Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Cho hàm số
. Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Cho hàm số . Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Tập xác định:
Ta có:
Ta có:
Với
Ta có:
Kết hợp với điều kiện ta có:
Mà nên suy ra
Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
?
Ta có:
Điểm thuộc đồ thị đã cho có hoành độ là
Vậy phương trình tiếp tuyến của đồ thị hàm số tại là:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Vậy
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Một viên đạn được bắn lên cao theo phương trình
trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có:
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là
. Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là . Hỏi vận tốc tức thời của vật tại thời điểm
bằng bao nhiêu?
Kết quả: 9m/s
Ta có:
Vận tốc tức thời của vật tại thời điểm là:
Cho hàm số
với
. Tính
.
Ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Tính số gia của hàm số
tại điểm x0 = 2 ứng với số gia ![]()
Ta có:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
. Tính
?
Ta có:
Tìm đường thẳng tiếp tuyến kẻ từ điểm
đến đồ thị hàm số
?
Phương trình đường thẳng đi qua B có dạng
là tiếp tuyến của parabol
khi và chỉ khi
có nghiệm
Vậy
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Tính đạo hàm của hàm số
tại ![]()
Tập xác định:
Ta có:
Suy ra đạo hàm của hàm số tại
là:
Cho hàm số
có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của
-3|| - 3
Cho hàm số có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của -3|| - 3
Tập xác định
Ta có:
Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1
Do y’ < 0 nên k = -1
Gọi tọa độ tiếp điểm là ta có:
Với
Với
Vậy
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho đường cong của phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:
Ta có:
=> Phương trình tiếp tuyến là:
Hay
Và phương trình đi qua điểm M (1;-3).
Tính vi phân của hàm số
tại điểm
ứng với ![]()
Ta có:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Cho hàm số
. Biểu thức nào dưới đây đúng?
Ta có:
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Tìm đạo hàm cấp hai của hàm số
?
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số
là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số
là
Sai||Đúng
c) Tập nghiệm của bất phương trình
với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số
tại điểm
có phương trình là:
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Đạo hàm của hàm số là:
.Đúng||Sai
b) Công thức đạo hàm của hàm số là
Sai||Đúng
c) Tập nghiệm của bất phương trình với
có chứa 2 phần tử là số nguyên. Đúng||Sai
d) Tiếp tuyến của đồ thị hàm số tại điểm
có phương trình là:
. Sai||Đúng
a) Ta có:
b) Ta có
c) Ta có:
Khi đó
Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.
d) Ta có:
Với
nên ta có phương trình tiếp tuyến là:
.
Viết phương trình tiếp tuyến của đường cong
tại điểm (-1; -1)
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng -1 là:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Cho hàm số
. Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Hàm số nào sau đây có đạo hàm bằng
?
Ta có: