Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 2: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 3: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 4: Vận dụng

    Cho hàm số y = x^{2018} - 1009x^{2} +2019x. Giá trị của \lim_{\Delta xightarrow 0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} bằng:

    Ta có:

    f'(x) = 2018.x^{2017} - 2.1009x +2019

    \Rightarrow \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = f'(1)

    = 2018.1 - 2.2019.1 + 2019 =2019

    Vậy \lim_{\Delta x ightarrow0}\frac{f(\Delta x + 1) - f(1)}{\Delta x} = 2019

  • Câu 5: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - f(2)}{x - 2} =
3. Kết quả đúng là:

    Ta có f'(2) = \lim_{x ightarrow
2}\frac{f(x) - f(2)}{x - 2} = 3

  • Câu 7: Thông hiểu

    Cho hàm số f(x)=\cos^{2}x. Giá trị của f'(\frac{\pi}{6}) bằng: 

     Ta có:

    \begin{matrix}  f(x) = {\cos ^2}x \hfill \\   \Rightarrow f'\left( x ight) = \left( {{{\cos }^2}x} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = 2\cos x.\left( { - \sin x} ight) \hfill \\   \Leftrightarrow f'\left( x ight) =  - \sin 2x \hfill \\   \Rightarrow f'\left( {\dfrac{\pi }{6}} ight) =  - \sin \left( {2.\dfrac{\pi }{6}} ight) = \dfrac{{ - \sqrt 3 }}{2} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 9: Nhận biết

    Cho hàm số y = \frac{2}{{1 + x}}. Tính giá trị của {y^{\left( 3 ight)}}\left( 1 ight)

    Ta có:

    \begin{matrix}y = \dfrac{2}{{1 + x}} \Rightarrow y' = \dfrac{{ - 2}}{{{{\left( {1 + x} ight)}^2}}} \hfill \\\Rightarrow y''\left( x ight) = \dfrac{{4\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{4}{{{{\left( {x + 1} ight)}^3}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}} = \dfrac{{ - 12{{\left( {x + 1} ight)}^2}}}{{{{\left( {x + 1} ight)}^6}}} = \dfrac{{ - 12}}{{{{\left( {x + 1} ight)}^4}}} \hfill \\\Rightarrow {y^{\left( 3 ight)}}\left( 1 ight) = \dfrac{{ - 12}}{{{{\left( {1 + 1} ight)}^4}}} = - \dfrac{3}{4} \hfill \\\end{matrix}

  • Câu 10: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm tại điểm x_{0} =
2. Tìm giá trị biểu thức H =
\lim_{x ightarrow 2}\frac{2f(x) - xf(2)}{x - 2}?

    Do hàm số y = f(x) có đạo hàm tại điểm x_{0} = 2 nên suy ra

    \lim_{x ightarrow 2}\frac{f(x) -
f(2)}{x - 2} = f'(2)

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2f(x) -
xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2f(x) - 2f(2) + 2f(2) - xf(2)}{x - 2}

    \Leftrightarrow H = \lim_{x ightarrow
2}\frac{2\left\lbrack f(x) - f(2) ightbrack}{x - 2} - \lim_{x
ightarrow 2}\frac{f(2)(x - 2)}{x - 2}

    \Leftrightarrow H = 2f'(2) -
f(2)

  • Câu 11: Nhận biết

    Cho f là hàm số liên tục tại x_{0}. Đạo hàm của f tại x_{0} là: 

    Đạo hàm của f tại x_{0} là \underset{h \to 0}{lim}\frac{f(x_{0}+h)-f(x_{0})}{h} (nếu tồn tại giới hạn)

  • Câu 12: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 13: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = \frac{2x + 1}{x - 1}. Biết (C) song song với đường thẳng y = - 3x?

    Gọi M\left( x_{0};y_{0}
ight)là tiếp điểm của tiếp tuyến

    Ta có: y' = \frac{- 3}{(x -
1)^{2}}

    Do (C) song song với đường thẳng y = - 3x nên y'\left( x_{0} ight) = - 3

    \Leftrightarrow \frac{- 3}{\left( x_{0}
- 1 ight)^{2}} = - 3 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = 2 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = -
1 nên phương trình tiếp tuyến tương ứng là

    y = - 3(x - 0) - 1 \Rightarrow y = - 3x
- 1

    Với x_{0} = 2 \Rightarrow y_{0} =
5 nên phương trình tiếp tuyến tương ứng là

    y = - 3(x - 2) + 5 \Rightarrow y = - 3x
+ 11

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 15: Vận dụng

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 16: Thông hiểu

    Tính đạo hàm của hàm số f(x)=\frac{x^{2}+x}{x-2} tại điểm x = 1

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{{x^2} + x}}{{x - 2}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{\left( {{x^2} + x} ight)'\left( {x - 2} ight) - \left( {{x^2} + x} ight)\left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = \dfrac{{\left( {2x + 1} ight)\left( {x - 2} ight) - \left( {{x^2} + x} ight)}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = \dfrac{{2{x^2} - 4x + x - 2 - {x^2} - x}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = \dfrac{{{x^2} - 4x - 2}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   \Rightarrow f'\left( 1 ight) = \dfrac{{{1^2} - 4 - 2}}{{{{\left( {1 - 2} ight)}^2}}} =  - 5 \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Tính đạo hàm cấp 3 của hàm số f(x)=(2x+5)^{5}

    Ta có:

    \begin{matrix}  f(x) = {(2x + 5)^5} \hfill \\   \Rightarrow f'\left( x ight) = 5.2.{\left( {2x + 5} ight)^4} = 10.{\left( {2x + 5} ight)^4} \hfill \\   \Rightarrow f''\left( x ight) = 80.{\left( {2x + 5} ight)^3} \hfill \\   \Rightarrow {f^{\left( 3 ight)}}\left( x ight) = 480.{\left( {2x + 5} ight)^2} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Đạo hàm của hàm số y=(5-3x)(\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-1) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {5 - 3x} ight)\left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight) \hfill \\   \Rightarrow y\prime  = \left( {5 - 3x} ight)\prime \left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight) \hfill \\   + \left( {5 - 3x} ight)\left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight)\prime  \hfill \\   =  - 3.\left( {\dfrac{1}{3}{x^3} + \dfrac{1}{2}{x^2} - 1} ight) + \left( {5 - 3x} ight).\left( {{x^2} + x} ight) \hfill \\   =  - {x^3} - \dfrac{3}{2}{x^2} + 3 + 5{x^2} + 5x - 3{x^3} - 3{x^2} \hfill \\   =  - 4{x^3} + \dfrac{1}{2}{x^2} + 5x + 3 \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 20: Nhận biết

    Đạo hàm của hàm số y = (1 - 2x)^{3} là:

    Ta có: y = (1 - 2x)^{3}

    \Rightarrow y' = 3(1 - 2x)^{2}(1 -
2x)'

    \Rightarrow y' = 3(1 - 2x)^{2}( - 2)
= - 6(1 - 2x)^{2}

  • Câu 21: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{\sqrt {{x^2} + 1}  - 1}}{x}}&{{\text{ khi }}x e 0} \\   0&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt {{x^2} + 1} }}{x} - 0}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {{x^2} + 1}  - 1} ight)\left( {\sqrt {{x^2} + 1}  + 1} ight)}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\sqrt {{x^2} + 1}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 22: Vận dụng cao

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 23: Vận dụng

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 24: Nhận biết

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 25: Vận dụng

    Tìm đường thẳng tiếp tuyến kẻ từ điểm B(2; - 1) đến đồ thị hàm số y = \frac{x^{2}}{4} - x + 1?

    Phương trình đường thẳng đi qua B có dạng y = k(x - 2) - 1 = kx - 2k - 1\ \ \
(\Delta)

    (\Delta) là tiếp tuyến của parabol y = \frac{x^{2}}{4} - x + 1 khi và chỉ khi

    \left\{ \begin{matrix}
kx - 2k - 1 = \frac{x^{2}}{4} - x + 1 \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.có nghiệm

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
k = \frac{x}{2} - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow k = - 1 \\
x = 4 \Rightarrow k = 1 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(\Delta):y = - x + 1 \\
(\Delta):y = x - 3 \\
\end{matrix} ight.

  • Câu 26: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 27: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 28: Thông hiểu

    Tính đạo hàm của hàm số y = \sin \sqrt {{x^2} + 2}

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \sqrt {{x^2} + 2} } ight] \prime \hfill \\   \Rightarrow y' = \left( {\sqrt {{x^2} + 2} } ight)'.\cos \sqrt {{x^2} + 2}  \hfill \\   \Rightarrow y' = \dfrac{x}{{\sqrt {2 + {x^2}} }}.\cos \sqrt {{x^2} + 2}  \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 31: Nhận biết

    Đạo hàm của hàm số y = f(x) = \frac{1}{2}x^{4} + \frac{5}{3}x^{3} -
\sqrt{2x} + m^{2} (với m = const) là:

    Ta có:

    y = f(x) = \frac{1}{2}x^{4} +
\frac{5}{3}x^{3} - \sqrt{2x} + m^{2}

    \Rightarrow f'(x) =
\frac{1}{2}.4x^{3} + \frac{5}{3}.3x^{2} - \frac{1}{\sqrt{2x}} +
0

    \Rightarrow f'(x) = 2x^{3} + 5x^{2}
- \frac{1}{\sqrt{2x}}

  • Câu 32: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x^{2} + 1} - 1}{x}\ \ \ \ khi\ x eq 0 \\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow0}\dfrac{\dfrac{\sqrt{x^{2} + 1} - 1}{x} - 0}{x}

    = \lim_{x ightarrow0}\frac{\sqrt{x^{2} + 1} - 1}{x^{2}}

    = \lim_{x ightarrow 0}\frac{\left(\sqrt{x^{2} + 1} - 1 ight)\left( \sqrt{x^{2} + 1} + 1ight)}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{x^{2}}{x^{2}\left( \sqrt{x^{2} + 1} + 1 ight)}

    = \lim_{x ightarrow0}\frac{1}{\sqrt{x^{2} + 1} + 1} = \frac{1}{2}

  • Câu 33: Vận dụng cao

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Cho hàm số y =
\frac{- x + 2}{x - 1} có đồ thị (C) . Gọi tập hợp tất cả các giá trị của tham số a để có đúng một tiếp tuyến của (C) đi qua điểm Q(a,1)S. Tính tổng tất cả các phần tử của tập hợp S?

    Kết quả: 5/2

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Điều kiện x eq 1

    Ta có: f'(x) = \frac{- 1}{(x -
1)^{2}}

    Đường thẳng d đi qua Q có hệ số góc k là y = k(x - a) + 1

    Đường thẳng d tiếp xúc với (C) \Leftrightarrow \left\{ \begin{matrix}k(x - a) + 1 = \dfrac{x + 2}{x - 1}(*) \\k = - \dfrac{1}{(x - 1)^{2}}(**) \\\end{matrix} ight. có nghiệm

    Thế (**) vào (*) ta có: - \frac{1}{(x -
1)^{2}}(x - a) + 1 = \frac{- x + 2}{x - 1}

    \Leftrightarrow - x + a + x^{2} - 2x + 1
= - x^{2} + 3x - 2;x eq 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0\
\ \ (1)

    Để đồ thị hàm số có 1 tiếp tuyến qua Q thì hệ phương trình trên có nghiệm duy nhất

    Suy ra phương trình (1) có duy nhất 1 nghiệm khác 1

    \Leftrightarrow 2x^{2} - 6x + a + 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 = 0 \\2 - 6 + a + 3 eq 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}\Delta' = 9 - 2a - 6 > 0 \\2 - 6 + a + 3 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{3}{2} \\a = 1 \\\end{matrix} ight.

    Vậy 1 + \frac{3}{2} =
\frac{5}{2}

  • Câu 34: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Cho hàm số f(x)= \ln2021 + \ln\left( \frac{x}{x + 1} ight). Tính giá trị biểu thức:

    S = f'(1) + f'(2) + .... +
f'(2020)

    Ta có:

    f'(x) = \dfrac{\left( \dfrac{x}{x + 1}ight)'}{\dfrac{x}{x + 1}} = \dfrac{\dfrac{1}{(x + 1)^{2}}}{\dfrac{x}{x+ 1}}

    = \frac{1}{x(x + 1)} = \frac{1}{x} -
\frac{1}{x + 1}

    Suy ra = \frac{1}{x(x + 1)} = \frac{1}{x}
- \frac{1}{x + 1}

    f'(2) = \frac{1}{2} -
\frac{1}{3}

    f'(3) = \frac{1}{3} -
\frac{1}{4}

    f'(2020) = \frac{1}{2020} -
\frac{1}{2021}

    Vậy S = f'(1) + f'(2) + .... +
f'(2020) = 1 - \frac{1}{2021} = \frac{2020}{2021}

  • Câu 36: Thông hiểu

    Đạo hàm của hàm số f(x)=\frac{ax^{2}+b}{c+d} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{a{x^2} + b}}{{c + d}} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {\dfrac{{a{x^2} + b}}{{c + d}}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {a{x^2} + b} ight)'\left( {c + d} ight) - \left( {c + d} ight)'\left( {a{x^2} + b} ight)}}{{{{\left( {c + d} ight)}^2}}} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2ax\left( {c + d} ight)}}{{{{\left( {c + d} ight)}^2}}} = \dfrac{{2ax}}{{c + d}} \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Đáp án là:

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v(t) = S'(t) = 8t^{3} + 12t -
3

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a(t) = 24t^{2} + 12

    Tại thời điểm t = 2s thì gia tốc có giá trị là:

    a(2) = 24.(2)^{2} + 12 = 108\left(
m/s^{2} ight)

  • Câu 38: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 39: Nhận biết

    Cho hàm số y =5\sin x - 3\cos x. Chọn biểu thức đúng?

    Ta có:

    y = 5\sin x - 3\cos x

    \Rightarrow y' = (5\sin x -3\cos x)' = 5\cos x + 3\sin x

  • Câu 40: Vận dụng

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo