Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{x^{2} + 2x + 3}{x + 2}?

    Ta có:

    y = \frac{x^{2} + 2x + 3}{x + 2} = x +\frac{3}{x + 2}

    \Rightarrow y' = 1 + \frac{3}{(x +
2)^{2}}

  • Câu 3: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ x^{2}-1 & \text{ khi } x\geq 0 \\ -x^{2} & \text{ khi } x<1 \end{cases}. Khẳng định nào sau đây sai?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} ight) =  - 1} \\   {\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - {x^2}} ight) = 0} \end{array}} ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số không liên tục tại x = 0

    => Hàm số không có đạo hàm tại x = 0

    Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"

  • Câu 4: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{x + 1}{x - 2} là:

    Ta có:

    y = \frac{x + 1}{x - 2} = 1 + \frac{3}{x
- 2}

    \Rightarrow y' = - \frac{3}{(x -
2)^{2}}

    \Rightarrow y'' = - \frac{3.( -
2)(x - 2)}{(x - 2)^{4}} = \frac{6}{(x - 2)^{3}}

  • Câu 5: Thông hiểu

    Xác định đạo hàm của hàm số y = \left( 2 - \sqrt{3} ight)^{x} trên tập số thực.

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a;(a > 0;a eq 1)

    y = \left( 2 - \sqrt{3} ight)^{x}\Rightarrow y' = \left( 2 - \sqrt{3} ight)^{x}.\ln\left( 2 -\sqrt{3} ight)

    \Rightarrow y' = \frac{1}{\left( 2 +\sqrt{3} ight)^{x}}.\ln\left( 2 - \sqrt{3} ight)

    \Rightarrow y' = \left( 2 + \sqrt{3}ight)^{- x}.\ln\left( 2 - \sqrt{3} ight)

  • Câu 6: Thông hiểu

    Tìm công thức đạo hàm cấp hai của hàm số y = \frac{3x + 1}{x + 2}?

    Ta có: y = \frac{3x + 1}{x + 2} = 3 -
\frac{5}{x + 2}

    \Rightarrow y' = \frac{5}{(x +
2)^{2}} \Rightarrow y'' = \frac{- 10}{(x + 2)^{3}}

  • Câu 7: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

  • Câu 9: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 10: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 11: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 12: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 13: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 14: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \sqrt {{x^2} + 2}

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \sqrt {{x^2} + 2} } ight] \prime \hfill \\   \Rightarrow y' = \left( {\sqrt {{x^2} + 2} } ight)'.\cos \sqrt {{x^2} + 2}  \hfill \\   \Rightarrow y' = \dfrac{x}{{\sqrt {2 + {x^2}} }}.\cos \sqrt {{x^2} + 2}  \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 16: Thông hiểu

    Tính đạo hàm của hàm số y = \left( x^{2} + 2x ight).e^{x}.

    Ta có:

    y = \left( x^{2} + 2x
ight).e^{x}

    \Rightarrow y' = (2x + 2)e^{x} +
\left( x^{2} + 2x ight)e^{x} = \left( x^{2} + 4x + 2
ight)e^{x}

  • Câu 17: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)...(x - 2022)}. Tính đạo hàm của hàm số y = f(x) tại x = 0?

    Đặt g(x) = (x - 1)(x - 2)...(x -
2022)

    Khi đó f(x) = \frac{x}{g(x)}

    \Rightarrow f'(x) =
\frac{x'.g(x) - x.g'(x)}{g^{2}(x)}

    = \frac{g(x) - x.g'(x)}{g^{2}(x)} =
\frac{1}{g(x)} - \frac{x.g'(x)}{g^{2}(x)}

    f'(0) = \frac{1}{g(0)} -
0.\frac{g'(0)}{g^{2}(x)} = \frac{1}{g(0)}

    = \frac{1}{( - 1).( - 2)...( - 2022)} =
\frac{1}{2022!}

  • Câu 18: Thông hiểu

    Phương trình tiếp tuyến của đồ thị hàm số y = \frac{2x + 3}{x - 2} tại điểm có hoành độ bằng 3 là:

    Ta có: x = 3 \Rightarrow y(3) =
9

    y' = \frac{- 7}{(x - 2)^{2}}
\Rightarrow y'(3) = \frac{- 7}{(3 - 2)^{2}} = - 7

    Phương trình tiếp tuyến tương ứng là

    y = - 7(x - 3) + 9 \Rightarrow y = - 7x
+ 30

  • Câu 19: Nhận biết

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 20: Thông hiểu

    Cho hàm số y =
f(x) = sin^{3}x. Công thức nào sau đây đúng?

    Ta có: y = f(x) = \sin^{3}x

    \Rightarrow f'(x) =3\sin^{2}x.\cos x

    \Rightarrow f''(x) =6\sin x.\cos^{2}x - 3\sin^{3}x

    Khi đó

    y'' + 9y = 6\sin x.\cos^{2}x -3\sin^{3}x + 9\sin^{3}x

    = 6\sin x\left( \sin^{2}x + \cos^{2}xight) = 6\sin x

    \Rightarrow y'' + 9y - 6\sin x =0

  • Câu 21: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 22: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 23: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 24: Thông hiểu

    Xác định đạo hàm của hàm số y = \left( x^{3} - 5 ight)\sqrt{x}.

    Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left\lbrack \left(
x^{3} - 5 ight)\sqrt{x} ightbrack'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight)\frac{1}{2\sqrt{x}}

    = \frac{7}{2}x^{2}\sqrt{x} -
\frac{5}{2\sqrt{x}} = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

  • Câu 25: Vận dụng

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Đáp án là:

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Ta có:

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    \Rightarrow f'(x) = \left\{
\begin{matrix}
2x + a\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
3x^{2} - 2x - 8\ \ \ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Hàm số có đạo hàm tại điểm x =
2

    Suy ra 4 + a = 0 \Rightarrow a = -
4

    Mặt khác hàm số có đạo hàm tại điểm x =
2

    Suy ra \lim_{x ightarrow 2^{+}}f(x) =
\lim_{x ightarrow 2^{-}}f(x) = f(2)

    \Rightarrow 4 + 2a + b = - 2 \Rightarrow
b = 2

  • Câu 26: Nhận biết

    Tính số gia của hàm số y = x^{2} +2 tại điểm x0 = 2 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f(2 + 1) -f(2)

    \Rightarrow \Delta y = f(3) -f(2)

    \Rightarrow \Delta y = \left( 3^{2} + 2ight) - \left( 2^{2} + 2 ight) = 5

  • Câu 27: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 28: Nhận biết

    Cho hàm số y =
f(x) = \frac{3x + 5}{- 1 + 2x}. Mệnh đề nào dưới đây là mệnh đề đúng?

    Ta có:

    f(x) = \frac{3x + 5}{- 1 +
2x}

    \Rightarrow f'(x) = \frac{(3x +
5)'( - 1 + 2x) - ( - 1 + 2x)'(3x + 5)}{( - 1 +
2x)^{2}}

    \Rightarrow f'(x) = \frac{3(2x - 1)
- 2(3x + 5)}{( - 1 + 2x)^{2}}

    \Rightarrow f'(x) = \frac{- 13}{( -
1 + 2x)^{2}}

  • Câu 29: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 30: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 31: Thông hiểu

    Cho hàm số y=\frac{3x-4}{x+2}. Tìm x sao cho y" = 20

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 4}}{{x + 2}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {x + 2} ight) - \left( {3x - 4} ight)}}{{{{\left( {x + 2} ight)}^2}}} = \dfrac{{10}}{{{{\left( {x + 2} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 10.2.\left( {x + 2} ight)}}{{{{\left( {x + 2} ight)}^4}}} = \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  y'' = 20,(xe-2) \hfill \\   \Leftrightarrow \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} = 20 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^3} =  - 1 \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 32: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 33: Thông hiểu

    Cho hàm số y =
\log\left( x^{2} - 2x + m + 1 ight) với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho xác định trên tập số thực?

    Để hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi x^{2} - 2x - m +
1 > 0,\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' <
0

    \Leftrightarrow ( - 1)^{2} - 1(m + 1)
< 0 \Leftrightarrow m > 0

  • Câu 34: Nhận biết

    Cho hàm số y = x
- \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}} + 1. Biểu thức nào dưới đây đúng?

    Ta có:

    y = x - \frac{1}{\sqrt{x}} -
\frac{1}{\sqrt[3]{x}} + 1

    \Rightarrow y' = 1 +
\frac{1}{2\sqrt[3]{x}} + \frac{1}{3\sqrt[4]{x^{4}}}

  • Câu 35: Nhận biết

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =
\frac{2x}{x - 1}. Tính đạo hàm của hàm số đã cho?

    Ta có:f(x) = \frac{2x}{x -
1}

    \Rightarrow f'(x) =
\frac{(2x)'(x - 1) - (x - 1)'(2x)}{(x - 1)^{2}}

    \Rightarrow f'(x) = \frac{2(x - 1) -
2x}{(x - 1)^{2}} = \frac{- 2}{(x - 1)^{2}}

  • Câu 36: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 37: Thông hiểu

    Cho hàm số y = f(x) xác định tại x_{0} = 6 và thỏa mãn \lim_{x ightarrow 6}\frac{f(x) - f(6)}{x - 6} =
2. Giá trị của f'(6) bằng:

    Hàm số y = f(x) có tập xác định là Dx_{0} \in D.

    Nếu tồn tại giới hạn (hữu hạn) \lim_{x
ightarrow x_{0}}\frac{f(x) - f(x_{0})}{x - x_{0}}thì giới hạn gọi là đạo hàm của hàm số tại x_{0}.

    Vậy f'(6) = \lim_{x ightarrow
6}\frac{f(x) - f(6)}{x - 6} = 2.

  • Câu 38: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 39: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2018) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{2018x}{x + 1} ight) .

    Kết quả: S = 2018/2019

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2018) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{2018x}{x + 1} ight) .

    Kết quả: S = 2018/2019

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{2018x}{x + 1}
ight)

    \Rightarrow f'(x) = \left\lbrack
\ln\left( \frac{2018x}{x + 1} ight) ightbrack'

    = \frac{1}{\frac{2018x}{x + 1}}.\left(
\frac{2018x}{x + 1} ight)'

    = \frac{x + 1}{2018x}.\frac{2018}{(x +
1)^{2}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2018)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2018} -
\frac{1}{2019}

    S = 1 - \frac{1}{2019} =
\frac{2018}{2019}

    VD

     

    1

  • Câu 40: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo