Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Vậy cosin góc giữa hai cạnh AJ và CI bằng
Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Vậy cosin góc giữa hai cạnh AJ và CI bằng
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho khối chóp tam giác đều
có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?
Hình vẽ minh họa
Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.
Theo định lí Pythagore ta có:
Trong tam giác SOA vuông tại O ta có:
Vậy thể tích khối chóp tam giác là:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:
Hình vẽ minh họa:
Kẻ HI // BC (I ∈ CD) ta có:
=> Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc
Dựng hình bình hành ADBE
Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))
Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ
Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))
Ta có:
Với
Vậy
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và
. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Ta có: MN // SB
=>
Do SH ⊥ (ABCD)
Ta có:
=>
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh
, cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Cho hình lăng trụ tam giác
có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: Tam giác là tam giác đều suy ra
Lại có
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?
Hình vẽ minh họa:
Ta có: O và I lần lượt là trung điểm của AC và SC
=> OI là đường trung bình của tam giác SAC
=> OI // SA
Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)
Ta có: ABCD là hình chữ nhật => BC ⊥ AB
Mà SA ⊥ BC => BC ⊥ SB
Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD
Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.
Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”
Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho tứ diện ABCD có
;
. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?
Hình vẽ minh họa

Xét tam giác ABD có AB = AD và
=> Tam giác ABD là tam giác đều
=> (Vì DM là trung tuyến)
Xét tam giác ABC có AB = AC và
=> Tam giác ABC là tam giác đều
=> (Vì CM là trung tuyến)
=> DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)
Suy ra MN là đường cao của tam giác MCD
=> MN ⊥ CD
Chứng minh tương tự:
Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN
=> Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB
Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.
Cho một khối trụ có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối trụ là:
Cho hình chóp S.ABC có SA = SB = SC;
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Mà SA = SB = SC và
=>
Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.
Hình vẽ minh họa:
Gọi M, N lần lượt là trung điểm của AB, CD.
Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN
Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB
Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM
Khi đó, tam giác MCD vuông cân tại M
=>
Ta lại có
Mà
=>
Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:
"a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp
"a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp
=> "a không thể vuông góc với mặt phẳng (P)" là sai.
Cho hình chóp tam giác
có đáy
vuông tại
,
. Khi đó:
Hình vẽ minh họa
Ta có:
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.
Cho tứ diện ABCD với các đường thẳng AB, BC, CD đôi một vuông góc. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng:
Như vậy góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AC và BC, tức là bằng góc
Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh
, cạnh bên bằng
.
Hình vẽ minh họa
Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là và chiều cao
(vì lăng trụ là lăng trụ đứng)
Vậy thể tích hình lăng trụ là:
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc giữa đường thẳng SC và (ABCD). Giá trị của tan α bằng:

+) Gọi H là trung điểm AB.
Vì tam giác ABC đều nên SH ⊥ AB
Ta có:
=> Hình chiếu của SC lên (ABCD) là HC.
(Vì tam giác SHC vuông tại H)
+) Ta có:
Xét tam giác SHC vuông tại H:
Vậy
Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?
Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng
, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

Ta có tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)
Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc
Khi đó
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và
là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:

Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
bằng góc giữa hai đường thẳng
và
và bằng góc
Mà tam giác ACD’ là tam giác đều nên
Cho hình lập phương như hình vẽ:

Biết
. Xác định thể tích của khối lập phương đã cho.
Gọi độ dài cạnh của khối lập phương là a; (x > 0)
Xét tam giác A’B’C’ vuông cân tại B’ ta có:
Xét tam giác A’AC’ vuông tại A’ ta có:
Vậy thể tích khối lập phương là
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB
=> Tam giác SBC vuông tại B => I là trung điểm của SC
Theo bài ra ta có: IH ⊥ (ABC) => IH // SA
=> H là trung điểm của cạnh AC,
Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).
Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.
Cho hình chóp
có
. Kết luận nào sau đây sai về góc giữa
và ![]()
Vì nên AB là hình chiếu của SB trên (ABC)
Vậy .