Cho hình chóp
. Biết rằng
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Gọi D là trung điểm của AB, vì tam giác SAB cân tại S và tam giác ABC cân tại C nên .
Cho hình chóp
. Biết rằng
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Gọi D là trung điểm của AB, vì tam giác SAB cân tại S và tam giác ABC cân tại C nên .
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho hình chóp
có đáy
là tam giác vuông tại
,
vuông góc với mặt phẳng đáy. Biết rằng
. Tính
?
Hình vẽ minh họa
Do AC là hình chiếu vuông góc của SC trên mặt phẳng (ABC) nên
Ta có:
Khi đó
Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?
Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.
Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.
Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.
Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).
Hình vẽ minh họa:
Gọi H là trung điểm của BC => SH ⊥ (ABC)
Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)
=>
Xét tam giác SBC đều cạnh 2a =>
Tam giác ABC vuông tại A =>
Tam giác SAH vuông nên
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp
có đáy
là hình vuông cạnh bằng 1, tam giác
là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng
và
.
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình hộp ABCD.A’B’C’D’. Giả sử tam giác AB’C và A’DC’ đều có ba góc nhọn. Góc giữa hai đường thẳng AC, A’D là góc nào sau đây?

Do ACC’A’ là hình bình hành nên AC song song với A’C’. Do đó:
Như vậy
Cho tứ diện ABCD. Nếu
và
thì:
Ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SC vuông góc với đáy và
. Tính tan góc giữa đường thẳng SA và mặt phẳng (SBC).
Hình vẽ minh họa:
Ta có:
=> AB ⊥ (SBC)
Suy ra hình chiếu của SA lên (SBC) là SB
=>
Trong tam giác SCB vuông tại C, ta có:
Trong tam giác SBA vuông tại B, ta có:
Vậy tan góc giữa đường thẳng SA và mặt phẳng (SBC) là
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).
Khi đó
Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi , ta có
Ta có
. Kẻ
Từ
Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC. Số đo góc (IJ; CD) bằng:
Hình vẽ minh họa:
Gọi O là tâm của hình thoi ABCD
=> OJ là đường trung bình của tam giác BCD =>
Vì CD // OJ => (IJ; CD) = (IJ; OJ)
Xét tam giác IOJ có: => Tam giác IOJ đều
Vậy (IJ; CD) = (IJ; OJ) =
Cho ba vecto
bất kì đều khác với vecto
. Nếu vecto
vuông góc với cả hai vecto
và
thì
,
và
:
Nếu vecto vuông góc với cả hai vecto
và
thì
,
và
thì có thể đồng phẳng.
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp
, có đáy
là hình chữ nhật,
. Gọi
lần lượt là đường cao của tam giác
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì
Mà
Tam giác SAB có đường cao
Mà
Tương tự chứng minh ta được:
Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:
Hình vẽ minh họa:
Gọi I là trung điểm BC.
Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).
Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.
Qua cách dựng ta có BC // (AMN). (1)
Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)
Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.
Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.
Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp
đáy là tam giác
cân tại
,
vuông góc với đáy. Gọi
là trung điểm của
,
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Tam giác ABC cân tại A nên
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Cho tứ diện đều ABCD, M là trung điểm của BC. Khi đó cos(AB; DM) là:
Hình vẽ minh họa:

Giả sử cạnh của tứ diện là a
Tam giác BCD đều =>
Tam giác ABC đều =>
Ta có:
Mặt khác
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.
Cho hình chóp
có đáy là hình vuông cạnh bằng
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
,
. Tính tan góc giữa
và mặt phẳng
, biết thể tích khối chóp
bằng
?
Hình vẽ minh họa
Kẻ , gọi
Ta có:
Lại có:
Do tam giác SAB cân tại S nên H là trung điểm của AB
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:
Gọi I là trung điểm của AD
=> SI ⊥ AD => SI ⊥ (ABCD)
Kẻ Ax // BD
Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))
Kẻ IE ⊥ Ax, kẻ IK ⊥ SE
Khi đó d (I, (SAx)) = IK
Gọi F là hình chiếu của I trên BD, ta có:
Xét tam giác vuông SIE ta có:
=>
Cho hình chóp
,
có đáy
là tam giác vuông tại
. Biết rằng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khi đó:
Hình vẽ minh họa
Ta thấy hình chiếu vuông góc của lên mặt phẳng
là
nên
Mà
Cho hình chóp
có đáy
là tam giác cân tại
,
. Gọi
là trung điểm của
,
là hình chiếu của
trên
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có:
Từ (1) và (2) suy ra
Mà nên
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Góc tạo bởi cạnh
và mặt phẳng
bằng
. Xác định thể tích khối chóp
.
Hình vẽ minh họa
Do ABCD là hình vuông cạnh bằng x nên
Dễ dàng chứng minh được
Đặt
Tam giác SBC vuông tại B nên
Ta được:
Vậy diện tích hình chóp là:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
. Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2,
, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:
Hình vẽ minh họa:
Gọi H = AM ∩ BD
Ta có:
=> SH ⊥ (ABC)
Vì AB song song CD nên theo định lý Ta-lét ta có:
=> d(B; (SAM)) = 2d(D; (SAM))
Kẻ DK ⊥ AM tại K.
Ta có: => DK ⊥ (SAM) tại K => d(D; (SAM)) = DK
=> d(B; (SAM)) = 2DK
Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:
Lại có
Khi đó
Do vậy xét trong tam giác ADM ta có:
Lại có
Từ đó
Cho hình chóp tam giác
có đáy
vuông tại
,
. Khi đó:
Hình vẽ minh họa
Ta có:
Cho hình chóp
,
vuông góc với mặt
. Khi đó, góc hợp giữa đường thẳng
và mặt phẳng
là:
Ta có:
nên hình chiếu của SB lên mặt phẳng (ABC) là AB.
Do đó
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy