Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình thoi tâm O. Biết rằng SA = SC;SB = SD. Hãy chọn kết luận sai dưới đây?

    Hình vẽ minh họa

    Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao

    => SO\bot AC

    Trong tam giác SOA thì AC và SA không thể vuông tại A

    Vậy khẳng định sai là: AC\bot
SA.

  • Câu 2: Nhận biết

    Cho hai đường thẳng a,b và mặt phẳng (Q). Chọn mệnh đề sai trong các mệnh đề dưới đây?

    Mệnh đề: “Nếu a//(Q),b\bot a thì b\bot(Q).” Sai vì đường thẳng b có thể nằm trong mặt phẳng (Q).

  • Câu 3: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Cho hình chóp tam giác S.ABCABC vuông tại BSA\bot(ABC). Kẻ đường cao AH của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ SA\bot(ABC) ight) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB) \Rightarrow
BC\bot AH

    AH\bot SB \Rightarrow
AH\bot(SBC)

    \Rightarrow \left\{ \begin{matrix}
AH\bot SC \\
AH\bot BC \\
\end{matrix} ight.

    Vậy khẳng định sai là: “AH\bot
AC”.

  • Câu 8: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB = SH = a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC).

    Hình vẽ minh họa:

    Ta có SH ⊥ (ABC) => SH ⊥ CH. (1)

    Tam giác ABC cân tại C => CH ⊥ AB (2)

    Từ (1) và (2) => CH ⊥ (SAB)

    Gọi I là trung điểm AC => HI // BC => HI ⊥ AC (3)

    Mặt khác AC ⊥ SH (do SH ⊥ (ABC) (4)

    Từ (3) và (4) => AC ⊥ (SHI)

    Kẻ HK ⊥ SI (K ∈ SI) (5)

    Từ AC ⊥ (SHI) => AC ⊥ HK (6)

    Từ (5) và (6), suy ra HK ⊥ (SAC)

    Vì HK ⊥ (SAC) và HC ⊥ (SAB) nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC

    Xét tam giác CHK vuông tại K ta có:

    CH = \frac{1}{2}AB =
\frac{a}{2}

    \frac{1}{HK^{2}} = \frac{1}{SH^{2}} +
\frac{1}{HI^{2}} \Rightarrow HK = \frac{a}{3}

    Do đó \cos\alpha =
\frac{2}{3}

  • Câu 9: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng B'D'AA' bằng:

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình lập phương nên các tứ giác AA'D'D;AA'B'B đều là hình vuông

    Do đó \overrightarrow{AA'}.\overrightarrow{A'D}
= \overrightarrow{AA'}.\overrightarrow{A'B'} =
0

    \Rightarrow
\overrightarrow{AA'}.\overrightarrow{B'D'} =
\overrightarrow{AA'}.\left( \overrightarrow{A'D} -
\overrightarrow{A'B'} ight)

    =
\overrightarrow{AA'}.\overrightarrow{A'D} -
\overrightarrow{AA'}.\overrightarrow{A'B'} = 0

    Suy ra \overrightarrow{AA'}\bot\overrightarrow{B'D'}
\Rightarrow \left(
\overrightarrow{AA'};\overrightarrow{B'D'} ight) =
90^{0}

    \Rightarrow (AA';B'D') =
90^{0}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD), SA = AB = a. Gọi M là trung điểm cạnh SB. Tính (AM,BD)?

    Hình vẽ minh họa

    Xét tam giác SAB vuông tại A có: SB =
\sqrt{SA^{2} + AB^{2}} = a\sqrt{2}

    Gọi E là trung điểm cạnh MC, ta có:

    OE//AM \Rightarrow (AM;BD) =
(OE,BD)OE = \frac{1}{2}AM =
\frac{1}{4}SB = \frac{a\sqrt{2}}{4}

    Lại có: CB\bot AB;SA\bot CB \Rightarrow
CB\bot SB

    Suy ra tam giác SBC vuông tại B.

    Xét tam giá MBC vuông tại B ta có:

    MC = \sqrt{MB^{2} + BC^{2}} =
\sqrt{\frac{1}{4}.2a^{2} + a^{2}} = \frac{a\sqrt{6}}{2}

    BE = \frac{1}{2}MC =
\frac{a\sqrt{6}}{4}

    Xét tam giác EBOcó:

    \cos\widehat{EOB} = \frac{EO^{2} +
OB^{2} - EB^{2}}{2.EO.OB} = \frac{1}{2}

    \Rightarrow \widehat{EOB} = 60^{0}
\Rightarrow OE//AM \Rightarrow (AM;BD) = 60^{0}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 12: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Khẳng định nào sau đây là đúng?

    Đáp án "AB ⊥ (ACD)" sai vì chỉ có AB ⊥ CD

    Đáp án "BC ⊥ (ACD)" sai vì chỉ có: BC ⊥ CD

    Đáp án "CD ⊥ (ABC)" đúng vì \left\{ {\begin{array}{*{20}{l}}  {CD \bot AB} \\   {CD \bot BC} \end{array}} ight. ⇒CD⊥(ABC)

    Đáp án "AD ⊥ (BCD)" sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD).

  • Câu 13: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Mệnh đề đúng: “Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.”

    NB

     

    0

  • Câu 14: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:

    Hình vẽ minh họa

    Xác định góc giữa hai mặt phẳng (ACD) và (BCD)

    Các tam giác ABC và ABD là tam giác đều

    => Tam giác ACD cân

    => BN ⊥ CD và AN ⊥ CD

    => \widehat {ANB} là góc của hai mặt phẳng (ACD) và (BCD)

  • Câu 15: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD. Gọi \alpha là góc tạo bởi đường thẳng BM và mặt phẳng (ABCD). Tính \tan\alpha?

    Minh họa bằng hình vẽ:

    Gọi O là tâm của hình vuông. Ta có: SO\bot(ABCD)SO = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{2}}{2}

    Gọi M là trung điểm của OD ta có: MH//SO nên H là hình chiếu của M lên mặt phẳng (ABCD)MH
= \frac{1}{2}SO = \frac{a\sqrt{2}}{4}

    Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD)\widehat{MBH}

    Khi đó ta có: \tan\widehat{MBH} =\dfrac{MH}{BH} = \dfrac{\dfrac{a\sqrt{2}}{4}}{\dfrac{3a\sqrt{2}}{4}} =\dfrac{1}{3}

    Vậy \tan\alpha =
\frac{1}{3}.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 17: Nhận biết

    Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là \overrightarrow u ;\overrightarrow {u'}. Nếu \varphi là góc giữa hai đường thẳng a và a’ thì

    Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là: \cos \varphi  = \left| {\cos \left( {\overrightarrow u ;\overrightarrow {u'} } ight)} ight|

  • Câu 18: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 19: Vận dụng

    Cho S.ABCD là hình chóp có đáy là hình chữ nhật. SA \bot \left( {ABCD} ight). Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết AB = a,AD = 2aKM = \frac{{a\sqrt {67} }}{6}. Tính cosin góc giữa KM và SQ.

    Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.

    Vậy MN \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {NK}  = \overrightarrow {NA}  + \overrightarrow {AB}  + \overrightarrow {BK}  \hfill \\   =  - \dfrac{1}{2}\overrightarrow {AD}  + \overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AD}  = \overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD}  \hfill \\ \end{matrix}

    Suy ra

    \begin{matrix}  N{K^2} = {\left( {\overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD} } ight)^2} = A{B^2} + \dfrac{1}{{36}}A{D^2} \hfill \\   = {a^2} + \dfrac{1}{{36}}.4{a^2} = \dfrac{{10}}{9}{a^2} \hfill \\ \end{matrix}

    Xét tam giác MNK vuông tại N (do MN \bot \left( {ABCD} ight)) ta có:

    \begin{matrix}  M{N^2} = M{K^2} - N{K^2} = \dfrac{{67}}{{36}}{a^2} - \dfrac{{10}}{9}{a^2} = \dfrac{3}{4}{a^2} \hfill \\   \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2} \Rightarrow SA = a\sqrt 3  \hfill \\ \end{matrix}

    Lại có

    \begin{matrix}  \overrightarrow {AQ}  = \overrightarrow {AD}  + \overrightarrow {DQ}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  \hfill \\   \Rightarrow A{Q^2} = {\left( {\overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB} } ight)^2} \hfill \\   = A{D^2} + \dfrac{9}{{16}}A{B^2} \hfill \\   = {(2a)^2} + \dfrac{9}{{16}}{a^2} = \dfrac{{73}}{{16}}{a^2} \hfill \\ \end{matrix}

    Xét tam giác SAQ vuông tại A nên

    \begin{matrix}  S{Q^2} = A{S^2} + A{Q^2} = 3{a^2} + \dfrac{{73}}{{16}}{a^2} = \dfrac{{121}}{{16}}{a^2} \hfill \\   \Rightarrow SQ = \dfrac{{11}}{4}a \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  \overrightarrow {KM}  = \overrightarrow {NM}  - \overrightarrow {NK}  = \dfrac{1}{2}\overrightarrow {AS}  - \overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AD}  \hfill \\  \overrightarrow {SQ}  = \overrightarrow {AQ}  - \overrightarrow {AS}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  - \overrightarrow {AS}  \hfill \\ \end{matrix}

    Khi đó

    \begin{matrix}  \overrightarrow {KM} .\overrightarrow {SQ}  =  - \dfrac{3}{4}A{B^2} + \dfrac{1}{6}A{D^2} - \dfrac{1}{2}A{S^2} \hfill \\   =  - \dfrac{3}{4}{a^2} + \dfrac{1}{6}.4{a^2} - \dfrac{1}{2}.3{a^2} = \dfrac{{ - 19}}{{12}}{a^2} \hfill \\ \end{matrix}

    Vậy

    \begin{matrix}  \cos \left( {KM,SQ} ight) = \left| {\cos \left( {\overrightarrow {KM} ,\overrightarrow {SQ} } ight)} ight| \hfill \\   = \dfrac{{\left| {\overrightarrow {KM} .\overrightarrow {SQ} } ight|}}{{KM.SQ}} = \dfrac{{\left| {\dfrac{{ - 19}}{{12}}{a^2}} ight|}}{{\dfrac{{a\sqrt {67} }}{6}.\dfrac{{11a}}{4}}} = \dfrac{{38}}{{11\sqrt {67} }} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 21: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

  • Câu 22: Thông hiểu

    Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?

    Hình vẽ minh họa

    Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.

    Theo định lí Pythagore ta có:

    AI = \sqrt{1 - \frac{1}{4}} =
\frac{\sqrt{3}}{2}cm

    \Rightarrow AO = \frac{2}{3}AI =
\frac{\sqrt{3}}{3}cm

    Trong tam giác SOA vuông tại O ta có: SO
= \sqrt{4 - \frac{1}{3}} = \frac{\sqrt{11}}{\sqrt{3}}cm

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{1}{2}.\frac{\sqrt{3}}{2}.\frac{\sqrt{11}}{\sqrt{3}} =
\frac{\sqrt{11}}{12}cm^{3}

  • Câu 23: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 24: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 25: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác vuông ABC cân với cạnh huyền AB = 4\sqrt 2, cạnh bên SC \bot \left( {ABC} ight)SC = 2. Gọi M là trung điểm AC, N là trung điểm AB. Tính góc giữa hai đường thẳng SM và CN.

    Tính góc giữa hai đường thẳng SM và CN

    Đặt \overrightarrow {CA}  = \overrightarrow x ;\overrightarrow {CB}  = \overrightarrow y ;\overrightarrow {CS}  = \overrightarrow z

    Do tam giác vuông cân ABC tại C có AB = 4\sqrt 2 suy ra:

    CA = CB = 4;CN = 2\sqrt 2 ;SM = 2\sqrt 2

    Ta có:

    \begin{matrix}  \overrightarrow {CN}  = \dfrac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } ight) = \dfrac{1}{2}\left( {\overrightarrow x  + \overrightarrow y } ight) \hfill \\  \overrightarrow {SM}  = \overrightarrow {SC}  + \overrightarrow {CM}  =  - \overrightarrow z  + \dfrac{1}{2}\overrightarrow x  \hfill \\ \end{matrix}

    Vậy \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {\overrightarrow x  + \overrightarrow y } ight)\left( {\overrightarrow x  - 2\overrightarrow z } ight)

    Mặt khác: \left\{ \begin{gathered}  {\overrightarrow x ^2} = {\overrightarrow y ^2} = 16 \hfill \\  {\overrightarrow z ^2} = 4 \hfill \\  \overrightarrow x .\overrightarrow y  = \overrightarrow y .\overrightarrow z  = \overrightarrow z .\overrightarrow x  = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {{{\overrightarrow x }^2} - 2\overrightarrow x .\overrightarrow z  + \overrightarrow y .\overrightarrow x  - 2\overrightarrow y .\overrightarrow z } ight) = 4

    Gọi \alpha góc giữa hai véctơ \overrightarrow {SM}\overrightarrow {CN}

    Theo công thức tích vô hướng của hai véctơ ta có:

    \begin{matrix}  \overrightarrow {CN} .\overrightarrow {SM}  = \left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|.{\text{cos}}\alpha  \hfill \\   \Rightarrow {\text{cos}}\alpha  = \dfrac{{\overrightarrow {CN} .\overrightarrow {SM} }}{{\left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|}} = \dfrac{4}{8} = \dfrac{1}{2} \hfill \\   \Rightarrow \alpha  = {60^o} \hfill \\ \end{matrix}

    Vậy góc giữa hai đường thẳng SM và CN bằng {60^o}

  • Câu 26: Thông hiểu

    Cho một khối lăng trụ đứng như hình vẽ:

    Biết đáy ABCD là hình thoi cạnh bằng a, CC' = 4a;BD =
a\sqrt{3}. Tính thể tích V của lăng trụ đứng đã cho?

    Kí hiệu hình vẽ như sau:

    Gọi giao điểm của AC và BD là I

    Ta có: \left\{ \begin{matrix}AC\bot BD \\BI = \dfrac{BD}{2} = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Xét tam giác vuông BAI vuông tại I ta có:

    AI^{2} = BA^{2} - BI^{2} = a^{2} -
\left( \frac{a\sqrt{3}}{2} ight)^{2} = \frac{a^{2}}{4}

    \Rightarrow AI = \frac{a}{2} \Rightarrow
AC = a

    Diện tích hình bình hành ABCD là:

    S_{ABCD} = 2S_{ABC} =
2.\frac{1}{2}.BI.AC

    = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2}.a =
\frac{a^{2}\sqrt{3}}{2}

    Vậy V_{ABCD.A'B'C'D'} =
S_{ABCD}.CC' = 2a^{3}\sqrt{3}

  • Câu 27: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp S.BCD bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy

    \Rightarrow \left( SA;(ABCD) ight) =
\widehat{SAO} = 60^{0}

    ABCD là hình vuông nên OA = \frac{1}{2}AC
= \frac{a\sqrt{2}}{2}

    Xét tam giác vuông SOA ta có:

    SO = AO.\tan\widehat{SDO} =\frac{a\sqrt{2}}{2}.\tan60^{0} = \frac{a\sqrt{6}}{3}

    \Rightarrow S_{BCD} =
\frac{a^{2}}{2}

    \Rightarrow V_{S.BCD} =
\frac{1}{3}.SO.S_{BCD} = \frac{1}{3}.\frac{a\sqrt{6}}{2}.\frac{a^{2}}{2}
= \frac{a^{3}\sqrt{6}}{12}

  • Câu 28: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 30: Nhận biết

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 32: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 33: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 34: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BO\bot SA \\
BO\bot AC \\
\end{matrix} ight.\  \Rightarrow BO\bot(SAC)

    Hình chiếu của SB lên mặt phẳng (SAC) là SO.

    Vậy \widehat{\left( SC;(SAC) ight)} =
\widehat{BSO}

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA =
2a;SA\bot(ABCD). Xác định độ lớn khoảng cách từ điểm A đến mặt phẳng (SBD)?

    Hình vẽ minh họa

    Gọi O = AC \cap BD

    Kẻ AK\bot SO;(K \in SO)(1)

    Ta có:

    SA\bot(ABCD) \Rightarrow SA\bot
BD(*)

    AC\bot DB(**)

    Từ (*) và (**) suy ra DB\bot(SAC)
\Rightarrow BC\bot AK(2)

    Từ (1) và (2) suy ra AK\bot(SBD)
\Rightarrow d\left( A;(SBD) ight) = AK

    Xét tam giác SAO vuông tại A ta có: \frac{1}{AK^{2}} = \frac{1}{AO^{2}} +
\frac{1}{SA^{2}} = \frac{9}{4a^{2}} \Rightarrow AK =
\frac{2a}{3}

    \Rightarrow d\left( A;(SBD) ight) =
\frac{2a}{3}

  • Câu 36: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 5a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 5a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{5}{3}a^{3}

  • Câu 37: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 38: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 39: Thông hiểu

    Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A

    => \left\{ \begin{matrix}PQ = MN = \dfrac{1}{2}AB \\PQ//AB//MN \\\end{matrix} ight.

    => MNPQ là hình bình hành

    Gọi H là trung điểm của AB

    Vì hai tam giác ABC và ABC’ đều nên \left\{ \begin{matrix}
CH\bot AB \\
C'H\bot AB \\
\end{matrix} ight.

    => AB\bot(CHC') \Rightarrow AB\bot
CC'

    Ta có: \left\{ \begin{matrix}
PQ//AB \\
\begin{matrix}
PN//CC' \\
AB\bot CC' \\
\end{matrix} \\
\end{matrix} ight.\  \Rightarrow PQ\bot PN

    Vậy tứ giác MNPQ là hình chữ nhật

  • Câu 40: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo