Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 2: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 3: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 4: Vận dụng cao

    Tìm tham số thực b để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}}&{{\text{ khi }}x \leqslant 2} \\   { - \dfrac{{{x^2}}}{2} + bx - 6}&{{\text{ khi }}x > 2} \end{array}} ight. có đạo hàm tại x = 2.

    Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \hfill \\   \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{{{x^2}}}{2} + bx - 6} ight) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} \hfill \\   \Leftrightarrow  - 2 + 2b - 6 = 4 \Leftrightarrow b = 6 \hfill \\ \end{matrix}

    Thử b = 6 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + bx - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + 6x - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{(x - 2)(10 - x)}}{{2(x - 2)}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{10 - x}}{2} = 4{\text{ }} \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 4}}{{x - 2}} \hfill \\   = 4\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\ \end{matrix}

    Nên hàm số có đạo hàm tại x = 2

  • Câu 5: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 6: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 7: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 8: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 9: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

  • Câu 11: Thông hiểu

    Tính đạo hàm cấp 3 của hàm số f(x)=(2x+5)^{5}

    Ta có:

    \begin{matrix}  f(x) = {(2x + 5)^5} \hfill \\   \Rightarrow f'\left( x ight) = 5.2.{\left( {2x + 5} ight)^4} = 10.{\left( {2x + 5} ight)^4} \hfill \\   \Rightarrow f''\left( x ight) = 80.{\left( {2x + 5} ight)^3} \hfill \\   \Rightarrow {f^{\left( 3 ight)}}\left( x ight) = 480.{\left( {2x + 5} ight)^2} \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho hàm số f(x)
= \left\{ \begin{matrix}
(x - 1)^{2}\ \ khi\ x \geq 0 \\
- x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x_{0} = 0?

    Ta có:

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}(x - 1)^{2} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( - x^{2} ight) = 0

    Suy ra f(0) = \lim_{x ightarrow
0^{+}}f(x) eq \lim_{x ightarrow 0^{-}}f(x)

    Nên hàm số không liên tục tại x_{0} =
0

    Vậy không tồn tại đạo hàm của hàm số y =
f(x) tại điểm x_{0} =
0.

  • Câu 13: Thông hiểu

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

    Ta có:

    \begin{matrix}  y = {x^2}\tan x + \sqrt x  \hfill \\   \Rightarrow y\prime  = \left( {{x^2}} ight)\prime \tan x + {x^2}\left( {\tan x} ight)\prime  + \left( {\sqrt x } ight)\prime  \hfill \\   = 2x.\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Xác định đạo hàm của hàm số cho bởi công thức f(x) = \left( - x^{2} + 3x + 7
ight)^{7}?

    Ta có:

    f(x) = \left( - x^{2} + 3x + 7
ight)^{7}

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.\left( - x^{2} + 3x + 7 ight)'

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.( - 2x + 3)

  • Câu 15: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 16: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 17: Thông hiểu

    Tính đạo hàm cấp hai của hàm số y = \sin x.\sin2x.\sin3x?

    Ta có:

    y = \sin x.\sin2x.\sin3x

    = \frac{1}{4}\sin2x + \frac{1}{4}\sin4x -\frac{1}{4}\sin6x

    Khi đó:

    y' = \frac{1}{2}\cos2x + \cos4x -\frac{3}{2}\cos6x

    y'' = - \sin2x - 4\sin4x +9\sin6x

  • Câu 18: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng y = -\frac{1}{45}x.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y= - \frac{1}{45}x nên ta có:

    => k\left( - \frac{1}{45} ight) = -1 \Leftrightarrow k = 45

    \Leftrightarrow 3{x_{0}}^{2} - 6x_{0} =45 \Leftrightarrow \left\lbrack \begin{matrix}x_{0} = 5 \\x_{0} = - 3 \\\end{matrix} ight.

    Với x0 = 5, ta có: \left\{\begin{matrix}y_{0} = 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x - 173

    với x0 = -2 thì \left\{\begin{matrix}y_{0} = - 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x + 83

    Vậy phương trình tiếp tuyến của đồ thị hàm số là: \left\lbrack \begin{matrix}y = 45x - 173 \\y = 45x + 83 \\\end{matrix} ight.

  • Câu 19: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 20: Nhận biết

    Tìm hệ số góc k của tiếp tuyến của parabol y = x^{2} tại điểm có hoành độ \frac{1}{2}.

    Ta có:

    y'\left( \dfrac{1}{2} ight) =\lim_{\Delta x ightarrow 0}\dfrac{f\left( \dfrac{1}{2} + \Delta xight) - f\left( \dfrac{1}{2} ight)}{\Delta x}

    = \lim_{\Delta x ightarrow0}\dfrac{\left( \dfrac{1}{2} + \Delta x ight)^{2} - \left( \dfrac{1}{2}ight)^{2}}{\Delta x}

    = \lim_{\Delta x ightarrow 0}(1 +\Delta x) = 1

  • Câu 21: Thông hiểu

    Cho hàm số y=\frac{1}{(x+1)^{3}}. Giải bất phương trình y" < 0

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{{{(x + 1)}^3}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3.{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 3}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow y'' = \dfrac{{3.4.{{\left( {x + 1} ight)}^3}}}{{{{\left( {x + 1} ight)}^8}}} = \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' < 0 \hfill \\   \Leftrightarrow \dfrac{{12}}{{{{\left( {x + 1} ight)}^5}}} < 0 \hfill \\   \Leftrightarrow {\left( {x + 1} ight)^5} < 0,\left( {{\text{Do }}12 > 0} ight) \hfill \\   \Leftrightarrow x <  - 1 \hfill \\ \end{matrix}

  • Câu 22: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 23: Thông hiểu

    Cho hàm số y=3x^{3}+x^{2}+1, có đạo hàm y'. Để y'\leq 0 thì x nhận các giá trị thuộc tập nào sau đây?

    Ta có:

    \begin{matrix}  y = 3{x^3} + {x^2} + 1 \hfill \\   \Rightarrow y' = 9{x^2} + 2x \hfill \\  y' \leqslant 0 \hfill \\   \Leftrightarrow 9{x^2} + 2x \leqslant 0 \hfill \\   \Leftrightarrow x \in \left[ { - \dfrac{2}{9};0} ight] \hfill \\ \end{matrix}

    Vậy x nhận các giá trị thuộc tập \left[ { - \frac{2}{9};0} ight]

  • Câu 24: Nhận biết

    Xác định đạo hàm của hàm số y = \pi^{x}.

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a;(a > 0;a eq 1)

    Vậy y' = \pi^{x}.\ln\pi

  • Câu 25: Thông hiểu

    Cho hàm số y =
f(x) = \frac{x - 2}{x + 3}. Xác định công thức đạo hàm cấp hai của hàm số đã cho?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y = f(x) = \frac{x - 2}{x +
3}

    \Rightarrow f'(x) = \frac{5}{(x +
3)^{2}}

    \Rightarrow f''(x) = 5.\frac{-
2.(x + 3)}{(x + 3)^{4}} = \frac{- 10}{(x + 3)^{3}}

  • Câu 26: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

  • Câu 27: Nhận biết

    Tính đạo hàm của hàm số y = \tan \frac{{x + 1}}{2}

    Ta có:

    \begin{matrix}  y = \tan \dfrac{{x + 1}}{2} \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}}.\left( {\dfrac{{x + 1}}{2}} ight)\prime  \hfill \\   = \dfrac{1}{2}.\dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} = \dfrac{1}{{2{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 29: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 30: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 31: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 32: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ khi\ x eq 1 \\- \dfrac{5}{4}\ \ khi\ x = 1 \\\end{matrix} ight.. Tính f'(1)?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -1}{\left( \sqrt{3x + 1} + 2x ight)} = - \frac{5}{4} =f(1)

    => Hàm số liên tục tại x = 1

    Khi đó ta có:

    f'(1) = \lim_{x ightarrow1}\frac{f(x) - f(1)}{x - 1}

    = \lim_{x ightarrow1}\dfrac{\dfrac{\sqrt{3x + 1} - 2x}{x - 1} + \dfrac{5}{4}}{x -1}

    = \lim_{x ightarrow 1}\frac{4\sqrt{3x+ 1} - 3x - 5}{4(x - 1)^{2}}

    = \lim_{x ightarrow 1}\frac{16(3x + 1)- (3x + 5)^{2}}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} + 3x + 5ight)}

    = \lim_{x ightarrow 1}\frac{-9}{4\left( 4\sqrt{3x + 1} + 3x + 5 ight)} = -\frac{9}{64}

  • Câu 33: Thông hiểu

    Cho hàm số y =
f(x) = sin^{3}x. Công thức nào sau đây đúng?

    Ta có: y = f(x) = \sin^{3}x

    \Rightarrow f'(x) =3\sin^{2}x.\cos x

    \Rightarrow f''(x) =6\sin x.\cos^{2}x - 3\sin^{3}x

    Khi đó

    y'' + 9y = 6\sin x.\cos^{2}x -3\sin^{3}x + 9\sin^{3}x

    = 6\sin x\left( \sin^{2}x + \cos^{2}xight) = 6\sin x

    \Rightarrow y'' + 9y - 6\sin x =0

  • Câu 34: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - 2x^{2} - x. Tập nghiệm của bất phương trình y' \geq 0 là:

    Ta có:

    y = \frac{1}{3}x^{3} - 2x^{2} -
x

    \Rightarrow y' = x^{2} - 4x -
5

    \Rightarrow y' \geq 0
\Leftrightarrow x^{2} - 4x - 5 \geq 0

    \Leftrightarrow x \in ( - \infty; -
1brack \cup \lbrack 5; + \infty)

  • Câu 35: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 36: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 37: Nhận biết

    Tính đạo hàm của hàm số f(x)=-x^{4}+4x^{3}-3x^{2}+2x+1 tại điểm x = -1

    Ta có:

    \begin{matrix}  f(x) =  - {x^4} + 4{x^3} - 3{x^2} + 2x + 1 \hfill \\   \Rightarrow f'\left( x ight) =  - 4{x^3} + 12{x^2} - 6x + 2 \hfill \\   \Rightarrow f'\left( { - 1} ight) =  - 4.{\left( { - 1} ight)^3} + 12.{\left( { - 1} ight)^2} - 6.\left( { - 1} ight) + 2 \hfill \\  f'\left( { - 1} ight) = 4 + 12 + 6 + 2 = 24 \hfill \\   \Rightarrow f'\left( { - 1} ight) = 24 \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Tính vận tốc tức thời của chuyển động tại t = 3(s) của một chất điểm chuyển động được xác định bởi phương trình S(t) =
2t^{3} + 6t^{2} - t, trong đó t tính bằng giây và S được tính bằng mét.

    Ta có:

    v(t) = S'(t) = 6t^{2} + 12t -
1

    Vận tốc tức thời của chuyển động khi t =
3(s) là:

    v(3) = 6.3^{2} + 12.3 - 1 =
89(m/s)

  • Câu 39: Thông hiểu

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.

    Ta có:

    \begin{matrix}  I\left( t ight) = Q'\left( t ight) \hfill \\   \Rightarrow I = 4t + 1 \hfill \\   \Rightarrow I\left( 2 ight) = 4.2 + 1 = 9\left( A ight) \hfill \\ \end{matrix}

  • Câu 40: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo