Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức \frac{\sqrt{x}}{x + 1}. Thực hiện tính đạo hàm của hàm số ta được y' =
\frac{...}{(x + 1)^{2}}. Biểu thức cần điền vào chỗ trống.

    Ta có:

    y = \frac{\sqrt{x}}{x + 1}

    \Rightarrow y' =\dfrac{\dfrac{1}{2\sqrt{x}}(x + 1) - \sqrt{x}}{(x + 1)^{2}} = \dfrac{1 -x}{2\sqrt{x}(x + 1)^{2}}

  • Câu 2: Thông hiểu

    Cho hàm số y =
x^{3} - 3x + 2000. Tìm tập nghiệm bất phương trình y' < 0.

    Ta có: y' = 3x^{2} - 3

    y' < 0 \Rightarrow 3x^{2} - 3
< 0 \Leftrightarrow - 1 < x < 1

    \Rightarrow S = ( - 1;1)

  • Câu 3: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 4: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 5: Nhận biết

    Hàm số y = f(x)= \log_{2}\left( x^{2} - 2x ight) có đạo hàm là:

    Ta có:

    y = f(x) = \log_{2}\left( x^{2} - 2xight)

    \Rightarrow y' = \frac{\left( x^{2}- 2x ight)'}{\left( x^{2} - 2x ight)\ln2} = \frac{2x - 2}{\left(x^{2} - 2x ight)\ln2}

  • Câu 6: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 7: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 8: Nhận biết

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Tính đạo hàm cấp 5 của hàm số y = \frac{x^{2} + x + 1}{x + 1} là:

    Ta có:

    y = \frac{x^{2} + x + 1}{x + 1} = x +
\frac{1}{x + 1}

    \Rightarrow y' = 1 - \frac{1}{(x +
1)^{2}}

    \Rightarrow y'' = \frac{2}{(x +
1)^{3}} \Rightarrow y^{(3)} = \frac{- 6}{(x + 1)^{4}}

    \Rightarrow y^{(4)} = \frac{24}{(x +
1)^{5}} \Rightarrow y^{(5)} = - \frac{120}{(x + 1)^{6}}

  • Câu 10: Thông hiểu

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

    Ta có:

    \begin{matrix}  y = {x^2}\tan x + \sqrt x  \hfill \\   \Rightarrow y\prime  = \left( {{x^2}} ight)\prime \tan x + {x^2}\left( {\tan x} ight)\prime  + \left( {\sqrt x } ight)\prime  \hfill \\   = 2x.\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 12: Vận dụng

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 13: Thông hiểu

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

  • Câu 14: Nhận biết

    Hàm số nào sau đây có đạo hàm bằng \frac{1}{\sqrt{2x}}?

    Ta có:

    f'(x) = \left( \sqrt{2x}
ight)' = \frac{1}{\sqrt{2x}}

  • Câu 15: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 16: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 17: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 1\ \ khi\ x \geq 1 \\ax + b\ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại điểm x = 1 (với a,b\mathbb{\in R}). Giá trị của biểu thức P = 2a - 5b bằng bao nhiêu?

    Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:

    Hàm số phải liên tục tại điểm x = 1:

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)

    \Rightarrow a + b = 2

    \lim_{x ightarrow 1}\frac{f(x) -f(1)}{x - 1} = f'(1)

    \Leftrightarrow f'\left( 1^{+}ight) = f'\left( 1^{-} ight)

    \Leftrightarrow a = 3

    \Rightarrow b = - 1

    Vậy giá trị của biểu thức P = 2a - 5b =11

  • Câu 18: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 19: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{x + 3}{\sqrt{x^{2} + 1}}?

    Ta có:

    y = \frac{x + 3}{\sqrt{x^{2} + 1}}
\Rightarrow y' = \left( \frac{x + 3}{\sqrt{x^{2} + 1}}
ight)'

    \Rightarrow y' = \dfrac{\sqrt{x^{2} +1} - \dfrac{(x + 3)x}{\sqrt{x^{2} + 1}}}{x^{2} + 1} = \dfrac{1 -3x}{\left( x^{2} + 1 ight)\sqrt{x^{2} + 1}}

  • Câu 20: Nhận biết

    Đạo hàm của hàm số y = (1 - 2x)^{3} là:

    Ta có: y = (1 - 2x)^{3}

    \Rightarrow y' = 3(1 - 2x)^{2}(1 -
2x)'

    \Rightarrow y' = 3(1 - 2x)^{2}( - 2)
= - 6(1 - 2x)^{2}

  • Câu 21: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 22: Thông hiểu

    Cho hàm số y=\frac{3x-4}{x+2}. Tìm x sao cho y" = 20

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 4}}{{x + 2}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {x + 2} ight) - \left( {3x - 4} ight)}}{{{{\left( {x + 2} ight)}^2}}} = \dfrac{{10}}{{{{\left( {x + 2} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 10.2.\left( {x + 2} ight)}}{{{{\left( {x + 2} ight)}^4}}} = \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  y'' = 20,(xe-2) \hfill \\   \Leftrightarrow \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} = 20 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^3} =  - 1 \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 23: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 24: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 26: Vận dụng

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Đáp án là:

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Vận tốc của vật là: v = s^{'} = -
2t^{2} + 14t.

    Vận tốc của vật đạt 12m/s thì - 2t^{2} + 14t = 12 \Leftrightarrow 2t^{2} -
14t + 12 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight.

    \Rightarrow Vật đạt vận tốc là 12\ m/s lần thứ 2 khi t = 6.

    Lúc đó quãng đường vật đi được là:

    s(6) = - \frac{2}{3}.6^{4} + 7.6^{2} + 3
= 111 (mét)

  • Câu 27: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 28: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 29: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \left( {\sin x} ight)} ight]\prime\hfill \\   \Rightarrow y' = \left( {\sin x} ight)'.\cos \left( {\sin x} ight) \hfill \\   \Rightarrow y' = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 30: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 31: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 32: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 33: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 34: Thông hiểu

    Cho hàm số y =
x^{3} + mx^{2} + 3x - 5 với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình y'
= 0 có hai nghiệm phân biệt?

    Ta có:

    y = x^{3} + mx^{2} + 3x - 5

    \Rightarrow y' = 3x^{2} + 2mx +
3

    Để y' = 0 có hai nghiệm phân biệt:

    \Delta > 0 \Leftrightarrow m^{2} - 9
> 0

    \Leftrightarrow m \in ( - \infty; - 3)
\cup (3; + \infty)

  • Câu 35: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 1}
ight) + ln2018

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2017)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} -
\frac{1}{2018}

    S = 1 - \frac{1}{2018} =
\frac{2017}{2018}

  • Câu 36: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \tan x là:

    Tập xác định D = R\backslash\left\{
\frac{\pi}{2} + k\pi;k\mathbb{\in Z} ight\}

    Ta có: y = \tan x

    \Rightarrow y' =\frac{1}{\cos^{2}x}

    \Rightarrow y'' = \frac{-1.\left( \cos^{2}x ight)'}{\left( \cos^{2}x ight)^{2}} = -\frac{2\cos x.\left( \cos x ight)'}{\cos^{4}x} =\frac{2\sin x}{\cos^{3}x}

  • Câu 37: Thông hiểu

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 38: Thông hiểu

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c. Tính giá trị biểu thức M = a + b + c?

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow M = 8

  • Câu 39: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 40: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo