Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Tính đạo hàm của hàm số
.
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Tính đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Cho hàm số
. Giải bất phương trình y" < 0
Ta có:
Xét bất phương trình ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Tính đạo hàm của hàm số ![]()
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Tìm khẳng định đúng dưới đây?
Ta có
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có:
Tìm đạo hàm cấp hai của hàm số sau: ![]()
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Một vật rơi tự do theo phương trình
, trong đó
là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.
Ta có:
Vậy vận tốc trung bình của chuyển động là 49,0049m/s.
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Khẳng định nào sau đây là sai?
Ta có: (đúng)
=> Hàm số nhận giá trị không âm
Ta lại có:
=> Hàm số liên tục tại x = 2
Ta có:
Vậy không tồn tại giới hạn khi x tiến tới 2
Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"
Cho hàm số
xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho hàm số xác định trên tập số thực thỏa mãn
. Tính giới hạn
?
Kết quả: 5/24
(Kết quả ghi dưới dạng phân số tối giản a/b)
Do mà
Ta có:
Mà và
Nên
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Xác định đạo hàm của hàm số
?
Ta có:
Cho đồ thị hàm số
. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm
sao cho
?
Giả sử tiếp tuyến của (C) tại điểm cắt Ox tại A và cắt Oy tại B sao cho
.
Do tam giác OAB vuông tại O nên
Suy ra hệ số góc tiếp tuyến bằng
Hệ số góc tiếp tuyến là
Vậy có hai tiếp tuyến thỏa mãn điều kiện.
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là . Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Ta có:
Vận tốc tức thời của vật tại thời điểm là:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Giải bất phương trình y'' < 0.
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng trong các khẳng định sau?
Ta có:
Tính tổng
![]()
Xét