Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Phương trình chuyển động của một chất điểm được biểu diễn là S(t) = - t^{3} +
6t^{2}. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?

    Ta có:

    S(t) = - t^{3} + 6t^{2}

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = - 6t +
12

    v'(t) = 0 \Leftrightarrow 12 - 6t =
0 \Leftrightarrow t = 2

    v(t) = 0 \Leftrightarrow 12t - 3t^{2} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm t = 2(s).

  • Câu 2: Vận dụng

    Cho hàm số y =\sin2x.\cos x. Xác định giá trị y^{(4)}\left( \frac{\pi}{6} ight)?

    Ta có:

    y =\sin2x.\cos x = \frac{1}{2}\left( \sin3x+ \sin x ight)

    \Rightarrow y' = \frac{1}{2}\left(3\cos3x + \cos x ight)

    \Rightarrow y'' =\frac{1}{2}\left( - 9\sin3x - \sin x ight)

    \Rightarrow y''' =\frac{1}{2}\left( - 27\cos3x - \cos x ight)

    \Rightarrow y^{(4)} = \frac{1}{2}\left(81\sin3x + \sin x ight)

    \Rightarrow y^{(4)}\left( \frac{\pi}{6}
ight) = \frac{1}{2}\left\lbrack 81sin\left( \frac{3.\pi}{6} ight) +
\sin\left( \frac{\pi}{6} ight) ightbrack = \frac{1}{2}.\left(
3^{4} - \frac{1}{2} ight)

  • Câu 3: Thông hiểu

    Cho f(x) =\sin3x. Giá trị của f''\left( - \frac{\pi}{2} ight) bằng bao nhiêu?

    Ta có: f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow f''\left( -\frac{\pi}{2} ight) = - 9.\sin\left( - \frac{3\pi}{2} ight) =9

  • Câu 4: Vận dụng

    Cho hàm số y = x^{2018} - 1009x^{2} +2019x. Giá trị của \lim_{\Delta xightarrow 0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} bằng:

    Ta có:

    f'(x) = 2018.x^{2017} - 2.1009x +2019

    \Rightarrow \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = f'(1)

    = 2018.1 - 2.2019.1 + 2019 =2019

    Vậy \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = 2019

  • Câu 5: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 6: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 7: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 8: Thông hiểu

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng cao

    Một vật rơi tự do theo phương trình s =\frac{1}{3}gt^{2}, trong đó g =9,8m/s^{2} là gia tốc trọng trường. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + ∆t với ∆t = 0,001s.

    Ta có:

    v_{tb} = \frac{s(t + \Delta t) -s(t)}{\Delta t}

    \Rightarrow v_{tb} =\dfrac{\dfrac{1}{2}g(t + \Delta t)^{2} - \dfrac{1}{2}gt^{2}}{\Delta t}

    \Rightarrow v_{tb} = gt +\frac{1}{2}g\Delta t = 49,0049m/s

    Vậy vận tốc trung bình của chuyển động là 49,0049m/s.

  • Câu 10: Nhận biết

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

  • Câu 11: Thông hiểu

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

     Ta có:

    \begin{matrix}  y' = \left( {{x^2}} ight)\prime \tan x + \left( {\tan x} ight)'.{x^2} + \left( {\sqrt x } ight)\prime \hfill \\   = 2x\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx^{3}}{3} - \frac{mx^{2}}{2} + (3 - m)x - 2. Tìm giá trị của m để f'(x) > 0;\forall
x\mathbb{\in R}?

    Ta có:

    f'(x) = mx^{2} - mx + (3 -
m)

    Nếu m = 0 thì f'(x) = 3 > 0;\forall x\mathbb{\in
R}

    Nếu m eq 0 thì f'(x) = mx^{2} - mx + 3 - m là tam thức bậc hai

    f'(x) > 0;\forall x\mathbb{\in
R}

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
\Delta < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m^{2} - 4m(3 - m) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
5m^{2} - 12m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
0 < m < \frac{12}{5} \\
\end{matrix} ight.

    Vậy 0 \leq m <
\frac{12}{5}

  • Câu 13: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 14: Vận dụng

    Cho hàm số y =
\sqrt{3}\cos x + \sin x - x^{2} + 2021x + 2022. Có bao nhiêu nghiệm thuộc \lbrack 0;4\pibrack thỏa mãn phương trình y'' =
0?

    Ta có:

    y = \sqrt{3}\cos x + \sin x - x^{2} +
2021x + 2022

    \Rightarrow y' = \sqrt{3}\sin x +
\cos x - 2x + 2021

    \Rightarrow y'' = \sqrt{3}\cos x
- \sin x - 2

    Lại có y'' = 0 \Leftrightarrow
\sqrt{3}\cos x - \sin x - 2 = 0

    \Leftrightarrow \frac{1}{2}\sin x -
\frac{\sqrt{3}}{2}\cos x = - 1

    \Leftrightarrow \sin\left( x -
\frac{\pi}{3} ight) = - 1

    \Leftrightarrow x - \frac{\pi}{3} =
\frac{- \pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{- \pi}{6} +
k2\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{6} + k2\pi \leq 4\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{12} \leq k \leq \dfrac{25}{12} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2ight\}

    Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 15: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 16: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 17: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 18: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{x^{2} + 3} . T = f(1) +
4f'(1) = 4

    Đáp án là:

    Cho hàm số y =
f(x) = \sqrt{x^{2} + 3} . T = f(1) +
4f'(1) = 4

    Ta có:

    y = f(x) = \sqrt{x^{2} + 3}

    \Rightarrow f'(x) =
\frac{x}{\sqrt{x^{2} + 3}}

    T = f(1) + 4f'(1) = 4

  • Câu 19: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1

    Tập xác định: D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có:

    \begin{matrix}  y' = \left( {\dfrac{{2x}}{{x - 1}}} ight)\prime \hfill \\   = \dfrac{{\left( {2x} ight)'.\left( {x - 1} ight) - 2x.\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{2\left( {x - 1} ight) - 2x}}{{{{\left( {x - 1} ight)}^2}}} = \frac{{ - 2}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Suy ra đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1 là:

    y'\left( { - 1} ight) = \frac{{ - 2}}{{{{\left( { - 1 - 1} ight)}^2}}} =  - \frac{1}{2}

  • Câu 21: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 22: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 23: Thông hiểu

    Tính đạo hàm của hàm số y = \sin ({x^2} - 3x + 2)

    Ta có:

    \begin{matrix}  y = \sin \left( {{x^2} - 3x + 2} ight) \hfill \\   \Rightarrow y\prime = \cos \left( {{x^2} - 3x + 2} ight).\left( {{x^2} - 3x + 2} ight)\prime \hfill \\   = \left( {2x - 3} ight).\cos \left( {{x^2} - 3x + 2} ight) \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{x + 1}{x - 2} là:

    Ta có:

    y = \frac{x + 1}{x - 2} = 1 + \frac{3}{x
- 2}

    \Rightarrow y' = - \frac{3}{(x -
2)^{2}}

    \Rightarrow y'' = - \frac{3.( -
2)(x - 2)}{(x - 2)^{4}} = \frac{6}{(x - 2)^{3}}

  • Câu 25: Thông hiểu

    Cho hàm số y =
\frac{x - m}{x + 1} có đồ thị hàm số \left( C_{m} ight) . Tìm các giá trị của tham số m để tiếp tuyến của \left( C_{m}
ight) tại điểm có hoành độ bằng 0 song song với đường thẳng \Delta:3x - y + 1 = 0 ?

    Giá trị của tham số m là: -2|| - 2

    Đáp án là:

    Cho hàm số y =
\frac{x - m}{x + 1} có đồ thị hàm số \left( C_{m} ight) . Tìm các giá trị của tham số m để tiếp tuyến của \left( C_{m}
ight) tại điểm có hoành độ bằng 0 song song với đường thẳng \Delta:3x - y + 1 = 0 ?

    Giá trị của tham số m là: -2|| - 2

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{m + 1}{(x +
1)^{2}}

    Gọi M(0; - m) \in (C); k là hệ số góc tiếp tuyến của \left( C_{m}
ight) tại M và \Delta:3x - y + 1
= 0

    Do tiếp tuyến M song song với \Delta:3x -
y + 1 = 0 nên k = 3

    \Leftrightarrow y'(0) = 3
\Leftrightarrow 1 + m = 3 \Rightarrow m = - 2

  • Câu 26: Nhận biết

    Đạo hàm của hàm số y = f(x) = \frac{1}{2}x^{4} + \frac{5}{3}x^{3} -
\sqrt{2x} + m^{2} (với m = const) là:

    Ta có:

    y = f(x) = \frac{1}{2}x^{4} +
\frac{5}{3}x^{3} - \sqrt{2x} + m^{2}

    \Rightarrow f'(x) =
\frac{1}{2}.4x^{3} + \frac{5}{3}.3x^{2} - \frac{1}{\sqrt{2x}} +
0

    \Rightarrow f'(x) = 2x^{3} + 5x^{2}
- \frac{1}{\sqrt{2x}}

  • Câu 27: Thông hiểu

    Đạo hàm của hàm số y = \sqrt {3 + 2\tan x} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {3 + 2\tan x}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\left( {3 + 2\tan x} ight)\prime  \hfill \\   = \dfrac{1}{{2\sqrt {3 + 2\tan x} }}.\dfrac{2}{{{{\cos }^2}x}} \hfill \\   = \dfrac{1}{{{{\cos }^2}x\sqrt {3 + 2\tan x} }} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Đáp án là:

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Vận tốc của vật là: v = s^{'} = -
2t^{2} + 14t.

    Vận tốc của vật đạt 12m/s thì - 2t^{2} + 14t = 12 \Leftrightarrow 2t^{2} -
14t + 12 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight.

    \Rightarrow Vật đạt vận tốc là 12\ m/s lần thứ 2 khi t = 6.

    Lúc đó quãng đường vật đi được là:

    s(6) = - \frac{2}{3}.6^{4} + 7.6^{2} + 3
= 111 (mét)

  • Câu 29: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 30: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 31: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 33: Nhận biết

    Hàm số nào sau đây có đạo hàm bằng \frac{1}{\sqrt{2x}}?

    Ta có:

    f'(x) = \left( \sqrt{2x}
ight)' = \frac{1}{\sqrt{2x}}

  • Câu 34: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 35: Vận dụng cao

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Điều kiện x eq 1

    Ta có: f'(x) = \frac{- 1}{(x -
1)^{2}}

    Đường thẳng d đi qua Q có hệ số góc k là y = k(x - a) + 1

    Đường thẳng d tiếp xúc với (C) \Leftrightarrow \left\{ \begin{matrix}k(x - a) + 1 = \dfrac{x + 2}{x - 1}(*) \\k = - \dfrac{1}{(x - 1)^{2}}(**) \\\end{matrix} ight. có nghiệm

    Thế (**) vào (*) ta có: - \frac{1}{(x -
1)^{2}}(x - a) + 1 = \frac{- x + 2}{x - 1}

    \Leftrightarrow - x + a + x^{2} - 2x + 1
= - x^{2} + 3x - 2;x eq 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0\
\ \ (1)

    Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất

    Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 = 0 \\2 - 6 + a + 3 eq 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 > 0 \\2 - 6 + a + 3 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{3}{2} \\a = 1 \\\end{matrix} ight.

    Vậy 1 + \frac{3}{2} =
\frac{5}{2}

  • Câu 36: Thông hiểu

    Phương trình tiếp tuyến của đồ thị hàm số y = \frac{2x + 3}{x - 2} tại điểm có hoành độ bằng 3 là:

    Ta có: x = 3 \Rightarrow y(3) =
9

    y' = \frac{- 7}{(x - 2)^{2}}
\Rightarrow y'(3) = \frac{- 7}{(3 - 2)^{2}} = - 7

    Phương trình tiếp tuyến tương ứng là

    y = - 7(x - 3) + 9 \Rightarrow y = - 7x
+ 30

  • Câu 37: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 38: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 39: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo