Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình lăng trụ đứng
có đáy là các tam giác đều cạnh bằng
và cạnh bên bằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Khi đó tam giác vuông cân tại C nên
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong
thì
chỉ đúng khi hai đường thẳng đó cắt nhau.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a.
. Góc giữa đường thẳng SA và (ABC) bằng

+) Gọi H là trung điểm BC.
Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có:
=> Hình chiếu của SA lên (ABC) là HA
(vì tam giác SAH vuông tại H)
+) Ta có:
Xét tam giác SHA vuông tại H:
Vậy
Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên
. Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.
Hình vẽ minh họa:
Gọi N là trung điểm của BB’ => MN // B’C
=> B’C // (AMN)
=> d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))
Kẻ BH ⊥ AM, BK ⊥ HN
=> BK ⊥ (AMN)
=> d(AM, B’C) = d(B, (AMN)) = BK
Ta có:
Ta có:
Do tam giác ABM vuông tại B
Trong các mệnh đề sau, mênh đề nào đúng?
Mệnh đề: “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.” Sai vì nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia.
Mệnh đề: “Hai mặt phẳng phân biệt vuông góc với một mặt phẳng thứ ba thì song song với nhau.” sai vì còn trường hợp hai mặt phẳng cắt nhau.
Mệnh đề: “Với mỗi điểm A ∊ (α) và mỗi điểm B ∊ (β) thì ta có đường thẳng AB vuông góc với giao tuyến d của (α) và (β).” Sai vì ít nhất nếu cả A và B đều thuộc giao tuyến của (α) và (β) thì AB trùng với (α) ⋂ (β).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA
=>
Xét tam giác SAB vuông ta có:
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của ![]()
Hình vẽ minh họa:

Ta có:
Cho hình chóp
có đáy
là hình vuông cạnh
,
. Tam giác
vuông tại
và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp
theo
?
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của S lên AC
Ta có:
Suy ra tam giác SAO đều
Thể tích khối chóp là:
Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.
Hình vẽ minh họa:
Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.
Dựng hình chữ nhật AND
Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)
Ta có: C’N // (A’MB) (do C’N // MB)
=> d(C’, (A’BM)) = d(N, (A’BM))
Mà GN // (A’BM) (do GN // A’M)
=> d(N, (A’BM)) = d(G, (A’BM))
=> d(C’, (A’BM)) = d(G,(A’BM))
Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.
BD ⊥ GI (do ANBD là hình chữ nhật)
BD ⊥ A’G (do A’G ⊥ (ABC))
=> BD ⊥ (A’GI) => BD ⊥ GH
Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH
Tính GH: ∆ABC đều, cạnh a
=>
Xét tam giác AA’G vuông tại G
=>
Ta lại có: GNBI là hình chữ nhật =>
Xét tam giác A’GI vuông tại G có GH ⊥ A’I
=>
Suy ra
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho tứ diện ABCD. Nếu
và
thì:
Ta có:
Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Vậy cosin góc giữa hai cạnh AJ và CI bằng
Cho khối lăng trụ đứng
, đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Cho hình hộp chữ nhật
có
(như hình vẽ)

Tính góc giữa đường thẳng
và mặt phẳng đáy
?
Hình vẽ minh họa
Ta có:
Lại có:
Xét tam giác vuông tại A ta có:
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
. Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Cho hình hộp chữ nhật
. Mặt phẳng
vuông góc với mặt phẳng nào trong các mặt phẳng dưới đây?
Hình vẽ minh họa
Ta có: là hình hộp chữ nhật suy ra
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SC vuông góc với đáy và
. Tính tan góc giữa đường thẳng SA và mặt phẳng (SBC).
Hình vẽ minh họa:
Ta có:
=> AB ⊥ (SBC)
Suy ra hình chiếu của SA lên (SBC) là SB
=>
Trong tam giác SCB vuông tại C, ta có:
Trong tam giác SBA vuông tại B, ta có:
Vậy tan góc giữa đường thẳng SA và mặt phẳng (SBC) là
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Trong các mệnh đề sau, mệnh đề nào là đúng?
Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Độ dài AD bằng:
Hình vẽ minh họa

Ta có:
=> Tam giác ABD vuông tại B.
Lại có nên tam giác BCD vuông tại C.
Khi đó:
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết AB = 2AD = 2DC = 2a, góc giữa hai mặt phẳng (SAB) và (SBC) là 60◦. Độ dài cạnh SA là:
Hình vẽ minh họa:
Gọi E là trung điểm của AB.
Ta dễ dàng chứng minh được ABCE là hình vuông
Trong (SAB) kẻ HE ⊥ SB ta có:
Xét tam giác vuông CEH có EH = CE. cot 60◦ =
Ta có ∆SAB ∼ ∆EHG (g - g)
Trong không gian cho đường thẳng
và điểm
. Qua điểm
có bao nhiêu đường thẳng vuông góc với
?
Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”