Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 2: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 3: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 4: Thông hiểu

    Tìm công thức đạo hàm cấp hai của hàm số y = \frac{3x + 1}{x + 2}?

    Ta có: y = \frac{3x + 1}{x + 2} = 3 -
\frac{5}{x + 2}

    \Rightarrow y' = \frac{5}{(x +
2)^{2}} \Rightarrow y'' = \frac{- 10}{(x + 2)^{3}}

  • Câu 5: Thông hiểu

    Đạo hàm của hàm số y = \frac{x + 1}{\sqrt{x}} bằng biểu thức nào sau đây?

    Ta có:y = \frac{x +
1}{\sqrt{x}}

    \Rightarrow y' = \frac{(x +
1)'.\sqrt{x} - \left( \sqrt{x} ight)'(x + 1)}{\left( \sqrt{x}
ight)^{2}}

    = \dfrac{\sqrt{x} - \dfrac{1}{2\sqrt{x}}(x+ 1)}{x} = \dfrac{\dfrac{2x - x - 1}{2\sqrt{x}}}{x} = \dfrac{x -1}{2x\sqrt{x}}

  • Câu 6: Thông hiểu

    Cho hàm số xác định bởi công thức y = x^{3} - 3x có đồ thị hàm số (C). Số các tiếp tuyến của đồ thị (C) song song với đường thẳng y = 3x - 10 là?

    Ta có:

    y' = 3x^{2} - 3

    Gọi A\left( x_{0};y_{0} ight) là tiếp điểm

    Vì tiếp tuyến song song với đường thẳng y
= 3x - 10 nên

    f'\left( x_{0} ight) = 3
\Rightarrow 3{x_{0}}^{2} - 3 = 3 \Rightarrow x_{0} = \pm
\sqrt{2}

    Với x_{0} = \sqrt{2} \Rightarrow y_{0} =
- \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x - \sqrt{2} ight) - \sqrt{2} = 3x -
4\sqrt{2}

    Với x_{0} = - \sqrt{2} \Rightarrow y_{0}
= \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x + \sqrt{2} ight) + \sqrt{2} = 3x +
4\sqrt{2}

    Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 7: Vận dụng cao

    Cho hàm số y =
\frac{x + 2}{1 - x} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số m để có đúng một tiếp tuyến của (C) đi qua điểm P(m,1)S . Tính tổng bình phương các phần tử của tập hợp S ?

    Kết quả: 13/4

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{x + 2}{1 - x} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số m để có đúng một tiếp tuyến của (C) đi qua điểm P(m,1)S . Tính tổng bình phương các phần tử của tập hợp S ?

    Kết quả: 13/4

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có: f'(x) = \frac{1 - x + x -
2}{(1 - x)^{2}} = \frac{- 1}{(1 - x)^{2}}

    Phương trình tiếp tuyến d với đồ thị hàm số tại M\left( x_{0};y_{0} ight) là:

    y - \frac{x_{0} - 2}{1 - x_{0}} =
\frac{- 1}{\left( 1 - x_{0} ight)^{2}}\left( x - x_{0}
ight)

    Tiếp tuyến đi qua P(m,1) nên 1 - \frac{x_{0} - 2}{1 - x_{0}} = \frac{-
1}{\left( 1 - x_{0} ight)^{2}}\left( m - x_{0} ight)

    \Leftrightarrow 2{x_{0}}^{2} - 6x_{0} +
m + 3 = 0;\left( x_{0} eq 1 ight)(*)

    Để có 1 tiếp tuyến đi qua P(m,1) suy ra phương trình (*) có 1 nghiệm x_{0}
eq 1

    \Leftrightarrow \left[ \begin{gathered}
  \Delta  = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  2 - 6 + m + 3 = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{3}{2} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{3}{2} \hfill \\
  m = 1 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{3}{2} \hfill \\
  m = 1 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow S = \left\{ 1;\frac{3}{2}
ight\} \Rightarrow 1^{2} + \left( \frac{3}{2} ight)^{2} =
\frac{13}{4}

  • Câu 8: Nhận biết

    Tính đạo hàm của hàm số y = \sin\left( x^{2} - 3x + 2
ight).

    Ta có:

    y = \sin\left( x^{2} - 3x + 2
ight)

    \Rightarrow y' = \left( x^{2} - 3x +2 ight)'.\cos\left( x^{2} - 3x + 2 ight)

    = (2x - 3).\cos\left( x^{2} - 3x + 2ight)

  • Câu 9: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 10: Thông hiểu

    Cho hàm số y =
\frac{x^{4}}{4} - x^{3} + 1. Tập nghiệm của bất phương trình y''' \leq 6 là:

    Ta có:

    y = \frac{x^{4}}{4} - x^{3} +
1

    \Rightarrow y' = x^{3} - 3x^{2}
\Rightarrow y'' = 3x^{2} - 6x

    \Rightarrow y^{(3)} = 6x -
6

    y^{(3)} \leq 6 \Leftrightarrow 6x - 6
\leq 6 \Leftrightarrow x \leq 2

    Vậy S = ( - \infty;2brack

  • Câu 11: Nhận biết

    Đạo hàm của hàm số y=2x^{5}-3x^{4}+0,5x^{2}-\frac{3x}{2}-4 bằng biểu thức nào dưới đây?

    Ta có:

    \begin{matrix}  y = 2{x^5} - 3{x^4} + 0,5{x^2} - \dfrac{{3x}}{2} - 4 \hfill \\   \Rightarrow y' = 10{x^4} - 12{x^3} + x - \dfrac{3}{2} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 13: Nhận biết

    Tính đạo hàm của hàm số sau: y = 4x^{2} - \sqrt{x} + \frac{1}{x}.

    Ta có: y = 4x^{2} - \sqrt{x} +
\frac{1}{x}

    \Rightarrow y' = 8x -
\frac{1}{2\sqrt{x}} - \frac{1}{x^{2}}

  • Câu 14: Thông hiểu

    Hàm số y = -
x^{3} + 3x - 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung?

    Ta có: y' = - 3x^{2} + 3

    Giao điểm của (C) với trục tung có tọa độ là B(0; - 2)

    Tiếp tuyến của (C) tại điểm B(0; - 2) có phương trình là:

    y = y'(0)(x - 0) - 2 \Leftrightarrow
y = 3x - 2

  • Câu 15: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \tan x là:

    Tập xác định D = R\backslash\left\{
\frac{\pi}{2} + k\pi;k\mathbb{\in Z} ight\}

    Ta có: y = \tan x

    \Rightarrow y' =\frac{1}{\cos^{2}x}

    \Rightarrow y'' = \frac{-1.\left( \cos^{2}x ight)'}{\left( \cos^{2}x ight)^{2}} = -\frac{2\cos x.\left( \cos x ight)'}{\cos^{4}x} =\frac{2\sin x}{\cos^{3}x}

  • Câu 16: Nhận biết

    Cho hàm số y = x
- \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}} + 1. Biểu thức nào dưới đây đúng?

    Ta có:

    y = x - \frac{1}{\sqrt{x}} -
\frac{1}{\sqrt[3]{x}} + 1

    \Rightarrow y' = 1 +
\frac{1}{2\sqrt[3]{x}} + \frac{1}{3\sqrt[4]{x^{4}}}

  • Câu 17: Vận dụng

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Đáp án là:

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Ta có:

    S(t) = - t^{3} + 9t^{2} + t +
10

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 18t + 1

    Dễ thấy hàm số v(t) là hàm số bậc hai có đồ thị dạng Parabol với hệ số a =
- 3 < 0

    Ta có hoành độ đỉnh của Parabol là t = 3
\in \lbrack 0;5brack

    Do đó v_{\max} = v(3) = 28

    Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là 28m/s

  • Câu 18: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 19: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 20: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 21: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 22: Thông hiểu

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 23: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 24: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 25: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 1}
ight) + ln2018

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2017)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} -
\frac{1}{2018}

    S = 1 - \frac{1}{2018} =
\frac{2017}{2018}

  • Câu 26: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 27: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 28: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 29: Thông hiểu

    Biết điểm P thuộc đồ thị hàm số y = f(x) = x^{3} + 1 sao cho tiếp tuyến của đồ thị hàm số y = f(x) tại P song song với đường thẳng \Delta:y = 3x - 1 . Có thể xác định được bao nhiêu điểm P thỏa mãn yêu cầu đề bài?

    Gọi điểm P\left( a;a^{3} + 1
ight) là điểm thuộc đồ thị hàm số y = f(x) = x^{3} + 1\ \ \ (C)

    Ta có: f'(x) = 3x^{2} suy ra phương trình tiếp tuyến của (C) tại điểm (P) là:

    y = 3a^{2}(x - a) + a^{3} +
1

    \Rightarrow y = 3a^{2}x - 2a^{3} + a\ \
\ \ \ (d)

    Do (d)//(\Delta) nên \left\{ \begin{matrix}
3a^{2} = 3 \\
- 2a^{3} + 1 eq - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = \pm 1 \\
a eq - 1 \\
\end{matrix} ight.\  \Rightarrow a = - 1

    Vậy có duy nhất một điểm P thỏa mãn yêu cầu đề bài.

  • Câu 30: Thông hiểu

    Cho hàm số y=3x^{3}+x^{2}+1, có đạo hàm y'. Để y'\leq 0 thì x nhận các giá trị thuộc tập nào sau đây?

    Ta có:

    \begin{matrix}  y = 3{x^3} + {x^2} + 1 \hfill \\   \Rightarrow y' = 9{x^2} + 2x \hfill \\  y' \leqslant 0 \hfill \\   \Leftrightarrow 9{x^2} + 2x \leqslant 0 \hfill \\   \Leftrightarrow x \in \left[ { - \dfrac{2}{9};0} ight] \hfill \\ \end{matrix}

    Vậy x nhận các giá trị thuộc tập \left[ { - \frac{2}{9};0} ight]

  • Câu 31: Thông hiểu

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Đáp án là:

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v(t) = S'(t) = 8t^{3} + 12t -
3

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a(t) = 24t^{2} + 12

    Tại thời điểm t = 2s thì gia tốc có giá trị là:

    a(2) = 24.(2)^{2} + 12 = 108\left(
m/s^{2} ight)

  • Câu 32: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 34: Vận dụng

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.

    Ta có:

    Cường độ dòng điện tại thời điểm t = 4s là:

    \begin{matrix}  I = Q'\left( t ight) = \mathop {\lim }\limits_{t \to 4} \dfrac{{Q\left( t ight) - Q\left( 4 ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {2{t^2} + t} ight) - \left( {{{2.4}^2} + 4} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{2{t^2} + t - 36}}{{t - 4}} = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {t - 4} ight)\left( {2t + 9} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \left( {2t + 9} ight) = 2.4 + 9 = 17 \hfill \\ \end{matrix}

  • Câu 35: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 36: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 37: Thông hiểu

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 38: Nhận biết

    Tìm hệ số góc k của tiếp tuyến của parabol y = x^{2} tại điểm có hoành độ \frac{1}{2}.

    Ta có:

    y'\left( \dfrac{1}{2} ight) =\lim_{\Delta x ightarrow 0}\dfrac{f\left( \dfrac{1}{2} + \Delta xight) - f\left( \dfrac{1}{2} ight)}{\Delta x}

    = \lim_{\Delta x ightarrow0}\dfrac{\left( \dfrac{1}{2} + \Delta x ight)^{2} - \left( \dfrac{1}{2}ight)^{2}}{\Delta x}

    = \lim_{\Delta x ightarrow 0}(1 +\Delta x) = 1

  • Câu 39: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 40: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - 2x^{2} - x. Tập nghiệm của bất phương trình y' \geq 0 là:

    Ta có:

    y = \frac{1}{3}x^{3} - 2x^{2} -
x

    \Rightarrow y' = x^{2} - 4x -
5

    \Rightarrow y' \geq 0
\Leftrightarrow x^{2} - 4x - 5 \geq 0

    \Leftrightarrow x \in ( - \infty; -
1brack \cup \lbrack 5; + \infty)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo