Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định đạo hàm cấp hai của hàm số y = \sin5x.\cos2x.

    Ta có:

    y = \sin5x.\cos2x = \frac{1}{2}(\sin7x +\sin3x)

    \Rightarrow y' = \frac{1}{2}(7.\cos7x+ 3.\cos3x)

    \Rightarrow y'' = \frac{1}{2}( -49\sin7x - 9\sin3x)

  • Câu 2: Nhận biết

    Xác định đạo hàm của hàm số y = \log_{4}\left( 2x^{2} - 3 ight)?

    Ta có:

    y' = \frac{4x}{\left( 2x^{2} - 3ight).\ln4} = \frac{4x}{\left( 2x^{2} - 3 ight).2.\ln2}

    = \frac{2x}{\left( 2x^{2} - 3ight).\ln2}

  • Câu 3: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 4: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 5: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 6: Thông hiểu

    Một chất điểm chuyển động thẳng có phương trình S=\frac{1}{2}t^{2} ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm t_{0}=5(s) 

    Ta có: 

    \begin{matrix}  v\left( t ight) = s'\left( t ight) = t \hfill \\   \Rightarrow v\left( {{t_0}} ight) = v\left( 5 ight) = 5\left( {m/s} ight) \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Đạo hàm của hàm số y = \sqrt {3 + 2\tan x} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {3 + 2\tan x}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\left( {3 + 2\tan x} ight)\prime  \hfill \\   = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\dfrac{2}{{{{\cos }^2}x}} \hfill \\   = \dfrac{1}{{{{\cos }^2}x\sqrt {3 + 2\tan x} }} \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 10: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 11: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 12: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 13: Nhận biết

    Đạo hàm của hàm số f(x)=t^{2}x+tx^{2} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = {t^2}x + t{x^2} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {{t^2}x + t{x^2}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = {t^2} + 2tx \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 15: Thông hiểu

    Cho hàm số y=\frac{2}{1+x}. Tính giá trị của y^{(3)}(1)

    Ta có:

    \begin{matrix}  y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{4\left( {1 + x} ight)}}{{{{\left( {1 + x} ight)}^4}}} = \dfrac{4}{{{{\left( {1 + x} ight)}^3}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {1 + x} ight)}^2}}}{{{{\left( {1 + x} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {1 + x} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} =  - \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 17: Vận dụng

    Cho đường cong (C):y = x^{4} - 2x^{2} + m - 2 với m là tham số. Gọi S là tập các giá trị của tham số m sao cho đồ thị hàm số (C) có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập S là:

    Ta có: y' = 4x^{3} - 4x

    Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0

    Gọi tiếp điểm là M\left( x_{0};y_{0}
ight) \in (C) khi đó y'\left(
x_{0} ight) = 4{x_{0}}^{3} - 4x_{0} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 0 \Rightarrow y_{0} = m - 2 \\
x_{0} = \pm 1 \Rightarrow y_{0} = m - 3 \\
\end{matrix} ight.

    Để có đúng 1 tiếp tuyến song song với trục hoàn thì

    \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m - 3 eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m - 2 eq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m eq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m eq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m = 2;m = 3

    Vậy tổng các giá trị m là 5.

  • Câu 18: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 19: Nhận biết

    Tính đạo hàm của hàm số y = \sin\left( x^{2} - 3x + 2
ight).

    Ta có:

    y = \sin\left( x^{2} - 3x + 2
ight)

    \Rightarrow y' = \left( x^{2} - 3x +2 ight)'.\cos\left( x^{2} - 3x + 2 ight)

    = (2x - 3).\cos\left( x^{2} - 3x + 2ight)

  • Câu 20: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

  • Câu 21: Thông hiểu

    Cho hàm số y = \left\{ \begin{matrix}
x\ \ \ \ \ \ \ khi\ x \geq 0 \\
- x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Khẳng định nào dưới đây đúng?

    Ta có: y' = \left\{ \begin{matrix}
1\ \ \ \ \ \ \ khi\ x \geq 0 \\
- 1\ \ \ \ khi\ x < 0 \\
\end{matrix} ight.

    Do \left\{ \begin{matrix}
y'_{\left( 0^{+} ight)} = 1 \\
y'_{\left( 0^{-} ight)} = - 1 \\
\end{matrix} ight.

    \Rightarrow Hàm số không có đạo hàm tại x = 0.

  • Câu 22: Thông hiểu

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Đáp án là:

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v(t) = S'(t) = 8t^{3} + 12t -
3

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a(t) = 24t^{2} + 12

    Tại thời điểm t = 2s thì gia tốc có giá trị là:

    a(2) = 24.(2)^{2} + 12 = 108\left(
m/s^{2} ight)

  • Câu 23: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 24: Nhận biết

    Số gia của hàm số f(x)=2x^{2}-1 tại x_{0}=1 ứng với số gia \Delta x=0,1 bằng:

    Ta có:

    ∆f = f(1 + 0,1) - f(1)

    = 2(1,1)^2 - 1 - (2 - 1) = 0,42

  • Câu 25: Thông hiểu

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Vận tốc tức thời là

    v(t) = s'(t) = \frac{1}{3}t^{3} -
3t^{2} + 12t + 10

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = t^{2} - 6t + 12 = (t
- 3)^{2} + 3 \geq 3

    Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là v(3) = \frac{1}{3}.(3)^{3} -
3.(3)^{2} + 12.3 + 10 = 28(m/s)

  • Câu 26: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 27: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 28: Thông hiểu

    Cho y = x^{2}(x +
4)^{3}. Tính đạo hàm của hàm số đã cho?

    Ta có:

    y = x^{2}(x + 4)^{3}

    = x^{2}\left( x^{3} + 12x^{2} ight) +
48x + 64

    = x^{5} + 12x^{4} + 48x^{3} +
64x^{2}

    Suy ra y' = 5x^{4} + 48x^{3} + 144x^{2}
+ 128x

  • Câu 29: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ khi\ x eq 1 \\- \dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x_{0} = 1?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -
4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -
1}{\sqrt{3x + 1} + 2x} = - \frac{5}{4} eq f(1)

    Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1

  • Câu 30: Thông hiểu

    Ta có \left(
\frac{x^{2} + 4x - 1}{2x + 3} ight)' = \frac{M}{(2x +
3)^{2}}. Khi đó đa thức M là:

    Ta có:

    y = \frac{x^{2} + 4x - 1}{2x +
3}

    \Rightarrow y' = \frac{(2x + 3)(2x +
4) - 2\left( x^{2} + 4x - 1 ight)}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{4x^{3} + 14x
+ 12 - 2x^{2} - 8x + 2}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{2x^{2} + 6x +
14}{(2x + 3)^{2}}

    Vậy M=2x^{2} + 6x +14

  • Câu 31: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + ax + b\ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\\end{matrix} ight.. Biết hàm số có đạo hàm tại x = 2. Giá trị của a^{2} + b^{2} bằng:

    Ta có:

    \lim_{x ightarrow 2^{-}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\left( x^{3}- x^{2} - 8x + 10 ight) = - 2

    Ta có: \lim_{x ightarrow 2^{+}}f(x) =f(2) = 4 + 2a + b

    Để hàm số có liên tục tại x = 1 thì:

    4 + 2a + b = - 2

    Xét \lim_{x ightarrow 2^{-}}\frac{f(x)- f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{\left(x^{3} - x^{2} - 8x + 10 ight) - (4 + 2a + b)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{x^{3}- x^{2} - 8x + 12}{x - 2} = 0

    \lim_{x ightarrow 2^{+}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{+}}\frac{\left(x^{2} + ax + b ight) - (4 + 2x + b)}{x - 2}

    = \lim_{x ightarrow 2^{+}}(x + 2 + a)= 4 + a

    Từ đó suy ra 4 + a = 0 \Rightarrow a = - 4;b = 2

    Vậy a^{2} + b^{2} = 20

  • Câu 32: Thông hiểu

    Cho đồ thị hàm số (C):y = x^{4} - 3x^{3} + 2x^{2} - 1. Hỏi có bao nhiêu tiếp tuyến của (C) có hệ số góc k = 7?

    Ta có:

    y' = 4x^{3} - 9x^{2} +
4x

    Hoành độ tiếp điểm là nghiệm của phương trình 4x^{3} - 9x^{2} + 4x = 7

    Phương trình có 1 nghiệm nên có 1 tiếp tuyến có hệ số góc bằng 7

  • Câu 33: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 34: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 35: Thông hiểu

    Xác định đạo hàm của hàm số y = \sqrt{1 + 2 \tan x }.

    Ta có:

    y = \sqrt{1 + 2\tan x}

    \Rightarrow y' =\dfrac{(2\tan x)'}{2\sqrt{1 + 2\tan x}} =\dfrac{\dfrac{2}{\cos^{2}x}}{2\sqrt{1 + 2\tan x}}

    \Rightarrow y' =\dfrac{1}{\cos^{2}x.\sqrt{1 + 2\tan x}}

  • Câu 36: Nhận biết

    Tính đạo hàm hàm số y = x^{2} - \frac{1}{x}?

    Ta có:

    y = x^{2} - \frac{1}{x} \Rightarrow
y' = \left( x^{2} - \frac{1}{x} ight)'

    \Rightarrow y' = \left( x^{2}
ight)' - \left( \frac{1}{x} ight)'

    \Rightarrow y' = 2x - \left( -
\frac{1}{x^{2}} ight) = 2x + \frac{1}{x^{2}}

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \left( {\sin x} ight)} ight]\prime\hfill \\   \Rightarrow y' = \left( {\sin x} ight)'.\cos \left( {\sin x} ight) \hfill \\   \Rightarrow y' = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 39: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 40: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo