Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a\sqrt{5} và BC = . Tính khoảng cách giữa SD và BC.

    Hình vẽ minh họa:

    Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.

    CD = \sqrt{AC^{2} - BC^{2}} =\sqrt{5a^{2} - 2a^{2}} = a\sqrt{3}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Trực tâm của tam giác SBC và ABC lần lượt là H và K. Khẳng định nào dưới đây là khẳng định sai?

    Ta có: BC ⊥ SA, BC ⊥ SH => BC ⊥ (SAH)

    CK ⊥ AB, CK ⊥ SA => CK ⊥ (SAB) => CK ⊥ SB

    Mặt khác CH ⊥ SB => SB ⊥ (CHK)

    Ta có: BC ⊥ (SAH) => BC ⊥ HK

    SB ⊥ (CHK) => SB ⊥ HK

    => HK ⊥ (SBC)

    Dùng phương pháp loại trừ ta suy ra: BC ⊥ (SAB) là đáp án sai.

  • Câu 5: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 6: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.

    Đường thẳng B’C vuông góc với đường thẳng:

    Hình vẽ minh họa:

    Đường thẳng B’C vuông góc với đường thẳng nào

    Ta có: 

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CC'}  + \overrightarrow {C'B'} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {CC'} .\overrightarrow {CD}  + \overrightarrow {C'B'} .\overrightarrow {CD}  \hfill \\   = CC'.CD.\cos \widehat {C'CD} + C'B'.CD.\cos \widehat {B'C'D'} \hfill \\   = a.a.\cos {60^0} + a.a.\cos \left( {{{180}^0} - \widehat {ABC}} ight) \hfill \\   = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} = 0 \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 8: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {CD}?

     Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .(\overrightarrow {AD}  - \overrightarrow {AC} ) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos (\overrightarrow {AB} ;\overrightarrow {AD} ) \hfill \\   - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos {60^0}{\text{ }} \hfill \\  {\text{Do }}AC = AD \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {CD}  = 0 \hfill \\   \Rightarrow (\overrightarrow {AB} ,\overrightarrow {CD} ) = {90^0} \hfill \\ \end{matrix}

  • Câu 10: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 11: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H,K lần lượt là hình chiếu vuông của A lên SC,SD. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot CD \\
AD\bot CD \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow CD\bot
AK

    Lại có: SD\bot AK

    \Rightarrow AK\bot(SCD)

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCSA =
SBAC = CB. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi I là trung điểm của AB.

    Xét tam giác SAB có SA = SB => SI\bot
AB(*)

    Xét tam giác CAB có: AC = CB => CI\bot AB(**)

    Từ (1) và (2) suy ra AB\bot(SIC)
\Rightarrow AB\bot SC.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCDSA\bot(ABCD). Biết ABCD là hình chữ nhật có AB = a;AD = a\sqrt{2}. Giả sử \alpha = \left( SC;(ABCD) ight). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên AC là hình chiếu của SC lên mặt phẳng đáy.

    => \alpha = \left( SC;(ABCD) ight) =
(SC;AC) = \widehat{SCA}

    Mặt khác AC = \sqrt{BC^{2} + AB^{2}} =
a\sqrt{3}

    Xét tam giác vuông SAC có:

    \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \alpha = \widehat{SCA} =
30^{0}

  • Câu 14: Vận dụng

    Cho tứ diện ABCDAB =
m;(m > 0), các cạnh còn lại bằng nhau và bằng 4. Mặt phẳng (\alpha) chứa cạnh AB và vuông góc với cạnh CD tại I. Diện tích tam giác ABI lớn nhất bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: (\alpha)\bot CD \equiv I
\Rightarrow \left\{ \begin{matrix}
AI\bot CD \\
BI\bot CD \\
\end{matrix} ight.

    Theo giả thiết AC = AD = BC = BD = CD =
4cm ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4

    \Rightarrow IA = IB =
4.\frac{\sqrt{3}}{2} = 2\sqrt{3}

    Gọi H là trung điểm của AB ta có: IH\bot
ABIH = \sqrt{IA^{2} -
\frac{m^{2}}{4}} = \sqrt{12 - \frac{m^{2}}{4}}

    S_{ABI} = \frac{1}{2}IH.AB

    = \frac{1}{2}m.\sqrt{12 -
\frac{m^{2}}{4}}

    = \sqrt{\frac{m^{2}}{4}.\left( 12 -
\frac{m^{2}}{4} ight)} \leq 6

    Dấu bằng xảy ra khi và chỉ khi x =
2\sqrt{6}

    Vậy \max S_{ABI} = 6

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 16: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Mệnh đề đúng: “Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.”

    NB

     

    0

  • Câu 17: Nhận biết

    Cho tứ diện ABCD. Gọi H là trực tâm tam giác BCDAH vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    AH\bot(BCD) \Rightarrow AH\bot
CD

    H là trực tâm tam giác BCD nên BH\bot
CD

    \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABH) \Rightarrow CD\bot
AB

  • Câu 18: Nhận biết

    Cho (P) và (Q) là hai mặt phẳng vuông góc với nhau và giao tuyến của chúng là đường thẳng m. Gọi a, b, c, d là các đường thẳng. Xét các mệnh đề sau:

    (1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q).

    (2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q).

    (3) Nếu c // m thì c // (P) hoặc c // (Q).

    (4) Nếu d ⊥ m thì d ⊥ (P).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    (1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q). ---> đúng

    (2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q). ---> sai

    (3) Nếu c // m thì c // (P) hoặc c // (Q). ---> đúng

    (4) Nếu d ⊥ m thì d ⊥ (P). ---> sai

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 20: Thông hiểu

    Cho tứ diện ABCD3CD =
4AB. Gọi trung điểm của các cạnh BC,AC,DB lần lượt là G,E,F. Biết rằng 6EF = 5AB. Tính (CD;AB)?

    Hình vẽ minh họa

    Đặt AB = a

    Vì trung điểm của các cạnh BC,AC,DB lần lượt là G,E,F

    Suy ra \left\{ \begin{matrix}GE = \dfrac{1}{2}AB = \dfrac{a}{2} \\GF = \dfrac{1}{2}CD = \dfrac{2}{3}AB = \dfrac{2a}{3} \\EF = \dfrac{5}{6}AB = \dfrac{5a}{6} \\\end{matrix} ight.

    Từ đó GE^{2} + GF^{2} = \frac{a^{2}}{4} +
\frac{4a^{2}}{9} = \frac{25a^{2}}{36} = EF^{2}

    Suy ra tam giác GEF vuông tại G.

    GE//AB;GF//CD nên (AB,CD) = (GE,GF) = \widehat{EGF} =
90^{}

  • Câu 21: Vận dụng

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.

    Hình vẽ minh họa:

    Gọi M, N lần lượt là trung điểm của AB, CD.

    Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN

    Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB

    Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM

    Khi đó, tam giác MCD vuông cân tại M

    => MN = \frac{AB}{2} = \frac{CD}{2}
\Rightarrow AB = CD = 2x

    Ta lại có AN = BN = \sqrt{AC^{2} -
AN^{2}} = \sqrt{a^{2} - x^{2}}

    AB^{2} = AN^{2} + BN^{2}

    => 2\left( a^{2} - x^{2} ight) =
4x^{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 22: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M, cắt a và vuông góc với a?

    Có 1 nếu M không thuộc a, có vô số nếu M thuộc a

  • Câu 23: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp S.BCD bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy

    \Rightarrow \left( SA;(ABCD) ight) =
\widehat{SAO} = 60^{0}

    ABCD là hình vuông nên OA = \frac{1}{2}AC
= \frac{a\sqrt{2}}{2}

    Xét tam giác vuông SOA ta có:

    SO = AO.\tan\widehat{SDO} =\frac{a\sqrt{2}}{2}.\tan60^{0} = \frac{a\sqrt{6}}{3}

    \Rightarrow S_{BCD} =
\frac{a^{2}}{2}

    \Rightarrow V_{S.BCD} =
\frac{1}{3}.SO.S_{BCD} = \frac{1}{3}.\frac{a\sqrt{6}}{2}.\frac{a^{2}}{2}
= \frac{a^{3}\sqrt{6}}{12}

  • Câu 24: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight);SA = a\sqrt 2, ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD = 2a. Gọi O = AC \cap BD, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

    Tính sin của góc giữa OM và (SCD)

    Trong (SBD), gọi I = OM \cap SD \Rightarrow OM \cap \left( {SCD} ight) = I

    Ta có BC // AD, áp dụng định lý Ta – let ta được:

    \frac{{OB}}{{OD}} = \frac{{OC}}{{OA}} = \frac{{BC}}{{AD}} = \frac{1}{2}

    Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:

    \frac{{BO}}{{OD}}.\frac{{DI}}{{IS}}.\frac{{SM}}{{MB}} = 1 \Leftrightarrow \frac{1}{2}.\frac{{DI}}{{IS}}.1 = 1 \Leftrightarrow \frac{{DI}}{{IS}} = 2

    Tam giác SAD vuông tại A có

    SA = a\sqrt 2 ,AD = 2a \Rightarrow SD = a\sqrt 6

    => DI = \frac{3}{2}SD = \frac{{a\sqrt 6 }}{2}

    Mặt khác: \frac{{CO}}{{CA}} = \frac{1}{3} \Rightarrow \frac{{d\left( {O,\left( {SCD} ight)} ight)}}{{d\left( {A,\left( {SCD} ight)} ight)}} = \frac{1}{3}

    \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \frac{1}{3}d\left( {A,\left( {SCD} ight)} ight)

    Lại có ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD nên AC = CD = a\sqrt 2

    => AC \bot CD mà CD \bot SA \Rightarrow CD \bot \left( {SAC} ight)

    Kẻ AH \bot SC, có CD \bot AH (do CD \bot \left( {SBC} ight))

    \Rightarrow AH \bot \left( {SCD} ight) \Rightarrow d\left( {A,\left( {SCD} ight)} ight) = AH

    Xét tam giác SAC vuông tại A có SA = a\sqrt 2 ,\,AC = a\sqrt 2, AH là đường cao:

    \begin{matrix}   \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{S^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{1}{{{a^2}}} \hfill \\   \Rightarrow AH = a \hfill \\   \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \dfrac{1}{3}AH = \dfrac{a}{3} \hfill \\ \end{matrix}

    Xét tam giác SBD có:

    \begin{matrix}  SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {2{a^2} + 4{a^2}}  = a\sqrt 6  \hfill \\  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3  \hfill \\  BD = \sqrt {A{D^2} + A{B^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5  \hfill \\ \end{matrix}

    Xét tam giác DIO có:

    DI = 2SD = 2a\sqrt 6 ,DO = \frac{2}{3}DB = \frac{2}{3}a\sqrt 5 .

    Do đó:

    \begin{matrix}  \cos SDB = \cos IDO \Leftrightarrow \dfrac{{S{D^2} + B{D^2} - S{B^2}}}{{2.SD.BD}} = \dfrac{{I{D^2} + O{D^2} - O{I^2}}}{{2.ID.OD}} \hfill \\   \Leftrightarrow \dfrac{{6{a^2} + 5{a^2} - 3{a^2}}}{{2.a\sqrt 6 .a\sqrt 5 }} = \dfrac{{24{a^2} + \dfrac{{20{a^2}}}{9} - O{I^2}}}{{2.2a\sqrt 6 .\dfrac{2}{3}a\sqrt 5 }}. \hfill \\   \Leftrightarrow 8 = \dfrac{{\dfrac{{236}}{9}{a^2} - O{I^2}}}{{\dfrac{4}{3}{a^2}}} \Leftrightarrow O{I^2} = \dfrac{{140{a^2}}}{9} \Leftrightarrow OI = \dfrac{{2a\sqrt {35} }}{3} \hfill \\ \end{matrix}

    Mặt khác:

    \begin{matrix}  \sin \left( {OM,\left( {SCD} ight)} ight) = \sin \left( {OI,\left( {SCD} ight)} ight) \hfill \\   = \dfrac{{d\left( {O,\left( {SCD} ight)} ight)}}{{OI}} = \dfrac{{\dfrac{a}{3}}}{{\dfrac{{2a\sqrt {35} }}{3}}} = \dfrac{{\sqrt {35} }}{{70}} \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

  • Câu 26: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Gọi O là tâm hình vuông ABCD => SO \bot \left( {ABCD} ight)

    OA \cap \left( {SCD} ight) = C nên 

    \begin{matrix}  \dfrac{{d\left( {A;\left( {SCD} ight)} ight)}}{{d\left( {O;\left( {SCD} ight)} ight)}} = \dfrac{{AC}}{{OC}} = 2 \hfill \\   \Rightarrow d\left( {A;\left( {SCD} ight)} ight) = 2d\left( {O;\left( {SCD} ight)} ight) \hfill \\ \end{matrix}

    Gọi H là trung điểm của CD => OH \bot CD

    Gọi K là hình chiếu của O trên SH => OK \bot SH (*) 

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot OH} \\   {CD \bot SO} \end{array}} ight. \Rightarrow CD \bot \left( {SOH} ight) \Rightarrow CD \bot OK\left( ** ight)

    Từ (*) và (**) 

    \begin{matrix}  OK \bot \left( {SCD} ight) \Rightarrow d\left( {O;\left( {SCD} ight)} ight) = OK \hfill \\  OK = \dfrac{{SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }} \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  SO = \sqrt {S{A^2} - O{A^2}}  \hfill \\   = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}}  = \dfrac{{a\sqrt {14} }}{2} \hfill \\ \end{matrix}

    \Rightarrow OK = \dfrac{{\dfrac{{a\sqrt {14} }}{2}.\dfrac{a}{2}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {14} }}{2}} ight)}^2} + {{\left( {\dfrac{a}{2}} ight)}^2}} }} = \dfrac{{a\sqrt 7 }}{{\sqrt {30} }}

    d\left( {A;\left( {SCD} ight)} ight) = 2.OK = \frac{{2a\sqrt 7 }}{{\sqrt {30} }}

  • Câu 27: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 28: Vận dụng cao

    Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.

    Hình vẽ minh họa:

    Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.

    Dựng hình chữ nhật AND

    Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)

    Ta có: C’N // (A’MB) (do C’N // MB)

    => d(C’, (A’BM)) = d(N, (A’BM))

    Mà GN // (A’BM) (do GN // A’M)

    => d(N, (A’BM)) = d(G, (A’BM))

    => d(C’, (A’BM)) = d(G,(A’BM))

    Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.

    BD ⊥ GI (do ANBD là hình chữ nhật)

    BD ⊥ A’G (do A’G ⊥ (ABC))

    => BD ⊥ (A’GI) => BD ⊥ GH

    Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH

    Tính GH: ∆ABC đều, cạnh a

    => AN = \frac{a\sqrt{3}}{2};AG =\frac{2}{3}AN = \frac{a\sqrt{3}}{3}

    Xét tam giác AA’G vuông tại G

    => A'G = \sqrt{AA'^{2} -AG^{2}}

    \Rightarrow A'G = \sqrt{4a^{2} -\frac{a^{2}}{3}} = \frac{a\sqrt{33}}{3}

    Ta lại có: GNBI là hình chữ nhật => GI= NB = \frac{a}{2}

    Xét tam giác A’GI vuông tại G có GH ⊥ A’I

    => \frac{1}{GH^{2}} = \frac{1}{GI^{2}}+ \frac{1}{A'G^{2}}

    \Rightarrow \dfrac{1}{GH^{2}} =\dfrac{1}{\dfrac{a^{2}}{4}} + \dfrac{1}{\dfrac{11a^{2}}{3}} =\dfrac{47}{11a^{2}}

    Suy ra GH =\sqrt{\frac{11}{47}}a

    \Rightarrow d\left( C'(A'BM)ight) = \frac{a\sqrt{11}}{\sqrt{47}}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

    Hình chiếu của SA lên mặt phẳng (ABC) là AH

    => Góc giữa SA và mặt phẳng (ABC) là \widehat{SAH}

    Tam giác ABC và SBC là các tam giác đều cùng cạnh a

    AH = SH =\frac{a\sqrt{3}}{2}

    Vậy tan α = 1

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB = 2a, AD = CD = a. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABCD). Mệnh đề nào sau đây đúng?

    \left\{ \begin{matrix}BC\bot AC \\BC\bot SA \\\end{matrix} ight.\  \Rightarrow BC\bot(SAC) \Rightarrow BC\bot SC

    Do đó ((SBC),(ABCD)) = (SC, AC) = \widehat{SCA}

    Tam giác SAC vuông tại A => \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{\sqrt{2}}{2}

  • Câu 31: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là cân AB
= AC = a;\widehat{CAB} = 120^{0}. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính thể tích khối chóp S.ABC theo a.

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp tam giác S.ABC

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{1}{2}a^{2}.\sin120^{0} =\frac{a^{3}}{8}

  • Câu 32: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

    Tính góc giữa mặt phẳng (SAD) và (SCD)

    Tam giác ABC vuông cân tại B, suy ra AC = AB\sqrt 2  = a\sqrt 2

    SA \bot \left( {ABCD} ight) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

    Khi đó

    \begin{matrix}  \widehat {\left( {SC;\left( {ABCD} ight)} ight)} = \widehat {\left( {SC;AC} ight)} = \widehat {SCA} = {45^0} \hfill \\   \Rightarrow SA = AC = a\sqrt 2  \hfill \\ \end{matrix}

    Gọi M là trung điểm của AD => CM ⊥ AD.

    Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD

    Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {(SAD) \cap (SCD) = SD} \\   {MH \subset (SAD)} \\   {MH \bot SD} \\   {CH \subset (SCD)} \\   {CH \bot SD} \end{array}} ight. \hfill \\   \Rightarrow \widehat {((SAD),(SCD))} = \widehat {(MH,CH)} = \widehat {MHC} \hfill \\ \end{matrix}

    Ta lại có: SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 6 ;CM = AB = a

    \begin{matrix}  \Delta SAD \sim \Delta MHD \hfill \\   \Rightarrow \dfrac{{SA}}{{SD}} = \dfrac{{MH}}{{MD}} \hfill \\   \Rightarrow MH = \dfrac{{SA.MD}}{{SD}} = \dfrac{{a\sqrt 2 a}}{{a\sqrt 6 }} = \dfrac{{a\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác MHC vuông tại M

    \Rightarrow \tan \widehat {MHC} = \frac{{CM}}{{MH}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3  \Rightarrow \widehat {MHC} = {60^0}

    Vậy \left( {\widehat {\left( {SAD} ight);\left( {SCD} ight)}} ight) = {60^0}

  • Câu 34: Nhận biết

    Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là 3x^{2};2x. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}
B = 3x^{2} \\
h = 2x \\
\end{matrix} ight.

    Thể tích khối lăng trụ đã cho bằng: V =
B.h = 3x^{2}.2x = 6x^{3}

  • Câu 35: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 36: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 37: Nhận biết

    Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:

    "a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp

    a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c

    "a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp

    a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅

    =>a⊥(P)

    => "a không thể vuông góc với mặt phẳng (P)" là sai.

  • Câu 38: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 39: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a và các góc \widehat{BAD};\widehat{DAA'};\widehat{A'AB} đều bằng 60^{0}. Gọi trung điểm của các cạnh AA',CD lần lượt là M,N. Gọi \alpha là góc tạo bởi hai đường thẳng MNB'C. Xác định \cos\alpha?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
A'D//B'C \\
MN//A'P \\
\end{matrix} ight. với P là trung điểm của D’C

    Suy ra (MN,B'C) = (A'P;A'D) =
\widehat{DA'P}

    \widehat{BAD} = \widehat{DAA'} =
\widehat{A'AB} = 60^{0} và các cạnh của hình hộp bằng a

    Do đó A'D = a;C'D = C'A'
= a\sqrt{3}

    A'P = \frac{A'D^{2} +
A'C'^{2}}{2} - \frac{DC'^{2}}{4}

    \Rightarrow A'P =
\frac{a\sqrt{5}}{2}

    Áp dụng định lí cosin cho tam giác A’DP ta có:

    \cos\alpha = \frac{A'D^{2} +
A'P^{2} - DP^{2}}{2A'D.A'P} =
\frac{3\sqrt{5}}{10}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)

    Lại có theo giả thiết SC ⊥ AK. (2)

    Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).

    Ta có: \left\{ \begin{matrix}
SC\bot(AHK) \\
AI \subset (AHK) \\
\end{matrix} ight.\  \Rightarrow SC\bot AI

    Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo