Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 2: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Ta có \left(
\frac{x^{2} + 4x - 1}{2x + 3} ight)' = \frac{M}{(2x +
3)^{2}}. Khi đó đa thức M là:

    Ta có:

    y = \frac{x^{2} + 4x - 1}{2x +
3}

    \Rightarrow y' = \frac{(2x + 3)(2x +
4) - 2\left( x^{2} + 4x - 1 ight)}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{4x^{3} + 14x
+ 12 - 2x^{2} - 8x + 2}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{2x^{2} + 6x +
14}{(2x + 3)^{2}}

    Vậy M=2x^{2} + 6x +14

  • Câu 4: Thông hiểu

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 5: Thông hiểu

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 7: Thông hiểu

    Tính đạo hàm của hàm số y = 2{\sin ^2}x-\cos 2x + x

    Ta có:

    \begin{matrix}  y = 2{\sin ^2}x - \cos 2x + x \hfill \\  y = 1 - \cos 2x - \cos 2x + x \hfill \\  y = 1 - 2\cos 2x + x \hfill \\   \Rightarrow y' = 4\sin 2x + 1 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Tính đạo hàm của hàm số y = \log_{2}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y' =\frac{1}{x\ln2}

  • Câu 9: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 10: Nhận biết

    Cho hàm số y =\log_{2}(3x). Khẳng định nào sau đây đúng?

    Ta có:

    y = \log_{2}(3x)

    \Rightarrow y' = \left( \log_{2}(3x)ight)' = \frac{(3x)'}{3x.\ln2} = \frac{1}{x\ln2}

  • Câu 11: Thông hiểu

    Phương trình chuyển động của một chất điểm là S(t) = 4t^{2} - 2t^{3} + 5 với t là khoảng thời gian tính từ lúc bắt đầu chuyển động và S là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là x(m/s) tại thời điểm t = y(s) . Xác định giá trị biểu thức H = x.y .

    H = 16/9

    (Kết quả được ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Phương trình chuyển động của một chất điểm là S(t) = 4t^{2} - 2t^{3} + 5 với t là khoảng thời gian tính từ lúc bắt đầu chuyển động và S là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là x(m/s) tại thời điểm t = y(s) . Xác định giá trị biểu thức H = x.y .

    H = 16/9

    (Kết quả được ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    S(t) = 4t^{2} - 2t^{3} + 5

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 6t^{2} + 8t;(a = - 6;b = 8)

    Vận tốc của chuyển động đạt giá trị lớn nhất khi t = - \frac{b}{2a} = \frac{2}{3}(s)

    \Rightarrow v_{\max} = v\left(
\frac{2}{3} ight) = \frac{8}{3}

    Vậy H = x.y = \frac{2}{3}.\frac{8}{3} =
\frac{16}{9}

  • Câu 12: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 13: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 14: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 15: Thông hiểu

    Cho hàm số f(x)=sin^{3}x+x^{2}. Tính giá trị của f"(-\frac{\pi}{2}).

    Ta có:

    \begin{matrix}  f(x) = si{n^3}x + {x^2} \hfill \\   \Rightarrow f'\left( x ight) = 3.{\sin ^2}x.\cos x + 2x \hfill \\   \Rightarrow f''\left( x ight) = 6\sin x.{\cos ^2}x - 3.{\sin ^3}x + 2 \hfill \\   \Rightarrow f''\left( { - \dfrac{\pi }{2}} ight) = 5 \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Đạo hàm của hàm số y = 5^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 5^{x} \Rightarrow y' =5^{x}.\ln5

  • Câu 17: Thông hiểu

    Cho hàm số y =
\frac{x^{2}}{1 - x}. Xác định biểu thức của y''?

    Ta có:

    y = \frac{x^{2}}{1 - x} = - x - 1 +
\frac{1}{1 - x}

    \Rightarrow y' = - 1 + \frac{1}{(1 -
x)^{2}}

    \Rightarrow y'' = \frac{- 2}{(1
- x)^{3}}

  • Câu 18: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 19: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 20: Thông hiểu

    Cho y = x^{2}(x +
4)^{3}. Tính đạo hàm của hàm số đã cho?

    Ta có:

    y = x^{2}(x + 4)^{3}

    = x^{2}\left( x^{3} + 12x^{2} ight) +
48x + 64

    = x^{5} + 12x^{4} + 48x^{3} +
64x^{2}

    Suy ra y' = 5x^{4} + 48x^{3} + 144x^{2}
+ 128x

  • Câu 21: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = \frac{t^{3}}{3} -
2t^{2} + 3t - 5; trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm t = 4(s) thì vận tốc tức thời của chuyển động bằng bao nhiêu?

    Ta có:

    v(t) = S'(t) = t^{2} - 4t +
3

    Vận tốc tức thời của chuyển động khi t =
4(s) là:

    v(4) = 4^{2} - 4.4 + 3 =
3(m/s)

  • Câu 22: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 23: Thông hiểu

    Cho đường cong có phương trình y=x^{3}-2x+1. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:

     Ta có:

    \begin{matrix}  y = {x^3} - 2x + 1 \hfill \\   \Rightarrow y' = 3{x^2} - 2 \hfill \\   \Rightarrow y'\left( 1 ight) = {3.1^2} - 2 = 1 \hfill \\ \end{matrix}

    Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1

  • Câu 24: Thông hiểu

    Cho hàm số y =
f(x) = \frac{x - 2}{x + 3}. Xác định công thức đạo hàm cấp hai của hàm số đã cho?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y = f(x) = \frac{x - 2}{x +
3}

    \Rightarrow f'(x) = \frac{5}{(x +
3)^{2}}

    \Rightarrow f''(x) = 5.\frac{-
2.(x + 3)}{(x + 3)^{4}} = \frac{- 10}{(x + 3)^{3}}

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) xác định tại x_{0} = 6 và thỏa mãn \lim_{x ightarrow 6}\frac{f(x) - f(6)}{x - 6} =
2. Giá trị của f'(6) bằng:

    Hàm số y = f(x) có tập xác định là Dx_{0} \in D.

    Nếu tồn tại giới hạn (hữu hạn) \lim_{x
ightarrow x_{0}}\frac{f(x) - f(x_{0})}{x - x_{0}}thì giới hạn gọi là đạo hàm của hàm số tại x_{0}.

    Vậy f'(6) = \lim_{x ightarrow
6}\frac{f(x) - f(6)}{x - 6} = 2.

  • Câu 26: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 27: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 28: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 29: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 30: Thông hiểu

    Hàm số y = -
x^{3} + 3x - 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung?

    Ta có: y' = - 3x^{2} + 3

    Giao điểm của (C) với trục tung có tọa độ là B(0; - 2)

    Tiếp tuyến của (C) tại điểm B(0; - 2) có phương trình là:

    y = y'(0)(x - 0) - 2 \Leftrightarrow
y = 3x - 2

  • Câu 31: Vận dụng cao

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{2 - \sqrt {4 - x} }}{x}{\text{  }};0 < x < 4} \\ 
  {m{\text{          }};x = 0} \\ 
  {\dfrac{n}{x}{\text{         }};x \geqslant 4} 
\end{array}} ight.. Biết hàm số liên tục trên nửa khoảng \lbrack 0; + \infty). Tích của mn bằng bao nhiêu?

    Tập xác định D = \lbrack 0; +
\infty)

    Hàm số liên tục trên \lbrack 0; +
\infty) nên ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{2 - \sqrt{4 - x}}{x}

    = \lim_{x ightarrow
0^{+}}\frac{x}{x\left( 2 + \sqrt{4 - x} ight)} =
\frac{1}{4}

    f(0) = m

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \dfrac{n}{x} = \dfrac{n}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2 - \sqrt {4 - x} }}{x} = \dfrac{1}{2} \hfill \\
  f\left( 4 ight) = \dfrac{n}{4} \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \\\dfrac{n}{4} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{1}{4} \ = 2 \\\end{matrix} ight.\  \Rightarrow m.n = \dfrac{1}{2}

  • Câu 33: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 34: Vận dụng cao

    Cho hai hàm số f(x) =\frac{1}{x\sqrt{2}};g(x) = \frac{x^{2}}{\sqrt{2}}. Gọi d_{1};d_{2} lần lượt là tiếp tuyến của mỗi đồ thị hàm số f(x);g(x) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?

    Xét phương trình hoành độ giao điểm:

    \frac{1}{x\sqrt{2}} =\frac{x^{2}}{\sqrt{2}} \Leftrightarrow x = 1

    Ta có: d_{1} có hệ số góc k_{1} = f'(1) = -\frac{1}{\sqrt{2}}

    d_{2} có hệ số góc k_{2} = g'(1) = \sqrt{2}

    => k_{1}.k_{2} = - 1 \Rightarrowd_{1}\bot d_{2}

  • Câu 35: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 36: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 37: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 38: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{x + 1}{x - 2} là:

    Ta có:

    y = \frac{x + 1}{x - 2} = 1 + \frac{3}{x
- 2}

    \Rightarrow y' = - \frac{3}{(x -
2)^{2}}

    \Rightarrow y'' = - \frac{3.( -
2)(x - 2)}{(x - 2)^{4}} = \frac{6}{(x - 2)^{3}}

  • Câu 39: Nhận biết

    Xác định công thức đạo hàm của hàm số y = \log_{\sqrt{3}}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y = \log_{\sqrt{3}}x

    \Rightarrow y' =
\frac{1}{x\ln\sqrt{3}}

  • Câu 40: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Với x \in \lbrack 0; + \infty) ta có: \left\{ \begin{matrix}
x + 1 > 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > - 4 \\
\end{matrix} ight.

    f(x) = \ln\left( \frac{x + 1}{x + 4}
ight) = \ln(x + 1) - \ln(x + 4)

    \Rightarrow f'(x) = \frac{1}{x + 1}
- \frac{1}{x + 4}

    Khi đó:

    T = f'(0) + f'(3) + f'(6) +
... + f'(2019)

    P = \left( 1 - \frac{1}{4} ight) +
\left( \frac{1}{4} - \frac{1}{7} ight) + \left( \frac{1}{7} -
\frac{1}{10} ight) + ... + \left( \frac{1}{2020} - \frac{1}{2023}
ight)

    P = 1 - \frac{1}{2023} =
\frac{2022}{2023}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo