Tính đạo hàm của hàm số ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có:
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Khi đó:
Cho hàm số
. Khi đó ![]()
Với xét:
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Cho
. Tính đạo hàm của hàm số đã cho?
Ta có:
Suy ra
Cho hàm số
. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục
một tam giác vuông cân tại
?
Gọi là hoành độ tiếp xúc của (C) và (d)
Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng
là hoành độ tiếp xúc của (C) và (d) khi đó:
Vì
Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Cho hàm số
. Tính ![]()
Ta có:
Cho hàm số
có đạo hàm tại
. Tính giá trị của biểu thức ![]()
Vì hàm số có đại hàm tại nên ta có:
Vậy
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho xác định trên tập số thực?
Để hàm số có tập xác định khi và chỉ khi
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm là:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Đạo hàm của hàm số
là:
Ta có:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề đúng?
Ta có:
Tính đạo hàm của hàm số: ![]()
Ta có:
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Biết đường thẳng
là tiếp tuyến của đồ thị hàm số
. Tìm các giá trị của tham số
.
Ta có:
Gọi là đồ thị của hàm số
khi đó
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Để đường thẳng là tiếp tuyến của
thì
.
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Cho hàm số
và
. Tính giá trị
?
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng -1 là:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:
Đạo hàm của hàm số
là:
Ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Đạo hàm của biểu thức
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho hàm số xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Do mà
Ta có:
Mà và
Nên
Cho hàm số
. Tìm giá trị của m để
?
Ta có:
Nếu thì
Nếu thì
là tam thức bậc hai
Vậy
Cho hàm số
. Tính
?
Ta có: