Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức
, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.
Ta có:
Ta có:
Gia tốc của chất điểm là:
Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là
Cho hàm số
xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho hàm số xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Do mà
Ta có:
Mà và
Nên
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Tính
?
Ta có:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Cho hàm số
. Biết
. Tính giá trị tham số
?
Ta có:
Mà
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Cho hàm số
với
xác định và liên tục trên
. Tính
.
Do hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm t = 2s là
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Tính đạo hàm của hàm số
tại điểm ![]()
Ta có:
Công thức đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Tính
?
Ta có:
Vậy
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Viết phương trình tiếp tuyến của đường cong
tại điểm -1.
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho hàm số
với
. Tính
.
Ta có:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
đi qua điểm
?
Phương trình đường thẳng đi qua điểm có dạng
Đường thẳng (d) là tiếp tuyến khi hệ có nghiệm
Dễ thấy hệ phương trình có ba nghiệm phân biệt nên có ba tiếp tuyến thỏa mãn.
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Biết
. Xác định công thức của
?
Ta có:
…
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho xác định trên tập số thực?
Để hàm số có tập xác định khi và chỉ khi
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Một vật chuyển động theo quy luật
với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Một vật chuyển động theo quy luật với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Vận tốc của vật là: .
Vận tốc của vật đạt thì
Vật đạt vận tốc là
lần thứ 2 khi
.
Lúc đó quãng đường vật đi được là:
(mét)
Đạo hàm của hàm số
(với
) là:
Ta có:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng
của đồ thị hàm số
khi đó ta có:
Với ta được
có phương trình tiếp tuyến tương ứng là
Với ta được
có phương trình tiếp tuyến tương ứng là
Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Cho hàm số
có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của
-3|| - 3
Cho hàm số có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của -3|| - 3
Tập xác định
Ta có:
Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1
Do y’ < 0 nên k = -1
Gọi tọa độ tiếp điểm là ta có:
Với
Với
Vậy
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm
?
TXĐ:
Ta có:
Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
có đạo hàm tại điểm
. Tìm giá trị biểu thức
?
Do hàm số có đạo hàm tại điểm
nên suy ra
Ta có: