Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, tam giác SBA đều và cạnh SC = a\sqrt{2}. Gọi trung điểm các cạnh AB,CD lần lượt là H,K. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Ta có tam giác SAB đều cạnh bằng a nên AB
= SB = a

    Mặt khác tam giác SBC có SB^{2} + BC^{2}
= SC^{2} = 2a^{2}

    Suy ra tam giác SBC vuông cân tại B hay BC\bot SB

    Từ BC\bot(SAB) \Rightarrow BC\bot
SH

    Tam giác ABS đều mà H là trung điểm của AB nên SH\bot AB

    \Rightarrow SH\bot(ABCD)

    Tam giác ABS đều nên AB không vuông góc với mặt phẳng (SAD)

    Ta có: \left\{ \begin{matrix}
AB\bot HK \\
AB\bot SH \\
\end{matrix} ight.\  \Rightarrow AB\bot(SHK) \Rightarrow
CD\bot(SHK)

  • Câu 2: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 3: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 4: Nhận biết

    Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?

    (1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.

    (2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    (3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.

  • Câu 5: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 6: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD có hai mặt ABCABD là tam giác đều. Khi đó (AB;CD) bằng:

    Hình vẽ minh họa

    Ta có: I là trung điểm của AB.

    ABCABD là tam giác đều nên \left\{ \begin{matrix}
CI\bot AB \\
DI\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(CID) \Rightarrow AB\bot
CD

  • Câu 8: Nhận biết

    Trong các mệnh đề sau mệnh đề nào đúng?

    Mệnh đề đúng là: Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c)

  • Câu 9: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Mặt phẳng nào dưới đây không vuông góc với (A'BD)?

    Hình vẽ minh họa

    Dễ thấy mặt phẳng (A'BC') không vuông góc với (A'BD).

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 11: Nhận biết

    Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”

    Vì b có thể nằm trong (P).

  • Câu 12: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết AB = a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
\sqrt{3}a

    \Rightarrow AA' = \sqrt{\left(
a\sqrt{3} ight)^{2} - a^{2}} = a\sqrt{2}

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = \sqrt{2}a.\frac{1}{2}.a.a =
\frac{\sqrt{2}}{2}a^{3}

  • Câu 13: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 14: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABC, SA\bot(ABC) có đáy ABC là tam giác vuông cân tại B. Biết rằng SA = a\sqrt{2};AB = a. Gọi \alpha là góc giữa đường thẳng SC và mặt phẳng (ABC). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta thấy hình chiếu vuông góc của SC lên mặt phẳng ABCAC nên \left(
SC;(ABC) ight) = \widehat{SCA}

    Do tam giác ABC vuông cân tại B nên AC =
\sqrt{BC^{2} + AB^{2}} = a\sqrt{2}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = 1

    \Rightarrow \left( SC;(ABC) ight) =
\widehat{SCA} = 45^{0}

  • Câu 16: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 17: Vận dụng

    Cho hình vuông ABCD cạnh a và SA ⊥ (ABCD). Để góc giữa (SCB) và (SCD) bằng 60◦ thì độ dài cạnh SA là:

    Hình vẽ minh họa:

    Đặt SA = a.

    Kẻ AM ⊥ SD, m ∈ SD, AN ⊥ SB, N ∈ SB, ta có: \left\{ \begin{matrix}
AM\bot(SCD) \\
AN\bot(SBC) \\
\end{matrix} ight.

    Suy ra: \widehat{\left( (SCD);(SBC)
ight)} = \widehat{(AM;AN)}

    Do ∆SAD = ∆SAB (c.g.c) => AM = AN

    Do đó => ((SCD); (SBC)) = 60◦ => (AM; AN) = 60◦

    Xét tam giác SAD, ta có:

    \frac{1}{AM^{2}} = \frac{1}{x^{2}} +
\frac{1}{a^{2}} \Rightarrow AM = MN \Rightarrow x = a

    \begin{matrix}\dfrac{MN}{BD} = \dfrac{SM}{SD} = \dfrac{SM.SD}{SD^{2}} =\dfrac{SA^{2}}{SD^{2}} = \dfrac{x^{2}}{a^{2} + x^{2}} \hfill\\\Rightarrow MN = \dfrac{ax^{2}\sqrt{2}}{a^{2} + x^{2}} \hfill\\\end{matrix}

    Nếu \widehat{MAN} = 60^{0} thì ∆AMN đều => AM = MN => x = a

    Nếu \widehat{MAN} = 120^{0} thì MN = \sqrt{3}AM \Rightarrow 2x^{2} = 3\left(
x^{2} + a^{2} ight) (Vô lý)

    Vậy SA = a

  • Câu 18: Thông hiểu

    Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, AB = a,\widehat {ACB} = 30^\circ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi \alpha là góc tạo bởi A’H với (A’ACC’). Tính \sin\alpha?

    Sin của góc tạo bởi A’H với (A’ACC’)

    Ta có A'H \bot \left( {ABC} ight) nên A’H là đường cao của lăng trụ.

    Kẻ HK \bot AC (K thuộc đoạn AC)

    Kẻ

    Suy ra HI \bot \left( {AA'C'C} ight)

    Khi đó \alpha  = \left( {A'H,A'I} ight) = \widehat {HA'K}

    Sin của góc tạo bởi A’H với (A’ACC’)

    +) Do tam giác MCB cân tại B nên \widehat {BMC} = \widehat {BCM} = 30^\circ

    \begin{matrix}  MH = \dfrac{1}{2}BM = \dfrac{1}{4}AC = \dfrac{1}{4}\dfrac{{AB}}{{\sin 30^\circ }} = \dfrac{a}{2} \hfill \\   \Rightarrow HK = MH.\sin 60^\circ  = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

    +) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng \widehat {A'AH} = 60^\circ (theo giả thiết)

    Và BM = AM = AB = a

    => Tam giác AMB là tam giác đều cạnh a

    \Rightarrow AH = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = AH.\tan 60^\circ  = \frac{{3a}}{2}

    Vì vậy, \sin \alpha  = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{{3a}}{2}}} = \dfrac{{\sqrt 3 }}{6}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 20: Vận dụng

    Cho S.ABCD là hình chóp có đáy là hình chữ nhật. SA \bot \left( {ABCD} ight). Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết AB = a,AD = 2aKM = \frac{{a\sqrt {67} }}{6}. Tính cosin góc giữa KM và SQ.

    Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.

    Vậy MN \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {NK}  = \overrightarrow {NA}  + \overrightarrow {AB}  + \overrightarrow {BK}  \hfill \\   =  - \dfrac{1}{2}\overrightarrow {AD}  + \overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AD}  = \overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD}  \hfill \\ \end{matrix}

    Suy ra

    \begin{matrix}  N{K^2} = {\left( {\overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD} } ight)^2} = A{B^2} + \dfrac{1}{{36}}A{D^2} \hfill \\   = {a^2} + \dfrac{1}{{36}}.4{a^2} = \dfrac{{10}}{9}{a^2} \hfill \\ \end{matrix}

    Xét tam giác MNK vuông tại N (do MN \bot \left( {ABCD} ight)) ta có:

    \begin{matrix}  M{N^2} = M{K^2} - N{K^2} = \dfrac{{67}}{{36}}{a^2} - \dfrac{{10}}{9}{a^2} = \dfrac{3}{4}{a^2} \hfill \\   \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2} \Rightarrow SA = a\sqrt 3  \hfill \\ \end{matrix}

    Lại có

    \begin{matrix}  \overrightarrow {AQ}  = \overrightarrow {AD}  + \overrightarrow {DQ}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  \hfill \\   \Rightarrow A{Q^2} = {\left( {\overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB} } ight)^2} \hfill \\   = A{D^2} + \dfrac{9}{{16}}A{B^2} \hfill \\   = {(2a)^2} + \dfrac{9}{{16}}{a^2} = \dfrac{{73}}{{16}}{a^2} \hfill \\ \end{matrix}

    Xét tam giác SAQ vuông tại A nên

    \begin{matrix}  S{Q^2} = A{S^2} + A{Q^2} = 3{a^2} + \dfrac{{73}}{{16}}{a^2} = \dfrac{{121}}{{16}}{a^2} \hfill \\   \Rightarrow SQ = \dfrac{{11}}{4}a \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  \overrightarrow {KM}  = \overrightarrow {NM}  - \overrightarrow {NK}  = \dfrac{1}{2}\overrightarrow {AS}  - \overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AD}  \hfill \\  \overrightarrow {SQ}  = \overrightarrow {AQ}  - \overrightarrow {AS}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  - \overrightarrow {AS}  \hfill \\ \end{matrix}

    Khi đó

    \begin{matrix}  \overrightarrow {KM} .\overrightarrow {SQ}  =  - \dfrac{3}{4}A{B^2} + \dfrac{1}{6}A{D^2} - \dfrac{1}{2}A{S^2} \hfill \\   =  - \dfrac{3}{4}{a^2} + \dfrac{1}{6}.4{a^2} - \dfrac{1}{2}.3{a^2} = \dfrac{{ - 19}}{{12}}{a^2} \hfill \\ \end{matrix}

    Vậy

    \begin{matrix}  \cos \left( {KM,SQ} ight) = \left| {\cos \left( {\overrightarrow {KM} ,\overrightarrow {SQ} } ight)} ight| \hfill \\   = \dfrac{{\left| {\overrightarrow {KM} .\overrightarrow {SQ} } ight|}}{{KM.SQ}} = \dfrac{{\left| {\dfrac{{ - 19}}{{12}}{a^2}} ight|}}{{\dfrac{{a\sqrt {67} }}{6}.\dfrac{{11a}}{4}}} = \dfrac{{38}}{{11\sqrt {67} }} \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Vì HA = HB, tam giác ABC cân => CH ⊥ AB

    Ta có: SA ⊥ (ABC) => SA ⊥ CH

    Mà CH ⊥ AB => CH ⊥ (SAB)

    Mặt khác AK thuộc mặt phẳng (SAB

    => CH ⊥ SA, CH ⊥ SB, CH ⊥ AK

    Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 22: Nhận biết

    Cho hình lập phương như hình vẽ:

    Hỏi đường thẳng nào vuông góc với đường thẳng BC'?

    Ta có:

    \left\{ \begin{matrix}
AD'\bot AB \\
AD'\bot A'D \\
\end{matrix} ight.\  \Rightarrow AD'\bot(ABC'D')
\Rightarrow AD'\bot BC'

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

  • Câu 24: Nhận biết

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 25: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 26: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 27: Nhận biết

    Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?

    Gọi d là đường thẳng qua M và vuông góc với (P). Do (P)//(Q)⇒d⊥(Q)

    Giả sử (R) là mặt phẳng chứa d. Mà \left\{ {\begin{array}{*{20}{l}}  {d \bot \left( P ight)} \\   {d \bot \left( Q ight)} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {\left( R ight) \bot \left( P ight)} \\   {\left( R ight) \bot \left( Q ight)} \end{array}} ight.

    Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa:

    Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.

    Gọi H là trung điểm AC => SH ⊥ AC.

    Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.

    Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.

    Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.

    Từ đó suy ra (ABI) ⊥ (SBC).

    Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai

  • Câu 29: Vận dụng

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Gọi \alpha là góc giữa hai đường thẳng ABDM. Khi đó \cos\alpha bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi N là trung điểm của BC

    => MN là đường trung bình tam giác ABC

    \Rightarrow \left\{ \begin{matrix}
MN//AB \\
MN = \frac{1}{2}AB \\
\end{matrix} ight.

    Vì tam giác BCD và tam giác ACD là các tam giác đều cạnh a

    \Rightarrow MD = ND =
\frac{a\sqrt{3}}{2}

    MN//AB \Rightarrow \alpha = (AB,DM) =
(MN,DM)

    Xét tam giác MND ta có:

    \cos\widehat{NMD} = \frac{MN^{2} +
MD^{2} - ND^{2}}{2MN.MD}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{2}} = \dfrac{\sqrt{3}}{6}> 0

    \Rightarrow \widehat{NMD} < 90^{0}
\Rightarrow (MN,DM) = \widehat{NMD}

    \Rightarrow \cos\alpha =
\cos\widehat{NMD} = \frac{\sqrt{3}}{6}

  • Câu 30: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 31: Thông hiểu

    Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {EG}?

    Hình vẽ minh họa

    Hãy xác định góc giữa cặp vecto

    Ta có: AEGC là hình chữ nhật nên EG // AC

    Vì ABCD là hình vuông nên

    => \left( {\overrightarrow {AB} ,\overrightarrow {EG} } ight) = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) = \widehat {BAC} = {45^0}

  • Câu 32: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 33: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD. Gọi \alpha là góc tạo bởi đường thẳng BM và mặt phẳng (ABCD). Tính \tan\alpha?

    Minh họa bằng hình vẽ:

    Gọi O là tâm của hình vuông. Ta có: SO\bot(ABCD)SO = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{2}}{2}

    Gọi M là trung điểm của OD ta có: MH//SO nên H là hình chiếu của M lên mặt phẳng (ABCD)MH
= \frac{1}{2}SO = \frac{a\sqrt{2}}{4}

    Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD)\widehat{MBH}

    Khi đó ta có: \tan\widehat{MBH} =\dfrac{MH}{BH} = \dfrac{\dfrac{a\sqrt{2}}{4}}{\dfrac{3a\sqrt{2}}{4}} =\dfrac{1}{3}

    Vậy \tan\alpha =
\frac{1}{3}.

  • Câu 34: Thông hiểu

    Tính thể tích khối tứ diện đều A.BCD, biết AB = 3?

    Hình vẽ minh họa

    Gọi E là trung điểm của CD, H là trọng tâm giác giác BCD SH\bot(ABC)

    Tam giác BCD đều cạnh bằng 5

    \Rightarrow BE = \sqrt{3^{2} - \left(
\frac{3}{2} ight)^{2}} = \frac{3\sqrt{3}}{2} \Rightarrow BH =
\sqrt{3}

    Tam giác ABH vuông tại H nên

    \Rightarrow AH = \sqrt{AB^{2} - BH^{2}}
= \sqrt{3^{2} - \left( \sqrt{3} ight)^{2}} = \sqrt{6}

    \Rightarrow S_{ABCD} = \frac{1}{2}BE.CD
= \frac{1}{2}.\frac{3\sqrt{3}}{2}.3 = \frac{9\sqrt{3}}{4}

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{9\sqrt{3}}{4}.\sqrt{6} =
\frac{9\sqrt{2}}{4}cm^{3}

  • Câu 35: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60◦. Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.

    Hình vẽ minh họa:

    Gọi H là hình chiếu của S lên (ABCD).

    Ta có: \left\{ \begin{matrix}SM\bot AB \\AB\bot SH \\\end{matrix} ight.

    => AB ⊥ MH

    => MH là đường trung bình của hình vuông ABCD

    Giả sử MH cắt CD tại N, ta có N là trung điểm CD

    Ta cũng có SN ⊥ CD nên \widehat{\left((SCD),(ABCD) ight)} = \widehat{(SN,MN)} = \widehat{SNM}

    Gọi P là trung điểm BC, ta có MP // AC nên AC // (SMP)

    Do đó, d(SM, AC) = d(AC,(SMP)) = d(O,(SMP))

    Gọi K là hình chiếu của H lên MP (nhận thấy HK // OB), I là hình chiếu của H lên SK

    Khi đó d(H, (SMP)) = HI

    Áp dụng định lý cosin cho tam giác SMN, ta có:

    \begin{matrix}SM^{2} = MN^{2} + SN^{2} - 2MN.SN.cos60^{0} \hfill\\\Leftrightarrow 3a^{2} = 4a^{2} + SN^{2} - 2.2a.SN.\dfrac{1}{2} \hfill \\\Leftrightarrow a = SN \hfill \\\end{matrix}

    Xét tam giác vuông SHN ta có:

    SH = SN.sin60^{0} =\frac{a\sqrt{3}}{2}

    HN = SN.cos60^{0} =\frac{a}{2}

    \Rightarrow MH = \frac{3}{4}.MN\Rightarrow KH = \frac{3}{4}NP = \frac{3a\sqrt{2}}{4}

    Xét tam giác SHK vuông tại H, ta có:

    HI = \sqrt{\frac{HK^{2}.SH^{2}}{HK^{2} +SH^{2}}} = \frac{3a\sqrt{5}}{10}

    Mặt khác: d\left( O;(SMP) ight) =\frac{2}{3}d\left( H;(SMP) ight) = \frac{a\sqrt{5}}{5}

  • Câu 36: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 37: Thông hiểu

    Một khối chóp tứ giác đều có các cạnh bằng 2t (cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:

    SA = BA = BC = DA = DC

    \Rightarrow \Delta SAC = \Delta BAC =
\Delta DBC

    \Rightarrow \Delta SAC;\Delta BAC;\Delta
DBC lần lượt vuông tại S; B; D

    I là trung điểm của AC suy ra SA =
\frac{1}{2}AC = \frac{1}{2}.2t.\sqrt{2} = t\sqrt{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SI = \frac{1}{3}.(2t)^{2}.t\sqrt{2} =
\frac{4t^{3}\sqrt{2}}{3}

  • Câu 38: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)

    => Tam giác ABD vuông tại B.

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    Ta có: \left\{ \begin{matrix}
AD^{2} = AB^{2} + BD^{2} \\
BD^{2} = BC^{2} + CD^{2} \\
\end{matrix} ight.

    \begin{matrix}\Rightarrow AD^{2} = AB^{2} + BC^{2} + CD^{2} \hfill \\\Rightarrow AD = \sqrt{AB^{2} + BC^{2} + CD^{2}} \hfill \\\Rightarrow AD = \sqrt{a^{2} + b^{2} + c^{2}} \hfill \\\end{matrix}

  • Câu 39: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 40: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'BB' = 2a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{2\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{4a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = 2a.\frac{4a^{2}\sqrt{3}}{9} =
\frac{8\sqrt{3}a^{3}}{9}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo