Cho hàm số
. Tính giá trị biểu thức:
![]()
Ta có:
Suy ra
…
Vậy
Cho hàm số
. Tính giá trị biểu thức:
![]()
Ta có:
Suy ra
…
Vậy
Cho hàm số
xác định trên
bởi
. Tính ![]()
Ta có:
=>
Vậy hàm số không liên tục tại
Vậy hàm số không tồn tại đạo hàm tại
Viết phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Ta có:
Vì tiếp tuyến song song với nên hệ số góc bằng 3 nên gọi tọa độ tiếp điểm là
Khi đó
Với
Với
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Giải bất phương trình y'' < 0.
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
. Tính
?
Ta có:
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục
một tam giác vuông cân tại
?
Gọi là hoành độ tiếp xúc của (C) và (d)
Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng
là hoành độ tiếp xúc của (C) và (d) khi đó:
Vì
Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:
Tính số gia của hàm số
tại điểm x0 = -1 ứng với số gia ![]()
Ta có:
Tính tổng
![]()
Xét
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Hãy tính ![]()
Ta có:
Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:
Khi đó: . Xét
Hàm số có đạo hàm tại thì
Vậy với thì hàm số có đạo hàm tại
khi đó
Công thức đạo hàm cấp hai của hàm số
?
Ta có:
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Điều kiện
Ta có:
Đường thẳng d đi qua Q có hệ số góc k là
Đường thẳng d tiếp xúc với (C) có nghiệm
Thế (**) vào (*) ta có:
Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất
Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1
Vậy
Cho hàm số
. Xác định
?
Ta có:
Cho hàm số
có đạo hàm tại
là
. Mệnh đề nào sau đây sai?
Mệnh đề sai là
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Vậy
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Đạo hàm của hàm số
là
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Cho đường cong có phương trình
. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:
Ta có:
Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số ứng với
bằng
. Đúng||Sai
b) Cho hàm số . Giá trị
Đúng||Sai
c) Đạo hàm của hàm số trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Cho hàm số
. Tính
?
Ta có:
Phát biểu nào trong các phát biểu sau là đúng?
Dựa theo định lí:
Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.
=> Phát biểu đúng là: “Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.”
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm
có dạng
. Chọn khẳng định đúng?
Điều kiện xác định
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
. Giải bất phương trình
có tập nghiệm S là:
Ta có:
Xét phương trình ta có:
Điều kiện xác định
Vậy phương trình có tập nghiệm
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Tính đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Tiếp tuyến của đồ thị hàm số
vuông góc với đường thẳng
tại điểm có hoành độ là:
Ta có:
Tiếp tuyến vuông góc với đường thẳng nên hệ số góc của tiếp tuyến là
Hoành độ tiếp điểm là nghiệm của phương trình
Vậy hoành độ tiếp điểm cần tìm là .
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến