Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho hàm số y =
f(x) = \frac{2x + 1}{1 - x}. Giải phương trình f'(x) + f''(x) = 0.

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có:

    y = f(x) = \frac{2x + 1}{1 -
x}

    \Rightarrow f'(x) = \frac{3}{(x -
1)^{2}} \Rightarrow f''(x) = - \frac{6}{(x -
1)^{3}}

    Lại có:

    f'(x) + f''(x) =
0

    \Leftrightarrow \frac{3}{(x - 1)^{2}} -
\frac{6}{(x - 1)^{3}} = 0

    \Leftrightarrow \frac{2}{x - 1} = 1
\Leftrightarrow x = 3(tm)

  • Câu 3: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 4: Vận dụng

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng y = -\frac{1}{45}x.

    Gọi M(x0; y0) là tọa độ tiếp điểm

    Ta tính được: k = y'\left( x_{0}ight) = 3{x_{0}}^{2} - 6x_{0}

    Do tiếp tuyến song song với đường thẳng y= - \frac{1}{45}x nên ta có:

    => k\left( - \frac{1}{45} ight) = -1 \Leftrightarrow k = 45

    \Leftrightarrow 3{x_{0}}^{2} - 6x_{0} =45 \Leftrightarrow \left\lbrack \begin{matrix}x_{0} = 5 \\x_{0} = - 3 \\\end{matrix} ight.

    Với x0 = 5, ta có: \left\{\begin{matrix}y_{0} = 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x - 173

    với x0 = -2 thì \left\{\begin{matrix}y_{0} = - 52 \\k = 45 \\\end{matrix} ight.

    => Phương trình tiếp tuyến cần tìm là y = 45x + 83

    Vậy phương trình tiếp tuyến của đồ thị hàm số là: \left\lbrack \begin{matrix}y = 45x - 173 \\y = 45x + 83 \\\end{matrix} ight.

  • Câu 5: Thông hiểu

    Tính đạo hàm cấp hai của hàm số y = \sin x.\sin2x.\sin3x?

    Ta có:

    y = \sin x.\sin2x.\sin3x

    = \frac{1}{4}\sin2x + \frac{1}{4}\sin4x -\frac{1}{4}\sin6x

    Khi đó:

    y' = \frac{1}{2}\cos2x + \cos4x -\frac{3}{2}\cos6x

    y'' = - \sin2x - 4\sin4x +9\sin6x

  • Câu 6: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 7: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 8: Thông hiểu

    Cho y = x^{2}(x +
4)^{3}. Tính đạo hàm của hàm số đã cho?

    Ta có:

    y = x^{2}(x + 4)^{3}

    = x^{2}\left( x^{3} + 12x^{2} ight) +
48x + 64

    = x^{5} + 12x^{4} + 48x^{3} +
64x^{2}

    Suy ra y' = 5x^{4} + 48x^{3} + 144x^{2}
+ 128x

  • Câu 9: Vận dụng

    Cho hàm số y =
x^{3} - 2x + 1. Có thể viết được bao nhiêu phương trình tiếp tuyến của hàm số, biết nó tạo với hai trục Oxy một tam giác vuông cân tại O?

    Gọi M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d)

    Gọi phương trình chắn cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác vuông cân tại O có dạng \frac{x}{a} + \frac{y}{b} = 1

    \Rightarrow y = b\left( 1 - \frac{x}{a}
ight) = - \frac{b}{a} + b;\left( a,b eq 0;|a| = |b|
ight)(d)

    M\left( x_{0};y_{0} ight) là hoành độ tiếp xúc của (C) và (d) khi đó:

    3{x_{0}}^{2} - 2 = -
\frac{b}{a}

    |a| = |b| \Rightarrow \left\lbrack
\begin{matrix}
3{x_{0}}^{2} - 2 = 1 \\
3{x_{0}}^{2} - 2 = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 1 \Rightarrow y_{0} = 0 \\\begin{matrix}x_{0} = - 1 \Rightarrow y_{0} = 2 \\x_{0} = \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 - 5\sqrt{3}}{9}\\x_{0} = - \dfrac{\sqrt{3}}{3} \Rightarrow y_{0} = \dfrac{9 + 5\sqrt{3}}{9}\\\end{matrix} \\\end{matrix} ight.

    Vậy có 4 phương trình tiếp tuyến ứng với các điểm tiếp xúc và hệ số góc trên như sau:

    y = 1(x - 1) + 0 \Rightarrow y = x -
1

    y = 1(x - 1) + 2 \Rightarrow y = x +
3

    y = - 1\left( x - \frac{\sqrt{3}}{3}
ight) + \frac{9 - 5\sqrt{3}}{9} \Rightarrow y = x + \frac{9 -
2\sqrt{3}}{9}

    y = - 1\left( x + \frac{\sqrt{3}}{3}
ight) + \frac{9 + 5\sqrt{3}}{9} \Rightarrow y = - x + \frac{9 +
2\sqrt{3}}{9}

  • Câu 10: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 11: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 12: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 13: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hàm số y =
\log\left( x^{2} - 2x + m + 1 ight) với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho xác định trên tập số thực?

    Để hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi x^{2} - 2x - m +
1 > 0,\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' <
0

    \Leftrightarrow ( - 1)^{2} - 1(m + 1)
< 0 \Leftrightarrow m > 0

  • Câu 15: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 16: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 18: Thông hiểu

    Đạo hàm của hàm số f(x)=\frac{ax^{2}+b}{c+d} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{a{x^2} + b}}{{c + d}} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {\dfrac{{a{x^2} + b}}{{c + d}}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {a{x^2} + b} ight)'\left( {c + d} ight) - \left( {c + d} ight)'\left( {a{x^2} + b} ight)}}{{{{\left( {c + d} ight)}^2}}} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2ax\left( {c + d} ight)}}{{{{\left( {c + d} ight)}^2}}} = \dfrac{{2ax}}{{c + d}} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = 3\sin2t + \cos2t,(t >0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm t = \frac{\pi}{4}(s) thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 6\cos2t -2\sin2t

    a(t) = S''(t) = v'(t) = -12\sin2t - 4\cos2t

    Gia tốc tức thời tại thời điểm t =
\frac{\pi}{4}(s) là:

    a\left( \frac{\pi}{4} ight) = -12\sin\left( 2.\frac{\pi}{4} ight) - 4\cos\left( 2.\frac{\pi}{4} ight)= - 12\left( m/s^{2} ight)

  • Câu 20: Vận dụng cao

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Nhận biết

    Đạo hàm của hàm số y = \frac{1}{2} - \frac{1}{3}x + x^{2} -
0,25x^{4} là:

    Ta có:

    y = \frac{1}{2} - \frac{1}{3}x + x^{2} -
0,25x^{4}

    \Rightarrow y' = \left( \frac{1}{2}
ight)' - \left( \frac{1}{3}x ight)' + \left( x^{2}
ight)' - \left( 0,25x^{4} ight)'

    y' = 0 - \frac{1}{3} + 2x^{2 - 1} -
4.0,25x^{4 - 1}

    y' = - \frac{1}{3} + 2x -
x^{3}

  • Câu 22: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 23: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 24: Nhận biết

    Cho hàm số y =
\log x. Khẳng định nào sau đây đúng?

    Ta có: \left( \log_{a}x ight)' =\frac{1}{x\ln a}

    \Rightarrow y' =\frac{1}{x\ln10}

  • Câu 25: Vận dụng cao

    Cho đồ thị của hàm số y = f(x) trên khoảng (a;b). Các tiếp điểm của đồ thị hàm số tại các điểm M_{1};M_{2};M_{3} được biểu diễn trong hình vẽ dưới đây:

    Khẳng định nào dưới đây đúng?

    Phương trình tiếp tuyến tại điểm M_{1} có dạng y = f(x) = - ax + b;(a > 0)

    \Rightarrow f'\left( x_{1} ight)
< 0

    Phương trình tiếp tuyến tại điểm M_{2} có dạng y = f(x) = b

    \Rightarrow f'\left( x_{2} ight) =
0

    Phương trình tiếp tuyến tại điểm M_{3} có dạng y = f(x) = ax + b;(a > 0)

    \Rightarrow f'\left( x_{3} ight)
> 0

  • Câu 26: Nhận biết

    Cho hàm số y =
f(x) = \frac{3x + 5}{- 1 + 2x}. Mệnh đề nào dưới đây là mệnh đề đúng?

    Ta có:

    f(x) = \frac{3x + 5}{- 1 +
2x}

    \Rightarrow f'(x) = \frac{(3x +
5)'( - 1 + 2x) - ( - 1 + 2x)'(3x + 5)}{( - 1 +
2x)^{2}}

    \Rightarrow f'(x) = \frac{3(2x - 1)
- 2(3x + 5)}{( - 1 + 2x)^{2}}

    \Rightarrow f'(x) = \frac{- 13}{( -
1 + 2x)^{2}}

  • Câu 27: Thông hiểu

    Tính đạo hàm của hàm số: y = \sqrt {{x^2} - 4{x^3}}

     Ta có:

    \begin{matrix}  y' = \left( {\sqrt {{x^2} - 4{x^3}} } ight)\prime \hfill \\   = \dfrac{{\left( {{x^2} - 4{x^3}} ight)'}}{{2\sqrt {{x^2} - 4{x^3}} }} \hfill \\   = \dfrac{{2x - 12{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }} \hfill \\   = \dfrac{{x - 6{x^2}}}{{\sqrt {{x^2} - 4{x^3}} }} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 1}
ight) + ln2018

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2017)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} -
\frac{1}{2018}

    S = 1 - \frac{1}{2018} =
\frac{2017}{2018}

  • Câu 29: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 30: Thông hiểu

    Biết đường thẳng y = 6x + m + 1 là tiếp tuyến của đồ thị hàm số y = x^{3} + 3x - 1. Tìm các giá trị của tham số m.

    Ta có: y' = 3x^{2} + 3

    Gọi (C) là đồ thị của hàm số y = x^{3} + 3x - 1 khi đó

    y'(x) = 6 \Leftrightarrow 3x^{2} + 3
= 6

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \Rightarrow y = 3 \\
x = - 1 \Rightarrow y = - 5 \\
\end{matrix} ight.

    Phương trình tiếp tuyến tại điểm M(1;3)y =
6x - 3

    Phương trình tiếp tuyến tại điểm M( - 1;
- 5)y = 6x + 1

    Để đường thẳng y = 6x + m + 1 là tiếp tuyến của (C) thì \left\lbrack \begin{matrix}
m + 1 = - 3 \\
m + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 4 \\
m = 0 \\
\end{matrix} ight..

  • Câu 31: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 32: Nhận biết

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 33: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 34: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 35: Nhận biết

    Đạo hàm của hàm số y = (1 - 2x)^{3} là:

    Ta có: y = (1 - 2x)^{3}

    \Rightarrow y' = 3(1 - 2x)^{2}(1 -
2x)'

    \Rightarrow y' = 3(1 - 2x)^{2}( - 2)
= - 6(1 - 2x)^{2}

  • Câu 36: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 37: Thông hiểu

    Đạo hàm của biểu thức f(x) = \sqrt{2 - 3x^{2}} bằng biểu thức nào sau đây?

    Ta có:

    f(x) = \sqrt{2 - 3x^{2}}

    \Rightarrow f'(x) = \left( \sqrt{2 -
3x^{2}} ight)' = \frac{\left( 2 - 3x^{2} ight)'}{2\sqrt{2 -
3x^{2}}}

    = \frac{- 6x}{2\sqrt{2 - 3x^{2}}} =
\frac{- 3x}{\sqrt{2 - 3x^{2}}}

  • Câu 38: Vận dụng

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Do \lim_{x ightarrow 2}\frac{f(x) -
16}{x - 2} = 12\lim_{x
ightarrow 2}(x - 2) = 0 \Rightarrow \lim_{x ightarrow 2}\left\lbrack
f(x) - 16 ightbrack = 0

    \Rightarrow \lim_{x ightarrow 2}f(x) =
16

    Ta có:

    \lim_{x ightarrow
2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x - 8}

    = \lim_{x ightarrow 2}\frac{5f(x) - 16
- 4^{3}}{(x - 2)(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow
2}\frac{5\left\lbrack f(x) - 16 ightbrack}{(x - 2)(x +
4)\left\lbrack \left( \sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x)
- 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow 2}\left\{
\frac{f(x) - 16}{(x - 2)}.\frac{5}{(x + 4)\left\lbrack \left(
\sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2}
ightbrack} ight\} = T

    \lim_{x ightarrow 2}\frac{f(x) -
16}{(x - 2)} = 12\lim_{x
ightarrow 2}\frac{5}{(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack} =
\frac{5}{288}

    Nên T = 12.\frac{5}{288} =
\frac{5}{24}

  • Câu 39: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx^{3}}{3} - \frac{mx^{2}}{2} + (3 - m)x - 2. Tìm giá trị của m để f'(x) > 0;\forall
x\mathbb{\in R}?

    Ta có:

    f'(x) = mx^{2} - mx + (3 -
m)

    Nếu m = 0 thì f'(x) = 3 > 0;\forall x\mathbb{\in
R}

    Nếu m eq 0 thì f'(x) = mx^{2} - mx + 3 - m là tam thức bậc hai

    f'(x) > 0;\forall x\mathbb{\in
R}

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
\Delta < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m^{2} - 4m(3 - m) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
5m^{2} - 12m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
0 < m < \frac{12}{5} \\
\end{matrix} ight.

    Vậy 0 \leq m <
\frac{12}{5}

  • Câu 40: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo