Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =
\frac{2x}{x - 1}. Tính đạo hàm của hàm số đã cho?

    Ta có:f(x) = \frac{2x}{x -
1}

    \Rightarrow f'(x) =
\frac{(2x)'(x - 1) - (x - 1)'(2x)}{(x - 1)^{2}}

    \Rightarrow f'(x) = \frac{2(x - 1) -
2x}{(x - 1)^{2}} = \frac{- 2}{(x - 1)^{2}}

  • Câu 2: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 3: Vận dụng

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Do \lim_{x ightarrow 2}\frac{f(x) -
16}{x - 2} = 12\lim_{x
ightarrow 2}(x - 2) = 0 \Rightarrow \lim_{x ightarrow 2}\left\lbrack
f(x) - 16 ightbrack = 0

    \Rightarrow \lim_{x ightarrow 2}f(x) =
16

    Ta có:

    \lim_{x ightarrow
2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x - 8}

    = \lim_{x ightarrow 2}\frac{5f(x) - 16
- 4^{3}}{(x - 2)(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow
2}\frac{5\left\lbrack f(x) - 16 ightbrack}{(x - 2)(x +
4)\left\lbrack \left( \sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x)
- 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow 2}\left\{
\frac{f(x) - 16}{(x - 2)}.\frac{5}{(x + 4)\left\lbrack \left(
\sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2}
ightbrack} ight\} = T

    \lim_{x ightarrow 2}\frac{f(x) -
16}{(x - 2)} = 12\lim_{x
ightarrow 2}\frac{5}{(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack} =
\frac{5}{288}

    Nên T = 12.\frac{5}{288} =
\frac{5}{24}

  • Câu 4: Thông hiểu

    Tính đạo hàm của hàm số y = (1 - x)(1 - 2x)(1 - 3x)?

    Ta có:

    y = (1 - x)(1 - 2x)(1 - 3x)

    = \left( 1 - 3x + 2x^{2} ight)(1 -
3x)

    = 1 - 3x - 3x + 9x^{2} + 2x^{2} -
6x^{3}

    = 1 - 6x + 11x^{2} - 6x^{3}

    \Rightarrow y' = - 6 + 22x -
18x^{2}

  • Câu 5: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 6: Nhận biết

    Tính vi phân của hàm số f\left( x ight) = \frac{{{{\left( {\sqrt x  - 1} ight)}^2}}}{x} tại điểm x=4 ứng với \Delta x=0,002

    Ta có:

    \begin{matrix}  f\left( x ight) = 1 + \dfrac{2}{{\sqrt x }} + \dfrac{1}{x} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{1}{{x\sqrt x }} - \dfrac{1}{{{x^2}}} \hfill \\   \Rightarrow f'\left( 4 ight) = \dfrac{1}{{16}} \hfill \\   \Rightarrow df\left( 4 ight) = f'\left( 4 ight)\Delta x = \dfrac{1}{{16}}.0,002 = \dfrac{1}{{800}} \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 8: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 9: Nhận biết

    Hàm số nào sau đây có đạo hàm bằng \frac{1}{\sqrt{2x}}?

    Ta có:

    f'(x) = \left( \sqrt{2x}
ight)' = \frac{1}{\sqrt{2x}}

  • Câu 10: Thông hiểu

    Công thức đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x + 5}?

    Ta có:

    y = f(x) = \sqrt{2x + 5}

    \Rightarrow f'(x) =
\frac{2}{2\sqrt{2x + 5}} = \frac{1}{\sqrt{2x + 5}}

    \Rightarrow f''(x) = -\dfrac{\dfrac{2}{2\sqrt{2x + 5}}}{2x + 5} = - \dfrac{1}{(2x + 5)\sqrt{2x +5}}

  • Câu 11: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 12: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 13: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 14: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

  • Câu 15: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 16: Thông hiểu

    Cho hàm số f(x)=2x^{2}+16cosx-cos2x. Tính giá trị của f"(\pi)

    Ta có: 

    \begin{matrix}  f(x) = 2{x^2} + 16cosx - cos2x \hfill \\   \Rightarrow f'\left( x ight) = 4x - 16\sin x + 2\sin 2x \hfill \\   \Rightarrow f'\left( x ight) = 4 - 16\cos x + 4\cos 2x \hfill \\   \Rightarrow f'\left( \pi  ight) = 24 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 18: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Với x \in \lbrack 0; + \infty) ta có: \left\{ \begin{matrix}
x + 1 > 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > - 4 \\
\end{matrix} ight.

    f(x) = \ln\left( \frac{x + 1}{x + 4}
ight) = \ln(x + 1) - \ln(x + 4)

    \Rightarrow f'(x) = \frac{1}{x + 1}
- \frac{1}{x + 4}

    Khi đó:

    T = f'(0) + f'(3) + f'(6) +
... + f'(2019)

    P = \left( 1 - \frac{1}{4} ight) +
\left( \frac{1}{4} - \frac{1}{7} ight) + \left( \frac{1}{7} -
\frac{1}{10} ight) + ... + \left( \frac{1}{2020} - \frac{1}{2023}
ight)

    P = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 19: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 21: Thông hiểu

    Cho hàm số f(x)=\frac{1-3x+x^{2}}{x-1}. Giải bất phương trình f'(x) > 0

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{1 - 3x + {x^2}}}{{x - 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {1 - 3x + {x^2}} ight)'\left( {x - 1} ight) - \left( {1 - 3x + {x^2}} ight)\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{\left( { - 3 + 2x} ight)\left( {x - 1} ight) - \left( {1 - 3x + {x^2}} ight)}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{ - 3x + 3 + 2{x^2} - 2x - 1 + 3x - {x^2}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} ight)}^2}}} = \dfrac{{{{\left( {x - 1} ight)}^2} + 1}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Vậy f'(x) > 0 khi và chỉ khi x\in \mathbb{R}\setminus \left \{ 1 ight \}

  • Câu 22: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9

    => 3{x_{0}}^{2} - 6x_{0} = 9\Rightarrow \left\lbrack \begin{matrix}x_{0} = - 1 \\x_{0} = 3 \\\end{matrix} ight.

    Với x0 = −1, ta có: \left\{\begin{matrix}y_{0} = - 2 \\k = 9 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)

    với x0 = 3 thì \left\{\begin{matrix}y_{0} = 2 \\k = 9 \\\end{matrix} ight.

    Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)

  • Câu 23: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Đạo hàm của hàm số f(x) = x^{4} - 4mx^{2} - 3m - 1 (với m là tham số) là:

    Ta có:

    f(x) = x^{4} - 4mx^{2} - 3m -
1

    f'(x) = 4x^{3} - 8mx

  • Câu 25: Vận dụng cao

    Tìm tham số thực b để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}}&{{\text{ khi }}x \leqslant 2} \\   { - \dfrac{{{x^2}}}{2} + bx - 6}&{{\text{ khi }}x > 2} \end{array}} ight. có đạo hàm tại x = 2.

    Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \hfill \\   \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{{{x^2}}}{2} + bx - 6} ight) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} \hfill \\   \Leftrightarrow  - 2 + 2b - 6 = 4 \Leftrightarrow b = 6 \hfill \\ \end{matrix}

    Thử b = 6 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + bx - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + 6x - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{(x - 2)(10 - x)}}{{2(x - 2)}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{10 - x}}{2} = 4{\text{ }} \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 4}}{{x - 2}} \hfill \\   = 4\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\ \end{matrix}

    Nên hàm số có đạo hàm tại x = 2

  • Câu 26: Thông hiểu

    Tính đạo hàm của hàm số y=\frac{x(1-3x)}{x+1}

    Ta có:

    \begin{matrix}  y = \dfrac{{x(1 - 3x)}}{{x + 1}} = \dfrac{{x - 3{x^2}}}{{x + 1}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {x - 3{x^2}} ight)'\left( {x + 1} ight) - \left( {x - 3{x^2}} ight)\left( {x + 1} ight)'}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   = \dfrac{{\left( {1 - 6x} ight)\left( {x + 1} ight) - \left( {x - 3{x^2}} ight)}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   = \dfrac{{x + 1 - 6{x^2} - 6x - x + 3{x^2}}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   = \dfrac{{ - 3{x^2} - 6x + 1}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Cho hàm số y =
f(x) = \frac{x - 2}{x + 3}. Xác định công thức đạo hàm cấp hai của hàm số đã cho?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y = f(x) = \frac{x - 2}{x +
3}

    \Rightarrow f'(x) = \frac{5}{(x +
3)^{2}}

    \Rightarrow f''(x) = 5.\frac{-
2.(x + 3)}{(x + 3)^{4}} = \frac{- 10}{(x + 3)^{3}}

  • Câu 28: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \left( {\sin x} ight)} ight]\prime\hfill \\   \Rightarrow y' = \left( {\sin x} ight)'.\cos \left( {\sin x} ight) \hfill \\   \Rightarrow y' = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 30: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 31: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 32: Thông hiểu

    Cho hàm số y =
\log\left( x^{2} - 2x + m + 1 ight) với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho xác định trên tập số thực?

    Để hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi x^{2} - 2x - m +
1 > 0,\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' <
0

    \Leftrightarrow ( - 1)^{2} - 1(m + 1)
< 0 \Leftrightarrow m > 0

  • Câu 33: Thông hiểu

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 35: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 1}
ight) + ln2018

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2017)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} -
\frac{1}{2018}

    S = 1 - \frac{1}{2018} =
\frac{2017}{2018}

  • Câu 36: Thông hiểu

    Cho hàm số y =
\frac{x + 1}{x - 1} có đồ thị (C). Gọi tiếp tuyến của (C) tại điểm có tung độ bằng 3\Delta. Tìm hệ số góc của đường thẳng \Delta?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Với y = 3 \Rightarrow \frac{x + 1}{x - 1}
= 3 \Rightarrow x = 2

    Ta có: y' = - \frac{2}{(x -
1)^{2}}

    Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 2 là

    k = y'(2) = - \frac{2}{(2 - 1)^{2}}
= - 2

  • Câu 37: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 1}}}&{{\text{ khi }}x > 1} \\   {x - 1}&{{\text{ khi }}x \leqslant 1} \end{array}} ight.. Khẳng định nào sau đây đúng trong các khẳng định sau?

    Ta có:

    f\left( { - 2} ight) =  - 2 - 1 =  - 3

  • Câu 38: Thông hiểu

    Tính đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x - 1} tại điểm x_{0} = 1?

    Ta có:

    y = f(x) = \sqrt{2x - 1}

    \Rightarrow f'(x) = \frac{(2x -
1)'}{2\sqrt{2x - 1}} = \frac{1}{\sqrt{2x - 1}}

    \Rightarrow f''(x) =
\frac{\left( \sqrt{2x - 1} ight)'}{2x - 1} = \frac{- 1}{(2x -
1)\sqrt{2x - 1}} = \frac{- 1}{\sqrt{(2x - 1)^{3}}}

    \Rightarrow f''(1) = -
1

  • Câu 39: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 40: Thông hiểu

    Cho hàm số y =
f(x) = \left\{ \begin{matrix}
x^{2} + 1\ \ \ ;\ x \geq 1 \\
2x\ \ \ \ \ \ \ \ ;\ x < 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây là mệnh đề sai?

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{x - 1}} = 2 \hfill \\
  \mathop {\lim }\limits_{x \to 1 + } \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1 - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy f'\left( 1^{-} ight) =
f'\left( 1^{+} ight) = f'(1) = 2

    Suy ra hàm số có đạo hàm tại x_{0} =
1

    Vậy mệnh đề sai là: ∄f'(1)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo