Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tìm công thức đạo hàm của hàm số
?
Ta có:
Cho hàm số y = sin2x có đạo hàm là y’ và y’’. Mệnh đề nào sau đây đúng?
Ta có:
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Xác định đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
đi qua điểm
?
Phương trình đường thẳng đi qua điểm có dạng
Đường thẳng (d) là tiếp tuyến khi hệ có nghiệm
Dễ thấy hệ phương trình có ba nghiệm phân biệt nên có ba tiếp tuyến thỏa mãn.
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Đạo hàm cấp hai của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho xác định trên tập số thực?
Để hàm số có tập xác định khi và chỉ khi
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại x = 1.
Ta có:
Đạo hàm của hàm số
là
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho đường cong
với
là tham số. Gọi
là tập các giá trị của tham số
sao cho đồ thị hàm số
có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập
là:
Ta có:
Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0
Gọi tiếp điểm là khi đó
Để có đúng 1 tiếp tuyến song song với trục hoàn thì
Vậy tổng các giá trị m là 5.
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Tính vận tốc trung bình của chất điểm trong khoảng thời gian từ
tới
?
Ta có:
Trong khoảng thời gian từ tới
thì chất điểm di chuyển được quãng đường
Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm t = 0 là:
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Công thức tính
là:
Ta có:
….
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
, có đạo hàm
. Để
thì x nhận các giá trị thuộc tập nào sau đây?
Ta có:
Vậy x nhận các giá trị thuộc tập
Cho hàm số
có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho
. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.
=> Hệ phương trình có hai nghiệm phân biệt
Từ hệ
Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.
Khi đó
Theo bài ra ta có:
Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.