Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
có đạo hàm tại
. Tính giá trị của biểu thức ![]()
Vì hàm số có đại hàm tại nên ta có:
Vậy
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số đã cho?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
tại
bằng bao nhiêu?
Kết quả: -64||- 64
Đạo hàm của hàm số tại
bằng bao nhiêu?
Kết quả: -64||- 64
Ta có:
Cho hàm số
. Tìm x sao cho y" = 20
Ta có:
Xét phương trình ta có:
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho
. Tính ![]()
Ta có:
Phát biểu nào trong các phát biểu sau là đúng?
Dựa theo định lí:
Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.
=> Phát biểu đúng là: “Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.”
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Xác định đạo hàm của hàm số
.
Ta có:
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Một chuyển động được xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Xác định công thức đạo hàm của hàm số
?
Ta có:
Tính tổng
![]()
Xét
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Cho hàm số
. Khẳng định nào sau đây đúng trong các khẳng định sau?
Ta có:
Cho hàm số
xác định trên
bởi
. Tính ![]()
Ta có:
=>
Vậy hàm số không liên tục tại
Vậy hàm số không tồn tại đạo hàm tại
Cho hàm số
. Tính giá trị của f’(0)
Ta có:
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Cho hàm số
. Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức
-2 || - 2
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Ta có:
Khi đó:
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Công thức đạo hàm cấp hai của hàm số
?
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm vận tốc bằng 2 là
Tính đạo hàm của hàm số ![]()
Ta có:
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Cho hàm số
. Tính ![]()
Ta có:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm
?
TXĐ:
Ta có:
Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số tại
?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số
. Công thức tính
là:
Ta có:
….
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho hàm số
. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục
một tam giác vuông cân tại
?
Gọi là hoành độ tiếp xúc của (C) và (d)
Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng
là hoành độ tiếp xúc của (C) và (d) khi đó:
Vì
Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau: