Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?

    Hình vẽ minh họa:

    Tính cosin góc giữa hai cạnh AJ và CI?

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    Ta có:

    \begin{matrix}  \overrightarrow {AJ}  = \dfrac{1}{2}\overrightarrow {AD}  + \dfrac{1}{2}\overrightarrow {AC}  \hfill \\  \overrightarrow {CI}  = \overrightarrow {AI}  - \overrightarrow {AC}  = \dfrac{1}{2}\overrightarrow {AB}  - \overrightarrow {AC}  \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  - 2\overrightarrow {AC} } ight).\left( {\overrightarrow {AC}  + \overrightarrow {AD} } ight) \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  =  - \dfrac{{{a^2}}}{2} \hfill \\   \Rightarrow \overrightarrow {CI}  = \overrightarrow {AJ}  = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {CI} ;\overrightarrow {AJ} } ight) = \dfrac{2}{3} \hfill \\ \end{matrix}

    Vậy cosin góc giữa hai cạnh AJ và CI bằng \frac{2}{3}

  • Câu 2: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Tam giác SAB đều và \left( (SAB);(ABCD) ight) = 90^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều nên SH\bot
AB

    Lại có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Tính được SH = a\sqrt{3}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.(2a)^{2}.a\sqrt{3} = \frac{4a^{3}\sqrt{3}}{3}

  • Câu 3: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 4: Thông hiểu

    Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?

    Hình vẽ minh họa

    Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.

    Theo định lí Pythagore ta có:

    AI = \sqrt{1 - \frac{1}{4}} =
\frac{\sqrt{3}}{2}cm

    \Rightarrow AO = \frac{2}{3}AI =
\frac{\sqrt{3}}{3}cm

    Trong tam giác SOA vuông tại O ta có: SO
= \sqrt{4 - \frac{1}{3}} = \frac{\sqrt{11}}{\sqrt{3}}cm

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{1}{2}.\frac{\sqrt{3}}{2}.\frac{\sqrt{11}}{\sqrt{3}} =
\frac{\sqrt{11}}{12}cm^{3}

  • Câu 5: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 6: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 7: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 8: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3} chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và SH = \frac{a}{2}. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: MN // SB

    => \left( MN,(ABCD)
ight) = \left( SB;(ABCD) ight)

    Do SH ⊥ (ABCD)

    \begin{matrix}
\Rightarrow \left( MN,(ABCD) ight) = \left( SB;(ABCD) ight) \\
= (SB;HB) = \widehat{SBH} \\
\end{matrix}

    Ta có: \left\{ \begin{matrix}BD = \sqrt{AB^{2} + AD^{2}} = 2a \\BH = \dfrac{BD}{3} = \dfrac{2a}{3} \\\end{matrix} ight.

    => \tan\widehat{SBH} = \frac{SH}{BH} =
\frac{3}{4}

  • Câu 10: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a\sqrt{5} và BC = . Tính khoảng cách giữa SD và BC.

    Hình vẽ minh họa:

    Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.

    CD = \sqrt{AC^{2} - BC^{2}} =\sqrt{5a^{2} - 2a^{2}} = a\sqrt{3}

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 13: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng ABC'A'?

    Hình vẽ minh họa

    Ta có: Tam giác ABC là tam giác đều suy ra \widehat{BAC} =
60^{0}

    Lại có AC//A'C'

    \Rightarrow (AB;A'C') = (AB;CA) =
\widehat{BAC} = 60^{0}.

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa:

    Ta có: O và I lần lượt là trung điểm của AC và SC

    => OI là đường trung bình của tam giác SAC

    => OI // SA

    Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)

    Ta có: ABCD là hình chữ nhật => BC ⊥ AB

    Mà SA ⊥ BC => BC ⊥ SB

    Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD

    Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.

    Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”

  • Câu 16: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 17: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 18: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD; \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Chọn kết luận sai

    Xét tam giác ABD có AB = AD và \widehat {BAD} = {60^0}

    => Tam giác ABD là tam giác đều

    => DM = \frac{{AB\sqrt 3 }}{2} (Vì DM là trung tuyến)

    Xét tam giác ABC có AB = AC và \widehat {BAC} = {60^0}

    => Tam giác ABC là tam giác đều

    => CM = \frac{{AB\sqrt 3 }}{2} (Vì CM là trung tuyến)

    => DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)

    Suy ra MN là đường cao của tam giác MCD

    => MN ⊥ CD

    Chứng minh tương tự:

    Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN

    => Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB

    Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.

  • Câu 19: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC; \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Hãy xác định góc giữa cặp vecto \overrightarrow {SC} ,\overrightarrow {AB}?

    Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .(\overrightarrow {SB}  - \overrightarrow {SA} ) \hfill \\   = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA}  \hfill \\   = |\overrightarrow {SC} |.|\overrightarrow {SB} |.\cos (\overrightarrow {SC} ,\overrightarrow {SB} ) \hfill \\   - |\overrightarrow {SC} |.|\overrightarrow {SA} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = SC.SB.\cos \widehat {BSC} - SC.SA.\cos \widehat {ASC} \hfill \\ \end{matrix}

    Mà SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}

    => \overrightarrow {SC} .\overrightarrow {AB}  = 0 \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {AB} } ight) = {90^0}

  • Câu 21: Vận dụng

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.

    Hình vẽ minh họa:

    Gọi M, N lần lượt là trung điểm của AB, CD.

    Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN

    Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB

    Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM

    Khi đó, tam giác MCD vuông cân tại M

    => MN = \frac{AB}{2} = \frac{CD}{2}
\Rightarrow AB = CD = 2x

    Ta lại có AN = BN = \sqrt{AC^{2} -
AN^{2}} = \sqrt{a^{2} - x^{2}}

    AB^{2} = AN^{2} + BN^{2}

    => 2\left( a^{2} - x^{2} ight) =
4x^{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 22: Nhận biết

    Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:

    "a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp

    a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c

    "a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp

    a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅

    =>a⊥(P)

    => "a không thể vuông góc với mặt phẳng (P)" là sai.

  • Câu 23: Nhận biết

    Cho hình chóp tam giác S.ABC có đáy ABC vuông tại B, SA\bot(ABC). Khi đó:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CB\bot SA \\
CB\bot AB \\
\end{matrix} ight.\  \Rightarrow CB\bot(SAB)

  • Câu 24: Nhận biết

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 25: Thông hiểu

    Cho tứ diện ABCD với các đường thẳng AB, BC, CD đôi một vuông góc. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?

    Dễ thấy rằng: \left\{ \begin{matrix}
\begin{matrix}
(ACD) \cap (BCD) = CD \\
(ABC)\bot CD \\
(ABC) \cap (ACD) = AC \\
\end{matrix} \\
(ABC) \cap (BCD) = BC \\
\end{matrix} ight.

    Như vậy góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AC và BC, tức là bằng góc \widehat{ACB}

  • Câu 26: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh 2a, cạnh bên bằng 3a.

    Hình vẽ minh họa

    Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là \frac{(2a)^{2}\sqrt{3}}{4} và chiều cao AA' = 3a (vì lăng trụ là lăng trụ đứng)

    Vậy thể tích hình lăng trụ là: V =
\frac{(2a)^{2}\sqrt{3}}{4}.3a = 3\sqrt{3}a^{3}

  • Câu 27: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{2a\sqrt{3}}{3};d(C;BB') =
2a;d(A;BB') = a;d(A;CC') = a\sqrt{3}. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác A'B_{1}C_{1} có các cạnh:

    A'B_{1} = a;A'C_{1} =
a\sqrt{3};B_{1}C_{1} = 2a

    Suy ra tam giác A'B_{1}C_{1} vuông tại A’ và trung tuyến A’H của tam giác đó bằng a

    Gọi giao điểm của AM và A’H là T

    Ta có:

    A'M = \frac{2a\sqrt{3}}{3};A'H =
a

    \Rightarrow MH = \frac{a}{\sqrt{3}}
\Rightarrow \widehat{MA'H} = 30^{0} \Rightarrow \widehat{MA'A} =
60^{0}

    \Rightarrow AA' =
\frac{A'M}{\cos\widehat{MA'A}} =
\frac{4a}{\sqrt{3}}

    \Rightarrow V_{ABC.A'B'C'} =
V_{A'B_{1}C_{1}.ABC} = AA'.S_{A'B_{1}C_{1}} =
2a^{3}

  • Câu 28: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc giữa đường thẳng SC và (ABCD). Giá trị của tan α bằng:

     Tan của góc giữa đường thẳng SC và (ABCD)

    +) Gọi H là trung điểm AB.

    Vì tam giác ABC đều nên SH ⊥ AB

    Ta có:

    \left\{ \begin{gathered} \left( {SAB} ight) \bot \left( {ABCD} ight) \hfill \\  \left( {SAB} ight) \cap \left( {ABCD} ight) = AB \hfill \\  SH \subset \left( {SAB} ight) \hfill \\  SH \bot AB\left( {cmt} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SH \bot \left( {ABCD} ight)

    => Hình chiếu của SC lên (ABCD) là HC.

    \Rightarrow \,\alpha  = \widehat {\left( {SC,\left( {ABCD} ight)} ight)} = \widehat {\left( {SC,HC} ight)} = \widehat {SCH}(Vì tam giác SHC vuông tại H)

    +) Ta có: SH = \frac{{a\sqrt 3 }}{2};HC = \sqrt {\frac{{{a^2}}}{4} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    Xét tam giác SHC vuông tại H: \tan \alpha  = \tan \widehat {SCH} = \frac{{SH}}{{HC}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{a\sqrt 5 }}{2}}} = \frac{{\sqrt {15} }}{5}

    Vậy \tan \alpha  = \frac{{\sqrt {15} }}{5}

  • Câu 30: Nhận biết

    Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?

    Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 33: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 34: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 35: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng A'BAD' bằng:

    Hình vẽ minh họa

    Ta có: A'B//D'C nên góc giữa hai đường thẳng A'BAD' bằng góc giữa hai đường thẳng D'CAD' và bằng góc \widehat{AD'C}

    Mà tam giác ACD’ là tam giác đều nên \widehat{AD'C} = 60^{0}

    \Rightarrow (A'B;AD') =
60^{0}

  • Câu 36: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Chọn khẳng định đúng

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB

    => Tam giác SBC vuông tại B => I là trung điểm của SC

    Theo bài ra ta có: IH ⊥ (ABC) => IH // SA

    => H là trung điểm của cạnh AC,

    Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 39: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo