Cho hàm số
. Xác định
?
Ta có:
Cho hàm số
. Xác định
?
Ta có:
Biết đạo hàm của hàm số
được biểu diễn như sau:
. Giá trị của tham số
là:
Ta có:
Khi đó
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
Vậy hàm số không liên tục tại x = 0
=> Hàm số không có đạo hàm tại x = 0
Vậy khẳng đính sai là "Hàm số có đạo hàm tại x = 0"
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Cho đường cong có phương trình
. Tiếp tuyến của đường cong đó tại điểm có hoành độ bằng 0:
Ta có:
=> Phương trình tiếp tuyền tại điểm có hoành độ bằng 0 là:
Dễ thấy phương trình tiếp tuyến vuông góc với đường thẳng (vì tích hai hệ số góc bằng -1).
Đạo hàm cấp hai của hàm số
tại
bằng:
Tập xác định
Ta có:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Đạo hàm của hàm số
là
Ta có:
Cho hàm số
. Giải phương trình f'(x) = f"(x)
Ta có:
Xét phương trình ta có:
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Tính tổng
![]()
Xét
Cho hàm số
. Xác định biểu thức của
?
Ta có:
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.
Ta có:
Cho hàm số
. Tính
?
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Biểu thức nào dưới đây đúng?
Ta có:
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9
=>
Với x0 = −1, ta có:
=> Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)
với x0 = 3 thì
Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)
Một chất điểm chuyển động có phương trình chuyển động là
; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?
Kết quả: 10(m)
Một chất điểm chuyển động có phương trình chuyển động là ; trong đó
tính bằng giây và
được tính bằng mét. Tại thời điểm vận tốc của vật đạt giá trị nhỏ nhất thì quãng đường vật đi được bằng bao nhiêu?
Kết quả: 10(m)
Vận tốc của chuyển động là
Dễ thấy với mọi t.
Dấu “=” xảy ra khi và chỉ khi
Khi đó quãng đường vật đi được là:
Cho hàm số
. Tính ![]()
Ta có:
Công thức nào sau đây biểu diễn đúng đạo hàm của hàm số
?
Ta có:
Cho hàm số xác định bởi công thức
có đồ thị hàm số
. Số các tiếp tuyến của đồ thị
song song với đường thẳng
là?
Ta có:
Gọi là tiếp điểm
Vì tiếp tuyến song song với đường thẳng nên
Với có phương trình tiếp tuyến tương ứng là
Với có phương trình tiếp tuyến tương ứng là
Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu đề bài.
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Một chất điểm chuyển động theo phương trình
, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.
Ta tính được
Vận tốc của chất điểm
=>
Cho đồ thị hàm số
. Gọi
là các điểm thuộc đồ thị
mà tiếp tuyến tại đó song song với nhau. Có bao nhiêu cặp điểm
thỏa mãn điều kiện trên?
Ta có:
Giả sử với
Tiếp tuyến tại A và B song song với nhau nên
Vậy trên đồ thị hàm số tồn tại vô số cặp điểm A và B thỏa mãn thì các tiếp tuyến tại A và B song song với nhau.
Tìm đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn
là:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Do
Hàm số không có đạo hàm tại
.
Cho hàm số
. Tính
thu được kết quả là:
Ta có:
Cho hàm số
liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Cho hàm số liên tục trên
có đúng hai nghiệm
. Hàm số
, có bao nhiêu giá trị nguyên của
để phương trình
có nhiều nghiệm nhất?
Với
, đạo hàm cấp hai của hàm số
là:
Ta có:
Trên đồ thị hàm số
tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?
Ta có:
Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến .
Ta có:
=> Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:
Hai điểm thỏa mãn