Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính đạo hàm của hàm số sau: y = 4x^{2} - \sqrt{x} + \frac{1}{x}.

    Ta có: y = 4x^{2} - \sqrt{x} +
\frac{1}{x}

    \Rightarrow y' = 8x -
\frac{1}{2\sqrt{x}} - \frac{1}{x^{2}}

  • Câu 2: Vận dụng

    Cho đường cong (C):y = x^{4} - 2x^{2} + m - 2 với m là tham số. Gọi S là tập các giá trị của tham số m sao cho đồ thị hàm số (C) có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập S là:

    Ta có: y' = 4x^{3} - 4x

    Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0

    Gọi tiếp điểm là M\left( x_{0};y_{0}
ight) \in (C) khi đó y'\left(
x_{0} ight) = 4{x_{0}}^{3} - 4x_{0} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 0 \Rightarrow y_{0} = m - 2 \\
x_{0} = \pm 1 \Rightarrow y_{0} = m - 3 \\
\end{matrix} ight.

    Để có đúng 1 tiếp tuyến song song với trục hoàn thì

    \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m - 3 eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m - 2 eq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m eq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m eq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m = 2;m = 3

    Vậy tổng các giá trị m là 5.

  • Câu 3: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 4: Nhận biết

    Đạo hàm của hàm số y = f(x) = \frac{1}{2}x^{4} + \frac{5}{3}x^{3} -
\sqrt{2x} + m^{2} (với m = const) là:

    Ta có:

    y = f(x) = \frac{1}{2}x^{4} +
\frac{5}{3}x^{3} - \sqrt{2x} + m^{2}

    \Rightarrow f'(x) =
\frac{1}{2}.4x^{3} + \frac{5}{3}.3x^{2} - \frac{1}{\sqrt{2x}} +
0

    \Rightarrow f'(x) = 2x^{3} + 5x^{2}
- \frac{1}{\sqrt{2x}}

  • Câu 5: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\sin2x. Chọn hệ thức đúng?

    Ta có:

    y' = 2.\cos2x \Rightarrow y''= - 4.\sin2x

    \Rightarrow 4y + y'' = 4.\sin2x -4.\sin2x = 0

  • Câu 6: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{2 - \sqrt {4 - x} }}{x}{\text{  }};0 < x < 4} \\ 
  {m{\text{          }};x = 0} \\ 
  {\dfrac{n}{x}{\text{         }};x \geqslant 4} 
\end{array}} ight.. Biết hàm số liên tục trên nửa khoảng \lbrack 0; + \infty). Tích của mn bằng bao nhiêu?

    Tập xác định D = \lbrack 0; +
\infty)

    Hàm số liên tục trên \lbrack 0; +
\infty) nên ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{2 - \sqrt{4 - x}}{x}

    = \lim_{x ightarrow
0^{+}}\frac{x}{x\left( 2 + \sqrt{4 - x} ight)} =
\frac{1}{4}

    f(0) = m

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \dfrac{n}{x} = \dfrac{n}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2 - \sqrt {4 - x} }}{x} = \dfrac{1}{2} \hfill \\
  f\left( 4 ight) = \dfrac{n}{4} \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \\\dfrac{n}{4} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \ = 2 \\\end{matrix} ight.\  \Rightarrow m.n = \dfrac{1}{2}

  • Câu 7: Vận dụng cao

    Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn f(x) > 0;\forall x\mathbb{\inR}. Biết f(0) = 1(2 - x).f(x) - f'(x) = 0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt:

    Xét phương trình:

    \begin{matrix}(2 - x).f(x) - f'(x) = 0 \hfill \\\Leftrightarrow (2 - x).e^{\frac{x^{2}}{2} - 2x}.f(x) -e^{\frac{x^{2}}{2} - 2x}.f'(x) = 0 \hfill\\\Leftrightarrow \left\lbrack f(x).e^{\frac{x^{2}}{2} - 2x}ightbrack' = 0 \hfill\\\Leftrightarrow f(x).e^{\frac{x^{2}}{2} - 2x} = C\hfill\ \ \ \ \ (*)\hfill \\\end{matrix}

    Do f(0) = 1 thay vào (*) ta được C = 1

    => f(x) = e^{- \frac{x^{2}}{2} +2x}

    \Rightarrow f'(x) = ( - x + 2).e^{-\frac{x^{2}}{2} + 2x}

    Dễ thấy hàm số f(x) đồng biến trên ( -\infty;2brack.

    Ta có bảng biến thiên của hàm số f(x) như sau:

    Do - \frac{x^{2}}{2} + 2x \leq 2\Rightarrow 0 < f(x) \leq e^{2}. Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi - \frac{x^{2}}{2} + 2x = \lnm có hai nghiệm thực phân biệt. khi đó \ln m \in ( - \infty;2)

    Đồ thị của hàm số y = f(x)y = m luôn cắt nhau tại một điểm với mọi m \in \left( 0;e^{2}ightbrack.

    Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt thì 0 < m < e^{2}.

  • Câu 8: Thông hiểu

    Biết điểm P thuộc đồ thị hàm số y = f(x) = x^{3} + 1 sao cho tiếp tuyến của đồ thị hàm số y = f(x) tại P song song với đường thẳng \Delta:y = 3x - 1 . Có thể xác định được bao nhiêu điểm P thỏa mãn yêu cầu đề bài?

    Gọi điểm P\left( a;a^{3} + 1
ight) là điểm thuộc đồ thị hàm số y = f(x) = x^{3} + 1\ \ \ (C)

    Ta có: f'(x) = 3x^{2} suy ra phương trình tiếp tuyến của (C) tại điểm (P) là:

    y = 3a^{2}(x - a) + a^{3} +
1

    \Rightarrow y = 3a^{2}x - 2a^{3} + a\ \
\ \ \ (d)

    Do (d)//(\Delta) nên \left\{ \begin{matrix}
3a^{2} = 3 \\
- 2a^{3} + 1 eq - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = \pm 1 \\
a eq - 1 \\
\end{matrix} ight.\  \Rightarrow a = - 1

    Vậy có duy nhất một điểm P thỏa mãn yêu cầu đề bài.

  • Câu 9: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 10: Thông hiểu

    Đạo hàm của hàm số y = \sqrt {3 + 2\tan x} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {3 + 2\tan x}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\left( {3 + 2\tan x} ight)\prime  \hfill \\   = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\dfrac{2}{{{{\cos }^2}x}} \hfill \\   = \dfrac{1}{{{{\cos }^2}x\sqrt {3 + 2\tan x} }} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Tính vận tốc tức thời của chuyển động tại t = 3(s) của một chất điểm chuyển động được xác định bởi phương trình S(t) =
2t^{3} + 6t^{2} - t, trong đó t tính bằng giây và S được tính bằng mét.

    Ta có:

    v(t) = S'(t) = 6t^{2} + 12t -
1

    Vận tốc tức thời của chuyển động khi t =
3(s) là:

    v(3) = 6.3^{2} + 12.3 - 1 =
89(m/s)

  • Câu 12: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 13: Vận dụng

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Đáp án là:

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Ta có:

    S(t) = - t^{3} + 9t^{2} + t +
10

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 18t + 1

    Dễ thấy hàm số v(t) là hàm số bậc hai có đồ thị dạng Parabol với hệ số a =
- 3 < 0

    Ta có hoành độ đỉnh của Parabol là t = 3
\in \lbrack 0;5brack

    Do đó v_{\max} = v(3) = 28

    Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là 28m/s

  • Câu 14: Thông hiểu

    Cho hàm số f(x)=\frac{x^{3}}{x-1}. Giải bất phương trình f'(x) = 0 có tập nghiệm S là:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{{x^3}}}{{x - 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {{x^3}} ight)'\left( {x - 1} ight) - \left( {{x^3}} ight).\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{3{x^2}\left( {x - 1} ight) - {x^3}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{3{x^3} - 3{x^2} - {x^3}}}{{{{\left( {x - 1} ight)}^2}}} = \dfrac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Xét phương trình f'(x) = 0 ta có:

    Điều kiện xác định x e 1

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \dfrac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} ight)}^2}}} = 0 \hfill \\   \Leftrightarrow 2{x^3} - 3{x^2} = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{3}{2}} \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

    Vậy phương trình có tập nghiệm S=\left \{ 0;\frac{3}{2} ight \}

  • Câu 15: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 16: Thông hiểu

    Cho hàm số y =\sin2x. Khi đó mệnh đề nào dưới đây đúng?

    Ta có:

    y = \sin2x

    \Rightarrow y' =2.\cos2x

    \Rightarrow y'' = -4.\sin2x

    Khi đó khẳng định đúng là: 4y +
y'' = 0

  • Câu 17: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 18: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 19: Nhận biết

    Công thức nào sau đây biểu diễn đúng đạo hàm của hàm số y = \ln\left( 1 - x^{2}
ight)?

    Ta có: y = \ln\left( 1 - x^{2}
ight)

    \Rightarrow y' = \left\lbrack
\ln\left( 1 - x^{2} ight) ightbrack'

    = \frac{- 2x}{1 - x^{2}} =
\frac{2x}{x^{2} - 1}

  • Câu 20: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 21: Thông hiểu

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c . Giá trị của biểu thức T = a + b + 5c = 4

    Đáp án là:

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c . Giá trị của biểu thức T = a + b + 5c = 4

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 22: Nhận biết

    Tính đạo hàm của hàm số y = \log_{2}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y' =\frac{1}{x\ln2}

  • Câu 23: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 24: Vận dụng

    Cho hàm số y =
f(x) = \sqrt{1 + 3x - x^{2}}. Khẳng định nào dưới đây đúng?

    Ta có: y = f(x) = \sqrt{1 + 3x -
x^{2}}

    \Rightarrow \left\{ \begin{matrix}y^{2} = 1 + 3x - x^{2} \\y' = \dfrac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} \\\end{matrix} ight.

    Ta có:

    2.y.y'' = 2.\sqrt{1 + 3x -
x^{2}}.\left( \frac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} ight) = 3 -
2x

    \Rightarrow 2(y')^{2} +
2y.y'' = - 2

    \Rightarrow (y')^{2} + y.y''
= - 1

  • Câu 25: Thông hiểu

    Tìm số tiếp tuyến của đồ thị hàm số y = - x^{4} + 2x^{2} song song với trục hoành.

    Ta có:

    y' = - 4x^{3} + 4x

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số y = - x^{4} + 2x^{2} khi đó ta có: k = 0

    Suy ra y'\left( x_{0} ight) =
0

    \Leftrightarrow - 4{x_{0}}^{3} + 4x_{0}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = - 1 \\
x_{0} = 1 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = 0
\Rightarrow PTTT:y = 0

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Với x_{0} = 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Vậy có 2 tiếp tuyến song song với trục hoành.

  • Câu 26: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 27: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Một chất điểm chuyển động thẳng có phương trình S=\frac{1}{2}t^{2} ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm t_{0}=5(s) 

    Ta có: 

    \begin{matrix}  v\left( t ight) = s'\left( t ight) = t \hfill \\   \Rightarrow v\left( {{t_0}} ight) = v\left( 5 ight) = 5\left( {m/s} ight) \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Cho hàm số f(x)= \frac{x}{\sqrt{x+4}-2} với xeq 0 xác định và liên tục trên (-4;+\infty). Tính f(0).

    Do hàm số xác định và liên tục trên (-4;+\infty)

    => Hàm số liên tục tại x= 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 4}  - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{{\left( {\sqrt {x + 4}  - 2} ight)\left( {\sqrt {x + 4}  + 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 4}  + 2} ight) = 4 \hfill \\  \mathop { \Rightarrow \lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = 4 \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho hàm số y=sin2x-cos2x. Giải phương trình y" = 0

     Ta có:

    \begin{matrix}  y = \sin 2x - \cos 2x \hfill \\   \Rightarrow y' = 2\cos 2x + 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4\sin 2x + 4\cos 2x \hfill \\  y'' = 0 \hfill \\   \Leftrightarrow  - 4\sin 2x + 4\cos 2x = 0 \hfill \\   \Leftrightarrow \sin 2x = \cos 2x \hfill \\   \Leftrightarrow \tan 2x = 1 \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{4} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{8} + k\dfrac{\pi }{2},\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 34: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 35: Thông hiểu

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 36: Thông hiểu

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = - x^{3} + 2x^{2} song song với đường thẳng x - y = 0?

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng x - y = 0 của đồ thị hàm số y = - x^{3} + 2x^{2} khi đó ta có:

    y'\left( x_{0} ight) = 1
\Leftrightarrow - 3{x_{0}}^{2} + 4x_{0} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 1 \\
x_{0} = \frac{1}{3} \\
\end{matrix} ight.

    Với x_{0} = 1 ta được M(1;1) có phương trình tiếp tuyến tương ứng là y = 1(x - 1) + 1 \Rightarrow y =
x

    Với x_{0} = \frac{1}{3} ta được M\left( \frac{1}{3};\frac{5}{27}
ight) có phương trình tiếp tuyến tương ứng là

    y = 1\left( x - \frac{1}{3} ight) +
\frac{5}{27} \Rightarrow y = x - \frac{4}{27}

    Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 37: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 38: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ khi\ x eq 1 \\- \dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x_{0} = 1?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -
4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -
1}{\sqrt{3x + 1} + 2x} = - \frac{5}{4} eq f(1)

    Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1

  • Câu 39: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 40: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo