Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{4}t^{4} -
\frac{7}{2}t^{2} - 6t + 10,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?

    Kết quả: 20 (m/s2)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{4}t^{4} -
\frac{7}{2}t^{2} - 6t + 10,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?

    Kết quả: 20 (m/s2)

    Vận tốc tức thời là

    v(t) = s'(t) = t^{3} - 7t -
6

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = 3t^{2} -
7

    Khi vận tốc bị triệt tiêu nghĩa là v(t) =
0 \Leftrightarrow t^{3} - 7t - 6 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 3(tm) \\
t = - 1(ktm) \\
t = - 2(ltm) \\
\end{matrix} ight.

    Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:

    a(3) = 3.(3)^{2} - 7 = 20\left( m/s^{2}
ight)

  • Câu 3: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m). Tính vận tốc trung bình của chất điểm trong khoảng thời gian từ t = 0 tới t = 2s?

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Trong khoảng thời gian từ t = 0 tới t = 2s thì chất điểm di chuyển được quãng đường S = 4.2 + 2 - 1 =
9(m)

    Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm t = 0 là:

    \overline{v} = \frac{\Delta S}{\Delta t}
= 4,5(m/s)

  • Câu 4: Nhận biết

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 5: Vận dụng

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Đáp án là:

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Vận tốc của vật là: v = s^{'} = -
2t^{2} + 14t.

    Vận tốc của vật đạt 12m/s thì - 2t^{2} + 14t = 12 \Leftrightarrow 2t^{2} -
14t + 12 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight.

    \Rightarrow Vật đạt vận tốc là 12\ m/s lần thứ 2 khi t = 6.

    Lúc đó quãng đường vật đi được là:

    s(6) = - \frac{2}{3}.6^{4} + 7.6^{2} + 3
= 111 (mét)

  • Câu 6: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 7: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng \frac{3}{5}.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Suy ra phương trình tiếp tuyến d có dạng y + y_{0} = k\left( x - x_{0} ight)

    => Tiếp tuyến d có một vecto pháp tuyến là \overrightarrow{n_{d}} = ( - k;1)

    Đường thẳng \Delta có một vecto pháp tuyến là: \overrightarrow{n_{\Delta}} =(4; - 3)

    Theo đề bài ta có:

    \cos(d;\Delta) = \frac{| - 4k -3|}{\sqrt{k^{2} + 1}.\sqrt{16 + 9}} = \frac{3}{5}

    \Leftrightarrow \left\lbrack\begin{matrix}k = 0 \\k = - \dfrac{24}{7} \\\end{matrix} ight.

    Với k = - \frac{24}{7}ta có: 3{x_{0}}^{2} - 6x_{0} = -\frac{24}{7} (vô nghiệm)

    Với k = 0 ta có: 3{x_{0}}^{2} - 6x_{0} = 0 \Leftrightarrow\left\lbrack \begin{matrix}x_{0} = 0 \\x_{0} = 2 \\\end{matrix} ight.

    Nếu x_{0} = 0 \Rightarrow y_{0} =2=> Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2

    Nếu x_{0} = 2 \Rightarrow y_{0} = -2=> Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2

  • Câu 8: Vận dụng

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Tập xác định: D = ( - \infty;0brack
\cup \lbrack 2; + \infty)

    Ta có: f'(x) = \frac{x -
1}{\sqrt{x^{2} - 2x}}

    Ta có:

    f'(x) \geq f(x)

    \Leftrightarrow \frac{x - 1}{\sqrt{x^{2}
- 2x}} \geq \sqrt{x^{2} - 2x}

    \Leftrightarrow \frac{- x^{2} + 3x -
1}{\sqrt{x^{2} - 2x}} \geq 0

    Với x \in ( - \infty;0) \cup (2; +
\infty)

    Ta có:\frac{- x^{2} + 3x - 1}{\sqrt{x^{2}
- 2x}} \geq 0

    \Leftrightarrow - x^{2} + 3x - 1 \geq 0
\Leftrightarrow x \in \left\lbrack \frac{3 - \sqrt{5}}{2};\frac{3 +
\sqrt{5}}{2} ightbrack

    Kết hợp với điều kiện x \in ( - \infty;0)
\cup (2; + \infty) ta có: x \in
\left( 2;\frac{3 + \sqrt{5}}{2} ightbrack

    x\mathbb{\in Z} nên suy ra x \in \varnothing

    Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.

  • Câu 9: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 10: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 11: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 12: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 13: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 14: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 15: Thông hiểu

    Tính đạo hàm cấp 5 của hàm số y = \frac{x^{2} + x + 1}{x + 1} là:

    Ta có:

    y = \frac{x^{2} + x + 1}{x + 1} = x +
\frac{1}{x + 1}

    \Rightarrow y' = 1 - \frac{1}{(x +
1)^{2}}

    \Rightarrow y'' = \frac{2}{(x +
1)^{3}} \Rightarrow y^{(3)} = \frac{- 6}{(x + 1)^{4}}

    \Rightarrow y^{(4)} = \frac{24}{(x +
1)^{5}} \Rightarrow y^{(5)} = - \frac{120}{(x + 1)^{6}}

  • Câu 16: Thông hiểu

    Cho y = x^{2}(x +
4)^{3}. Tính đạo hàm của hàm số đã cho?

    Ta có:

    y = x^{2}(x + 4)^{3}

    = x^{2}\left( x^{3} + 12x^{2} ight) +
48x + 64

    = x^{5} + 12x^{4} + 48x^{3} +
64x^{2}

    Suy ra y' = 5x^{4} + 48x^{3} + 144x^{2}
+ 128x

  • Câu 17: Vận dụng

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Đáp án là:

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v = S' = - 3t^{2} + 6t + 9

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a = S'' = - 6t + 6

    Gia tốc triệt tiêu khi a = 0 \Rightarrow
S'' = 0 \Rightarrow t = 1

    Khi đó vận tốc của chuyển động là S'(1) = 12m/s

  • Câu 18: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 19: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 20: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 21: Vận dụng cao

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 23: Thông hiểu

    Xác định đạo hàm của hàm số cho bởi công thức f(x) = \left( - x^{2} + 3x + 7
ight)^{7}?

    Ta có:

    f(x) = \left( - x^{2} + 3x + 7
ight)^{7}

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.\left( - x^{2} + 3x + 7 ight)'

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.( - 2x + 3)

  • Câu 24: Nhận biết

    Đạo hàm của hàm số: y=4\sqrt{x}-\frac{5}{x}

    Ta có:

    \begin{matrix}  y = 4\sqrt x  - \dfrac{5}{x} \hfill \\   \Rightarrow y' = \dfrac{4}{{2\sqrt x }} + \dfrac{5}{{{x^2}}} = \dfrac{2}{{\sqrt x }} + \dfrac{5}{{{x^2}}} \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = x^{4} - 6x^{2} + 5 tại điểm có hoành độ x_{0} = 2 là:

    Ta có: y' = 4x^{3} - 12x \Rightarrow
y'(2) = 8

    \Rightarrow k = 8

  • Câu 26: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 27: Vận dụng

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Đáp án là:

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Ta có: f'(x) = \frac{2}{x(x + 1)(x -
1)} = \frac{1}{x(x - 1)} - \frac{1}{x(x + 1)}

    Khi đó:

    f'(2) + f'(3) + f'(4) + ....
+ f'(2020)

    = \frac{1}{1.2} - \frac{1}{2.3} +
\frac{1}{2.3} - \frac{1}{2.3} + ... + \frac{1}{2019.2020} -
\frac{1}{2020.2021}

    = \frac{1}{2} - \frac{1}{2020.2021} =
\frac{1010.2021 - 1}{2020.2021}

    \Rightarrow \left\{ \begin{matrix}
m = 1010.2021 - 1 \\
n = 2020.2021 \\
\end{matrix} ight.\  \Rightarrow A = - 2

  • Câu 28: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số sau: y = {\left( {{x^2} + 1} ight)^3}

     Ta có: y = {\left( {{x^2} + 1} ight)^3} = {x^6} + 3{x^4} + 3{x^2} + 1

    \begin{matrix}   \Rightarrow y' = 6{x^5} + 12{x^3} + 6x \hfill \\   =  > y'' = \left( {y'} ight)' = \left( {6{x^5} + 12{x^3} + 6x} ight)' = 30{x^4} + 36{x^2} + 6 \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 30: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 2021) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack (x
- 1)(x - 2)(x - 3)...(x - 2021) ightbrack

    = ( - 1)( - 2).....( - 2021) = -
2021!

    Vậy f'(0) = - 2021!

  • Câu 31: Nhận biết

    Đạo hàm của hàm số y = 2^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 2^{x} \Rightarrow y' =2^{x}.\ln2

  • Câu 32: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 33: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 34: Thông hiểu

    Cho hàm số xác định bởi công thức f(x) = \sqrt{- 5x^{2} + 14x - 9}. Tìm tập hợp các giá trị của x để f'(x) < 0?

    Tập xác định D = \left\lbrack
1;\frac{9}{5} ightbrack

    Ta có:

    f(x) = \sqrt{- 5x^{2} + 14x -
9}

    \Rightarrow f'(x) = \frac{- 5x +
7}{\sqrt{- 5x^{2} + 14x - 9}};\forall x \in \left( 1;\frac{9}{5}
ight)

    f'(x) < 0 \Leftrightarrow \frac{-
5x + 7}{\sqrt{- 5x^{2} + 14x - 9}} < 0

    \Leftrightarrow \left\{ \begin{gathered}
   - 5x + 7 < 0 \hfill \\
  1 < x < \frac{9}{4} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{7}{5} < x < \frac{9}{5}

  • Câu 35: Nhận biết

    Đạo hàm của hàm số y = \log_{4}(2x + 5) là:

    Ta có:

    y = \log_{4}(2x + 5)

    \Rightarrow y' = \frac{2}{(2x +5)\ln4}

    = \frac{2}{(2x + 5).2.\ln2} =\frac{1}{(2x + 5).\ln2}

  • Câu 36: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 37: Thông hiểu

    Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số y = f(x) = \frac{x + 1}{2x
- 3} tại điểm có hoành độ x_{0} = -
1?

    TXĐ: D\mathbb{= R}\backslash\left\{
\frac{3}{2} ight\}

    Ta có: f'(x) = \frac{- 5}{(2x -
3)^{2}}

    Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x_{0} = - 1 là:

    f'(-1) = \frac{- 5}{\left\lbrack 2.(- 1) - 3 ightbrack^{2}} = - \frac{1}{5}

  • Câu 38: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 39: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{2x + 1}{x^{2} + x - 2} có dạng y'' = \frac{a}{(x - 1)^{3}} +
\frac{b}{(x + 2)^{3}}. Tính giá trị biểu thức T = a + b.

    Ta có:

    y = \frac{2x + 1}{x^{2} + x - 2} =
\frac{1}{x - 1} + \frac{1}{x + 2}

    \Rightarrow y' = - \frac{1}{(x -
1)^{2}} - \frac{1}{(x + 2)^{2}}

    \Rightarrow y'' = \frac{2}{(x -
1)^{3}} + \frac{2}{(x + 2)^{3}}

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow T = a + b = 4

  • Câu 40: Thông hiểu

    Biết đạo hàm của hàm số y = f(x) = \frac{1}{\sqrt{x^{2} + 1}} được biểu diễn như sau:y' =
\frac{mx}{\sqrt{\left( x^{2} + 1 ight)^{3}}}. Giá trị của tham số m là:

    Ta có:

    f'(x) = \left( \frac{1}{\sqrt{x^{2}
+ 1}} ight)'

    = - \dfrac{\dfrac{2x}{2\sqrt{x^{2} +1}}}{x^{2} + 1} = - \dfrac{x}{\sqrt{\left( x^{2} + 1ight)^{3}}}

    Khi đó m = - 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo