Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh bằng a. Gọi I;J lần lượt là trung điểm của SC;BC. Tính số đo góc giữa hai đường thẳng JICD?

    Hình vẽ minh họa

    Từ giả thiết ta có: JI//AB (do IJ là đường trung bình tam giác SAB)

    \Rightarrow (IJ;CD) =(SB;AB)

    Mặt khác ta lại có tam giác SAB đều nên \widehat{SBA} = 60^{0}

    \Rightarrow (SB;AB) = 60^{0} \Rightarrow(IJ;CD) = 60^{0}

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Gọi I là trung điểm của cạnh AB. Tính cosin của góc giữa hai đường thẳng A'DB'I ta được kết quả là:

    Hình vẽ minh họa:

    Gọi độ dài cạnh hình lập phương là a, a > 0

    Ta có:

    B'C//A'D \Rightarrow
(A'D;B'I) = (B'I,B'C)

    Tính được \left\{ \begin{matrix}B'I = \sqrt{a^{2} + \left( \dfrac{a}{2} ight)^{2}} =\dfrac{a\sqrt{5}}{2} = CI \\B'C = a\sqrt{2} \\\end{matrix} ight.

    Trong tam giác B’CI ta có:

    \cos\widehat{IB'C} = \dfrac{\left(\dfrac{a\sqrt{5}}{2} ight)^{2} + \left( a\sqrt{2} ight)^{2} - \left(\dfrac{a\sqrt{5}}{2}ight)^{2}}{2.\dfrac{a\sqrt{5}}{2}.a\sqrt{2}}

    = \frac{2a^{2}}{a^{2}\sqrt{10}} =
\frac{\sqrt{10}}{5}

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 4: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 5: Thông hiểu

    Một khối chóp tứ giác đều có các cạnh bằng 2t (cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:

    SA = BA = BC = DA = DC

    \Rightarrow \Delta SAC = \Delta BAC =
\Delta DBC

    \Rightarrow \Delta SAC;\Delta BAC;\Delta
DBC lần lượt vuông tại S; B; D

    I là trung điểm của AC suy ra SA =
\frac{1}{2}AC = \frac{1}{2}.2t.\sqrt{2} = t\sqrt{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SI = \frac{1}{3}.(2t)^{2}.t\sqrt{2} =
\frac{4t^{3}\sqrt{2}}{3}

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 7: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và mặt bên SAB là tam giác vuông tại S. Tính số đo góc giữa hai đường thẳng SACD.

    Hình vẽ minh họa

    ABCD là hình bình hành nên CD//AB

    \Rightarrow (SA;CD) = (SA;AB) =
\widehat{SAB} = 45^{0}

  • Câu 9: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 10: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 11: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

    Hình vẽ minh họa:

    Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.

    Vậy MN bé nhất khi và chỉ khi EK bé nhất.

    Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.

    Qua I kẻ P Q song song với BC (như hình vẽ).

    Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).

    Ta có:

    \frac{1}{C'H^{2}} = \frac{1}{a^{2}}+ \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow C'H =\frac{a\sqrt{5}}{2} \Rightarrow d(BC;d) =\frac{2a\sqrt{5}}{5}

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 13: Nhận biết

    Điều kiện nào sau đây không phải là điều kiện cần và đủ để hai mặt phẳng (P) và (Q) vuông góc với nhau?

    Mỗi đường thẳng a nằm trong (P) đều có đường thẳng b nằm trong (Q) sao cho a vuông góc với b, khi đó (P) và (Q) có thể trùng nhau.

  • Câu 14: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh bằng 4a;SO\bot(ABC). Gọi I là trung điểm cạnh CD, H là hình chiếu vuông góc của điểm I trên SI. Biết OH =
a\sqrt{2}. Khi đó, cosin góc tạo bởi đường thẳng SO và mặt phẳng (SCD) bằng:

    Ta có:

    \left\{ \begin{matrix}
SO\bot(ABCD) \\
CD \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow SO\bot CD;OI\bot CD

    \Rightarrow CD\bot(SOI)

    OH \subset (SOI) \Rightarrow OH\bot
CD;OH\bot SI

    \Rightarrow OH\bot(SIO) \Rightarrow
\left( SO;(SCD) ight) = \widehat{OSI}

    OI = 2a;OH = a\sqrt{2} suy ra tam giác OHI vuông cân tại H

    \Rightarrow \widehat{HIO} = 45^{0}
\Rightarrow \widehat{OSI} = 45^{0}

    SD = \sqrt{SO^{2} + OD^{2}} =
\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SD = SC = CD =
a

    Suy ra tam giác SCD đều \Rightarrow
\widehat{SDC} = 60^{0}

    \Rightarrow \cos\left( SO;(SCD) ight)
= \cos\widehat{OSI} = \frac{\sqrt{2}}{2}

  • Câu 15: Thông hiểu

    Cho hình chóp  S.ABC có đáy ABC là tam giác vuông tại A. Hình chiếu của S lên mặt phẳng đáy là trung điểm H của BC. Tính thể tích khối chóp S.ABC biết AB
= a;AC = a\sqrt{3};SB = a\sqrt{2}.

    Hình vẽ minh họa

    Xét tam giác ABC vuông tại C ta có: BC =
\sqrt{AB^{2} + AC^{2}} = \sqrt{a^{2} + \left( a\sqrt{3} ight)^{2}} =
2a

    H là trung điểm của BC nên BH =
a

    Xét tam giác SBH vuông tại H có SH =
\sqrt{SB^{2} - HB^{2}} = \sqrt{\left( a\sqrt{2} ight)^{2} - a^{2}} =
a

    Diện tích đáy ABC là S_{ABC} =
\frac{1}{2}AB.AC = \frac{1}{2}a^{2}\sqrt{3}

    Thể tích khối chóp là V =
\frac{1}{3}SH.S_{ABC} = \frac{1}{3}.a.\frac{1}{2}a^{2}\sqrt{3} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 16: Nhận biết

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 17: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 18: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 19: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a , độ dài cạnh bên bằng a . Gọi M,N lần lượt là trung điểm của các cạnh SABC . Góc giữa MNSC bằng:

    Hình vẽ minh họa

    Gọi P là trung điểm của SB

    Ta có: SC//NP \Rightarrow (MN,SC) =
(MN,NP) = \widehat{MNP}

    MP = \frac{1}{2}AB = \frac{a}{2};NP =
\frac{1}{2}SC = \frac{a}{2}

    MC^{2} = \frac{2\left( SC^{2} + AC^{2}
ight) - SA^{2}}{4}

    = \frac{2\left( a^{2} + 2a^{2} ight) -
a^{2}}{4} = \frac{5a^{2}}{4}

    MB = \frac{a\sqrt{3}}{2}

    MN^{2} = \frac{2\left( MC^{2} + MB^{2}
ight) - BC^{2}}{4}

    = \dfrac{2\left( \dfrac{5a}{4}^{2} +\dfrac{3a}{4}^{2} ight) - a^{2}}{4} = \dfrac{3a^{2}}{4}

    \Rightarrow \cos\widehat{MNP} =
\frac{NP^{2} + MN^{2} - MP^{2}}{2NP.MN}

    = \dfrac{MN}{2NP} =\dfrac{\dfrac{a\sqrt{3}}{2}}{2.\dfrac{a}{2}} =\dfrac{\sqrt{3}}{2}

    \Rightarrow \widehat{MNP} =
30^{0}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Trực tâm của tam giác SBC và ABC lần lượt là H và K. Khẳng định nào dưới đây là khẳng định sai?

    Ta có: BC ⊥ SA, BC ⊥ SH => BC ⊥ (SAH)

    CK ⊥ AB, CK ⊥ SA => CK ⊥ (SAB) => CK ⊥ SB

    Mặt khác CH ⊥ SB => SB ⊥ (CHK)

    Ta có: BC ⊥ (SAH) => BC ⊥ HK

    SB ⊥ (CHK) => SB ⊥ HK

    => HK ⊥ (SBC)

    Dùng phương pháp loại trừ ta suy ra: BC ⊥ (SAB) là đáp án sai.

  • Câu 22: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a\sqrt{2}.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Ta có: AD // BC => d\left( {D;\left( {SCD} ight)} ight) = d\left( {A;\left( {SBC} ight)} ight)

    Gọi H là hình chiếu vuông góc của A lên SB => AK \bot SB (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AH\left( {**} ight)

    Từ (*) và (**) => AH \bot \left( {SBC} ight)

    \begin{matrix}  d\left( {A;\left( {SBC} ight)} ight) = AH \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a\sqrt 3 }}{3} \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD. Gọi \alpha là góc tạo bởi đường thẳng BM và mặt phẳng (ABCD). Tính \tan\alpha?

    Minh họa bằng hình vẽ:

    Gọi O là tâm của hình vuông. Ta có: SO\bot(ABCD)SO = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{2}}{2}

    Gọi M là trung điểm của OD ta có: MH//SO nên H là hình chiếu của M lên mặt phẳng (ABCD)MH
= \frac{1}{2}SO = \frac{a\sqrt{2}}{4}

    Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD)\widehat{MBH}

    Khi đó ta có: \tan\widehat{MBH} =\dfrac{MH}{BH} = \dfrac{\dfrac{a\sqrt{2}}{4}}{\dfrac{3a\sqrt{2}}{4}} =\dfrac{1}{3}

    Vậy \tan\alpha =
\frac{1}{3}.

  • Câu 25: Thông hiểu

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường MC’ và mặt phẳng (ABC). Khi đó tan α bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: CM là hình chiếu của C’M lên (ABC)

    => Góc giữa MC’ và (ABC) là góc giữa MC’ và MC.

    Xét tam giác MCC’ vuông tại C ta có:

    \tan\alpha = \dfrac{CC'}{MC} =\dfrac{a}{\dfrac{a\sqrt{3}}{2}} = \dfrac{2\sqrt{3}}{3}

  • Câu 26: Vận dụng

    Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

    Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD)

    Gọi I là trung điểm của AB. Khi đó SI \bot \left( {ABCD} ight)

    Ta có \left\{ \begin{gathered}  AD \bot AB \hfill \\  AD \bot SI \hfill \\ \end{gathered}  ight. \Rightarrow AD \bot \left( {SAB} ight)AD \subset \left( {SAD} ight) \Rightarrow \left( {SAD} ight) \bot \left( {SAB} ight)

    Dựng BH \bot SA tại H suy ra SH \bot \left( {SAD} ight)

    Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì CK \bot \left( {SAD} ight)

    Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc \widehat {CSK}

    Ta có BH = CK = \frac{{a\sqrt 3 }}{2}

    Trong tam giác SCI có

    SC = \sqrt {S{I^2} + I{C^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4}}  = a\sqrt 2

    Suy ra \sin \widehat {CSK} = \frac{{CK}}{{SC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}

  • Câu 27: Nhận biết

    Khẳng định nào sau đây là sai?

    Mệnh đề sai là: “Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d ⊥ (α).”

    Vì thiếu điều kiện “cắt nhau” của hai đường thẳng nằm trong (α).

    Ví dụ đường thẳng a vuông góc với hai đường thẳng b và c nằm trong (α) nhưng b và c song song với nhau thì khi đó a chưa chắc vuông góc với (α).

  • Câu 28: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 29: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.

    Đường thẳng B’C vuông góc với đường thẳng:

    Hình vẽ minh họa:

    Đường thẳng B’C vuông góc với đường thẳng nào

    Ta có: 

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CC'}  + \overrightarrow {C'B'} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {CC'} .\overrightarrow {CD}  + \overrightarrow {C'B'} .\overrightarrow {CD}  \hfill \\   = CC'.CD.\cos \widehat {C'CD} + C'B'.CD.\cos \widehat {B'C'D'} \hfill \\   = a.a.\cos {60^0} + a.a.\cos \left( {{{180}^0} - \widehat {ABC}} ight) \hfill \\   = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} = 0 \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB, AD. Gọi α là góc giữa SA và (SHK). Chọn mệnh đề đúng?

    Hình vẽ minh họa:

    Gọi I là giao điểm của HK và AC

    Dễ dàng suy ra HK // BD => HK ⊥ AC

    Ta lại có: AC ⊥ SH

    => AC ⊥ (SHK)

    => \left( SA;(SHK) ight) = (SA;SI) =
\widehat{ASI}

    Tam giác SIA vuông tại I ta có:

    \tan\widehat{ASI} = \dfrac{AI}{SI} =\dfrac{\dfrac{1}{4}AC}{\sqrt{SA^{2} - AI^{2}}} =\dfrac{\sqrt{7}}{7}

  • Câu 31: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Gọi \alpha = \left( SD;(ABCD) ight). Xác định \alpha?

    Hình vẽ minh họa

    Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc \widehat{SDA}

    \Rightarrow \alpha =
\widehat{SDA}

  • Câu 32: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh x; SA\bot(ABCD). Góc tạo bởi cạnhSC và mặt phẳng (SAB) bằng 30^{0}. Xác định thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh bằng x nên S_{ABCD} = x^{2}

    Dễ dàng chứng minh được BC\bot(SAB)

    \Rightarrow \left( SC;(SAB) ight) =
\widehat{CSB} = 30^{0}

    Đặt SA = m \Rightarrow SB = \sqrt{m^{2} +
x^{2}}

    Tam giác SBC vuông tại B nên \tan\widehat{CSA} = \tan30^{0} = \frac{1}{\sqrt{3}}= \frac{BC}{SB}

    Ta được:

    BC = SB\sqrt{3} \Leftrightarrow
\sqrt{m^{2} + x^{2}} = x\sqrt{3} \Rightarrow m = x\sqrt{2}

    Vậy diện tích hình chóp là:

    V = \frac{1}{3}SA.S_{ABCD} =
\frac{1}{3}.x\sqrt{2}.x^{2} = \frac{x^{3}\sqrt{2}}{3}

  • Câu 34: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 35: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 36: Nhận biết

    Mệnh đề nào đúng trong các mệnh đề sau?

    Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.

    Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.

    Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 38: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 39: Nhận biết

    Cho hình chóp S.ABCD đáy ABCD là hình thoi tâm I, cạnh bên SA vuông góc với đáy. Gọi H;K lần lượt là hình chiếu của A lên SC;SD. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA;do\ SA\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAC) và (AHK) vuông góc vì:

    "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD)" sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC).

    "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đúng 

    Ta có: AH ⊥(SBC) (vì AH ⊥ SB; AH ⊥ BC) nên AH ⊥  SC (1)

    Và AK ⊥ (SCD) (vì AK ⊥ SD; AK ⊥ DC) nên AK ⊥ SC (2)

    Từ (1) và (2) suy ra: SC ⊥ (AHK)

    Từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc.

    Vì chưa đủ điều kiện kết luận SC ⊥ (AHK)

    => "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC ⊥ (AHK)" và "AK ⊥ (SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đều sai

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo