Cho hình hộp chữ nhật
có
(như hình vẽ)

Tính góc giữa đường thẳng
và mặt phẳng đáy
?
Hình vẽ minh họa
Ta có:
Lại có:
Xét tam giác vuông tại A ta có:
Cho hình hộp chữ nhật
có
(như hình vẽ)

Tính góc giữa đường thẳng
và mặt phẳng đáy
?
Hình vẽ minh họa
Ta có:
Lại có:
Xét tam giác vuông tại A ta có:
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?
Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc
. Tính khoảng cách d giữa hai đường thẳng AB và SO.
Hình vẽ minh họa:

Ta có suy ra
Mà => ΔSBD đều cạnh
Xét tam giác vuông SAB có:
Gọi E là trung điểm AD, suy ra và
Do đó
Kẻ
Ta có:
Từ (1) và (2)
=>
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Gọi . Do
nên suy ra
(vì
)
Kẻ ta có:
Từ (1) và (2) , khi đó
Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có:
Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.
Ta có:
Lại có:
Từ (1), (2), (3) =>
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Hai mặt phẳng vuông góc với nhau khi và chỉ khi
Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, biết
đều. Tính
?
Hình vẽ minh họa
Ta có:
.
Cho hình chóp
đáy là tam giác
cân tại
,
vuông góc với đáy. Gọi
là trung điểm của
,
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Tam giác ABC cân tại A nên
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.
Đường thẳng B’C vuông góc với đường thẳng:
Hình vẽ minh họa:

Ta có:
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Trong mặt phẳng (P) cho tam giác ABC, M là điểm không nằm trên (P) sao cho MA = MB = MC, d là đường thẳng đi qua M và vuông góc với (P). Khi đó đường thẳng d đi qua:
Gọi H là giao điểm của đường thẳng d và mặt phẳng (P)
=> H là hình chiếu của M trên (P) nên từ MA = MB = MC
=> HA = HB = HC
=> Khi đó đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC.
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Cho hình lập phương như hình vẽ:

Biết
. Xác định thể tích của khối lập phương đã cho.
Gọi độ dài cạnh của khối lập phương là a; (x > 0)
Xét tam giác A’B’C’ vuông cân tại B’ ta có:
Xét tam giác A’AC’ vuông tại A’ ta có:
Vậy thể tích khối lập phương là
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi
là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính ![]()
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Cho hình chóp
có đáy
là tam giác vuông cân tại
. Tam giác
vuông cân tại
có
là trung điểm của
và
. Gọi góc giữa hai đường thẳng
và
là
. Chọn kết luận đúng?
Hình vẽ minh họa
Giả sử
Lại có: suy ra tam giác SBC đều suy ra
Suy ra hay
Khi đó
Áp dụng định lí cosin cho tam giác MNC ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?
Hình vẽ minh họa:
Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.
Gọi H là trung điểm AC => SH ⊥ AC.
Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.
Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.
Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.
Từ đó suy ra (ABI) ⊥ (SBC).
Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai
Cho tứ diện đều ABCD, M là trung điểm của BC. Khi đó cos(AB; DM) là:
Hình vẽ minh họa:

Giả sử cạnh của tứ diện là a
Tam giác BCD đều =>
Tam giác ABC đều =>
Ta có:
Mặt khác
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho hình chóp tứ giác S.ABCD có đáy là hình vuông và một cạnh bên vuông góc với mặt đáy. Có bao nhiêu mặt bên vuông góc với mặt đáy?
Hình vẽ minh họa:
Giả sử SA ⊥ (ABCD). Khi đó có đúng 2 mặt bên vuông góc với mặt đáy là (SAB), (SAD).
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Cho hình chóp
có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh
và
lần lượt là
. Xác định cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Theo giả thiết ta có:
là đường trung bình của tam giác
nên
Vì
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng
. Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng . Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AC = b, các cạnh bên có độ dài bằng b. Tính góc giữa đường thẳng AB và mặt phẳng (AB’C’)

(1)
Kẻ lần lượt
Ta có:
Lại có hay
=> K là hình chiếu vuông góc của lên mặt phẳng (AB’C’) (2)
Từ (1) và (2) => AK là hình chiếu vuông góc của AB lên mặt phẳng (AB’C’)
Tam giác ABC vuông cân tại A
Có ADBH là hình chữ nhật =>
Tam giác BDB’ vuông tại B
Tam giác BAK vuông tại K
Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,
. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:
Hình vẽ minh họa:
Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.
Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD =
Cho khối lăng trụ tam giác đều
có cạnh bên bằng
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có:
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
, tam giác
cân. Giả sử
lần lượt là trung điểm các cạnh
. Khẳng định nào dưới đây sai?
Hình vẽ minh họa
Vì tam giác SAB là tam giác cân tại S nên
Ta có:
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’
Ta có:
Xét tam giác AJK có:
Vậy tam giác AJK vuông tại A
Gọi F là trung điểm của JK khi đó ta có:
Gọi N là trung điểm của BC, xét tam giác ANF có:
( vì
)
Lại có:
Xét tam giác AMA;’ vuông tại M ta có:
Hay
Vậy thể tích khối lăng trụ đã cho là:
Cho hình chóp
có cạnh bên
vuông góc với mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên cạnh
. Tìm khẳng định đúng dưới đây?
Hình vẽ minh họa
Ta có:
Mà
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi: