Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 2: Thông hiểu

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Tìm hệ số góc k của tiếp tuyến của parabol y = x^{2} tại điểm có hoành độ \frac{1}{2}.

    Ta có:

    y'\left( \dfrac{1}{2} ight) =\lim_{\Delta x ightarrow 0}\dfrac{f\left( \dfrac{1}{2} + \Delta xight) - f\left( \dfrac{1}{2} ight)}{\Delta x}

    = \lim_{\Delta x ightarrow0}\dfrac{\left( \dfrac{1}{2} + \Delta x ight)^{2} - \left( \dfrac{1}{2}ight)^{2}}{\Delta x}

    = \lim_{\Delta x ightarrow 0}(1 +\Delta x) = 1

  • Câu 4: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 5: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 2} ight) . Tính giá trị biểu thức: S = f'(1) + f'(3) + f'(5)
+ ... + f'(2021) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 2} ight) . Tính giá trị biểu thức: S = f'(1) + f'(3) + f'(5)
+ ... + f'(2021) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 2}
ight)

    \Rightarrow f'(x) = \frac{2}{x(x +
2)} = \frac{1}{x} - \frac{1}{x + 2}

    Khi đó:

    S = f'(1) + f'(3) + f'(5) +
... + f'(2021)

    S = \frac{1}{1} - \frac{1}{3} +
\frac{1}{3} - \frac{1}{5} + ... + \frac{1}{2021} -
\frac{1}{2023}

    S = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 6: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 7: Thông hiểu

    Cho f(x) =\sin3x. Giá trị của f''\left( - \frac{\pi}{2} ight) bằng bao nhiêu?

    Ta có: f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow f''\left( -\frac{\pi}{2} ight) = - 9.\sin\left( - \frac{3\pi}{2} ight) =9

  • Câu 8: Nhận biết

    Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = x^{4} - 6x^{2} + 5 tại điểm có hoành độ x_{0} = 2 là:

    Ta có: y' = 4x^{3} - 12x \Rightarrow
y'(2) = 8

    \Rightarrow k = 8

  • Câu 9: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 10: Vận dụng

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 11: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 12: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 13: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 14: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 15: Thông hiểu

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 16: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 17: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\sin2x. Chọn hệ thức đúng?

    Ta có:

    y' = 2.\cos2x \Rightarrow y''= - 4.\sin2x

    \Rightarrow 4y + y'' = 4.\sin2x -4.\sin2x = 0

  • Câu 18: Nhận biết

    Tính đạo hàm của hàm số y = \frac{1}{6}.x^{6} - \frac{1}{4}.x^{4} + a^{3}
+ b với a;b là hằng số)?

    Ta có:

    y = \frac{1}{6}.x^{6} -
\frac{1}{4}.x^{4} + a^{3} + b

    \Rightarrow y' = 6.\frac{1}{6}.x^{6
- 1} - 4.\frac{1}{4}.x^{4 - 1} + 0 + 0

    \Rightarrow y' = x^{5} -
x^{3}

  • Câu 19: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 20: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 21: Thông hiểu

    Đạo hàm của hàm số y=(\frac{3}{x}-2x)(\sqrt{x}-4) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {\dfrac{3}{x} - 2x} ight)\left( {\sqrt x  - 4} ight) \hfill \\   \Rightarrow y' = \left( {\dfrac{3}{x} - 2x} ight)'\left( {\sqrt x  - 4} ight) + \left( {\sqrt x  - 4} ight)'\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \left( {\dfrac{{ - 3}}{{{x^2}}} - 2} ight)\left( {\sqrt x  - 4} ight) + \left( {\dfrac{1}{{2\sqrt x }}} ight)\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3\sqrt x }}{{{x^2}}} + \dfrac{{12}}{{{x^2}}} - 2\sqrt x  + 8 + \dfrac{3}{{2x\sqrt x }} - \sqrt x  \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3}}{{2x\sqrt x }} - 3\sqrt x  + \dfrac{{12}}{{{x^2}}} + 8 \hfill \\ \end{matrix}

  • Câu 22: Nhận biết

    Tính đạo hàm của hàm số f(x) = 9^{2x + 2}

    Ta có: f(x) = 9^{2x + 2}

    \Rightarrow f'(x) = \left( 9^{2x +
1} ight)'

    \Rightarrow f'(x) = (2x +1)'.9^{2x + 1}.\ln9 = 2.9^{2x + 1}.\ln9

  • Câu 23: Nhận biết

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 24: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{x + 3}{\sqrt{x^{2} + 1}}?

    Ta có:

    y = \frac{x + 3}{\sqrt{x^{2} + 1}}
\Rightarrow y' = \left( \frac{x + 3}{\sqrt{x^{2} + 1}}
ight)'

    \Rightarrow y' = \dfrac{\sqrt{x^{2} +1} - \dfrac{(x + 3)x}{\sqrt{x^{2} + 1}}}{x^{2} + 1} = \dfrac{1 -3x}{\left( x^{2} + 1 ight)\sqrt{x^{2} + 1}}

  • Câu 25: Vận dụng

    Cho hàm số f(x)= \ln2021 + \ln\left( \frac{x}{x + 1} ight). Tính giá trị biểu thức:

    S = f'(1) + f'(2) + .... +
f'(2020)

    Ta có:

    f'(x) = \dfrac{\left( \dfrac{x}{x + 1}ight)'}{\dfrac{x}{x + 1}} = \dfrac{\dfrac{1}{(x + 1)^{2}}}{\dfrac{x}{x+ 1}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Suy ra = \frac{1}{x(x + 1)} = \frac{1}{x}
- \frac{1}{x + 1}

    f'(2) = \frac{1}{2} -
\frac{1}{3}

    f'(3) = \frac{1}{3} -
\frac{1}{4}

    f'(2020) = \frac{1}{2020} -
\frac{1}{2021}

    Vậy S = f'(1) + f'(2) + .... +
f'(2020) = 1 - \frac{1}{2021} = \frac{2020}{2021}

  • Câu 26: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 27: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 28: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 29: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 30: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx^{3}}{3} - \frac{mx^{2}}{2} + (3 - m)x - 2. Tìm giá trị của m để f'(x) > 0;\forall
x\mathbb{\in R}?

    Ta có:

    f'(x) = mx^{2} - mx + (3 -
m)

    Nếu m = 0 thì f'(x) = 3 > 0;\forall x\mathbb{\in
R}

    Nếu m eq 0 thì f'(x) = mx^{2} - mx + 3 - m là tam thức bậc hai

    f'(x) > 0;\forall x\mathbb{\in
R}

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
\Delta < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m^{2} - 4m(3 - m) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
5m^{2} - 12m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
0 < m < \frac{12}{5} \\
\end{matrix} ight.

    Vậy 0 \leq m <
\frac{12}{5}

  • Câu 31: Thông hiểu

    Cho hàm số y =f(x) = \sqrt{1 - 4x} + \frac{1 - x}{x - 3}. Tính f'(x).

    Ta có:

    f(x) = \sqrt{1 - 4x} + \frac{1 - x}{x -3}

    \Rightarrow f'(x) = \left( \sqrt{1 -4x} ight)' + \left( \frac{1 - x}{x - 3} ight)'

    \Rightarrow f'(x) = \frac{\left(\sqrt{1 - 4x} ight)'}{2\sqrt{1 - 4x}} + \frac{(1 - x)'(x - 3)- (1 - x)(x - 3)'}{(x - 3)^{2}}

    \Rightarrow f'(x) = \frac{-2}{\sqrt{1 - 4x}} + \frac{2}{(x - 3)^{2}}

  • Câu 32: Nhận biết

    Đạo hàm của hàm số f(x)=t^{2}x+tx^{2} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = {t^2}x + t{x^2} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {{t^2}x + t{x^2}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = {t^2} + 2tx \hfill \\ \end{matrix}

  • Câu 33: Vận dụng

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

    Vậy giá trị của biểu thức T = a - b =
0

  • Câu 34: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 35: Thông hiểu

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}
    Đáp án là:

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}

    Ta có:

    f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow \left\{ \begin{matrix}f''\left( - \dfrac{\pi}{2} ight) = - 9.\sin\left( -\dfrac{3\pi}{2} ight) = 9 \\f''(0) = - 9.
\sin(3.0) = 0 \\f''\left( \dfrac{\pi}{18} ight) = - 9.\sin\left( \dfrac{3\pi}{18}ight) = - \dfrac{9}{2} \\\end{matrix} ight.

  • Câu 36: Thông hiểu

    Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số y = f(x) = \frac{x + 1}{2x
- 3} tại điểm có hoành độ x_{0} = -
1?

    TXĐ: D\mathbb{= R}\backslash\left\{
\frac{3}{2} ight\}

    Ta có: f'(x) = \frac{- 5}{(2x -
3)^{2}}

    Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x_{0} = - 1 là:

    f'(-1) = \frac{- 5}{\left\lbrack 2.(- 1) - 3 ightbrack^{2}} = - \frac{1}{5}

  • Câu 37: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 38: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 39: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 40: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo