Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho đường cong có phương trình y=x^{3}-2x+1. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:

     Ta có:

    \begin{matrix}  y = {x^3} - 2x + 1 \hfill \\   \Rightarrow y' = 3{x^2} - 2 \hfill \\   \Rightarrow y'\left( 1 ight) = {3.1^2} - 2 = 1 \hfill \\ \end{matrix}

    Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1

  • Câu 2: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 3: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Đáp án là:

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Vận tốc của chuyển động là v(t) =
S'(t) = 3t^{2} - 6t + 5

    Dễ thấy v(t) = 3t^{2} - 6t + 5 = 3(t -
1)^{2} + 2 \geq 2 với mọi t.

    Dấu “=” xảy ra khi và chỉ khi t =
1

    Khi đó quãng đường vật đi được là: S(1) =
1^{3} - 3.1^{2} + 5.1 + 7 = 10m

  • Câu 4: Thông hiểu

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Ta có: f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x} = \lim_{x ightarrow 0}\frac{3}{|x| +
1}

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{+}}\dfrac{3}{x + 1} = 3 \\\lim_{x ightarrow 0^{-}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{-}}\dfrac{3}{1 - x} = 3 \\\end{matrix} ight.

    \Rightarrow \lim_{x ightarrow
0^{+}}\frac{3}{|x| + 1} = \lim_{x ightarrow 0^{-}}\frac{3}{|x| + 1} =
3

    \Rightarrow \lim_{x ightarrow
0}\frac{3}{|x| + 1} = 3

    \Rightarrow f'(0) = \lim_{x
ightarrow 0^{+}}\frac{3}{|x| + 1} = 3

  • Câu 5: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 6: Thông hiểu

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 7: Vận dụng cao

    Tìm tham số thực b để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}}&{{\text{ khi }}x \leqslant 2} \\   { - \dfrac{{{x^2}}}{2} + bx - 6}&{{\text{ khi }}x > 2} \end{array}} ight. có đạo hàm tại x = 2.

    Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \hfill \\   \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{{{x^2}}}{2} + bx - 6} ight) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} \hfill \\   \Leftrightarrow  - 2 + 2b - 6 = 4 \Leftrightarrow b = 6 \hfill \\ \end{matrix}

    Thử b = 6 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + bx - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + 6x - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{(x - 2)(10 - x)}}{{2(x - 2)}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{10 - x}}{2} = 4{\text{ }} \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 4}}{{x - 2}} \hfill \\   = 4\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\ \end{matrix}

    Nên hàm số có đạo hàm tại x = 2

  • Câu 8: Nhận biết

    Tính đạo hàm của hàm số y = \sin \left( {\frac{\pi }{6} - 3x} ight)

    Ta có:

    \begin{matrix}  y = \sin \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{6} - 3x} ight).\left( {\dfrac{\pi }{6} - 3x} ight)\prime  \hfill \\   =  - 3\cos \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 10: Vận dụng

    Cho hàm số f(x)= \ln2021 + \ln\left( \frac{x}{x + 1} ight). Tính giá trị biểu thức:

    S = f'(1) + f'(2) + .... +
f'(2020)

    Ta có:

    f'(x) = \dfrac{\left( \dfrac{x}{x + 1}ight)'}{\dfrac{x}{x + 1}} = \dfrac{\dfrac{1}{(x + 1)^{2}}}{\dfrac{x}{x+ 1}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Suy ra = \frac{1}{x(x + 1)} = \frac{1}{x}
- \frac{1}{x + 1}

    f'(2) = \frac{1}{2} -
\frac{1}{3}

    f'(3) = \frac{1}{3} -
\frac{1}{4}

    f'(2020) = \frac{1}{2020} -
\frac{1}{2021}

    Vậy S = f'(1) + f'(2) + .... +
f'(2020) = 1 - \frac{1}{2021} = \frac{2020}{2021}

  • Câu 11: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 12: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = \frac{t^{3}}{3} -
2t^{2} + 3t - 5; trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm t = 4(s) thì vận tốc tức thời của chuyển động bằng bao nhiêu?

    Ta có:

    v(t) = S'(t) = t^{2} - 4t +
3

    Vận tốc tức thời của chuyển động khi t =
4(s) là:

    v(4) = 4^{2} - 4.4 + 3 =
3(m/s)

  • Câu 13: Thông hiểu

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = - x^{3} + 2x^{2} song song với đường thẳng x - y = 0?

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng x - y = 0 của đồ thị hàm số y = - x^{3} + 2x^{2} khi đó ta có:

    y'\left( x_{0} ight) = 1
\Leftrightarrow - 3{x_{0}}^{2} + 4x_{0} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 1 \\
x_{0} = \frac{1}{3} \\
\end{matrix} ight.

    Với x_{0} = 1 ta được M(1;1) có phương trình tiếp tuyến tương ứng là y = 1(x - 1) + 1 \Rightarrow y =
x

    Với x_{0} = \frac{1}{3} ta được M\left( \frac{1}{3};\frac{5}{27}
ight) có phương trình tiếp tuyến tương ứng là

    y = 1\left( x - \frac{1}{3} ight) +
\frac{5}{27} \Rightarrow y = x - \frac{4}{27}

    Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 14: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 15: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

  • Câu 16: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 17: Nhận biết

    Tính đạo hàm hàm số y = x^{2} - \frac{1}{x}?

    Ta có:

    y = x^{2} - \frac{1}{x} \Rightarrow
y' = \left( x^{2} - \frac{1}{x} ight)'

    \Rightarrow y' = \left( x^{2}
ight)' - \left( \frac{1}{x} ight)'

    \Rightarrow y' = 2x - \left( -
\frac{1}{x^{2}} ight) = 2x + \frac{1}{x^{2}}

  • Câu 18: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 19: Thông hiểu

    Đạo hàm của hàm số y=(5-3x)(\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-1) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {5 - 3x} ight)\left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight) \hfill \\   \Rightarrow y\prime  = \left( {5 - 3x} ight)\prime \left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight) \hfill \\   + \left( {5 - 3x} ight)\left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight)\prime  \hfill \\   =  - 3.\left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight) + \left( {5 - 3x} ight).\left( {{x^2} + x} ight) \hfill \\   =  - {x^3} - \dfrac{3}{2}{x^2} + 3 + 5{x^2} + 5x - 3{x^3} - 3{x^2} \hfill \\   =  - 4{x^3} + \dfrac{1}{2}{x^2} + 5x + 3 \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 21: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 22: Thông hiểu

    Tính vận tốc tức thời của chuyển động tại t = 3(s) của một chất điểm chuyển động được xác định bởi phương trình S(t) =
2t^{3} + 6t^{2} - t, trong đó t tính bằng giây và S được tính bằng mét.

    Ta có:

    v(t) = S'(t) = 6t^{2} + 12t -
1

    Vận tốc tức thời của chuyển động khi t =
3(s) là:

    v(3) = 6.3^{2} + 12.3 - 1 =
89(m/s)

  • Câu 23: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 24: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho hàm số f(x)=2x^{2}+16cosx-cos2x. Tính giá trị của f"(\pi)

    Ta có: 

    \begin{matrix}  f(x) = 2{x^2} + 16cosx - cos2x \hfill \\   \Rightarrow f'\left( x ight) = 4x - 16\sin x + 2\sin 2x \hfill \\   \Rightarrow f'\left( x ight) = 4 - 16\cos x + 4\cos 2x \hfill \\   \Rightarrow f'\left( \pi  ight) = 24 \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Cho hàm số y =
1000^{2 - x}. Khẳng định nào sau đây đúng?

    Ta có: y = 1000^{2 - x}

    \Rightarrow y' = (2 -
x)'.1000^{2 - x}.ln1000

    \Rightarrow y' = - 1000^{2 -x}.\ln1000

  • Câu 27: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = t^{3} - 3t^{2} + 5t +
2,(t > 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm t = 2s thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:

    a(t) = S''(t) = \left( 3t^{2} -
6t + 5 ight)' = 6t - 6

    Gia tốc tức thời tại thời điểm t = 2s là

    a(2) = 6.2 - 6 = 6\left( m/s^{2}
ight)

  • Câu 28: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 29: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 30: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 31: Thông hiểu

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 32: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

  • Câu 33: Thông hiểu

    Cho hàm số y =
\sqrt{2x - x^{2}}. Tính giá trị của biểu thức T = y^{3}.y''?

    Ta có: y = \sqrt{2x - x^{2}}

    \Rightarrow y' = \frac{1 -
x}{\sqrt{2x - x^{2}}} \Rightarrow y'' = \frac{- 1}{\left(
\sqrt{2x - x^{2}} ight)^{3}}

    \Rightarrow T = y^{3}.y'' =
\left( \sqrt{2x - x^{2}} ight)^{3}.\frac{- 1}{\left( \sqrt{2x - x^{2}}
ight)^{3}} = - 1

  • Câu 34: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 35: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 36: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 2021) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack (x
- 1)(x - 2)(x - 3)...(x - 2021) ightbrack

    = ( - 1)( - 2).....( - 2021) = -
2021!

    Vậy f'(0) = - 2021!

  • Câu 38: Thông hiểu

    Cho hàm số y=\frac{1}{3}{x^3} - (2m + 1){x^2} - mx - 4, có đạo hàm y'. Tìm tất cả các giá trị của m để  y' \geqslant 0 với \forall x \in \mathbb{R}

    Ta có:

    \begin{matrix}  y = \dfrac{1}{3}{x^3} - (2m + 1){x^2} - mx - 4 \hfill \\  y' = {x^2} - 2(2m + 1)x - m \hfill \\ \end{matrix}

    Để bất phương trình y' \geqslant 0 với \forall x \in \mathbb{R} ta có:

    \begin{matrix}  \Delta ' \leqslant 0 \hfill \\   \Leftrightarrow {\left( {2m + 1} ight)^2} + m \leqslant 0 \hfill \\   \Leftrightarrow 4{m^2} + 5m + 1 \leqslant 0 \hfill \\   \Leftrightarrow m \in \left[ { - 1; - \dfrac{1}{4}} ight] \hfill \\ \end{matrix}

  • Câu 39: Vận dụng cao

    Cho hàm số y =
\frac{x + 2}{1 - x} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số m để có đúng một tiếp tuyến của (C) đi qua điểm P(m,1)S . Tính tổng bình phương các phần tử của tập hợp S ?

    Kết quả: 13/4

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{x + 2}{1 - x} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số m để có đúng một tiếp tuyến của (C) đi qua điểm P(m,1)S . Tính tổng bình phương các phần tử của tập hợp S ?

    Kết quả: 13/4

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có: f'(x) = \frac{1 - x + x -
2}{(1 - x)^{2}} = \frac{- 1}{(1 - x)^{2}}

    Phương trình tiếp tuyến d với đồ thị hàm số tại M\left( x_{0};y_{0} ight) là:

    y - \frac{x_{0} - 2}{1 - x_{0}} =
\frac{- 1}{\left( 1 - x_{0} ight)^{2}}\left( x - x_{0}
ight)

    Tiếp tuyến đi qua P(m,1) nên 1 - \frac{x_{0} - 2}{1 - x_{0}} = \frac{-
1}{\left( 1 - x_{0} ight)^{2}}\left( m - x_{0} ight)

    \Leftrightarrow 2{x_{0}}^{2} - 6x_{0} +
m + 3 = 0;\left( x_{0} eq 1 ight)(*)

    Để có 1 tiếp tuyến đi qua P(m,1) suy ra phương trình (*) có 1 nghiệm x_{0}
eq 1

    \Leftrightarrow \left[ \begin{gathered}
  \Delta  = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  2 - 6 + m + 3 = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{3}{2} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{3}{2} \hfill \\
  m = 1 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{3}{2} \hfill \\
  m = 1 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow S = \left\{ 1;\frac{3}{2}
ight\} \Rightarrow 1^{2} + \left( \frac{3}{2} ight)^{2} =
\frac{13}{4}

  • Câu 40: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{2x + 1}{x^{2} + x - 2} có dạng y'' = \frac{a}{(x - 1)^{3}} +
\frac{b}{(x + 2)^{3}}. Tính giá trị biểu thức T = a + b.

    Ta có:

    y = \frac{2x + 1}{x^{2} + x - 2} =
\frac{1}{x - 1} + \frac{1}{x + 2}

    \Rightarrow y' = - \frac{1}{(x -
1)^{2}} - \frac{1}{(x + 2)^{2}}

    \Rightarrow y'' = \frac{2}{(x -
1)^{3}} + \frac{2}{(x + 2)^{3}}

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow T = a + b = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo