Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 2: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)(x - 3)...(x - 2020)}. Tính đạo hàm của hàm số tại x = 0?.

    Ta có:

    Đặt g(x) = (x - 1)(x - 2)(x - 3)...(x -
2020)

    Khi đó: f(x) =
\frac{x}{g(x)}

    \Rightarrow f'(x) = \frac{x'g(x)
- g'(x).x}{g^{2}(x)} = \frac{1}{g(x)} -
x.\frac{g'(x)}{g^{2}(x)}

    \Rightarrow f'(0) = \frac{1}{g(0)} -
x.\frac{g'(0)}{g^{2}(0)} = \frac{1}{g(0)}

    = \frac{1}{( - 1)( - 2)...( - 2020)} =
\frac{1}{2020!}

  • Câu 3: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho hàm số yy=-\frac{1}{3}mx^{3}+(m-1)x^{2}-mx+3, có đạo hàm là y'. Tìm tất cả các giá trị của m để phương trình y' = 0 có hai nghiệm phân biệt là x_{1},x_{2} thỏa mãn x_{1}^{2}+x_{2}^{2}=6.

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{3}m{x^3} + (m - 1){x^2} - mx + 3 \hfill \\   \Rightarrow y' = m{x^2} - 2\left( {m - 1} ight)x - m \hfill \\  y' = 0 \hfill \\   \Leftrightarrow m{x^2} - 2\left( {m - 1} ight)x - m = 0 \hfill \\ \end{matrix}

    Để phương trình y'=0 có hai nghiệm phân biệt thì

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {m e 0} \end{array} \Leftrightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {{{\left( {m - 1} ight)}^2} + {m^2} > 0} \\   {m e 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{m^2} - 2m + 1 > 0} \\   {m e 0} \end{array}} ight. \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi - et ta có

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{2\left( {m - 1} ight)}}{m}} \\   {{x_1}.{x_2} = \dfrac{{ - 1}}{m}} \end{array}} ight. \hfill \\  x_1^2 + x_2^2 = 6 \hfill \\   \Leftrightarrow {\left( {{x_1} + {x_2}} ight)^2} - 2{x_1}{x_2} = 6 \hfill \\   \Leftrightarrow {\left[ {\dfrac{{2\left( {m - 1} ight)}}{m}} ight]^2} + \dfrac{2}{m} = 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1 + \sqrt 2 } \\   {m =  - 1 - \sqrt 2 } \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số Q(t)=2t^{2}+t, trong đó t được tính bằng giây (s) và Q được tính theo culong (C). Tính cường độ dòng điện tại thời điểm t = 2s.

    Ta có:

    \begin{matrix}  I\left( t ight) = Q'\left( t ight) \hfill \\   \Rightarrow I = 4t + 1 \hfill \\   \Rightarrow I\left( 2 ight) = 4.2 + 1 = 9\left( A ight) \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Có bao nhiêu tiếp tuyến của đồ thị hàm số y = - x^{3} + 2x^{2} song song với đường thẳng x - y = 0?

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm của tiếp tuyến song song với đường thẳng x - y = 0 của đồ thị hàm số y = - x^{3} + 2x^{2} khi đó ta có:

    y'\left( x_{0} ight) = 1
\Leftrightarrow - 3{x_{0}}^{2} + 4x_{0} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 1 \\
x_{0} = \frac{1}{3} \\
\end{matrix} ight.

    Với x_{0} = 1 ta được M(1;1) có phương trình tiếp tuyến tương ứng là y = 1(x - 1) + 1 \Rightarrow y =
x

    Với x_{0} = \frac{1}{3} ta được M\left( \frac{1}{3};\frac{5}{27}
ight) có phương trình tiếp tuyến tương ứng là

    y = 1\left( x - \frac{1}{3} ight) +
\frac{5}{27} \Rightarrow y = x - \frac{4}{27}

    Vậy có 2 tiếp tuyến thỏa mãn yêu cầu đề bài.

  • Câu 8: Thông hiểu

    Cho hàm số y =
\frac{x^{4}}{4} - x^{3} + 1. Tập nghiệm của bất phương trình y''' \leq 6 là:

    Ta có:

    y = \frac{x^{4}}{4} - x^{3} +
1

    \Rightarrow y' = x^{3} - 3x^{2}
\Rightarrow y'' = 3x^{2} - 6x

    \Rightarrow y^{(3)} = 6x -
6

    y^{(3)} \leq 6 \Leftrightarrow 6x - 6
\leq 6 \Leftrightarrow x \leq 2

    Vậy S = ( - \infty;2brack

  • Câu 9: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 10: Nhận biết

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 11: Vận dụng cao

    Cho hai hàm số f(x) =\frac{1}{x\sqrt{2}};g(x) = \frac{x^{2}}{\sqrt{2}}. Gọi d_{1};d_{2} lần lượt là tiếp tuyến của mỗi đồ thị hàm số f(x);g(x) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?

    Xét phương trình hoành độ giao điểm:

    \frac{1}{x\sqrt{2}} =\frac{x^{2}}{\sqrt{2}} \Leftrightarrow x = 1

    Ta có: d_{1} có hệ số góc k_{1} = f'(1) = -\frac{1}{\sqrt{2}}

    d_{2} có hệ số góc k_{2} = g'(1) = \sqrt{2}

    => k_{1}.k_{2} = - 1 \Rightarrowd_{1}\bot d_{2}

  • Câu 12: Thông hiểu

    Cho hàm số y =
f(x) = \left\{ \begin{matrix}
x^{2} + 1\ \ \ ;\ x \geq 1 \\
2x\ \ \ \ \ \ \ \ ;\ x < 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây là mệnh đề sai?

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{x - 1}} = 2 \hfill \\
  \mathop {\lim }\limits_{x \to 1 + } \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1 - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy f'\left( 1^{-} ight) =
f'\left( 1^{+} ight) = f'(1) = 2

    Suy ra hàm số có đạo hàm tại x_{0} =
1

    Vậy mệnh đề sai là: ∄f'(1)

  • Câu 13: Thông hiểu

    Hệ số góc của tiếp tuyến của đồ thị hàm số y = \frac{- x + 1}{3x - 2} tại giao điểm của đồ thị hàm số với trục tung là:

    Ta có: y' = \frac{- 1}{(3x -
2)^{2}}

    Giao điểm của đồ thị hàm số với trục tung là M\left( 0;\frac{- 1}{2} ight)

    Vậy hệ số góc cần tìm là k = y'(0) =
- \frac{1}{4}

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx^{3}}{3} - \frac{mx^{2}}{2} + (3 - m)x - 2. Tìm giá trị của m để f'(x) > 0;\forall
x\mathbb{\in R}?

    Ta có:

    f'(x) = mx^{2} - mx + (3 -
m)

    Nếu m = 0 thì f'(x) = 3 > 0;\forall x\mathbb{\in
R}

    Nếu m eq 0 thì f'(x) = mx^{2} - mx + 3 - m là tam thức bậc hai

    f'(x) > 0;\forall x\mathbb{\in
R}

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
\Delta < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m^{2} - 4m(3 - m) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
5m^{2} - 12m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
0 < m < \frac{12}{5} \\
\end{matrix} ight.

    Vậy 0 \leq m <
\frac{12}{5}

  • Câu 15: Nhận biết

    Tính đạo hàm của hàm số y = \frac{1}{6}.x^{6} - \frac{1}{4}.x^{4} + a^{3}
+ b với a;b là hằng số)?

    Ta có:

    y = \frac{1}{6}.x^{6} -
\frac{1}{4}.x^{4} + a^{3} + b

    \Rightarrow y' = 6.\frac{1}{6}.x^{6
- 1} - 4.\frac{1}{4}.x^{4 - 1} + 0 + 0

    \Rightarrow y' = x^{5} -
x^{3}

  • Câu 16: Nhận biết

    Xác định hệ số góc tiếp tuyến của đồ thị hàm số y = x^{3} - 3x^{2} + 2 tại điểm N(1;0)?

    Ta có: y'(x) = 3x^{2} -
6x

    Hệ số góc tiếp tuyến của đồ thị hàm số tại điểm N(1;0) là:

    y'(1) = - 3

  • Câu 17: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 18: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 20: Nhận biết

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 21: Vận dụng

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Đáp án là:

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Ta có:

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    \Rightarrow f'(x) = \left\{
\begin{matrix}
2x + a\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
3x^{2} - 2x - 8\ \ \ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Hàm số có đạo hàm tại điểm x =
2

    Suy ra 4 + a = 0 \Rightarrow a = -
4

    Mặt khác hàm số có đạo hàm tại điểm x =
2

    Suy ra \lim_{x ightarrow 2^{+}}f(x) =
\lim_{x ightarrow 2^{-}}f(x) = f(2)

    \Rightarrow 4 + 2a + b = - 2 \Rightarrow
b = 2

  • Câu 22: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 24: Nhận biết

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 25: Nhận biết

    Tính đạo hàm của hàm số y = \tan \frac{{x + 1}}{2}

    Ta có:

    \begin{matrix}  y = \tan \dfrac{{x + 1}}{2} \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}}.\left( {\dfrac{{x + 1}}{2}} ight)\prime  \hfill \\   = \dfrac{1}{2}.\dfrac{1}{{{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} = \dfrac{1}{{2{{\cos }^2}\left( {\dfrac{{x + 1}}{2}} ight)}} \hfill \\ \end{matrix}

  • Câu 26: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 27: Thông hiểu

    Cho đồ thị hàm số (C):y = \frac{1}{3}x^{3} - x +
\frac{2}{3} . Tìm điểm A có hoành độ âm trên đồ thị (C) sao cho tiếp tuyến tại A vuông góc với đường thẳng x + 3y - 2 = 0?

    Tiếp tuyến tại A vuông góc với đường thẳng x + 3y - 2 = 0 nên tiếp tuyến có hệ số góc k = 3

    Ta có: y'(x) = x^{2} - 1

    Xét phương trình y'(x) = 3
\Leftrightarrow x^{2} - 1 = 3 \Leftrightarrow x = \pm 2

    Do A có hoành độ âm nên x = -2 thỏa mãn

    Với x = -2 thay vào phương trình (C) => y = 0

    Vậy điểm A cần tìm là A(-2; 0).

  • Câu 28: Thông hiểu

    Cho hàm số y = \left\{ \begin{matrix}
x\ \ \ \ \ \ \ khi\ x \geq 0 \\
- x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight.. Khẳng định nào dưới đây đúng?

    Ta có: y' = \left\{ \begin{matrix}
1\ \ \ \ \ \ \ khi\ x \geq 0 \\
- 1\ \ \ \ khi\ x < 0 \\
\end{matrix} ight.

    Do \left\{ \begin{matrix}
y'_{\left( 0^{+} ight)} = 1 \\
y'_{\left( 0^{-} ight)} = - 1 \\
\end{matrix} ight.

    \Rightarrow Hàm số không có đạo hàm tại x = 0.

  • Câu 29: Nhận biết

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 30: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 31: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 32: Nhận biết

    Tính vi phân của hàm số y = {x^3} + 9{x^2} + 12x - 5

     Ta có:

    \begin{matrix}  y' = {x^2} - 18x + 12 \hfill \\   \Rightarrow dy = \left( {3{x^2} - 18x + 12} ight)dx \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 34: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Đáp án là:

    Cho hàm số f(x) =
\left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight. . Khi hàm số f(x) có đạo hàm tại x_{0} = 0 . Tính giá trị biểu thức T = a - b ?

    Kết quả: 0

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

    Vậy giá trị của biểu thức T = a - b =
0

  • Câu 36: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số y = \frac{2}{x + 1}?

    Ta có:

    y = \frac{2}{x + 1} \Rightarrow y' =
\frac{- 2}{(x + 1)^{2}}

    \Rightarrow y'' = \frac{2.2(x +
1)}{(x + 1)^{4}} = \frac{4}{(x + 1)^{3}}

  • Câu 37: Vận dụng

    Cho hàm số f(x)= \ln2021 + \ln\left( \frac{x}{x + 1} ight). Tính giá trị biểu thức:

    S = f'(1) + f'(2) + .... +
f'(2020)

    Ta có:

    f'(x) = \dfrac{\left( \dfrac{x}{x + 1}ight)'}{\dfrac{x}{x + 1}} = \dfrac{\dfrac{1}{(x + 1)^{2}}}{\dfrac{x}{x+ 1}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Suy ra = \frac{1}{x(x + 1)} = \frac{1}{x}
- \frac{1}{x + 1}

    f'(2) = \frac{1}{2} -
\frac{1}{3}

    f'(3) = \frac{1}{3} -
\frac{1}{4}

    f'(2020) = \frac{1}{2020} -
\frac{1}{2021}

    Vậy S = f'(1) + f'(2) + .... +
f'(2020) = 1 - \frac{1}{2021} = \frac{2020}{2021}

  • Câu 38: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 39: Thông hiểu

    Cho hàm số y=\frac{3x-4}{x+2}. Tìm x sao cho y" = 20

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 4}}{{x + 2}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {x + 2} ight) - \left( {3x - 4} ight)}}{{{{\left( {x + 2} ight)}^2}}} = \dfrac{{10}}{{{{\left( {x + 2} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 10.2.\left( {x + 2} ight)}}{{{{\left( {x + 2} ight)}^4}}} = \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  y'' = 20,(xe-2) \hfill \\   \Leftrightarrow \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} = 20 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^3} =  - 1 \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo