Xác định đạo hàm của hàm số cho bởi công thức
?
Ta có:
Xác định đạo hàm của hàm số cho bởi công thức
?
Ta có:
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Tính đạo hàm của hàm số ![]()
Ta có:
Tính đạo hàm cấp 3 của hàm số ![]()
Ta có:
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục
một tam giác vuông cân tại
?
Gọi là hoành độ tiếp xúc của (C) và (d)
Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng
là hoành độ tiếp xúc của (C) và (d) khi đó:
Vì
Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Xác định công thức đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề đúng?
Ta có:
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Vậy
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
xác định bởi công thức
. Biết hàm số liên tục trên nửa khoảng
. Tích của
và
bằng bao nhiêu?
Tập xác định
Hàm số liên tục trên nên ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Viết phương trình tiếp tuyến của đường cong
tại điểm -1.
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Biết
. Tính tỉ số
?
Với
Tính vi phân của hàm số
tại điểm
ứng với ![]()
Ta có:
Cho hàm số
với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Cho hàm số với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Ta có:
Để phương trình (*) luôn đúng với thì
TH1:
TH2:
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.
Tính đạo hàm của hàm số ![]()
Ta có:
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Một viên đạn được bắn lên với tốc độ ban đầu từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Ta có vận tốc tại thời điểm t là:
Từ thời điểm , viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:
Cho hàm số
. Công thức tính
là:
Ta có:
….
Cho hàm số
có đạo hàm liên tục trên
và thỏa mãn
. Biết
và
. Tìm tất cả các giá trị thực của tham số m để phương trình
có hai nghiệm thực phân biệt:
Xét phương trình:
Do thay vào (*) ta được
=>
Dễ thấy hàm số f(x) đồng biến trên .
Ta có bảng biến thiên của hàm số như sau:
Do . Phương trình
có hai nghiệm thực phân biệt khi và chỉ khi
có hai nghiệm thực phân biệt. khi đó
Đồ thị của hàm số và
luôn cắt nhau tại một điểm với mọi
.
Suy ra để phương trình có hai nghiệm thực phân biệt thì
.
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng -1 là:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số
. Tính ![]()
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
xác định bởi công thức
. Thực hiện tính đạo hàm của hàm số ta được
. Biểu thức cần điền vào chỗ trống.
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."