Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 3: Vận dụng

    Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).

    Gọi M là trung điểm của SD.

    Tam giác SCD đều nên CM ⊥ SD.

    Tam giác SBD có SB = SD = a, BD =
a\sqrt{2} nên vuông tại S

    => SB ⊥ SD => OM ⊥ SD

    => ((SBD),(SCD)) = (OM, CM) = \widehat{OMC}

    Ta có: \left\{ \begin{matrix}
OC\bot BD \\
OC\bot SO \\
\end{matrix} ight.\  \Rightarrow OC\bot(SBD) \Rightarrow OC\bot
OM

    Tam giác vuông MOC ta có:

    \tan\widehat{OMC} = \frac{OC}{OM} =
\sqrt{2}

  • Câu 4: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 3a?

    Ta có: V = (3a)^{3} =
27a^{3}

  • Câu 5: Nhận biết

    Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?

    Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 7: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 8: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.

    Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)

    => BD ⊥ SC, BD ⊥ SO

    Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí

  • Câu 11: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sau đây sai?

    Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”

    Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}\widehat{(CD;SA)} = \widehat{(AB;SA)} = 90^{0} \\\Rightarrow \left\{ \begin{matrix}CD\bot SA \\CD\bot SD \\\end{matrix} ight.\  \Rightarrow CD\bot AD \\\end{matrix}

    => ABCD là hình chữ nhật, từ đó ta suy ra

    AC = BD

    AB ⊥ (SAD)

    BC ⊥ AB

    Đáp án SO ⊥ (ABCD) sai

    Nếu SO ⊥ (ABCD) thì \left\{\begin{matrix}CD\bot SO \\CD\bot SA \\\end{matrix} ight.\  \Rightarrow CD\bot AO điều này vô lí

  • Câu 13: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và I = AC \cap BD. Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi \varphi là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính \sin \varphi.

    Tính góc giữa đường thẳng và mặt phẳng

    Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).

    Khi đó: NH = h = d\left( {N,\left( {ACM} ight)} ight) = IN.\sin \varphi

    Ta có: h = d\left( {N,\left( {ACM} ight)} ight) = \frac{1}{2}d\left( {A',\left( {ACM} ight)} ight) = \frac{{3{V_{A'ACM}}}}{{2{S_{ACM}}}}

    Xét tam giác ACM có:  CM = \frac{{\sqrt 5 }}{2}a

    \begin{matrix}  A{M^2} = \dfrac{{A{{D'}^2} + A{{C'}^2}}}{2} - \dfrac{{C'{{D'}^2}}}{4} \hfill \\   = \dfrac{{{{\left( {\sqrt 2 a} ight)}^2} + {{\left( {\sqrt 3 a} ight)}^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{9}{4}{a^2} \Rightarrow AM = \dfrac{3}{2}a \hfill \\   \Rightarrow {S_{ACM}} = \sqrt {p\left( {p - AC} ight)\left( {p - CM} ight)\left( {p - AM} ight)}  = \dfrac{3}{4}{a^2} \hfill \\  \left( {p = \dfrac{{AC + CM + AM}}{2}} ight) \hfill \\  {V_{A'ACM}} = {V_{M.A'AC}} = \dfrac{1}{2}{V_{D'.A'AC}} = \dfrac{1}{6}{V_{ACD.A'C'D'}} = \dfrac{1}{{12}}{V_{{\text{lp}}}} = \dfrac{{{a^2}}}{{12}} \hfill \\   \Rightarrow h = IN = \dfrac{a}{6} \hfill \\ \end{matrix}

    Vậy \sin \varphi  = \frac{h}{{IN}} = \frac{{\sqrt 3 }}{9}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và cạnh bên đều bằng a . Gọi M;N lần lượt là trung điểm của AD;SD . Khi đó (MN,SC) bằng:

    Ta có: MN//SA \Rightarrow (MN,SC) =
(SA,SC)

    Lại có AC = a\sqrt{2}

    Xét tam giác SACAC^{2} = SA^{2} + SC^{2}

    Theo định lí Pythagore đảo suy ra tam giác SAC vuông tại S

    Suy ra \widehat{ASC} = 90^{0} hay (MN,SC) = (SA,SC) = 90^{0}

  • Câu 15: Thông hiểu

    Một khối chóp tứ giác đều có các cạnh bằng 2t (cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:

    SA = BA = BC = DA = DC

    \Rightarrow \Delta SAC = \Delta BAC =
\Delta DBC

    \Rightarrow \Delta SAC;\Delta BAC;\Delta
DBC lần lượt vuông tại S; B; D

    I là trung điểm của AC suy ra SA =
\frac{1}{2}AC = \frac{1}{2}.2t.\sqrt{2} = t\sqrt{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SI = \frac{1}{3}.(2t)^{2}.t\sqrt{2} =
\frac{4t^{3}\sqrt{2}}{3}

  • Câu 16: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2, AB = a\sqrt{2}, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:

    Hình vẽ minh họa:

    Gọi H = AM ∩ BD

    Ta có: \left\{ \begin{matrix}(SBD)\bot(ABC) \\(SAM)\bot(ABC) \\(SBD)\  \cap \ (SAM) = SH \\\end{matrix} ight.

    => SH ⊥ (ABC)

    Vì AB song song CD nên theo định lý Ta-lét ta có:

    \frac{HB}{HD} = \frac{AB}{DM} =2

    \Rightarrow \frac{d\left( B;(SAM)ight)}{d\left( D;(SAM) ight)} = 2

    => d(B; (SAM)) = 2d(D; (SAM))

    Kẻ DK ⊥ AM tại K.

    Ta có: \left\{ \begin{matrix}DK\bot AM \\DK\bot SH \\\end{matrix} ight.=> DK ⊥ (SAM) tại K => d(D; (SAM)) = DK

    => d(B; (SAM)) = 2DK

    Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:

    S_{ADM} = \frac{1}{2}S_{ADC} =\frac{1}{4}S_{ABDC} = \frac{2a^{2}}{4} = \frac{a^{2}}{2}

    Lại có CD = AB = a\sqrt{2}

    \Rightarrow \left\{ \begin{matrix}DM = \dfrac{a\sqrt{2}}{2} \\AD = BC = 2a \\\end{matrix} ight.

    Khi đó

    S_{ADM} =\frac{1}{2}AM.DM.sin\widehat{D}

    \Leftrightarrow \frac{a^{2}}{2} =\frac{1}{2}.2a.sin\widehat{D}

    \Rightarrow \sin\widehat{D} =\frac{\sqrt{2}}{2} \Rightarrow \widehat{D} = 45^{0}

    Do vậy xét trong tam giác ADM ta có:

    \begin{matrix}AM^{2} = AD^{2} + DM^{2} - 2AD.DM.cos45^{0} \hfill\\AM^{2} = 4a^{2} + \dfrac{a}{2}^{2} -2.2a.\dfrac{a\sqrt{2}}{2}.\dfrac{\sqrt{2}}{2} \hfill\\AM^{2} = \dfrac{5a^{2}}{2} \hfill\\\end{matrix}

    AM = \frac{a\sqrt{10}}{2}

    Lại có S_{ADM} =\frac{1}{2}DK.AM

    \Rightarrow DK = \frac{2S_{ADM}}{AM} =\frac{2a}{\sqrt{10}} = \frac{a\sqrt{10}}{5}

    Từ đó d\left( B;(SAM) ight) = 2.DK =\frac{2a\sqrt{10}}{5}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a; cạnh SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của cạnh SC. Gọi \mu là góc giữa đường thẳng BM và mặt phẳng (ABC). Xác định \cos\mu?

    Hình vẽ minh họa

    Gọi H là trung điểm của AC => HM // SA và HM = \frac{1}{2}.SA = a

    SA\bot(ABCD) \Rightarrow
HM\bot(ABC)

    \Rightarrow \left( BM;(ABC) ight) =
(BM,BH) = \widehat{MBH}

    Ta có: BH =
\frac{a\sqrt{3}}{2}

    \Rightarrow BM = \sqrt{BH^{2} +
MH^{2}}= \sqrt{\left( \frac{a\sqrt{3}}{2}
ight)^{2} + a^{2}} = \frac{a\sqrt{7}}{2}

    Trong tam giác BMH có:

    \cos\mu = \cos\widehat{MBH} =\dfrac{BH}{BM} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\dfrac{a\sqrt{7}}{2}} =\dfrac{\sqrt{21}}{7}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

    Hình chiếu của SA lên mặt phẳng (ABC) là AH

    => Góc giữa SA và mặt phẳng (ABC) là \widehat{SAH}

    Tam giác ABC và SBC là các tam giác đều cùng cạnh a

    AH = SH =\frac{a\sqrt{3}}{2}

    Vậy tan α = 1

  • Câu 20: Nhận biết

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q). Khi đó khẳng định nào là khẳng định đúng?

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q), khi đó a nằm trên (P) hoặc song song với (P).

  • Câu 21: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 22: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 23: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của SD\alpha là góc giữa hai đường thẳng ACBM. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi O là giao điểm của AC và BD, I là giao điểm của SO và BM.

    Trong mặt phẳng (SAC) kẻ NK // AC, NK
\cap SA = N;NK \cap SC = K

    Ta có: I là trọng tâm tam giác SBD.

    Ta có: SO = \sqrt{SA^{2} + AO^{2}} =
\frac{a\sqrt{3}}{2}

    Tam giác SBD đều cạnh bằng a\sqrt{2}
\Rightarrow BM = \frac{a\sqrt{2}.\sqrt{3}}{2} = \frac{a\sqrt{6}}{2}
\Rightarrow BI = \frac{2}{3}MB = \frac{a\sqrt{6}}{3}

    \Rightarrow \frac{IK}{OC} = \frac{2}{3}
\Rightarrow IK = \frac{2}{3}OC = \frac{2}{3}.\frac{a\sqrt{2}}{2} =
\frac{a\sqrt{2}}{3}

    \frac{SK}{SC} = \frac{2}{3} \Rightarrow
SK = \frac{2}{3}SC = \frac{2}{3}.a\sqrt{3}

    Tam giác SBC vuông tại B \Rightarrow
\cos\widehat{SBC} = \frac{SB}{SC} = \frac{a\sqrt{2}}{a\sqrt{3}} =
\frac{\sqrt{6}}{3}

    Lại có:

    KB^{2} = SK^{2} + SB^{2} -
2SK.SB.cos\widehat{BSK}

    = \left( \frac{2a\sqrt{3}}{3}
ight)^{2} + 2a^{2} -
2.\frac{2a\sqrt{3}}{3}.a\sqrt{2}.\frac{\sqrt{6}}{3} =
\frac{2}{3}a^{2}

    \Rightarrow \cos\widehat{KIB} =
\frac{IK^{2} + IB^{2} - KB^{2}}{2.IK.IB}

    = \frac{\left( \frac{a\sqrt{2}}{3}
ight)^{2} + \left( \frac{a\sqrt{6}}{3} ight)^{2} -
\frac{2a^{2}}{3}}{2.\frac{a\sqrt{2}}{3}.\frac{a\sqrt{6}}{3}} =
\frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}

    Vậy cosin góc giữa hai đường thẳng ACBM\frac{\sqrt{3}}{6}.

    VD

     

    1

  • Câu 24: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 26: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.

    Hình vẽ minh họa:

    Xác định góc 600

    \widehat{\left( SC;(ABCD) ight)} =\widehat{(SC;AC)} = 60^{0} = \widehat{SCA}

    SA = AC.tan\widehat{SCA} =a\sqrt{6}

    Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a

    Xét tam giác ACB ta có:

    CM = a = \frac{1}{2}AB

    => Tam giác ACB vuông tại C

    Lấy điểm E sao cho ACBE là hình chữ nhật

    => AC // BE

    => d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))

    Kẻ AK ⊥ SE. Khi đó:

    d\left( A;(SBE) ight) = AK =\frac{SA.AE}{\sqrt{SA^{2} + AE^{2}}} = \frac{a\sqrt{6}}{2}

  • Câu 27: Thông hiểu

    Cho hình chóp OABC có OA = OB = OC = 1, các cạnh OA, OB, OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vecto \overrightarrow {OC} ;\overrightarrow {MA}.

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OC} .\overrightarrow {MA}  = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {BA}  \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OA}  - \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OB}  \hfill \\   = 0 - 0 = 0 \hfill \\   \Rightarrow \overrightarrow {OC} .\overrightarrow {MA}  = 0 \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho một khối chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB =
2aAB = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều suy ra SH\bot
AB

    \left\{ \begin{matrix}
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp

    Khi đó SH = a\sqrt{3}

    Ta có: AB = 2a \Rightarrow BC =
2a

    S_{ABC} = \frac{1}{2}(2a)^{2} =
2a^{2}

    Thể tích khối chóp là: V =
\frac{1}{3}S_{ABC}.SH = \frac{1}{3}.2a^{2}.a\sqrt{3} =
\frac{2a^{3}\sqrt{3}}{3}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:

    Hình vẽ minh họa:

    Hoàn thành mệnh đề

    Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Tam giác SAI vuông tại I

    => SA2 = AI2 + SI2

    Tam giác SBI vuông tại I

    => SB2 = BI2 + SI2

    Tam giác SCI vuông tại I

    => SC2 = CI2 + SI2

    Kết hợp với điều kiện: SA = SB = SC

    => I là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot SA \\
AB\bot BC \\
\end{matrix} ight. => d(SA, BC) = AB

  • Câu 33: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 34: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 35: Thông hiểu

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 36: Nhận biết

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

  • Câu 37: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 38: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 5a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 5a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{5}{3}a^{3}

  • Câu 39: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = a\sqrt{5};d(C;BB') =
a\sqrt{5};d(A;BB') = a;d(A;CC') = 2a. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’

    Ta có: \left\{ \begin{matrix}
AJ\bot BB' \\
AK\bot CC' \Rightarrow AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AJK)

    \Rightarrow BB'\bot JK \Rightarrow
JK//CH \Rightarrow JK = CH = a\sqrt{5}

    Xét tam giác AJK có: JK^{2} = AJ^{2} +
AK^{2} = 5a^{2}

    Vậy tam giác AJK vuông tại A

    Gọi F là trung điểm của JK khi đó ta có: AF = JF = FK = \frac{a\sqrt{5}}{2}

    Gọi N là trung điểm của BC, xét tam giác ANF có:

    \cos\widehat{ANF} = \dfrac{AF}{AN} =\dfrac{\dfrac{a\sqrt{5}}{2}}{a\sqrt{5}} = \dfrac{1}{2}

    \Rightarrow \widehat{ANF} =
60^{0}

    (AN = AM = a\sqrt{5}AN//AM;AN = AM)

    \Rightarrow S_{AJK} = \frac{1}{2}AJ.AK =
\frac{1}{2}.a.2a = a^{2}

    Lại có: S_{AJK} = S_{ABC}.\cos60^{0}\Rightarrow S_{ABC} = \frac{S_{AJK}}{\cos60^{0}} = 2a^{2}

    Xét tam giác AMA;’ vuông tại M ta có:

    \widehat{MAA'} = \widehat{AMF} =
30^{0}

    Hay AM = A'M.\tan30^{0} =\frac{a\sqrt{15}}{3}

    Vậy thể tích khối lăng trụ đã cho là:

    V = AM.S_{ABC} =
\frac{a\sqrt{15}}{3}.2a^{2} = \frac{2a^{3}\sqrt{15}}{3}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD); SA = AB. Gọi trung điểm các cạnh BC;SC lần lượt là E;F. Tính \left( EF;(SAD) ight)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AB\bot AD \\
AB\bot SA \\
\end{matrix} ight.\  \Rightarrow AB\bot(SAD)

    \Rightarrow \left( EF;(SAD) ight) =
\left( BS;(SAD) ight) = (BS;AS) = \widehat{BSA}

    Xét tam giác SAB vuông tại A có SA =
AB

    \Rightarrow \widehat{BSA} =
45^{0}

    \Rightarrow \left( EF;(SAD) ight) =
\widehat{BSA} = 45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo