Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x)= \ln2021 + \ln\left( \frac{x}{x + 1} ight). Tính giá trị biểu thức:

    S = f'(1) + f'(2) + .... +
f'(2020)

    Ta có:

    f'(x) = \dfrac{\left( \dfrac{x}{x + 1}ight)'}{\dfrac{x}{x + 1}} = \dfrac{\dfrac{1}{(x + 1)^{2}}}{\dfrac{x}{x+ 1}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Suy ra = \frac{1}{x(x + 1)} = \frac{1}{x}
- \frac{1}{x + 1}

    f'(2) = \frac{1}{2} -
\frac{1}{3}

    f'(3) = \frac{1}{3} -
\frac{1}{4}

    f'(2020) = \frac{1}{2020} -
\frac{1}{2021}

    Vậy S = f'(1) + f'(2) + .... +
f'(2020) = 1 - \frac{1}{2021} = \frac{2020}{2021}

  • Câu 2: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 3: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = \frac{2x + 1}{x + 2} song song với đường thẳng 3x - y + 2 =
0?

    Ta có: y' = \frac{3}{(x +
2)^{2}}

    Vì tiếp tuyến song song với 3x - y + 2 =
0 nên hệ số góc bằng 3 nên gọi tọa độ tiếp điểm là M\left( x_{0};y_{0} ight)

    Khi đó y'\left( x_{0} ight) = 3
\Leftrightarrow \frac{3}{\left( x_{0} + 2 ight)^{2}} = 3

    \Leftrightarrow \left( x_{0} + 2
ight)^{2} = 1 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 1 \\
x_{0} = - 3 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow (d):y = 3(x +
1) - 1 = 3x + 2

    Với x_{0} = - 3 \Rightarrow (d):y = 3(x +
3) + 5 = 3x + 14

  • Câu 4: Nhận biết

    Tính đạo hàm của hàm số f(x) = 9^{2x + 2}

    Ta có: f(x) = 9^{2x + 2}

    \Rightarrow f'(x) = \left( 9^{2x +
1} ight)'

    \Rightarrow f'(x) = (2x +1)'.9^{2x + 1}.\ln9 = 2.9^{2x + 1}.\ln9

  • Câu 5: Thông hiểu

    Cho hàm số y=3x^{5}-5x^{4}+3x-2. Giải bất phương trình y'' < 0.

     Ta có:

    \begin{matrix}  y = 3{x^5} - 5{x^4} + 3x - 2 \hfill \\   \Rightarrow y' = 15{x^4} - 20{x^3} + 3 \hfill \\   \Rightarrow y'' = 60{x^3} - 60{x^2} \hfill \\  y'' < 0 \hfill \\   \Leftrightarrow 60{x^3} - 60{x^2} < 0 \hfill \\   \Leftrightarrow 60{x^2}\left( {x - 1} ight) < 0,\left( {{x^2} > 0,\forall x e 0} ight) \hfill \\   \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 7: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 8: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 9: Vận dụng

    Cho hàm số y =
x^{3} - 2x + 1. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục Oxy một tam giác vuông cân tại O?

    Gọi M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d)

    Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng \frac{x}{a} + \frac{y}{b} = 1

    \Rightarrow y = b\left( 1 - \frac{x}{a}
ight) = - \frac{b}{a} + b;\left( a,b eq 0;|a| = |b|
ight)(d)

    M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d) khi đó:

    3{x_{0}}^{2} - 2 = -
\frac{b}{a}

    |a| = |b| \Rightarrow \left\lbrack
\begin{matrix}
3{x_{0}}^{2} - 2 = 1 \\
3{x_{0}}^{2} - 2 = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 1 \Rightarrow y_{0} = 0 \\\begin{matrix}x_{0} = - 1 \Rightarrow y_{0} = 2 \\x_{0} = \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 - 5\sqrt{3}}{9}\\x_{0} = - \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 + 5\sqrt{3}}{9}\\\end{matrix} \\\end{matrix} ight.

    Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:

    y = 1(x - 1) + 0 \Rightarrow y = x -
1

    y = 1(x - 1) + 2 \Rightarrow y = x +
3

    y = - 1\left( x - \frac{\sqrt{3}}{3}
ight) + \frac{9 - 5\sqrt{3}}{9} \Rightarrow y = x + \frac{9 -
2\sqrt{3}}{9}

    y = - 1\left( x + \frac{\sqrt{3}}{3}
ight) + \frac{9 + 5\sqrt{3}}{9} \Rightarrow y = - x + \frac{9 +
2\sqrt{3}}{9}

  • Câu 10: Thông hiểu

    Tính số gia của hàm số y =\frac{x^{2}}{2} tại điểm x0 = -1 ứng với số gia \Delta x

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f( - 1 + \Deltax) - f( - 1)

    \Rightarrow \Delta y = \frac{( - 1 +\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y = \frac{1 - 2\Deltax + (\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y =\frac{1}{2}(\Delta x)^{2} - \Delta x

  • Câu 11: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 12: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 13: Thông hiểu

    Công thức đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x + 5}?

    Ta có:

    y = f(x) = \sqrt{2x + 5}

    \Rightarrow f'(x) =
\frac{2}{2\sqrt{2x + 5}} = \frac{1}{\sqrt{2x + 5}}

    \Rightarrow f''(x) = -\dfrac{\dfrac{2}{2\sqrt{2x + 5}}}{2x + 5} = - \dfrac{1}{(2x + 5)\sqrt{2x +5}}

  • Câu 14: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 15: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 16: Thông hiểu

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 17: Vận dụng cao

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Điều kiện x eq 1

    Ta có: f'(x) = \frac{- 1}{(x -
1)^{2}}

    Đường thẳng d đi qua Q có hệ số góc k là y = k(x - a) + 1

    Đường thẳng d tiếp xúc với (C) \Leftrightarrow \left\{ \begin{matrix}k(x - a) + 1 = \dfrac{x + 2}{x - 1}(*) \\k = - \dfrac{1}{(x - 1)^{2}}(**) \\\end{matrix} ight. có nghiệm

    Thế (**) vào (*) ta có: - \frac{1}{(x -
1)^{2}}(x - a) + 1 = \frac{- x + 2}{x - 1}

    \Leftrightarrow - x + a + x^{2} - 2x + 1
= - x^{2} + 3x - 2;x eq 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0\
\ \ (1)

    Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất

    Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 = 0 \\2 - 6 + a + 3 eq 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 > 0 \\2 - 6 + a + 3 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{3}{2} \\a = 1 \\\end{matrix} ight.

    Vậy 1 + \frac{3}{2} =
\frac{5}{2}

  • Câu 18: Thông hiểu

    Cho hàm số y =
f(x) = (3x - 7)^{5}. Xác định f''(2)?

    Ta có: y = f(x) = (3x -
7)^{5}

    \Rightarrow f'(x) = 15(3x -
7)^{4}

    \Rightarrow f''(x) = 180.(3x -
7)^{3}

    \Rightarrow f''(2) = 180.(3.2 -
7)^{3} = - 180

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 20: Vận dụng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

    Giả sử vận tốc của vật chuyển động có phương trình v(t) = at^{2} + bt + c

    Ta có:

    v(2) = 9 \Leftrightarrow 4a + 2b + c =9

    v(0) = 6 \Rightarrow c = 6

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}\dfrac{- b}{2a} = 2 \\4a + 2b + 6 = 9 \\\end{matrix} ight.\  \\\Leftrightarrow \left\{ \begin{matrix}4a + b = 0 \\4a + 2b = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{3}{4} \\b = 3 \\\end{matrix} ight.\  \\\end{matrix}

    Do đó: v(t) = - \frac{3}{4}t^{2} + 3t +6

    Vậy v(2,5) = 8,8125(km/h)

  • Câu 21: Thông hiểu

    Tính đạo hàm của hàm số f(x) = \left( x^{3} - 2x^{2}
ight)^{2}?

    Ta có:

    f(x) = \left( x^{3} - 2x^{2}
ight)^{2}

    \Rightarrow f'(x) = \left\lbrack
\left( x^{3} - 2x^{2} ight)^{2} ightbrack'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( x^{3} - 2x^{2} ight)'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( 3x^{2} - 4x ight)

    \Rightarrow f'(x) = 6x^{5} - 8x^{4}
- 12x^{4} + 16x^{3}

    \Rightarrow f'(x) = 6x^{5} - 20x^{4}
+ 16x^{3}

  • Câu 22: Vận dụng

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 23: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 24: Thông hiểu

    Cho hàm số y =
\frac{x^{4}}{4} - x^{3} + 1. Tập nghiệm của bất phương trình y''' \leq 6 là:

    Ta có:

    y = \frac{x^{4}}{4} - x^{3} +
1

    \Rightarrow y' = x^{3} - 3x^{2}
\Rightarrow y'' = 3x^{2} - 6x

    \Rightarrow y^{(3)} = 6x -
6

    y^{(3)} \leq 6 \Leftrightarrow 6x - 6
\leq 6 \Leftrightarrow x \leq 2

    Vậy S = ( - \infty;2brack

  • Câu 25: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Đạo hàm của hàm số y = 5^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 5^{x} \Rightarrow y' =5^{x}.\ln5

  • Câu 27: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 28: Thông hiểu

    Cho đường cong có phương trình y=x^{3}-2x+1. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:

     Ta có:

    \begin{matrix}  y = {x^3} - 2x + 1 \hfill \\   \Rightarrow y' = 3{x^2} - 2 \hfill \\   \Rightarrow y'\left( 1 ight) = {3.1^2} - 2 = 1 \hfill \\ \end{matrix}

    Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1

  • Câu 29: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 31: Nhận biết

    Cho hàm số y =
x^{2} - x + 2. Tính y'(1)?

    Ta có: y = x^{2} - x + 2

    \Rightarrow y' = 2x - 1

    \Rightarrow y'(1) = 2.1 - 1 =
1

  • Câu 32: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 33: Thông hiểu

    Phương trình tiếp tuyến của đồ thị hàm số y = \frac{x + 1}{x - 1} tại điểm P(2;3) có dạng y = ax + b. Chọn khẳng định đúng?

    Điều kiện xác định x eq 1

    Ta có: y' = \frac{- 2}{(x - 1)^{2}}
\Rightarrow y'(2) = - 2

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm P(2;3) là:

    y = - 2(x - 2) + 3 = - 2x +
7

    \Rightarrow a = - 2;b = 7

  • Câu 34: Thông hiểu

    Cho hàm số f(x)=\frac{x^{3}}{x-1}. Giải bất phương trình f'(x) = 0 có tập nghiệm S là:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{{x^3}}}{{x - 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {{x^3}} ight)'\left( {x - 1} ight) - \left( {{x^3}} ight).\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{3{x^2}\left( {x - 1} ight) - {x^3}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{3{x^3} - 3{x^2} - {x^3}}}{{{{\left( {x - 1} ight)}^2}}} = \dfrac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Xét phương trình f'(x) = 0 ta có:

    Điều kiện xác định x e 1

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \dfrac{{2{x^3} - 3{x^2}}}{{{{\left( {x - 1} ight)}^2}}} = 0 \hfill \\   \Leftrightarrow 2{x^3} - 3{x^2} = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{3}{2}} \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

    Vậy phương trình có tập nghiệm S=\left \{ 0;\frac{3}{2} ight \}

  • Câu 35: Thông hiểu

    Tính đạo hàm cấp hai tại điểm x_{0} = - 1 của hàm số f(x) = \frac{1}{2x - 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có:

    f(x) = \frac{1}{2x - 1} \Rightarrow
f'(x) = \frac{- 2}{(2x - 1)^{2}}

    \Rightarrow f''(x) =
\frac{8}{(2x - 1)^{3}}

    \Rightarrow f''( - 1) =
\frac{8}{\left\lbrack 2.( - 1) - 1 ightbrack^{3}} = -
\frac{8}{27}

  • Câu 36: Nhận biết

    Tính đạo hàm của hàm số y = \log_{2}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y' =\frac{1}{x\ln2}

  • Câu 37: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 38: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

    Ta có: 

    \begin{matrix}  y = \sin \left( {\sin x} ight) \hfill \\   \Rightarrow y\prime  = \left[ {\sin \left( {\sin x} ight)} ight]\prime  \hfill \\   = \left( {\sin x} ight)'\cos \left( {\sin x} ight) \hfill \\   = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Tiếp tuyến của đồ thị hàm số (C):y = \frac{2x + 1}{x - 1}vuông góc với đường thẳng x + 3y + 2 = 0 tại điểm có hoành độ là:

    Ta có:

    x + 3y + 2 = 0 \Rightarrow y = -
\frac{x}{3} - \frac{2}{3}

    Tiếp tuyến vuông góc với đường thẳng x +
3y + 2 = 0 nên hệ số góc của tiếp tuyến là k = 3

    Hoành độ tiếp điểm là nghiệm của phương trình y' = 3 \Leftrightarrow \frac{3}{(x + 1)^{2}} =
3 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Vậy hoành độ tiếp điểm cần tìm là \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight..

  • Câu 40: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo