Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số ![]()
Hình vẽ minh họa:

Đặt . Ta có:
Giả sử AN = k.AD. Khi đó:
Vì M là trung điểm của CD nên
Khi đó: BN ⊥ AM =>
Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số ![]()
Hình vẽ minh họa:

Đặt . Ta có:
Giả sử AN = k.AD. Khi đó:
Vì M là trung điểm của CD nên
Khi đó: BN ⊥ AM =>
Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có
Cho hình chóp tứ giác đều
, đáy
cạnh bằng
, cạnh bên
. Tính thể tích hình chóp
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Ta có:
Vậy thể tích hình chóp là:
Cho hình chóp
có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi A’ là hình chiếu vuông góc của đỉnh A lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?
=> Góc BA’C là góc tù.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình chóp
có đáy
là hình vuông cạnh bằng
,
. Xác định độ lớn khoảng cách từ điểm
đến mặt phẳng
?
Hình vẽ minh họa
Gọi
Kẻ
Ta có:
Mà
Từ (*) và (**) suy ra
Từ (1) và (2) suy ra
Xét tam giác vuông tại
ta có:
Cho hình chóp tứ giác
có đáy
là hình chữ nhật, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu vuông của
lên
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Lại có:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạng AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP.
Do AC song song với MN nên góc giữa hai đường thẳng MN và AP là góc giữa hai đường thẳng AC và AP.
Ta tính được:
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’
Ta có:
Xét tam giác AJK có:
Vậy tam giác AJK vuông tại A
Gọi F là trung điểm của JK khi đó ta có:
Gọi N là trung điểm của BC, xét tam giác ANF có:
( vì
)
Lại có:
Xét tam giác AMA;’ vuông tại M ta có:
Hay
Vậy thể tích khối lăng trụ đã cho là:
Cho hình chóp
đáy là tam giác
vuông tại
và
. Mệnh đề nào sau đây sai?
Ta có:
Vậy đáp án sai là: .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).
Hình vẽ minh họa:
Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:
Gọi O là giao điểm của AC và BD ta có:
Ta có: => Hình chiếu của SD trên mặt phẳng (SAC) là SO.
=>
=>
Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?
"Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).
Khi đó
Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi , ta có
Ta có
. Kẻ
Từ
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
. Biết
và tam giác
đều. Xác định thể tích hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy là hình thoi tâm
. Biết rằng
. Hãy chọn kết luận sai dưới đây?
Hình vẽ minh họa
Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao
=>
Trong tam giác SOA thì AC và SA không thể vuông tại A
Vậy khẳng định sai là: .
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?
Hình vẽ minh họa
Ta có:
là hình chữ nhật nên
không vuông góc với
Vậy không vuông góc với mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình hộp ABCD.A’B’C’D’. Giả sử tam giác AB’C và A’DC’ đều có ba góc nhọn. Góc giữa hai đường thẳng AC, A’D là góc nào sau đây?

Do ACC’A’ là hình bình hành nên AC song song với A’C’. Do đó:
Như vậy
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Cho hình chóp tam giác
có
. Biết rằng tam giác
vuông cân tại
và
. Tính góc giữa
và
?
Hình vẽ minh họa
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (ABC) là AB.
=> Góc giữa đường thẳng SB và mặt phẳng (ABC) là
Do tam giác ABC vuông cân tại B và nên
Suy ra tam giác SAB vuông cân tại A.
Do đó
Vậy góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 450.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.
(2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).
(3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).
Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, SA vuông góc với mặt phẳng đáy, SA = a, AC = a,
. Góc giữa đường thẳng SB và mặt phẳng đáy bằng:
Hình vẽ minh họa:
Ta có:
SA ⊥ (ABC) nên AB là hình chiếu của SA trên mặt phẳng (ABC)
=>
Mặt khác có tam giác ABC vuông tại C:
Vậy (SB, (ABC)) = 300
Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).
Gọi M là trung điểm của SD.
Tam giác SCD đều nên CM ⊥ SD.
Tam giác SBD có SB = SD = a, nên vuông tại S
=> SB ⊥ SD => OM ⊥ SD
=> ((SBD),(SCD)) = (OM, CM) =
Ta có:
Tam giác vuông MOC ta có:
Cho hình chóp
có
, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có:
Suy ra tam giác ABC vuông tại A.
Gọi H, M, N lần lượt là trung điểm của AB, AB, SA
Xét tam giác SBC có: SB = SC nên
Lại H là tam đường tròn ngoại tiếp tam giác ABC
Mà SA = SB = SC = a nên
Suy ra tam giác SAH vuông cân tại H
Do đó tam giác MHN cạnh . Góc cần tìm bằng
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với
. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho
. Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:
Hình vẽ minh họa:
Ta có:
Đặt AB = x =>
Ta có:
Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)
d(MN, AC’) = d(N, (ABC’)) = d(A’, (ABC’)
Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)
=> d(MN, AC’) =
Cho hình chóp tam giác
có
vuông tại
và
. Kẻ đường cao
của tam giác
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có:
Ta có:
Mà
Vậy khẳng định sai là: “”.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).
Ta có:
Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có
d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ =
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa