Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Phương trình tiếp tuyến tương ứng là
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Phương trình tiếp tuyến tương ứng là
Tính đạo hàm cấp 5 của hàm số
là:
Ta có:
Cho hàm số
có đạo hàm liên tục trên
và thỏa mãn
. Biết
và
. Tìm tất cả các giá trị thực của tham số m để phương trình
có hai nghiệm thực phân biệt:
Xét phương trình:
Do thay vào (*) ta được
=>
Dễ thấy hàm số f(x) đồng biến trên .
Ta có bảng biến thiên của hàm số như sau:
Do . Phương trình
có hai nghiệm thực phân biệt khi và chỉ khi
có hai nghiệm thực phân biệt. khi đó
Đồ thị của hàm số và
luôn cắt nhau tại một điểm với mọi
.
Suy ra để phương trình có hai nghiệm thực phân biệt thì
.
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn phương trình
?
Ta có:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
là:
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Thực hiện tính đạo hàm của hàm số
thu được kết quả có dạng
. Khi đó giá trị của biểu thức
bằng: 3
Thực hiện tính đạo hàm của hàm số thu được kết quả có dạng
. Khi đó giá trị của biểu thức
bằng: 3
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Biết
. Khi đó giá trị biểu thức
-1|| - 1
Biết . Khi đó giá trị biểu thức
-1|| - 1
Ta có:
Cho hàm số
. Xác định biểu thức của
?
Ta có:
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Cho hàm số
. Công thức tính
là:
Ta có:
….
Biết đường thẳng
là tiếp tuyến của đồ thị hàm số
. Tìm các giá trị của tham số
.
Ta có:
Gọi là đồ thị của hàm số
khi đó
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Để đường thẳng là tiếp tuyến của
thì
.
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Cho hàm số
. Tính đạo hàm của hàm số tại
?.
Ta có:
Đặt
Khi đó:
Cho hàm số
. Biết
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
kết hợp với
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng 0 thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm vận tốc bằng 0 là
Cho hàm số y
, có đạo hàm là
. Tìm tất cả các giá trị của
để phương trình
có hai nghiệm phân biệt là
thỏa mãn
.
Ta có:
Để phương trình có hai nghiệm phân biệt thì
Áp dụng hệ thức Vi - et ta có
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Một vật chuyển động theo quy luật
với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Cho hàm số . Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Vậy giá trị của biểu thức
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Một viên đạn được bắn lên cao theo phương trình
trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Đạo hàm của hàm số
(với m là tham số) là:
Ta có:
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Xác định đạo hàm của hàm số
trên tập số thực.
Ta có:
Tính đạo hàm hàm số
?
Ta có:
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Điều kiện
Ta có:
Đường thẳng d đi qua Q có hệ số góc k là
Đường thẳng d tiếp xúc với (C) có nghiệm
Thế (**) vào (*) ta có:
Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất
Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1
Vậy
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên