Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 2: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 3: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 5: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 6: Thông hiểu

    Cho hàm số y =
f(x) = \frac{2x + 1}{1 - x}. Giải phương trình f'(x) + f''(x) = 0.

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có:

    y = f(x) = \frac{2x + 1}{1 -
x}

    \Rightarrow f'(x) = \frac{3}{(x -
1)^{2}} \Rightarrow f''(x) = - \frac{6}{(x -
1)^{3}}

    Lại có:

    f'(x) + f''(x) =
0

    \Leftrightarrow \frac{3}{(x - 1)^{2}} -
\frac{6}{(x - 1)^{3}} = 0

    \Leftrightarrow \frac{2}{x - 1} = 1
\Leftrightarrow x = 3(tm)

  • Câu 7: Thông hiểu

    Đạo hàm của hàm số y = \sqrt {{{\sin }^3}(2x + 1)} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {{{\sin }^3}(2x + 1)}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {{{\sin }^3}(2x + 1)} }}.\left[ {{{\sin }^3}\left( {2x + 1} ight)} ight]\prime  \hfill \\   = \dfrac{{2.3{{\sin }^3}\left( {2x + 1} ight).\cos \left( {2x + 1} ight)}}{{2\sqrt {{{\sin }^3}(2x + 1)} }} \hfill \\   = 3\sqrt {\sin \left( {2x + 1} ight)} .\cos \left( {2x + 1} ight) \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 9: Nhận biết

    Cho hàm số y =\log_{2}(3x). Khẳng định nào sau đây đúng?

    Ta có:

    y = \log_{2}(3x)

    \Rightarrow y' = \left( \log_{2}(3x)ight)' = \frac{(3x)'}{3x.\ln2} = \frac{1}{x\ln2}

  • Câu 10: Thông hiểu

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.

    Ta có:

    \begin{matrix}  I\left( t ight) = Q'\left( t ight) \hfill \\   \Rightarrow I = 4t + 1 \hfill \\   \Rightarrow I\left( 2 ight) = 4.2 + 1 = 9\left( A ight) \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 12: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 13: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 14: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 1\ \ khi\ x \geq 1 \\ax + b\ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại điểm x = 1 (với a,b\mathbb{\in R}). Giá trị của biểu thức P = 2a - 5b bằng bao nhiêu?

    Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:

    Hàm số phải liên tục tại điểm x = 1:

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)

    \Rightarrow a + b = 2

    \lim_{x ightarrow 1}\frac{f(x) -f(1)}{x - 1} = f'(1)

    \Leftrightarrow f'\left( 1^{+}ight) = f'\left( 1^{-} ight)

    \Leftrightarrow a = 3

    \Rightarrow b = - 1

    Vậy giá trị của biểu thức P = 2a - 5b =11

  • Câu 15: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 16: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 17: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 18: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 19: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 20: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 21: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Cho hàm số y =
\frac{x + 1}{x - 1} có đồ thị (C). Gọi tiếp tuyến của (C) tại điểm có tung độ bằng 3\Delta. Tìm hệ số góc của đường thẳng \Delta?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Với y = 3 \Rightarrow \frac{x + 1}{x - 1}
= 3 \Rightarrow x = 2

    Ta có: y' = - \frac{2}{(x -
1)^{2}}

    Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 2 là

    k = y'(2) = - \frac{2}{(2 - 1)^{2}}
= - 2

  • Câu 23: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 24: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 25: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 26: Nhận biết

    Tính đạo hàm của hàm số y = 2\cos {x^2}

    Ta có:

    \begin{matrix}  y = 2\cos {x^2} \hfill \\   \Rightarrow y' = \left( {{x^2}} ight)'.2.\left[ { - \sin \left( {{x^2}} ight)} ight] \hfill \\   =  - 4x\sin \left( {{x^2}} ight) \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1

    Tập xác định: D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có:

    \begin{matrix}  y' = \left( {\dfrac{{2x}}{{x - 1}}} ight)\prime \hfill \\   = \dfrac{{\left( {2x} ight)'.\left( {x - 1} ight) - 2x.\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{2\left( {x - 1} ight) - 2x}}{{{{\left( {x - 1} ight)}^2}}} = \frac{{ - 2}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Suy ra đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1 là:

    y'\left( { - 1} ight) = \frac{{ - 2}}{{{{\left( { - 1 - 1} ight)}^2}}} =  - \frac{1}{2}

  • Câu 28: Thông hiểu

    Cho hàm số y=\frac{1}{3}{x^3} - (2m + 1){x^2} - mx - 4, có đạo hàm y'. Tìm tất cả các giá trị của m để  y' \geqslant 0 với \forall x \in \mathbb{R}

    Ta có:

    \begin{matrix}  y = \dfrac{1}{3}{x^3} - (2m + 1){x^2} - mx - 4 \hfill \\  y' = {x^2} - 2(2m + 1)x - m \hfill \\ \end{matrix}

    Để bất phương trình y' \geqslant 0 với \forall x \in \mathbb{R} ta có:

    \begin{matrix}  \Delta ' \leqslant 0 \hfill \\   \Leftrightarrow {\left( {2m + 1} ight)^2} + m \leqslant 0 \hfill \\   \Leftrightarrow 4{m^2} + 5m + 1 \leqslant 0 \hfill \\   \Leftrightarrow m \in \left[ { - 1; - \dfrac{1}{4}} ight] \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 30: Vận dụng

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 31: Thông hiểu

    Đạo hàm của hàm số y = \frac{x + 1}{\sqrt{x}} bằng biểu thức nào sau đây?

    Ta có:y = \frac{x +
1}{\sqrt{x}}

    \Rightarrow y' = \frac{(x +
1)'.\sqrt{x} - \left( \sqrt{x} ight)'(x + 1)}{\left( \sqrt{x}
ight)^{2}}

    = \dfrac{\sqrt{x} - \dfrac{1}{2\sqrt{x}}(x+ 1)}{x} = \dfrac{\dfrac{2x - x - 1}{2\sqrt{x}}}{x} = \dfrac{x -1}{2x\sqrt{x}}

  • Câu 32: Thông hiểu

    Tính đạo hàm của hàm số y = \cos \left( {\tan x} ight)

    Ta có:

    \begin{matrix}  y = \cos \left( {\tan x} ight) \hfill \\   \Rightarrow y' = \left( {\tan x} ight)'.\sin \left( {\tan x} ight) \hfill \\   = \dfrac{{ - 1}}{{{{\cos }^2}x}}.\sin \left( {\tan x} ight) \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Đạo hàm của hàm số y=(\frac{3}{x}-2x)(\sqrt{x}-4) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {\dfrac{3}{x} - 2x} ight)\left( {\sqrt x  - 4} ight) \hfill \\   \Rightarrow y' = \left( {\dfrac{3}{x} - 2x} ight)'\left( {\sqrt x  - 4} ight) + \left( {\sqrt x  - 4} ight)'\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \left( {\dfrac{{ - 3}}{{{x^2}}} - 2} ight)\left( {\sqrt x  - 4} ight) + \left( {\dfrac{1}{{2\sqrt x }}} ight)\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3\sqrt x }}{{{x^2}}} + \dfrac{{12}}{{{x^2}}} - 2\sqrt x  + 8 + \dfrac{3}{{2x\sqrt x }} - \sqrt x  \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3}}{{2x\sqrt x }} - 3\sqrt x  + \dfrac{{12}}{{{x^2}}} + 8 \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Cho hàm số y =
f(x) = \frac{x - 2}{x + 3}. Xác định công thức đạo hàm cấp hai của hàm số đã cho?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y = f(x) = \frac{x - 2}{x +
3}

    \Rightarrow f'(x) = \frac{5}{(x +
3)^{2}}

    \Rightarrow f''(x) = 5.\frac{-
2.(x + 3)}{(x + 3)^{4}} = \frac{- 10}{(x + 3)^{3}}

  • Câu 36: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Với x \in \lbrack 0; + \infty) ta có: \left\{ \begin{matrix}
x + 1 > 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > - 4 \\
\end{matrix} ight.

    f(x) = \ln\left( \frac{x + 1}{x + 4}
ight) = \ln(x + 1) - \ln(x + 4)

    \Rightarrow f'(x) = \frac{1}{x + 1}
- \frac{1}{x + 4}

    Khi đó:

    T = f'(0) + f'(3) + f'(6) +
... + f'(2019)

    P = \left( 1 - \frac{1}{4} ight) +
\left( \frac{1}{4} - \frac{1}{7} ight) + \left( \frac{1}{7} -
\frac{1}{10} ight) + ... + \left( \frac{1}{2020} - \frac{1}{2023}
ight)

    P = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 37: Thông hiểu

    Công thức đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x + 5}?

    Ta có:

    y = f(x) = \sqrt{2x + 5}

    \Rightarrow f'(x) =
\frac{2}{2\sqrt{2x + 5}} = \frac{1}{\sqrt{2x + 5}}

    \Rightarrow f''(x) = -\dfrac{\dfrac{2}{2\sqrt{2x + 5}}}{2x + 5} = - \dfrac{1}{(2x + 5)\sqrt{2x +5}}

  • Câu 38: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 39: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 40: Nhận biết

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo