Tính đạo hàm cấp hai của hàm số
.
Ta có:
Tính đạo hàm cấp hai của hàm số
.
Ta có:
Cho hàm số
và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Cho hàm số
. Giá trị
3
Cho hàm số . Giá trị
3
Ta có:
Mà
Cho
. Khi đó
30
Cho . Khi đó
30
Ta có:
Cho hàm số
. Tổng các nghiệm của phương trình
trên đoạn
bằng bao nhiêu?
Ta có:
Vì nên
nên
Suy ra tổng các nghiệm trên đoạn của phương trình
là:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số
tương ứng với
và
là
Đúng||Sai
b) Qua điểm
có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số
. Khi đó
Đúng||Sai
d) Cho hàm số
khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Tính tổng
![]()
Xét
Tính đạo hàm của hàm số
?
Ta có:
Tính đạo hàm của hàm số
?
Ta có:
Cho hàm số
. Với giá trị nào của tham số m thì
?
Tập xác định
Ta có:
Theo bài ra ta có:
Cho hai mệnh đề sau:
i)
có đạo hàm tại
thì
liên tục tại
.
ii)
liên tục tại
thì
có đạo hàm tại
.
Khẳng định nào dưới đây đúng?
Khẳng định đúng là: đúng,
sai.
Có bao nhiêu số nguyên
sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu số nguyên sao cho ứng với mỗi
có không quá 242 số nguyên
thỏa mãn
?
Có bao nhiêu giá trị nguyên của m để hàm số
có đạo hàm dương trên
?
Tập xác định
Ta có:
Theo yêu cầu của đề bài
Vì
Vậy có hai giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Cho hàm số
được xác định bởi công thức
. Để hàm số đã cho có đạo hàm tại
thì giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo yêu cầu bài toán
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Cho
là hàm số liên tục tại
. Đạo hàm của
tại
là:
Đạo hàm của tại
là
(nếu tồn tại giới hạn)
Cho hàm số
. Chọn khẳng định đúng?
Ta có:
Cho hàm số
có đạo hàm tại
. Tính giá trị của biểu thức ![]()
Vì hàm số có đại hàm tại nên ta có:
Vậy
Cho hàm số
xác định bởi công thức
. Tính đạo hàm của hàm số đã cho?
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số có đồ thị
. Gọi tập hợp tất cả các giá trị của tham số
để có đúng một tiếp tuyến của
đi qua điểm
là
. Tính tổng bình phương các phần tử của tập hợp
?
Kết quả: 13/4
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Phương trình tiếp tuyến d với đồ thị hàm số tại là:
Tiếp tuyến đi qua nên
Để có 1 tiếp tuyến đi qua suy ra phương trình (*) có 1 nghiệm
Một chuyển động được xác định bởi phương trình
, trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Một chuyển động được xác định bởi phương trình , trong đó
tính bằng giây và
tính bằng mét. Tính gia tốc của chuyển động tại thời điểm
bằng bao nhiêu?
Kết quả: 108 m/s2
Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường:
Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:
Tại thời điểm thì gia tốc có giá trị là:
Cho hàm số
. Chọn biểu thức đúng?
Ta có:
Cho hàm số
. Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Cho hàm số
. Tính giá trị
?
Ta có:
Cho hàm số
. Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Cho hàm số
. Khi đó ![]()
Với xét:
Cho hàm số
. Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng
.
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng nên ta có:
=>
Với x0 = 5, ta có:
=> Phương trình tiếp tuyến cần tìm là
với x0 = -2 thì
=> Phương trình tiếp tuyến cần tìm là
Vậy phương trình tiếp tuyến của đồ thị hàm số là:
Biết rằng
. Giá trị của biểu thức
4
Biết rằng . Giá trị của biểu thức
4
Ta có:
Viết phương trình tiếp tuyến của đồ thị hàm số
tại điểm
?
TXĐ:
Ta có:
Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số
và
. Tính giá trị
?
Ta có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Ta có:
Vậy
Suy ra hàm số có đạo hàm tại
Vậy mệnh đề sai là:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính giá trị của f''(2).
Ta có:
Cho hàm số y
, có đạo hàm là
. Tìm tất cả các giá trị của
để phương trình
có hai nghiệm phân biệt là
thỏa mãn
.
Ta có:
Để phương trình có hai nghiệm phân biệt thì
Áp dụng hệ thức Vi - et ta có
Phương trình chuyển động của một chất điểm được biểu diễn
,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm vận tốc bằng 2 là
Cho biết điện lượng truyền trong dây dẫn theo thời gian biểu thị bởi hàm số
, trong đó t tính bằng giây (s) và Q được tính theo culông (C). Tính cường độ dòng điện tại thời điểm t = 4s.
Ta có:
Cường độ dòng điện tại thời điểm t = 4s là:
Tính đạo hàm của hàm số ![]()
Ta có:
Công thức đạo hàm cấp hai của hàm số
?
Ta có:
Cho hàm số
. Ghép nối các dữ liệu sao cho đúng.
Cho hàm số . Ghép nối các dữ liệu sao cho đúng.
Ta có: