Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Cho hai hàm số
. Gọi
lần lượt là tiếp tuyến của mỗi đồ thị hàm số
đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
Xét phương trình hoành độ giao điểm:
Ta có: có hệ số góc
có hệ số góc
=>
Cho hàm số
. Chọn biểu thức đúng?
Ta có:
Cho hàm số
. Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình
, trong đó
tính bằng mét và
tính bằng giây. Trong thời gian
kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?
Kết quả: 28(m/s)
Quãng đường chuyển động của một ô tô được biểu diễn bằng phương trình , trong đó
tính bằng mét và
tính bằng giây. Trong thời gian
kể từ khi bắt đầu chuyển động, ô tô đạt vận tốc lớn nhất bằng bao nhiêu?
Kết quả: 28(m/s)
Ta có:
Suy ra vận tốc của chuyển động là
Dễ thấy hàm số là hàm số bậc hai có đồ thị dạng Parabol với hệ số
Ta có hoành độ đỉnh của Parabol là
Do đó
Vậy giá trị lớn nhất của vận tốc ô tô chuyển động trong 5 giây đầu là
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Cho hàm số
. Tính
?
Ta có:
Xác định đạo hàm của hàm số
trên tập số thực.
Ta có:
Viết phương trình tiếp tuyến của đường cong
tại điểm -1.
Ta tính được
Ta có:
Suy ra phương trình tiếp tuyến
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Cho hàm số
. Chọn hệ thức đúng?
Ta có:
Khi đó ta có:
Cho hàm số
. Có bao nhiêu nghiệm thuộc
thỏa mãn phương trình
?
Ta có:
Lại có
Do
Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số
. Tính giá trị của ![]()
Ta có:
Cho hai hàm số
và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức
10
Cho hai hàm số và
đều có đạo hàm trên
và thỏa mãn
với
.
Giá trị biểu thức 10
Với ta có:
Đạo hàm hai vế của (*) ta được:
Từ (*) và (**) ta có:
Từ (1) ta có:
Với thay vào (2) ta được 36 = 0 (loại)
Với thay vào (2) ta được:
Vậy
Một chất điểm chuyển động thẳng quãng đường được xác định bởi phương trình
trong đó quãng đường s tính bằng mét (m), thời gian t tính bằng giây (s). Khi đó gia tốc tức thời của chuyển động tại giây thứ 10 là bao nhiêu?
Ta có:
Vậy gia tốc tức thời của chuyển động tại giây thứ 10 là
Cho hàm số
. Khi đó mệnh đề nào dưới đây đúng?
Ta có:
Khi đó khẳng định đúng là:
Một vật chuyển động có phương trình
. Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Tính đạo hàm của hàm số
tại điểm
?
Ta có:
Vậy
Đạo hàm của hàm số
bằng biểu thức nào sau đây?
Ta có:
Xác định hệ số góc phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ
?
TXĐ:
Ta có:
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là:
Tính tổng
![]()
Xét
Cho parabol
. Khẳng định nào sai trong các khẳng định sau?
Ta có:
=> Phương trình tiếp tuyến tại điểm M(1; 6) là:
hay
Tiếp tuyến song song với đường thẳng y = -5x + 2 và vuông góc với đường thẳng .
Mặt khác ta có:
Vậy tiếp tuyến không đi qua điểm N(0; -1).
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
. Tính ![]()
Ta có:
Hàm số
liên tục trên:
Điều kiện xác định:
Vậy hàm số liên tục trên
Tính đạo hàm của hàm số sau:
.
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Đạo hàm của hàm số
là:
Ta có:
Cho hàm số
. Tập nghiệm của bất phương trình
là:
Ta có:
Cho chuyển động thẳng xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Cho chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét.
Vận tốc của chuyển động tại thời điểm gia tốc bị triệt tiêu bằng 12m/s.
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Gia tốc triệt tiêu khi
Khi đó vận tốc của chuyển động là
Cho hàm số
. Giải bất phương trình y" < 0
Ta có:
Xét bất phương trình ta có:
Đạo hàm cấp hai của hàm số
là:
Ta có:
Cho hàm số
có đạo hàm tại điểm x = 1 (với
). Giá trị của biểu thức
bằng bao nhiêu?
Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:
Hàm số phải liên tục tại điểm x = 1:
Và
Vậy giá trị của biểu thức
Tìm khẳng định đúng dưới đây?
Ta có
Tính số gia của hàm số
tại điểm x0 = -1 ứng với số gia ![]()
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
. Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Cho đường cong
với
là tham số. Gọi
là tập các giá trị của tham số
sao cho đồ thị hàm số
có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập
là:
Ta có:
Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0
Gọi tiếp điểm là khi đó
Để có đúng 1 tiếp tuyến song song với trục hoàn thì
Vậy tổng các giá trị m là 5.
Cho hàm số
. Tính giá trị của ![]()
Ta có: