Cho tứ diện ABCD có
;
. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?
Hình vẽ minh họa

Xét tam giác ABD có AB = AD và
=> Tam giác ABD là tam giác đều
=> (Vì DM là trung tuyến)
Xét tam giác ABC có AB = AC và
=> Tam giác ABC là tam giác đều
=> (Vì CM là trung tuyến)
=> DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)
Suy ra MN là đường cao của tam giác MCD
=> MN ⊥ CD
Chứng minh tương tự:
Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN
=> Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB
Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.




