Đạo hàm của hàm số bằng biểu thức nào sau đây?
Ta có:
Đạo hàm của hàm số bằng biểu thức nào sau đây?
Ta có:
Xác định hệ số góc tiếp tuyến của đồ thị hàm số tại điểm
?
Ta có:
Hệ số góc tiếp tuyến của đồ thị hàm số tại điểm là:
Cho hàm số . Xác định giá trị
?
Ta có:
Cho hàm số có đạo hàm liên tục trên
và thỏa mãn
. Biết
và
. Tìm tất cả các giá trị thực của tham số m để phương trình
có hai nghiệm thực phân biệt:
Xét phương trình:
Do thay vào (*) ta được
=>
Dễ thấy hàm số f(x) đồng biến trên .
Ta có bảng biến thiên của hàm số như sau:
Do . Phương trình
có hai nghiệm thực phân biệt khi và chỉ khi
có hai nghiệm thực phân biệt. khi đó
Đồ thị của hàm số và
luôn cắt nhau tại một điểm với mọi
.
Suy ra để phương trình có hai nghiệm thực phân biệt thì
.
Đạo hàm của hàm số là
Ta có:
Cho hàm số . Có tất cả bao nhiêu giá trị của tham số
để hàm số liên tục tại điểm
?
Ta có:
Hàm số liên tục tạo x = 1
Vậy có 2 giá trị của a thỏa mãn.
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Tính đạo hàm cấp hai của hàm số tạo điểm
?
Ta có:
Cho hàm số với
xác định và liên tục trên
. Tính
.
Do hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
Một viên đạn được bắn lên cao theo phương trình trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?
Vận tốc của viên đạn
Ta có:
Khi đó viên đạn cách mặt đất một khoảng là:
Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.
Phương trình chuyển động của một chất điểm được biểu diễn ,
tính bằng giây,
tính bằng mét. Tại thời điểm vận tốc bằng
thì gia tốc tức thời của chất điểm bằng bao nhiêu?
Vận tốc tức thời là
Gia tốc tức thời tại thời điểm vận tốc bằng 2 là
Tính đạo hàm của hàm số với
là hằng số)?
Ta có:
Biết đường thẳng là tiếp tuyến của đồ thị hàm số
. Tìm các giá trị của tham số
.
Ta có:
Gọi là đồ thị của hàm số
khi đó
Phương trình tiếp tuyến tại điểm là
Phương trình tiếp tuyến tại điểm là
Để đường thẳng là tiếp tuyến của
thì
.
Cho hàm số . Giá trị của
bằng:
Ta có:
Vậy
Cho hàm số . Xác định công thức đạo hàm cấp hai của hàm số đã cho?
Tập xác định
Ta có:
Cho hàm số xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Tính đạo hàm của hàm số
Ta có:
Tính đạo hàm của hàm số
Ta có:
Cho hàm số . Tính
?
Ta có:
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau?
Giả sử vận tốc của vật chuyển động có phương trình
Ta có:
Ta lại có:
Do đó:
Vậy
Một vật chuyển động theo quy luật với
(giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Vận tốc tại thời điểm là
với
.
Ta có: .
Suy ra: .
Vậy vận tốc lớn nhất của vật đạt được bằng .
Cho hàm số . Khi hàm số
có đạo hàm tại
. Chọn khẳng định đúng?
Ta có:
Để hàm số có đạo hàm tại thì hàm số phải liên tục tại
nên
Suy ra
Khi đó
Xét
Hàm số có đạo hàm tại khi đó
Cho hàm số xác định bởi công thức
. Chọn hệ thức đúng?
Ta có:
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Cho hàm số . Chia
cho
ta được phần dư là
. Chia
cho
được phần dư bằng
. Gọi
là phần dư khi chia
cho
. Xác định hàm số
?
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Cho hàm số . Tổng các nghiệm của phương trình
trên đoạn
bằng bao nhiêu?
Ta có:
Vì nên
nên
Suy ra tổng các nghiệm trên đoạn của phương trình
là:
Tính đạo hàm cấp 3 của hàm số
Ta có:
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Một chất điểm chuyển động thẳng có phương trình ( t là thời gian tính bằng giây (s), S là đường thẳng đi tính bằng mét). Tính vận tốc (m/s) của chất điểm tại thời điểm
Ta có:
Đạo hàm cấp hai của hàm số có dạng
. Tính giá trị biểu thức
.
Ta có:
Cho . Khi đó
30
Cho . Khi đó
30
Ta có:
Cho hàm số . Tính
Ta có:
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Cho hai hàm số đều có đạo hàm trên tập số thực và thỏa mãn:
với . Giá trị biểu thức
= 10
Với ta có:
Đạo hàm hai vế của (1) ta được:
Từ (1) và (2) thay x = 0 ta có:
Từ (3) ta có:
Với thay vào (4) ta được 36 = 0
Với thay vào (4) ta được
Vậy
Đạo hàm cấp hai của hàm số là:
Ta có:
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Cho hàm số xác định bởi công thức
. Tính giá trị biểu thức:
?
Kết quả: 2022/2023
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
Trên đồ thị hàm số tại các điểm nào mà tiếp tuyến với đồ thị hàm số tạo với hai trục tọa độ một tam giác vuông cân?
Ta có:
Tiếp tuyến tạo với hai trục tọa độ tam giác vuông cân khi và chỉ khi hệ số góc của tiếp tuyến .
Ta có:
=> Hoành độ điểm thuộc đồ thị thỏa mãn yêu cầu bài toán là nghiệm của phương trình:
Hai điểm thỏa mãn
Trong các phát biểu sau, phát biểu nào sau là đúng?
Đáp án đúng là "Nếu hàm số có đạo hàm tại
thì nó liên tục tại điểm đó."
Cho hàm số . Khẳng định nào dưới đây là khẳng định sai?
Ta có:
Vì nên hàm số không liên tục tại x = 0
Do đó hàm số không có đạo hàm tại x = 0
Vậy khẳng định sai là “Hàm số có đạo hàm tại x = 0”
Cho hàm số . Tính giá trị của f''(2).
Ta có:
Cho hàm số . Công thức tính
là:
Ta có:
….