Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho khối chóp có đáy
là hình vuông cạnh bằng
. Tam giác
vuông tại
và nằm trong mặt phẳng vuông góc với đáy. Cạnh
tạo với đáy một góc bằng
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Kẻ ta có:
Vậy SH là đường cao của hình chóp
Lại có , tam giác SAC vuông tại S và
nên
Thể tích hình chóp là
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có .Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Hình vẽ minh họa
Ta có: AD // BC =>
Gọi H là hình chiếu vuông góc của A lên SB =>
Ta có:
Từ (*) và (**) =>
Cho một khối chóp có diện tích đáy bằng , chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)
Gọi O là tâm của hình vuông ABCD. Khi đó ta có (1).
Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên
(2)
Từ (1) và (2) ta có tại O
Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).
Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là
Xét tam giác vuông AB’O có
Vậy
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho tứ diện ABCD có . Gọi α là góc giữa AB và CD. Chọn khẳng định đúng?
Hình vẽ minh họa:
Ta có:
Mặt khác:
Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và , CD = a. Gọi E là trung điểm của AD. Tính góc giữa hai đường thẳng AB và CE.
Kí hiệu hình vẽ như sau:
Gọi H là trung điểm của BD. Khi đó EH // AB, EH ⊥ (BCD)
Góc giữa AB và CE bằng góc giữa EH và EC chính là góc
Ta có:
Ta lại có:
Vậy góc giữa AB và CE là 450
Cho hình chóp có đáy là tam giác vuông cân tại
. Tam giác
là tam giác đều cạnh
và nằm trong mặt phẳng vuông góc với mặt đáy. Tính
?
Hình vẽ minh họa
Gọi H là trung điểm của . Suy ra
Kẻ
Ta có:
Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC
Do đó
Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi C’ là hình chiếu vuông góc của đỉnh C lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?
Vì C’ trùng với C nên tam giác ABC’ là tam giác vuông tại A.
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường MC’ và mặt phẳng (ABC). Khi đó tan α bằng bao nhiêu?
Hình vẽ minh họa:
Ta có: CM là hình chiếu của C’M lên (ABC)
=> Góc giữa MC’ và (ABC) là góc giữa MC’ và MC.
Xét tam giác MCC’ vuông tại C ta có:
Cho hình chóp đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho S.ABCD là hình chóp có đáy là hình chữ nhật. . Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết
và
. Tính cosin góc giữa KM và SQ.
Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.
Vậy
Ta có:
Suy ra
Xét tam giác MNK vuông tại N (do ) ta có:
Lại có
Xét tam giác SAQ vuông tại A nên
Ta có
Khi đó
Vậy
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)
Gọi M là giao điểm của AH và BC
Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)
Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM
Xét tam giác BOC vuông ta có:
Xét tam giác AOI vuông ta có:
Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)
Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)
Từ (1) và (2) => H là trực tâm tam giác ABC
Vậy là kết quả sai.
Cho hình chóp có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp có
, tứ giác
là hình vuông. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có:
Ta có:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là
Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp có
vuông góc với mặt phẳng đáy
. Tìm mệnh đề sai trong các mệnh đề dưới đây?
Hình vẽ minh họa
Ta có:
Vậy mệnh đề sai là:
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).
Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA = và vuông góc với (ABCD). Tính cosin của góc giữa (SBC) và (SCD).
Hình vẽ minh họa:
Gọi H, N lần lượt là trung điểm của SC, AB.
Ta có CN = 1/2 AB suy ra tam giác ABC vuông cân tại C.
Suy ra:
Do tam giác SAC vuông cân tại A nên AH = a.
Kẻ AK ⊥ SD. Khi đó:
=> ((SBC), (SCD)) = (AH, AK) = = ϕ
Xét tam giác vuông SAD có:
Xét tam giác vuông AKH ta có:
Cho khối lăng trụ , hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho một khối chóp có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2, , BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:
Hình vẽ minh họa:
Gọi H = AM ∩ BD
Ta có:
=> SH ⊥ (ABC)
Vì AB song song CD nên theo định lý Ta-lét ta có:
=> d(B; (SAM)) = 2d(D; (SAM))
Kẻ DK ⊥ AM tại K.
Ta có: => DK ⊥ (SAM) tại K => d(D; (SAM)) = DK
=> d(B; (SAM)) = 2DK
Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:
Lại có
Khi đó
Do vậy xét trong tam giác ADM ta có:
Lại có
Từ đó
Cho hình lập phương . Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Tính thể tích khối lập phương có cạnh bằng ?
Ta có:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
"AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD)" sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC).
"AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đúng
Ta có: AH ⊥(SBC) (vì AH ⊥ SB; AH ⊥ BC) nên AH ⊥ SC (1)
Và AK ⊥ (SCD) (vì AK ⊥ SD; AK ⊥ DC) nên AK ⊥ SC (2)
Từ (1) và (2) suy ra: SC ⊥ (AHK)
Từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc.
Vì chưa đủ điều kiện kết luận SC ⊥ (AHK)
=> "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC ⊥ (AHK)" và "AK ⊥ (SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đều sai
Thể tích khối hộp chữ nhật có ba kích thước là bằng:
Thể tích cần tìm là:
Cho tứ diện ABCD có AB = AC = AD và . Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:
Xét tam giác ICD có J là trung điểm của CD =>
Tam giác ABC có AB = AC và => Tam giác ABC đều => CI ⊥ AB
Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB
Ta có:
Cho hình chóp có đáy
là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu của điểm
trên cạnh
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
đúng
Ta có: đúng
Ta có: đúng
Vậy kết luận sai là: .
Cho hình chóp có đáy là hình vuông cạnh bằng
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
,
. Tính tan góc giữa
và mặt phẳng
, biết thể tích khối chóp
bằng
?
Hình vẽ minh họa
Kẻ , gọi
Ta có:
Lại có:
Do tam giác SAB cân tại S nên H là trung điểm của AB
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Cho hình chóp có đáy
là tam giác vuông tại
,
. Tính góc giữa đường thẳng
và mặt phẳng đáy, biết rằng
.
Hình vẽ minh họa
Ta có: nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABC) từ đó suy ra
Trong tam giác ABC vuông tại B ta có:
Trong tam giác SAC vuông tại A ta có:
Cho hình chóp có đáy là hình vuông
cạnh bằng
và cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
. Khi đó
bằng:
Ta có:
Lại có
Xét tam giác có
Theo định lí Pythagore đảo suy ra tam giác vuông tại
Suy ra hay
Cho tứ diện ABCD có: ,
. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:
Hình vẽ minh họa
Các tam giác ABC và ABD là tam giác đều
=> Tam giác ACD cân
=> BN ⊥ CD và AN ⊥ CD
=> là góc của hai mặt phẳng (ACD) và (BCD)
Cho tứ diện đều cạnh bằng
,
là trung điểm của cạnh
. Xác định góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi N là trung điểm của AC thì MN // AB
Suy ra
Ta có:
Cho một khối lăng trụ đứng như hình vẽ:
Biết đáy là hình thoi cạnh bằng a,
. Tính thể tích
của lăng trụ đứng đã cho?
Kí hiệu hình vẽ như sau:
Gọi giao điểm của AC và BD là I
Ta có:
Xét tam giác vuông BAI vuông tại I ta có:
Diện tích hình bình hành ABCD là:
Vậy
Cho hình chóp có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời