Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Cho vecto
≠
và hai vecto
và
không cùng phương. Nếu vecto
vuông góc với cả hai vecto
và
thì
,
và
:
Trường hợp "Đồng phẳng" và " Có thể đồng phẳng" sai vì có thể xảy ra trường hợp như hình vẽ sau:

Giả sử trường hợp "Không đồng phẳng" sai tức là ba vecto ,
và
đồng phẳng.
Khi đó vì điều này mẫu thuẫn với giả thiết hai vecto
và
không cùng phương.
Vậy đáp án đúng là "Không đồng phẳng"
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.
Cho hình lập phương
. Ghép nối các đáp án với nhau.
Cho hình lập phương . Ghép nối các đáp án với nhau.
Hình vẽ minh họa
Ta có: mà
Vì tứ giác là hình vuông nên
Ta có: nên
Ta có: và tam giác
là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó
Cho tứ diện
có
, các cạnh còn lại bằng nhau và bằng
. Mặt phẳng
chứa cạnh
và vuông góc với cạnh
tại
. Diện tích tam giác
lớn nhất bằng bao nhiêu?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4
Gọi H là trung điểm của AB ta có: và
Dấu bằng xảy ra khi và chỉ khi
Vậy
Cho hình chóp
có đáy
là hình vuông cạnh
tâm
,
vuông góc với mặt phẳng đáy. Biết
. Tính
?
Hình vẽ minh họa
Ta có: nên AI là hình chiếu vuông góc của SI trên mặt phẳng đáy.
Do đó góc giữa đường thẳng SI và mặt phẳng (ABCD) bằng góc giữa SI và AI.
Xét tam giác SAI vuông tại A nên
Vậy
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng
. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.
Hình vẽ minh họa:
Gọi M là trung điểm BC.
Ta có:
Gọi H, K lần lượt là hình chiếu của O và A lên SM =>
Ta có:
Ta có:
Xét tam giác SOM có:
Vậy
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho lăng trụ đứng ABC.A’B’C’ có diện tích tam giác ABC bằng
. Gọi M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’, diện tích tam giác MNP bằng 4. Tính góc giữa hai mặt phẳng (ABC) và (MNP).
Hình vẽ minh họa:
Gọi α là góc giữa 2 mặt phẳng (ABC) và (MNP).
Dễ thấy tam giác ABC là hình chiếu của tam giác MNP trên mặt phẳng (ABC).
=>
Từ đó suy ra:
Vậy góc giữa hai mặt phẳng (ABC) và (MNP) bằng 30◦
Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:
Hình vẽ minh họa:
Do ABCD là hình vuông cạnh a
=>
=> Tam giác SAC vuông tại S
Từ giả thiết ta có MN là đường trung bình của tam giác DSA
=> . Khi đó
=>
Trong không gian cho đường thẳng Δ không nằm trong mặt phẳng (P), đường thẳng Δ gọi là vuông góc với mặt phẳng (P) nếu
Đường thẳng Δ được gọi là vuông góc với mặt phẳng (P) nếu Δ vuông góc với mọi đường thẳng nằm trong (P).
Cho hình lăng trụ ABC.A’B’C’ có
. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

Trong (ABC) kẻ ( điểm N thuộc cạnh AC)
Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)
Góc giữa MC’ và mp(ACC’A’) là góc
Ta có
CM là đường trung tuyến của tam giác ABC, nên có
Tam giác CMC’ vuông tại M, nên
Diện tích
Xét tam giác vuông MC’N, có
Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “(P) là mặt phẳng trung trực của đoạn thẳng AB nếu nó đi qua ba điểm phân biệt cách đều A và B.”
Cho hình chóp
có đáy
là hình thoi tâm
,
. Mặt phẳng
vuông góc với mặt phẳng nào dưới đây?
Hình vẽ minh họa
Ta có: O là tâm hình thoi ABCD
Mặt khác (tính chất tam giác cân)
Và (tính chất hình thoi)
Từ (1) và (2) suy ra
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có
.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có: AD // BC =>
Gọi H là hình chiếu vuông góc của A lên SB =>
Ta có:
Từ (*) và (**) =>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc giữa đường thẳng SC và (ABCD). Giá trị của tan α bằng:

+) Gọi H là trung điểm AB.
Vì tam giác ABC đều nên SH ⊥ AB
Ta có:
=> Hình chiếu của SC lên (ABCD) là HC.
(Vì tam giác SHC vuông tại H)
+) Ta có:
Xét tam giác SHC vuông tại H:
Vậy
Cho hình chóp
có
là hình vuông cạnh
;
. Khoảng cách giữa hai đường thẳng
bằng bao nhiêu?
Hình vẽ minh họa
Dựng
Dựng . Dễ thấy
Cho hình lập phương như hình vẽ:

Biết
. Xác định thể tích của khối lập phương đã cho.
Gọi độ dài cạnh của khối lập phương là a; (x > 0)
Xét tam giác A’B’C’ vuông cân tại B’ ta có:
Xét tam giác A’AC’ vuông tại A’ ta có:
Vậy thể tích khối lập phương là
Một hình chóp
có đáy
là tam giác đều cạnh
,
vuông góc với mặt phẳng đáy. Biết góc giữa
và mặt phẳng
bằng
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Gọi M là trung điểm của BC thì
Từ đây dễ thấy góc cần tìm là
Do đó tam giác SAM vuông cân tại A và
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là
. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?
Ta có:
Thể tích khối lăng trụ đã cho bằng:
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Nếu đường thẳng a vuông góc với giao tuyến của (P) và (Q) thì a vuông góc với mặt phẳng (P) và vuông góc với mặt phẳng (Q).”
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?
Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, biết
đều. Tính
?
Hình vẽ minh họa
Ta có:
.
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Do tam giác ABC cân tại A, M là trung điểm của BC nên
Ta có:
Cho hình chóp
có
, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có:
Suy ra tam giác ABC vuông tại A.
Gọi H, M, N lần lượt là trung điểm của AB, AB, SA
Xét tam giác SBC có: SB = SC nên
Lại H là tam đường tròn ngoại tiếp tam giác ABC
Mà SA = SB = SC = a nên
Suy ra tam giác SAH vuông cân tại H
Do đó tam giác MHN cạnh . Góc cần tìm bằng
Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.
Hình vẽ minh họa:
Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.
Dựng hình chữ nhật AND
Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)
Ta có: C’N // (A’MB) (do C’N // MB)
=> d(C’, (A’BM)) = d(N, (A’BM))
Mà GN // (A’BM) (do GN // A’M)
=> d(N, (A’BM)) = d(G, (A’BM))
=> d(C’, (A’BM)) = d(G,(A’BM))
Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.
BD ⊥ GI (do ANBD là hình chữ nhật)
BD ⊥ A’G (do A’G ⊥ (ABC))
=> BD ⊥ (A’GI) => BD ⊥ GH
Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH
Tính GH: ∆ABC đều, cạnh a
=>
Xét tam giác AA’G vuông tại G
=>
Ta lại có: GNBI là hình chữ nhật =>
Xét tam giác A’GI vuông tại G có GH ⊥ A’I
=>
Suy ra
Cho hình chóp
có
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi I là trung điểm của AB.
Xét tam giác SAB có SA = SB =>
Xét tam giác CAB có: =>
Từ (1) và (2) suy ra .