Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 2: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 3: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 4: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số y = \frac{2}{x + 1}?

    Ta có:

    y = \frac{2}{x + 1} \Rightarrow y' =
\frac{- 2}{(x + 1)^{2}}

    \Rightarrow y'' = \frac{2.2(x +
1)}{(x + 1)^{4}} = \frac{4}{(x + 1)^{3}}

  • Câu 5: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 2} ight) . Tính giá trị biểu thức: S = f'(1) + f'(3) + f'(5)
+ ... + f'(2021) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 2} ight) . Tính giá trị biểu thức: S = f'(1) + f'(3) + f'(5)
+ ... + f'(2021) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 2}
ight)

    \Rightarrow f'(x) = \frac{2}{x(x +
2)} = \frac{1}{x} - \frac{1}{x + 2}

    Khi đó:

    S = f'(1) + f'(3) + f'(5) +
... + f'(2021)

    S = \frac{1}{1} - \frac{1}{3} +
\frac{1}{3} - \frac{1}{5} + ... + \frac{1}{2021} -
\frac{1}{2023}

    S = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 6: Nhận biết

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 7: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2018) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{2018x}{x + 1} ight) .

    Kết quả: S = 2018/2019

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2018) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{2018x}{x + 1} ight) .

    Kết quả: S = 2018/2019

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{2018x}{x + 1}
ight)

    \Rightarrow f'(x) = \left\lbrack
\ln\left( \frac{2018x}{x + 1} ight) ightbrack'

    = \frac{1}{\frac{2018x}{x + 1}}.\left(
\frac{2018x}{x + 1} ight)'

    = \frac{x + 1}{2018x}.\frac{2018}{(x +
1)^{2}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2018)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2018} -
\frac{1}{2019}

    S = 1 - \frac{1}{2019} =
\frac{2018}{2019}

    VD

     

    1

  • Câu 8: Thông hiểu

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 9: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 10: Thông hiểu

    Tìm công thức đạo hàm cấp hai của hàm số y = \frac{3x + 1}{x + 2}?

    Ta có: y = \frac{3x + 1}{x + 2} = 3 -
\frac{5}{x + 2}

    \Rightarrow y' = \frac{5}{(x +
2)^{2}} \Rightarrow y'' = \frac{- 10}{(x + 2)^{3}}

  • Câu 11: Thông hiểu

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Đáp án là:

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v(t) = S'(t) = 8t^{3} + 12t -
3

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a(t) = 24t^{2} + 12

    Tại thời điểm t = 2s thì gia tốc có giá trị là:

    a(2) = 24.(2)^{2} + 12 = 108\left(
m/s^{2} ight)

  • Câu 12: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \tan x là:

    Tập xác định D = R\backslash\left\{
\frac{\pi}{2} + k\pi;k\mathbb{\in Z} ight\}

    Ta có: y = \tan x

    \Rightarrow y' =\frac{1}{\cos^{2}x}

    \Rightarrow y'' = \frac{-1.\left( \cos^{2}x ight)'}{\left( \cos^{2}x ight)^{2}} = -\frac{2\cos x.\left( \cos x ight)'}{\cos^{4}x} =\frac{2\sin x}{\cos^{3}x}

  • Câu 13: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 14: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng y = -\frac{1}{45}x.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y= - \frac{1}{45}x nên ta có:

    => k\left( - \frac{1}{45} ight) = -1 \Leftrightarrow k = 45

    \Leftrightarrow 3{x_{0}}^{2} - 6x_{0} =45 \Leftrightarrow \left\lbrack \begin{matrix}x_{0} = 5 \\x_{0} = - 3 \\\end{matrix} ight.

    Với x0 = 5, ta có: \left\{\begin{matrix}y_{0} = 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x - 173

    với x0 = -2 thì \left\{\begin{matrix}y_{0} = - 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x + 83

    Vậy phương trình tiếp tuyến của đồ thị hàm số là: \left\lbrack \begin{matrix}y = 45x - 173 \\y = 45x + 83 \\\end{matrix} ight.

  • Câu 15: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 16: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 17: Vận dụng

    Cho hàm số y = x^{2018} - 1009x^{2} +2019x. Giá trị của \lim_{\Delta xightarrow 0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} bằng:

    Ta có:

    f'(x) = 2018.x^{2017} - 2.1009x +2019

    \Rightarrow \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = f'(1)

    = 2018.1 - 2.2019.1 + 2019 =2019

    Vậy \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = 2019

  • Câu 18: Nhận biết

    Số gia của hàm số f(x)=2x^{2}-1 tại x_{0}=1 ứng với số gia \Delta x=0,1 bằng:

    Ta có:

    ∆f = f(1 + 0,1) - f(1)

    = 2(1,1)^2 - 1 - (2 - 1) = 0,42

  • Câu 19: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 20: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 21: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 22: Thông hiểu

    Cho hàm số f(x)=\frac{1-3x+x^{2}}{x-1}. Giải bất phương trình f'(x) > 0

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{1 - 3x + {x^2}}}{{x - 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {1 - 3x + {x^2}} ight)'\left( {x - 1} ight) - \left( {1 - 3x + {x^2}} ight)\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{\left( { - 3 + 2x} ight)\left( {x - 1} ight) - \left( {1 - 3x + {x^2}} ight)}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{ - 3x + 3 + 2{x^2} - 2x - 1 + 3x - {x^2}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} ight)}^2}}} = \dfrac{{{{\left( {x - 1} ight)}^2} + 1}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Vậy f'(x) > 0 khi và chỉ khi x\in \mathbb{R}\setminus \left \{ 1 ight \}

  • Câu 23: Nhận biết

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 25: Nhận biết

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =
\frac{2x}{x - 1}. Tính đạo hàm của hàm số đã cho?

    Ta có:f(x) = \frac{2x}{x -
1}

    \Rightarrow f'(x) =
\frac{(2x)'(x - 1) - (x - 1)'(2x)}{(x - 1)^{2}}

    \Rightarrow f'(x) = \frac{2(x - 1) -
2x}{(x - 1)^{2}} = \frac{- 2}{(x - 1)^{2}}

  • Câu 26: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + ax + b\ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\\end{matrix} ight.. Biết hàm số có đạo hàm tại x = 2. Giá trị của a^{2} + b^{2} bằng:

    Ta có:

    \lim_{x ightarrow 2^{-}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\left( x^{3}- x^{2} - 8x + 10 ight) = - 2

    Ta có: \lim_{x ightarrow 2^{+}}f(x) =f(2) = 4 + 2a + b

    Để hàm số có liên tục tại x = 1 thì:

    4 + 2a + b = - 2

    Xét \lim_{x ightarrow 2^{-}}\frac{f(x)- f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{\left(x^{3} - x^{2} - 8x + 10 ight) - (4 + 2a + b)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{x^{3}- x^{2} - 8x + 12}{x - 2} = 0

    \lim_{x ightarrow 2^{+}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{+}}\frac{\left(x^{2} + ax + b ight) - (4 + 2x + b)}{x - 2}

    = \lim_{x ightarrow 2^{+}}(x + 2 + a)= 4 + a

    Từ đó suy ra 4 + a = 0 \Rightarrow a = - 4;b = 2

    Vậy a^{2} + b^{2} = 20

  • Câu 27: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 28: Thông hiểu

    Cho hàm số xác định bởi công thức y = x^{3} - 3x có đồ thị hàm số (C). Số các tiếp tuyến của đồ thị (C) song song với đường thẳng y = 3x - 10 là?

    Ta có:

    y' = 3x^{2} - 3

    Gọi A\left( x_{0};y_{0} ight) là tiếp điểm

    Vì tiếp tuyến song song với đường thẳng y
= 3x - 10 nên

    f'\left( x_{0} ight) = 3
\Rightarrow 3{x_{0}}^{2} - 3 = 3 \Rightarrow x_{0} = \pm
\sqrt{2}

    Với x_{0} = \sqrt{2} \Rightarrow y_{0} =
- \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x - \sqrt{2} ight) - \sqrt{2} = 3x -
4\sqrt{2}

    Với x_{0} = - \sqrt{2} \Rightarrow y_{0}
= \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x + \sqrt{2} ight) + \sqrt{2} = 3x +
4\sqrt{2}

    Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 29: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Đạo hàm của hàm số y = \sqrt {{{\sin }^3}(2x + 1)} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {{{\sin }^3}(2x + 1)}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {{{\sin }^3}(2x + 1)} }}.\left[ {{{\sin }^3}\left( {2x + 1} ight)} ight]\prime  \hfill \\   = \dfrac{{2.3{{\sin }^3}\left( {2x + 1} ight).\cos \left( {2x + 1} ight)}}{{2\sqrt {{{\sin }^3}(2x + 1)} }} \hfill \\   = 3\sqrt {\sin \left( {2x + 1} ight)} .\cos \left( {2x + 1} ight) \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 32: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 33: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ khi\ x eq 1 \\- \dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x_{0} = 1?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -
4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -
1}{\sqrt{3x + 1} + 2x} = - \frac{5}{4} eq f(1)

    Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1

  • Câu 34: Thông hiểu

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Cho hàm số y =
x^{3} + mx^{2} + 3x - 5 với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình y'
= 0 có hai nghiệm phân biệt?

    Ta có:

    y = x^{3} + mx^{2} + 3x - 5

    \Rightarrow y' = 3x^{2} + 2mx +
3

    Để y' = 0 có hai nghiệm phân biệt:

    \Delta > 0 \Leftrightarrow m^{2} - 9
> 0

    \Leftrightarrow m \in ( - \infty; - 3)
\cup (3; + \infty)

  • Câu 36: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 37: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 38: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 39: Thông hiểu

    Cho hàm số y =
\log\left( x^{2} - 2x - m + 1 ight) với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho xác định trên tập số thực?

    Để hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi x^{2} - 2x - m +
1 > 0,\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' <
0

    \Leftrightarrow ( - 1)^{2} - 1( - m + 1)
< 0 \Leftrightarrow m < 0

  • Câu 40: Nhận biết

    Tính đạo hàm của hàm số y = \tan \frac{{x + 1}}{2}

    Ta có:

    \begin{matrix}  y = \tan \dfrac{{x + 1}}{2} \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}}.\left( {\dfrac{{x + 1}}{2}} ight)\prime  \hfill \\   = \dfrac{1}{2}.\dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} = \dfrac{1}{{2{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo