Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 2: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 3: Thông hiểu

    Tính đạo hàm của hàm số y = 2{\sin ^2}x-\cos 2x + x

    Ta có:

    \begin{matrix}  y = 2{\sin ^2}x - \cos 2x + x \hfill \\  y = 1 - \cos 2x - \cos 2x + x \hfill \\  y = 1 - 2\cos 2x + x \hfill \\   \Rightarrow y' = 4\sin 2x + 1 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 5: Nhận biết

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 6: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 7: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 8: Thông hiểu

    Cho hàm số y =
\sqrt{2x - x^{2}}. Tính giá trị của biểu thức T = y^{3}.y''?

    Ta có: y = \sqrt{2x - x^{2}}

    \Rightarrow y' = \frac{1 -
x}{\sqrt{2x - x^{2}}} \Rightarrow y'' = \frac{- 1}{\left(
\sqrt{2x - x^{2}} ight)^{3}}

    \Rightarrow T = y^{3}.y'' =
\left( \sqrt{2x - x^{2}} ight)^{3}.\frac{- 1}{\left( \sqrt{2x - x^{2}}
ight)^{3}} = - 1

  • Câu 9: Vận dụng

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 10: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức \frac{\sqrt{x}}{x + 1}. Thực hiện tính đạo hàm của hàm số ta được y' =
\frac{...}{(x + 1)^{2}}. Biểu thức cần điền vào chỗ trống.

    Ta có:

    y = \frac{\sqrt{x}}{x + 1}

    \Rightarrow y' =\dfrac{\dfrac{1}{2\sqrt{x}}(x + 1) - \sqrt{x}}{(x + 1)^{2}} = \dfrac{1 -x}{2\sqrt{x}(x + 1)^{2}}

  • Câu 11: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 12: Thông hiểu

    Tính đạo hàm của hàm số y = \log_{2}(2x + 1)?

    Ta có: y = \log_{2}(2x + 1)

    \Rightarrow y' = \frac{(2x +1)'}{(2x + 1)\ln2} = \frac{2}{(2x + 1)\ln2}

  • Câu 13: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 14: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 15: Nhận biết

    Đạo hàm của hàm số f(x)=t^{2}x+tx^{2} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = {t^2}x + t{x^2} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {{t^2}x + t{x^2}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = {t^2} + 2tx \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho hàm số y =
\frac{x + 1}{x - 1} có đồ thị (C). Gọi tiếp tuyến của (C) tại điểm có tung độ bằng 3\Delta. Tìm hệ số góc của đường thẳng \Delta?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Với y = 3 \Rightarrow \frac{x + 1}{x - 1}
= 3 \Rightarrow x = 2

    Ta có: y' = - \frac{2}{(x -
1)^{2}}

    Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 2 là

    k = y'(2) = - \frac{2}{(2 - 1)^{2}}
= - 2

  • Câu 17: Vận dụng

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Tập xác định: D = ( - \infty;0brack
\cup \lbrack 2; + \infty)

    Ta có: f'(x) = \frac{x -
1}{\sqrt{x^{2} - 2x}}

    Ta có:

    f'(x) \geq f(x)

    \Leftrightarrow \frac{x - 1}{\sqrt{x^{2}
- 2x}} \geq \sqrt{x^{2} - 2x}

    \Leftrightarrow \frac{- x^{2} + 3x -
1}{\sqrt{x^{2} - 2x}} \geq 0

    Với x \in ( - \infty;0) \cup (2; +
\infty)

    Ta có:\frac{- x^{2} + 3x - 1}{\sqrt{x^{2}
- 2x}} \geq 0

    \Leftrightarrow - x^{2} + 3x - 1 \geq 0
\Leftrightarrow x \in \left\lbrack \frac{3 - \sqrt{5}}{2};\frac{3 +
\sqrt{5}}{2} ightbrack

    Kết hợp với điều kiện x \in ( - \infty;0)
\cup (2; + \infty) ta có: x \in
\left( 2;\frac{3 + \sqrt{5}}{2} ightbrack

    x\mathbb{\in Z} nên suy ra x \in \varnothing

    Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.

  • Câu 18: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 19: Thông hiểu

    Cho hàm số y =
\frac{x^{2}}{1 - x}. Xác định biểu thức của y''?

    Ta có:

    y = \frac{x^{2}}{1 - x} = - x - 1 +
\frac{1}{1 - x}

    \Rightarrow y' = - 1 + \frac{1}{(1 -
x)^{2}}

    \Rightarrow y'' = \frac{- 2}{(1
- x)^{3}}

  • Câu 20: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

  • Câu 21: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = - x^{3} + 2x^{2} song song với đường thẳng x - y = 0?

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng x - y = 0 của đồ thị hàm số y = - x^{3} + 2x^{2} khi đó ta có:

    y'\left( x_{0} ight) = 1
\Leftrightarrow - 3{x_{0}}^{2} + 4x_{0} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 1 \\
x_{0} = \frac{1}{3} \\
\end{matrix} ight.

    Với x_{0} = 1 ta được M(1;1) có phương trình tiếp tuyến tương ứng là y = 1(x - 1) + 1 \Rightarrow y =
x

    Với x_{0} = \frac{1}{3} ta được M\left( \frac{1}{3};\frac{5}{27}
ight) có phương trình tiếp tuyến tương ứng là

    y = 1\left( x - \frac{1}{3} ight) +
\frac{5}{27} \Rightarrow y = x - \frac{4}{27}

    Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 23: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 24: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 25: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 26: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 27: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 28: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 29: Thông hiểu

    Cho hàm số y =
f(x) = sin^{3}x. Công thức nào sau đây đúng?

    Ta có: y = f(x) = \sin^{3}x

    \Rightarrow f'(x) =3\sin^{2}x.\cos x

    \Rightarrow f''(x) =6\sin x.\cos^{2}x - 3\sin^{3}x

    Khi đó

    y'' + 9y = 6\sin x.\cos^{2}x -3\sin^{3}x + 9\sin^{3}x

    = 6\sin x\left( \sin^{2}x + \cos^{2}xight) = 6\sin x

    \Rightarrow y'' + 9y - 6\sin x =0

  • Câu 30: Thông hiểu

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 31: Nhận biết

    Đạo hàm của hàm số y = 3^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 3^{x} \Rightarrow y' =3^{x}\ln3

  • Câu 32: Thông hiểu

    Cho hàm số f(x)=\left | x-2 ight |. Khẳng định nào sau đây là sai?

    Ta có: f(2)= 0 (đúng)

    f(x) = \left| {x - 2} ight| \geqslant 0,\forall x => Hàm số nhận giá trị không âm

    Ta lại có:

    \begin{matrix}  f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {x - 2{\text{   khi }}x \geqslant 2} \\   {2 - x{\text{   khi }}x < 2} \end{array}} ight. \hfill \\  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2 - x} ight) = 0 \hfill \\  f\left( 2 ight) = 0 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f\left( 2 ight) \hfill \\ \end{matrix}

    => Hàm số liên tục tại x = 2

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 2}}{{x - 2}} = 1 \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2 - x}}{{x - 2}} =  - 1 \hfill \\ \end{matrix}

    Vậy không tồn tại giới hạn \frac{{f\left( x ight) - f\left( 2 ight)}}{{x - 2}} khi x tiến tới 2

    Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"

  • Câu 33: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 34: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 35: Thông hiểu

    Cho hàm số y =x.\cos x. Hệ thức nào sau đây đúng?

    Ta có:

    y = x.\cos x

    \Rightarrow y' = \cos x - x\sin
x

    \Rightarrow y'' = - 2\sin x -x\cos x

    \Rightarrow y'' + y = - 2\sin x -x\cos x + x\cos x = - 2\sin x

  • Câu 36: Thông hiểu

    Cho hàm số yy=-\frac{1}{3}mx^{3}+(m-1)x^{2}-mx+3, có đạo hàm là y'. Tìm tất cả các giá trị của m để phương trình y' = 0 có hai nghiệm phân biệt là x_{1},x_{2} thỏa mãn x_{1}^{2}+x_{2}^{2}=6.

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{3}m{x^3} + (m - 1){x^2} - mx + 3 \hfill \\   \Rightarrow y' = m{x^2} - 2\left( {m - 1} ight)x - m \hfill \\  y' = 0 \hfill \\   \Leftrightarrow m{x^2} - 2\left( {m - 1} ight)x - m = 0 \hfill \\ \end{matrix}

    Để phương trình y'=0 có hai nghiệm phân biệt thì

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {m e 0} \end{array} \Leftrightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {{{\left( {m - 1} ight)}^2} + {m^2} > 0} \\   {m e 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{m^2} - 2m + 1 > 0} \\   {m e 0} \end{array}} ight. \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi - et ta có

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{2\left( {m - 1} ight)}}{m}} \\   {{x_1}.{x_2} = \dfrac{{ - 1}}{m}} \end{array}} ight. \hfill \\  x_1^2 + x_2^2 = 6 \hfill \\   \Leftrightarrow {\left( {{x_1} + {x_2}} ight)^2} - 2{x_1}{x_2} = 6 \hfill \\   \Leftrightarrow {\left[ {\dfrac{{2\left( {m - 1} ight)}}{m}} ight]^2} + \dfrac{2}{m} = 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1 + \sqrt 2 } \\   {m =  - 1 - \sqrt 2 } \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 38: Vận dụng cao

    Tìm tham số thực b để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}}&{{\text{ khi }}x \leqslant 2} \\   { - \dfrac{{{x^2}}}{2} + bx - 6}&{{\text{ khi }}x > 2} \end{array}} ight. có đạo hàm tại x = 2.

    Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \hfill \\   \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{{{x^2}}}{2} + bx - 6} ight) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} \hfill \\   \Leftrightarrow  - 2 + 2b - 6 = 4 \Leftrightarrow b = 6 \hfill \\ \end{matrix}

    Thử b = 6 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + bx - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + 6x - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{(x - 2)(10 - x)}}{{2(x - 2)}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{10 - x}}{2} = 4{\text{ }} \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 4}}{{x - 2}} \hfill \\   = 4\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\ \end{matrix}

    Nên hàm số có đạo hàm tại x = 2

  • Câu 39: Nhận biết

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 40: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo