Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y =
x^{2} - x + 2. Tính y'(1)?

    Ta có: y = x^{2} - x + 2

    \Rightarrow y' = 2x - 1

    \Rightarrow y'(1) = 2.1 - 1 =
1

  • Câu 2: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 3: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 4: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m). Tính vận tốc trung bình của chất điểm trong khoảng thời gian từ t = 0 tới t = 2s?

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Trong khoảng thời gian từ t = 0 tới t = 2s thì chất điểm di chuyển được quãng đường S = 4.2 + 2 - 1 =
9(m)

    Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm t = 0 là:

    \overline{v} = \frac{\Delta S}{\Delta t}
= 4,5(m/s)

  • Câu 5: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 6: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\sin2x. Chọn hệ thức đúng?

    Ta có:

    y' = 2.\cos2x \Rightarrow y''= - 4.\sin2x

    \Rightarrow 4y + y'' = 4.\sin2x -4.\sin2x = 0

  • Câu 7: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 9: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1

    Tập xác định: D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có:

    \begin{matrix}  y' = \left( {\dfrac{{2x}}{{x - 1}}} ight)\prime \hfill \\   = \dfrac{{\left( {2x} ight)'.\left( {x - 1} ight) - 2x.\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{2\left( {x - 1} ight) - 2x}}{{{{\left( {x - 1} ight)}^2}}} = \frac{{ - 2}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Suy ra đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1 là:

    y'\left( { - 1} ight) = \frac{{ - 2}}{{{{\left( { - 1 - 1} ight)}^2}}} =  - \frac{1}{2}

  • Câu 10: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 11: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 12: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 14: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 15: Thông hiểu

    Đạo hàm của hàm số y = 2^{x^{2} + 2} là:

    Ta có:

    y = 2^{x^{2} + 2}

    \Rightarrow y' = \left( x^{2} + 2ight)'.2^{x^{2} + 2}.\ln2

    = 2x.2^{x^{2} + 2}.ln2 = x.2^{x^{2} +3}.\ln2

  • Câu 16: Nhận biết

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 17: Thông hiểu

    Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số y = f(x) = \frac{x + 1}{2x
- 3} tại điểm có hoành độ x_{0} = -
1?

    TXĐ: D\mathbb{= R}\backslash\left\{
\frac{3}{2} ight\}

    Ta có: f'(x) = \frac{- 5}{(2x -
3)^{2}}

    Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x_{0} = - 1 là:

    f'(-1) = \frac{- 5}{\left\lbrack 2.(- 1) - 3 ightbrack^{2}} = - \frac{1}{5}

  • Câu 18: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 19: Vận dụng

    Phương trình chuyển động của một chất điểm được biểu diễn là S(t) = - t^{3} +
6t^{2}. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?

    Ta có:

    S(t) = - t^{3} + 6t^{2}

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = - 6t +
12

    v'(t) = 0 \Leftrightarrow 12 - 6t =
0 \Leftrightarrow t = 2

    v(t) = 0 \Leftrightarrow 12t - 3t^{2} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm t = 2(s).

  • Câu 20: Thông hiểu

    Cho hàm số f(x)=sin^{3}x+x^{2}. Tính giá trị của f"(-\frac{\pi}{2}).

    Ta có:

    \begin{matrix}  f(x) = si{n^3}x + {x^2} \hfill \\   \Rightarrow f'\left( x ight) = 3.{\sin ^2}x.\cos x + 2x \hfill \\   \Rightarrow f''\left( x ight) = 6\sin x.{\cos ^2}x - 3.{\sin ^3}x + 2 \hfill \\   \Rightarrow f''\left( { - \dfrac{\pi }{2}} ight) = 5 \hfill \\ \end{matrix}

  • Câu 21: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 22: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 23: Nhận biết

    Tính vi phân của hàm số f\left( x ight) = \frac{{{{\left( {\sqrt x  - 1} ight)}^2}}}{x} tại điểm x=4 ứng với \Delta x=0,002

    Ta có:

    \begin{matrix}  f\left( x ight) = 1 + \dfrac{2}{{\sqrt x }} + \dfrac{1}{x} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{1}{{x\sqrt x }} - \dfrac{1}{{{x^2}}} \hfill \\   \Rightarrow f'\left( 4 ight) = \dfrac{1}{{16}} \hfill \\   \Rightarrow df\left( 4 ight) = f'\left( 4 ight)\Delta x = \dfrac{1}{{16}}.0,002 = \dfrac{1}{{800}} \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 25: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 26: Thông hiểu

    Phương trình tiếp tuyến của đồ thị hàm số y = \frac{x + 1}{x - 1} tại điểm P(2;3) có dạng y = ax + b. Chọn khẳng định đúng?

    Điều kiện xác định x eq 1

    Ta có: y' = \frac{- 2}{(x - 1)^{2}}
\Rightarrow y'(2) = - 2

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm P(2;3) là:

    y = - 2(x - 2) + 3 = - 2x +
7

    \Rightarrow a = - 2;b = 7

  • Câu 27: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 28: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1 theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack 3(x + \Delta x)+ 1 ightbrack - (3x + 1)

    \Delta y = 3\Delta x

    \Rightarrow \frac{\Delta y}{\Delta x} =3

  • Câu 29: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 31: Thông hiểu

    Tính đạo hàm cấp 5 của hàm số y = \frac{x^{2} + x + 1}{x + 1} là:

    Ta có:

    y = \frac{x^{2} + x + 1}{x + 1} = x +
\frac{1}{x + 1}

    \Rightarrow y' = 1 - \frac{1}{(x +
1)^{2}}

    \Rightarrow y'' = \frac{2}{(x +
1)^{3}} \Rightarrow y^{(3)} = \frac{- 6}{(x + 1)^{4}}

    \Rightarrow y^{(4)} = \frac{24}{(x +
1)^{5}} \Rightarrow y^{(5)} = - \frac{120}{(x + 1)^{6}}

  • Câu 32: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 33: Vận dụng

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Đáp án là:

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Vận tốc của vật là: v = s^{'} = -
2t^{2} + 14t.

    Vận tốc của vật đạt 12m/s thì - 2t^{2} + 14t = 12 \Leftrightarrow 2t^{2} -
14t + 12 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight.

    \Rightarrow Vật đạt vận tốc là 12\ m/s lần thứ 2 khi t = 6.

    Lúc đó quãng đường vật đi được là:

    s(6) = - \frac{2}{3}.6^{4} + 7.6^{2} + 3
= 111 (mét)

  • Câu 34: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 35: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 36: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 38: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx^{3}}{3} - \frac{mx^{2}}{2} + (3 - m)x - 2. Tìm giá trị của m để f'(x) > 0;\forall
x\mathbb{\in R}?

    Ta có:

    f'(x) = mx^{2} - mx + (3 -
m)

    Nếu m = 0 thì f'(x) = 3 > 0;\forall x\mathbb{\in
R}

    Nếu m eq 0 thì f'(x) = mx^{2} - mx + 3 - m là tam thức bậc hai

    f'(x) > 0;\forall x\mathbb{\in
R}

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
\Delta < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m^{2} - 4m(3 - m) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
5m^{2} - 12m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
0 < m < \frac{12}{5} \\
\end{matrix} ight.

    Vậy 0 \leq m <
\frac{12}{5}

  • Câu 39: Thông hiểu

    Viết phương trình tiếp điểm của đồ thị hàm số y = f(x) = \sqrt{2x + 1}. Biết rằng tiếp tuyến đó song song với đường thẳng x - 3y + 6 = 0?

    Gọi M\left( x_{0};y_{0}
ight) là tiếp điểm của tiếp tuyến

    Ta có: y' = \frac{1}{\sqrt{2x +
1}}

    x - 3y + 6 = 0 \Rightarrow y =
\frac{x}{3} + 2

    Do (C) song song với đường thẳng y = \frac{x}{3} + 2 nên y'\left( x_{0} ight) =
\frac{1}{3}

    \Leftrightarrow \frac{1}{\sqrt{2x_{0} +
1}} = \frac{1}{3} \Leftrightarrow x_{0} = 4 \Rightarrow y_{0} =
3

    Phương trình tiếp tuyến tương ứng là

    y - 3 = \frac{1}{3}(x - 4) \Rightarrow y
= \frac{1}{3}x + \frac{5}{3}

  • Câu 40: Thông hiểu

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo