Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Cho hàm số
với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Cho hàm số với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Ta có:
Để phương trình (*) luôn đúng với thì
TH1:
TH2:
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.
Một vật chuyển động theo quy luật
với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Cho hàm số xác định bởi công thức
có đồ thị hàm số
. Số các tiếp tuyến của đồ thị
song song với đường thẳng
là?
Ta có:
Gọi là tiếp điểm
Vì tiếp tuyến song song với đường thẳng nên
Với có phương trình tiếp tuyến tương ứng là
Với có phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
. Tính
.
Ta có:
Cho hàm số
. Tính giá trị biểu thức:
![]()
Ta có:
Suy ra
…
Vậy
Tính đạo hàm cấp 5 của hàm số
là:
Ta có:
Cho hàm số
. Tính giá trị của
.
Ta có:
Cho đồ thị hàm số
. Gọi
là các điểm thuộc đồ thị
mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm
thỏa mãn điều kiện trên?
Ta có:
Giả sử với
Tiếp tuyến tại A và B song song với nhau nên
Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn thì các tiếp tuyến tại A và B song song với nhau.
Cho hàm số
và
. Tính giá trị
?
Ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Công thức nào sau đây đúng?
Ta có:
Khi đó
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
. Khi đó ![]()
Với xét:
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Đạo hàm của hàm số: ![]()
Ta có:
Biết đường thẳng
là tiếp tuyến của đồ thị hàm số
. Tìm các giá trị của tham số
.
Ta có:
Gọi là đồ thị của hàm số
khi đó
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Để đường thẳng là tiếp tuyến của
thì
.
Tính đạo hàm của hàm số
trên khoảng
?
Trên khoảng ta có:
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số tại
?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Khi vận tốc bị triệt tiêu nghĩa là
Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Một vật chuyển động theo quy luật
với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Một vật chuyển động theo quy luật với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Vận tốc của vật là: .
Vận tốc của vật đạt thì
Vật đạt vận tốc là
lần thứ 2 khi
.
Lúc đó quãng đường vật đi được là:
(mét)
Cho hàm số
có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho
. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.
=> Hệ phương trình có hai nghiệm phân biệt
Từ hệ
Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.
Khi đó
Theo bài ra ta có:
Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số
. Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Xác định đạo hàm của hàm số
?
Ta có:
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Cho hàm số
xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho hàm số xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Do mà
Ta có:
Mà và
Nên
Đạo hàm của hàm số
là
Ta có:
Một chất điểm chuyển động có phương trình chuyển động là
; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm
thì vận tốc tức thời của chuyển động bằng bao nhiêu?
Ta có:
Vận tốc tức thời của chuyển động khi là:
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có: