Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 2: Nhận biết

    Cho f là hàm số liên tục tại x_{0}. Đạo hàm của f tại x_{0} là: 

    Đạo hàm của f tại x_{0} là \underset{h \to 0}{lim}\frac{f(x_{0}+h)-f(x_{0})}{h} (nếu tồn tại giới hạn)

  • Câu 3: Vận dụng cao

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 4: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 5: Thông hiểu

    Tìm đạo hàm của hàm số y = \left( 2x^{2} + x - 1 ight)(2 -
3x)?

    Ta có: y = \left( 2x^{2} + x - 1
ight)(2 - 3x)

    \Rightarrow y' = \left( 2x^{2} + x -
1 ight)'(2 - 3x) + \left( 2x^{2} + x - 1 ight)(2 -
3x)'

    = (4x + 1)(2 - 3x) + \left( 2x^{2} + x -
1 ight).( - 3)

    = - 12x^{2} + 8x - 3x + 2 - 6x^{2} - 3x
+ 3

    = - 18x^{2} + 2x + 5

  • Câu 6: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 8: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 9: Thông hiểu

    Tính đạo hàm cấp hai của hàm số y = \sin x.\sin2x.\sin3x?

    Ta có:

    y = \sin x.\sin2x.\sin3x

    = \frac{1}{4}\sin2x + \frac{1}{4}\sin4x -\frac{1}{4}\sin6x

    Khi đó:

    y' = \frac{1}{2}\cos2x + \cos4x -\frac{3}{2}\cos6x

    y'' = - \sin2x - 4\sin4x +9\sin6x

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 11: Thông hiểu

    Tìm công thức đạo hàm cấp hai của hàm số y = \frac{3x + 1}{x + 2}?

    Ta có: y = \frac{3x + 1}{x + 2} = 3 -
\frac{5}{x + 2}

    \Rightarrow y' = \frac{5}{(x +
2)^{2}} \Rightarrow y'' = \frac{- 10}{(x + 2)^{3}}

  • Câu 12: Thông hiểu

    Cho hàm số y =f(x) = \sqrt{1 - 4x} + \frac{1 - x}{x - 3}. Tính f'(x).

    Ta có:

    f(x) = \sqrt{1 - 4x} + \frac{1 - x}{x -3}

    \Rightarrow f'(x) = \left( \sqrt{1 -4x} ight)' + \left( \frac{1 - x}{x - 3} ight)'

    \Rightarrow f'(x) = \frac{\left(\sqrt{1 - 4x} ight)'}{2\sqrt{1 - 4x}} + \frac{(1 - x)'(x - 3)- (1 - x)(x - 3)'}{(x - 3)^{2}}

    \Rightarrow f'(x) = \frac{-2}{\sqrt{1 - 4x}} + \frac{2}{(x - 3)^{2}}

  • Câu 13: Thông hiểu

    Gọi (C) là đồ thị hàm số y = - x^{3} + 3x^{2} -
3. Có bao nhiêu phương trình tiếp tuyến của (C) vuông góc với đường thẳng y = \frac{x}{9} + 2000?

    Gọi A\left( x_{0};y_{0}
ight)là tiếp điểm của tiếp tuyến

    Ta có:

    y' = - 3x^{2} + 6x

    Vì tiếp tuyến của (C) vuông góc với đường thẳng y = \frac{x}{9} +
2000 nên y'\left( x_{0}
ight).\frac{1}{9} = - 1 \Rightarrow y'\left( x_{0} ight) = -
9

    \Leftrightarrow - 3{x_{0}}^{2} + 6x_{0}
+ 9 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 1 \\
x_{0} = 3 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} =
1 nên phương trình tiếp tuyến tương ứng là

    y = - 9(x + 1) + 1 \Rightarrow y = - 9x
- 8

    Với x_{0} = 3 \Rightarrow y_{0} = -
3 nên phương trình tiếp tuyến tương ứng là

    y = - 9(x - 3) - 3 \Rightarrow y = - 9x
+ 24

    Vậy có hai phương trình tiếp tuyến thỏa mãn điều kiện đề bài.

  • Câu 14: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 15: Thông hiểu

    Cho hàm số y = f(x) xác định tại x_{0} = 6 và thỏa mãn \lim_{x ightarrow 6}\frac{f(x) - f(6)}{x - 6} =
2. Giá trị của f'(6) bằng:

    Hàm số y = f(x) có tập xác định là Dx_{0} \in D.

    Nếu tồn tại giới hạn (hữu hạn) \lim_{x
ightarrow x_{0}}\frac{f(x) - f(x_{0})}{x - x_{0}}thì giới hạn gọi là đạo hàm của hàm số tại x_{0}.

    Vậy f'(6) = \lim_{x ightarrow
6}\frac{f(x) - f(6)}{x - 6} = 2.

  • Câu 16: Vận dụng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

    Giả sử vận tốc của vật chuyển động có phương trình v(t) = at^{2} + bt + c

    Ta có:

    v(2) = 9 \Leftrightarrow 4a + 2b + c =9

    v(0) = 6 \Rightarrow c = 6

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}\dfrac{- b}{2a} = 2 \\4a + 2b + 6 = 9 \\\end{matrix} ight.\  \\\Leftrightarrow \left\{ \begin{matrix}4a + b = 0 \\4a + 2b = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{3}{4} \\b = 3 \\\end{matrix} ight.\  \\\end{matrix}

    Do đó: v(t) = - \frac{3}{4}t^{2} + 3t +6

    Vậy v(2,5) = 8,8125(km/h)

  • Câu 17: Nhận biết

    Tính đạo hàm của hàm số y = \frac{1}{6}.x^{6} - \frac{1}{4}.x^{4} + a^{3}
+ b với a;b là hằng số)?

    Ta có:

    y = \frac{1}{6}.x^{6} -
\frac{1}{4}.x^{4} + a^{3} + b

    \Rightarrow y' = 6.\frac{1}{6}.x^{6
- 1} - 4.\frac{1}{4}.x^{4 - 1} + 0 + 0

    \Rightarrow y' = x^{5} -
x^{3}

  • Câu 18: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 19: Thông hiểu

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

  • Câu 20: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 21: Nhận biết

    Đạo hàm của hàm số y = \frac{1}{2} - \frac{1}{3}x + x^{2} -
0,25x^{4} là:

    Ta có:

    y = \frac{1}{2} - \frac{1}{3}x + x^{2} -
0,25x^{4}

    \Rightarrow y' = \left( \frac{1}{2}
ight)' - \left( \frac{1}{3}x ight)' + \left( x^{2}
ight)' - \left( 0,25x^{4} ight)'

    y' = 0 - \frac{1}{3} + 2x^{2 - 1} -
4.0,25x^{4 - 1}

    y' = - \frac{1}{3} + 2x -
x^{3}

  • Câu 22: Nhận biết

    Tính đạo hàm của hàm số y = 2\cos {x^2}

    Ta có:

    \begin{matrix}  y = 2\cos {x^2} \hfill \\   \Rightarrow y' = \left( {{x^2}} ight)'.2.\left[ { - \sin \left( {{x^2}} ight)} ight] \hfill \\   =  - 4x\sin \left( {{x^2}} ight) \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Xác định đạo hàm của hàm số y = \pi^{x}.

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a;(a > 0;a eq 1)

    Vậy y' = \pi^{x}.\ln\pi

  • Câu 24: Vận dụng

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x + 1}{x + 4} ight) . Tính giá trị biểu thức: T = f'(0) + f'(3) + f'(6)
+ ... + f'(2019) ?

    Kết quả: S = 2022/2023

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Với x \in \lbrack 0; + \infty) ta có: \left\{ \begin{matrix}
x + 1 > 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > - 4 \\
\end{matrix} ight.

    f(x) = \ln\left( \frac{x + 1}{x + 4}
ight) = \ln(x + 1) - \ln(x + 4)

    \Rightarrow f'(x) = \frac{1}{x + 1}
- \frac{1}{x + 4}

    Khi đó:

    T = f'(0) + f'(3) + f'(6) +
... + f'(2019)

    P = \left( 1 - \frac{1}{4} ight) +
\left( \frac{1}{4} - \frac{1}{7} ight) + \left( \frac{1}{7} -
\frac{1}{10} ight) + ... + \left( \frac{1}{2020} - \frac{1}{2023}
ight)

    P = 1 - \frac{1}{2023} =
\frac{2022}{2023}

  • Câu 25: Thông hiểu

    Cho parabol y=x^{2}+3x+2. Khẳng định nào sai trong các khẳng định sau?

     Ta có:

    \begin{matrix}  y = {x^2} + 3x + 2 \hfill \\   \Rightarrow y' = 2x + 3 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( 1 ight) = 5} \\   {y\left( 1 ight) = 6} \end{array}} ight. \hfill \\ \end{matrix}

    => Phương trình tiếp tuyến tại điểm M(1; 6) là:

    y = 5\left( {x - 1} ight) + 6 hay y = 5x + 1

    Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng y=-\frac{1}{5}x-3.

    Mặt khác ta có: - 1 e 5\left( {0 - 1} ight) + 6 = 1

    Vậy tiếp tuyến không đi qua điểm N(0; -1).

  • Câu 26: Nhận biết

    Phát biểu nào trong các phát biểu sau là đúng?

    Dựa theo định lí:

    Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

    => Phát biểu đúng là: “Nếu hàm số y =f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.”

  • Câu 27: Thông hiểu

    Cho hàm số y =f(x) = 2\cos\left( x + \frac{5\pi}{6} ight). Tính f'\left( \frac{\pi}{6} ight)?

    Ta có:

    y = f(x) = 2\cos\left( x + \frac{5\pi}{6}ight)

    \Rightarrow f'(x) = - 2\sin\left( x +\frac{5\pi}{6} ight)

    \Rightarrow f'\left( \frac{\pi}{6}ight) = - 2\sin\left( \frac{\pi}{6} + \frac{5\pi}{6} ight) = -2\sin(\pi) = 0

  • Câu 28: Thông hiểu

    Cho hàm số y =
\sqrt{2x - x^{2}}. Tính giá trị của biểu thức T = y^{3}.y''?

    Ta có: y = \sqrt{2x - x^{2}}

    \Rightarrow y' = \frac{1 -
x}{\sqrt{2x - x^{2}}} \Rightarrow y'' = \frac{- 1}{\left(
\sqrt{2x - x^{2}} ight)^{3}}

    \Rightarrow T = y^{3}.y'' =
\left( \sqrt{2x - x^{2}} ight)^{3}.\frac{- 1}{\left( \sqrt{2x - x^{2}}
ight)^{3}} = - 1

  • Câu 29: Thông hiểu

    Tính vận tốc tức thời của chuyển động tại t = 3(s) của một chất điểm chuyển động được xác định bởi phương trình S(t) =
2t^{3} + 6t^{2} - t, trong đó t tính bằng giây và S được tính bằng mét.

    Ta có:

    v(t) = S'(t) = 6t^{2} + 12t -
1

    Vận tốc tức thời của chuyển động khi t =
3(s) là:

    v(3) = 6.3^{2} + 12.3 - 1 =
89(m/s)

  • Câu 30: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 31: Vận dụng cao

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 33: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng \frac{3}{5}.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Suy ra phương trình tiếp tuyến d có dạng y + y_{0} = k\left( x - x_{0} ight)

    => Tiếp tuyến d có một vecto pháp tuyến là \overrightarrow{n_{d}} = ( - k;1)

    Đường thẳng \Delta có một vecto pháp tuyến là: \overrightarrow{n_{\Delta}} =(4; - 3)

    Theo đề bài ta có:

    \cos(d;\Delta) = \frac{| - 4k -3|}{\sqrt{k^{2} + 1}.\sqrt{16 + 9}} = \frac{3}{5}

    \Leftrightarrow \left\lbrack\begin{matrix}k = 0 \\k = - \dfrac{24}{7} \\\end{matrix} ight.

    Với k = - \frac{24}{7}ta có: 3{x_{0}}^{2} - 6x_{0} = -\frac{24}{7} (vô nghiệm)

    Với k = 0 ta có: 3{x_{0}}^{2} - 6x_{0} = 0 \Leftrightarrow\left\lbrack \begin{matrix}x_{0} = 0 \\x_{0} = 2 \\\end{matrix} ight.

    Nếu x_{0} = 0 \Rightarrow y_{0} =2=> Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2

    Nếu x_{0} = 2 \Rightarrow y_{0} = -2=> Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2

  • Câu 34: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 1}}}&{{\text{ khi }}x > 1} \\   {x - 1}&{{\text{ khi }}x \leqslant 1} \end{array}} ight.. Khẳng định nào sau đây đúng trong các khẳng định sau?

    Ta có:

    f\left( { - 2} ight) =  - 2 - 1 =  - 3

  • Câu 35: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{x + 1}{x - 1}. Gọi A;B là các điểm thuộc đồ thị (C) mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm A;B thỏa mãn điều kiện trên?

    Ta có: y' = \frac{- 2}{(x -
1)^{2}}

    Giả sử A\left( x_{1};y_{1}
ight);B\left( x_{2};y_{2} ight) với x_{1} eq x_{2}

    Tiếp tuyến tại A và B song song với nhau nên y'\left( x_{1} ight) = y'\left( x_{2}
ight)

    \Leftrightarrow \frac{1}{\left( x_{1} -
1 ight)^{2}} = \frac{1}{\left( x_{2} - 1 ight)^{2}}

    \Leftrightarrow \left( x_{1} - 1
ight)^{2} = \left( x_{2} - 1 ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} - 1 = x_{2} - 1 \\
x_{1} - 1 = - x_{2} + 1 \\
\end{matrix} ight.\  \Leftrightarrow x_{1} + x_{2} = 2

    Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn x_{1} + x_{2} = 2 thì các tiếp tuyến tại A và B song song với nhau.

  • Câu 36: Thông hiểu

    Cho đường cong có phương trình y=x^{3}-2x+1. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:

     Ta có:

    \begin{matrix}  y = {x^3} - 2x + 1 \hfill \\   \Rightarrow y' = 3{x^2} - 2 \hfill \\   \Rightarrow y'\left( 1 ight) = {3.1^2} - 2 = 1 \hfill \\ \end{matrix}

    Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1

  • Câu 37: Thông hiểu

    Cho hàm số y =
x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn f''\left( x_{0} ight) =
0 là:

    Ta có:

    y = x^{3} - 3x^{2} + 1

    \Rightarrow f'(x) = 3x^{2} - 6x
\Rightarrow f''(x) = 6x - 6

    \Rightarrow f''(x) = 0
\Leftrightarrow x = 1

    Khi đó f'(1) = 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; - 1) là: y = f'(1)(x - 1) + f(1)

    \Rightarrow y = - 3(x - 1) - 1
\Rightarrow 3x + y - 2 = 0

  • Câu 38: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 39: Vận dụng

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Đáp án là:

    Cho chuyển động thẳng xác định bởi phương trình S = - t^{3} + 3t^{2} + 9t , trong đó t tính bằng giây và S tính bằng mét.

    Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v = S' = - 3t^{2} + 6t + 9

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a = S'' = - 6t + 6

    Gia tốc triệt tiêu khi a = 0 \Rightarrow
S'' = 0 \Rightarrow t = 1

    Khi đó vận tốc của chuyển động là S'(1) = 12m/s

  • Câu 40: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo