Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Đạo hàm cấp hai của hàm số
là:
Tập xác định
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Tìm công thức đạo hàm của hàm số
?
Ta có:
Một vật chuyển động theo quy luật
với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Cho hàm số
. Giải bất phương trình
có tập nghiệm S là:
Ta có:
Xét phương trình ta có:
Điều kiện xác định
Vậy phương trình có tập nghiệm
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Biết
. Tính đạo hàm của hàm số tại điểm
?
Ta có:
kết hợp với
Biết điểm
thuộc đồ thị hàm số
sao cho tiếp tuyến của đồ thị hàm số
tại
song song với đường thẳng
. Có thể xác định được bao nhiêu điểm
thỏa mãn yêu cầu đề bài?
Gọi điểm là điểm thuộc đồ thị hàm số
Ta có: suy ra phương trình tiếp tuyến của
tại điểm
là:
Do nên
Vậy có duy nhất một điểm P thỏa mãn yêu cầu đề bài.
Tính đạo hàm của hàm số ![]()
Ta có:
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Cho hàm số . Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Vậy giá trị của biểu thức
Cho hàm số
. Tìm x sao cho y" = 20
Ta có:
Xét phương trình ta có:
Cho hàm số
xác định tại
và thỏa mãn
. Giá trị của
bằng:
Hàm số có tập xác định là
và
.
Nếu tồn tại giới hạn (hữu hạn) thì giới hạn gọi là đạo hàm của hàm số tại
.
Vậy
Cho hàm số
. Giải phương trình y" = 0
Ta có:
Đạo hàm của hàm số
tại
bằng bao nhiêu?
Kết quả: -64||- 64
Đạo hàm của hàm số tại
bằng bao nhiêu?
Kết quả: -64||- 64
Ta có:
Biết đồ thị hàm số
tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số
thỏa mãn điều kiện trên?
Ta không xét vì giá trị này không ảnh hưởng đến tổng S.
Với đồ thị hàm số
tiếp xúc với trục hoành khi và chỉ khi
có nghiệm
Với thay vào (**) ta được x = 1 thỏa mãn
Với thay vào (**) ta được
Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là
Đạo hàm của hàm số
là
Ta có:
Cho hàm số
có đạo hàm tại
. Tính giá trị của biểu thức ![]()
Vì hàm số có đại hàm tại nên ta có:
Vậy
Cho hàm số
. Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức
-2 || - 2
Cho hàm số . Biết
với
là các số nguyên dương nguyên tố cùng nhau.
Giá trị biểu thức -2 || - 2
Ta có:
Khi đó:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Tính tổng
![]()
Xét
Cho đường cong
với
là tham số. Gọi
là tập các giá trị của tham số
sao cho đồ thị hàm số
có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập
là:
Ta có:
Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0
Gọi tiếp điểm là khi đó
Để có đúng 1 tiếp tuyến song song với trục hoàn thì
Vậy tổng các giá trị m là 5.
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
xác định bởi
. Giá trị của
là:
Tập xác định
Ta có:
Vậy
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Tính
?
Ta có:
Vậy
Cho hàm số
. Công thức tính
là:
Ta có:
….
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của
và đường thẳng
là đường thẳng nào dưới đây?
Hoành độ giao điểm là nghiệm của phương trình
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Một vật chuyển động theo quy luật
với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Một vật chuyển động theo quy luật với
giây
là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là
lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?
Đáp án: 111
Vận tốc của vật là: .
Vận tốc của vật đạt thì
Vật đạt vận tốc là
lần thứ 2 khi
.
Lúc đó quãng đường vật đi được là:
(mét)
Tính đạo hàm cấp 5 của hàm số
là:
Ta có:
Hàm số
liên tục trên:
Vì
=> Tập xác định
Vậy hàm số liên tục trên
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?
Ta có:
v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6
Tại t = 3, ta có: v(3) = 9 m/s
Tại t = 4, ta có: a(4) = 18 m/s2
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho hàm số
. Giải bất phương trình ![]()
Ta có:
Vậy khi và chỉ khi
Công thức nào tương ứng với đạo hàm cấp hai của hàm số
?
Ta có: