Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 2: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 3: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 4: Thông hiểu

    Cho đồ thị hàm số (C):y = x^{4} - 3x^{3} + 2x^{2} - 1. Hỏi có bao nhiêu tiếp tuyến của (C) có hệ số góc k = 7?

    Ta có:

    y' = 4x^{3} - 9x^{2} +
4x

    Hoành độ tiếp điểm là nghiệm của phương trình 4x^{3} - 9x^{2} + 4x = 7

    Phương trình có 1 nghiệm nên có 1 tiếp tuyến có hệ số góc bằng 7

  • Câu 5: Thông hiểu

    Tính đạo hàm cấp 5 của hàm số y = \frac{x^{2} + x + 1}{x + 1} là:

    Ta có:

    y = \frac{x^{2} + x + 1}{x + 1} = x +
\frac{1}{x + 1}

    \Rightarrow y' = 1 - \frac{1}{(x +
1)^{2}}

    \Rightarrow y'' = \frac{2}{(x +
1)^{3}} \Rightarrow y^{(3)} = \frac{- 6}{(x + 1)^{4}}

    \Rightarrow y^{(4)} = \frac{24}{(x +
1)^{5}} \Rightarrow y^{(5)} = - \frac{120}{(x + 1)^{6}}

  • Câu 6: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = \frac{t^{3}}{3} -
2t^{2} + 3t - 5; trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm t = 4(s) thì vận tốc tức thời của chuyển động bằng bao nhiêu?

    Ta có:

    v(t) = S'(t) = t^{2} - 4t +
3

    Vận tốc tức thời của chuyển động khi t =
4(s) là:

    v(4) = 4^{2} - 4.4 + 3 =
3(m/s)

  • Câu 8: Vận dụng

    Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình s(t) = t^{3} - 3t^{2} - 5 trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?

    Ta có: a(t) = \left\lbrack v(t)ightbrack' = \left\lbrack s(t) ightbrack'' = 6t -6

    Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là a(10) = 54m/s^{2}

  • Câu 9: Thông hiểu

    Tính số gia của hàm số y =\frac{x^{2}}{2} tại điểm x0 = -1 ứng với số gia \Delta x

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f( - 1 + \Deltax) - f( - 1)

    \Rightarrow \Delta y = \frac{( - 1 +\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y = \frac{1 - 2\Deltax + (\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y =\frac{1}{2}(\Delta x)^{2} - \Delta x

  • Câu 10: Nhận biết

    Đạo hàm của hàm số: y=4\sqrt{x}-\frac{5}{x}

    Ta có:

    \begin{matrix}  y = 4\sqrt x  - \dfrac{5}{x} \hfill \\   \Rightarrow y' = \dfrac{4}{{2\sqrt x }} + \dfrac{5}{{{x^2}}} = \dfrac{2}{{\sqrt x }} + \dfrac{5}{{{x^2}}} \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 12: Thông hiểu

    Cho hàm số y =
\tan x. Tính y''\left(
\frac{\pi}{4} ight) thu được kết quả là:

    Ta có:

    y = \tan x

    \Rightarrow y' = \frac{1}{\cos^{2}x}= 1 + \tan^{2}x

    \Rightarrow y' = \left( 1 + \tan^{2}xight)' = 2\tan x.\left( \tan x ight)'

    = 2\tan x.\left( 1 + \tan^{2}xight)

    \Rightarrow y''\left(\frac{\pi}{4} ight) = 2\tan\left( \frac{\pi}{4} ight).\left\lbrack 1+ \tan^{2}\left( \dfrac{\pi}{4} ight) ightbrack = 2.1.(1 + 1) =4

  • Câu 13: Thông hiểu

    Cho hàm số xác định bởi công thức f(x) = \sqrt{- 5x^{2} + 14x - 9}. Tìm tập hợp các giá trị của x để f'(x) < 0?

    Tập xác định D = \left\lbrack
1;\frac{9}{5} ightbrack

    Ta có:

    f(x) = \sqrt{- 5x^{2} + 14x -
9}

    \Rightarrow f'(x) = \frac{- 5x +
7}{\sqrt{- 5x^{2} + 14x - 9}};\forall x \in \left( 1;\frac{9}{5}
ight)

    f'(x) < 0 \Leftrightarrow \frac{-
5x + 7}{\sqrt{- 5x^{2} + 14x - 9}} < 0

    \Leftrightarrow \left\{ \begin{gathered}
   - 5x + 7 < 0 \hfill \\
  1 < x < \frac{9}{4} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{7}{5} < x < \frac{9}{5}

  • Câu 14: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 15: Vận dụng cao

    Tìm tham số thực b để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}}&{{\text{ khi }}x \leqslant 2} \\   { - \dfrac{{{x^2}}}{2} + bx - 6}&{{\text{ khi }}x > 2} \end{array}} ight. có đạo hàm tại x = 2.

    Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) \hfill \\   \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \dfrac{{{x^2}}}{2} + bx - 6} ight) = \mathop {\lim }\limits_{x \to {2^ - }} {x^2} \hfill \\   \Leftrightarrow  - 2 + 2b - 6 = 4 \Leftrightarrow b = 6 \hfill \\ \end{matrix}

    Thử b = 6 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + bx - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{ - \dfrac{{{x^2}}}{2} + 6x - 10}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{(x - 2)(10 - x)}}{{2(x - 2)}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{10 - x}}{2} = 4{\text{ }} \hfill \\  \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 4}}{{x - 2}} \hfill \\   = 4\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{f(x) - f(2)}}{{x - 2}} \hfill \\ \end{matrix}

    Nên hàm số có đạo hàm tại x = 2

  • Câu 16: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Xác định đạo hàm của hàm số y = \left( x^{3} - 5 ight)\sqrt{x}.

    Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left\lbrack \left(
x^{3} - 5 ight)\sqrt{x} ightbrack'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight)\frac{1}{2\sqrt{x}}

    = \frac{7}{2}x^{2}\sqrt{x} -
\frac{5}{2\sqrt{x}} = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

  • Câu 18: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ khi\ x eq 1 \\- \dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x_{0} = 1?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -
4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -
1}{\sqrt{3x + 1} + 2x} = - \frac{5}{4} eq f(1)

    Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1

  • Câu 19: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 20: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 21: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 22: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{x + 1}{x - 1}. Gọi A;B là các điểm thuộc đồ thị (C) mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm A;B thỏa mãn điều kiện trên?

    Ta có: y' = \frac{- 2}{(x -
1)^{2}}

    Giả sử A\left( x_{1};y_{1}
ight);B\left( x_{2};y_{2} ight) với x_{1} eq x_{2}

    Tiếp tuyến tại A và B song song với nhau nên y'\left( x_{1} ight) = y'\left( x_{2}
ight)

    \Leftrightarrow \frac{1}{\left( x_{1} -
1 ight)^{2}} = \frac{1}{\left( x_{2} - 1 ight)^{2}}

    \Leftrightarrow \left( x_{1} - 1
ight)^{2} = \left( x_{2} - 1 ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} - 1 = x_{2} - 1 \\
x_{1} - 1 = - x_{2} + 1 \\
\end{matrix} ight.\  \Leftrightarrow x_{1} + x_{2} = 2

    Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn x_{1} + x_{2} = 2 thì các tiếp tuyến tại A và B song song với nhau.

  • Câu 23: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng y = -\frac{1}{45}x.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y= - \frac{1}{45}x nên ta có:

    => k\left( - \frac{1}{45} ight) = -1 \Leftrightarrow k = 45

    \Leftrightarrow 3{x_{0}}^{2} - 6x_{0} =45 \Leftrightarrow \left\lbrack \begin{matrix}x_{0} = 5 \\x_{0} = - 3 \\\end{matrix} ight.

    Với x0 = 5, ta có: \left\{\begin{matrix}y_{0} = 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x - 173

    với x0 = -2 thì \left\{\begin{matrix}y_{0} = - 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x + 83

    Vậy phương trình tiếp tuyến của đồ thị hàm số là: \left\lbrack \begin{matrix}y = 45x - 173 \\y = 45x + 83 \\\end{matrix} ight.

  • Câu 24: Thông hiểu

    Cho đường cong có phương trình y=x^{3}-2x+1. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:

     Ta có:

    \begin{matrix}  y = {x^3} - 2x + 1 \hfill \\   \Rightarrow y' = 3{x^2} - 2 \hfill \\   \Rightarrow y'\left( 1 ight) = {3.1^2} - 2 = 1 \hfill \\ \end{matrix}

    Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1

  • Câu 25: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = 4t^{3} - 10t + 9,(t
> 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc bằng 2m/s thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 12t^{2} -
10

    v(t) = 2 \Leftrightarrow 12t^{2} - 10 =
2

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1(ktm) \\
t = 1(tm) \\
\end{matrix} ight.

    a(t) = S''(t) = v'(t) =
\left( 12t^{2} - 10 ight)' = 24t

    Gia tốc tức thời tại thời điểm vận tốc bằng 2 là

    a(1) = 24.1 = 24\left( m/s^{2}
ight)

  • Câu 26: Thông hiểu

    Cho hàm số y=sin2x-cos2x. Giải phương trình y" = 0

     Ta có:

    \begin{matrix}  y = \sin 2x - \cos 2x \hfill \\   \Rightarrow y' = 2\cos 2x + 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4\sin 2x + 4\cos 2x \hfill \\  y'' = 0 \hfill \\   \Leftrightarrow  - 4\sin 2x + 4\cos 2x = 0 \hfill \\   \Leftrightarrow \sin 2x = \cos 2x \hfill \\   \Leftrightarrow \tan 2x = 1 \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{4} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{8} + k\dfrac{\pi }{2},\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 28: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 29: Thông hiểu

    Cho hàm số y =
\frac{x - m}{x + 1} có đồ thị hàm số \left( C_{m} ight) . Tìm các giá trị của tham số m để tiếp tuyến của \left( C_{m}
ight) tại điểm có hoành độ bằng 0 song song với đường thẳng \Delta:3x - y + 1 = 0 ?

    Giá trị của tham số m là: -2|| - 2

    Đáp án là:

    Cho hàm số y =
\frac{x - m}{x + 1} có đồ thị hàm số \left( C_{m} ight) . Tìm các giá trị của tham số m để tiếp tuyến của \left( C_{m}
ight) tại điểm có hoành độ bằng 0 song song với đường thẳng \Delta:3x - y + 1 = 0 ?

    Giá trị của tham số m là: -2|| - 2

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{m + 1}{(x +
1)^{2}}

    Gọi M(0; - m) \in (C); k là hệ số góc tiếp tuyến của \left( C_{m}
ight) tại M và \Delta:3x - y + 1
= 0

    Do tiếp tuyến M song song với \Delta:3x -
y + 1 = 0 nên k = 3

    \Leftrightarrow y'(0) = 3
\Leftrightarrow 1 + m = 3 \Rightarrow m = - 2

  • Câu 30: Nhận biết

    Tính vi phân của hàm số y = {x^3} + 9{x^2} + 12x - 5

     Ta có:

    \begin{matrix}  y' = {x^2} - 18x + 12 \hfill \\   \Rightarrow dy = \left( {3{x^2} - 18x + 12} ight)dx \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 32: Vận dụng cao

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 34: Nhận biết

    Đạo hàm của hàm số y = 6^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 6^{x} \Rightarrow y' =6^{x}.\ln6

  • Câu 35: Nhận biết

    Đạo hàm của hàm số y = 3^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 3^{x} \Rightarrow y' =3^{x}\ln3

  • Câu 36: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 37: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 38: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 39: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 40: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo