Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Một viên đạn được bắn lên với tốc độ ban đầu từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Ta có vận tốc tại thời điểm t là:
Từ thời điểm , viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số
bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số
âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số song song với đường thẳng
là
. Sai||Đúng
a) Với số gia của đối số x tại ta có:
b) Ta có:
c) Ta có:
.
d) Ta có:
Tiếp tuyến song song với đường thẳng
Vì
Tính đạo hàm của hàm số
trên khoảng
?
Trên khoảng ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Tính tổng
![]()
Xét
Tính vi phân của hàm số ![]()
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Cho hàm số
. Biểu thức nào dưới đây đúng?
Ta có:
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số
với
. Tính
.
Ta có:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
. Tính đạo hàm của hàm số
tại
?
Đặt
Khi đó
Cho đường cong có phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 0:
Ta có:
=> Phương trình tiếp tuyền tại điểm có hoành độ bằng 0 là:
Dễ thấy phương trình tiếp tuyến vuông góc với đường thẳng (vì tích hai hệ số góc bằng -1).
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Ta có
. Khi đó đa thức M là:
Ta có:
Vậy
Tính đạo hàm của hàm số ![]()
Ta có:
Một chất điểm chuyển động có phương trình chuyển động là
; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm
thì vận tốc tức thời của chuyển động bằng bao nhiêu?
Ta có:
Vận tốc tức thời của chuyển động khi là:
Tính đạo hàm của hàm số
?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Tìm công thức đạo hàm của hàm số
?
Ta có:
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Khẳng định nào sau đây là sai?
Ta có: (đúng)
=> Hàm số nhận giá trị không âm
Ta lại có:
=> Hàm số liên tục tại x = 2
Ta có:
Vậy không tồn tại giới hạn khi x tiến tới 2
Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"
Tính đạo hàm cấp 5 của hàm số
là:
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Tính giá trị của
.
Ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
có đạo hàm tại
là
. Mệnh đề nào sau đây sai?
Mệnh đề sai là
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .