Cho hàm số
có đạo hàm tại điểm x = 1 (với
). Giá trị của biểu thức
bằng bao nhiêu?
Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:
Hàm số phải liên tục tại điểm x = 1:
Và
Vậy giá trị của biểu thức
Cho hàm số
có đạo hàm tại điểm x = 1 (với
). Giá trị của biểu thức
bằng bao nhiêu?
Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:
Hàm số phải liên tục tại điểm x = 1:
Và
Vậy giá trị của biểu thức
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm
?
TXĐ:
Ta có:
Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
. Khi đó ![]()
Với xét:
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Cho hàm số
với
. Tính
.
Ta có:
Công thức nào sau đây biểu diễn đúng đạo hàm của hàm số
?
Ta có:
Công thức đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số y
, có đạo hàm là
. Tìm tất cả các giá trị của
để phương trình
có hai nghiệm phân biệt là
thỏa mãn
.
Ta có:
Để phương trình có hai nghiệm phân biệt thì
Áp dụng hệ thức Vi - et ta có
Cho hàm số
. Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Tính đạo hàm của hàm số
tại ![]()
Tập xác định
Ta có:
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Biết
. Tính tỉ số
?
Với
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Đạo hàm của hàm số
(với m là tham số) là:
Ta có:
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?
Kết quả: 20 (m/s2)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Khi vận tốc bị triệt tiêu nghĩa là
Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình
, trong đó
tính bằng mét và
tính bằng giây. Trong thời gian
kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?
Kết quả: 28(m/s)
Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình , trong đó
tính bằng mét và
tính bằng giây. Trong thời gian
kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?
Kết quả: 28(m/s)
Ta có:
Suy ra vận tốc của chuyển động là
Dễ thấy hàm số là hàm số bậc hai có đồ thị dạng Parabol với hệ số
Ta có hoành độ đỉnh của Parabol là
Do đó
Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Viết phương trình tiếp điểm của đồ thị hàm số
. Biết rằng tiếp tuyến đó song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Do song song với đường thẳng
nên
Phương trình tiếp tuyến tương ứng là
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
với
xác định và liên tục trên
. Tính
.
Do hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
Xác định đạo hàm của hàm số
.
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
. Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức
-2 || - 2
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Ta có:
Khi đó:
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho
. Tính đạo hàm của hàm số đã cho?
Ta có:
Suy ra