Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Tính số gia của hàm số
tại điểm x0 ứng với số gia ![]()
Ta có:
Tính đạo hàm của hàm số: ![]()
Ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
. Biết
song song với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Do song song với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
?
TXĐ:
Ta có:
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là:
Có bao nhiêu tiếp tuyến của đồ thị hàm số
đi qua điểm
?
Phương trình đường thẳng đi qua điểm có dạng
Đường thẳng (d) là tiếp tuyến khi hệ có nghiệm
Dễ thấy hệ phương trình có ba nghiệm phân biệt nên có ba tiếp tuyến thỏa mãn.
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Hãy tính ![]()
Ta có:
Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:
Khi đó: . Xét
Hàm số có đạo hàm tại thì
Vậy với thì hàm số có đạo hàm tại
khi đó
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
Suy ra
Nên hàm số không liên tục tại
Vậy không tồn tại đạo hàm của hàm số tại điểm
.
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Tính vận tốc tức thời của chuyển động tại
của một chất điểm chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
được tính bằng mét.
Ta có:
Vận tốc tức thời của chuyển động khi là:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Phương trình tiếp tuyến tương ứng là
Cho hàm số
. Giải bất phương trình ![]()
Ta có:
Vậy khi và chỉ khi
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Tìm đạo hàm cấp hai của hàm số sau: ![]()
Ta có:
Phương trình chuyển động của một chất điểm được biểu diễn là
. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?
Ta có:
Suy ra vận tốc của chuyển động là
Bảng biến thiên
Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm .
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Cho hàm số
có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của
-3|| - 3
Cho hàm số có đồ thị
. Đường thẳng d có phương trình
là tiếp tuyến của
. Biết
cắt trục
tại
và cắt trục
tại sao cho tam giác
cân tại
, với
là gốc tọa độ.
Giá trị của -3|| - 3
Tập xác định
Ta có:
Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1
Do y’ < 0 nên k = -1
Gọi tọa độ tiếp điểm là ta có:
Với
Với
Vậy
Cho hàm số
. Giá trị của
bằng:
Ta có:
Vậy
Tìm công thức đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Khi đó ![]()
Với xét:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Tính đạo hàm của hàm số
tại điểm ![]()
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Cho hàm số
có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho đường cong có phương trình
. Hệ số góc của tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 1 là:
Ta có:
Vậy hệ số góc tiếp tuyến của đường cong tại điểm có hoành độ bằng 1 là k = 1
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Một viên đạn được bắn lên cao theo phương trình
trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Đạo hàm của hàm số
là
Ta có:
Đạo hàm của hàm số: ![]()
Ta có:
Cho hàm số
. Tính ![]()
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
. Tính
thu được kết quả là:
Ta có:
Tìm công thức đạo hàm của hàm số
?
Ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là