Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho hình chóp tứ giác đều
, đáy
cạnh bằng
, cạnh bên
. Tính thể tích hình chóp
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Ta có:
Vậy thể tích hình chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:
Hình vẽ minh họa:
Gọi I là trung điểm BC.
Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).
Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.
Qua cách dựng ta có BC // (AMN). (1)
Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)
Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.
Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.
Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.
Cho hình chóp tứ giác
có đáy
là hình vuông, cạnh bên
vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: là hình vuông nên
Và
Cho
là hình hộp. Khẳng định nào sau đây đúng?
Nếu là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và
là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:

Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Chọn mệnh đề đúng?
Mệnh đề đúng: “Cho đường thẳng , mọi mặt phẳng
thì
”.
Minh họa bằng hình vẽ:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, tam giác
đều và cạnh
. Gọi trung điểm các cạnh
lần lượt là
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có tam giác SAB đều cạnh bằng a nên
Mặt khác tam giác SBC có
Suy ra tam giác SBC vuông cân tại B hay
Từ
Tam giác ABS đều mà H là trung điểm của AB nên
Tam giác ABS đều nên AB không vuông góc với mặt phẳng
Ta có:
Cho hình chóp
, có đáy
là hình chữ nhật,
. Gọi
lần lượt là đường cao của tam giác
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì
Mà
Tam giác SAB có đường cao
Mà
Tương tự chứng minh ta được:
Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B,
, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi
là góc tạo bởi A’H với (A’ACC’). Tính
?

Ta có nên A’H là đường cao của lăng trụ.
Kẻ (K thuộc đoạn AC)
Kẻ
Suy ra
Khi đó

+) Do tam giác MCB cân tại B nên
+) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng (theo giả thiết)
Và BM = AM = AB = a
=> Tam giác AMB là tam giác đều cạnh a
Vì vậy,
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:
Hình vẽ minh họa:

Ta có:
=> MN là đường vuông góc chung của AB và CD
Cho hình chóp tam giác
, đáy là tam giác
vuông cân tại C và
. Biết tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Thể tích hình chóp tam giác
bằng bao nhiêu?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Tam giác SAB đều nên
Tam giác ABC vuông cân tại C nên
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng
. Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)
Hình vẽ minh họa

Giả sử O là tâm của tam giác đều ABC
Do S.ABC đều nên =>
Gọi E là trung điểm của BC ta có:
Xét (SAE) kẻ
Ta có:
Ta có:
Xét tam giác vuông SOE ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Tính góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Ta có: nên AC là hình chiếu của SC trên mặt phẳng (ABCD)
Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc
Đáy là hình vuông cạnh
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh
, cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính
?
Hình vẽ minh họa
Ta có: là hình vuông
Mặt khác
Suy ra
=> SD là hình chiếu của SC lên mặt phẳng (SAD)
Do đó
Xét tam giác vuông tại
ta có:
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Tính thể tích khối lăng trụ
?
Hình vẽ minh họa:
Gọi lần lượt là hình chiếu của A trên BB’ và CC’
Theo đề bài ta có:
Dễ thấy nên tam giác
vuông tại A
Gọi H là trung điểm của
Ta lại có
Suy ra
Vậy
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa:
Ta có:
=> d(SA, BC) = AB
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?
Hình vẽ minh họa
Ta có:
là hình chữ nhật nên
không vuông góc với
Vậy không vuông góc với mặt phẳng
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp
có đáy
là hình vuông cạnh
,
vuông góc với mặt phẳng đáy,
. Gọi
là trung điểm của
và
là góc giữa hai đường thẳng
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi O là giao điểm của AC và BD, I là giao điểm của SO và BM.
Trong mặt phẳng (SAC) kẻ NK // AC,
Ta có: I là trọng tâm tam giác SBD.
Ta có:
Tam giác SBD đều cạnh bằng
Tam giác SBC vuông tại B
Lại có:
Vậy cosin góc giữa hai đường thẳng và
là
.
VD
1
Cho hình chóp
có
, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có:
Suy ra tam giác ABC vuông tại A.
Gọi H, M, N lần lượt là trung điểm của AB, AB, SA
Xét tam giác SBC có: SB = SC nên
Lại H là tam đường tròn ngoại tiếp tam giác ABC
Mà SA = SB = SC = a nên
Suy ra tam giác SAH vuông cân tại H
Do đó tam giác MHN cạnh . Góc cần tìm bằng
Cho tứ diện đều ABCD, M là trung điểm của BC. Khi đó cos(AB; DM) là:
Hình vẽ minh họa:

Giả sử cạnh của tứ diện là a
Tam giác BCD đều =>
Tam giác ABC đều =>
Ta có:
Mặt khác
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:
Hình vẽ minh họa:
Kẻ HI // BC (I ∈ CD) ta có:
=> Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc
Dựng hình bình hành ADBE
Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))
Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ
Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))
Ta có:
Với
Vậy
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình chóp
có đáy
là tam giác vuông cân tại
và cạnh
vuông góc với mặt đáy. Biết rằng
và
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA
Tam giác ABC vuông cân tại A nên
Áp dụng định lí Pythagore cho tam giác SAB ta có:
Tam giác SAC vuông tại A nên
Cho tứ diện ABCD có AB = AC = AD và
. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Xét tam giác ICD có J là trung điểm của CD =>
Tam giác ABC có AB = AC và => Tam giác ABC đều => CI ⊥ AB
Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB
Ta có:
Cho tứ diện đều
cạnh bằng
,
là trung điểm của cạnh
. Xác định góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi N là trung điểm của AC thì MN // AB
Suy ra
Ta có: