Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Điều kiện x eq 1

    Ta có: f'(x) = \frac{- 1}{(x -
1)^{2}}

    Đường thẳng d đi qua Q có hệ số góc k là y = k(x - a) + 1

    Đường thẳng d tiếp xúc với (C) \Leftrightarrow \left\{ \begin{matrix}k(x - a) + 1 = \dfrac{x + 2}{x - 1}(*) \\k = - \dfrac{1}{(x - 1)^{2}}(**) \\\end{matrix} ight. có nghiệm

    Thế (**) vào (*) ta có: - \frac{1}{(x -
1)^{2}}(x - a) + 1 = \frac{- x + 2}{x - 1}

    \Leftrightarrow - x + a + x^{2} - 2x + 1
= - x^{2} + 3x - 2;x eq 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0\
\ \ (1)

    Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất

    Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 = 0 \\2 - 6 + a + 3 eq 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 > 0 \\2 - 6 + a + 3 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{3}{2} \\a = 1 \\\end{matrix} ight.

    Vậy 1 + \frac{3}{2} =
\frac{5}{2}

  • Câu 2: Vận dụng

    Cho hàm số y =f(x) = \frac{1}{2}\sin2x + 2\cos x + 3x + 2. Tổng các nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;50\pibrack bằng bao nhiêu?

    Ta có:

    y' = \cos2x - 2\sin x + 3 = - 2\sin^{2}x- 2\sin x + 4

    y' = 0 \Leftrightarrow x =
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    x \in \lbrack 0;50\pibrack nên 0 \leq \frac{\pi}{2} + k2\pi \leq
50\pi

    \Leftrightarrow - \frac{1}{4} \leq k \leq
\frac{99}{4};\left( k\mathbb{\in Z} ight) nên k \in \left\{ 0;1;;2;...;24 ight\}

    Suy ra tổng các nghiệm trên đoạn \lbrack
0;50\pibrack của phương trình f'(x) = 0 là:

    S_{25} = \frac{\pi}{2} + \frac{5\pi}{2}
+ \frac{9\pi}{2} + ... + \frac{97\pi}{2}

    = \dfrac{25\left( \dfrac{\pi}{2} +\dfrac{97\pi}{2} ight)}{2} = \dfrac{1225\pi}{2}

  • Câu 3: Vận dụng

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Đáp án là:

    Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình S(t) = - t^{3} +
9t^{2} + t + 10 , trong đó S tính bằng mét và t tính bằng giây. Trong thời gian 5s kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?

    Kết quả: 28(m/s)

    Ta có:

    S(t) = - t^{3} + 9t^{2} + t +
10

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 18t + 1

    Dễ thấy hàm số v(t) là hàm số bậc hai có đồ thị dạng Parabol với hệ số a =
- 3 < 0

    Ta có hoành độ đỉnh của Parabol là t = 3
\in \lbrack 0;5brack

    Do đó v_{\max} = v(3) = 28

    Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là 28m/s

  • Câu 4: Thông hiểu

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 5: Thông hiểu

    Xác định đạo hàm của hàm số y = f(x) = \frac{x + 1}{4^{x}}?

    Ta có: y = f(x) = \frac{x +
1}{4^{x}}

    \Rightarrow f'(x) = \left( \frac{x +
1}{4^{x}} ight)' = \frac{(x + 1)'.4^{x} - (x + 1).\left( 4^{x}
ight)'}{\left( 4^{x} ight)^{2}}

    = \frac{4^{x} - (x +1).4^{x}.\ln4}{\left( 4^{x} ight)^{2}}

    = \frac{4^{x}(1 - x.\ln4 - \ln4)}{\left(4^{x} ight)^{2}}

    = \frac{1 - 2x\ln2 -2\ln2}{4^{x}}

    = \frac{1 - 2(x +1)\ln2}{2^{2x}}

  • Câu 6: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} + x^{2} - 2x + 1 có đồ thị (C). Xác định phương trình tiếp tuyến của (C) tại điểm A\left( 1;\frac{1}{3} ight)?

    Ta có: y' = x^{2} + 2x - 2
\Rightarrow y'(1) = 1

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm A\left( 1;\frac{1}{3} ight) là:

    y = y'(1)(x - 1) + \frac{1}{3} = x -
1 + \frac{1}{3} = x - \frac{2}{3}

  • Câu 7: Vận dụng

    Cho hàm số y=\frac{1}{x^{2}-1}. Tính giá trị của y^{(3)}(2)

     \begin{matrix}  y = \dfrac{1}{{{x^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} ight) \hfill \\   \Rightarrow y' = \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x - 1} ight)}^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} ight) \hfill \\   \Rightarrow y'' = \dfrac{1}{2}\left[ {\dfrac{{2\left( {x - 1} ight)}}{{{{\left( {x - 1} ight)}^4}}} - \dfrac{{2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}}} ight] \hfill \\   = \dfrac{1}{{{{\left( {x - 1} ight)}^3}}} - \dfrac{1}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 3{{\left( {x - 1} ight)}^2}}}{{{{\left( {x - 1} ight)}^6}}} + \dfrac{{3{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} \hfill \\   = \dfrac{{ - 3}}{{{{\left( {x - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {x + 1} ight)}^4}}} \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( 2 ight) = \dfrac{{ - 3}}{{{{\left( {2 - 1} ight)}^4}}} + \dfrac{3}{{{{\left( {2 + 1} ight)}^4}}} =  - \dfrac{{80}}{{27}} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Xác định đạo hàm của hàm số y = \log_{4}\left( 2x^{2} - 3 ight)?

    Ta có:

    y' = \frac{4x}{\left( 2x^{2} - 3ight).\ln4} = \frac{4x}{\left( 2x^{2} - 3 ight).2.\ln2}

    = \frac{2x}{\left( 2x^{2} - 3ight).\ln2}

  • Câu 9: Vận dụng cao

    Một vật chuyển động theo quy luật S =10t^{2} - \frac{1}{3}t^{3}, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và S (m) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 15 giây, kể từ khi vật bắt đầu chuyển động, vận tốc v (m/s) của vật đạt giá trị lớn nhất tại thời điểm t (s) bằng:

    Ta có vận tốc v của vật tại thời điểm t được tính theo công thức v(t) = S'(t) = - t^{2} + 20t. Bảng biến thiên của hàm v = v(t) trên (0; 15):

    Vậy vận tốc của vật đạt GTLN tại thời điểm t = 10 (s)

  • Câu 10: Thông hiểu

    Cho f(x) =\sin3x. Giá trị của f''\left( - \frac{\pi}{2} ight) bằng bao nhiêu?

    Ta có: f(x) = \sin3x

    \Rightarrow f'(x) =3.\cos3x

    \Rightarrow f''(x) = -9.\sin3x

    \Rightarrow f''\left( -\frac{\pi}{2} ight) = - 9.\sin\left( - \frac{3\pi}{2} ight) =9

  • Câu 11: Thông hiểu

    Cho hàm số y =
f(x) = \ln\left( \cos x ight). Tính giá trị f'\left( - \frac{\pi}{4} ight)?

    Ta có:

    f'(x) = \left\lbrack \ln\left( \cos
x ight) ightbrack'

    = \frac{\left( \cos x ight)'}{\cos
x} = \frac{- \sin x}{\cos x} = - \tan x

    \Rightarrow f'\left( - \frac{\pi}{4}
ight) = - \tan\left( - \frac{\pi}{4} ight) = - 1

  • Câu 12: Vận dụng

    Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?

    Giả sử vận tốc của vật chuyển động có phương trình v(t) = at^{2} + bt + c

    Ta có:

    v(2) = 9 \Leftrightarrow 4a + 2b + c =9

    v(0) = 6 \Rightarrow c = 6

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}\dfrac{- b}{2a} = 2 \\4a + 2b + 6 = 9 \\\end{matrix} ight.\  \\\Leftrightarrow \left\{ \begin{matrix}4a + b = 0 \\4a + 2b = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{3}{4} \\b = 3 \\\end{matrix} ight.\  \\\end{matrix}

    Do đó: v(t) = - \frac{3}{4}t^{2} + 3t +6

    Vậy v(2,5) = 8,8125(km/h)

  • Câu 13: Thông hiểu

    Cho hàm số y=\frac{3x-4}{x+2}. Tìm x sao cho y" = 20

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 4}}{{x + 2}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {x + 2} ight) - \left( {3x - 4} ight)}}{{{{\left( {x + 2} ight)}^2}}} = \dfrac{{10}}{{{{\left( {x + 2} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 10.2.\left( {x + 2} ight)}}{{{{\left( {x + 2} ight)}^4}}} = \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  y'' = 20,(xe-2) \hfill \\   \Leftrightarrow \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} = 20 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^3} =  - 1 \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Biết \left\{ \begin{gathered}
  f\left( x ight) = \sqrt {{x^2} - 2x + 3}  \hfill \\
  f'\left( x ight) = \frac{{ax + b}}{{\sqrt {{x^2} - 2x + 3} }} \hfill \\ 
\end{gathered}  ight. . Khi đó giá trị biểu thức M = a.b = -1|| - 1

    Đáp án là:

    Biết \left\{ \begin{gathered}
  f\left( x ight) = \sqrt {{x^2} - 2x + 3}  \hfill \\
  f'\left( x ight) = \frac{{ax + b}}{{\sqrt {{x^2} - 2x + 3} }} \hfill \\ 
\end{gathered}  ight. . Khi đó giá trị biểu thức M = a.b = -1|| - 1

    Ta có:

    f(x) = \sqrt{x^{2} - 2x +
3}

    \Rightarrow f'(x) = \frac{\left(
x^{2} - 2x + 3 ight)'}{2\sqrt{x^{2} - 2x + 3}} = \frac{2x -
2}{2\sqrt{x^{2} - 2x + 3}}

    = \frac{x - 1}{\sqrt{x^{2} - 2x + 3}}
\Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow M = a.b = - 1

  • Câu 15: Thông hiểu

    Hàm số y = -
x^{3} + 3x - 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung?

    Ta có: y' = - 3x^{2} + 3

    Giao điểm của (C) với trục tung có tọa độ là B(0; - 2)

    Tiếp tuyến của (C) tại điểm B(0; - 2) có phương trình là:

    y = y'(0)(x - 0) - 2 \Leftrightarrow
y = 3x - 2

  • Câu 16: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} - 1\ \ \ \ khi\ x \geq 0 \\- x^{2}\ \ \ \ \ \ khi\ x < 0 \\\end{matrix} ight.. Khẳng định nào dưới đây là khẳng định sai?

    Ta có:

    \left\{ \begin{matrix}\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( x^{2}- 1 ight) = - 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}\left( -x^{2} ight) = 0 \\\end{matrix} ight.

    \lim_{x ightarrow 0^{+}}f(x) eq\lim_{x ightarrow 0^{-}}f(x)nên hàm số không liên tục tại x = 0

    Do đó hàm số không có đạo hàm tại x = 0

    Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”

  • Câu 17: Nhận biết

    Tính đạo hàm của hàm số f(x) = 9^{2x + 2}

    Ta có: f(x) = 9^{2x + 2}

    \Rightarrow f'(x) = \left( 9^{2x +
1} ight)'

    \Rightarrow f'(x) = (2x +1)'.9^{2x + 1}.\ln9 = 2.9^{2x + 1}.\ln9

  • Câu 18: Nhận biết

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 19: Thông hiểu

    Cho hàm số y =
f(x) xác định bởi f(x) = \left\{\begin{matrix}\dfrac{\sqrt{4x^{2} + 1} - 1}{x}\ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Giá trị của f'(0) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -
f(0)}{x - 0} = \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} + 1} -
1}{x^{2}}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x^{2}\left( \sqrt{4x^{2} + 1} + 1 ight)} = \lim_{x
ightarrow 0}\frac{4}{\sqrt{4x^{2} + 1} + 1} = 2

    Vậy f'(0) = 2

  • Câu 20: Thông hiểu

    Một chất điểm chuyển động có phương trình s(t) = t^{3} - 3t^{2} + 9t + 2, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Hỏi tại thời điểm nào thì vận tốc của vật đạt giá trị nhỏ nhất?

    Ta có s'(t) = 3t^{2} - 6t +9

    Vận tốc của chất điểm

    v(t) = s'(t) = 3t^{2} - 6t +9

    \Rightarrow v(t) = 3(t - 1)^{2} + 6 \geq6

    Đẳng thức xảy ra khi và chỉ khi t = 1

  • Câu 21: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 22: Vận dụng

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 23: Thông hiểu

    Tìm số tiếp tuyến của đồ thị hàm số y = - x^{4} + 2x^{2} song song với trục hoành.

    Ta có:

    y' = - 4x^{3} + 4x

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng trục hoành của đồ thị hàm số y = - x^{4} + 2x^{2} khi đó ta có: k = 0

    Suy ra y'\left( x_{0} ight) =
0

    \Leftrightarrow - 4{x_{0}}^{3} + 4x_{0}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = - 1 \\
x_{0} = 1 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = 0
\Rightarrow PTTT:y = 0

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Với x_{0} = 1 \Rightarrow y_{0} = 1
\Rightarrow PTTT:y = 1

    Vậy có 2 tiếp tuyến song song với trục hoành.

  • Câu 24: Nhận biết

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 25: Nhận biết

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 26: Thông hiểu

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 27: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 28: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 29: Vận dụng cao

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 30: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 31: Vận dụng cao

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x)g(x) đều có đạo hàm trên \mathbb{R} và thỏa mãn f^{3}(2 - x) - 2f^{2}(2 + 3x) + x^{2}g(x) + 36x =
0 với \forall x\mathbb{\in
R} .

    Giá trị biểu thức H =
3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}g(x) + 36x = 0(*)

    Đạo hàm hai vế của (*) ta được:

    - f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x) + 2x.g(x) + x^{2}g'(x) + 36 =
0(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}
f^{3}(2) - 2f^{2}(2) = 0\ \ \ (1) \\
- 3f^{2}(2).f'(2) - 12f(2)f'(2) + 36 = 0\ \ \ \ (2) \\
\end{matrix} ight.

    Từ (1) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0  thay vào (2) ta được 36 = 0 (loại)

    Với f(2) = 2 thay vào (2) ta được:

    - 36.f'(2) + 36 = 0 \Leftrightarrow
f'(2) = 1

    Vậy H = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 32: Nhận biết

    Số gia của hàm số f(x)=2x^{2}-1 tại x_{0}=1 ứng với số gia \Delta x=0,1 bằng:

    Ta có:

    ∆f = f(1 + 0,1) - f(1)

    = 2(1,1)^2 - 1 - (2 - 1) = 0,42

  • Câu 33: Nhận biết

    Đạo hàm của hàm số y = 5^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 5^{x} \Rightarrow y' =5^{x}.\ln5

  • Câu 34: Vận dụng

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Đáp án là:

    Một vật chuyển động theo quy luật s = -\frac{2}{3}t^{3} + 7t^{2} + 3 với t giây (0
\leq t \leq 7) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động đến khi dừng lại và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi khi vật đạt vận tốc là 12\ m/s lần thứ 2 thì vật đã chuyển động được bao nhiêu mét?

    Đáp án: 111

    Vận tốc của vật là: v = s^{'} = -
2t^{2} + 14t.

    Vận tốc của vật đạt 12m/s thì - 2t^{2} + 14t = 12 \Leftrightarrow 2t^{2} -
14t + 12 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight.

    \Rightarrow Vật đạt vận tốc là 12\ m/s lần thứ 2 khi t = 6.

    Lúc đó quãng đường vật đi được là:

    s(6) = - \frac{2}{3}.6^{4} + 7.6^{2} + 3
= 111 (mét)

  • Câu 35: Nhận biết

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 36: Thông hiểu

    Đạo hàm cấp hai của hàm số y = \frac{2x + 1}{x^{2} + x - 2} có dạng y'' = \frac{a}{(x - 1)^{3}} +
\frac{b}{(x + 2)^{3}}. Tính giá trị biểu thức T = a + b.

    Ta có:

    y = \frac{2x + 1}{x^{2} + x - 2} =
\frac{1}{x - 1} + \frac{1}{x + 2}

    \Rightarrow y' = - \frac{1}{(x -
1)^{2}} - \frac{1}{(x + 2)^{2}}

    \Rightarrow y'' = \frac{2}{(x -
1)^{3}} + \frac{2}{(x + 2)^{3}}

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow T = a + b = 4

  • Câu 37: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 38: Nhận biết

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 39: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 40: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số y = \frac{x - 2}{x + 1} tại điểm x_{0} = 0?

    TXĐ: D\mathbb{= R}\backslash\left\{ - 1
ight\}

    Ta có: y(0) = \frac{0 - 2}{0 + 1} = -
2

    y' = \frac{3}{(x + 1)^{2}}
\Rightarrow y'(0) = 3

    Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm x_{0} = 0 là:

    y = 3(x - 0) - 2 \Rightarrow y = 3x -
2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo