Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.
Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.
Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).
Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, SA vuông góc với mặt phẳng đáy, SA = a, AC = a,
. Góc giữa đường thẳng SB và mặt phẳng đáy bằng:
Hình vẽ minh họa:
Ta có:
SA ⊥ (ABC) nên AB là hình chiếu của SA trên mặt phẳng (ABC)
=>
Mặt khác có tam giác ABC vuông tại C:
Vậy (SB, (ABC)) = 300
Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Tam giác ABC là:
Giả sử tam giác ABC vuông tại A
Khi đó B có hai đường thẳng BO và BA cùng vuông góc với mặt phẳng (OCA)
Điều này vô lí, do đó tam giác ABC không thể là tam giác vuông
Từ O hạ =>
(theo định lí ba đường vuông góc)
Vì điểm H giữa hai điểm A và B nên tam giác ABC không thể có góc tù.
Suy ra ABC có ba góc nhọn.
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Do tam giác ABC cân tại A, M là trung điểm của BC nên
Ta có:
Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa AC’ và BD?

Hình vẽ minh họa:
Ta có:
BD ⊥ AC (do ABCD là hình vuông)
BD ⊥ CC’
⇒ BD ⊥ AC’
Do đó góc giữa AC' và BD bằng 900
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạng AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP.
Do AC song song với MN nên góc giữa hai đường thẳng MN và AP là góc giữa hai đường thẳng AC và AP.
Ta tính được:
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, cạnh bên AA’ = a. Gọi M, N lần lượt là trung điểm của BB’, B’C’. Lấy điểm P thuộc A’B’ sao cho
. Tính tan góc giữa đường thẳng AP và mặt phẳng (MNP).

Gọi H, K lần lượt là trung điểm của A’B’, BC.
Khi đó ta có HB // PM, . Suy ra
(1)
Mặt khác ta có (vì
)
(2)
Từ (1) và (2) suy ra . Vậy góc giữa đường thẳng AP và mặt phẳng (MNP) là góc
Ta có
Suy ra
Cho hình lập phương
có các cạnh bằng
. Tính khoảng cách giữa hai mặt phẳng
và
.
Hình vẽ minh họa
Vì là hình lập phương nên
và
.
Khoảng cách giữa hai mặt phẳng và
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’
Ta có:
Xét tam giác AJK có:
Vậy tam giác AJK vuông tại A
Gọi F là trung điểm của JK khi đó ta có:
Gọi N là trung điểm của BC, xét tam giác ANF có:
( vì
)
Lại có:
Xét tam giác AMA;’ vuông tại M ta có:
Hay
Vậy thể tích khối lăng trụ đã cho là:
Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a,
, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’),
. Gọi
là góc giữa hai đường thẳng AD’ và DB’. Tính
.

Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’
Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E
Suy ra
Bước 2: Tính
Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.
Lấy điểm I sao cho ADIH là hình bình hành.
Suy ra DI // AH , mà
=>
Ta có
Trong tam giác EDB’, có:
Suy ra
Cho hình chóp
có đáy là tam giác
vuông tại
. Đường thẳng vuông góc với đáy
. Đường thẳng
vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Cho hình lập phương
. Tính
?
Hình vẽ minh họa
Ta có:
Do là các đường chéo hình vuông bằng nhau.
Vậy tam giác là tam giác đều
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có:
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Mệnh đề nào đúng trong các mệnh đề sau?
Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.
Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.
Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.
Cho hình chóp S.ABC có
và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:
Hình vẽ minh họa:
Đặt SA = a
Xét tam giác SAB vuông cân tại S ta có:
Xét tam giác SAC cân tại S ta có:
=> SA = SC = AC = a
Áp dụng định lí cosin cho tam giác SBC ra có:
Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC
Hay H là trung điểm của BC.
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto
và
?
Hình vẽ minh họa

Ta có: AEGC là hình chữ nhật nên EG // AC
Vì ABCD là hình vuông nên
=>
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Chọn mệnh đề đúng trong các mệnh đề sau?
Mệnh đề đúng: “Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.”
NB
0
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

Hình vẽ minh họa:
Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB
Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)
Suy ra
Ta có:
∆SAB = ∆CAB (c.c.c)
=> SH = CH. Do đó ∆SCH vuông cân tại H
Vậy
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2,
, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:
Hình vẽ minh họa:
Gọi H = AM ∩ BD
Ta có:
=> SH ⊥ (ABC)
Vì AB song song CD nên theo định lý Ta-lét ta có:
=> d(B; (SAM)) = 2d(D; (SAM))
Kẻ DK ⊥ AM tại K.
Ta có: => DK ⊥ (SAM) tại K => d(D; (SAM)) = DK
=> d(B; (SAM)) = 2DK
Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:
Lại có
Khi đó
Do vậy xét trong tam giác ADM ta có:
Lại có
Từ đó
Cho hình chóp
có đáy
là hình vuông cạnh
tâm
,
vuông góc với mặt phẳng đáy. Biết
. Tính
?
Hình vẽ minh họa
Ta có: nên AI là hình chiếu vuông góc của SI trên mặt phẳng đáy.
Do đó góc giữa đường thẳng SI và mặt phẳng (ABCD) bằng góc giữa SI và AI.
Xét tam giác SAI vuông tại A nên
Vậy
Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
“Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.
“Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.
“Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.
Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”
Cho một khối chóp tứ giác đều có cạnh đáy bằng
, biết độ dài cạnh bên và cạnh đáy tỉ lệ
. Tính thể tích V của khối chóp?
Hình vẽ minh họa
Gọi là tâm hình vuông
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Trong tam giác SOC vuông tại O ta có:
Vậy thể tích hình chóp là:
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là: