Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 2: Vận dụng

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Tập xác định: D = ( - \infty;0brack
\cup \lbrack 2; + \infty)

    Ta có: f'(x) = \frac{x -
1}{\sqrt{x^{2} - 2x}}

    Ta có:

    f'(x) \geq f(x)

    \Leftrightarrow \frac{x - 1}{\sqrt{x^{2}
- 2x}} \geq \sqrt{x^{2} - 2x}

    \Leftrightarrow \frac{- x^{2} + 3x -
1}{\sqrt{x^{2} - 2x}} \geq 0

    Với x \in ( - \infty;0) \cup (2; +
\infty)

    Ta có:\frac{- x^{2} + 3x - 1}{\sqrt{x^{2}
- 2x}} \geq 0

    \Leftrightarrow - x^{2} + 3x - 1 \geq 0
\Leftrightarrow x \in \left\lbrack \frac{3 - \sqrt{5}}{2};\frac{3 +
\sqrt{5}}{2} ightbrack

    Kết hợp với điều kiện x \in ( - \infty;0)
\cup (2; + \infty) ta có: x \in
\left( 2;\frac{3 + \sqrt{5}}{2} ightbrack

    x\mathbb{\in Z} nên suy ra x \in \varnothing

    Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.

  • Câu 3: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 4: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số y = x^{4} - 4x^{2} + 5 tại điểm có hoành độ x_{0} = - 1?

    Ta có:

    y = x^{4} - 4x^{2} + 5

    \Rightarrow y' = 4x^{3} - 8x
\Rightarrow y'( - 1) = 4

    Điểm thuộc đồ thị đã cho có hoành độ x_{0} = - 1M( - 1;2)

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại M( - 1;2) là:

    y = y'( - 1)(x + 1) + 2

    \Rightarrow y = 4(x + 1) + 2 \Rightarrow
y = 4x + 6

  • Câu 5: Thông hiểu

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c. Tính giá trị biểu thức M = a + b + c?

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow M = 8

  • Câu 6: Thông hiểu

    Cho hàm số y =
\frac{x^{4}}{4} - x^{3} + 1. Tập nghiệm của bất phương trình y''' \leq 6 là:

    Ta có:

    y = \frac{x^{4}}{4} - x^{3} +
1

    \Rightarrow y' = x^{3} - 3x^{2}
\Rightarrow y'' = 3x^{2} - 6x

    \Rightarrow y^{(3)} = 6x -
6

    y^{(3)} \leq 6 \Leftrightarrow 6x - 6
\leq 6 \Leftrightarrow x \leq 2

    Vậy S = ( - \infty;2brack

  • Câu 7: Thông hiểu

    Cho hàm số f(x)=2x^{2}+16cosx-cos2x. Tính giá trị của f"(\pi)

    Ta có: 

    \begin{matrix}  f(x) = 2{x^2} + 16cosx - cos2x \hfill \\   \Rightarrow f'\left( x ight) = 4x - 16\sin x + 2\sin 2x \hfill \\   \Rightarrow f'\left( x ight) = 4 - 16\cos x + 4\cos 2x \hfill \\   \Rightarrow f'\left( \pi  ight) = 24 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 9: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 10: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 11: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 12: Thông hiểu

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}
    Đáp án là:

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}

    Ta có:

    f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow \left\{ \begin{matrix}f''\left( - \dfrac{\pi}{2} ight) = - 9.\sin\left( -\dfrac{3\pi}{2} ight) = 9 \\f''(0) = - 9.
\sin(3.0) = 0 \\f''\left( \dfrac{\pi}{18} ight) = - 9.\sin\left( \dfrac{3\pi}{18}ight) = - \dfrac{9}{2} \\\end{matrix} ight.

  • Câu 13: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 14: Vận dụng cao

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 15: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 16: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 17: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 18: Vận dụng

    Cho hàm số y =
\sqrt{3}\cos x + \sin x - x^{2} + 2021x + 2022. Có bao nhiêu nghiệm thuộc \lbrack 0;4\pibrack thỏa mãn phương trình y'' =
0?

    Ta có:

    y = \sqrt{3}\cos x + \sin x - x^{2} +
2021x + 2022

    \Rightarrow y' = \sqrt{3}\sin x +
\cos x - 2x + 2021

    \Rightarrow y'' = \sqrt{3}\cos x
- \sin x - 2

    Lại có y'' = 0 \Leftrightarrow
\sqrt{3}\cos x - \sin x - 2 = 0

    \Leftrightarrow \frac{1}{2}\sin x -
\frac{\sqrt{3}}{2}\cos x = - 1

    \Leftrightarrow \sin\left( x -
\frac{\pi}{3} ight) = - 1

    \Leftrightarrow x - \frac{\pi}{3} =
\frac{- \pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{- \pi}{6} +
k2\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{6} + k2\pi \leq 4\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{12} \leq k \leq \dfrac{25}{12} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2ight\}

    Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 19: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 20: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 21: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 22: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1

    Tập xác định: D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có:

    \begin{matrix}  y' = \left( {\dfrac{{2x}}{{x - 1}}} ight)\prime \hfill \\   = \dfrac{{\left( {2x} ight)'.\left( {x - 1} ight) - 2x.\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{2\left( {x - 1} ight) - 2x}}{{{{\left( {x - 1} ight)}^2}}} = \frac{{ - 2}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Suy ra đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1 là:

    y'\left( { - 1} ight) = \frac{{ - 2}}{{{{\left( { - 1 - 1} ight)}^2}}} =  - \frac{1}{2}

  • Câu 23: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 24: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 25: Thông hiểu

    Cho đường cong của phương trình y=x^{4}-x^{2}+1. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:

    Ta có:

    \begin{matrix}  y = {x^4} - {x^2} + 1 \hfill \\   \Rightarrow y' = 4{x^3} - 2x \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( { - 1} ight) =  - 4 + 2 = -2} \\   {y\left( { - 1} ight) = 1} \end{array}} ight. \hfill \\\end{matrix}

    => Phương trình tiếp tuyến là:

    y = -2\left( {x + 1} ight) + 1

    Hay y = -2x -1

    Và phương trình đi qua điểm M (1;-3).

  • Câu 26: Nhận biết

    Tính vi phân của hàm số f\left( x ight) = \frac{{{{\left( {\sqrt x  - 1} ight)}^2}}}{x} tại điểm x=4 ứng với \Delta x=0,002

    Ta có:

    \begin{matrix}  f\left( x ight) = 1 + \dfrac{2}{{\sqrt x }} + \dfrac{1}{x} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{1}{{x\sqrt x }} - \dfrac{1}{{{x^2}}} \hfill \\   \Rightarrow f'\left( 4 ight) = \dfrac{1}{{16}} \hfill \\   \Rightarrow df\left( 4 ight) = f'\left( 4 ight)\Delta x = \dfrac{1}{{16}}.0,002 = \dfrac{1}{{800}} \hfill \\ \end{matrix}

  • Câu 27: Vận dụng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

    Giả sử vận tốc của vật chuyển động có phương trình v(t) = at^{2} + bt + c

    Ta có:

    v(2) = 9 \Leftrightarrow 4a + 2b + c =9

    v(0) = 6 \Rightarrow c = 6

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}\dfrac{- b}{2a} = 2 \\4a + 2b + 6 = 9 \\\end{matrix} ight.\  \\\Leftrightarrow \left\{ \begin{matrix}4a + b = 0 \\4a + 2b = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{3}{4} \\b = 3 \\\end{matrix} ight.\  \\\end{matrix}

    Do đó: v(t) = - \frac{3}{4}t^{2} + 3t +6

    Vậy v(2,5) = 8,8125(km/h)

  • Câu 28: Nhận biết

    Cho hàm số y = x
- \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}} + 1. Biểu thức nào dưới đây đúng?

    Ta có:

    y = x - \frac{1}{\sqrt{x}} -
\frac{1}{\sqrt[3]{x}} + 1

    \Rightarrow y' = 1 +
\frac{1}{2\sqrt[3]{x}} + \frac{1}{3\sqrt[4]{x^{4}}}

  • Câu 29: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 30: Thông hiểu

    Đạo hàm của hàm số y = 2^{x^{2} + 2} là:

    Ta có:

    y = 2^{x^{2} + 2}

    \Rightarrow y' = \left( x^{2} + 2ight)'.2^{x^{2} + 2}.\ln2

    = 2x.2^{x^{2} + 2}.ln2 = x.2^{x^{2} +3}.\ln2

  • Câu 31: Nhận biết

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số y = \frac{2}{x + 1}?

    Ta có:

    y = \frac{2}{x + 1} \Rightarrow y' =
\frac{- 2}{(x + 1)^{2}}

    \Rightarrow y'' = \frac{2.2(x +
1)}{(x + 1)^{4}} = \frac{4}{(x + 1)^{3}}

  • Câu 33: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 34: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

  • Câu 35: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 36: Thông hiểu

    Đạo hàm của hàm số f(x)=\frac{ax^{2}+b}{c+d} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{a{x^2} + b}}{{c + d}} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {\dfrac{{a{x^2} + b}}{{c + d}}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {a{x^2} + b} ight)'\left( {c + d} ight) - \left( {c + d} ight)'\left( {a{x^2} + b} ight)}}{{{{\left( {c + d} ight)}^2}}} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2ax\left( {c + d} ight)}}{{{{\left( {c + d} ight)}^2}}} = \dfrac{{2ax}}{{c + d}} \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Ta có: f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x} = \lim_{x ightarrow 0}\frac{3}{|x| +
1}

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{+}}\dfrac{3}{x + 1} = 3 \\\lim_{x ightarrow 0^{-}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{-}}\dfrac{3}{1 - x} = 3 \\\end{matrix} ight.

    \Rightarrow \lim_{x ightarrow
0^{+}}\frac{3}{|x| + 1} = \lim_{x ightarrow 0^{-}}\frac{3}{|x| + 1} =
3

    \Rightarrow \lim_{x ightarrow
0}\frac{3}{|x| + 1} = 3

    \Rightarrow f'(0) = \lim_{x
ightarrow 0^{+}}\frac{3}{|x| + 1} = 3

  • Câu 39: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 40: Nhận biết

    Hàm số nào sau đây có đạo hàm bằng \frac{1}{\sqrt{2x}}?

    Ta có:

    f'(x) = \left( \sqrt{2x}
ight)' = \frac{1}{\sqrt{2x}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo