Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Một chất điểm chuyển động thẳng có phương trình
( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Công thức đạo hàm cấp hai của hàm số
?
Ta có:
Tìm tham số thực b để hàm số
có đạo hàm tại x = 2.
Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là
Thử b = 6 ta có:
Nên hàm số có đạo hàm tại x = 2
Biết
. Xác định công thức của
?
Ta có:
…
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức
, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.
Ta có:
Ta có:
Gia tốc của chất điểm là:
Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Cho hàm số với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Ta có:
Để phương trình (*) luôn đúng với thì
TH1:
TH2:
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Tính đạo hàm của hàm số sau:
.
Ta có:
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Cho đồ thị hàm số
. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm
sao cho
?
Giả sử tiếp tuyến của (C) tại điểm cắt Ox tại A và cắt Oy tại B sao cho
.
Do tam giác OAB vuông tại O nên
Suy ra hệ số góc tiếp tuyến bằng
Hệ số góc tiếp tuyến là
Vậy có hai tiếp tuyến thỏa mãn điều kiện.
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Cho hàm số
. Giá trị của
bằng:
Ta có:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Tìm đạo hàm cấp hai của hàm số
?
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính ![]()
Ta có:
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là . Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Ta có:
Vận tốc tức thời của vật tại thời điểm là:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số xác định bởi công thức
có đồ thị hàm số
. Số các tiếp tuyến của đồ thị
song song với đường thẳng
là?
Ta có:
Gọi là tiếp điểm
Vì tiếp tuyến song song với đường thẳng nên
Với có phương trình tiếp tuyến tương ứng là
Với có phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Tìm số tiếp tuyến của đồ thị hàm số
song song với trục hoành.
Ta có:
Gọi là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số
khi đó ta có: k = 0
Suy ra
Với
Với
Với
Vậy có 2 tiếp tuyến song song với trục hoành.
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho đường cong
với
là tham số. Gọi
là tập các giá trị của tham số
sao cho đồ thị hàm số
có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập
là:
Ta có:
Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0
Gọi tiếp điểm là khi đó
Để có đúng 1 tiếp tuyến song song với trục hoàn thì
Vậy tổng các giá trị m là 5.
Cho hàm số
. Tính giá trị của biểu thức
?
Ta có:
Một chất điểm chuyển động biến đổi đều được biểu thị bởi phương trình
với
được tính bằng giây và
tính bằng mét. Tính gia tốc của chất điểm tại thời điểm
?
Vận tốc của chất điểm là:
Gia tốc của chất điểm là:
Tại thời điểm gia tốc của chất điểm là:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm vận tốc bằng 2 là