Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Số gia của hàm số
tại
ứng với số gia
bằng:
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng tất cả các phần tử của tập hợp
?
Kết quả: 5/2
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Điều kiện
Ta có:
Đường thẳng d đi qua Q có hệ số góc k là
Đường thẳng d tiếp xúc với (C) có nghiệm
Thế (**) vào (*) ta có:
Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất
Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1
Vậy
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Cho hàm số
. Công thức tính
là:
Ta có:
….
Cho hàm số
. Tính giá trị của
.
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Tại điểm
, giá trị đạo hàm cấp hai của hàm số
bằng bao nhiêu?
Ta có:
Cho hàm số
có đạo hàm tại
là
. Mệnh đề nào sau đây sai?
Mệnh đề sai là
Đạo hàm cấp hai của hàm số
là:
Tập xác định
Ta có:
Phương trình chuyển động của một chất điểm là
với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Phương trình chuyển động của một chất điểm là với
là khoảng thời gian tính từ lúc bắt đầu chuyển động và
là quãng đường vật đi được trong thời gian đó. Biết vận tốc chuyển động đạt giá trị lớn nhất là
tại thời điểm
. Xác định giá trị biểu thức
.
16/9
(Kết quả được ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Suy ra vận tốc của chuyển động là
Vận tốc của chuyển động đạt giá trị lớn nhất khi
Vậy
Cho
là hàm số liên tục tại x0. Đạo hàm của
tại x0 là:
Đạo hàm của tại x0 là:
(nếu tồn tại giới hạn).
Cho hàm số
xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả:
2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Với ta có:
Khi đó:
Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Xác định công thức đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Khẳng định nào sau đây là sai?
Ta có: (đúng)
=> Hàm số nhận giá trị không âm
Ta lại có:
=> Hàm số liên tục tại x = 2
Ta có:
Vậy không tồn tại giới hạn khi x tiến tới 2
Vậy khẳng định sai là "f(x) có đạo hàm tại x = 2"
Chọn phát biểu đúng trong các phát biểu dưới đây?
Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Đạo hàm của hàm số
bằng biểu thức nào dưới đây?
Ta có:
Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Cho hàm số
. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn
là:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho
. Tính ![]()
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Hệ thức nào sau đây đúng?
Ta có:
Đạo hàm cấp hai của hàm số
tại điểm
bằng 10
Đạo hàm cấp hai của hàm số tại điểm
bằng 10
Ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Tính số gia của hàm số
tại điểm x0 = -1 ứng với số gia ![]()
Ta có:
Cho hai hàm số
đều có đạo hàm trên tập số thực và thỏa mãn:
![]()
với
. Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Xác định công thức đạo hàm của hàm số
trên khoảng
?
Áp dụng công thức
Ta có:
Tính tỉ số
của hàm số
theo x và ![]()
Ta có:
Tính đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Cho hàm số . Khi hàm số
có đạo hàm tại
. Tính giá trị biểu thức
?
Kết quả: 0
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Vậy giá trị của biểu thức
Tính đạo hàm của hàm số ![]()
Ta có:
Cho parabol
. Khẳng định nào sai trong các khẳng định sau?
Ta có:
=> Phương trình tiếp tuyến tại điểm M(1; 6) là:
hay
Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng .
Mặt khác ta có:
Vậy tiếp tuyến không đi qua điểm N(0; -1).
Cho hàm số
. Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Đạo hàm của hàm số
là
Ta có:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Công thức đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Tính
?
Ta có:
Cho hàm số
có đạo hàm tại điểm x = 1 (với
). Giá trị của biểu thức
bằng bao nhiêu?
Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:
Hàm số phải liên tục tại điểm x = 1:
Và
Vậy giá trị của biểu thức