Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề đúng?
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Điều kiện
Ta có:
Đường thẳng d đi qua Q có hệ số góc k là
Đường thẳng d tiếp xúc với (C) có nghiệm
Thế (**) vào (*) ta có:
Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất
Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1
Vậy
Tính đạo hàm của hàm số
.
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho parabol
. Khẳng định nào sai trong các khẳng định sau?
Ta có:
=> Phương trình tiếp tuyến tại điểm M(1; 6) là:
hay
Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng .
Mặt khác ta có:
Vậy tiếp tuyến không đi qua điểm N(0; -1).
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Cho hàm số
. Tính ![]()
Ta có:
Cho hàm số
có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của
-3|| - 3
Cho hàm số có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của -3|| - 3
Tập xác định
Ta có:
Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1
Do y’ < 0 nên k = -1
Gọi tọa độ tiếp điểm là ta có:
Với
Với
Vậy
Cho hàm số
. Tính đạo hàm của hàm số tại
?.
Ta có:
Đặt
Khi đó:
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số tại
?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Phương trình chuyển động của một chất điểm được biểu diễn là
. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?
Ta có:
Suy ra vận tốc của chuyển động là
Bảng biến thiên
Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm .
Tính đạo hàm của hàm số ![]()
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Giải bất phương trình y" > 0
Ta có:
Xét bất phương trình ta có:
Tính đạo hàm của hàm số sau:
.
Ta có:
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Khi vận tốc bị triệt tiêu nghĩa là
Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:
Cho hàm số
. Tính giá trị của ![]()
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Đạo hàm bậc hai của hàm số
là:
Ta có:
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Cho hàm số
. Tính đạo hàm của hàm số tại x = 1.
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Ta có:
Vì tiếp tuyến song song với nên hệ số góc bằng 3 nên gọi tọa độ tiếp điểm là
Khi đó
Với
Với
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Cho hàm số . Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Vậy giá trị của biểu thức
Biết
. Khi đó giá trị biểu thức
-1|| - 1
Biết . Khi đó giá trị biểu thức
-1|| - 1
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Cho hàm số
. Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có: