Cho hàm số và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Cho hàm số và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Tính đạo hàm của hàm số
Ta có:
Cho . Tính
Ta có:
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Tìm đường thẳng tiếp tuyến kẻ từ điểm đến đồ thị hàm số
?
Phương trình đường thẳng đi qua B có dạng
là tiếp tuyến của parabol
khi và chỉ khi
có nghiệm
Vậy
Một chất điểm chuyển động có phương trình chuyển động là ; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm
thì vận tốc tức thời của chuyển động bằng bao nhiêu?
Ta có:
Vận tốc tức thời của chuyển động khi là:
Một vật chuyển động theo quy luật với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Cho hàm số . Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Phương trình chuyển động của một chất điểm được biểu diễn ,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm t = 2s là
Cho hàm số . Mệnh đề nào dưới đây là mệnh đề đúng?
Ta có:
Tính đạo hàm của hàm số tại
Tập xác định
Ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số , trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Vậy gia tốc đạt giá trị nhỏ nhất khi . Khi đó vận tốc là
Tại điểm , giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Đạo hàm cấp hai của hàm số là:
Ta có:
Cho hàm số với
. Tính
.
Ta có:
Đạo hàm của hàm số (với m là tham số) là:
Ta có:
Cho hàm số . Tính
.
Ta có:
Cho hàm số . Tìm x sao cho y" = 20
Ta có:
Xét phương trình ta có:
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là
Tìm hệ số góc k của tiếp tuyến của parabol tại điểm có hoành độ
.
Ta có:
Cho hàm số . Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Hàm số liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Ta có:
Khi đó:
Đạo hàm của hàm số bằng biểu thức nào sau đây?
Ta có:
Xác định đạo hàm của hàm số cho bởi công thức ?
Ta có:
Cho hàm số . Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Cho hàm số xác định bởi công thức
. Biết hàm số liên tục trên nửa khoảng
. Tích của
và
bằng bao nhiêu?
Tập xác định
Hàm số liên tục trên nên ta có:
Tính tỉ số của hàm số
theo x và
Ta có:
Cho hàm số xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Đạo hàm cấp hai của hàm số có dạng
. Tính giá trị biểu thức
.
Ta có:
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Tính số gia của hàm số tại điểm x0 = 2 ứng với số gia
Ta có:
Một chất điểm chuyển động theo phương trình , trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Biết đường thẳng là tiếp tuyến của đồ thị hàm số
. Tìm các giá trị của tham số
.
Ta có:
Gọi là đồ thị của hàm số
khi đó
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Để đường thẳng là tiếp tuyến của
thì
.
Cho hàm số . Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Biết . Xác định công thức của
?
Ta có:
…
Với , đạo hàm cấp hai của hàm số
là:
Ta có: