Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Khi đó ta có:
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Khi đó ta có:
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Cho hàm số
. Tổng các nghiệm của phương trình
trên đoạn
bằng bao nhiêu?
Ta có:
Vì nên
nên
Suy ra tổng các nghiệm trên đoạn của phương trình
là:
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Cho hàm số
với
xác định và liên tục trên
. Tính
.
Do hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Tính
?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
. Tìm giá trị của m để
?
Ta có:
Nếu thì
Nếu thì
là tam thức bậc hai
Vậy
Cho hàm số
. Tính giá trị của f’(0)
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Đạo hàm cấp hai của hàm số
là:
Ta có:
Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình
trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?
Ta có:
Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là
Phát biểu nào trong các phát biểu sau là đúng?
Dựa theo định lí:
Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.
=> Phát biểu đúng là: “Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.”
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Một chất điểm chuyển động có phương trình chuyển động là
; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm
thì vận tốc tức thời của chuyển động bằng bao nhiêu?
Ta có:
Vận tốc tức thời của chuyển động khi là:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Tính
.
Ta có:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng
của đồ thị hàm số
khi đó ta có:
Với ta được
có phương trình tiếp tuyến tương ứng là
Với ta được
có phương trình tiếp tuyến tương ứng là
Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
VD
1
Cho hàm số
. Giải phương trình y" = 0
Ta có:
Cho hàm số
có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho
. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.
=> Hệ phương trình có hai nghiệm phân biệt
Từ hệ
Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.
Khi đó
Theo bài ra ta có:
Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số tại
?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho hàm số
. Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm là:
Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
. Tìm x sao cho y" = 20
Ta có:
Xét phương trình ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là