Tính đạo hàm của hàm số
với
?
Ta có:
Tính đạo hàm của hàm số
với
?
Ta có:
Một viên đạn được bắn lên cao theo phương trình
trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Đạo hàm của hàm số
là:
Ta có:
Tính vận tốc tức thời của chuyển động tại
của một chất điểm chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
được tính bằng mét.
Ta có:
Vận tốc tức thời của chuyển động khi là:
Cho hàm số
. Xác định giá trị
?
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng trong các khẳng định sau?
Ta có:
Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Tính đạo hàm của hàm số
.
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Tính tổng
![]()
Xét
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
ứng với
bằng
. Đúng||Sai
b) Cho hàm số
. Giá trị
Đúng||Sai
c) Đạo hàm của hàm số
trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số
vuông góc với
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số ứng với
bằng
. Đúng||Sai
b) Cho hàm số . Giá trị
Đúng||Sai
c) Đạo hàm của hàm số trên khoảng
bằng biểu thức
Sai||Đúng
d) Phương trình tiếp tuyến của đồ thị hàm số vuông góc với
là
. Sai||Đúng
a) Ta có:
Thay vào (*) ta được:
b) Ta có
c) Ta có:
d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng nên ta có:
Gọi là tiếp điểm khi đó ta có:
Mặt khác
Phương trình tiếp tuyến cần tìm là:
Tính đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Cho đồ thị hàm số
. Gọi
là các điểm thuộc đồ thị
mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm
thỏa mãn điều kiện trên?
Ta có:
Giả sử với
Tiếp tuyến tại A và B song song với nhau nên
Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn thì các tiếp tuyến tại A và B song song với nhau.
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
xác định bởi công thức
. Chọn hệ thức đúng?
Ta có:
Xác định đạo hàm của hàm số
?
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Xác định đạo hàm của hàm số
.
Ta có:
Vậy
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Một chất điểm chuyển động có phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?
Ta có
Vận tốc của chất điểm
Đẳng thức xảy ra khi và chỉ khi t = 1
Cho hàm số
, có đạo hàm
. Tìm tất cả các giá trị của
để
với ![]()
Ta có:
Để bất phương trình với
ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Cho hàm số
. Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số
. Chọn hệ thức đúng?
Ta có:
Khi đó ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính
?
Ta có:
=> Hàm số liên tục tại x = 1
Khi đó ta có:
Cho hàm số
với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Cho hàm số với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để
?
Kết quả: 5
Ta có:
Để phương trình (*) luôn đúng với thì
TH1:
TH2:
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện đề bài.
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có: