Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 1\ \ khi\ x \geq 1 \\ax + b\ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại điểm x = 1 (với a,b\mathbb{\in R}). Giá trị của biểu thức P = 2a - 5b bằng bao nhiêu?

    Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:

    Hàm số phải liên tục tại điểm x = 1:

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)

    \Rightarrow a + b = 2

    \lim_{x ightarrow 1}\frac{f(x) -f(1)}{x - 1} = f'(1)

    \Leftrightarrow f'\left( 1^{+}ight) = f'\left( 1^{-} ight)

    \Leftrightarrow a = 3

    \Rightarrow b = - 1

    Vậy giá trị của biểu thức P = 2a - 5b =11

  • Câu 2: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số y = \frac{x - 2}{x + 1} tại điểm x_{0} = 0?

    TXĐ: D\mathbb{= R}\backslash\left\{ - 1
ight\}

    Ta có: y(0) = \frac{0 - 2}{0 + 1} = -
2

    y' = \frac{3}{(x + 1)^{2}}
\Rightarrow y'(0) = 3

    Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm x_{0} = 0 là:

    y = 3(x - 0) - 2 \Rightarrow y = 3x -
2

  • Câu 3: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 4: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 5: Vận dụng cao

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 6: Nhận biết

    Công thức nào sau đây biểu diễn đúng đạo hàm của hàm số y = \ln\left( 1 - x^{2}
ight)?

    Ta có: y = \ln\left( 1 - x^{2}
ight)

    \Rightarrow y' = \left\lbrack
\ln\left( 1 - x^{2} ight) ightbrack'

    = \frac{- 2x}{1 - x^{2}} =
\frac{2x}{x^{2} - 1}

  • Câu 7: Thông hiểu

    Công thức đạo hàm cấp hai của hàm số y = f(x) = \sqrt{2x + 5}?

    Ta có:

    y = f(x) = \sqrt{2x + 5}

    \Rightarrow f'(x) =
\frac{2}{2\sqrt{2x + 5}} = \frac{1}{\sqrt{2x + 5}}

    \Rightarrow f''(x) = -\dfrac{\dfrac{2}{2\sqrt{2x + 5}}}{2x + 5} = - \dfrac{1}{(2x + 5)\sqrt{2x +5}}

  • Câu 8: Thông hiểu

    Cho hàm số yy=-\frac{1}{3}mx^{3}+(m-1)x^{2}-mx+3, có đạo hàm là y'. Tìm tất cả các giá trị của m để phương trình y' = 0 có hai nghiệm phân biệt là x_{1},x_{2} thỏa mãn x_{1}^{2}+x_{2}^{2}=6.

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{3}m{x^3} + (m - 1){x^2} - mx + 3 \hfill \\   \Rightarrow y' = m{x^2} - 2\left( {m - 1} ight)x - m \hfill \\  y' = 0 \hfill \\   \Leftrightarrow m{x^2} - 2\left( {m - 1} ight)x - m = 0 \hfill \\ \end{matrix}

    Để phương trình y'=0 có hai nghiệm phân biệt thì

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {m e 0} \end{array} \Leftrightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {{{\left( {m - 1} ight)}^2} + {m^2} > 0} \\   {m e 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{m^2} - 2m + 1 > 0} \\   {m e 0} \end{array}} ight. \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi - et ta có

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{2\left( {m - 1} ight)}}{m}} \\   {{x_1}.{x_2} = \dfrac{{ - 1}}{m}} \end{array}} ight. \hfill \\  x_1^2 + x_2^2 = 6 \hfill \\   \Leftrightarrow {\left( {{x_1} + {x_2}} ight)^2} - 2{x_1}{x_2} = 6 \hfill \\   \Leftrightarrow {\left[ {\dfrac{{2\left( {m - 1} ight)}}{m}} ight]^2} + \dfrac{2}{m} = 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1 + \sqrt 2 } \\   {m =  - 1 - \sqrt 2 } \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{3x}{|x| + 1} . Giá trị f'(0) = 3

    Ta có: f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x} = \lim_{x ightarrow 0}\frac{3}{|x| +
1}

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{+}}\dfrac{3}{x + 1} = 3 \\\lim_{x ightarrow 0^{-}}\dfrac{3}{|x| + 1} = \lim_{x ightarrow0^{-}}\dfrac{3}{1 - x} = 3 \\\end{matrix} ight.

    \Rightarrow \lim_{x ightarrow
0^{+}}\frac{3}{|x| + 1} = \lim_{x ightarrow 0^{-}}\frac{3}{|x| + 1} =
3

    \Rightarrow \lim_{x ightarrow
0}\frac{3}{|x| + 1} = 3

    \Rightarrow f'(0) = \lim_{x
ightarrow 0^{+}}\frac{3}{|x| + 1} = 3

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 11: Vận dụng

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 12: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 13: Thông hiểu

    Cho hàm số y =
f(x) = \left\{ \begin{matrix}
x^{2} + 1\ \ \ ;\ x \geq 1 \\
2x\ \ \ \ \ \ \ \ ;\ x < 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây là mệnh đề sai?

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{x - 1}} = 2 \hfill \\
  \mathop {\lim }\limits_{x \to 1 + } \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1 - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy f'\left( 1^{-} ight) =
f'\left( 1^{+} ight) = f'(1) = 2

    Suy ra hàm số có đạo hàm tại x_{0} =
1

    Vậy mệnh đề sai là: ∄f'(1)

  • Câu 14: Vận dụng cao

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = mx^{4} + nx^{3}
+ px^{2} + px + r;(m eq 0). Chia f(x) cho (x -
2) ta được phần dư là 2021. Chia f'(x) cho x - 2 được phần dư bằng 2020. Gọi g(x) là phần dư khi chia f(x) cho (x -
2)^{2}. Xác định hàm số g(x)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Nhận biết

    Tính đạo hàm của hàm số y = f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}} tại x_{0} = 0

    Tập xác định D\mathbb{= R}

    Ta có:

    f(x) = \frac{3x + 1}{\sqrt{x^{2} +
4}}

    f'(x) = \dfrac{3\sqrt{x^{2} + 4} -(3x + 1).\dfrac{x}{\sqrt{x^{2} + 4}}}{\left( \sqrt{x^{2} + 4}ight)^{2}}

    f'(x) = \frac{12 - x}{\left(
\sqrt{x^{2} + 4} ight)^{3}}

    f'(0) = \frac{12 - 0}{\left(
\sqrt{0^{2} + 4} ight)^{3}} = \frac{3}{2}

  • Câu 16: Thông hiểu

    Cho hàm số y =
x^{3} + mx^{2} + 3x - 5 với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình y'
= 0 có hai nghiệm phân biệt?

    Ta có:

    y = x^{3} + mx^{2} + 3x - 5

    \Rightarrow y' = 3x^{2} + 2mx +
3

    Để y' = 0 có hai nghiệm phân biệt:

    \Delta > 0 \Leftrightarrow m^{2} - 9
> 0

    \Leftrightarrow m \in ( - \infty; - 3)
\cup (3; + \infty)

  • Câu 17: Thông hiểu

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 18: Thông hiểu

    Biết \left(
\frac{3 - 2x}{\sqrt{4x - 1}} ight)' = \frac{ax - b}{(4x -
1)\sqrt{4x - 1}};\forall x > \frac{1}{4}. Tính tỉ số \frac{a}{b}?

    Với \forall x >
\frac{1}{4}

    \left( \frac{3 - 2x}{\sqrt{4x - 1}}
ight)' = \frac{(3 - 2x)'\sqrt{4x - 1} - \left( \sqrt{4x - 1}
ight)'(3 - 2x)}{4x - 1}

    = \frac{- 2\sqrt{4x - 1} - \frac{6 -
4x}{\sqrt{4x - 1}}}{4x - 1} = \frac{- 4x - 4}{(4x - 1)\sqrt{4x -
1}}

    \Rightarrow \left\{ \begin{matrix}
a = - 4 \\
b = 4 \\
\end{matrix} ight.\  \Rightarrow \frac{a}{b} = - 1

  • Câu 19: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 20: Nhận biết

    Đạo hàm của hàm số f(x) = x^{4} - 4mx^{2} - 3m - 1 (với m là tham số) là:

    Ta có:

    f(x) = x^{4} - 4mx^{2} - 3m -
1

    f'(x) = 4x^{3} - 8mx

  • Câu 21: Thông hiểu

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{4}t^{4} -
\frac{7}{2}t^{2} - 6t + 10,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?

    Kết quả: 20 (m/s2)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{4}t^{4} -
\frac{7}{2}t^{2} - 6t + 10,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm vận tốc triệt tiêu thì gia tốc của chất điểm bằng bao nhiêu?

    Kết quả: 20 (m/s2)

    Vận tốc tức thời là

    v(t) = s'(t) = t^{3} - 7t -
6

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = 3t^{2} -
7

    Khi vận tốc bị triệt tiêu nghĩa là v(t) =
0 \Leftrightarrow t^{3} - 7t - 6 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 3(tm) \\
t = - 1(ktm) \\
t = - 2(ltm) \\
\end{matrix} ight.

    Vậy tại thời điểm vận tốc triệt tiêu t = 3 thì gia tốc của chất điểm bằng:

    a(3) = 3.(3)^{2} - 7 = 20\left( m/s^{2}
ight)

  • Câu 22: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 24: Vận dụng

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.

    Ta có:

    Cường độ dòng điện tại thời điểm t = 4s là:

    \begin{matrix}  I = Q'\left( t ight) = \mathop {\lim }\limits_{t \to 4} \dfrac{{Q\left( t ight) - Q\left( 4 ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {2{t^2} + t} ight) - \left( {{{2.4}^2} + 4} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \dfrac{{2{t^2} + t - 36}}{{t - 4}} = \mathop {\lim }\limits_{t \to 4} \dfrac{{\left( {t - 4} ight)\left( {2t + 9} ight)}}{{t - 4}} \hfill \\   = \mathop {\lim }\limits_{t \to 4} \left( {2t + 9} ight) = 2.4 + 9 = 17 \hfill \\ \end{matrix}

  • Câu 25: Vận dụng

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Đáp án là:

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Ta có:

    S(t) = - t^{3} + 9t^{2} + t +
10

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 18t + 1

    Dễ thấy hàm số v(t) là hàm số bậc hai có đồ thị dạng Parabol với hệ số a =
- 3 < 0

    Ta có hoành độ đỉnh của Parabol là t = 3
\in \lbrack 0;5brack

    Do đó v_{\max} = v(3) = 28

    Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là 28m/s

  • Câu 26: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 27: Thông hiểu

    Viết phương trình tiếp điểm của đồ thị hàm số y = f(x) = \sqrt{2x + 1}. Biết rằng tiếp tuyến đó song song với đường thẳng x - 3y + 6 = 0?

    Gọi M\left( x_{0};y_{0}
ight) là tiếp điểm của tiếp tuyến

    Ta có: y' = \frac{1}{\sqrt{2x +
1}}

    x - 3y + 6 = 0 \Rightarrow y =
\frac{x}{3} + 2

    Do (C) song song với đường thẳng y = \frac{x}{3} + 2 nên y'\left( x_{0} ight) =
\frac{1}{3}

    \Leftrightarrow \frac{1}{\sqrt{2x_{0} +
1}} = \frac{1}{3} \Leftrightarrow x_{0} = 4 \Rightarrow y_{0} =
3

    Phương trình tiếp tuyến tương ứng là

    y - 3 = \frac{1}{3}(x - 4) \Rightarrow y
= \frac{1}{3}x + \frac{5}{3}

  • Câu 28: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 29: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 30: Nhận biết

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 31: Thông hiểu

    Cho hàm số f(x)= \frac{x}{\sqrt{x+4}-2} với xeq 0 xác định và liên tục trên (-4;+\infty). Tính f(0).

    Do hàm số xác định và liên tục trên (-4;+\infty)

    => Hàm số liên tục tại x= 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 4}  - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{{\left( {\sqrt {x + 4}  - 2} ight)\left( {\sqrt {x + 4}  + 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 4}  + 2} ight) = 4 \hfill \\  \mathop { \Rightarrow \lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = 4 \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Xác định đạo hàm của hàm số y = \sqrt{1 + 2 \tan x }.

    Ta có:

    y = \sqrt{1 + 2\tan x}

    \Rightarrow y' =\dfrac{(2\tan x)'}{2\sqrt{1 + 2\tan x}} =\dfrac{\dfrac{2}{\cos^{2}x}}{2\sqrt{1 + 2\tan x}}

    \Rightarrow y' =\dfrac{1}{\cos^{2}x.\sqrt{1 + 2\tan x}}

  • Câu 33: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 34: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}
    Đáp án là:

    Cho hàm số f(x) =\sin3x . Ghép nối các dữ liệu sao cho đúng.

    • f''\left( - \frac{\pi}{2}
ight) || - 9
    • f''(0) || 0
    • f''\left( \frac{\pi}{18}
ight) || - \frac{9}{2}

    Ta có:

    f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow \left\{ \begin{matrix}f''\left( - \dfrac{\pi}{2} ight) = - 9.\sin\left( -\dfrac{3\pi}{2} ight) = 9 \\f''(0) = - 9.
\sin(3.0) = 0 \\f''\left( \dfrac{\pi}{18} ight) = - 9.\sin\left( \dfrac{3\pi}{18}ight) = - \dfrac{9}{2} \\\end{matrix} ight.

  • Câu 36: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 37: Vận dụng

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Đáp án là:

    Cho hàm số y =
f(x) = \ln\left( 1 - \frac{1}{x^{2}} ight) . Biết f'(2) + f'(3) + f'(4) + .... +
f'(2020) = \frac{m}{n} với m,n là các số nguyên dương nguyên tố cùng nhau.

    Giá trị biểu thức A = 2m - n
= -2 || - 2

    Ta có: f'(x) = \frac{2}{x(x + 1)(x -
1)} = \frac{1}{x(x - 1)} - \frac{1}{x(x + 1)}

    Khi đó:

    f'(2) + f'(3) + f'(4) + ....
+ f'(2020)

    = \frac{1}{1.2} - \frac{1}{2.3} +
\frac{1}{2.3} - \frac{1}{2.3} + ... + \frac{1}{2019.2020} -
\frac{1}{2020.2021}

    = \frac{1}{2} - \frac{1}{2020.2021} =
\frac{1010.2021 - 1}{2020.2021}

    \Rightarrow \left\{ \begin{matrix}
m = 1010.2021 - 1 \\
n = 2020.2021 \\
\end{matrix} ight.\  \Rightarrow A = - 2

  • Câu 38: Nhận biết

    Cho hàm số y =\log_{2}(3x). Khẳng định nào sau đây đúng?

    Ta có:

    y = \log_{2}(3x)

    \Rightarrow y' = \left( \log_{2}(3x)ight)' = \frac{(3x)'}{3x.\ln2} = \frac{1}{x\ln2}

  • Câu 39: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 40: Thông hiểu

    Cho y = x^{2}(x +
4)^{3}. Tính đạo hàm của hàm số đã cho?

    Ta có:

    y = x^{2}(x + 4)^{3}

    = x^{2}\left( x^{3} + 12x^{2} ight) +
48x + 64

    = x^{5} + 12x^{4} + 48x^{3} +
64x^{2}

    Suy ra y' = 5x^{4} + 48x^{3} + 144x^{2}
+ 128x

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo