Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:

    \left\{ \begin{matrix}
AB\bot OH \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot CH

    Tương tự: BC\bot AH

    Vậy H là trực tâm tam giác ABC.

  • Câu 2: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

  • Câu 3: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 4: Vận dụng cao

    Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng 2. Gọi điểm M là điểm nằm trên cạnh AA' sao cho mặt phẳng (C'MB) tạo với mặt phẳng (ABC) một góc nhỏ nhất. Khi đó diện tích tam giác C'MB có dạng \frac{a\sqrt{b}}{c};\left( a,b,c\mathbb{\in N}ight). Tính giá trị của biểu thức T = a + b - c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng 2. Gọi điểm M là điểm nằm trên cạnh AA' sao cho mặt phẳng (C'MB) tạo với mặt phẳng (ABC) một góc nhỏ nhất. Khi đó diện tích tam giác C'MB có dạng \frac{a\sqrt{b}}{c};\left( a,b,c\mathbb{\in N}ight). Tính giá trị của biểu thức T = a + b - c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 6: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 7: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 8: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 9: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 10: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA ⊥ (ABCD). Gọi I, J, K lần lượt là trung điểm của các cạnh AB, BC, SB. Khẳng định nào sau đây là khẳng định đúng?

    Hình vẽ minh họa:

    Xác định góc giữa đường thẳng và mặt phẳng

    Xét tam giác SBC ta có: \frac{{BK}}{{BS}} = \frac{{BJ}}{{BC}} = \frac{1}{2}

    => KJ // SC (*)

    Xét tam giác SAB ta có: \frac{{BI}}{{BA}} = \frac{{BK}}{{BS}} = \frac{1}{2}

    => KI // SA (**)

    Từ (*) và (**) => (IJK) // (SAC) (1)

    Vì ABCD là hình vuông => BD ⊥ AC

    Mà SA ⊥ BD => BD ⊥ (SAC)

    Kết hợp với (1) => BD ⊥ (IJK)

    => \widehat {\left( {SC;BD} ight)} = {90^0}

  • Câu 12: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 13: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA ⊥ (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABCD) nên tam giác SAB và tam giác SAD là tam giác vuông.

    Ta có: CD ⊥ DA mà DA là hình chiếu của DA trên (ABCD) nên CD vuông góc với DS

    => Mặt bên SDC là tam giác vuông tại D

    Tương tự ta có: mặt bên SBC là tam giác vuông tại B. Như vậy chỉ có khẳng định ”Mặt bên của hình chóp là những tam giác vuông” là chắc chắn đúng.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 16: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D. Hỏi mặt phẳng (ACC’A’) vuông góc với các mặt phẳng nào?

    Hình vẽ minh họa:

    Mặt phẳng (ACC’A’) vuông góc với các mặt phẳng (BDD’B’), (ABCD), (A’B’C’D’).

  • Câu 17: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1. Tính \cos \left( {\overrightarrow {A{C_1}} ;\overrightarrow {BD} } ight)

    Tính cosin góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {A{C_1}} .\overrightarrow {BD}  = \left( {\overrightarrow {A{A_1}}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AD}  - \overrightarrow {AC} .\overrightarrow {AB}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {BD}  \hfill \\   = 0 \hfill \\   \Rightarrow \overrightarrow {A{C_1}} .\overrightarrow {BD}  = 0 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, AB = a,\widehat {ACB} = 30^\circ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi \alpha là góc tạo bởi A’H với (A’ACC’). Tính \sin\alpha?

    Sin của góc tạo bởi A’H với (A’ACC’)

    Ta có A'H \bot \left( {ABC} ight) nên A’H là đường cao của lăng trụ.

    Kẻ HK \bot AC (K thuộc đoạn AC)

    Kẻ

    Suy ra HI \bot \left( {AA'C'C} ight)

    Khi đó \alpha  = \left( {A'H,A'I} ight) = \widehat {HA'K}

    Sin của góc tạo bởi A’H với (A’ACC’)

    +) Do tam giác MCB cân tại B nên \widehat {BMC} = \widehat {BCM} = 30^\circ

    \begin{matrix}  MH = \dfrac{1}{2}BM = \dfrac{1}{4}AC = \dfrac{1}{4}\dfrac{{AB}}{{\sin 30^\circ }} = \dfrac{a}{2} \hfill \\   \Rightarrow HK = MH.\sin 60^\circ  = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

    +) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng \widehat {A'AH} = 60^\circ (theo giả thiết)

    Và BM = AM = AB = a

    => Tam giác AMB là tam giác đều cạnh a

    \Rightarrow AH = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = AH.\tan 60^\circ  = \frac{{3a}}{2}

    Vì vậy, \sin \alpha  = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{{3a}}{2}}} = \dfrac{{\sqrt 3 }}{6}

  • Câu 19: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 20: Nhận biết

    Hình chóp tam giác đều S.ABC. Gọi Glà trọng tâm tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có khối chóp tam giác đều S.ABC có đáy ABC là tam giác đều, trọng tâm G cũng là tâm của đáy nên SG\bot(ABC).

  • Câu 21: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 22: Nhận biết

    Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?

    Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.

  • Câu 23: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 24: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 26: Thông hiểu

    Tính thể tích khối chóp tứ giác đều có tất cả các cạnh bằng 1cm?

    Hình vẽ minh họa

    Giả sử khối chóp tứ giác đều đã cho là S.ABCD

    Khi đó ABCD là hình vuông cạnh bằng 1 cm và SA = SB = SC = SD = 1cm

    Gọi H là tâm hình vuông ABCD thì SH\bot(ABCD) nên SH là chiều cao của khối chóp S.ABCD.

    Tính SH

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{1^{2} + 1^{2}} = \sqrt{2}(cm)

    Nhận thấy AC^{2} = SA^{2} +
SC^{2} nên tam giác SAC vuông tại S

    \Rightarrow SH = \frac{AC}{2} =
\frac{1}{\sqrt{2}}(cm)

    Diện tích đáy của khối chóp là S_{ABCD} =
1^{2} = 1\left( cm^{2} ight)

    Thể tích khối chóp S.ABCDV = \frac{1}{3}.S_{ABCD}.SH =
\frac{1}{3}.1.\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{6}\left( cm^{3}
ight)

  • Câu 27: Thông hiểu

    Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Độ dài AD bằng:

     Hình vẽ minh họa

    Tính độ dài đoạn thẳng AD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot BC} \\   {AB \bot CD} \end{array}} ight. ⇒AB⊥(BCD)

    => Tam giác ABD vuông tại B.

    Lại có BC⊥CD nên tam giác BCD vuông tại C.

    Khi đó: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {A{D^2} = A{B^2} + B{D^2}} \\   {B{D^2} = B{C^2} + C{D^2}} \end{array}} ight. \hfill \\   \Rightarrow A{D^2} = A{B^2} + B{C^2} + C{D^2} \hfill \\   \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}}  \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 30: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 31: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác vuông ABC cân với cạnh huyền AB = 4\sqrt 2, cạnh bên SC \bot \left( {ABC} ight)SC = 2. Gọi M là trung điểm AC, N là trung điểm AB. Tính góc giữa hai đường thẳng SM và CN.

    Tính góc giữa hai đường thẳng SM và CN

    Đặt \overrightarrow {CA}  = \overrightarrow x ;\overrightarrow {CB}  = \overrightarrow y ;\overrightarrow {CS}  = \overrightarrow z

    Do tam giác vuông cân ABC tại C có AB = 4\sqrt 2 suy ra:

    CA = CB = 4;CN = 2\sqrt 2 ;SM = 2\sqrt 2

    Ta có:

    \begin{matrix}  \overrightarrow {CN}  = \dfrac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } ight) = \dfrac{1}{2}\left( {\overrightarrow x  + \overrightarrow y } ight) \hfill \\  \overrightarrow {SM}  = \overrightarrow {SC}  + \overrightarrow {CM}  =  - \overrightarrow z  + \dfrac{1}{2}\overrightarrow x  \hfill \\ \end{matrix}

    Vậy \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {\overrightarrow x  + \overrightarrow y } ight)\left( {\overrightarrow x  - 2\overrightarrow z } ight)

    Mặt khác: \left\{ \begin{gathered}  {\overrightarrow x ^2} = {\overrightarrow y ^2} = 16 \hfill \\  {\overrightarrow z ^2} = 4 \hfill \\  \overrightarrow x .\overrightarrow y  = \overrightarrow y .\overrightarrow z  = \overrightarrow z .\overrightarrow x  = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {{{\overrightarrow x }^2} - 2\overrightarrow x .\overrightarrow z  + \overrightarrow y .\overrightarrow x  - 2\overrightarrow y .\overrightarrow z } ight) = 4

    Gọi \alpha góc giữa hai véctơ \overrightarrow {SM}\overrightarrow {CN}

    Theo công thức tích vô hướng của hai véctơ ta có:

    \begin{matrix}  \overrightarrow {CN} .\overrightarrow {SM}  = \left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|.{\text{cos}}\alpha  \hfill \\   \Rightarrow {\text{cos}}\alpha  = \dfrac{{\overrightarrow {CN} .\overrightarrow {SM} }}{{\left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|}} = \dfrac{4}{8} = \dfrac{1}{2} \hfill \\   \Rightarrow \alpha  = {60^o} \hfill \\ \end{matrix}

    Vậy góc giữa hai đường thẳng SM và CN bằng {60^o}

  • Câu 32: Nhận biết

    Cho hình hộp ABCD.A’B’C’D có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau. Mệnh đề nào có thể sai?

    Dễ thấy các đáp án A’C’ ⊥ BD, A’B ⊥ DC’, BC’ ⊥ A’D đúng

    Đáp án BB’ ⊥ BD sẽ bị sai trong trường hợp hình hộp có cạnh bên không vuông góc với mặt đáy

  • Câu 33: Vận dụng

    Cho hình vuông ABCD cạnh a và SA ⊥ (ABCD). Để góc giữa (SCB) và (SCD) bằng 60◦ thì độ dài cạnh SA là:

    Hình vẽ minh họa:

    Đặt SA = a.

    Kẻ AM ⊥ SD, m ∈ SD, AN ⊥ SB, N ∈ SB, ta có: \left\{ \begin{matrix}
AM\bot(SCD) \\
AN\bot(SBC) \\
\end{matrix} ight.

    Suy ra: \widehat{\left( (SCD);(SBC)
ight)} = \widehat{(AM;AN)}

    Do ∆SAD = ∆SAB (c.g.c) => AM = AN

    Do đó => ((SCD); (SBC)) = 60◦ => (AM; AN) = 60◦

    Xét tam giác SAD, ta có:

    \frac{1}{AM^{2}} = \frac{1}{x^{2}} +
\frac{1}{a^{2}} \Rightarrow AM = MN \Rightarrow x = a

    \begin{matrix}\dfrac{MN}{BD} = \dfrac{SM}{SD} = \dfrac{SM.SD}{SD^{2}} =\dfrac{SA^{2}}{SD^{2}} = \dfrac{x^{2}}{a^{2} + x^{2}} \hfill\\\Rightarrow MN = \dfrac{ax^{2}\sqrt{2}}{a^{2} + x^{2}} \hfill\\\end{matrix}

    Nếu \widehat{MAN} = 60^{0} thì ∆AMN đều => AM = MN => x = a

    Nếu \widehat{MAN} = 120^{0} thì MN = \sqrt{3}AM \Rightarrow 2x^{2} = 3\left(
x^{2} + a^{2} ight) (Vô lý)

    Vậy SA = a

  • Câu 34: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và cạnh bên đều bằng a . Gọi M;N lần lượt là trung điểm của AD;SD . Khi đó (MN,SC) bằng:

    Ta có: MN//SA \Rightarrow (MN,SC) =
(SA,SC)

    Lại có AC = a\sqrt{2}

    Xét tam giác SACAC^{2} = SA^{2} + SC^{2}

    Theo định lí Pythagore đảo suy ra tam giác SAC vuông tại S

    Suy ra \widehat{ASC} = 90^{0} hay (MN,SC) = (SA,SC) = 90^{0}

  • Câu 36: Nhận biết

    Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?

    "Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).

  • Câu 37: Thông hiểu

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường MC’ và mặt phẳng (ABC). Khi đó tan α bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: CM là hình chiếu của C’M lên (ABC)

    => Góc giữa MC’ và (ABC) là góc giữa MC’ và MC.

    Xét tam giác MCC’ vuông tại C ta có:

    \tan\alpha = \dfrac{CC'}{MC} =\dfrac{a}{\dfrac{a\sqrt{3}}{2}} = \dfrac{2\sqrt{3}}{3}

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABC là tam giác vuông \widehat{ABC} = 60^{0}. Tam giác SBC là tam giác đều có cạnh bằng 2a và hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trung điểm của BC. Tính \left( SA;(ABC) ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của BC

    Suy ra \left\{ \begin{matrix}SI\bot(ABC) \\SI = a\sqrt{3} \\\end{matrix} ight.

    SI\bot(ABC) nên hình chiếu của SA trên (ABC) là AI

    Do đó góc giữa SA và mặt phẳng (ABC) bằng góc giữa SA và AI bằng \widehat{SAI}

    Tma giác SAI vuông tại I ta có:

    SI = a\sqrt{3};AI = \frac{1}{2}BC =a

    \Rightarrow \tan\widehat{SAI} =\frac{SA}{AI} = \sqrt{3} \Rightarrow \widehat{SAI} = 60^{0}

  • Câu 39: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 40: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = a\sqrt{5};d(C;BB') =
a\sqrt{5};d(A;BB') = a;d(A;CC') = 2a. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’

    Ta có: \left\{ \begin{matrix}
AJ\bot BB' \\
AK\bot CC' \Rightarrow AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AJK)

    \Rightarrow BB'\bot JK \Rightarrow
JK//CH \Rightarrow JK = CH = a\sqrt{5}

    Xét tam giác AJK có: JK^{2} = AJ^{2} +
AK^{2} = 5a^{2}

    Vậy tam giác AJK vuông tại A

    Gọi F là trung điểm của JK khi đó ta có: AF = JF = FK = \frac{a\sqrt{5}}{2}

    Gọi N là trung điểm của BC, xét tam giác ANF có:

    \cos\widehat{ANF} = \dfrac{AF}{AN} =\dfrac{\dfrac{a\sqrt{5}}{2}}{a\sqrt{5}} = \dfrac{1}{2}

    \Rightarrow \widehat{ANF} =
60^{0}

    (AN = AM = a\sqrt{5}AN//AM;AN = AM)

    \Rightarrow S_{AJK} = \frac{1}{2}AJ.AK =
\frac{1}{2}.a.2a = a^{2}

    Lại có: S_{AJK} = S_{ABC}.\cos60^{0}\Rightarrow S_{ABC} = \frac{S_{AJK}}{\cos60^{0}} = 2a^{2}

    Xét tam giác AMA;’ vuông tại M ta có:

    \widehat{MAA'} = \widehat{AMF} =
30^{0}

    Hay AM = A'M.\tan30^{0} =\frac{a\sqrt{15}}{3}

    Vậy thể tích khối lăng trụ đã cho là:

    V = AM.S_{ABC} =
\frac{a\sqrt{15}}{3}.2a^{2} = \frac{2a^{3}\sqrt{15}}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo