Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = x^{3} - 3x^{2} + 2x đi qua điểm M( - 1;0)?

    Phương trình đường thẳng đi qua điểm M( -
1;0) có dạng y = a(x + 1) = ax + a\
\ \ (d)

    Đường thẳng (d) là tiếp tuyến khi hệ \left\{ \begin{matrix}
x^{3} - 3x^{2} + 2x = ax + a \\
3x^{2} - 6x + 2 = a \\
\end{matrix} ight. có nghiệm

    Dễ thấy hệ phương trình có ba nghiệm (a;x) phân biệt nên có ba tiếp tuyến thỏa mãn.

  • Câu 2: Nhận biết

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

  • Câu 3: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 4: Nhận biết

    Tính đạo hàm của hàm số y = \log_{2}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y' =\frac{1}{x\ln2}

  • Câu 5: Thông hiểu

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 6: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 7: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 8: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Đạo hàm bậc hai của hàm số y = x\sqrt{1 +
x^{2}} là:

    Ta có:

    y = x\sqrt{1 + x^{2}}

    \Rightarrow y' = \frac{2x^{2} +
1}{\sqrt{1 + x^{2}}}

    \Rightarrow y'' = \frac{2x^{3} +
3x}{\left( 1 + x^{2} ight)\sqrt{1 + x^{2}}}

  • Câu 10: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 11: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 12: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 13: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Do \lim_{x ightarrow 2}\frac{f(x) -
16}{x - 2} = 12\lim_{x
ightarrow 2}(x - 2) = 0 \Rightarrow \lim_{x ightarrow 2}\left\lbrack
f(x) - 16 ightbrack = 0

    \Rightarrow \lim_{x ightarrow 2}f(x) =
16

    Ta có:

    \lim_{x ightarrow
2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x - 8}

    = \lim_{x ightarrow 2}\frac{5f(x) - 16
- 4^{3}}{(x - 2)(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow
2}\frac{5\left\lbrack f(x) - 16 ightbrack}{(x - 2)(x +
4)\left\lbrack \left( \sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x)
- 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow 2}\left\{
\frac{f(x) - 16}{(x - 2)}.\frac{5}{(x + 4)\left\lbrack \left(
\sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2}
ightbrack} ight\} = T

    \lim_{x ightarrow 2}\frac{f(x) -
16}{(x - 2)} = 12\lim_{x
ightarrow 2}\frac{5}{(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack} =
\frac{5}{288}

    Nên T = 12.\frac{5}{288} =
\frac{5}{24}

  • Câu 15: Thông hiểu

    Cho hàm số y =\sin2x. Khi đó mệnh đề nào dưới đây đúng?

    Ta có:

    y = \sin2x

    \Rightarrow y' =2.\cos2x

    \Rightarrow y'' = -4.\sin2x

    Khi đó khẳng định đúng là: 4y +
y'' = 0

  • Câu 16: Thông hiểu

    Tìm công thức đạo hàm cấp hai của hàm số y = \frac{3x + 1}{x + 2}?

    Ta có: y = \frac{3x + 1}{x + 2} = 3 -
\frac{5}{x + 2}

    \Rightarrow y' = \frac{5}{(x +
2)^{2}} \Rightarrow y'' = \frac{- 10}{(x + 2)^{3}}

  • Câu 17: Thông hiểu

    Cho hàm số y =
f(x) = (3x - 7)^{5}. Xác định f''(2)?

    Ta có: y = f(x) = (3x -
7)^{5}

    \Rightarrow f'(x) = 15(3x -
7)^{4}

    \Rightarrow f''(x) = 180.(3x -
7)^{3}

    \Rightarrow f''(2) = 180.(3.2 -
7)^{3} = - 180

  • Câu 18: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 19: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 20: Thông hiểu

    Cho hàm số y =
\frac{x^{4}}{4} - x^{3} + 1. Tập nghiệm của bất phương trình y''' \leq 6 là:

    Ta có:

    y = \frac{x^{4}}{4} - x^{3} +
1

    \Rightarrow y' = x^{3} - 3x^{2}
\Rightarrow y'' = 3x^{2} - 6x

    \Rightarrow y^{(3)} = 6x -
6

    y^{(3)} \leq 6 \Leftrightarrow 6x - 6
\leq 6 \Leftrightarrow x \leq 2

    Vậy S = ( - \infty;2brack

  • Câu 21: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 22: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 23: Thông hiểu

    Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số y = f(x) = \frac{x + 1}{2x
- 3} tại điểm có hoành độ x_{0} = -
1?

    TXĐ: D\mathbb{= R}\backslash\left\{
\frac{3}{2} ight\}

    Ta có: f'(x) = \frac{- 5}{(2x -
3)^{2}}

    Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x_{0} = - 1 là:

    f'(-1) = \frac{- 5}{\left\lbrack 2.(- 1) - 3 ightbrack^{2}} = - \frac{1}{5}

  • Câu 24: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 25: Thông hiểu

    Ta có \left(
\frac{x^{2} + 4x - 1}{2x + 3} ight)' = \frac{M}{(2x +
3)^{2}}. Khi đó đa thức M là:

    Ta có:

    y = \frac{x^{2} + 4x - 1}{2x +
3}

    \Rightarrow y' = \frac{(2x + 3)(2x +
4) - 2\left( x^{2} + 4x - 1 ight)}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{4x^{3} + 14x
+ 12 - 2x^{2} - 8x + 2}{(2x + 3)^{2}}

    \Rightarrow y' = \frac{2x^{2} + 6x +
14}{(2x + 3)^{2}}

    Vậy M=2x^{2} + 6x +14

  • Câu 26: Nhận biết

    Đạo hàm của hàm số y=-\frac{x^{3}}{3}+\frac{x^{2}}{2}-x+5 bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y =  - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + 5 \hfill \\   \Rightarrow y' =  - \dfrac{{3{x^2}}}{3} + \dfrac{{2x}}{2} - 1 \hfill \\   \Rightarrow y' =  - {x^2} + x - 1 \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 29: Vận dụng

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Đáp án là:

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v = S' = - 3t^{2} + 6t + 9

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a = S'' = - 6t + 6

    Gia tốc triệt tiêu khi a = 0 \Rightarrow
S'' = 0 \Rightarrow t = 1

    Khi đó vận tốc của chuyển động là S'(1) = 12m/s

  • Câu 30: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 31: Thông hiểu

    Tính đạo hàm của hàm số y = \log_{2}(2x + 1)?

    Ta có: y = \log_{2}(2x + 1)

    \Rightarrow y' = \frac{(2x +1)'}{(2x + 1)\ln2} = \frac{2}{(2x + 1)\ln2}

  • Câu 32: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 33: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 34: Thông hiểu

    Cho hình tròn bán kính r có diện tích là S(r). Mệnh đề nào sau đây đúng?

    Ta có:

    S(r) = \pi.r^{2} \Rightarrow S'(r) =
2\pi.r

    Suy ra S'\left( r_{0}
ight) là chu vi của đường tròn bán kính r_{0}.

  • Câu 35: Thông hiểu

    Tính đạo hàm của hàm số y = \tan3x - \cot3x.

    Ta có:

    y =\tan3x - \cot3x

    \Rightarrow y' = \frac{3}{\cos^{2}3x}+ \frac{3}{\sin^{2}3x} = \frac{3}{\sin^{2}3x.\cos^{2}3x}

    = \dfrac{3}{\dfrac{1}{4}\sin^{2}6x} =\dfrac{12}{\sin^{2}6x}

  • Câu 36: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số f(x)=\frac{x^{2}+x}{x-2} tại điểm x = 1

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{{x^2} + x}}{{x - 2}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {{x^2} + x} ight)'\left( {x - 2} ight) - \left( {{x^2} + x} ight)\left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = \dfrac{{\left( {2x + 1} ight)\left( {x - 2} ight) - \left( {{x^2} + x} ight)}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = \dfrac{{2{x^2} - 4x + x - 2 - {x^2} - x}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = \dfrac{{{x^2} - 4x - 2}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   \Rightarrow f'\left( 1 ight) = \dfrac{{{1^2} - 4 - 2}}{{{{\left( {1 - 2} ight)}^2}}} =  - 5 \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 39: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 40: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)(x - 3)...(x - 2020)}. Tính đạo hàm của hàm số tại x = 0?.

    Ta có:

    Đặt g(x) = (x - 1)(x - 2)(x - 3)...(x -
2020)

    Khi đó: f(x) =
\frac{x}{g(x)}

    \Rightarrow f'(x) = \frac{x'g(x)
- g'(x).x}{g^{2}(x)} = \frac{1}{g(x)} -
x.\frac{g'(x)}{g^{2}(x)}

    \Rightarrow f'(0) = \frac{1}{g(0)} -
x.\frac{g'(0)}{g^{2}(0)} = \frac{1}{g(0)}

    = \frac{1}{( - 1)( - 2)...( - 2020)} =
\frac{1}{2020!}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo