Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 2: Thông hiểu

    Tính đạo hàm của hàm số f(x) = \left( x^{3} - 2x^{2}
ight)^{2}?

    Ta có:

    f(x) = \left( x^{3} - 2x^{2}
ight)^{2}

    \Rightarrow f'(x) = \left\lbrack
\left( x^{3} - 2x^{2} ight)^{2} ightbrack'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( x^{3} - 2x^{2} ight)'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( 3x^{2} - 4x ight)

    \Rightarrow f'(x) = 6x^{5} - 8x^{4}
- 12x^{4} + 16x^{3}

    \Rightarrow f'(x) = 6x^{5} - 20x^{4}
+ 16x^{3}

  • Câu 3: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 4: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 5: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c . Giá trị của biểu thức T = a + b + 5c = 4

    Đáp án là:

    Biết rằng \left(
\frac{x^{4}}{4} + x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' =
ax^{2} + bx + c . Giá trị của biểu thức T = a + b + 5c = 4

    Ta có:

    \left( \frac{x^{4}}{4} + x^{3} -
\frac{x^{2}}{2} + x - 2019 ight)' = x^{3} + 3x^{2} - x +
1

    \Rightarrow \left( \frac{x^{4}}{4} +
x^{3} - \frac{x^{2}}{2} + x - 2019 ight)'' = \left( x^{3} +
3x^{2} - x + 1 ight)'

    = 3x^{2} + 6x - 1 \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 7: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 8: Nhận biết

    Hàm số nào sau đây có đạo hàm bằng \frac{1}{\sqrt{2x}}?

    Ta có:

    f'(x) = \left( \sqrt{2x}
ight)' = \frac{1}{\sqrt{2x}}

  • Câu 9: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 10: Thông hiểu

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Ta có: f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x} = \lim_{x ightarrow 0}\frac{3}{|x| +
1}

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{+}}\dfrac{3}{x + 1} = 3 \\\lim_{x ightarrow 0^{-}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{-}}\dfrac{3}{1 - x} = 3 \\\end{matrix} ight.

    \Rightarrow \lim_{x ightarrow
0^{+}}\frac{3}{|x| + 1} = \lim_{x ightarrow 0^{-}}\frac{3}{|x| + 1} =
3

    \Rightarrow \lim_{x ightarrow
0}\frac{3}{|x| + 1} = 3

    \Rightarrow f'(0) = \lim_{x
ightarrow 0^{+}}\frac{3}{|x| + 1} = 3

  • Câu 11: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 12: Thông hiểu

    Tìm số tiếp tuyến của đồ thị hàm số y = - x^{4} + 2x^{2} song song với trục hoành.

    Ta có:

    y' = - 4x^{3} + 4x

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số y = - x^{4} + 2x^{2} khi đó ta có: k = 0

    Suy ra y'\left( x_{0} ight) =
0

    \Leftrightarrow - 4{x_{0}}^{3} + 4x_{0}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = - 1 \\
x_{0} = 1 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = 0
\Rightarrow PTTT:y = 0

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Với x_{0} = 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Vậy có 2 tiếp tuyến song song với trục hoành.

  • Câu 13: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số y = \frac{x - 2}{x + 1} tại điểm x_{0} = 0?

    TXĐ: D\mathbb{= R}\backslash\left\{ - 1
ight\}

    Ta có: y(0) = \frac{0 - 2}{0 + 1} = -
2

    y' = \frac{3}{(x + 1)^{2}}
\Rightarrow y'(0) = 3

    Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm x_{0} = 0 là:

    y = 3(x - 0) - 2 \Rightarrow y = 3x -
2

  • Câu 14: Thông hiểu

    Công thức đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x + 5}?

    Ta có:

    y = f(x) = \sqrt{2x + 5}

    \Rightarrow f'(x) =
\frac{2}{2\sqrt{2x + 5}} = \frac{1}{\sqrt{2x + 5}}

    \Rightarrow f''(x) = -\dfrac{\dfrac{2}{2\sqrt{2x + 5}}}{2x + 5} = - \dfrac{1}{(2x + 5)\sqrt{2x +5}}

  • Câu 15: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 16: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 17: Thông hiểu

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.

    Ta có:

    \begin{matrix}  I\left( t ight) = Q'\left( t ight) \hfill \\   \Rightarrow I = 4t + 1 \hfill \\   \Rightarrow I\left( 2 ight) = 4.2 + 1 = 9\left( A ight) \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hàm số y = x
- \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}} + 1. Biểu thức nào dưới đây đúng?

    Ta có:

    y = x - \frac{1}{\sqrt{x}} -
\frac{1}{\sqrt[3]{x}} + 1

    \Rightarrow y' = 1 +
\frac{1}{2\sqrt[3]{x}} + \frac{1}{3\sqrt[4]{x^{4}}}

  • Câu 19: Thông hiểu

    Cho hàm số xác định bởi công thức f(x) = \sqrt{- 5x^{2} + 14x - 9}. Tìm tập hợp các giá trị của x để f'(x) < 0?

    Tập xác định D = \left\lbrack
1;\frac{9}{5} ightbrack

    Ta có:

    f(x) = \sqrt{- 5x^{2} + 14x -
9}

    \Rightarrow f'(x) = \frac{- 5x +
7}{\sqrt{- 5x^{2} + 14x - 9}};\forall x \in \left( 1;\frac{9}{5}
ight)

    f'(x) < 0 \Leftrightarrow \frac{-
5x + 7}{\sqrt{- 5x^{2} + 14x - 9}} < 0

    \Leftrightarrow \left\{ \begin{gathered}
   - 5x + 7 < 0 \hfill \\
  1 < x < \frac{9}{4} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{7}{5} < x < \frac{9}{5}

  • Câu 20: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 21: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{x + 1}{x - 1}. Gọi A;B là các điểm thuộc đồ thị (C) mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm A;B thỏa mãn điều kiện trên?

    Ta có: y' = \frac{- 2}{(x -
1)^{2}}

    Giả sử A\left( x_{1};y_{1}
ight);B\left( x_{2};y_{2} ight) với x_{1} eq x_{2}

    Tiếp tuyến tại A và B song song với nhau nên y'\left( x_{1} ight) = y'\left( x_{2}
ight)

    \Leftrightarrow \frac{1}{\left( x_{1} -
1 ight)^{2}} = \frac{1}{\left( x_{2} - 1 ight)^{2}}

    \Leftrightarrow \left( x_{1} - 1
ight)^{2} = \left( x_{2} - 1 ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} - 1 = x_{2} - 1 \\
x_{1} - 1 = - x_{2} + 1 \\
\end{matrix} ight.\  \Leftrightarrow x_{1} + x_{2} = 2

    Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn x_{1} + x_{2} = 2 thì các tiếp tuyến tại A và B song song với nhau.

  • Câu 22: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 23: Vận dụng

    Cho hàm số y =\sin2x.\cos x. Xác định giá trị y^{(4)}\left( \frac{\pi}{6} ight)?

    Ta có:

    y =\sin2x.\cos x = \frac{1}{2}\left( \sin3x+ \sin x ight)

    \Rightarrow y' = \frac{1}{2}\left(3\cos3x + \cos x ight)

    \Rightarrow y'' =\frac{1}{2}\left( - 9\sin3x - \sin x ight)

    \Rightarrow y''' =\frac{1}{2}\left( - 27\cos3x - \cos x ight)

    \Rightarrow y^{(4)} = \frac{1}{2}\left(81\sin3x + \sin x ight)

    \Rightarrow y^{(4)}\left( \frac{\pi}{6}
ight) = \frac{1}{2}\left\lbrack 81sin\left( \frac{3.\pi}{6} ight) +
\sin\left( \frac{\pi}{6} ight) ightbrack = \frac{1}{2}.\left(
3^{4} - \frac{1}{2} ight)

  • Câu 24: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = 3\sin2t + \cos2t,(t >0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm t = \frac{\pi}{4}(s) thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 6\cos2t -2\sin2t

    a(t) = S''(t) = v'(t) = -12\sin2t - 4\cos2t

    Gia tốc tức thời tại thời điểm t =
\frac{\pi}{4}(s) là:

    a\left( \frac{\pi}{4} ight) = -12\sin\left( 2.\frac{\pi}{4} ight) - 4\cos\left( 2.\frac{\pi}{4} ight)= - 12\left( m/s^{2} ight)

  • Câu 25: Thông hiểu

    Một chất điểm chuyển động thẳng có phương trình S=\frac{1}{2}t^{2} ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm t_{0}=5(s) 

    Ta có: 

    \begin{matrix}  v\left( t ight) = s'\left( t ight) = t \hfill \\   \Rightarrow v\left( {{t_0}} ight) = v\left( 5 ight) = 5\left( {m/s} ight) \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 27: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9

    => 3{x_{0}}^{2} - 6x_{0} = 9\Rightarrow \left\lbrack \begin{matrix}x_{0} = - 1 \\x_{0} = 3 \\\end{matrix} ight.

    Với x0 = −1, ta có: \left\{\begin{matrix}y_{0} = - 2 \\k = 9 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)

    với x0 = 3 thì \left\{\begin{matrix}y_{0} = 2 \\k = 9 \\\end{matrix} ight.

    Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)

  • Câu 28: Vận dụng

    Cho đường cong (C):y = x^{4} - 2x^{2} + m - 2 với m là tham số. Gọi S là tập các giá trị của tham số m sao cho đồ thị hàm số (C) có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập S là:

    Ta có: y' = 4x^{3} - 4x

    Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0

    Gọi tiếp điểm là M\left( x_{0};y_{0}
ight) \in (C) khi đó y'\left(
x_{0} ight) = 4{x_{0}}^{3} - 4x_{0} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 0 \Rightarrow y_{0} = m - 2 \\
x_{0} = \pm 1 \Rightarrow y_{0} = m - 3 \\
\end{matrix} ight.

    Để có đúng 1 tiếp tuyến song song với trục hoàn thì

    \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m - 3 eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m - 2 eq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
m = 2 \\
m eq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
m = 3 \\
m eq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m = 2;m = 3

    Vậy tổng các giá trị m là 5.

  • Câu 29: Vận dụng

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.

    Ta có:

    Cường độ dòng điện tại thời điểm t = 4s là:

    \begin{matrix}  I = Q'\left( t ight) = \mathop {\lim }\limits_{t \to 4} \dfrac{{Q\left( t ight) - Q\left( 4 ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {2{t^2} + t} ight) - \left( {{{2.4}^2} + 4} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{2{t^2} + t - 36}}{{t - 4}} = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {t - 4} ight)\left( {2t + 9} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \left( {2t + 9} ight) = 2.4 + 9 = 17 \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 31: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức \frac{\sqrt{x}}{x + 1}. Thực hiện tính đạo hàm của hàm số ta được y' =
\frac{...}{(x + 1)^{2}}. Biểu thức cần điền vào chỗ trống.

    Ta có:

    y = \frac{\sqrt{x}}{x + 1}

    \Rightarrow y' =\dfrac{\dfrac{1}{2\sqrt{x}}(x + 1) - \sqrt{x}}{(x + 1)^{2}} = \dfrac{1 -x}{2\sqrt{x}(x + 1)^{2}}

  • Câu 32: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 33: Vận dụng cao

    Một vật rơi tự do theo phương trình s =\frac{1}{3}gt^{2}, trong đó g =9,8m/s^{2} là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.

    Ta có:

    v_{tb} = \frac{s(t + \Delta t) -s(t)}{\Delta t}

    \Rightarrow v_{tb} =\dfrac{\dfrac{1}{2}g(t + \Delta t)^{2} - \dfrac{1}{2}gt^{2}}{\Delta t}

    \Rightarrow v_{tb} = gt +\frac{1}{2}g\Delta t = 49,0049m/s

    Vậy vận tốc trung bình của chuyển động là 49,0049m/s.

  • Câu 34: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 35: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 36: Thông hiểu

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 38: Nhận biết

    Xác định công thức đạo hàm của hàm số y = \log_{\sqrt{3}}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y = \log_{\sqrt{3}}x

    \Rightarrow y' =
\frac{1}{x\ln\sqrt{3}}

  • Câu 39: Thông hiểu

    Cho hàm số y =
\frac{x^{2}}{1 - x}. Xác định biểu thức của y''?

    Ta có:

    y = \frac{x^{2}}{1 - x} = - x - 1 +
\frac{1}{1 - x}

    \Rightarrow y' = - 1 + \frac{1}{(1 -
x)^{2}}

    \Rightarrow y'' = \frac{- 2}{(1
- x)^{3}}

  • Câu 40: Thông hiểu

    Tính đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x - 1} tại điểm x_{0} = 1?

    Ta có:

    y = f(x) = \sqrt{2x - 1}

    \Rightarrow f'(x) = \frac{(2x -
1)'}{2\sqrt{2x - 1}} = \frac{1}{\sqrt{2x - 1}}

    \Rightarrow f''(x) =
\frac{\left( \sqrt{2x - 1} ight)'}{2x - 1} = \frac{- 1}{(2x -
1)\sqrt{2x - 1}} = \frac{- 1}{\sqrt{(2x - 1)^{3}}}

    \Rightarrow f''(1) = -
1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo