Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.
Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho hình chóp
có đáy là tam giác
vuông tại
. Đường thẳng vuông góc với đáy
. Đường thẳng
vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có
Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”
Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông và một cạnh bên vuông góc với mặt đáy. Có bao nhiêu mặt bên vuông góc với mặt đáy?
Hình vẽ minh họa:
Giả sử SA ⊥ (ABCD). Khi đó có đúng 2 mặt bên vuông góc với mặt đáy là (SAB), (SAD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc
. Tính khoảng cách d giữa hai đường thẳng AB và SO.
Hình vẽ minh họa:

Ta có suy ra
Mà => ΔSBD đều cạnh
Xét tam giác vuông SAB có:
Gọi E là trung điểm AD, suy ra và
Do đó
Kẻ
Ta có:
Từ (1) và (2)
=>
Cho một khối lăng trụ đứng như hình vẽ:

Biết đáy
là hình thoi cạnh bằng a,
. Tính thể tích
của lăng trụ đứng đã cho?
Kí hiệu hình vẽ như sau:
Gọi giao điểm của AC và BD là I
Ta có:
Xét tam giác vuông BAI vuông tại I ta có:
Diện tích hình bình hành ABCD là:
Vậy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng
và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng
Gọi . Ta có S.ABCD là hình chóp tứ giác đều suy ra
.
Vì
Có
Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.
Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc .
Có
Vì
Xét tam giác SOB có
Ta có
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Cho hình lập phương
. Xác định đường thẳng vuông góc với đường thẳng
?
Hình vẽ minh họa:
Ta có:
Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Cho lăng trụ đứng ABC.A’C’B’ có đáy ABC cân đỉnh A,
, BC’ tạo đáy góc
. Gọi I là trung điểm của AA’, biết
. Tính ![]()
Ta có: vuông tại H (H là trung điểm của BC)
Mà tam giác AIH vuông tại A nên
Tam giác BIC vuông tại I
Thay vào (*) ta được:
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với
. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho
. Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:
Hình vẽ minh họa:
Ta có:
Đặt AB = x =>
Ta có:
Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)
d(MN, AC’) = d(N, (ABC’)) = d(A’, (ABC’)
Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)
=> d(MN, AC’) =
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:
Hình vẽ minh họa:

Ta có:
Mà
Cho hình hộp
có độ dài tất cả các cạnh bằng
và
. Gọi
lần lượt là trung điểm câc các cạnh
. Tính cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi P là trung điểm của DC’. Ta có:
Suy ra
Xét tam giác ADA’ có suy ra tam giác ADA’ là tam giác đều
Xét tam giác A’AB có suy ra tam giác A’AB đều
Do đó tam giác DD’C đều
Vậy
Xét tam giác BAD có AD = AB và nên tam giác BAD là tam giác đều.
Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.
Gọi A’I là đường cao của tam giác B’A’D’
Khi đó:
Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên
Áp dụng định lí cosin cho tam giác A’DP có:
Cho hình chóp
có
là hình vuông cạnh
, tam giác
đều. góc giữa
và
là:
Hình vẽ minh họa
Vì
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi α là góc giữa đường thẳng SD và mặt phẳng (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Giả sử H là trung điểm của AB => SH ⊥ AB => SH ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh HD.
=>
Tam giác SAB đều cạnh a =>
Ta lại có:
=>
Cho hình chóp
có đáy
là hình vuông,
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
vì
vì
vì
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = DC = a; cạnh bên SA = a và vuông góc với đáy. Mặt phẳng (α) qua SD và vuông góc với mặt phẳng (SAC). Tính diện tích (α) của thiết diện tạo bởi (α) với hình chóp đã cho.
Hình vẽ minh họa:
Gọi E là trung điểm AB, suy ra AECD là hình vuông nên DE ⊥ AC. (1)
Mặt khác SA ⊥ (ABCD) => SA ⊥ DE (2)
Từ (1) và (2) suy ra DE ⊥ (SAC) => (SAD) ⊥ (SAC)
Ta có:
Vậy thiết diện là tam giác SDE.
Ta có:
Do đó tam giác SDE đều có cạnh a √ 2 nên
Cho tứ diện ABCD có AB = CD. Gọi I, J E, F lần lượt là trung điểm của AC, BC, BD, AD. Góc (IE; JF) bằng:
Hình vẽ minh họa
Ta có: IF là đường trung bình của tam giác ACD =>
JE là đường trung bình của tam giác BCD =>
=> => Tứ giác IJEF là hình bình hành
Mặt khác . MÀ AB = CD => IJ = JE
Do đó IJEF là hình thoi => (IE; JF) = 900
Cho hình chóp tứ giác
có tất cả các cạnh bằng
. Gọi
lần lượt là trung điểm của
. Tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Từ giả thiết ta có: (do IJ là đường trung bình tam giác SAB)
Mặt khác ta lại có tam giác SAB đều nên
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích khối lăng trụ
bằng bao nhiêu?
Hình vẽ minh họa:
Kẻ
Lại có
Gọi F là trung điểm của BC; khi đó
Ta có:
Vì
Vậy tam giác AIK vuông tại A
Gọi E là trung điểm của IK
=>
Lại có do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc
bằng
Ta có:
Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:
Xét tam giác AMF vuông tại A ta có:
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp
có đáy
là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu của điểm
trên cạnh
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
đúng
Ta có: đúng
Ta có: đúng
Vậy kết luận sai là: .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Dễ thấy
Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra
Theo giả thiết . Khi đó
Ta được
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho hình lập phương ABCD.A’B’C’D. Hỏi mặt phẳng (ACC’A’) vuông góc với các mặt phẳng nào?
Hình vẽ minh họa:
Mặt phẳng (ACC’A’) vuông góc với các mặt phẳng (BDD’B’), (ABCD), (A’B’C’D’).
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Trong không gian cho đường thẳng Δ không nằm trong mặt phẳng (P), đường thẳng Δ gọi là vuông góc với mặt phẳng (P) nếu
Đường thẳng Δ được gọi là vuông góc với mặt phẳng (P) nếu Δ vuông góc với mọi đường thẳng nằm trong (P).
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Khi đó
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAB) và (SBC) vuông góc vì
Hai mặt phẳng (SAB) và (SBC) vuông góc vì BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có
.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có: AD // BC =>
Gọi H là hình chiếu vuông góc của A lên SB =>
Ta có:
Từ (*) và (**) =>