Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều, SA vuông góc với mặt phẳng đáy. Gọi H là trung điểm cạnh AC, K là hình chiếu vuông góc của H trên SC. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BH

    Mà tam giác ABC là tam giác đều AC\bot
BH

    \Rightarrow BH\bot SCHK\bot SC

    \Rightarrow SC\bot(BHK) \Rightarrow
(SCB)\bot(BHK)

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

    Góc giữa hai đường thẳng AM bằng BD

    Xét \Delta ABD vuông cân tại A, ta có:

    BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Góc giữa 2 đường thẳng BA và BD bằng 45^0, suy ra \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight) = {135^o}

    Xét \Delta SAB vuông cân tại A, ta có:

    \begin{matrix}  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  AM = \dfrac{{SA.AB}}{{SB}} = \dfrac{{a\sqrt 2 }}{2} \hfill \\ \end{matrix}

    Vì là trung điểm của SB nên: 2\overrightarrow {AM}  = \overrightarrow {AS}  + \overrightarrow {AB}

    Ta có:

    \begin{matrix}  2\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\overrightarrow {AS}  + \overrightarrow {AB} } ight).\overrightarrow {BD}  \hfill \\   = \overrightarrow {AS} .\overrightarrow {BD}  + \overrightarrow {AB} .\overrightarrow {BD}  = \overrightarrow {AB} .\overrightarrow {BD}  \hfill \\ \end{matrix}

    (Do \overrightarrow {AS}  \bot \overrightarrow {BD}, nên \overrightarrow {AS} .\overrightarrow {BD}  = 0)

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BD}  = \dfrac{{\overrightarrow {AB} .\overrightarrow {BD} }}{2} \hfill \\   = \dfrac{{AB.BD.\cos \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight)}}{2} \hfill \\   = \dfrac{{a.a\sqrt 2 .\cos \left( {{{135}^o}} ight)}}{2} = \dfrac{{ - {a^2}}}{2} \hfill \\ \end{matrix}

    Do đó: 

    \begin{matrix}  \cos \left( {\overrightarrow {AM} ,\overrightarrow {BD} } ight) = \dfrac{{\overrightarrow {AM} .\overrightarrow {BD} }}{{AM.BD}} \hfill \\   = \dfrac{{\dfrac{{ - {a^2}}}{2}}}{{\dfrac{{a\sqrt 2 }}{2}.a\sqrt 2 }} =  - \dfrac{1}{2} \Rightarrow \left( {\overrightarrow {AM} ,\overrightarrow {BD} } ight) = {120^o} \hfill \\ \end{matrix}

    Vậy góc giữa AM bằng BD bằng {60^o}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

    Tính góc giữa mặt phẳng (SAD) và (SCD)

    Tam giác ABC vuông cân tại B, suy ra AC = AB\sqrt 2  = a\sqrt 2

    SA \bot \left( {ABCD} ight) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

    Khi đó

    \begin{matrix}  \widehat {\left( {SC;\left( {ABCD} ight)} ight)} = \widehat {\left( {SC;AC} ight)} = \widehat {SCA} = {45^0} \hfill \\   \Rightarrow SA = AC = a\sqrt 2  \hfill \\ \end{matrix}

    Gọi M là trung điểm của AD => CM ⊥ AD.

    Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD

    Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {(SAD) \cap (SCD) = SD} \\   {MH \subset (SAD)} \\   {MH \bot SD} \\   {CH \subset (SCD)} \\   {CH \bot SD} \end{array}} ight. \hfill \\   \Rightarrow \widehat {((SAD),(SCD))} = \widehat {(MH,CH)} = \widehat {MHC} \hfill \\ \end{matrix}

    Ta lại có: SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 6 ;CM = AB = a

    \begin{matrix}  \Delta SAD \sim \Delta MHD \hfill \\   \Rightarrow \dfrac{{SA}}{{SD}} = \dfrac{{MH}}{{MD}} \hfill \\   \Rightarrow MH = \dfrac{{SA.MD}}{{SD}} = \dfrac{{a\sqrt 2 a}}{{a\sqrt 6 }} = \dfrac{{a\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác MHC vuông tại M

    \Rightarrow \tan \widehat {MHC} = \frac{{CM}}{{MH}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3  \Rightarrow \widehat {MHC} = {60^0}

    Vậy \left( {\widehat {\left( {SAD} ight);\left( {SCD} ight)}} ight) = {60^0}

  • Câu 4: Nhận biết

    Cho hình lập phương như hình vẽ:

    Hỏi đường thẳng nào vuông góc với đường thẳng BC'?

    Ta có:

    \left\{ \begin{matrix}
AD'\bot AB \\
AD'\bot A'D \\
\end{matrix} ight.\  \Rightarrow AD'\bot(ABC'D')
\Rightarrow AD'\bot BC'

  • Câu 5: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 6: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 8: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}

    Hình vẽ minh họa

    Ta có: AB//A'B'(A'B',B'C') = 90^{0} \Rightarrow
(AB,B'C') = 90^{0}

    Vì tứ giác ABCD là hình vuông nên (AC;BC) = 45^{0}

    Ta có: BC//B'C' nên (AC,B'C') = 45^{0}

    Ta có: A'C'//AC và tam giác AVB' là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó (A'C',B'C) = (AC,B'C) =
60^{0}

  • Câu 9: Vận dụng

    Cho lăng trụ đứng ABC.A’B’C’ có diện tích tam giác ABC bằng 2\sqrt{3}. Gọi M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’, diện tích tam giác MNP bằng 4. Tính góc giữa hai mặt phẳng (ABC) và (MNP).

    Hình vẽ minh họa:

    Gọi α là góc giữa 2 mặt phẳng (ABC) và (MNP).

    Dễ thấy tam giác ABC là hình chiếu của tam giác MNP trên mặt phẳng (ABC).

    => S_{ABC} =S_{MNP}.cos\alpha

    Từ đó suy ra:

    \begin{matrix}\cos\alpha = \dfrac{S_{ABC}}{S_{MNP}} = \dfrac{2\sqrt{3}}{4} =\dfrac{\sqrt{3}}{2} \hfill\\\Rightarrow \alpha = 30^{0}\hfill \\\end{matrix}

    Vậy góc giữa hai mặt phẳng (ABC) và (MNP) bằng 30◦

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 11: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 12: Nhận biết

    Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi A’ là hình chiếu vuông góc của đỉnh A lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?

    \begin{matrix}
\overrightarrow{A'B}.\overrightarrow{A'C} =
\overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C} \\
= \overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight) \\
= \overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 \\
\end{matrix}

    => Góc BA’C là góc tù.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD. 

    Gọi E=HK∩AC. Do HK//BD nên suy ra

    d(HK;SD)=d(HK;(SBD))=d(E;(SBD))=d(A;(SBD))/2 (vì OE=AO/2=1/2)

    Kẻ AF⊥SO(1) ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SA} \end{array}} ight.

    ⇒BD⊥(SAC)⇒BD⊥AF(2)

    Từ (1) và (2) ⇒AF⊥(SBD), khi đó d(A;(SBD))=AF

    \begin{matrix}  AF = \dfrac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} \hfill \\   = \dfrac{{2a.\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {2a} ight)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{2a}}{3} \hfill \\   \Rightarrow d\left( {HK;SD} ight) = \dfrac{1}{2}AF = \dfrac{a}{3} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 15: Vận dụng

    Cho tứ diện ABCD. Nếu AB ⊥CD, AC ⊥ BDBC ⊥ AD thì:

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AC} .\overrightarrow {BD}  = \overrightarrow {AD} .\overrightarrow {CB}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) = \overrightarrow {AC} \left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AD} .\left( {\overrightarrow {AB}  - \overrightarrow {AC} } ight) = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AB} .\overrightarrow {AD}  \hfill \\ \end{matrix}

  • Câu 16: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = a\sqrt{5};d(C;BB') =
a\sqrt{5};d(A;BB') = a;d(A;CC') = 2a. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’

    Ta có: \left\{ \begin{matrix}
AJ\bot BB' \\
AK\bot CC' \Rightarrow AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AJK)

    \Rightarrow BB'\bot JK \Rightarrow
JK//CH \Rightarrow JK = CH = a\sqrt{5}

    Xét tam giác AJK có: JK^{2} = AJ^{2} +
AK^{2} = 5a^{2}

    Vậy tam giác AJK vuông tại A

    Gọi F là trung điểm của JK khi đó ta có: AF = JF = FK = \frac{a\sqrt{5}}{2}

    Gọi N là trung điểm của BC, xét tam giác ANF có:

    \cos\widehat{ANF} = \dfrac{AF}{AN} =\dfrac{\dfrac{a\sqrt{5}}{2}}{a\sqrt{5}} = \dfrac{1}{2}

    \Rightarrow \widehat{ANF} =
60^{0}

    (AN = AM = a\sqrt{5}AN//AM;AN = AM)

    \Rightarrow S_{AJK} = \frac{1}{2}AJ.AK =
\frac{1}{2}.a.2a = a^{2}

    Lại có: S_{AJK} = S_{ABC}.\cos60^{0}\Rightarrow S_{ABC} = \frac{S_{AJK}}{\cos60^{0}} = 2a^{2}

    Xét tam giác AMA;’ vuông tại M ta có:

    \widehat{MAA'} = \widehat{AMF} =
30^{0}

    Hay AM = A'M.\tan30^{0} =\frac{a\sqrt{15}}{3}

    Vậy thể tích khối lăng trụ đã cho là:

    V = AM.S_{ABC} =
\frac{a\sqrt{15}}{3}.2a^{2} = \frac{2a^{3}\sqrt{15}}{3}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.

    Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)

    => BD ⊥ SC, BD ⊥ SO

    Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAC) và (AHK) vuông góc vì:

    "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD)" sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC).

    "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đúng 

    Ta có: AH ⊥(SBC) (vì AH ⊥ SB; AH ⊥ BC) nên AH ⊥  SC (1)

    Và AK ⊥ (SCD) (vì AK ⊥ SD; AK ⊥ DC) nên AK ⊥ SC (2)

    Từ (1) và (2) suy ra: SC ⊥ (AHK)

    Từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc.

    Vì chưa đủ điều kiện kết luận SC ⊥ (AHK)

    => "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC ⊥ (AHK)" và "AK ⊥ (SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đều sai

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCBC =
a\sqrt{2}, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng SBAC bằng:

    Hình vẽ minh họa

    Ta có: AB^{2} + AC^{2} =
BC^{2}

    Suy ra tam giác ABC vuông tại A.

    Gọi H, M, N lần lượt là trung điểm của AB, AB, SA

    \Rightarrow \left\{ \begin{matrix}
MN//SB \\
MH//AC \\
\end{matrix} ight.\  \Rightarrow (SB,AC) = (MN,MH)

    \left\{ \begin{matrix}MN = \dfrac{SB}{2} = \dfrac{a}{2} \\NH = \dfrac{AC}{2} = \dfrac{a}{2} \\AH = \dfrac{BC}{2} = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    Xét tam giác SBC có: SB = SC nên SH\bot
BC \Rightarrow SH = \sqrt{SB^{2} - HB^{2}} =
\frac{a\sqrt{2}}{2}

    Lại H là tam đường tròn ngoại tiếp tam giác ABC

    Mà SA = SB = SC = a nên SH\bot(ABC)

    Suy ra tam giác SAH vuông cân tại H

    HN = \frac{SA}{2} =
\frac{a}{2}

    Do đó tam giác MHN cạnh \frac{a}{2}. Góc cần tìm bằng 60^{0}

  • Câu 21: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 22: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 23: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 24: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Giả sử mặt phẳng (\alpha) đi qua điểm C vuông góc với BD. Thiết diện tạo bởi (\alpha) và hình lập phương là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CA\bot BD \\
CC'\bot BD \\
\end{matrix} ight.\  \Rightarrow (ACC'A')\bot BD

    Vậy (\alpha) chính là mặt phẳng (ACC'A'). Thiết diện là một hình chữ nhật.

  • Câu 25: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 26: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của \overrightarrow {{B_1}M} .\overrightarrow {B{D_1}}

    Hình vẽ minh họa:

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {B{D_1}}  = \overrightarrow {BA}  + \overrightarrow {A{D_1}}  \hfill \\   \Rightarrow \overrightarrow {B{D_1}}  =  - \overrightarrow {AB}  + \overrightarrow {A{A_1}}  + \overrightarrow {AD}  \hfill \\  \overrightarrow {{B_1}M}  = \overrightarrow {{B_1}A}  + \overrightarrow {AM}  \hfill \\   \Rightarrow \overrightarrow {{B_1}M}  =  - \overrightarrow {AB}  - \overrightarrow {A{A_1}}  + \dfrac{1}{2}\overrightarrow {AD}  \hfill \\   \Rightarrow \overrightarrow {B{D_1}} .\overrightarrow {{B_1}M}  = A{B^2} - A{A_1}^2 + \dfrac{1}{2}A{D^2} \hfill \\   \Rightarrow \overrightarrow {B{D_1}} .\overrightarrow {{B_1}M}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).

    Hình vẽ minh họa:

    Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:

    \begin{matrix}
\left( SC;(ABCD) ight) = (SC;AC) = \widehat{SCA} \\
\Rightarrow SA = AC = 2a\sqrt{2} \\
\end{matrix}

    Gọi O là giao điểm của AC và BD ta có:

    Ta có: \left\{ \begin{matrix}
DO\bot AC \\
DO\bot SA \\
\end{matrix} ight.\  \Rightarrow DO\bot(SAC)=> Hình chiếu của SD trên mặt phẳng (SAC) là SO.

    => \left( SD;(SAC) ight) = (SD;SO) =
\widehat{DSO}

    \left\{ \begin{matrix}DO = \dfrac{1}{2}BD = a\sqrt{2} \hfill \\SO = \sqrt{SA^{2} + AO^{2}} = a\sqrt{10} \hfill \\\end{matrix} ight.

    => \tan\widehat{DSO} = \frac{DO}{SO} =
\frac{\sqrt{5}}{5}

  • Câu 29: Thông hiểu

    Cho khối chóp S.ABCDSA\bot(ABCD); đáy ABCD là hình chữ nhật AB = a;AD = a\sqrt{3}. Tính thể tích khối chóp S.ABCD, biết mặt phẳng (SBC) tạo với mặt phẳng đáy một góc bằng 60^{0}.

    Hình vẽ minh họa

    Ta có: S_{ABCD} =
a^{2}\sqrt{3}

    \left\{ \begin{matrix}
(SBC) \cap (ABCD) = BC \\
BC\bot SB \subset (SBC) \\
BC\bot AB \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow \left( (SBC);(ABCD) ight) = (SB;AB)
= \widehat{SBA}

    Vậy \widehat{SBA} = 60^{0}

    Xét tam giác vuông SAB có

    \tan60^{0} = \frac{SA}{AB} \Rightarrow SA= AB.\tan60^{0} = a\sqrt{3}

    Vậy V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.a^{2}\sqrt{3}.a\sqrt{3} = a^{3}

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a; \widehat{ABC} = 60^{0}. Biết SO\bot(ABCD);SO = a\sqrt{3}. Gọi \alpha là góc giữa đường thẳng SB và mặt phẳng (SAC). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:\left\{ \begin{matrix}
BD\bot AC \\
BD\bot SO \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

    \Rightarrow (SBD)\bot(SAC)

    (SBD) \cap (SAC) = SO

    \Rightarrow \left( SB;(SAC) ight) =
(SB;SO) = \widehat{BSO}

    Ta có: \tan\widehat{BSO} = \frac{SB}{SO}
= \frac{\frac{a\sqrt{3}}{2}}{a\sqrt{3}} = \frac{1}{2}

    \Rightarrow \widehat{BSO} =
\arctan\frac{1}{2} = \alpha

    Vậy \alpha \in \left( 25^{0};27^{0}
ight)

  • Câu 32: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là cân AB
= AC = a;\widehat{CAB} = 120^{0}. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính thể tích khối chóp S.ABC theo a.

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp tam giác S.ABC

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{1}{2}a^{2}.\sin120^{0} =\frac{a^{3}}{8}

  • Câu 33: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 34: Nhận biết

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q). Khi đó khẳng định nào là khẳng định đúng?

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q), khi đó a nằm trên (P) hoặc song song với (P).

  • Câu 35: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Biết \left( (SAB);(ABCD) ight) = 90^{0} và tam giác SAB đều. Xác định thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.a^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a;BC
= a\sqrt{2}; SA\bot(ABC)SA = a. Góc giữa đường thằng SC và mặt phẳng đáy bằng:

    Hình vẽ minh họa

    Ta có góc giữa SC và mặt phẳng đáy là góc \widehat{SCA}

    Xét tam giác SCA vuông tại A có:

    AC = \sqrt{AB^{2} + BC^{2}} =
a\sqrt{3}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 37: Thông hiểu

    Cho tứ diện ABCD có hai mặt ABCABD là tam giác đều. Khi đó (AB;CD) bằng:

    Hình vẽ minh họa

    Ta có: I là trung điểm của AB.

    ABCABD là tam giác đều nên \left\{ \begin{matrix}
CI\bot AB \\
DI\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(CID) \Rightarrow AB\bot
CD

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Gọi O là tâm hình vuông ABCD => SO \bot \left( {ABCD} ight)

    OA \cap \left( {SCD} ight) = C nên 

    \begin{matrix}  \dfrac{{d\left( {A;\left( {SCD} ight)} ight)}}{{d\left( {O;\left( {SCD} ight)} ight)}} = \dfrac{{AC}}{{OC}} = 2 \hfill \\   \Rightarrow d\left( {A;\left( {SCD} ight)} ight) = 2d\left( {O;\left( {SCD} ight)} ight) \hfill \\ \end{matrix}

    Gọi H là trung điểm của CD => OH \bot CD

    Gọi K là hình chiếu của O trên SH => OK \bot SH (*) 

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot OH} \\   {CD \bot SO} \end{array}} ight. \Rightarrow CD \bot \left( {SOH} ight) \Rightarrow CD \bot OK\left( ** ight)

    Từ (*) và (**) 

    \begin{matrix}  OK \bot \left( {SCD} ight) \Rightarrow d\left( {O;\left( {SCD} ight)} ight) = OK \hfill \\  OK = \dfrac{{SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }} \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  SO = \sqrt {S{A^2} - O{A^2}}  \hfill \\   = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}}  = \dfrac{{a\sqrt {14} }}{2} \hfill \\ \end{matrix}

    \Rightarrow OK = \dfrac{{\dfrac{{a\sqrt {14} }}{2}.\dfrac{a}{2}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {14} }}{2}} ight)}^2} + {{\left( {\dfrac{a}{2}} ight)}^2}} }} = \dfrac{{a\sqrt 7 }}{{\sqrt {30} }}

    d\left( {A;\left( {SCD} ight)} ight) = 2.OK = \frac{{2a\sqrt 7 }}{{\sqrt {30} }}

  • Câu 39: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 40: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo