Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Tính đạo hàm của hàm số
.
Ta có:
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
?
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Cho hàm số
, có đạo hàm
. Tìm tất cả các giá trị của
để
với ![]()
Ta có:
Để bất phương trình với
ta có:
Cho hàm số
. Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Cho hàm số . Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Tập xác định:
Ta có:
Ta có:
Với
Ta có:
Kết hợp với điều kiện ta có:
Mà nên suy ra
Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.
Cho hàm số
. Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức
-2 || - 2
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Ta có:
Khi đó:
Một chất điểm chuyển động biến đổi đều được biểu thị bởi phương trình
với
được tính bằng giây và
tính bằng mét. Tính gia tốc của chất điểm tại thời điểm
?
Vận tốc của chất điểm là:
Gia tốc của chất điểm là:
Tại thời điểm gia tốc của chất điểm là:
Phát biểu nào trong các phát biểu sau là đúng?
Dựa theo định lí:
Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.
=> Phát biểu đúng là: “Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.”
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm
có dạng
. Chọn khẳng định đúng?
Điều kiện xác định
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Hàm số nào sau đây có đạo hàm bằng
?
Ta có:
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Cho hàm số
. Công thức tính
là:
Ta có:
….
Tính tổng
![]()
Xét
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Cho
. Tính ![]()
Ta có:
Cho hàm số
có đạo hàm tại
. Tính giá trị của biểu thức ![]()
Vì hàm số có đại hàm tại nên ta có:
Vậy
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Vậy
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Cho hàm số
. Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề đúng?
Ta có:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Cho hàm số
có đồ thị
. Tìm hệ số góc lớn nhất của tiếp tuyến với đồ thị
?
Kết quả: 12
Cho hàm số có đồ thị
. Tìm hệ số góc lớn nhất của tiếp tuyến với đồ thị
?
Kết quả: 12
Tập xác định
Ta có hệ số góc của tiếp tuyến với đồ thị hàm số là:
Vậy hệ số góc lớn nhất của tiếp tuyến với đồ thị hàm số là 12.
Biết đồ thị hàm số
tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số
thỏa mãn điều kiện trên?
Ta không xét vì giá trị này không ảnh hưởng đến tổng S.
Với đồ thị hàm số
tiếp xúc với trục hoành khi và chỉ khi
có nghiệm
Với thay vào (**) ta được x = 1 thỏa mãn
Với thay vào (**) ta được
Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại x = 1.
Ta có:
Viết phương trình tiếp điểm của đồ thị hàm số
. Biết rằng tiếp tuyến đó song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Do song song với đường thẳng
nên
Phương trình tiếp tuyến tương ứng là
Biết
. Tính tỉ số
?
Với
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Một vật chuyển động theo quy luật
(với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
là:
Ta có:
Đạo hàm bậc hai của hàm số
là:
Ta có:
Một chất điểm chuyển động thẳng có phương trình
( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Xác định công thức đạo hàm của hàm số
?
Ta có: