Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạng AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP.

    Do AC song song với MN nên góc giữa hai đường thẳng MN và AP là góc giữa hai đường thẳng AC và AP.

    Ta tính được: PC = \frac{{a\sqrt 5 }}{2};AP = \frac{{3a}}{2};AC = a\sqrt 2

    \begin{matrix}  \cos \left( {\widehat {CAP}} ight) = \dfrac{{A{P^2} + A{C^2} - P{C^2}}}{{2AP.AC}} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \to \widehat {CAP} = {45^0} \hfill \\ \end{matrix}

  • Câu 2: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 3: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Mặt phẳng nào dưới đây không vuông góc với (A'BD)?

    Hình vẽ minh họa

    Dễ thấy mặt phẳng (A'BC') không vuông góc với (A'BD).

  • Câu 4: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Qua một điểm cho trước có thể kẻ được vô số mặt phẳng vuông góc với mặt phẳng cho trước.

  • Câu 5: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = 2a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = 2a\sqrt{3}.8a^{2}
= 16a^{3}\sqrt{3}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 7: Thông hiểu

    Cho hình chóp tam giác S.ABCDABCD là hình bình hành tâm O. Tam giác ABD có tất cả các cạnh bằng a\sqrt{2}, SA\bot(ABCD);SA = \frac{3a\sqrt{2}}{2}. Góc giữa đường thẳng SO với mặt đáy bằng:

    Hình vẽ minh họa:

    Ta có: \left( SO;(ABCD) ight) = (SO;OA)
= \widehat{SOA}

    Xét tam giác SAO ta có:

    SA = \frac{3a\sqrt{2}}{2}

    AO = \sqrt{AB^{2} - OB^{2}}

    = \sqrt{AB^{2} - \left( \frac{BD}{2}
ight)^{2}} = \sqrt{2a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{6}}{2}

    \Rightarrow \tan\widehat{SOA} =
\frac{SA}{AO} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SO;(ABCD) ight) =
\widehat{SOA} = 30^{0}

  • Câu 8: Thông hiểu

    Cho hình chóp S,ABC có đáy là tam giác vuông cân tại A. Tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt đáy. Tính d(SA;BC)?

    Hình vẽ minh họa

    Gọi H là trung điểm của BC. Suy ra SH\bot(ABC)

    Kẻ HK\bot SA;(K \in SA)(1)

    Ta có: \left\{ \begin{matrix}
BC\bot SH \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SHA) \Rightarrow BC\bot
KH(2)

    Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC

    Do đó d(SA;BC) = HK =
\frac{SH.HA}{\sqrt{SH^{2} + HA^{2}}} = \frac{a\sqrt{3}}{4}

  • Câu 9: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Tính (AB;A'C')?

    Hình vẽ minh họa

    AB//A'B' \Rightarrow
(AB;A'C') = (A'B';A'C') =
\widehat{B'A'C'}

    Tam giác A’B’C’ vuông cân tại B’ \Rightarrow \widehat{B'A'C'} =
45^{0}

    Vậy (AB;A'C') =
45^{0}.

  • Câu 10: Vận dụng

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

     Côsin góc giữa đường thẳng MN và (BA’C’) bằng

    Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).

    Khi đó \sin \alpha  = \frac{{NK}}{{NI}} = \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}}

    Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi I = MN \cap BE, ta có

    MN = \sqrt {B{M^2} + B{N^2}}  = 1 \Rightarrow IN = \frac{1}{3}MN = \frac{1}{3}

    Ta có \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{{NB}}{{B'B}} = \frac{1}{2}

    \left\{ \begin{gathered}  A'C' \bot B'E \hfill \\  A'C' \bot ME \hfill \\ \end{gathered}  ight. \Rightarrow A'C' \bot \left( {BMEB'} ight) \Rightarrow \left( {BA'C'} ight) \bot \left( {BMEB'} ight)

    \left( {BA'C'} ight) \cap \left( {BMEB'} ight) = BE. Kẻ B'H \bot BE\,\left( {H \in BE} ight)

    \begin{matrix}   \Rightarrow B'H \bot \left( {BA'C'} ight) \Rightarrow d\left( {B';\,\,\left( {BA'C'} ight)} ight) = B'H \hfill \\  B'H = \dfrac{1}{{\sqrt {\dfrac{1}{{B'{E^2}}} + \dfrac{1}{{B'{B^2}}}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

    Từ \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{1}{2} \Rightarrow d\left( {N;\,\,\left( {BA'C'} ight)} ight) = \frac{{\sqrt {21} }}{{14}}

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}} = \dfrac{{3\sqrt {21} }}{{14}} \hfill \\   \Rightarrow \cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha }  = \sqrt {1 - {{\left( {\dfrac{{3\sqrt {21} }}{{14}}} ight)}^2}}  = \dfrac{{\sqrt 7 }}{{14}} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA =
3a\sqrt{2};SA\bot(ABCD). Tính \tan\left( SC;(SAD) ight)?

    Hình vẽ minh họa

    Ta có: ABCD là hình vuông \Rightarrow AC\bot BD

    Mặt khác SA\bot(ABCD) \Rightarrow SA\bot
CD

    Suy ra CD\bot(SAD)

    => SD là hình chiếu của SC lên mặt phẳng (SAD)

    Do đó \left( SC;(SAD) ight) = (SC;SD) =
\widehat{CSD}

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{CSD} = \frac{CD}{SD} =
\frac{CD}{\sqrt{SA^{2} + AD^{2}}} = \frac{a^{2}}{\sqrt{\left( 3a\sqrt{2}
ight)^{2} + a^{2}}} = \frac{1}{\sqrt{19}} =
\frac{\sqrt{19}}{19}

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.

    Hình vẽ minh họa:

    Vì AB // CD ⇒ CD // (SAB)

    => d(CD, (SAB)) = d(D, (SAB))

    Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.

    Xét tam giác ABD vuông tại A ta có:

    AB2 + AD2 = BD2 = 4a2 => AD = a\sqrt{2}

  • Câu 14: Nhận biết

    Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”

    Vì b có thể nằm trong (P).

  • Câu 15: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 16: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 17: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.

    Hình vẽ minh họa:

    Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’

    => KD’ là đường trung bình của ∆PCC’

    => D’ là trung điểm của PC’

    Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’

    Ta có: A’D // B’C => A’D // (AKB’)

    => d(CK, A’D) = d (A’,(CKB’)) = \frac{1}{2}d(C’,(CPB’))

    Xét tứ diện PCC’B’ ta có:

    C’P, C’B và C’B đôi một vuông góc với nhau

    Đặt d(C’, (CPB’)) = x, thì:

    \frac{1}{x^{2}} = \frac{1}{CC'^{2}}+ \frac{1}{C'B'^{2}} + \frac{1}{C'P^{2}}

    \Rightarrow \frac{1}{x^{2}} =\frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{4a^{2}} =\frac{9}{4a^{2}}

    \Rightarrow d\left( C';(CPB')ight) = x = \frac{2a}{3}

    \Rightarrow d(CK;A'D) =\frac{1}{2}d\left( C';(CPB') ight) = \frac{1}{2}.\frac{2a}{3}= \frac{a}{3}

  • Câu 18: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số \frac{NB}{NC'} bằng:

    Hình vẽ minh họa:

    Gọi H, I lần lượt là trung điểm của AB, AC’

    Suy ra HI // BC’

    Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH

    Dễ thấy BK ⊥ (SCH)

    Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’

    Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành

    Khi đó MN là đoạn vuông góc chung cần tìm

    Ta có:

    \frac{NB}{BC'} = \frac{MK}{2HI} =\frac{1}{2}\left( 1 + \frac{HK}{A'H} ight)

    = \frac{1}{2}\left( 1 + \frac{HK}{HS}ight) = \frac{1}{2}\left( 1 + \frac{HB^{2}}{HS^{2}}ight)

    Do 2HB = SB nên:

    \frac{NB}{BC'} = \frac{1}{2}\left( 1+ \frac{HB^{2}}{HB^{2} + SB^{2}} ight)

    = \frac{1}{2}\left( 1 +\frac{HB^{2}}{HB^{2} + 4HB^{2}} ight) = \frac{3}{5}

    => \frac{NB}{NC'} =\frac{3}{2}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

  • Câu 21: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

    Tính góc giữa hai mặt phẳng (MBD) và(ABCD)

    Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BD \bot SO} \\   {BD \bot AO} \end{array}} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot OM

    Do \left\{ {\begin{array}{*{20}{l}}  {(MBD) \cap (ABCD) = BD} \\   {OM \subset (MBD)} \\   {OM \bot BD} \\   {OC \subset (ABCD)} \\   {OC \bot BD} \end{array}} ight.

    \Rightarrow \widehat {\left( {MBD),(ABCD)} ight)} = (\widehat {OM,OC}) = \widehat {MOC}

    Tam giác SOC vuông tại O, trung tuyến OM, suy ra OM = MC = \frac{{CS}}{2} = \frac{a}{2}

    => Tam giác MOC cân tại M.

    => OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}

    Khi đó \cos \widehat {MOC} = \frac{{OC}}{{SC}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{a} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {MOC} = {45^{^0}}

    Vậy \widehat {\left( {\left( {MDB} ight);\left( {ABCD} ight)} ight)} = {45^0}

  • Câu 22: Thông hiểu

    Cho một khối lăng trụ đứng như hình vẽ:

    Biết đáy ABCD là hình thoi cạnh bằng a, CC' = 4a;BD =
a\sqrt{3}. Tính thể tích V của lăng trụ đứng đã cho?

    Kí hiệu hình vẽ như sau:

    Gọi giao điểm của AC và BD là I

    Ta có: \left\{ \begin{matrix}AC\bot BD \\BI = \dfrac{BD}{2} = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Xét tam giác vuông BAI vuông tại I ta có:

    AI^{2} = BA^{2} - BI^{2} = a^{2} -
\left( \frac{a\sqrt{3}}{2} ight)^{2} = \frac{a^{2}}{4}

    \Rightarrow AI = \frac{a}{2} \Rightarrow
AC = a

    Diện tích hình bình hành ABCD là:

    S_{ABCD} = 2S_{ABC} =
2.\frac{1}{2}.BI.AC

    = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2}.a =
\frac{a^{2}\sqrt{3}}{2}

    Vậy V_{ABCD.A'B'C'D'} =
S_{ABCD}.CC' = 2a^{3}\sqrt{3}

  • Câu 23: Vận dụng

    Cho tứ diện ABCD có AB, BC, BD đôi một vuông góc. Trong các khẳng định dưới đây khẳng định nào đúng?

    Hình vẽ minh họa:

    Chọn khẳng định đúng

    \widehat {\left( {CD;\left( {ABD} ight)} ight)} = \widehat {CBD} sai

    CB ⊥ BD, CB ⊥ BA => CB ⊥ (ABD)

    => B là hình chiếu của C trên mặt phẳng (ABD)

    => \widehat {\left( {CD;\left( {ABD} ight)} ight)} = \widehat {CDB}

    \widehat {\left( {AC;\left( {BCD} ight)} ight)} = \widehat {ACB} đúng

    AB ⊥ BC, AB ⊥ BD => AB ⊥ (BCD)

    => B là hình chiếu của A trên mặt phẳng (BCD)

    => \widehat {\left( {AC;\left( {BCD} ight)} ight)} = \widehat {ACB}

    \widehat {\left( {AD;\left( {ABC} ight)} ight)} = \widehat {ADB} sai

    BD⊥ BA, BD ⊥ BC => BD ⊥ (ABC)

    => B là hình chiếu của D trên mặt phẳng (ABC)

    => \widehat {\left( {AD;\left( {ABC} ight)} ight)} = \widehat {DAB}

    \widehat {\left( {AC;\left( {ABD} ight)} ight)} = \widehat {CBA} sai

    => B là hình chiếu của C trên mặt phẳng (ABD)

    => \widehat {\left( {AC;\left( {ABD} ight)} ight)} = \widehat {CAB}

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

    Hình vẽ minh họa:

    Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB

    Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)

    Suy ra \left\{ \begin{matrix}SH\bot CH \\\widehat{\left( SC,(ABC) ight)} = \widehat{SCH} \\\end{matrix} ight.

    Ta có:

    ∆SAB = ∆CAB (c.c.c)

    => SH = CH. Do đó ∆SCH vuông cân tại H

    Vậy \widehat{\left( SC,(ABC) ight)} =\widehat{SCH} = 45^{0}

  • Câu 25: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Nhận biết

    Điều kiện nào sau đây không phải là điều kiện cần và đủ để hai mặt phẳng (P) và (Q) vuông góc với nhau?

    Mỗi đường thẳng a nằm trong (P) đều có đường thẳng b nằm trong (Q) sao cho a vuông góc với b, khi đó (P) và (Q) có thể trùng nhau.

  • Câu 27: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a;BC
= a\sqrt{2}; SA\bot(ABC)SA = a. Góc giữa đường thằng SC và mặt phẳng đáy bằng:

    Hình vẽ minh họa

    Ta có góc giữa SC và mặt phẳng đáy là góc \widehat{SCA}

    Xét tam giác SCA vuông tại A có:

    AC = \sqrt{AB^{2} + BC^{2}} =
a\sqrt{3}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 29: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABC đáy là tam giác ABC cân tại A, SA vuông góc với đáy. Gọi Mlà trung điểm của BC, J là trung điểm của BM. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: BC\bot SA;\left( do\ SA\bot(ABC)
ight)

    Tam giác ABC cân tại A nên AM\bot
BC

    \Rightarrow BC\bot(SAM)

  • Câu 31: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 32: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 33: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 34: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 35: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1. Tính \cos \left( {\overrightarrow {A{C_1}} ;\overrightarrow {BD} } ight)

    Tính cosin góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {A{C_1}} .\overrightarrow {BD}  = \left( {\overrightarrow {A{A_1}}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AD}  - \overrightarrow {AC} .\overrightarrow {AB}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {BD}  \hfill \\   = 0 \hfill \\   \Rightarrow \overrightarrow {A{C_1}} .\overrightarrow {BD}  = 0 \hfill \\ \end{matrix}

  • Câu 36: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 37: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a và các góc \widehat{BAD};\widehat{DAA'};\widehat{A'AB} đều bằng 60^{0}. Gọi trung điểm của các cạnh AA',CD lần lượt là M,N. Gọi \alpha là góc tạo bởi hai đường thẳng MNB'C. Xác định \cos\alpha?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
A'D//B'C \\
MN//A'P \\
\end{matrix} ight. với P là trung điểm của D’C

    Suy ra (MN,B'C) = (A'P;A'D) =
\widehat{DA'P}

    \widehat{BAD} = \widehat{DAA'} =
\widehat{A'AB} = 60^{0} và các cạnh của hình hộp bằng a

    Do đó A'D = a;C'D = C'A'
= a\sqrt{3}

    A'P = \frac{A'D^{2} +
A'C'^{2}}{2} - \frac{DC'^{2}}{4}

    \Rightarrow A'P =
\frac{a\sqrt{5}}{2}

    Áp dụng định lí cosin cho tam giác A’DP ta có:

    \cos\alpha = \frac{A'D^{2} +
A'P^{2} - DP^{2}}{2A'D.A'P} =
\frac{3\sqrt{5}}{10}

  • Câu 38: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:

     Hình vẽ minh họa:

    Xác định đường vuông góc chung của AB và CD

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AB \bot CM} \\   {AB \bot DM} \end{array}} ight. \Rightarrow AB \bot \left( {CDM} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {CD \bot MN} \\   {AB \bot \left( {CDM} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => MN là đường vuông góc chung của AB  và CD

  • Câu 39: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 40: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo