
là hoành độ tiếp xúc của (C) và (d) khi đó:
Vì
Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Vậy
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có: