Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 2: Thông hiểu

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 3: Thông hiểu

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Đáp án là:

    Một viên đạn được bắn lên với tốc độ ban đầu v = 196m/s từ mặt đất theo phương thẳng đứng. Biết phương trình chuyển động của viên đạn là y = v_{0}t - 4,9t^{2}(m), trong đó t là khoảng thời gian tính bằng giây, trục Oy hướng lên theo phương thẳng đứng và gốc O là vị trí viên đạn được bắn lên. Bỏ qua sức cản của không khí. Hỏi tại thời điểm tốc độ của viên đạn bằng 0, viên đạn cách mặt đất bao nhiêu mét?

    Đáp án: 1960 (m)

    Ta có vận tốc tại thời điểm t là:

    v = y'(t) = v_{0} - 2.4,9.t = v_{0} -
9,8t = 196 - 9,8t

    v = 0 \Leftrightarrow 196 - 9,8t = 0\Leftrightarrow t = 20(s)

    Từ thời điểm t = 20\ s, viên đạn bắt đầu rơi. Khi đó, viên đạn cách mặt đất:

    y_{(20)} = 196.20 - 4,9.20^{2} =
1960(m)

  • Câu 4: Nhận biết

    Cho hai mệnh đề sau:

    i) f(x) có đạo hàm tại x_{0} thì f(x) liên tục tại x_{0}.

    ii) f(x) liên tục tại x_{0} thì f(x) có đạo hàm tại x_{0}.

    Khẳng định nào dưới đây đúng?

    Khẳng định đúng là: (i) đúng, (ii) sai.

  • Câu 5: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 6: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

  • Câu 8: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 9: Thông hiểu

    Cho hàm số f(x)=\frac{1}{3}x^{3}-2\sqrt{2}x^{2}+8x-1, có đao hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0 là:

    Ta có:

    \begin{matrix}  f(x) = \dfrac{1}{3}{x^3} - 2\sqrt 2 {x^2} + 8x - 1 \hfill \\   \Rightarrow f'\left( x ight) = {x^2} - 4\sqrt 2 x + 8 \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^2} - 4\sqrt 2 x + 8 = 0 \hfill \\   \Leftrightarrow {\left( {x - 2\sqrt 2 } ight)^2} = 0 \hfill \\   \Leftrightarrow x = 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy tập nghiệm của phương trình là S=\left\{ {2\sqrt 2 } ight\}

  • Câu 10: Nhận biết

    Đạo hàm của hàm số y=-\frac{x^{3}}{3}+\frac{x^{2}}{2}-x+5 bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y =  - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + 5 \hfill \\   \Rightarrow y' =  - \dfrac{{3{x^2}}}{3} + \dfrac{{2x}}{2} - 1 \hfill \\   \Rightarrow y' =  - {x^2} + x - 1 \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 12: Thông hiểu

    Tính đạo hàm cấp 3 của hàm số f(x)=(2x+5)^{5}

    Ta có:

    \begin{matrix}  f(x) = {(2x + 5)^5} \hfill \\   \Rightarrow f'\left( x ight) = 5.2.{\left( {2x + 5} ight)^4} = 10.{\left( {2x + 5} ight)^4} \hfill \\   \Rightarrow f''\left( x ight) = 80.{\left( {2x + 5} ight)^3} \hfill \\   \Rightarrow {f^{\left( 3 ight)}}\left( x ight) = 480.{\left( {2x + 5} ight)^2} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 14: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 15: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 16: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 17: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = t^{3} - 3t^{2} - 9t +
2,(t > 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc bằng 0 thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 3t^{2} - 6t - 9 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1(ktm) \\
t = 3(tm) \\
\end{matrix} ight.

    Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:

    a(t) = S''(t) = v'(t) =
\left( 3t^{2} - 6t - 9 ight)' = 6t - 6

    Gia tốc tức thời tại thời điểm vận tốc bằng 0 là

    a(3) = 6.3 - 6 = 12\left( m/s^{2}
ight)

  • Câu 18: Vận dụng

    Cho hàm số y = x^{2018} - 1009x^{2} +2019x. Giá trị của \lim_{\Delta xightarrow 0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} bằng:

    Ta có:

    f'(x) = 2018.x^{2017} - 2.1009x +2019

    \Rightarrow \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = f'(1)

    = 2018.1 - 2.2019.1 + 2019 =2019

    Vậy \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = 2019

  • Câu 19: Nhận biết

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số y = (2x - 1)\sqrt{x^{2} + x}?

    Ta có:

    y = (2x - 1)\sqrt{x^{2} +
x}

    \Rightarrow y' = 2\sqrt{x^{2} + x} +
\frac{(2x - 1)(2x + 1)}{2\sqrt{x^{2} + x}}

    = \frac{4x^{3} + 4x + 4x^{2} -
1}{2\sqrt{x^{2} + x}} = \frac{8x^{2} + 4x - 1}{2\sqrt{x^{2} +
x}}

  • Câu 21: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 22: Vận dụng

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\sqrt{x^{2} - 2x} . Có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình f'(x) \geq f(x) ?

    Kết quả: 0

    Tập xác định: D = ( - \infty;0brack
\cup \lbrack 2; + \infty)

    Ta có: f'(x) = \frac{x -
1}{\sqrt{x^{2} - 2x}}

    Ta có:

    f'(x) \geq f(x)

    \Leftrightarrow \frac{x - 1}{\sqrt{x^{2}
- 2x}} \geq \sqrt{x^{2} - 2x}

    \Leftrightarrow \frac{- x^{2} + 3x -
1}{\sqrt{x^{2} - 2x}} \geq 0

    Với x \in ( - \infty;0) \cup (2; +
\infty)

    Ta có:\frac{- x^{2} + 3x - 1}{\sqrt{x^{2}
- 2x}} \geq 0

    \Leftrightarrow - x^{2} + 3x - 1 \geq 0
\Leftrightarrow x \in \left\lbrack \frac{3 - \sqrt{5}}{2};\frac{3 +
\sqrt{5}}{2} ightbrack

    Kết hợp với điều kiện x \in ( - \infty;0)
\cup (2; + \infty) ta có: x \in
\left( 2;\frac{3 + \sqrt{5}}{2} ightbrack

    x\mathbb{\in Z} nên suy ra x \in \varnothing

    Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.

  • Câu 23: Thông hiểu

    Biết đạo hàm của hàm số y = f(x) = \frac{1}{\sqrt{x^{2} + 1}} được biểu diễn như sau:y' =
\frac{mx}{\sqrt{\left( x^{2} + 1 ight)^{3}}}. Giá trị của tham số m là:

    Ta có:

    f'(x) = \left( \frac{1}{\sqrt{x^{2}
+ 1}} ight)'

    = - \dfrac{\dfrac{2x}{2\sqrt{x^{2} +1}}}{x^{2} + 1} = - \dfrac{x}{\sqrt{\left( x^{2} + 1ight)^{3}}}

    Khi đó m = - 1

  • Câu 24: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 25: Thông hiểu

    Tìm số tiếp tuyến của đồ thị hàm số y = - x^{4} + 2x^{2} song song với trục hoành.

    Ta có:

    y' = - 4x^{3} + 4x

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số y = - x^{4} + 2x^{2} khi đó ta có: k = 0

    Suy ra y'\left( x_{0} ight) =
0

    \Leftrightarrow - 4{x_{0}}^{3} + 4x_{0}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = - 1 \\
x_{0} = 1 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = 0
\Rightarrow PTTT:y = 0

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Với x_{0} = 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Vậy có 2 tiếp tuyến song song với trục hoành.

  • Câu 26: Nhận biết

    Cho hàm số y =5\sin x - 3\cos x. Chọn biểu thức đúng?

    Ta có:

    y = 5\sin x - 3\cos x

    \Rightarrow y' = (5\sin x -3\cos x)' = 5\cos x + 3\sin x

  • Câu 27: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 28: Thông hiểu

    Cho hàm số y =
x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn f''\left( x_{0} ight) =
0 là:

    Ta có:

    y = x^{3} - 3x^{2} + 1

    \Rightarrow f'(x) = 3x^{2} - 6x
\Rightarrow f''(x) = 6x - 6

    \Rightarrow f''(x) = 0
\Leftrightarrow x = 1

    Khi đó f'(1) = 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; - 1) là: y = f'(1)(x - 1) + f(1)

    \Rightarrow y = - 3(x - 1) - 1
\Rightarrow 3x + y - 2 = 0

  • Câu 29: Nhận biết

    Xác định hệ số góc tiếp tuyến của đồ thị hàm số y = x^{3} - 3x^{2} + 2 tại điểm N(1;0)?

    Ta có: y'(x) = 3x^{2} -
6x

    Hệ số góc tiếp tuyến của đồ thị hàm số tại điểm N(1;0) là:

    y'(1) = - 3

  • Câu 30: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 31: Vận dụng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

    Giả sử vận tốc của vật chuyển động có phương trình v(t) = at^{2} + bt + c

    Ta có:

    v(2) = 9 \Leftrightarrow 4a + 2b + c =9

    v(0) = 6 \Rightarrow c = 6

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}\dfrac{- b}{2a} = 2 \\4a + 2b + 6 = 9 \\\end{matrix} ight.\  \\\Leftrightarrow \left\{ \begin{matrix}4a + b = 0 \\4a + 2b = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{3}{4} \\b = 3 \\\end{matrix} ight.\  \\\end{matrix}

    Do đó: v(t) = - \frac{3}{4}t^{2} + 3t +6

    Vậy v(2,5) = 8,8125(km/h)

  • Câu 32: Thông hiểu

    Viết phương trình tiếp điểm của đồ thị hàm số y = f(x) = \sqrt{2x + 1}. Biết rằng tiếp tuyến đó song song với đường thẳng x - 3y + 6 = 0?

    Gọi M\left( x_{0};y_{0}
ight) là tiếp điểm của tiếp tuyến

    Ta có: y' = \frac{1}{\sqrt{2x +
1}}

    x - 3y + 6 = 0 \Rightarrow y =
\frac{x}{3} + 2

    Do (C) song song với đường thẳng y = \frac{x}{3} + 2 nên y'\left( x_{0} ight) =
\frac{1}{3}

    \Leftrightarrow \frac{1}{\sqrt{2x_{0} +
1}} = \frac{1}{3} \Leftrightarrow x_{0} = 4 \Rightarrow y_{0} =
3

    Phương trình tiếp tuyến tương ứng là

    y - 3 = \frac{1}{3}(x - 4) \Rightarrow y
= \frac{1}{3}x + \frac{5}{3}

  • Câu 33: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{2x + 1}{x^{2} + x - 2} có dạng y'' = \frac{a}{(x - 1)^{3}} +
\frac{b}{(x + 2)^{3}}. Tính giá trị biểu thức T = a + b.

    Ta có:

    y = \frac{2x + 1}{x^{2} + x - 2} =
\frac{1}{x - 1} + \frac{1}{x + 2}

    \Rightarrow y' = - \frac{1}{(x -
1)^{2}} - \frac{1}{(x + 2)^{2}}

    \Rightarrow y'' = \frac{2}{(x -
1)^{3}} + \frac{2}{(x + 2)^{3}}

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow T = a + b = 4

  • Câu 34: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 35: Thông hiểu

    Cho hàm số y =x.\cos x. Hệ thức nào sau đây đúng?

    Ta có:

    y = x.\cos x

    \Rightarrow y' = \cos x - x\sin
x

    \Rightarrow y'' = - 2\sin x -x\cos x

    \Rightarrow y'' + y = - 2\sin x -x\cos x + x\cos x = - 2\sin x

  • Câu 36: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 37: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = \frac{t^{3}}{3} -
2t^{2} + 3t - 5; trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm t = 4(s) thì vận tốc tức thời của chuyển động bằng bao nhiêu?

    Ta có:

    v(t) = S'(t) = t^{2} - 4t +
3

    Vận tốc tức thời của chuyển động khi t =
4(s) là:

    v(4) = 4^{2} - 4.4 + 3 =
3(m/s)

  • Câu 38: Vận dụng cao

    Cho hai hàm số f(x) =\frac{1}{x\sqrt{2}};g(x) = \frac{x^{2}}{\sqrt{2}}. Gọi d_{1};d_{2} lần lượt là tiếp tuyến của mỗi đồ thị hàm số f(x);g(x) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?

    Xét phương trình hoành độ giao điểm:

    \frac{1}{x\sqrt{2}} =\frac{x^{2}}{\sqrt{2}} \Leftrightarrow x = 1

    Ta có: d_{1} có hệ số góc k_{1} = f'(1) = -\frac{1}{\sqrt{2}}

    d_{2} có hệ số góc k_{2} = g'(1) = \sqrt{2}

    => k_{1}.k_{2} = - 1 \Rightarrowd_{1}\bot d_{2}

  • Câu 39: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 40: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo