Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.
Ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm t = 2s là
Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Tìm hệ số góc k của tiếp tuyến của parabol
tại điểm có hoành độ
.
Ta có:
Cho đường cong của phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:
Ta có:
=> Phương trình tiếp tuyến là:
Hay
Và phương trình đi qua điểm M (1;-3).
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có:
Biết đồ thị hàm số
tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số
thỏa mãn điều kiện trên?
Ta không xét vì giá trị này không ảnh hưởng đến tổng S.
Với đồ thị hàm số
tiếp xúc với trục hoành khi và chỉ khi
có nghiệm
Với thay vào (**) ta được x = 1 thỏa mãn
Với thay vào (**) ta được
Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của
và đường thẳng
là đường thẳng nào dưới đây?
Hoành độ giao điểm là nghiệm của phương trình
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Cho hàm số
có đạo hàm tại điểm
. Tìm giá trị biểu thức
?
Do hàm số có đạo hàm tại điểm
nên suy ra
Ta có:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Tính tổng
![]()
Xét
Cho hàm số
. Với giá trị nào của
thì
?
Ta có: .
.
Để .
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
. Tính
?
Ta có:
Xác định đạo hàm của hàm số
trên tập số thực.
Ta có:
Cho hàm số
xác định bởi công thức
. Biết hàm số liên tục trên nửa khoảng
. Tích của
và
bằng bao nhiêu?
Tập xác định
Hàm số liên tục trên nên ta có:
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Chọn khẳng định đúng?
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Cho hàm số
. Tính giá trị của
.
Ta có:
Tính đạo hàm của hàm số
với
là hằng số)?
Ta có:
Một vật chuyển động theo quy luật
, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và S (m) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 15 giây, kể từ khi vật bắt đầu chuyển động, vận tốc v (m/s) của vật đạt giá trị lớn nhất tại thời điểm t (s) bằng:
Ta có vận tốc v của vật tại thời điểm t được tính theo công thức . Bảng biến thiên của hàm v = v(t) trên (0; 15):
Vậy vận tốc của vật đạt GTLN tại thời điểm t = 10 (s)
Tìm công thức đạo hàm của hàm số
?
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Tính số gia của hàm số
tại điểm x0 = -1 ứng với số gia ![]()
Ta có:
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Cho hàm số
. Với giá trị nào của tham số m thì
?
Tập xác định
Ta có:
Theo bài ra ta có:
Cho hàm số
. Tổng các nghiệm của phương trình
trên đoạn
bằng bao nhiêu?
Ta có:
Vì nên
nên
Suy ra tổng các nghiệm trên đoạn của phương trình
là:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng -1 là:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:
Một chất điểm chuyển động được biểu diễn bởi phương trình
,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Một chất điểm chuyển động được biểu diễn bởi phương trình ,
tính bằng giây,
tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Kết quả: 28 (m/s)
Vận tốc tức thời là
Gia tốc tức thời của chất điểm là:
Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là