Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm hệ số góc k của tiếp tuyến của parabol y = x^{2} tại điểm có hoành độ \frac{1}{2}.

    Ta có:

    y'\left( \dfrac{1}{2} ight) =\lim_{\Delta x ightarrow 0}\dfrac{f\left( \dfrac{1}{2} + \Delta xight) - f\left( \dfrac{1}{2} ight)}{\Delta x}

    = \lim_{\Delta x ightarrow0}\dfrac{\left( \dfrac{1}{2} + \Delta x ight)^{2} - \left( \dfrac{1}{2}ight)^{2}}{\Delta x}

    = \lim_{\Delta x ightarrow 0}(1 +\Delta x) = 1

  • Câu 2: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 3: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 4: Thông hiểu

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 5: Thông hiểu

    Cho đường cong của phương trình y=x^{4}-x^{2}+1. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng -1 đi qua điểm:

    Ta có:

    \begin{matrix}  y = {x^4} - {x^2} + 1 \hfill \\   \Rightarrow y' = 4{x^3} - 2x \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y'\left( { - 1} ight) =  - 4 + 2 = -2} \\   {y\left( { - 1} ight) = 1} \end{array}} ight. \hfill \\\end{matrix}

    => Phương trình tiếp tuyến là:

    y = -2\left( {x + 1} ight) + 1

    Hay y = -2x -1

    Và phương trình đi qua điểm M (1;-3).

  • Câu 6: Thông hiểu

    Đạo hàm của hàm số y=\frac{1}{\sqrt{x^{2}-x+1}} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{\sqrt {{x^2} - x + 1} }} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{1}{{\sqrt {{x^2} - x + 1} }}} ight)\prime  \hfill \\   \Leftrightarrow y' = \dfrac{{ - \left( {\sqrt {{x^2} - x + 1} } ight)'}}{{{{\left( {\sqrt {{x^2} - x + 1} } ight)}^2}}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - \dfrac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}}}{{{x^2} - x + 1}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - 2x + 1}}{{2\sqrt {{x^2} - x + 1} \left( {{x^2} - x + 1} ight)}} \hfill \\ \end{matrix}

  • Câu 7: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 8: Vận dụng cao

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 9: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho hàm số y=\frac{1}{3}{x^3} - (2m + 1){x^2} - mx - 4, có đạo hàm y'. Tìm tất cả các giá trị của m để  y' \geqslant 0 với \forall x \in \mathbb{R}

    Ta có:

    \begin{matrix}  y = \dfrac{1}{3}{x^3} - (2m + 1){x^2} - mx - 4 \hfill \\  y' = {x^2} - 2(2m + 1)x - m \hfill \\ \end{matrix}

    Để bất phương trình y' \geqslant 0 với \forall x \in \mathbb{R} ta có:

    \begin{matrix}  \Delta ' \leqslant 0 \hfill \\   \Leftrightarrow {\left( {2m + 1} ight)^2} + m \leqslant 0 \hfill \\   \Leftrightarrow 4{m^2} + 5m + 1 \leqslant 0 \hfill \\   \Leftrightarrow m \in \left[ { - 1; - \dfrac{1}{4}} ight] \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Đáp án là:

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = t^{3} - 3t^{2} + 5t +
7;(t > 0); trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?

    Kết quả: 10(m)

    Vận tốc của chuyển động là v(t) =
S'(t) = 3t^{2} - 6t + 5

    Dễ thấy v(t) = 3t^{2} - 6t + 5 = 3(t -
1)^{2} + 2 \geq 2 với mọi t.

    Dấu “=” xảy ra khi và chỉ khi t =
1

    Khi đó quãng đường vật đi được là: S(1) =
1^{3} - 3.1^{2} + 5.1 + 7 = 10m

  • Câu 12: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 13: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 14: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 15: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} +2. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.

    Phương trình hoành độ giao điểm:

    x^{3} - 3x^{2} + 2 = - 2

    \Rightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.

    Với x = −1, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'(1) = 9 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7

    Với x = 2, ta có: \left\{ \begin{matrix}y = - 2 \\k = y'( - 2) = 0 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến cần tìm là y = −2

  • Câu 16: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1

    Tập xác định: D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có:

    \begin{matrix}  y' = \left( {\dfrac{{2x}}{{x - 1}}} ight)\prime \hfill \\   = \dfrac{{\left( {2x} ight)'.\left( {x - 1} ight) - 2x.\left( {x - 1} ight)'}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\   = \dfrac{{2\left( {x - 1} ight) - 2x}}{{{{\left( {x - 1} ight)}^2}}} = \frac{{ - 2}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\ \end{matrix}

    Suy ra đạo hàm của hàm số y = \frac{{2x}}{{x - 1}} tại x=-1 là:

    y'\left( { - 1} ight) = \frac{{ - 2}}{{{{\left( { - 1 - 1} ight)}^2}}} =  - \frac{1}{2}

  • Câu 17: Vận dụng cao

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn \log_{4}\left( x^{2} + y ight) \geq \log_{3}(x +
y)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

  • Câu 19: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 20: Vận dụng

    Có bao nhiêu giá trị nguyên của m để hàm số y = \frac{x + 2}{x + 5m} có đạo hàm dương trên ( - \infty; - 10)?

    Tập xác định D = ( - \infty;5m) \cup ( -
5m; + \infty)

    Ta có:

    y' = \frac{5m - 2}{(x +
5m)^{2}}

    Theo yêu cầu của đề bài

    \Leftrightarrow \left\{ \begin{matrix}
5m - 2 > 0 \\
- 10 \leq - 5m \\
\end{matrix} ight.\  \Leftrightarrow \frac{2}{5} \leq m \leq
2

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2 ight\}

    Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.

  • Câu 21: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\sin2x. Chọn hệ thức đúng?

    Ta có:

    y' = 2.\cos2x \Rightarrow y''= - 4.\sin2x

    \Rightarrow 4y + y'' = 4.\sin2x -4.\sin2x = 0

  • Câu 22: Thông hiểu

    Tính đạo hàm của hàm số f(x) = \left( x^{3} - 2x^{2}
ight)^{2}?

    Ta có:

    f(x) = \left( x^{3} - 2x^{2}
ight)^{2}

    \Rightarrow f'(x) = \left\lbrack
\left( x^{3} - 2x^{2} ight)^{2} ightbrack'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( x^{3} - 2x^{2} ight)'

    \Rightarrow f'(x) = 2\left( x^{3} -
2x^{2} ight)\left( 3x^{2} - 4x ight)

    \Rightarrow f'(x) = 6x^{5} - 8x^{4}
- 12x^{4} + 16x^{3}

    \Rightarrow f'(x) = 6x^{5} - 20x^{4}
+ 16x^{3}

  • Câu 23: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 24: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

    Ta có: 

    \begin{matrix}  y = \sin \left( {\sin x} ight) \hfill \\   \Rightarrow y\prime  = \left[ {\sin \left( {\sin x} ight)} ight]\prime  \hfill \\   = \left( {\sin x} ight)'\cos \left( {\sin x} ight) \hfill \\   = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = t^{3} - 3t^{2} - 9t +
2,(t > 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc bằng 0 thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Vận tốc tức thời là

    v(t) = s'(t) = 3t^{2} - 6t - 9 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1(ktm) \\
t = 3(tm) \\
\end{matrix} ight.

    Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:

    a(t) = S''(t) = v'(t) =
\left( 3t^{2} - 6t - 9 ight)' = 6t - 6

    Gia tốc tức thời tại thời điểm vận tốc bằng 0 là

    a(3) = 6.3 - 6 = 12\left( m/s^{2}
ight)

  • Câu 26: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 27: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 28: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 29: Nhận biết

    Đạo hàm của hàm số y=2x^{5}-3x^{4}+0,5x^{2}-\frac{3x}{2}-4 bằng biểu thức nào dưới đây?

    Ta có:

    \begin{matrix}  y = 2{x^5} - 3{x^4} + 0,5{x^2} - \dfrac{{3x}}{2} - 4 \hfill \\   \Rightarrow y' = 10{x^4} - 12{x^3} + x - \dfrac{3}{2} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho hàm số y=\frac{3x-2}{1-x}. Giải bất phương trình y" > 0

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{1 - x}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {1 - x} ight) + \left( {3x - 2} ight)}}{{{{\left( {1 - x} ight)}^2}}} = \dfrac{1}{{{{\left( {1 - x} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 2.\left( { - 1} ight)\left( {1 - x} ight)}}{{{{\left( {1 - x} ight)}^4}}} = \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} \hfill \\ \end{matrix}

    Xét bất phương trình ta có:

    \begin{matrix}  y'' > 0 \hfill \\   \Leftrightarrow \dfrac{2}{{{{\left( {1 - x} ight)}^3}}} > 0 \hfill \\   \Leftrightarrow {\left( {1 - x} ight)^3} > 0,\left( {{\text{Do }}2 > 0} ight) \hfill \\   \Leftrightarrow 1 - x > 0 \Leftrightarrow x < 1 \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Đạo hàm của hàm số y=\frac{3x-2}{2x+5} bằng biểu thức nào dưới đây? 

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 2}}{{2x + 5}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {3x - 2} ight)'\left( {2x + 5} ight) - \left( {3x - 2} ight).\left( {2x + 5} ight)'}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\   = \dfrac{{3\left( {2x + 5} ight) - 2\left( {3x - 2} ight)}}{{{{\left( {2x + 5} ight)}^2}}} = \dfrac{{19}}{{{{\left( {2x + 5} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 32: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 33: Vận dụng

    Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình s(t) = t^{3} - 3t^{2} - 5 trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?

    Ta có: a(t) = \left\lbrack v(t)ightbrack' = \left\lbrack s(t) ightbrack'' = 6t -6

    Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là a(10) = 54m/s^{2}

  • Câu 34: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 35: Nhận biết

    Tính đạo hàm của hàm số y = \sin \left( {\frac{\pi }{6} - 3x} ight)

    Ta có:

    \begin{matrix}  y = \sin \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{6} - 3x} ight).\left( {\dfrac{\pi }{6} - 3x} ight)\prime  \hfill \\   =  - 3\cos \left( {\dfrac{\pi }{6} - 3x} ight) \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 37: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 38: Nhận biết

    Đạo hàm của hàm số y=-\frac{x^{3}}{3}+\frac{x^{2}}{2}-x+5 bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y =  - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + 5 \hfill \\   \Rightarrow y' =  - \dfrac{{3{x^2}}}{3} + \dfrac{{2x}}{2} - 1 \hfill \\   \Rightarrow y' =  - {x^2} + x - 1 \hfill \\ \end{matrix}

  • Câu 39: Vận dụng

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Đáp án là:

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Ta có: f'(x) = \frac{2}{x(x + 1)(x -
1)} = \frac{1}{x(x - 1)} - \frac{1}{x(x + 1)}

    Khi đó:

    f'(2) + f'(3) + f'(4) + ....
+ f'(2020)

    = \frac{1}{1.2} - \frac{1}{2.3} +
\frac{1}{2.3} - \frac{1}{2.3} + ... + \frac{1}{2019.2020} -
\frac{1}{2020.2021}

    = \frac{1}{2} - \frac{1}{2020.2021} =
\frac{1010.2021 - 1}{2020.2021}

    \Rightarrow \left\{ \begin{matrix}
m = 1010.2021 - 1 \\
n = 2020.2021 \\
\end{matrix} ight.\  \Rightarrow A = - 2

  • Câu 40: Nhận biết

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo