Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 2: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 3: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Đáp án là:

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Vận tốc của chuyển động là v(t) =
S'(t) = 3t^{2} - 6t + 5

    Dễ thấy v(t) = 3t^{2} - 6t + 5 = 3(t -
1)^{2} + 2 \geq 2 với mọi t.

    Dấu “=” xảy ra khi và chỉ khi t =
1

    Khi đó quãng đường vật đi được là: S(1) =
1^{3} - 3.1^{2} + 5.1 + 7 = 10m

  • Câu 4: Thông hiểu

    Đạo hàm của hàm số y=\frac{1}{\sqrt{x^{2}-x+1}} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{\sqrt {{x^2} - x + 1} }} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{1}{{\sqrt {{x^2} - x + 1} }}} ight)\prime  \hfill \\   \Leftrightarrow y' = \dfrac{{ - \left( {\sqrt {{x^2} - x + 1} } ight)'}}{{{{\left( {\sqrt {{x^2} - x + 1} } ight)}^2}}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - \dfrac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}}}{{{x^2} - x + 1}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - 2x + 1}}{{2\sqrt {{x^2} - x + 1} \left( {{x^2} - x + 1} ight)}} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 6: Thông hiểu

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{4}t^{4} -
\frac{7}{2}t^{2} - 6t + 10,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?

    Kết quả: 20 (m/s2)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{4}t^{4} -
\frac{7}{2}t^{2} - 6t + 10,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?

    Kết quả: 20 (m/s2)

    Vận tốc tức thời là

    v(t) = s'(t) = t^{3} - 7t -
6

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = 3t^{2} -
7

    Khi vận tốc bị triệt tiêu nghĩa là v(t) =
0 \Leftrightarrow t^{3} - 7t - 6 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 3(tm) \\
t = - 1(ktm) \\
t = - 2(ltm) \\
\end{matrix} ight.

    Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:

    a(3) = 3.(3)^{2} - 7 = 20\left( m/s^{2}
ight)

  • Câu 7: Thông hiểu

    Tính đạo hàm cấp hai tại điểm x_{0} = - 1 của hàm số f(x) = \frac{1}{2x - 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có:

    f(x) = \frac{1}{2x - 1} \Rightarrow
f'(x) = \frac{- 2}{(2x - 1)^{2}}

    \Rightarrow f''(x) =
\frac{8}{(2x - 1)^{3}}

    \Rightarrow f''( - 1) =
\frac{8}{\left\lbrack 2.( - 1) - 1 ightbrack^{3}} = -
\frac{8}{27}

  • Câu 8: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 9: Vận dụng

    Cho hàm số y =\sin2x.\cos x. Xác định giá trị y^{(4)}\left( \frac{\pi}{6} ight)?

    Ta có:

    y =\sin2x.\cos x = \frac{1}{2}\left( \sin3x+ \sin x ight)

    \Rightarrow y' = \frac{1}{2}\left(3\cos3x + \cos x ight)

    \Rightarrow y'' =\frac{1}{2}\left( - 9\sin3x - \sin x ight)

    \Rightarrow y''' =\frac{1}{2}\left( - 27\cos3x - \cos x ight)

    \Rightarrow y^{(4)} = \frac{1}{2}\left(81\sin3x + \sin x ight)

    \Rightarrow y^{(4)}\left( \frac{\pi}{6}
ight) = \frac{1}{2}\left\lbrack 81sin\left( \frac{3.\pi}{6} ight) +
\sin\left( \frac{\pi}{6} ight) ightbrack = \frac{1}{2}.\left(
3^{4} - \frac{1}{2} ight)

  • Câu 10: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 11: Vận dụng

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 12: Thông hiểu

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 13: Thông hiểu

    Cho hàm số y=3x^{5}-5x^{4}+3x-2. Giải bất phương trình y'' < 0.

     Ta có:

    \begin{matrix}  y = 3{x^5} - 5{x^4} + 3x - 2 \hfill \\   \Rightarrow y' = 15{x^4} - 20{x^3} + 3 \hfill \\   \Rightarrow y'' = 60{x^3} - 60{x^2} \hfill \\  y'' < 0 \hfill \\   \Leftrightarrow 60{x^3} - 60{x^2} < 0 \hfill \\   \Leftrightarrow 60{x^2}\left( {x - 1} ight) < 0,\left( {{x^2} > 0,\forall x e 0} ight) \hfill \\   \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho f(x) =\sin3x. Giá trị của f''\left( - \frac{\pi}{2} ight) bằng bao nhiêu?

    Ta có: f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow f''\left( -\frac{\pi}{2} ight) = - 9.\sin\left( - \frac{3\pi}{2} ight) =9

  • Câu 15: Nhận biết

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 16: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{x^{2} + 3} . T = f(1) +
4f'(1) = 4

    Đáp án là:

    Cho hàm số y =
f(x) = \sqrt{x^{2} + 3} . T = f(1) +
4f'(1) = 4

    Ta có:

    y = f(x) = \sqrt{x^{2} + 3}

    \Rightarrow f'(x) =
\frac{x}{\sqrt{x^{2} + 3}}

    T = f(1) + 4f'(1) = 4

  • Câu 17: Nhận biết

    Công thức đạo hàm của hàm số y = f(x) = 2^{3x + 1} là:

    Ta có:

    y = f(x) = 2^{3x + 1}

    \Rightarrow f'(x) = (3x +4)'.2^{3x + 4}.\ln2

    \Rightarrow f'(x) = 3.2^{3x +4}.\ln2

  • Câu 18: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)(x - 3)...(x - 2020)}. Tính đạo hàm của hàm số tại x = 0?.

    Ta có:

    Đặt g(x) = (x - 1)(x - 2)(x - 3)...(x -
2020)

    Khi đó: f(x) =
\frac{x}{g(x)}

    \Rightarrow f'(x) = \frac{x'g(x)
- g'(x).x}{g^{2}(x)} = \frac{1}{g(x)} -
x.\frac{g'(x)}{g^{2}(x)}

    \Rightarrow f'(0) = \frac{1}{g(0)} -
x.\frac{g'(0)}{g^{2}(0)} = \frac{1}{g(0)}

    = \frac{1}{( - 1)( - 2)...( - 2020)} =
\frac{1}{2020!}

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \sqrt {{x^2} + 2}

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \sqrt {{x^2} + 2} } ight] \prime \hfill \\   \Rightarrow y' = \left( {\sqrt {{x^2} + 2} } ight)'.\cos \sqrt {{x^2} + 2}  \hfill \\   \Rightarrow y' = \dfrac{x}{{\sqrt {2 + {x^2}} }}.\cos \sqrt {{x^2} + 2}  \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 22: Nhận biết

    Cho hàm số y =5\sin x - 3\cos x. Chọn biểu thức đúng?

    Ta có:

    y = 5\sin x - 3\cos x

    \Rightarrow y' = (5\sin x -3\cos x)' = 5\cos x + 3\sin x

  • Câu 23: Thông hiểu

    Một chất điểm chuyển động thẳng có phương trình S=\frac{1}{2}t^{2} ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm t_{0}=5(s) 

    Ta có: 

    \begin{matrix}  v\left( t ight) = s'\left( t ight) = t \hfill \\   \Rightarrow v\left( {{t_0}} ight) = v\left( 5 ight) = 5\left( {m/s} ight) \hfill \\ \end{matrix}

  • Câu 24: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng \frac{3}{5}.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Suy ra phương trình tiếp tuyến d có dạng y + y_{0} = k\left( x - x_{0} ight)

    => Tiếp tuyến d có một vecto pháp tuyến là \overrightarrow{n_{d}} = ( - k;1)

    Đường thẳng \Delta có một vecto pháp tuyến là: \overrightarrow{n_{\Delta}} =(4; - 3)

    Theo đề bài ta có:

    \cos(d;\Delta) = \frac{| - 4k -3|}{\sqrt{k^{2} + 1}.\sqrt{16 + 9}} = \frac{3}{5}

    \Leftrightarrow \left\lbrack\begin{matrix}k = 0 \\k = - \dfrac{24}{7} \\\end{matrix} ight.

    Với k = - \frac{24}{7}ta có: 3{x_{0}}^{2} - 6x_{0} = -\frac{24}{7} (vô nghiệm)

    Với k = 0 ta có: 3{x_{0}}^{2} - 6x_{0} = 0 \Leftrightarrow\left\lbrack \begin{matrix}x_{0} = 0 \\x_{0} = 2 \\\end{matrix} ight.

    Nếu x_{0} = 0 \Rightarrow y_{0} =2=> Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2

    Nếu x_{0} = 2 \Rightarrow y_{0} = -2=> Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2

  • Câu 25: Vận dụng

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.

    Ta có:

    Cường độ dòng điện tại thời điểm t = 4s là:

    \begin{matrix}  I = Q'\left( t ight) = \mathop {\lim }\limits_{t \to 4} \dfrac{{Q\left( t ight) - Q\left( 4 ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {2{t^2} + t} ight) - \left( {{{2.4}^2} + 4} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{2{t^2} + t - 36}}{{t - 4}} = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {t - 4} ight)\left( {2t + 9} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \left( {2t + 9} ight) = 2.4 + 9 = 17 \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Đạo hàm bậc hai của hàm số y = x\sqrt{1 +
x^{2}} là:

    Ta có:

    y = x\sqrt{1 + x^{2}}

    \Rightarrow y' = \frac{2x^{2} +
1}{\sqrt{1 + x^{2}}}

    \Rightarrow y'' = \frac{2x^{3} +
3x}{\left( 1 + x^{2} ight)\sqrt{1 + x^{2}}}

  • Câu 27: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 28: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 29: Nhận biết

    Công thức nào sau đây biểu diễn đúng đạo hàm của hàm số y = \ln\left( 1 - x^{2}
ight)?

    Ta có: y = \ln\left( 1 - x^{2}
ight)

    \Rightarrow y' = \left\lbrack
\ln\left( 1 - x^{2} ight) ightbrack'

    = \frac{- 2x}{1 - x^{2}} =
\frac{2x}{x^{2} - 1}

  • Câu 30: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 31: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 32: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 33: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 34: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 35: Vận dụng cao

    Trên đồ thị hàm số y = \frac{x + 3}{x +2} tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?

    Ta có:

    Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến k = \pm1.

    Ta có: f'(x) = - \frac{1}{(x +2)^{2}}

    => Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:

    - \frac{1}{(x + 2)^{2}} = - 1\Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight.

    Hai điểm thỏa mãn ( - 3;0),( -1;2)

  • Câu 36: Thông hiểu

    Cho hàm số xác định bởi công thức y = x^{3} - 3x có đồ thị hàm số (C). Số các tiếp tuyến của đồ thị (C) song song với đường thẳng y = 3x - 10 là?

    Ta có:

    y' = 3x^{2} - 3

    Gọi A\left( x_{0};y_{0} ight) là tiếp điểm

    Vì tiếp tuyến song song với đường thẳng y
= 3x - 10 nên

    f'\left( x_{0} ight) = 3
\Rightarrow 3{x_{0}}^{2} - 3 = 3 \Rightarrow x_{0} = \pm
\sqrt{2}

    Với x_{0} = \sqrt{2} \Rightarrow y_{0} =
- \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x - \sqrt{2} ight) - \sqrt{2} = 3x -
4\sqrt{2}

    Với x_{0} = - \sqrt{2} \Rightarrow y_{0}
= \sqrt{2} có phương trình tiếp tuyến tương ứng là y = 3\left( x + \sqrt{2} ight) + \sqrt{2} = 3x +
4\sqrt{2}

    Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 37: Thông hiểu

    Tính đạo hàm của hàm số y = \cot \sqrt {{x^2} + 1}

    Ta có:

    \begin{matrix}  y = \cot \sqrt {{x^2} + 1}  \hfill \\   \Rightarrow y' = \left( {\sqrt {{x^2} + 1} } ight)'.\dfrac{{ - 1}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\   = \dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}.\dfrac{{ - 1}}{{{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\   = \dfrac{{ - x}}{{\sqrt {{x^2} + 1} .{{\sin }^2}\sqrt {{x^2} + 1} }} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 39: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 40: Vận dụng

    Cho đường cong (C):y = x^{4} - 2x^{2} + m - 2 với m là tham số. Gọi S là tập các giá trị của tham số m sao cho đồ thị hàm số (C) có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập S là:

    Ta có: y' = 4x^{3} - 4x

    Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0

    Gọi tiếp điểm là M\left( x_{0};y_{0}
ight) \in (C) khi đó y'\left(
x_{0} ight) = 4{x_{0}}^{3} - 4x_{0} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 0 \Rightarrow y_{0} = m - 2 \\
x_{0} = \pm 1 \Rightarrow y_{0} = m - 3 \\
\end{matrix} ight.

    Để có đúng 1 tiếp tuyến song song với trục hoàn thì

    \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m - 3 eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m - 2 eq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m eq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m eq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m = 2;m = 3

    Vậy tổng các giá trị m là 5.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo