Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Tính số gia của hàm số
tại điểm x0 = -1 ứng với số gia ![]()
Ta có:
Tính đạo hàm cấp 3 của hàm số ![]()
Ta có:
Cho hàm số
. Với giá trị nào của
thì
?
Ta có: .
.
Để .
Biết rằng
. Giá trị của biểu thức
4
Biết rằng . Giá trị của biểu thức
4
Ta có:
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Cho hàm số
. Biết
. Xác định giá trị của tham số
?
Ta có:
Lại có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho đồ thị hàm số
. Gọi
là các điểm thuộc đồ thị
mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm
thỏa mãn điều kiện trên?
Ta có:
Giả sử với
Tiếp tuyến tại A và B song song với nhau nên
Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn thì các tiếp tuyến tại A và B song song với nhau.
Cho hàm số
, có đạo hàm
. Tìm tất cả các giá trị của
để
với ![]()
Ta có:
Để bất phương trình với
ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Phương trình chuyển động của một chất điểm là
với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Phương trình chuyển động của một chất điểm là với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Suy ra vận tốc của chuyển động là
Vận tốc của chuyển động đạt giá trị lớn nhất khi
Vậy
Cho hàm số
. Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Cho hàm số
xác định bởi công thức
. Chọn hệ thức đúng?
Ta có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Hàm số
có đạo hàm là:
Ta có:
Đạo hàm của hàm số
(với m là tham số) là:
Ta có:
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Cho hàm số
. Tính
?
Ta có:
Vậy
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Biết
. Tính giá trị biểu thức
?
Kết quả: 3
Cho hàm số . Biết
. Tính giá trị biểu thức
?
Kết quả: 3
Ta có: