Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Cho hàm số
. Giải phương trình y" = 0
Ta có:
Đạo hàm của hàm số: ![]()
Ta có:
Cho
. Tính ![]()
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Tính đạo hàm của hàm số
tại
?
Đặt
Khi đó
Tính đạo hàm của hàm số
.
Ta có:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
xác định trên
bởi
. Tính ![]()
Ta có:
=>
Vậy hàm số không liên tục tại
Vậy hàm số không tồn tại đạo hàm tại
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho xác định trên tập số thực?
Để hàm số có tập xác định khi và chỉ khi
Cho hàm số
xác định bởi công thức
. Chọn hệ thức đúng?
Ta có:
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Cho hàm số
. Tính
?
Ta có:
Vậy
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
. Tính
thu được kết quả là:
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng 0 thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm vận tốc bằng 0 là
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Một vật chuyển động theo quy luật
với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Điều kiện
Ta có:
Đường thẳng d đi qua Q có hệ số góc k là
Đường thẳng d tiếp xúc với (C) có nghiệm
Thế (**) vào (*) ta có:
Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất
Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1
Vậy
Gọi
là đồ thị hàm số
. Có bao nhiêu phương trình tiếp tuyến của
vuông góc với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Vì tiếp tuyến của vuông góc với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn điều kiện đề bài.
Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình
trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?
Ta có:
Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho hàm số
có đạo hàm tại điểm
. Tìm giá trị biểu thức
?
Do hàm số có đạo hàm tại điểm
nên suy ra
Ta có:
Tính tổng
![]()
Xét
Cho hàm số y
, có đạo hàm là
. Tìm tất cả các giá trị của
để phương trình
có hai nghiệm phân biệt là
thỏa mãn
.
Ta có:
Để phương trình có hai nghiệm phân biệt thì
Áp dụng hệ thức Vi - et ta có
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Cho hàm số
với
. Tính
.
Ta có:
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số
. Tính
?
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.