Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 2: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC, có đáy ABC là tam giác đều và SA\bot(ABC). Gọi M là trung điểm của cạnh ACN là hình chiếu của B lên SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow BM\bot
SA

    BM\bot AC \Rightarrow BM\bot(SAC)
\supset SC \Rightarrow SC\bot BM(1)

    Theo giả thiết SC\bot BN(2)

    Từ (1) và (2) suy ra SC\bot(BMN)

    SC \subset (SBC) \Rightarrow
(BMN)\bot(SBC)

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 5: Thông hiểu

    Cho tứ diện đều ABCD cạnh bằng 1, M là trung điểm của BC. Khi đó \cos(AB;DM) là:

    Hình vẽ minh họa

    Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.

    \Rightarrow \cos(AB,DM) = \cos(EM;DM) =
\widehat{DME}

    Ta có: ABCD là tứ diện đều cạnh bằng 1 và EA = EC;BM = MC

    \Rightarrow DM = \frac{\sqrt{3}}{2};DE =
\frac{\sqrt{3}}{2};EM = \frac{AB}{2} = \frac{1}{2}

    \Rightarrow \cos\widehat{DME} =
\frac{DM^{2} + ME^{2} - DE^{2}}{2.DM.EM} = \frac{1}{2\sqrt{3}} =
\frac{\sqrt{3}}{6}

    \Rightarrow \cos(AB,DM) =
\frac{\sqrt{3}}{6}

  • Câu 6: Nhận biết

    Cho khối chóp S.ABC có chiều cao bằng 6 đáy là tam giác ABC có diện tích bằng 12. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 12 \\
h = 6 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.12.6 = 24

  • Câu 7: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 8: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Gọi M là trung điểm của AB suy ra

    \left\{ \begin{matrix}
MO\bot AB \\
SM\bot AB \\
\end{matrix} ight.\  \Rightarrow \left( (SAB);(ABCD) ight) =
\widehat{SMO} = \varphi

    Tam giác SMO vuông tại O nên \varphi eq
90^{0}

    Do đó mặt phẳng (SAB) không vuông góc với (ABCD).

  • Câu 9: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)

    => Tam giác ABD vuông tại B.

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    Ta có: \left\{ \begin{matrix}
AD^{2} = AB^{2} + BD^{2} \\
BD^{2} = BC^{2} + CD^{2} \\
\end{matrix} ight.

    \begin{matrix}\Rightarrow AD^{2} = AB^{2} + BC^{2} + CD^{2} \hfill \\\Rightarrow AD = \sqrt{AB^{2} + BC^{2} + CD^{2}} \hfill \\\Rightarrow AD = \sqrt{a^{2} + b^{2} + c^{2}} \hfill \\\end{matrix}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a\sqrt{2}.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Ta có: AD // BC => d\left( {D;\left( {SCD} ight)} ight) = d\left( {A;\left( {SBC} ight)} ight)

    Gọi H là hình chiếu vuông góc của A lên SB => AK \bot SB (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AH\left( {**} ight)

    Từ (*) và (**) => AH \bot \left( {SBC} ight)

    \begin{matrix}  d\left( {A;\left( {SBC} ight)} ight) = AH \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a\sqrt 3 }}{3} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 12: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 13: Nhận biết

    Thể tích khối hộp chữ nhật có ba kích thước là 2;3;5 bằng:

    Thể tích cần tìm là: V = 2.3.5 =
30

  • Câu 14: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 15: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AD

    => SI ⊥ AD => SI ⊥ (ABCD)

    Kẻ Ax // BD

    Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))

    Kẻ IE ⊥ Ax, kẻ IK ⊥ SE

    Khi đó d (I, (SAx)) = IK

    Gọi F là hình chiếu của I trên BD, ta có: IE = IF = \frac{AO}{2} =\frac{a\sqrt{2}}{4}

    Xét tam giác vuông SIE ta có:

    IK = \frac{SI.IE}{\sqrt{SI^{2} +IE^{2}}} = \frac{a\sqrt{21}}{14}

    => d(BD;SA) = 2IK =\frac{a\sqrt{21}}{7}

  • Câu 17: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Tính (AB;A'C')?

    Hình vẽ minh họa

    AB//A'B' \Rightarrow
(AB;A'C') = (A'B';A'C') =
\widehat{B'A'C'}

    Tam giác A’B’C’ vuông cân tại B’ \Rightarrow \widehat{B'A'C'} =
45^{0}

    Vậy (AB;A'C') =
45^{0}.

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SB = 2a. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng:

    Hình vẽ minh họa

    Do SA\bot(ABCD) nên góc giữa đường thẳng SB và mặt phẳng đáy bằng góc \widehat{SBA}.

    Ta có: \cos\widehat{SBA} = \frac{AB}{SB}
= \frac{1}{2} \Rightarrow \widehat{SBA} = 60^{0}

    Vậy góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60^{0}.

  • Câu 19: Vận dụng

    Cho tứ diện ABCD. Nếu AB ⊥CD, AC ⊥ BDBC ⊥ AD thì:

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AC} .\overrightarrow {BD}  = \overrightarrow {AD} .\overrightarrow {CB}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) = \overrightarrow {AC} \left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AD} .\left( {\overrightarrow {AB}  - \overrightarrow {AC} } ight) = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AB} .\overrightarrow {AD}  \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC. Biết rằng SA = SB;AC = BC. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi D là trung điểm của AB, vì tam giác SAB cân tại S và tam giác ABC cân tại C nên \left\{ \begin{matrix}
AB\bot SD \\
AB\bot CD \\
\end{matrix} ight.\  \Rightarrow AB\bot(SDC) \Rightarrow AB\bot
SC.

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?

    Tam giác ABC cân tại B có M là trung điểm AC

    => BM ⊥ AC.

    Ta có: \left\{ \begin{matrix}
BM\bot AC \\
BM\bot SA \\
\end{matrix} ight. (do SA ⊥ (ABC)) => BM ⊥ (SAC) => (SBM) ⊥ (SAC).

    Ta có: \left\{ \begin{matrix}
BC\bot BA \\
BC\bot SA \\
\end{matrix} ight. (do SA ⊥ (ABC)) => BC ⊥ (SAB) => (SBC) ⊥ (SAB).

    Dùng phương pháp loại trừ thì khẳng định “(SAB) ⊥ (SAC)” là sai

  • Câu 22: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 23: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

    Hình vẽ minh họa:

    Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.

    Vậy MN bé nhất khi và chỉ khi EK bé nhất.

    Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.

    Qua I kẻ P Q song song với BC (như hình vẽ).

    Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).

    Ta có:

    \frac{1}{C'H^{2}} = \frac{1}{a^{2}}+ \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow C'H =\frac{a\sqrt{5}}{2} \Rightarrow d(BC;d) =\frac{2a\sqrt{5}}{5}

  • Câu 24: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BA'CD là:

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (BA',CD) =
(BA',AB)

    ABB'A' là hình vuông nên (BA',AB) = \widehat{ABA'} =
45^{0}

  • Câu 25: Nhận biết

    Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?

    Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.

  • Câu 26: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 27: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 28: Vận dụng

    Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:

    Hình vẽ minh họa:

    Gọi I là trung điểm BC.

    Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).

    Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.

    Qua cách dựng ta có BC // (AMN). (1)

    Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)

    Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.

    Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.

    Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.

  • Câu 29: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 30: Nhận biết

    Mệnh đề nào đúng trong các mệnh đề sau?

    Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.

    Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.

    Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Tam giác SAB vuông cân tại SM là trung điểm của BC\widehat{BSC} = 60^{0}. Gọi góc giữa hai đường thẳng ABCM\alpha. Chọn kết luận đúng?

    Hình vẽ minh họa

    Giả sử SA = a \Rightarrow \left\{
\begin{matrix}
SB = CA = CB = a \\
AB = a\sqrt{2} \\
\end{matrix} ight.

    Lại có: \widehat{BSC} = 60^{0} suy ra tam giác SBC đều suy ra SC =
a

    Suy ra CM = CN =
\frac{a\sqrt{3}}{2} hay MN//AB

    Khi đó (AB;CM) = (MN,CM)

    Áp dụng định lí cosin cho tam giác MNC ta có:

    \cos\widehat{CMN} = \frac{MC^{2} +
MN^{2} - NC^{2}}{2.MC.MN} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos(AB;CM) = \left|
\cos\widehat{CMN} ight| = \frac{\sqrt{6}}{6}

  • Câu 32: Thông hiểu

    Tính thể tích khối lăng trụ trong hình vẽ sau, biết AB = a;AA' = 2a.

    Quan sát hình vẽ ta thấy

    Tam giác ABC đều có cạnh bằng a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Do khối lăng trụ ABC.A'B'C' là lăng trụ đứng nên đường cao của lăng trụ là AA' =
2a

    Thể tích khối lăng trụ là V =
AA'.S_{ABCD} = 2a.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}\sqrt{3}}{2}

  • Câu 33: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = a\sqrt{5};d(A;BB') =
a;d(A;CC') = 2a, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{a\sqrt{15}}{3}. Thể tích khối lăng trụ ABC.A'B'C' bằng bao nhiêu?

    Hình vẽ minh họa:

    Kẻ AI\bot BB';AK\bot
CC'

    Lại có \left\{ \begin{matrix}
d(A;BB') = a \Rightarrow AI = a \\
d(A;CC') = 2a \Rightarrow AK = 2a \\
\end{matrix} ight.

    Gọi F là trung điểm của BC; A'M =
\frac{a\sqrt{15}}{3} khi đó \Rightarrow AF = \frac{a\sqrt{15}}{3}

    Ta có: \left\{ \begin{matrix}
AI\bot BB' \\
AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AIK) \Rightarrow
BB'\bot IK

    C'C//B'B \Rightarrow
d(C;BB') = d(K;BB') = IK = a\sqrt{5}

    Vậy tam giác AIK vuông tại A

    Gọi E là trung điểm của IK

    => EF//BB' \Rightarrow EF\bot(AIK)
\Rightarrow EF\bot AE

    Lại có AM\bot(ABC) do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc \widehat{AME} bằng \widehat{FAE}

    Ta có: \cos\widehat{FAE} = \dfrac{AE}{AF}= \dfrac{\dfrac{a\sqrt{5}}{2}}{\dfrac{a\sqrt{15}}{3}} = \dfrac{\sqrt{3}}{2}\Rightarrow \widehat{FAE} = 30^{0}

    Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:

    S_{AIK} = S_{ABC}.\cos\widehat{FAE}\Rightarrow a^{2} = S_{ABC}.\cos30^{0}

    \Rightarrow S_{ABC} =
\frac{2}{\sqrt{3}}a^{2}

    Xét tam giác AMF vuông tại A ta có:

    \tan\widehat{AMF} = \dfrac{AF}{AM}\Rightarrow AM = \dfrac{\dfrac{a\sqrt{15}}{3}}{\dfrac{a\sqrt{3}}{3}} =a\sqrt{5}

    Vậy V_{ABC.A'B'C} =
a\sqrt{5}.\frac{2a^{2}}{\sqrt{3}} =
\frac{2a^{3}\sqrt{15}}{3}

  • Câu 34: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 35: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 36: Nhận biết

    Cho hình chóp tứ giác S.ABCDSA\bot(ABCD) và đáy là hình vuông. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
SA\bot BC \\
AB\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

  • Câu 37: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, \widehat{BAD} = 60^{0};SA = SB = SD =
\frac{a\sqrt{3}}{2}. Gọi ϕ là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết suy ra tam giác ABD đều cạnh a.

    Gọi H là hình chiếu của S trên mặt phẳng (ABCD).

    Do SA = SB = SD nên suy ra H cách đều các đỉnh của tam giác ABD hay H là tâm của tam giác đều ABD.

    Suy ra:

    \begin{matrix}HI = \dfrac{AI}{3} = \dfrac{a\sqrt{3}}{6} \hfill\\SH = \sqrt{SA^{2} - AH^{2}} = \dfrac{a\sqrt{15}}{6}\hfill \\\end{matrix}

    Vì ABCD là hình thoi nên HI ⊥ BD.

    Tam giác SBD cân tại S nên SI ⊥ BD

    => ((SBD), (ABCD)) = (SI, AI) = \widehat{SIH}

    Trong tam vuông SHI ta có: \tan\widehat{SIH} = \frac{SH}{HI} =
\sqrt{5}

  • Câu 39: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = a\sqrt{3}.2a^{2}
= 2a^{3}\sqrt{3}

  • Câu 40: Thông hiểu

    Cho hình tứ diện ABCD có AB, CD, BC đôi một vuông góc. Khi đó ta có:

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}\left\{ \begin{matrix}CD\bot AB \subset (ABC) \hfill \\CD\bot CB \subset (ABC) \\AB \cap CB = B \hfill \\\end{matrix} ight.\  \Rightarrow CD\bot(ABC) \hfill \\\Rightarrow CD\bot(ABC) \hfill \\\end{matrix}

    Ta có:

    Nếu AB\bot(ACD) \Rightarrow AB\botAC (Vô lí)

    Nếu BC\bot(ACD) \Rightarrow BC\botAC (Vô lí)

    Nếu AD\bot(BCD) \Rightarrow B \equivD (Vô lí)

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo