Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA\bot(ABCD)SA = a\sqrt{6}. Giả sử \alpha = \left( SB;(SAC) ight). Chọn kết luận đúng?

    Hình vẽ minh họa

    Dễ thấy BO\bot(SAC) \Rightarrow \alpha =
\left( SB;(SAC) ight) = \widehat{BSO}

    Ta có: \sin\alpha = \dfrac{BO}{SB} =\dfrac{\dfrac{a\sqrt{2}}{2}}{a\sqrt{7}} =\dfrac{\sqrt{14}}{14}

  • Câu 4: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 5: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 6: Nhận biết

    Cho hình chóp S.ABC có AB = AC, \widehat {SAB} = \widehat {SAC}. Tính số đo góc giữa hai đường thẳng SA và BC.

    Ta có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BC}  = \overrightarrow {AS} .\left( {\overrightarrow {AC}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AS}  - \overrightarrow {AB} .\overrightarrow {AS}  \hfill \\   = AC.AS.\cos \widehat {SAC} - AB.AS.\cos \widehat {SAB} \hfill \\   = 0 \hfill \\ \end{matrix}

    AB = AC,\widehat {SAB} = \widehat {SAC}

    => Góc giữa hai đường thẳng SA, BC là: 900

  • Câu 7: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AM, AN lần lượt là đường cao của tam giác SAB và tam giác SAD. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Khẳng định đúng trong các khẳng định đã cho

    Ta có: SA ⊥ (ABCD) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB)

    => BC ⊥ AE

    Mà AM nằm trong mặt phẳng (SAB)

    Xét tam giác SAB có:

    AM ⊥ SB

    Mà BC ⊥ AM => AM ⊥ (SBC) => AM ⊥ SC

    Chứng minh tương tự ta được: AN ⊥ SC

    => SC ⊥ (AMN)

  • Câu 9: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a\sqrt{2}. Tính khoảng cách giữa hai đường thẳng CC’ và BD.

    Hình vẽ minh họa:

    Ta có:

    OC ⊥ BD

    OC ⊥ CC’

    => OC là đoạn vuông góc chung của CC’ và BD.

    Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng x, SA\bot(ABCD);SA = 2x. Gọi F trung điểm các cạnh AB, G là trung điểm của SF. Tính \cos(CG;BD)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD, H là trung điểm của SI.

    Ta có: GH // FI; BD // FI nên GH // BD => (CG;BD) = (CG;GH) = \widehat{CGH}

    Ta có: CI = \sqrt{CD^{2} + DI^{2}} =
\sqrt{x^{2} + \frac{x^{2}}{4}} = \frac{x\sqrt{5}}{2}

    \Rightarrow CI =
\frac{x\sqrt{5}}{2}

    SF = SI = \sqrt{SA^{2} + AF^{2}} =
\sqrt{(2x)^{2} + \left( \frac{x}{2} ight)^{2}} =
\frac{x\sqrt{17}}{2}

    SC = \sqrt{SA^{2} + AC^{2}} =
\sqrt{(2x)^{2} + \left( x\sqrt{2} ight)^{2}} = x\sqrt{6}

    Khi đó:

    CG = \sqrt{\frac{CF^{2} + SC^{2}}{2} -\frac{SF^{2}}{4}}= \sqrt{\dfrac{\dfrac{5x^{2}}{4} + 6x^{2}}{2} -\dfrac{9x^{2}}{4}} = \dfrac{x\sqrt{41}}{4}

    GH = \frac{1}{2}FI =
\frac{1}{2}.\frac{1}{2}BD = \frac{x\sqrt{2}}{4}

    Ta có: \cos\widehat{CGH} = \frac{GC^{2} +
GH^{2} - HC^{2}}{2.GC.GH}

    = \dfrac{\left( \dfrac{x\sqrt{41}}{4}ight)^{2} + \left( \dfrac{x\sqrt{2}}{4} ight)^{2} - \left(\dfrac{x\sqrt{41}}{4} ight)^{2}}{2.\left( \dfrac{x\sqrt{41}}{4}ight).\left( \dfrac{x\sqrt{2}}{4} ight)} =\dfrac{\sqrt{82}}{82}

    \Rightarrow \cos(CG;BD) =
\frac{\sqrt{82}}{82}

  • Câu 11: Nhận biết

    Trong các mệnh đề sau mệnh đề nào đúng?

    Mệnh đề đúng là: Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c)

  • Câu 12: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 13: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{2a\sqrt{3}}{3};d(C;BB') =
2a;d(A;BB') = a;d(A;CC') = a\sqrt{3}. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác A'B_{1}C_{1} có các cạnh:

    A'B_{1} = a;A'C_{1} =
a\sqrt{3};B_{1}C_{1} = 2a

    Suy ra tam giác A'B_{1}C_{1} vuông tại A’ và trung tuyến A’H của tam giác đó bằng a

    Gọi giao điểm của AM và A’H là T

    Ta có:

    A'M = \frac{2a\sqrt{3}}{3};A'H =
a

    \Rightarrow MH = \frac{a}{\sqrt{3}}
\Rightarrow \widehat{MA'H} = 30^{0} \Rightarrow \widehat{MA'A} =
60^{0}

    \Rightarrow AA' =
\frac{A'M}{\cos\widehat{MA'A}} =
\frac{4a}{\sqrt{3}}

    \Rightarrow V_{ABC.A'B'C'} =
V_{A'B_{1}C_{1}.ABC} = AA'.S_{A'B_{1}C_{1}} =
2a^{3}

  • Câu 14: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số \frac{NB}{NC'} bằng:

    Hình vẽ minh họa:

    Gọi H, I lần lượt là trung điểm của AB, AC’

    Suy ra HI // BC’

    Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH

    Dễ thấy BK ⊥ (SCH)

    Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’

    Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành

    Khi đó MN là đoạn vuông góc chung cần tìm

    Ta có:

    \frac{NB}{BC'} = \frac{MK}{2HI} =\frac{1}{2}\left( 1 + \frac{HK}{A'H} ight)

    = \frac{1}{2}\left( 1 + \frac{HK}{HS}ight) = \frac{1}{2}\left( 1 + \frac{HB^{2}}{HS^{2}}ight)

    Do 2HB = SB nên:

    \frac{NB}{BC'} = \frac{1}{2}\left( 1+ \frac{HB^{2}}{HB^{2} + SB^{2}} ight)

    = \frac{1}{2}\left( 1 +\frac{HB^{2}}{HB^{2} + 4HB^{2}} ight) = \frac{3}{5}

    => \frac{NB}{NC'} =\frac{3}{2}

  • Câu 15: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 17: Nhận biết

    Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Nếu đường thẳng a vuông góc với giao tuyến của (P) và (Q) thì a vuông góc với mặt phẳng (P) và vuông góc với mặt phẳng (Q).”

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết: AB = a,AD = SA = a\sqrt 3. Hai bên mặt SAB và SAD vuông tại a. Gọi μ là góc giữa hai đường thẳng SB và AC. Tính cosμ?

    Hình vẽ minh họa:

    Xác định cosin góc giữa hai đường thẳng SB và AC

    Ta có:

    \begin{matrix}  \cos \left( {\overrightarrow {SB} ;\overrightarrow {AC} } ight) = \dfrac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{SB.AC}} = \dfrac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{4{a^2}}} \hfill \\  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SA}  + \overrightarrow {AB} } ight).\overrightarrow {AC}  \hfill \\   = \overrightarrow {SA} .\overrightarrow {AC}  + \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {AC}  = \overrightarrow {AS} .\left( {m\overrightarrow {AB}  + n\overrightarrow {AC} } ight) = 0 \hfill \\  \overrightarrow {AB} .\overrightarrow {AC}  = 2.2a.\cos {60^0} = {a^2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {SB} ,\overrightarrow {AC} } ight) = \frac{1}{4} \hfill \\   \Rightarrow \cos \mu  = \frac{1}{4} \hfill \\ \end{matrix}

     

  • Câu 19: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 20: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 21: Nhận biết

    Trong các mệnh đề dưới đây, mệnh đề nào là mệnh đề đúng?

    Mệnh đề đúng: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia”.

  • Câu 22: Thông hiểu

    Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc. Đường thẳng DE vuông góc với 

    Đường thẳng DE vuông góc với chỉ với AC và BF

  • Câu 23: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?

    Hình vẽ minh họa

    Ta có:

    ABCD là hình chữ nhật nên BD không vuông góc với AC

    Vậy BD không vuông góc với mặt phẳng (SAC)

  • Câu 24: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

  • Câu 25: Nhận biết

    Cho hình lập phương như hình vẽ:

    Hỏi đường thẳng nào vuông góc với đường thẳng BC'?

    Ta có:

    \left\{ \begin{matrix}
AD'\bot AB \\
AD'\bot A'D \\
\end{matrix} ight.\  \Rightarrow AD'\bot(ABC'D')
\Rightarrow AD'\bot BC'

  • Câu 26: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

    Tính cosin góc giữa hai đường thẳng SB và AC

    +) Ta có:

    \begin{matrix}  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SH}  + \overrightarrow {HB} } ight)\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \overrightarrow {SH} .\overrightarrow {AB}  + \overrightarrow {SH} .\overrightarrow {BC}  + \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \dfrac{1}{2}A{B^2} = 2{a^2} \hfill \\ \end{matrix}

    +) Mặt khác

    \begin{matrix}  AC = a\sqrt 5 ;CH = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  SH = CH.\tan \widehat {SCH} = a\sqrt 6  \hfill \\  SB = \sqrt {S{H^2} + H{B^2}}  = \sqrt {{{\left( {a\sqrt 6 } ight)}^2} + {a^2}}  = a\sqrt 7  \hfill \\ \end{matrix}

    => \cos \left( {SB,AC} ight) = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } ight|}}{{SB.AC}} = \frac{{2{a^2}}}{{a\sqrt 7 .a\sqrt 5 }} = \frac{2}{{\sqrt {35} }}

  • Câu 27: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 29: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 30: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)

    => Tam giác ABD vuông tại B.

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    Ta có: \left\{ \begin{matrix}
AD^{2} = AB^{2} + BD^{2} \\
BD^{2} = BC^{2} + CD^{2} \\
\end{matrix} ight.

    \begin{matrix}\Rightarrow AD^{2} = AB^{2} + BC^{2} + CD^{2} \hfill \\\Rightarrow AD = \sqrt{AB^{2} + BC^{2} + CD^{2}} \hfill \\\Rightarrow AD = \sqrt{a^{2} + b^{2} + c^{2}} \hfill \\\end{matrix}

  • Câu 31: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương.

  • Câu 32: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 33: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 34: Thông hiểu

    Cho tam giác ACD và tam giác BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a;CD =
2a. Với giá trị nào của x thì hai mặt phẳng (ABC)(ABD)?

    Hình vẽ minh họa

    Gọi I, J lần lượt là trung điểm của AB và CD

    Suy ra CI\bot AB;DI\bot AB(ABC) \cap (ABD) = AB

    Do đó (ABC)\bot(ABD) \Rightarrow
\widehat{CID} = 90^{0} \Rightarrow IJ = \frac{1}{2}CD

    Ta có: \left\{ \begin{matrix}
(ACD)\bot(BCD) \\
AJ\bot CD \\
\end{matrix} ight.\  \Rightarrow AJ\bot(BCD) \Rightarrow AJ\bot
JB

    Mặt khác JA = JB;(\Delta ACD = \Delta
BCD) nên tam giác JAB vuông cân tại J

    Do đó IJ = \frac{\sqrt{2}}{2}JA =
\frac{\sqrt{2}}{2}\sqrt{AC^{2} - JC^{2}} = \frac{\sqrt{2}}{2}\sqrt{a^{2}
- x^{2}}

    Vậy \frac{\sqrt{2}}{2}\sqrt{a^{2} -
x^{2}} = x \Leftrightarrow a^{2} = 3x^{2} \Leftrightarrow x =
\frac{a\sqrt{3}}{3}

  • Câu 35: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCDcó đáy ABCD là hình vuông tâm O cạnh bằng aSA =
a\sqrt{3} vuông góc với đáy. Tính cosin góc giữa SB;AC.

    Hình vẽ minh hoạ

    Gọi I là trung điểm của SD

    => OI là đường trung bình tam giác SBD

    Suy ra \left\{ \begin{matrix}OI//SB \\OI = \dfrac{SB}{2} = \dfrac{\sqrt{SA^{2} + AB^{2}}}{2} = a \\\end{matrix} ight.

    Ta có: AI = \frac{SD}{2} =
\frac{\sqrt{SA^{2} + AD^{2}}}{2} = a

    \Rightarrow AI = OI nên tam giác AOI cân tại I

    Gọi H là tung điểm của OA \Rightarrow\left\{ \begin{matrix}IH\bot OA \\OH = \dfrac{OA}{2} = \dfrac{AC}{4} = \dfrac{a\sqrt{2}}{4} \\\end{matrix} ight.

    Xét tam giác OHI có:

    \cos\widehat{HOI} = \dfrac{OH}{OI} =\dfrac{\dfrac{a\sqrt{2}}{4}}{a} = \dfrac{\sqrt{2}}{4}

    \cos(SB,AC) = \cos\widehat{HOI} =
\frac{\sqrt{2}}{4}

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông với AC=\frac{a\sqrt{2}}{2}. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.

    Ta có AD // BC => AD // (SBC) => d(AD;SC)=d(A;(SBC))

    Kẻ AP⊥SB =>d(A;(SBC))=AP =>d(AD;SC)=AP

    Ta có:

    \begin{matrix}  AB = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{a}{2} \hfill \\  \dfrac{1}{{A{P^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\ \end{matrix}

    Lại có \left( {SB;\left( {ABCD} ight)} ight) = \widehat {SBA} = {60^0}

    \begin{matrix}   \Rightarrow \tan {60^0} = \dfrac{{SA}}{{AB}} \Rightarrow SA = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow AP = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 39: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 40: Vận dụng

    Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:

    Hình vẽ minh họa:

    Gọi I là trung điểm BC.

    Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).

    Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.

    Qua cách dựng ta có BC // (AMN). (1)

    Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)

    Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.

    Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.

    Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo