Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
?
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Tính giá trị của biểu thức
?
Ta có:
Gọi
là đồ thị hàm số
. Có bao nhiêu phương trình tiếp tuyến của
vuông góc với đường thẳng
?
Gọi là tiếp điểm của tiếp tuyến
Ta có:
Vì tiếp tuyến của vuông góc với đường thẳng
nên
Với nên phương trình tiếp tuyến tương ứng là
Với nên phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn điều kiện đề bài.
Cho hàm số
với m là tham số. Tìm tập tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt?
Ta có:
Để có hai nghiệm phân biệt:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Tính đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Cho hàm số
có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Cho hàm số có đạo hàm thỏa mãn
. Giá trị của biểu thức
2
Hàm số có tập xác định là
. Nếu tồn tại giới hạn
thì giới hạn gọi là đạo hàm của hàm số tại điểm
Vậy kết quả của biểu thức
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho đồ thị của hàm số
trên khoảng
. Các tiếp điểm của đồ thị hàm số tại các điểm
được biểu diễn trong hình vẽ dưới đây:

Khẳng định nào dưới đây đúng?
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Phương trình tiếp tuyến tại điểm có dạng
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết cosin góc tạo bởi tiếp tuyến và đường thẳng ∆: 4x − 3y = 0 bằng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Suy ra phương trình tiếp tuyến d có dạng
=> Tiếp tuyến d có một vecto pháp tuyến là
Đường thẳng có một vecto pháp tuyến là:
Theo đề bài ta có:
Với ta có:
(vô nghiệm)
Với ta có:
Nếu => Phương trình tiếp tuyến cần tìm là y – 2 = 0 => y = 2
Nếu => Phương trình tiếp tuyến cần tìm là y + 2 = 0 => y = -2
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Phương trình chuyển động của một chất điểm được biểu diễn là
. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?
Ta có:
Suy ra vận tốc của chuyển động là
Bảng biến thiên
Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm .
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm là:
Cho hàm số
. Tính giá trị của f’(0)
Ta có:
Cho hàm số
có đạo hàm tại điểm
. Tìm khẳng định đúng trong các khẳng định sau?
Theo định nghĩa đạo hàm ta có:
Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Cho hàm số
. Với giá trị nào của
thì
?
Ta có: .
.
Để .
Cho hàm số
. Giá trị của
bằng:
Ta có:
Cho hàm số
. Khi đó ![]()
Với xét:
Cho hàm số
. Tính
?
Ta có:
Tìm đường thẳng tiếp tuyến kẻ từ điểm
đến đồ thị hàm số
?
Phương trình đường thẳng đi qua B có dạng
là tiếp tuyến của parabol
khi và chỉ khi
có nghiệm
Vậy
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho hàm số
. Tìm tập nghiệm của bất phương trình
?
Ta có:
Ta lại có:
Vậy tập nghiệm của phương trình là:
Một vật chuyển động theo quy luật
với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Ta có
. Khi đó đa thức M là:
Ta có:
Vậy
Viết phương trình tiếp tuyến của đồ thị hàm số
song song với đường thẳng
?
Ta có:
Vì tiếp tuyến song song với nên hệ số góc bằng 3 nên gọi tọa độ tiếp điểm là
Khi đó
Với
Với
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
. Tính
?
Ta có:
Tính đạo hàm của hàm số sau:
.
Ta có:
Cho
. Tính ![]()
Ta có: