Đạo hàm của hàm số
là:
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Đạo hàm cấp hai của hàm số
là:
Tập xác định
Ta có:
Một viên đạn được bắn lên cao theo phương trình
trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Cho hàm số
. Tính
?
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Tính đạo hàm của hàm số ![]()
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Cho hàm số
. Xác định
?
Ta có:
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Tính đạo hàm của hàm số
trên khoảng
?
Trên khoảng ta có:
Cho hàm số
. Tính giá trị của biểu thức
?
Ta có:
Cho parabol
. Khẳng định nào sai trong các khẳng định sau?
Ta có:
=> Phương trình tiếp tuyến tại điểm M(1; 6) là:
hay
Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng .
Mặt khác ta có:
Vậy tiếp tuyến không đi qua điểm N(0; -1).
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Một viên đạn được bắn lên với tốc độ ban đầu từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Ta có vận tốc tại thời điểm t là:
Từ thời điểm , viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Tính tổng
![]()
Xét
Một chất điểm chuyển động thẳng có phương trình
( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Tìm số tiếp tuyến của đồ thị hàm số
song song với trục hoành.
Ta có:
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số
khi đó ta có: k = 0
Suy ra
Với
Với
Với
Vậy có 2 tiếp tuyến song song với trục hoành.
Phát biểu nào trong các phát biểu sau là đúng?
Dựa theo định lí:
Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.
=> Phát biểu đúng là: “Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.”
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm t = 2s là
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Xác định công thức đạo hàm của hàm số
?
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm
có dạng
. Chọn khẳng định đúng?
Điều kiện xác định
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
. Công thức tính
là:
Ta có:
….
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Đạo hàm của hàm số
(với m là tham số) là:
Ta có:
Cho hàm số xác định bởi công thức
có đồ thị hàm số
. Số các tiếp tuyến của đồ thị
song song với đường thẳng
là?
Ta có:
Gọi là tiếp điểm
Vì tiếp tuyến song song với đường thẳng nên
Với có phương trình tiếp tuyến tương ứng là
Với có phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Phương trình chuyển động của một chất điểm được biểu diễn là
. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?
Ta có:
Suy ra vận tốc của chuyển động là
Bảng biến thiên
Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm .
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
được xác định bởi công thức
![]()
Biết hàm số có đạo hàm tại điểm
. Khi đó:
Giá trị của a là: -4|| - 4
Giá trị của b là: 2
Cho hàm số được xác định bởi công thức
Biết hàm số có đạo hàm tại điểm . Khi đó:
Giá trị của a là: -4|| - 4
Giá trị của b là: 2
Ta có:
Hàm số có đạo hàm tại điểm
Suy ra
Mặt khác hàm số có đạo hàm tại điểm
Suy ra
Phương trình chuyển động của một chất điểm là
với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Phương trình chuyển động của một chất điểm là với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Suy ra vận tốc của chuyển động là
Vận tốc của chuyển động đạt giá trị lớn nhất khi
Vậy
Cho hàm số
. Tính
?
Ta có: