Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 2: Thông hiểu

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại C, AC = a;BC
= a\sqrt{2}, SA\bot(ABC);SA =
a. Tính góc tạo bởi SB và mặt phẳng đáy?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AB là hình chiếu của SA trên mặt phẳng đáy.

    \Rightarrow \left( SB;(ABC) ight) =
(SB;AB) = \widehat{SBA}

    Mặt khác tam giác ABC vuông tại C nên AB
= \sqrt{AC^{2} + BC^{2}} = a\sqrt{3}

    \Rightarrow \tan\widehat{SBA} =
\frac{SA}{AB} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SB;(ABC) ight) =
\widehat{SBA} = 30^{0}

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 4: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 5: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Gọi M là trung điểm của AB suy ra

    \left\{ \begin{matrix}
MO\bot AB \\
SM\bot AB \\
\end{matrix} ight.\  \Rightarrow \left( (SAB);(ABCD) ight) =
\widehat{SMO} = \varphi

    Tam giác SMO vuông tại O nên \varphi eq
90^{0}

    Do đó mặt phẳng (SAB) không vuông góc với (ABCD).

  • Câu 6: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 7: Vận dụng

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

     Côsin góc giữa đường thẳng MN và (BA’C’) bằng

    Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).

    Khi đó \sin \alpha  = \frac{{NK}}{{NI}} = \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}}

    Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi I = MN \cap BE, ta có

    MN = \sqrt {B{M^2} + B{N^2}}  = 1 \Rightarrow IN = \frac{1}{3}MN = \frac{1}{3}

    Ta có \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{{NB}}{{B'B}} = \frac{1}{2}

    \left\{ \begin{gathered}  A'C' \bot B'E \hfill \\  A'C' \bot ME \hfill \\ \end{gathered}  ight. \Rightarrow A'C' \bot \left( {BMEB'} ight) \Rightarrow \left( {BA'C'} ight) \bot \left( {BMEB'} ight)

    \left( {BA'C'} ight) \cap \left( {BMEB'} ight) = BE. Kẻ B'H \bot BE\,\left( {H \in BE} ight)

    \begin{matrix}   \Rightarrow B'H \bot \left( {BA'C'} ight) \Rightarrow d\left( {B';\,\,\left( {BA'C'} ight)} ight) = B'H \hfill \\  B'H = \dfrac{1}{{\sqrt {\dfrac{1}{{B'{E^2}}} + \dfrac{1}{{B'{B^2}}}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

    Từ \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{1}{2} \Rightarrow d\left( {N;\,\,\left( {BA'C'} ight)} ight) = \frac{{\sqrt {21} }}{{14}}

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}} = \dfrac{{3\sqrt {21} }}{{14}} \hfill \\   \Rightarrow \cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha }  = \sqrt {1 - {{\left( {\dfrac{{3\sqrt {21} }}{{14}}} ight)}^2}}  = \dfrac{{\sqrt 7 }}{{14}} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Gọi D là trung điểm cạnh BC. Biết AA' = 2a, khoảng cách giữa hai đường thẳng A'BC'D là:

    Hình vẽ minh họa

    Gọi D' là trung điểm của B'C', ta có BDC'D' là hình bình hành

    \Rightarrow C'D//BD' \Rightarrow
C'D//(A'BD').

    Kẻ B'H \bot BD'.

    Ta có: \left. \ \begin{matrix}A'D'\bot B'C' \\A'D'\bot BB' \\\end{matrix} ight\} \Rightarrow A'D'\bot(BCC'B')\Rightarrow A'D'\bot B'H.

    \left. \ \begin{matrix}
B'H\bot BD' \\
B'H\bot A'D' \\
\end{matrix} ight\} \Rightarrow
B'H\bot(A'BD')

    Suy ra,

    d(A'B,C'D) = d\left(
C'D;(A'BD') ight) = d\left( C';(A'BD') ight)
= d\left( B';(A'BD') ight) = B'H

    Ta có: B'D' = \frac{a}{2}; BB'= 2a.

    Xét \Delta BB'D' vuông tại B' ta có:

    \frac{1}{B'H^{2}} =
\frac{1}{BB'^{2}} + \frac{1}{B'D'^{2}} = \frac{1}{4a^{2}} +
\frac{4}{a^{2}} \Rightarrow BH = \frac{2a}{\sqrt{17}}

  • Câu 9: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 10: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 11: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 12: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng B'D'AA' bằng:

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình lập phương nên các tứ giác AA'D'D;AA'B'B đều là hình vuông

    Do đó \overrightarrow{AA'}.\overrightarrow{A'D}
= \overrightarrow{AA'}.\overrightarrow{A'B'} =
0

    \Rightarrow
\overrightarrow{AA'}.\overrightarrow{B'D'} =
\overrightarrow{AA'}.\left( \overrightarrow{A'D} -
\overrightarrow{A'B'} ight)

    =
\overrightarrow{AA'}.\overrightarrow{A'D} -
\overrightarrow{AA'}.\overrightarrow{A'B'} = 0

    Suy ra \overrightarrow{AA'}\bot\overrightarrow{B'D'}
\Rightarrow \left(
\overrightarrow{AA'};\overrightarrow{B'D'} ight) =
90^{0}

    \Rightarrow (AA';B'D') =
90^{0}

  • Câu 13: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 14: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Tam giác SAB đều và \left( (SAB);(ABCD) ight) = 90^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều nên SH\bot
AB

    Lại có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Tính được SH = a\sqrt{3}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.(2a)^{2}.a\sqrt{3} = \frac{4a^{3}\sqrt{3}}{3}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Gọi (\alpha) là mặt phẳng qua B và vuông góc với AB \Rightarrow (\alpha) \cap (ABC) =
Bt//AC.

    Gọi (\beta) là mặt phẳng qua C và vuông góc với AC

    \Rightarrow (\beta) \cap (ABC) =Ct'//AB

    Khi đó, (\alpha) \cap (\beta) =
SH với H = Bt \cap Ct' là đỉnh thứ tư của hình vuông ABHC.

    Khi đó: \Delta SAB,\ \ \Delta
SAC là hai tam giác vuông bằng nhau có SB = SC = a\sqrt{3},SA = 2a.

    Gọi I là chân đường cao hạ từ đỉnh B của tam giác SAB, ta có BI\bot SA,CI\bot SA.

    Vậy góc giữa hai mặt phẳng (SAB)(SAC)(IB;IC).

    Xét \Delta IBC cân tại IIB = IC
= \frac{a\sqrt{3}.a}{2a} = \frac{a\sqrt{3}}{2},BC =
a\sqrt{2}.

    Ta có: \cos\widehat{BIC} = \frac{IB^{2} +IC^{2} - BC^{2}}{2IB.IC}= \dfrac{\dfrac{3a^{2}}{4} + \dfrac{3a^{2}}{4} -2a^{2}}{2.\dfrac{3a^{2}}{4}} = - \dfrac{1}{3}.

    Vậy cosin góc giữa hai mặt phẳng (SAB)(SAC) bằng \frac{1}{3}.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB = 2a, AD = CD = a. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABCD). Mệnh đề nào sau đây đúng?

    \left\{ \begin{matrix}BC\bot AC \\BC\bot SA \\\end{matrix} ight.\  \Rightarrow BC\bot(SAC) \Rightarrow BC\bot SC

    Do đó ((SBC),(ABCD)) = (SC, AC) = \widehat{SCA}

    Tam giác SAC vuông tại A => \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{\sqrt{2}}{2}

  • Câu 17: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 18: Thông hiểu

    Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Độ dài AD bằng:

     Hình vẽ minh họa

    Tính độ dài đoạn thẳng AD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot BC} \\   {AB \bot CD} \end{array}} ight. ⇒AB⊥(BCD)

    => Tam giác ABD vuông tại B.

    Lại có BC⊥CD nên tam giác BCD vuông tại C.

    Khi đó: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {A{D^2} = A{B^2} + B{D^2}} \\   {B{D^2} = B{C^2} + C{D^2}} \end{array}} ight. \hfill \\   \Rightarrow A{D^2} = A{B^2} + B{C^2} + C{D^2} \hfill \\   \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}}  \hfill \\ \end{matrix}

  • Câu 19: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 21: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Khẳng định nào sau đây là đúng?

    Đáp án "AB ⊥ (ACD)" sai vì chỉ có AB ⊥ CD

    Đáp án "BC ⊥ (ACD)" sai vì chỉ có: BC ⊥ CD

    Đáp án "CD ⊥ (ABC)" đúng vì \left\{ {\begin{array}{*{20}{l}}  {CD \bot AB} \\   {CD \bot BC} \end{array}} ight. ⇒CD⊥(ABC)

    Đáp án "AD ⊥ (BCD)" sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD).

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 23: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Gọi \alpha = \left( SD;(ABCD) ight). Xác định \alpha?

    Hình vẽ minh họa

    Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc \widehat{SDA}

    \Rightarrow \alpha =
\widehat{SDA}

  • Câu 24: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 25: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và cạnh SB vuông góc với mặt đáy. Biết rằng AB = a;SB = a\sqrt{2}\alpha = \left( SC;(SAB) ight). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AC\bot AB \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SAB)

    Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA

    \Rightarrow \alpha = \left( SC;(SAB)
ight) = (SC;SA) = \widehat{ASC}

    Tam giác ABC vuông cân tại A nên AC = AB
= a

    Áp dụng định lí Pythagore cho tam giác SAB ta có:

    SA = \sqrt{SB^{2} + AB^{2}} =
a\sqrt{3}

    Tam giác SAC vuông tại A nên \tan\widehat{ASC} = \frac{AC}{SA} =
\frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \tan\alpha =
\frac{1}{\sqrt{3}}

  • Câu 27: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 28: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{2a\sqrt{3}}{3};d(C;BB') =
2a;d(A;BB') = a;d(A;CC') = a\sqrt{3}. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác A'B_{1}C_{1} có các cạnh:

    A'B_{1} = a;A'C_{1} =
a\sqrt{3};B_{1}C_{1} = 2a

    Suy ra tam giác A'B_{1}C_{1} vuông tại A’ và trung tuyến A’H của tam giác đó bằng a

    Gọi giao điểm của AM và A’H là T

    Ta có:

    A'M = \frac{2a\sqrt{3}}{3};A'H =
a

    \Rightarrow MH = \frac{a}{\sqrt{3}}
\Rightarrow \widehat{MA'H} = 30^{0} \Rightarrow \widehat{MA'A} =
60^{0}

    \Rightarrow AA' =
\frac{A'M}{\cos\widehat{MA'A}} =
\frac{4a}{\sqrt{3}}

    \Rightarrow V_{ABC.A'B'C'} =
V_{A'B_{1}C_{1}.ABC} = AA'.S_{A'B_{1}C_{1}} =
2a^{3}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và mặt bên SAB là tam giác vuông tại S. Tính số đo góc giữa hai đường thẳng SACD.

    Hình vẽ minh họa

    ABCD là hình bình hành nên CD//AB

    \Rightarrow (SA;CD) = (SA;AB) =
\widehat{SAB} = 45^{0}

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết MN =
\frac{a\sqrt{10}}{2}.

    Hình vẽ minh họa:

    Kẻ Mk // SO

    Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)

    => \left( MN;(ABCD) ight) = (MN,NK)
= \widehat{MNK}

    Ta có: CK = \frac{3}{4}CA =
\frac{3a\sqrt{2}}{4}

    Xét tam giác CNK có:

    \begin{matrix}cos45^{0} = \dfrac{CN^{2} + CK^{2} - NK^{2}}{2.CN.CK} \hfill \\\Rightarrow KN = \dfrac{a\sqrt{10}}{4} \hfill \\\end{matrix}

    Xét tam giác MNK vuông ta có:

    \cos\widehat{MNK} = \frac{NK}{MN} =
\frac{1}{2} \Rightarrow \widehat{MNK} = 60^{0}

  • Câu 31: Nhận biết

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc với nhau. Đường thẳng nào sau đây vuông góc với OA?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OB(gt) \\
OA\bot OC(gt) \\
\end{matrix} ight.\  \Rightarrow OA\bot(OBC) \Rightarrow OA\bot
BC

  • Câu 32: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 33: Vận dụng

    Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?

    Hình vẽ minh họa

    Tìm giá trị của m để góc tạo bời 2 đường thẳng thỏa mãn điều kiện

    Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB

    => MP // AB’; MN // BC’

    => Góc cần tìm là góc giữa MP và MN

    => MP = MN = \frac{{\sqrt {{m^2} + 1} }}{2}

    Lấy Q là trung điểm của A’B’ khi đó suy ra:

    \begin{matrix}  PN = \sqrt {P{Q^2} + Q{N^2}}  = \sqrt {{m^2} + \dfrac{1}{4}}  \hfill \\   \Rightarrow \cos \widehat {PMN} = \dfrac{{P{M^2} + M{N^2} - P{N^2}}}{{2.PM.MN}} =  \pm \dfrac{1}{2} \hfill \\   \Rightarrow m = \sqrt 2  \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.

    Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”

  • Câu 35: Nhận biết

    Cho tứ diện ABCD có đáy BCD là tam giác vuông cân tại C. Gọi trung điểm các cạnh AB,AC,BC,CD lần lượt là M,N,P,Q. Khi đó (MN,PQ) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN//BC \\
PQ//BD \\
\end{matrix} ight.

    \Rightarrow (MN,PQ) = (BC,BD) =
\widehat{DBC} = 45^{0}

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a\sqrt{2}.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Ta có: AD // BC => d\left( {D;\left( {SCD} ight)} ight) = d\left( {A;\left( {SBC} ight)} ight)

    Gọi H là hình chiếu vuông góc của A lên SB => AK \bot SB (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AH\left( {**} ight)

    Từ (*) và (**) => AH \bot \left( {SBC} ight)

    \begin{matrix}  d\left( {A;\left( {SBC} ight)} ight) = AH \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a\sqrt 3 }}{3} \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA = a\sqrt{2} và vuông góc với (ABCD). Tính cosin của góc giữa (SBC) và (SCD).

    Hình vẽ minh họa:

    Gọi H, N lần lượt là trung điểm của SC, AB.

    Ta có CN = 1/2 AB suy ra tam giác ABC vuông cân tại C.

    Suy ra: \left\{ \begin{matrix}
SA\bot BC \\
AC\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAC)

    Do tam giác SAC vuông cân tại A nên AH = a.

    Kẻ AK ⊥ SD. Khi đó: \left\{
\begin{matrix}
AH\bot(SBC) \\
AK\bot(SCD) \\
\end{matrix} ight.

    => ((SBC), (SCD)) = (AH, AK) = \widehat{KAH} = ϕ

    Xét tam giác vuông SAD có:

    \begin{matrix}\dfrac{1}{AK^{2}} = \dfrac{1}{SA^{2}} + \dfrac{1}{AD^{2}}\hfill \\\Rightarrow AK = \dfrac{a\sqrt{6}}{3}\hfill \\\end{matrix}

    Xét tam giác vuông AKH ta có:

    \cos\widehat{KAH} = \frac{AK}{AH} =
\frac{\sqrt{6}}{3}

  • Câu 39: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 40: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo