Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =
f(x) = sin^{3}x. Công thức nào sau đây đúng?

    Ta có: y = f(x) = \sin^{3}x

    \Rightarrow f'(x) =3\sin^{2}x.\cos x

    \Rightarrow f''(x) =6\sin x.\cos^{2}x - 3\sin^{3}x

    Khi đó

    y'' + 9y = 6\sin x.\cos^{2}x -3\sin^{3}x + 9\sin^{3}x

    = 6\sin x\left( \sin^{2}x + \cos^{2}xight) = 6\sin x

    \Rightarrow y'' + 9y - 6\sin x =0

  • Câu 2: Thông hiểu

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Đáp án là:

    Cho hàm số y =
(m + 2)x^{3} + \frac{3}{2}(m + 2)x^{2} + 3x - 1 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để y' \geq 0;\forall x\mathbb{\in
R} ?

    Kết quả: 5

    Ta có:

    y' = 3(m + 2)x^{2} + 3(m + 2)x + 3
\geq 0

    \Leftrightarrow (m + 2)x^{2} + (m + 2)x
+ 1 \geq 0(*)

    Để phương trình (*) luôn đúng với \forall
x\mathbb{\in R} thì

    TH1: m + 2 = 0 \Rightarrow m = -
2

    \Rightarrow y' = 1 \geq 0;\forall
x\mathbb{\in R}

    TH2: m + 2 eq 0 \Rightarrow m eq -
2

    \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m > - 2 \\
- 2 \leq m \leq 2 \\
\end{matrix} ight.\  \Rightarrow - 2 < m \leq 2

    \Rightarrow m \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.

  • Câu 3: Nhận biết

    Tính đạo hàm của hàm số y = \frac{\ln x}{x}?

    Ta có:

    y' = \left( \frac{\ln x}{x}ight)' = \frac{\left( \ln x ight)'.x - x'\ln x}{x^{2}} =\frac{1 - \ln x}{x^{2}}

  • Câu 4: Vận dụng

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 5: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 6: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 7: Thông hiểu

    Đạo hàm bậc hai của hàm số y = x\sqrt{1 +
x^{2}} là:

    Ta có:

    y = x\sqrt{1 + x^{2}}

    \Rightarrow y' = \frac{2x^{2} +
1}{\sqrt{1 + x^{2}}}

    \Rightarrow y'' = \frac{2x^{3} +
3x}{\left( 1 + x^{2} ight)\sqrt{1 + x^{2}}}

  • Câu 8: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 9: Vận dụng cao

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) = \frac{3x + 5}{- 1 + 2x}. Mệnh đề nào dưới đây là mệnh đề đúng?

    Ta có:

    f(x) = \frac{3x + 5}{- 1 +
2x}

    \Rightarrow f'(x) = \frac{(3x +
5)'( - 1 + 2x) - ( - 1 + 2x)'(3x + 5)}{( - 1 +
2x)^{2}}

    \Rightarrow f'(x) = \frac{3(2x - 1)
- 2(3x + 5)}{( - 1 + 2x)^{2}}

    \Rightarrow f'(x) = \frac{- 13}{( -
1 + 2x)^{2}}

  • Câu 11: Thông hiểu

    Cho hàm số y =
x^{3} - 3x + 2000. Tìm tập nghiệm bất phương trình y' < 0.

    Ta có: y' = 3x^{2} - 3

    y' < 0 \Rightarrow 3x^{2} - 3
< 0 \Leftrightarrow - 1 < x < 1

    \Rightarrow S = ( - 1;1)

  • Câu 12: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 13: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 15: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9

    => 3{x_{0}}^{2} - 6x_{0} = 9\Rightarrow \left\lbrack \begin{matrix}x_{0} = - 1 \\x_{0} = 3 \\\end{matrix} ight.

    Với x0 = −1, ta có: \left\{\begin{matrix}y_{0} = - 2 \\k = 9 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)

    với x0 = 3 thì \left\{\begin{matrix}y_{0} = 2 \\k = 9 \\\end{matrix} ight.

    Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)

  • Câu 16: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 17: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số y = \frac{2}{x + 1}?

    Ta có:

    y = \frac{2}{x + 1} \Rightarrow y' =
\frac{- 2}{(x + 1)^{2}}

    \Rightarrow y'' = \frac{2.2(x +
1)}{(x + 1)^{4}} = \frac{4}{(x + 1)^{3}}

  • Câu 18: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 19: Nhận biết

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 20: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 22: Vận dụng cao

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Vận dụng

    Phương trình chuyển động của một chất điểm được biểu diễn là S(t) = - t^{3} +
6t^{2}. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?

    Ta có:

    S(t) = - t^{3} + 6t^{2}

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = - 6t +
12

    v'(t) = 0 \Leftrightarrow 12 - 6t =
0 \Leftrightarrow t = 2

    v(t) = 0 \Leftrightarrow 12t - 3t^{2} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm t = 2(s).

  • Câu 24: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 25: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = \frac{2x + 1}{x - 1}. Biết (C) song song với đường thẳng y = - 3x?

    Gọi M\left( x_{0};y_{0}
ight)là tiếp điểm của tiếp tuyến

    Ta có: y' = \frac{- 3}{(x -
1)^{2}}

    Do (C) song song với đường thẳng y = - 3x nên y'\left( x_{0} ight) = - 3

    \Leftrightarrow \frac{- 3}{\left( x_{0}
- 1 ight)^{2}} = - 3 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = 2 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = -
1 nên phương trình tiếp tuyến tương ứng là

    y = - 3(x - 0) - 1 \Rightarrow y = - 3x
- 1

    Với x_{0} = 2 \Rightarrow y_{0} =
5 nên phương trình tiếp tuyến tương ứng là

    y = - 3(x - 2) + 5 \Rightarrow y = - 3x
+ 11

  • Câu 26: Vận dụng

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Đáp án là:

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v = S' = - 3t^{2} + 6t + 9

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a = S'' = - 6t + 6

    Gia tốc triệt tiêu khi a = 0 \Rightarrow
S'' = 0 \Rightarrow t = 1

    Khi đó vận tốc của chuyển động là S'(1) = 12m/s

  • Câu 27: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + ax + b\ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\\end{matrix} ight.. Biết hàm số có đạo hàm tại x = 2. Giá trị của a^{2} + b^{2} bằng:

    Ta có:

    \lim_{x ightarrow 2^{-}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\left( x^{3}- x^{2} - 8x + 10 ight) = - 2

    Ta có: \lim_{x ightarrow 2^{+}}f(x) =f(2) = 4 + 2a + b

    Để hàm số có liên tục tại x = 1 thì:

    4 + 2a + b = - 2

    Xét \lim_{x ightarrow 2^{-}}\frac{f(x)- f(2)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{\left(x^{3} - x^{2} - 8x + 10 ight) - (4 + 2a + b)}{x - 2}

    = \lim_{x ightarrow 2^{-}}\frac{x^{3}- x^{2} - 8x + 12}{x - 2} = 0

    \lim_{x ightarrow 2^{+}}\frac{f(x) -f(2)}{x - 2}

    = \lim_{x ightarrow 2^{+}}\frac{\left(x^{2} + ax + b ight) - (4 + 2x + b)}{x - 2}

    = \lim_{x ightarrow 2^{+}}(x + 2 + a)= 4 + a

    Từ đó suy ra 4 + a = 0 \Rightarrow a = - 4;b = 2

    Vậy a^{2} + b^{2} = 20

  • Câu 28: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 29: Thông hiểu

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 31: Nhận biết

    Cho hàm số y =
x^{2} - x + 2. Tính y'(1)?

    Ta có: y = x^{2} - x + 2

    \Rightarrow y' = 2x - 1

    \Rightarrow y'(1) = 2.1 - 1 =
1

  • Câu 32: Nhận biết

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 33: Thông hiểu

    Cho đường cong có phương trình y=\frac{2x-1}{x+1}. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 0:

    Ta có: 

    \begin{matrix}  y = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{{2x - 1}}{{x + 1}}} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{{2\left( {x + 1} ight) - \left( {2x - 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{3}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( 0 ight) = 3} \\   {y\left( 0 ight) =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Phương trình tiếp tuyền tại điểm có hoành độ bằng 0 là: y = 3x - 1

    Dễ thấy phương trình tiếp tuyến vuông góc với đường thẳng y=-\frac{1}{3}x-6 (vì tích hai hệ số góc bằng -1).

  • Câu 34: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 35: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 36: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 37: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 38: Thông hiểu

    Cho hàm số y =
e^{2x} + 2e^{- x}. Khẳng định nào dưới đây đúng?

    Ta có:

    y = e^{2x} + 2e^{- x}

    \Rightarrow y' = 2e^{2x} - 2e^{-
x}

    \Rightarrow y'' = \left( 2e^{2x}
- 2e^{- x} ight)' = 4e^{2x} + 2e^{- x}

    \Rightarrow y''' =
(y'')' = 8e^{2x} - 2e^{- x}

    \Rightarrow y''' -
y'' = 2y'

  • Câu 39: Vận dụng

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = x^{3} - 3x^{2} + 2x đi qua điểm M( - 1;0)?

    Phương trình đường thẳng đi qua điểm M( -
1;0) có dạng y = a(x + 1) = ax + a\
\ \ (d)

    Đường thẳng (d) là tiếp tuyến khi hệ \left\{ \begin{matrix}
x^{3} - 3x^{2} + 2x = ax + a \\
3x^{2} - 6x + 2 = a \\
\end{matrix} ight. có nghiệm

    Dễ thấy hệ phương trình có ba nghiệm (a;x) phân biệt nên có ba tiếp tuyến thỏa mãn.

  • Câu 40: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo