Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Cho
. Tính đạo hàm của hàm số đã cho?
Ta có:
Suy ra
Cho
. Tính ![]()
Ta có:
Biết
. Xác định công thức của
?
Ta có:
…
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Khẳng định nào dưới đây đúng?
Ta có:
Hàm số
có đạo hàm là:
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Cho hàm số
có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Cho hàm số
. Tổng các nghiệm của phương trình
trên đoạn
bằng bao nhiêu?
Ta có:
Vì nên
nên
Suy ra tổng các nghiệm trên đoạn của phương trình
là:
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

Tính gia tốc của vật lúc
.
Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol
Gọi phương trình vận tốc của chất điểm là
Đồ thị đi qua điểm ta có hệ phương trình:
Vậy
Gia tốc của vật là
Vậy gia tốc của vật lúc là:
Tính đạo hàm cấp hai của hàm số
tại
?
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Cho
. Khi đó
bằng:
Ta có:
Cho hàm số
. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0
Ta có:
=> Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0
=> Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.
Cho hàm số
được xác định bởi công thức
![]()
Biết hàm số có đạo hàm tại điểm
. Khi đó:
Giá trị của a là: -4|| - 4
Giá trị của b là: 2
Cho hàm số được xác định bởi công thức
Biết hàm số có đạo hàm tại điểm . Khi đó:
Giá trị của a là: -4|| - 4
Giá trị của b là: 2
Ta có:
Hàm số có đạo hàm tại điểm
Suy ra
Mặt khác hàm số có đạo hàm tại điểm
Suy ra
Tính vi phân của hàm số ![]()
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm với đường thẳng y = −2.
Phương trình hoành độ giao điểm:
Với x = −1, ta có:
Suy ra phương trình tiếp tuyến cần tìm là: y = 9x + 7
Với x = 2, ta có:
Suy ra phương trình tiếp tuyến cần tìm là y = −2
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Cho hàm số
. Tính
?
Ta có:
Biết rằng
. Giá trị của biểu thức
4
Biết rằng . Giá trị của biểu thức
4
Ta có:
Cho hàm số
. Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Cho hàm số . Có bao nhiêu giá trị nguyên của
thỏa mãn bất phương trình
?
Kết quả: 0
Tập xác định:
Ta có:
Ta có:
Với
Ta có:
Kết hợp với điều kiện ta có:
Mà nên suy ra
Vậy không có giá trị nguyên nào của x thỏa mãn bất phương trình đã cho.
Cho hàm số
. Xác định giá trị
?
Ta có:
Tính đạo hàm cấp hai tại điểm
của hàm số
?
Tập xác định
Ta có:
Thực hiện tính đạo hàm của hàm số
thu được kết quả có dạng
. Khi đó giá trị của biểu thức
bằng: 3
Thực hiện tính đạo hàm của hàm số thu được kết quả có dạng
. Khi đó giá trị của biểu thức
bằng: 3
Ta có:
Tìm tham số thực b để hàm số
có đạo hàm tại x = 2.
Để hàm số có đạo hàm tại x = 2 trước tiên hàm số phải liên tục tại x = 2, tức là
Thử b = 6 ta có:
Nên hàm số có đạo hàm tại x = 2
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Biết
. Xác định giá trị của tham số
?
Ta có:
Lại có:
Một chất điểm chuyển động thẳng có phương trình
( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Tính đạo hàm cấp hai của hàm số
tạo điểm
?
Ta có:
Cho hàm số
. Giải phương trình
.
Tập xác định
Ta có:
Lại có: