Đạo hàm của hàm số
là:
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình
với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình với
tính bằng giây và
tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?
Kết quả: 28m/s
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Vậy gia tốc đạt giá trị nhỏ nhất khi . Khi đó vận tốc là
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Cho hàm số
xác định bởi công thức
. Biết hàm số liên tục trên nửa khoảng
. Tích của
và
bằng bao nhiêu?
Tập xác định
Hàm số liên tục trên nên ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Tính đạo hàm của hàm số
?
Ta có:
Công thức nào sau đây biểu diễn đúng đạo hàm của hàm số
?
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Tính giá trị biểu thức:
. Biết hàm số
xác định bởi công thức
.
Kết quả:
2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số
xác định bởi công thức
.
Kết quả: 2017/2018
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Một vật chuyển động theo quy luật
, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và S (m) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 15 giây, kể từ khi vật bắt đầu chuyển động, vận tốc v (m/s) của vật đạt giá trị lớn nhất tại thời điểm t (s) bằng:
Ta có vận tốc v của vật tại thời điểm t được tính theo công thức . Bảng biến thiên của hàm v = v(t) trên (0; 15):
Vậy vận tốc của vật đạt GTLN tại thời điểm t = 10 (s)
Cho hàm số
. Tìm tập nghiệm bất phương trình
.
Ta có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Tính giá trị của ![]()
Cho
. Giá trị của
bằng bao nhiêu?
Ta có:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Tính tổng
![]()
Xét
Tính đạo hàm hàm số
?
Ta có:
Phát biểu nào trong các phát biểu sau là đúng?
Dựa theo định lí:
Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.
=> Phát biểu đúng là: “Nếu hàm số có đạo hàm tại x0 thì nó liên tục tại điểm đó.”
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
. Biết
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Do song song với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm
có dạng
. Chọn khẳng định đúng?
Điều kiện xác định
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
. Khẳng định nào sau đây đúng trong các khẳng định sau?
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
?
TXĐ:
Ta có:
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là:
Cho hàm số
có đồ thị
. Gọi tiếp tuyến của
tại điểm có tung độ bằng
là
. Tìm hệ số góc của đường thẳng
?
Tập xác định
Với
Ta có:
Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 2 là
Tính đạo hàm cấp hai của hàm số
tại điểm
?
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng 0 thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:
Gia tốc tức thời tại thời điểm vận tốc bằng 0 là
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số
. Tổng các nghiệm của phương trình
trên đoạn
bằng bao nhiêu?
Ta có:
Vì nên
nên
Suy ra tổng các nghiệm trên đoạn của phương trình
là:
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
?
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng -1 là:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:
Cho hàm số
. Tính đạo hàm của hàm số tại x = 1.
Ta có:
Cho hàm số
. Xác định giá trị
?
Ta có: