Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình
trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?
Ta có:
Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Tính tổng
![]()
Xét
Hệ số góc của tiếp tuyến của đồ thị hàm số
tại giao điểm của đồ thị hàm số với trục tung là:
Ta có:
Giao điểm của đồ thị hàm số với trục tung là
Vậy hệ số góc cần tìm là
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Cho hàm số
có đồ thị
. Tìm hệ số góc lớn nhất của tiếp tuyến với đồ thị
?
Kết quả: 12
Cho hàm số có đồ thị
. Tìm hệ số góc lớn nhất của tiếp tuyến với đồ thị
?
Kết quả: 12
Tập xác định
Ta có hệ số góc của tiếp tuyến với đồ thị hàm số là:
Vậy hệ số góc lớn nhất của tiếp tuyến với đồ thị hàm số là 12.
Xác định đạo hàm cấp hai của hàm số
.
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
có đạo hàm tại điểm
. Tìm giá trị biểu thức
?
Do hàm số có đạo hàm tại điểm
nên suy ra
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Cho hàm số
. Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức
-2 || - 2
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Ta có:
Khi đó:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Tính đạo hàm cấp 3 của hàm số ![]()
Ta có:
Cho hàm số
. Công thức tính
là:
Ta có:
….
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Hãy tính ![]()
Ta có:
Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:
Khi đó: . Xét
Hàm số có đạo hàm tại thì
Vậy với thì hàm số có đạo hàm tại
khi đó
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Tính đạo hàm của hàm số sau:
.
Ta có:
Cho hàm số
xác định bởi công thức
. Biết hàm số liên tục trên nửa khoảng
. Tích của
và
bằng bao nhiêu?
Tập xác định
Hàm số liên tục trên nên ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
có đồ thị hàm số
. Tìm các giá trị của tham số m để tiếp tuyến của
tại điểm có hoành độ bằng
song song với đường thẳng
?
Giá trị của tham số
là: -2|| - 2
Cho hàm số có đồ thị hàm số
. Tìm các giá trị của tham số m để tiếp tuyến của
tại điểm có hoành độ bằng
song song với đường thẳng
?
Giá trị của tham số là: -2|| - 2
Tập xác định
Ta có:
Gọi ; k là hệ số góc tiếp tuyến của
tại M và
Do tiếp tuyến M song song với nên
Cho hàm số
. Tính
?
Ta có:
Vậy
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Tìm đạo hàm của hàm số
?
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Khi đó:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Tiếp tuyến của đồ thị hàm số
vuông góc với đường thẳng
tại điểm có hoành độ là:
Ta có:
Tiếp tuyến vuông góc với đường thẳng nên hệ số góc của tiếp tuyến là
Hoành độ tiếp điểm là nghiệm của phương trình
Vậy hoành độ tiếp điểm cần tìm là .
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Một viên đạn được bắn lên với tốc độ ban đầu
từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Một viên đạn được bắn lên với tốc độ ban đầu từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là
, trong đó
là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?
Đáp án: 1960 (m)
Ta có vận tốc tại thời điểm t là:
Từ thời điểm , viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn phương trình
?
Ta có:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là