Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Các đường thẳng cùng vuông góc với một đường thẳng thì:
Đáp án "Thuộc một mặt phẳng" sai vì có thể xảy ra trường hợp nằm trên nhiều mặt phẳng khác nhau.
Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.
Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.
Đáp án "Song song với một mặt phẳng" đúng vì chúng đồng phẳng.
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích khối lăng trụ
bằng bao nhiêu?
Hình vẽ minh họa:
Kẻ
Lại có
Gọi F là trung điểm của BC; khi đó
Ta có:
Vì
Vậy tam giác AIK vuông tại A
Gọi E là trung điểm của IK
=>
Lại có do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc
bằng
Ta có:
Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:
Xét tam giác AMF vuông tại A ta có:
Vậy
Cho hình chóp
có tất cả các cạnh bằng nhau và đáy
là hình vuông tâm
. Kết quả nào sau đây đúng?
Hình chóp có tất cả các cạnh bên và cạnh đáy bằng nhau
Do đó: suy ra tam giác SAC cân tại A
Lại có ABCD là hình vuông
=> O là trung điểm cạnh AC
=> SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC
=>
Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD
=>
Từ đó ta có:
Cho hình chóp
có
, tam giác
đều có
. Giả sử
. Hãy xác định giá trị
?
Hình vẽ minh họa
Gọi M là trung điểm của BC. Kẻ đường cao AK của tam giác SAM.
Tam giác ABC đều suy ra
Xét tam giác ABM vuông tại A ta có:
Vì
Xét tam giác ABK vuông tại K ta có:
Cho hình chóp
có đáy
là hình vuông cạnh
,
. Góc giữa đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Do nên góc giữa đường thẳng
và mặt phẳng đáy bằng góc
.
Ta có:
Vậy góc giữa đường thẳng và mặt phẳng
bằng
.
Cho hình lập phương
. Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Mặt khác
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Do tam giác ABC cân tại A, M là trung điểm của BC nên
Ta có:
Cho hai đường thẳng
và mặt phẳng
. Chọn mệnh đề sai trong các mệnh đề dưới đây?
Mệnh đề: “Nếu thì
.” Sai vì đường thẳng b có thể nằm trong mặt phẳng (Q).
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:
Hình vẽ minh họa:
Kẻ HI // BC (I ∈ CD) ta có:
=> Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc
Dựng hình bình hành ADBE
Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))
Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ
Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))
Ta có:
Với
Vậy
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

+) Ta có:
+) Mặt khác
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc
. Tính khoảng cách d giữa hai đường thẳng AB và SO.
Hình vẽ minh họa:

Ta có suy ra
Mà => ΔSBD đều cạnh
Xét tam giác vuông SAB có:
Gọi E là trung điểm AD, suy ra và
Do đó
Kẻ
Ta có:
Từ (1) và (2)
=>
Một hình chóp
có đáy
là tam giác đều cạnh
,
vuông góc với mặt phẳng đáy. Biết góc giữa
và mặt phẳng
bằng
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Gọi M là trung điểm của BC thì
Từ đây dễ thấy góc cần tìm là
Do đó tam giác SAM vuông cân tại A và
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

Gọi O là tâm của hình vuông ABCD. Khi đó ta có (1).
Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên
(2)
Từ (1) và (2) ta có tại O
Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).
Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là
Xét tam giác vuông AB’O có
Vậy
Cho hình chóp
có đáy
là hình vuông cạnh bằng
,
. Gọi
trung điểm các cạnh
,
là trung điểm của
. Tính
?
Hình vẽ minh họa
Gọi I là trung điểm của AD, H là trung điểm của SI.
Ta có: GH // FI; BD // FI nên GH // BD =>
Ta có:
Khi đó:
Ta có:
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho hình chóp
có đáy
là tam giác vuông cân tại
và cạnh
vuông góc với mặt đáy. Biết rằng
và
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA
Tam giác ABC vuông cân tại A nên
Áp dụng định lí Pythagore cho tam giác SAB ta có:
Tam giác SAC vuông tại A nên
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Cho hình chóp
có đáy
là hình bình hành và mặt bên
là tam giác vuông tại
. Tính số đo góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Vì là hình bình hành nên
Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a,
. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.
Hình vẽ minh họa:
Gọi O là giao điểm của AC và BD
Theo giả thiết ta có: B’O ⊥ (ABCD)
Dó đó
Vì tam giác ABD đều cạnh a =>
Tam giác B’BO vuông ta có:
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi A’ là hình chiếu vuông góc của đỉnh A lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?
=> Góc BA’C là góc tù.
Cho tứ diện ABCD có tam giác ABC vuông tại A, AB = 6, AC = 8. Tam giác BCD có độ dài đường cao kẻ từ đỉnh C bằng 8. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABC). Cosin góc giữa mặt phẳng (ABD) và (BCD) bằng:
Hình vẽ minh họa:
Kẻ AH ⊥ BC tại H, CK ⊥ BD tại K, HI ⊥ BD tại I.
Theo giả thiết suy ra CK = 8.
Vì (ABC) ⊥ (BCD) AH ⊥ BC nên AH ⊥ (BCD).
Ta có:
=> Góc AIH là góc giữa hai mặt phẳng (ABD) và (BCD).
Xét tam giác ABC vuông tại A
Xét tam giác AHI vuông tại H
=>
Cho hình chóp
có đáy
là hình vuông cạnh bằng 1, tam giác
là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng
và
.
Hình vẽ minh họa
Ta có:
Cho hình hộp thoi
có tất cả các cạnh bằng
và
. Tứ giác
là hình gì?
Hình vẽ minh họa
Ta có tứ giác A’B’CD là hình bình hành
Do nên tam giác BB’C đều
Do đó nên tứ giác A’B’CD là hình thoi
Ta có
Suy ra
Vậy tứ giác là hình vuông.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình chóp
có
. Kết luận nào sau đây sai về góc giữa
và ![]()
Vì nên AB là hình chiếu của SB trên (ABC)
Vậy .
Cho tứ diện ABCD với các đường thẳng AB, AC, AD đôi một vuông góc, H là trực tâm tam giác BCD. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng BA⊥(ACD), AH⊥(BCD), suy ra góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng BA và AH, tức là bằng góc
Cho hình chóp
có đáy
là hình vuông,
,
. Gọi
là trung điểm cạnh
. Tính
?
Hình vẽ minh họa
Xét tam giác SAB vuông tại A có:
Gọi E là trung điểm cạnh MC, ta có:
và
Lại có:
Suy ra tam giác SBC vuông tại B.
Xét tam giá MBC vuông tại B ta có:
Xét tam giác có: