Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Đạo hàm gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =
f(x) = \frac{2x + 1}{1 - x}. Giải phương trình f'(x) + f''(x) = 0.

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có:

    y = f(x) = \frac{2x + 1}{1 -
x}

    \Rightarrow f'(x) = \frac{3}{(x -
1)^{2}} \Rightarrow f''(x) = - \frac{6}{(x -
1)^{3}}

    Lại có:

    f'(x) + f''(x) =
0

    \Leftrightarrow \frac{3}{(x - 1)^{2}} -
\frac{6}{(x - 1)^{3}} = 0

    \Leftrightarrow \frac{2}{x - 1} = 1
\Leftrightarrow x = 3(tm)

  • Câu 2: Nhận biết

    Hàm số f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}} liên tục trên:

    \sin x \in \left[ { - 1;1} ight]

    2\sin x + 3 e 0,\forall x \in \mathbb{R}

    => Tập xác định D = \mathbb{R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 3: Thông hiểu

    Cho hàm số y=sin2x-cos2x. Giải phương trình y" = 0

     Ta có:

    \begin{matrix}  y = \sin 2x - \cos 2x \hfill \\   \Rightarrow y' = 2\cos 2x + 2\sin 2x \hfill \\   \Rightarrow y'' =  - 4\sin 2x + 4\cos 2x \hfill \\  y'' = 0 \hfill \\   \Leftrightarrow  - 4\sin 2x + 4\cos 2x = 0 \hfill \\   \Leftrightarrow \sin 2x = \cos 2x \hfill \\   \Leftrightarrow \tan 2x = 1 \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{4} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{8} + k\dfrac{\pi }{2},\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Phương trình tiếp tuyến của đồ thị hàm số y = \frac{2x + 3}{x - 2} tại điểm có hoành độ bằng 3 là:

    Ta có: x = 3 \Rightarrow y(3) =
9

    y' = \frac{- 7}{(x - 2)^{2}}
\Rightarrow y'(3) = \frac{- 7}{(3 - 2)^{2}} = - 7

    Phương trình tiếp tuyến tương ứng là

    y = - 7(x - 3) + 9 \Rightarrow y = - 7x
+ 30

  • Câu 5: Thông hiểu

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

  • Câu 6: Vận dụng cao

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Đáp án là:

    Cho hàm số y =
f(x) = \frac{x + 2}{2x + 3} có đồ thị (C) . Đường thẳng d có phương trình y = ax + b là tiếp tuyến của (C) . Biết d cắt trục Ox tại A và cắt trục Oy tại  sao cho tam giác OAB cân tại O , với O là gốc tọa độ.

    Giá trị của a + b = -3|| - 3

    Tập xác định D\mathbb{=
R}\backslash\left\{ - \frac{3}{2} ight\}

    Ta có:

    y' = \frac{- 1}{(2x + 3)^{2}} <
0;\forall x \in D

    Tam giác OAB cân tại O suy ra hệ số góc tiếp tuyến bằng 1 hoặc -1

    Do y’ < 0 nên k = -1

    Gọi tọa độ tiếp điểm là \left(
x_{0};y_{0} ight);\left( x_{0} \in D ight) ta có: - \frac{1}{\left( 2x_{0} + 3 ight)^{2}} = - 1
\Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 2 \\
x_{0} = - 1 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow y_{0} = 1
\Rightarrow PT:y = - x

    Với x_{0} = - 2 \Rightarrow y_{0} = 0
\Rightarrow PT:y = - x - 2

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 2 \\
\end{matrix} ight.\  \Rightarrow a + b = - 3

  • Câu 7: Thông hiểu

    Đạo hàm cấp hai của hàm số y = f(x) = \frac{1}{2x - 1} tại x_{0} = - 1 bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có: y = f(x) = \frac{1}{2x -
1}

    \Rightarrow f'(x) = \frac{- 2}{(2x -
1)^{2}}

    \Rightarrow f''(x) = \frac{8}{(2x
- 1)^{3}}

    \Rightarrow f''( - 1) = -
\frac{8}{27}

  • Câu 8: Vận dụng

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)...(x - 2022)}. Tính đạo hàm của hàm số y = f(x) tại x = 0?

    Đặt g(x) = (x - 1)(x - 2)...(x -
2022)

    Khi đó f(x) = \frac{x}{g(x)}

    \Rightarrow f'(x) =
\frac{x'.g(x) - x.g'(x)}{g^{2}(x)}

    = \frac{g(x) - x.g'(x)}{g^{2}(x)} =
\frac{1}{g(x)} - \frac{x.g'(x)}{g^{2}(x)}

    f'(0) = \frac{1}{g(0)} -
0.\frac{g'(0)}{g^{2}(x)} = \frac{1}{g(0)}

    = \frac{1}{( - 1).( - 2)...( - 2022)} =
\frac{1}{2022!}

  • Câu 9: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ khi\ x eq 1 \\- \dfrac{5}{4}\ \ khi\ x = 1 \\\end{matrix} ight.. Tính f'(1)?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -1}{\left( \sqrt{3x + 1} + 2x ight)} = - \frac{5}{4} =f(1)

    => Hàm số liên tục tại x = 1

    Khi đó ta có:

    f'(1) = \lim_{x ightarrow1}\frac{f(x) - f(1)}{x - 1}

    = \lim_{x ightarrow1}\dfrac{\dfrac{\sqrt{3x + 1} - 2x}{x - 1} + \dfrac{5}{4}}{x -1}

    = \lim_{x ightarrow 1}\frac{4\sqrt{3x+ 1} - 3x - 5}{4(x - 1)^{2}}

    = \lim_{x ightarrow 1}\frac{16(3x + 1)- (3x + 5)^{2}}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} + 3x + 5ight)}

    = \lim_{x ightarrow 1}\frac{-9}{4\left( 4\sqrt{3x + 1} + 3x + 5 ight)} = -\frac{9}{64}

  • Câu 10: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 11: Nhận biết

    Cho hàm số f(x)=(x+10)^{6}. Tính giá trị của f''(2).

     Ta có:

    \begin{matrix}  f(x) = {(x + 10)^6} \hfill \\   \Rightarrow f'\left( x ight) = 6.{\left( {x + 10} ight)^5} \hfill \\   \Rightarrow f''\left( x ight) = 6.5.{\left( {x + 10} ight)^4} = 30{\left( {x + 10} ight)^4} \hfill \\   \Rightarrow f''\left( 2 ight) = 622080 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 13: Nhận biết

    Tính đạo hàm của hàm số y = \log(2x - 1) trên khoảng \left( \frac{1}{2}; + \infty ight)?

    Trên khoảng \left( \frac{1}{2}; + \infty
ight) ta có:

    y = \log(2x - 1) \Rightarrow y' =\frac{(2x - 1)'}{(2x - 1)\ln10}

    \Rightarrow y' = \frac{2}{(2x -1)\ln10}

  • Câu 14: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 16: Nhận biết

    Xác định công thức đạo hàm của hàm số y = \log_{\sqrt{3}}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y = \log_{\sqrt{3}}x

    \Rightarrow y' =
\frac{1}{x\ln\sqrt{3}}

  • Câu 17: Thông hiểu

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Đáp án là:

    Một chất điểm chuyển động thẳng biến đổi đều với phương trình chuyển động là S = 2t^{2} +
t - 1(m) . Hỏi vận tốc tức thời của vật tại thời điểm t = 2s bằng bao nhiêu?

    Kết quả: 9m/s

    Ta có:

    S = 2t^{2} + t - 1(m)

    \Rightarrow v = S' = 4t +
2

    Vận tốc tức thời của vật tại thời điểm t
= 2s là: v(2) = 4.2 + 1 =
9(m/s)

  • Câu 18: Nhận biết

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 19: Nhận biết

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 20: Nhận biết

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 21: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = \frac{1}{x} tại điểm -1.

    Ta tính được k = y'( - 1) = -1

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = - 1 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = - 1(x + 1)

    \Rightarrow y = - x + 2

  • Câu 22: Vận dụng cao

    Biết đồ thị hàm số (C):y = x^{3} - 3mx^{2} + 3mx + m^{2} -
2m^{3} tiếp xúc với trục hoành. Tính tổng tất cả các giá trị của tham số m thỏa mãn điều kiện trên?

    Ta không xét m = 0 vì giá trị này không ảnh hưởng đến tổng S.

    Với m eq 0 đồ thị hàm số y = f(x) tiếp xúc với trục hoành khi và chỉ khi \left\{ \begin{matrix}
f(x) = 0 \\
f'(x) = 0 \\
\end{matrix} ight.\ (I) có nghiệm

    (I) \Leftrightarrow \left\{
\begin{matrix}
x^{3} - 3mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
3x^{2} - 6mx + 3m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x\left( x^{2} - 2mx ight) - mx^{2} + 3mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- mx^{2} + 2mx + m^{2} - 2m^{3} = 0 \\
x^{2} - 2mx = - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- x^{2} + 2x + m - 2m^{2} = 0 \\
x^{2} - 2mx + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - 2mx - 2m^{2} + 2m = 0(*) \\
x^{2} - 2mx + m = 0(**) \\
\end{matrix} ight.

    (*) \Leftrightarrow (x + m)(1 - m) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
x = - m \\
\end{matrix} ight.

    Với m = 1 thay vào (**) ta được x = 1 thỏa mãn

    Với x = - m thay vào (**) ta được - 3m^{2} + m = 0 \Leftrightarrow m =
\frac{1}{3}

    Vậy tổng các giá trị tham số m thỏa mãn yêu cầu là 1 + \frac{1}{3} = \frac{4}{3}

  • Câu 23: Thông hiểu

    Cho hàm số y =x.\cos x. Hệ thức nào sau đây đúng?

    Ta có:

    y = x.\cos x

    \Rightarrow y' = \cos x - x\sin
x

    \Rightarrow y'' = - 2\sin x -x\cos x

    \Rightarrow y'' + y = - 2\sin x -x\cos x + x\cos x = - 2\sin x

  • Câu 24: Thông hiểu

    Đạo hàm của hàm số y = 2^{x^{2} + 2} là:

    Ta có:

    y = 2^{x^{2} + 2}

    \Rightarrow y' = \left( x^{2} + 2ight)'.2^{x^{2} + 2}.\ln2

    = 2x.2^{x^{2} + 2}.ln2 = x.2^{x^{2} +3}.\ln2

  • Câu 25: Vận dụng cao

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 26: Thông hiểu

    Tính đạo hàm của hàm số y = \frac{x^{2} + 2x + 3}{x + 2}?

    Ta có:

    y = \frac{x^{2} + 2x + 3}{x + 2} = x +\frac{3}{x + 2}

    \Rightarrow y' = 1 + \frac{3}{(x +
2)^{2}}

  • Câu 27: Nhận biết

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 28: Nhận biết

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 29: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x - 1}{x - 1}. Hỏi có bao nhiêu tiếp tuyến cắt trục hoành và trục tung lần lượt tại hai điểm A,B sao cho \frac{OA}{OB} = 4?

    Giả sử tiếp tuyến của (C) tại điểm M\left( x_{0};y_{0} ight) cắt Ox tại A và cắt Oy tại B sao cho \frac{OA}{OB} =
4.

    Do tam giác OAB vuông tại O nên \tan\widehat{A} = \frac{OB}{OA} =
\frac{1}{4}

    Suy ra hệ số góc tiếp tuyến bằng \pm
\frac{1}{4}

    Hệ số góc tiếp tuyến là y'\left(
x_{0} ight) = \frac{- 1}{\left( x_{0} - 1 ight)^{2}} <
0

    \Rightarrow \frac{- 1}{\left( x_{0} - 1
ight)^{2}} = - \frac{1}{4}

    \Rightarrow \left\lbrack \begin{matrix}x_{0} = 3 \Rightarrow y_{0} = \dfrac{5}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{13}{4} \\x_{0} = - 1 \Rightarrow y_{0} = \dfrac{3}{2} \Rightarrow d:y = -\dfrac{1}{4}x + \dfrac{5}{4} \\\end{matrix} ight.

    Vậy có hai tiếp tuyến thỏa mãn điều kiện.

  • Câu 31: Vận dụng cao

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 32: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R} \setminus \left \{ 2 ight \} bởi f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}&{{\text{ khi }}x e 1} \\   0&{{\text{ khi }}x = 1} \end{array}} ight.. Tính f'(1)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 1} ight)\left( {x - 3} ight)}}{{\left( {x - 1} ight)\left( {x - 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{x\left( {x - 3} ight)}}{{\left( {x - 2} ight)}} = 2 \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) e f\left( 1 ight)

    Vậy hàm số không liên tục tại x=1

    Vậy hàm số không tồn tại đạo hàm tại x = 1

  • Câu 33: Thông hiểu

    Đạo hàm của hàm số f(x)=\frac{ax^{2}+b}{c+d} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{a{x^2} + b}}{{c + d}} \hfill \\   \Rightarrow f\prime \left( x ight) = \left( {\dfrac{{a{x^2} + b}}{{c + d}}} ight)\prime  \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{\left( {a{x^2} + b} ight)'\left( {c + d} ight) - \left( {c + d} ight)'\left( {a{x^2} + b} ight)}}{{{{\left( {c + d} ight)}^2}}} \hfill \\   \Leftrightarrow f'\left( x ight) = \dfrac{{2ax\left( {c + d} ight)}}{{{{\left( {c + d} ight)}^2}}} = \dfrac{{2ax}}{{c + d}} \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm tại điểm m. Tìm khẳng định đúng trong các khẳng định sau?

    Theo định nghĩa đạo hàm ta có: f'(m)
= \lim_{x ightarrow m}\frac{f(x) - f(m)}{x - m}

  • Câu 35: Thông hiểu

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 36: Vận dụng

    Cho hàm số f(x)= \sin2x và g(x) =
\frac{4f(x)}{f''(x)}. Tính giá trị g\left( \frac{\pi}{6} ight)?

    Ta có:

    f(x) = \sin2x \Rightarrow f'(x) =2\cos2x

    \Rightarrow f''(x) = -4\sin2x

    g(x) = \frac{4f(x)}{f''(x)} =\frac{4\sin2x}{- 4\sin2x} = - 1;\forall x eq \frac{k\pi}{2};k\in \mathbb{Z}

    \Rightarrow g\left( \frac{\pi}{6}
ight) = - 1

  • Câu 37: Thông hiểu

    Cho hàm số xác định bởi công thức f(x) = \sqrt{- 5x^{2} + 14x - 9}. Tìm tập hợp các giá trị của x để f'(x) < 0?

    Tập xác định D = \left\lbrack
1;\frac{9}{5} ightbrack

    Ta có:

    f(x) = \sqrt{- 5x^{2} + 14x -
9}

    \Rightarrow f'(x) = \frac{- 5x +
7}{\sqrt{- 5x^{2} + 14x - 9}};\forall x \in \left( 1;\frac{9}{5}
ight)

    f'(x) < 0 \Leftrightarrow \frac{-
5x + 7}{\sqrt{- 5x^{2} + 14x - 9}} < 0

    \Leftrightarrow \left\{ \begin{gathered}
   - 5x + 7 < 0 \hfill \\
  1 < x < \frac{9}{4} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{7}{5} < x < \frac{9}{5}

  • Câu 38: Thông hiểu

    Cho hàm số y=-3x^{3}+3x^{2}-x+5. Tính giá trị của y^{(3)}(2017)

    Ta có:

    \begin{matrix}  y =  - 3{x^3} + 3{x^2} - x + 5 \hfill \\   \Rightarrow y' =  - 9{x^2} + 6x - 1 \hfill \\   \Rightarrow y'' =  - 18x + 6 \hfill \\   \Rightarrow {y^{\left( 3 ight)}} =  - 18 \hfill \\   \Rightarrow {y^{\left( 3 ight)}}\left( {2017} ight) =  - 18 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Tính đạo hàm của hàm số y = x(x - 1)(x - 2)(x - 3)...(x - 1000) tại điểm x = 0?

    Ta có:

    f'(0) = \lim_{x ightarrow
0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{x(x - 1)(x
- 2)(x - 3)...(x - 1000) - 0}{x - 0}

    = \lim_{x ightarrow 0}\left\lbrack x(x
- 1)(x - 2)(x - 3)...(x - 1000) ightbrack

    = ( - 1)( - 2).....( - 1000) = ( -
1)^{1000}.1000! = 1000!

    Vậy f'(0) = - 2021!

  • Câu 40: Thông hiểu

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo