Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Một chuyển động được xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Cho hàm số
có đạo hàm tại điểm x = 1 (với
). Giá trị của biểu thức
bằng bao nhiêu?
Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:
Hàm số phải liên tục tại điểm x = 1:
Và
Vậy giá trị của biểu thức
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho
. Tính đạo hàm của hàm số đã cho?
Ta có:
Suy ra
Cho hàm số
có đạo hàm tại
. Tính giá trị của biểu thức ![]()
Vì hàm số có đại hàm tại nên ta có:
Vậy
Phương trình chuyển động của một chất điểm là
với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Phương trình chuyển động của một chất điểm là với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Suy ra vận tốc của chuyển động là
Vận tốc của chuyển động đạt giá trị lớn nhất khi
Vậy
Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Tính đạo hàm của hàm số ![]()
Ta có:
Một chất điểm chuyển động có phương trình chuyển động là
; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm
thì vận tốc tức thời của chuyển động bằng bao nhiêu?
Ta có:
Vận tốc tức thời của chuyển động khi là:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tính đạo hàm của hàm số ![]()
Ta có:
Một chất điểm chuyển động thẳng có phương trình
( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Khi đó ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Công thức đạo hàm của hàm số
là:
Ta có:
Tính vi phân của hàm số ![]()
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số ứng với
bằng
. Đúng||Sai
b) Cho hàm số . Giá trị
Đúng||Sai
c) Đạo hàm của hàm số trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Xác định đạo hàm của hàm số cho bởi công thức
?
Ta có:
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
VD
1
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Cho hàm số xác định bởi công thức
có đồ thị hàm số
. Số các tiếp tuyến của đồ thị
song song với đường thẳng
là?
Ta có:
Gọi là tiếp điểm
Vì tiếp tuyến song song với đường thẳng nên
Với có phương trình tiếp tuyến tương ứng là
Với có phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.
Đạo hàm của hàm số: ![]()
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Tính đạo hàm cấp hai của hàm số
tại điểm
?
Ta có:
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Cho hàm số
. Khi đó mệnh đề nào dưới đây đúng?
Ta có:
Khi đó khẳng định đúng là:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có: