Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 2: Thông hiểu

    Cho hàm số y =
\tan x. Tính y''\left(
\frac{\pi}{4} ight) thu được kết quả là:

    Ta có:

    y = \tan x

    \Rightarrow y' = \frac{1}{\cos^{2}x}= 1 + \tan^{2}x

    \Rightarrow y' = \left( 1 + \tan^{2}xight)' = 2\tan x.\left( \tan x ight)'

    = 2\tan x.\left( 1 + \tan^{2}xight)

    \Rightarrow y''\left(\frac{\pi}{4} ight) = 2\tan\left( \frac{\pi}{4} ight).\left\lbrack 1+ \tan^{2}\left( \dfrac{\pi}{4} ight) ightbrack = 2.1.(1 + 1) =4

  • Câu 3: Thông hiểu

    Cho hàm số y =
f(x) = \ln\left( \cos x + m^{2} + 1 ight). Biết f'\left( \frac{\pi}{2} ight) = -
\frac{1}{5}. Xác định giá trị của tham số m?

    Ta có:

    f'(x) = \frac{- \sin x}{\cos x + 1 +
m^{2}}

    Lại có: f'\left( \frac{\pi}{2}
ight) = - \frac{1}{5}

    \Leftrightarrow - \frac{1}{1 + m^{2}} =
- \frac{1}{5} \Leftrightarrow m = \pm 2

  • Câu 4: Thông hiểu

    Tính đạo hàm của hàm số y = \left( x^{2} - 2 ight)(2x - 1)

    Ta có:

    y = \left( x^{2} - 2 ight)(2x -
1)

    \Rightarrow y' = \left( x^{2} - 2
ight)'(2x - 1) + \left( x^{2} - 2 ight)(2x -
1)'

    \Rightarrow y' = 2x(2x - 1) +
2\left( x^{2} - 2 ight)

    \Rightarrow y' = 6x^{2} - 2x -
4

  • Câu 5: Nhận biết

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 6: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 7: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 8: Nhận biết

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 9: Thông hiểu

    Cho hàm số y =
x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn f''\left( x_{0} ight) =
0 là:

    Ta có:

    y = x^{3} - 3x^{2} + 1

    \Rightarrow f'(x) = 3x^{2} - 6x
\Rightarrow f''(x) = 6x - 6

    \Rightarrow f''(x) = 0
\Leftrightarrow x = 1

    Khi đó f'(1) = 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; - 1) là: y = f'(1)(x - 1) + f(1)

    \Rightarrow y = - 3(x - 1) - 1
\Rightarrow 3x + y - 2 = 0

  • Câu 10: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 12: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 13: Thông hiểu

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Ta có: f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x} = \lim_{x ightarrow 0}\frac{3}{|x| +
1}

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{+}}\dfrac{3}{x + 1} = 3 \\\lim_{x ightarrow 0^{-}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{-}}\dfrac{3}{1 - x} = 3 \\\end{matrix} ight.

    \Rightarrow \lim_{x ightarrow
0^{+}}\frac{3}{|x| + 1} = \lim_{x ightarrow 0^{-}}\frac{3}{|x| + 1} =
3

    \Rightarrow \lim_{x ightarrow
0}\frac{3}{|x| + 1} = 3

    \Rightarrow f'(0) = \lim_{x
ightarrow 0^{+}}\frac{3}{|x| + 1} = 3

  • Câu 14: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 2021) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack (x
- 1)(x - 2)(x - 3)...(x - 2021) ightbrack

    = ( - 1)( - 2).....( - 2021) = -
2021!

    Vậy f'(0) = - 2021!

  • Câu 15: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 16: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 17: Nhận biết

    Xác định đạo hàm của hàm số y = \log_{4}\left( 2x^{2} - 3 ight)?

    Ta có:

    y' = \frac{4x}{\left( 2x^{2} - 3ight).\ln4} = \frac{4x}{\left( 2x^{2} - 3 ight).2.\ln2}

    = \frac{2x}{\left( 2x^{2} - 3ight).\ln2}

  • Câu 18: Vận dụng

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

    Vậy giá trị của biểu thức T = a - b =
0

  • Câu 19: Nhận biết

    Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = x^{4} - 6x^{2} + 5 tại điểm có hoành độ x_{0} = 2 là:

    Ta có: y' = 4x^{3} - 12x \Rightarrow
y'(2) = 8

    \Rightarrow k = 8

  • Câu 20: Vận dụng

    Cho hàm số y =
x^{3} - 2x + 1. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục Oxy một tam giác vuông cân tại O?

    Gọi M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d)

    Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng \frac{x}{a} + \frac{y}{b} = 1

    \Rightarrow y = b\left( 1 - \frac{x}{a}
ight) = - \frac{b}{a} + b;\left( a,b eq 0;|a| = |b|
ight)(d)

    M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d) khi đó:

    3{x_{0}}^{2} - 2 = -
\frac{b}{a}

    |a| = |b| \Rightarrow \left\lbrack
\begin{matrix}
3{x_{0}}^{2} - 2 = 1 \\
3{x_{0}}^{2} - 2 = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 1 \Rightarrow y_{0} = 0 \\\begin{matrix}x_{0} = - 1 \Rightarrow y_{0} = 2 \\x_{0} = \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 - 5\sqrt{3}}{9}\\x_{0} = - \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 + 5\sqrt{3}}{9}\\\end{matrix} \\\end{matrix} ight.

    Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:

    y = 1(x - 1) + 0 \Rightarrow y = x -
1

    y = 1(x - 1) + 2 \Rightarrow y = x +
3

    y = - 1\left( x - \frac{\sqrt{3}}{3}
ight) + \frac{9 - 5\sqrt{3}}{9} \Rightarrow y = x + \frac{9 -
2\sqrt{3}}{9}

    y = - 1\left( x + \frac{\sqrt{3}}{3}
ight) + \frac{9 + 5\sqrt{3}}{9} \Rightarrow y = - x + \frac{9 +
2\sqrt{3}}{9}

  • Câu 21: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 22: Thông hiểu

    Biết đường thẳng y = 6x + m + 1 là tiếp tuyến của đồ thị hàm số y = x^{3} + 3x - 1. Tìm các giá trị của tham số m.

    Ta có: y' = 3x^{2} + 3

    Gọi (C) là đồ thị của hàm số y = x^{3} + 3x - 1 khi đó

    y'(x) = 6 \Leftrightarrow 3x^{2} + 3
= 6

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \Rightarrow y = 3 \\
x = - 1 \Rightarrow y = - 5 \\
\end{matrix} ight.

    Phương trình tiếp tuyến tại điểm M(1;3)y =
6x - 3

    Phương trình tiếp tuyến tại điểm M( - 1;
- 5)y = 6x + 1

    Để đường thẳng y = 6x + m + 1 là tiếp tuyến của (C) thì \left\lbrack \begin{matrix}
m + 1 = - 3 \\
m + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 4 \\
m = 0 \\
\end{matrix} ight..

  • Câu 23: Thông hiểu

    Cho hàm số y = sin2x có đạo hàm là y’ và y’’. Mệnh đề nào sau đây đúng?

    Ta có:

    \begin{matrix}  y' =  - 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4.\cos 2x =  - 4y \hfill \\   \Rightarrow y'' + 4y = 0 \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Cho hàm số y =\sin2x. Khi đó mệnh đề nào dưới đây đúng?

    Ta có:

    y = \sin2x

    \Rightarrow y' =2.\cos2x

    \Rightarrow y'' = -4.\sin2x

    Khi đó khẳng định đúng là: 4y +
y'' = 0

  • Câu 25: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 26: Thông hiểu

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Đáp án là:

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Ta có:

    y' = 3(m + 2)x^{2} + 3(m + 2)x + 3
\geq 0

    \Leftrightarrow (m + 2)x^{2} + (m + 2)x
+ 1 \geq 0(*)

    Để phương trình (*) luôn đúng với \forall
x\mathbb{\in R} thì

    TH1: m + 2 = 0 \Rightarrow m = -
2

    \Rightarrow y' = 1 \geq 0;\forall
x\mathbb{\in R}

    TH2: m + 2 eq 0 \Rightarrow m eq -
2

    \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
- 2 \leq m \leq 2 \\
\end{matrix} ight.\  \Rightarrow - 2 < m \leq 2

    \Rightarrow m \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.

  • Câu 27: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 28: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

  • Câu 30: Thông hiểu

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 32: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 33: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 34: Thông hiểu

    Cho hàm số y =
\sqrt{2x - x^{2}}. Tính giá trị của biểu thức T = y^{3}.y''?

    Ta có: y = \sqrt{2x - x^{2}}

    \Rightarrow y' = \frac{1 -
x}{\sqrt{2x - x^{2}}} \Rightarrow y'' = \frac{- 1}{\left(
\sqrt{2x - x^{2}} ight)^{3}}

    \Rightarrow T = y^{3}.y'' =
\left( \sqrt{2x - x^{2}} ight)^{3}.\frac{- 1}{\left( \sqrt{2x - x^{2}}
ight)^{3}} = - 1

  • Câu 35: Thông hiểu

    Xác định đạo hàm của hàm số cho bởi công thức f(x) = \left( - x^{2} + 3x + 7
ight)^{7}?

    Ta có:

    f(x) = \left( - x^{2} + 3x + 7
ight)^{7}

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.\left( - x^{2} + 3x + 7 ight)'

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.( - 2x + 3)

  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 37: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 38: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + ax + b\ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\\end{matrix} ight.. Biết hàm số có đạo hàm tại x = 2. Giá trị của a^{2} + b^{2} bằng:

    Ta có:

    \lim_{x ightarrow 2^{-}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\left( x^{3}- x^{2} - 8x + 10 ight) = - 2

    Ta có: \lim_{x ightarrow 2^{+}}f(x) =f(2) = 4 + 2a + b

    Để hàm số có liên tục tại x = 1 thì:

    4 + 2a + b = - 2

    Xét \lim_{x ightarrow 2^{-}}\frac{f(x)- f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{\left(x^{3} - x^{2} - 8x + 10 ight) - (4 + 2a + b)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{x^{3}- x^{2} - 8x + 12}{x - 2} = 0

    \lim_{x ightarrow 2^{+}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{+}}\frac{\left(x^{2} + ax + b ight) - (4 + 2x + b)}{x - 2}

    = \lim_{x ightarrow 2^{+}}(x + 2 + a)= 4 + a

    Từ đó suy ra 4 + a = 0 \Rightarrow a = - 4;b = 2

    Vậy a^{2} + b^{2} = 20

  • Câu 39: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 40: Vận dụng

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Đáp án là:

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v = S' = - 3t^{2} + 6t + 9

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a = S'' = - 6t + 6

    Gia tốc triệt tiêu khi a = 0 \Rightarrow
S'' = 0 \Rightarrow t = 1

    Khi đó vận tốc của chuyển động là S'(1) = 12m/s

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo