Cho hàm số
. Giải bất phương trình y" < 0
Ta có:
Xét bất phương trình ta có:
Cho hàm số
. Giải bất phương trình y" < 0
Ta có:
Xét bất phương trình ta có:
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Cho hàm số
xác định bởi công thức
. Chọn hệ thức đúng?
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Tính đạo hàm của hàm số ![]()
Ta có:
Một vật chuyển động theo quy luật
với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Một vật chuyển động theo quy luật với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Vận tốc của vật là: .
Vận tốc của vật đạt thì
Vật đạt vận tốc là
lần thứ 2 khi
.
Lúc đó quãng đường vật đi được là:
(mét)
Một chất điểm chuyển động thẳng có phương trình
( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Tính tổng
![]()
Xét
Cho hàm số
. Giải phương trình y" = 0
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9
=>
Với x0 = −1, ta có:
=> Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)
với x0 = 3 thì
Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Đạo hàm của hàm số
là:
Ta có:
Viết phương trình tiếp tuyến của đường cong
tại điểm -1.
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Biết điểm
thuộc đồ thị hàm số
sao cho tiếp tuyến của đồ thị hàm số
tại
song song với đường thẳng
. Có thể xác định được bao nhiêu điểm
thỏa mãn yêu cầu đề bài?
Gọi điểm là điểm thuộc đồ thị hàm số
Ta có: suy ra phương trình tiếp tuyến của
tại điểm
là:
Do nên
Vậy có duy nhất một điểm P thỏa mãn yêu cầu đề bài.
Cho hàm số y = sin2x có đạo hàm là y’ và y’’. Mệnh đề nào sau đây đúng?
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tìm tham số thực b để hàm số
có đạo hàm tại x = 2.
Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là
Thử b = 6 ta có:
Nên hàm số có đạo hàm tại x = 2
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tìm đạo hàm cấp hai của hàm số
?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số
. Tính đạo hàm của hàm số
tại
?
Đặt
Khi đó
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Tìm khẳng định đúng dưới đây?
Ta có
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình
với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Vậy gia tốc đạt giá trị nhỏ nhất khi . Khi đó vận tốc là
Gọi
là đồ thị hàm số
. Có bao nhiêu phương trình tiếp tuyến của
vuông góc với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Vì tiếp tuyến của vuông góc với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn điều kiện đề bài.
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Cho
. Tính ![]()
Ta có:
Tính đạo hàm của hàm số
.
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng trong các khẳng định sau?
Ta có:
Cho hàm số
. Tính giá trị biểu thức:
![]()
Ta có:
Suy ra
…
Vậy
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có: