Tính đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Tính đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Cho hàm số
. Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Cho hàm số . Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Tập xác định:
Ta có:
Ta có:
Với
Ta có:
Kết hợp với điều kiện ta có:
Mà nên suy ra
Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Khi đó ta có:
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Cho hàm số
, có đao hàm là
. Tập hợp những giá trị của x để
là:
Ta có:
Vậy tập nghiệm của phương trình là
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
(với
) là:
Ta có:
Một chất điểm chuyển động biến đổi đều được biểu thị bởi phương trình
với
được tính bằng giây và
tính bằng mét. Tính gia tốc của chất điểm tại thời điểm
?
Vận tốc của chất điểm là:
Gia tốc của chất điểm là:
Tại thời điểm gia tốc của chất điểm là:
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số tại
?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Cho hàm số
. Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Tính đạo hàm của hàm số ![]()
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Khi vận tốc bị triệt tiêu nghĩa là
Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Công thức tính
là:
Ta có:
….
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
. Tính
?
Ta có:
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Một chuyển động được xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Cho hàm số
. Đạo hàm f'(x) có tập xác định là:
Ta có:
=> Tập xác định của hàm số f'(x) là:
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số
. Giải bất phương trình ![]()
Ta có:
Vậy khi và chỉ khi
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
có đạo hàm tại điểm x = 1 (với
). Giá trị của biểu thức
bằng bao nhiêu?
Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:
Hàm số phải liên tục tại điểm x = 1:
Và
Vậy giá trị của biểu thức
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Cho
. Giá trị của
bằng bao nhiêu?
Ta có:
Viết phương trình tiếp tuyến của đường cong
tại điểm -1.
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
?
TXĐ:
Ta có:
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là:
Cho hàm số
. Tính giá trị của ![]()
Ta có: