Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, tam giác SAD là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng SABC.

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(BD;SA) = \widehat{SAD} = 60^{0}

    \Rightarrow \sin(BC;SA) =
\frac{\sqrt{3}}{2}

  • Câu 2: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 3: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD, đáy là tứ giác ABCD cạnh bằng a. Biết cạnh bên gấp hai lần cạnh đáy. Tính thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Gọi I là tâm đáy.

    Vì S.ABCD là hình chóp tứ giác đều nên SI là đường cao của hình chóp.

    Ta có: BD = \sqrt{AB^{2} + AD^{2}} =
a\sqrt{2}

    Vì AI là trung tuyến của tam giác ABD vuông tại A

    \Rightarrow AI = \frac{1}{2}BD =
\frac{a\sqrt{2}}{2}

    Chiều cao của khối chóp là SI =
\sqrt{SA^{2} - AI^{2}} = \sqrt{4a^{2} - \left( \frac{a\sqrt{2}}{2}
ight)} = \frac{a\sqrt{14}}{2}

    Thể tích khối chóp là: V =
\frac{1}{3}.SI.S_{ABCD} = \frac{1}{3}.\frac{a\sqrt{14}}{2}a^{2} =
\frac{a^{3}\sqrt{14}}{6}

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 6: Thông hiểu

    Cho hình lăng trụ đứng ABC.A'B'C' có đáy là các tam giác đều cạnh bằng \sqrt{3} và cạnh bên bằng 1. Tính góc giữa hai đường thẳng BB'AC'?

    Hình vẽ minh họa

    Ta có:

    BB'//CC' \Rightarrow
(BB';AC') = (CC';AC') = \widehat{AC'C}

    Khi đó tam giác ACC' vuông cân tại C nên \tan\widehat{AC'C} =
\frac{AC}{CC'} = \frac{\sqrt{3}}{1} = \sqrt{3}

    \Rightarrow \widehat{AC'C} =
60^{0}

    \Rightarrow (BB';AC') =
\widehat{AC'C} = 60^{0}

  • Câu 7: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 9: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại AAB =
a\sqrt{2}. Biết SA\bot(ABC)SA = a. Góc nhị diện \lbrack S,\ BC,\ Abrack có số đo bằng:

    Hình vẽ minh họa

    Kẻ AM\bot BC tại M \Rightarrow M là trung điểm của BCAM =
\frac{1}{2}BC = \frac{\left( a\sqrt{2} ight)\sqrt{2}}{2} = a .

    Ta có \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
(SAM)\bot BC \\
(SAM) \cap (SBC) = SM \\
(SAM) \cap (ABC) = AM \\
\end{matrix} ight. \Rightarrow
\left( \widehat{(SBC),(ABC)} ight) = \left( \widehat{SM,AM}
ight).

    Suy ra góc giữa (SBC)(ABC) bằng góc \widehat{SMA}.

    Ta có: \tan\widehat{SMA} = \frac{SA}{AM} = \frac{a}{a} =
1 \Rightarrow \widehat{SMA} = 45{^\circ}

    Suy ra góc nhị diện \lbrack S,\ BC,\
Abrack có số đo bằng 45{^\circ}.

  • Câu 12: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 13: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 15: Thông hiểu

    Đáy của hình lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AA’ và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC. Khi đó AM ⊥ AA’ tại A, AM ⊥ BC tại M.

    Do đó, AM là đoạn vuông góc chung của AA’ và BC.

    => d(AA’, BC) = \frac{4\sqrt{3}}{2} =
2\sqrt{3}

  • Câu 16: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

  • Câu 17: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của SD\alpha là góc giữa hai đường thẳng ACBM. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi O là giao điểm của AC và BD, I là giao điểm của SO và BM.

    Trong mặt phẳng (SAC) kẻ NK // AC, NK
\cap SA = N;NK \cap SC = K

    Ta có: I là trọng tâm tam giác SBD.

    Ta có: SO = \sqrt{SA^{2} + AO^{2}} =
\frac{a\sqrt{3}}{2}

    Tam giác SBD đều cạnh bằng a\sqrt{2}
\Rightarrow BM = \frac{a\sqrt{2}.\sqrt{3}}{2} = \frac{a\sqrt{6}}{2}
\Rightarrow BI = \frac{2}{3}MB = \frac{a\sqrt{6}}{3}

    \Rightarrow \frac{IK}{OC} = \frac{2}{3}
\Rightarrow IK = \frac{2}{3}OC = \frac{2}{3}.\frac{a\sqrt{2}}{2} =
\frac{a\sqrt{2}}{3}

    \frac{SK}{SC} = \frac{2}{3} \Rightarrow
SK = \frac{2}{3}SC = \frac{2}{3}.a\sqrt{3}

    Tam giác SBC vuông tại B \Rightarrow
\cos\widehat{SBC} = \frac{SB}{SC} = \frac{a\sqrt{2}}{a\sqrt{3}} =
\frac{\sqrt{6}}{3}

    Lại có:

    KB^{2} = SK^{2} + SB^{2} -
2SK.SB.cos\widehat{BSK}

    = \left( \frac{2a\sqrt{3}}{3}
ight)^{2} + 2a^{2} -
2.\frac{2a\sqrt{3}}{3}.a\sqrt{2}.\frac{\sqrt{6}}{3} =
\frac{2}{3}a^{2}

    \Rightarrow \cos\widehat{KIB} =
\frac{IK^{2} + IB^{2} - KB^{2}}{2.IK.IB}

    = \frac{\left( \frac{a\sqrt{2}}{3}
ight)^{2} + \left( \frac{a\sqrt{6}}{3} ight)^{2} -
\frac{2a^{2}}{3}}{2.\frac{a\sqrt{2}}{3}.\frac{a\sqrt{6}}{3}} =
\frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}

    Vậy cosin góc giữa hai đường thẳng ACBM\frac{\sqrt{3}}{6}.

    VD

     

    1

  • Câu 18: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2, AB = a\sqrt{2}, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:

    Hình vẽ minh họa:

    Gọi H = AM ∩ BD

    Ta có: \left\{ \begin{matrix}(SBD)\bot(ABC) \\(SAM)\bot(ABC) \\(SBD)\  \cap \ (SAM) = SH \\\end{matrix} ight.

    => SH ⊥ (ABC)

    Vì AB song song CD nên theo định lý Ta-lét ta có:

    \frac{HB}{HD} = \frac{AB}{DM} =2

    \Rightarrow \frac{d\left( B;(SAM)ight)}{d\left( D;(SAM) ight)} = 2

    => d(B; (SAM)) = 2d(D; (SAM))

    Kẻ DK ⊥ AM tại K.

    Ta có: \left\{ \begin{matrix}DK\bot AM \\DK\bot SH \\\end{matrix} ight.=> DK ⊥ (SAM) tại K => d(D; (SAM)) = DK

    => d(B; (SAM)) = 2DK

    Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:

    S_{ADM} = \frac{1}{2}S_{ADC} =\frac{1}{4}S_{ABDC} = \frac{2a^{2}}{4} = \frac{a^{2}}{2}

    Lại có CD = AB = a\sqrt{2}

    \Rightarrow \left\{ \begin{matrix}DM = \dfrac{a\sqrt{2}}{2} \\AD = BC = 2a \\\end{matrix} ight.

    Khi đó

    S_{ADM} =\frac{1}{2}AM.DM.sin\widehat{D}

    \Leftrightarrow \frac{a^{2}}{2} =\frac{1}{2}.2a.sin\widehat{D}

    \Rightarrow \sin\widehat{D} =\frac{\sqrt{2}}{2} \Rightarrow \widehat{D} = 45^{0}

    Do vậy xét trong tam giác ADM ta có:

    \begin{matrix}AM^{2} = AD^{2} + DM^{2} - 2AD.DM.cos45^{0} \hfill\\AM^{2} = 4a^{2} + \dfrac{a}{2}^{2} -2.2a.\dfrac{a\sqrt{2}}{2}.\dfrac{\sqrt{2}}{2} \hfill\\AM^{2} = \dfrac{5a^{2}}{2} \hfill\\\end{matrix}

    AM = \frac{a\sqrt{10}}{2}

    Lại có S_{ADM} =\frac{1}{2}DK.AM

    \Rightarrow DK = \frac{2S_{ADM}}{AM} =\frac{2a}{\sqrt{10}} = \frac{a\sqrt{10}}{5}

    Từ đó d\left( B;(SAM) ight) = 2.DK =\frac{2a\sqrt{10}}{5}

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Tam giác SAB đều và SC= a\sqrt{2}. Hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với điểm H của AB. Cosin của góc giữa AC(SHD) bằng:

    Hình vẽ minh họa

    Dựng CE\bot DH

    Ta có: SH\bot(ABCD) \Rightarrow SH\botCE

    \Rightarrow CE\bot(SDH)

    => SE là hình chiếu vuông góc của SC lên mặt phẳng (SHD)

    Do đó: Số đo của góc giữa SC lên mặt phẳng (SHD) bằng với số đo của góc \widehat{CSE}

    Ta có: \cos\widehat{CSE} =\frac{SE}{SC}

    \Rightarrow S_{CHD} =\frac{1}{2}S_{ABCD}

    \Rightarrow CE.HD = a^{2} \Rightarrow CE= \frac{a^{2}}{HD}

    \Rightarrow HD = \sqrt{AD^{2} + AH^{2}}= \frac{a\sqrt{5}}{2}

    \Rightarrow HD = \sqrt{AD^{2} + AH^{2}}= \frac{a\sqrt{5}}{2}

    \Rightarrow CE =\frac{2a\sqrt{5}}{2}

    \Rightarrow SE = \sqrt{SC^{2} - CE^{2}}= \frac{a\sqrt{30}}{5}

    \Rightarrow \cos\widehat{CSE} =\sqrt{\frac{3}{5}}

  • Câu 20: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 21: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 22: Nhận biết

    Hình chóp tam giác đều S.ABC. Gọi Glà trọng tâm tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có khối chóp tam giác đều S.ABC có đáy ABC là tam giác đều, trọng tâm G cũng là tâm của đáy nên SG\bot(ABC).

  • Câu 23: Vận dụng

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

     Côsin góc giữa đường thẳng MN và (BA’C’) bằng

    Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).

    Khi đó \sin \alpha  = \frac{{NK}}{{NI}} = \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}}

    Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi I = MN \cap BE, ta có

    MN = \sqrt {B{M^2} + B{N^2}}  = 1 \Rightarrow IN = \frac{1}{3}MN = \frac{1}{3}

    Ta có \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{{NB}}{{B'B}} = \frac{1}{2}

    \left\{ \begin{gathered}  A'C' \bot B'E \hfill \\  A'C' \bot ME \hfill \\ \end{gathered}  ight. \Rightarrow A'C' \bot \left( {BMEB'} ight) \Rightarrow \left( {BA'C'} ight) \bot \left( {BMEB'} ight)

    \left( {BA'C'} ight) \cap \left( {BMEB'} ight) = BE. Kẻ B'H \bot BE\,\left( {H \in BE} ight)

    \begin{matrix}   \Rightarrow B'H \bot \left( {BA'C'} ight) \Rightarrow d\left( {B';\,\,\left( {BA'C'} ight)} ight) = B'H \hfill \\  B'H = \dfrac{1}{{\sqrt {\dfrac{1}{{B'{E^2}}} + \dfrac{1}{{B'{B^2}}}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

    Từ \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{1}{2} \Rightarrow d\left( {N;\,\,\left( {BA'C'} ight)} ight) = \frac{{\sqrt {21} }}{{14}}

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}} = \dfrac{{3\sqrt {21} }}{{14}} \hfill \\   \Rightarrow \cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha }  = \sqrt {1 - {{\left( {\dfrac{{3\sqrt {21} }}{{14}}} ight)}^2}}  = \dfrac{{\sqrt 7 }}{{14}} \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Tính \left( SC;(ABCD) ight)?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên góc giữa SC và mặt phẳng đáy bằng góc \widehat{SCA}.

    Ta có: SA = a\sqrt{2};AC =
a\sqrt{2}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = 1 \Rightarrow \widehat{SCA} = 45^{0}

    Vậy \left( SC;(ABCD) ight) =
45^{0}

  • Câu 25: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Giả sử mặt phẳng (\alpha) đi qua điểm C vuông góc với BD. Thiết diện tạo bởi (\alpha) và hình lập phương là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CA\bot BD \\
CC'\bot BD \\
\end{matrix} ight.\  \Rightarrow (ACC'A')\bot BD

    Vậy (\alpha) chính là mặt phẳng (ACC'A'). Thiết diện là một hình chữ nhật.

  • Câu 26: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 27: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt phẳng đáy. Giả sử H là hình chiếu của A trên cạnh SB. Ta có các khẳng định sau:

    a) AH\bot SC b) BC\bot(SAB) c) SC\bot AB

    Có bao nhiêu khẳng định đúng trong các khẳng định đã cho?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

    \Rightarrow BC\bot AH;\left( do\ \ \ AH
\subset (SAB) ight)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC \\
\end{matrix} ight.\  \Rightarrow AH\bot(SBC) \Rightarrow AH\bot
SC

    Vậy có 2 khẳng định đúng.

  • Câu 29: Thông hiểu

    Cho tứ diện đều ABCD cạnh bằng 1, M là trung điểm của BC. Khi đó \cos(AB;DM) là:

    Hình vẽ minh họa

    Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.

    \Rightarrow \cos(AB,DM) = \cos(EM;DM) =
\widehat{DME}

    Ta có: ABCD là tứ diện đều cạnh bằng 1 và EA = EC;BM = MC

    \Rightarrow DM = \frac{\sqrt{3}}{2};DE =
\frac{\sqrt{3}}{2};EM = \frac{AB}{2} = \frac{1}{2}

    \Rightarrow \cos\widehat{DME} =
\frac{DM^{2} + ME^{2} - DE^{2}}{2.DM.EM} = \frac{1}{2\sqrt{3}} =
\frac{\sqrt{3}}{6}

    \Rightarrow \cos(AB,DM) =
\frac{\sqrt{3}}{6}

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA=a\sqrt{2} và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Hình vẽ minh họa:

    Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Do AB // CD => d(B;(SCD))=d(A;(SCD))

    Kẻ AE ⊥ SD tại E (1)

    Ta có: \left\{ \begin{gathered}CD \bot AD \hfill \\CD \bot SA \hfill \\\end{gathered} ight. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AE(**)

    Từ (1) và (2) => AE ⊥ (SCD)

    => d(A;(SCD)) = AE

    Xét tam giác vuông SAD ta có:

    AE = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}

    Vậy d(B;(SCD))=AE=\frac{{a\sqrt 6 }}{3}

     

  • Câu 31: Thông hiểu

    Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA = SB =
2a. Mặt phẳng (SAB) tạo với mặt phẳng đáy một góc 90^{0}. Xác định thể tích khối chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB cân tại S nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{(2a)^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{15}}{2}

    Vậy thể tích hình chóp là:

    V = \frac{1}{3}.SH.S_{ABCD} =
\frac{1}{3}.\frac{a^{2}\sqrt{15}}{2}.a^{2} =
\frac{a^{3}\sqrt{15}}{6}

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 33: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy là hình vuông và một cạnh bên vuông góc với mặt đáy. Có bao nhiêu mặt bên vuông góc với mặt đáy?

    Hình vẽ minh họa:

    Giả sử SA ⊥ (ABCD). Khi đó có đúng 2 mặt bên vuông góc với mặt đáy là (SAB), (SAD).

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và cạnh SB vuông góc với mặt đáy. Biết rằng AB = a;SB = a\sqrt{2}\alpha = \left( SC;(SAB) ight). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AC\bot AB \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SAB)

    Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA

    \Rightarrow \alpha = \left( SC;(SAB)
ight) = (SC;SA) = \widehat{ASC}

    Tam giác ABC vuông cân tại A nên AC = AB
= a

    Áp dụng định lí Pythagore cho tam giác SAB ta có:

    SA = \sqrt{SB^{2} + AB^{2}} =
a\sqrt{3}

    Tam giác SAC vuông tại A nên \tan\widehat{ASC} = \frac{AC}{SA} =
\frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \tan\alpha =
\frac{1}{\sqrt{3}}

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABC có đáy là tam giác vuông tại C, SA vuông góc với mặt phẳng đáy, SA = a, AC = a, BC =a\sqrt{2}. Góc giữa đường thẳng SB và mặt phẳng đáy bằng:

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ (ABC) nên AB là hình chiếu của SA trên mặt phẳng (ABC)

    => \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mặt khác có tam giác ABC vuông tại C:

    AB = \sqrt{AC^{2} + BC^{2}} =a\sqrt{3}

    \Rightarrow \tan\widehat{SBA} =\frac{SA}{AB} = \frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SBA} =30^{0}

    Vậy (SB, (ABC)) = 300

  • Câu 36: Nhận biết

    Khẳng định nào sau đây là sai?

    Mệnh đề sai là: “Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d ⊥ (α).”

    Vì thiếu điều kiện “cắt nhau” của hai đường thẳng nằm trong (α).

    Ví dụ đường thẳng a vuông góc với hai đường thẳng b và c nằm trong (α) nhưng b và c song song với nhau thì khi đó a chưa chắc vuông góc với (α).

  • Câu 37: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 38: Thông hiểu

    Cho hình chóp  S.ABC có đáy ABC là tam giác vuông tại A. Hình chiếu của S lên mặt phẳng đáy là trung điểm H của BC. Tính thể tích khối chóp S.ABC biết AB
= a;AC = a\sqrt{3};SB = a\sqrt{2}.

    Hình vẽ minh họa

    Xét tam giác ABC vuông tại C ta có: BC =
\sqrt{AB^{2} + AC^{2}} = \sqrt{a^{2} + \left( a\sqrt{3} ight)^{2}} =
2a

    H là trung điểm của BC nên BH =
a

    Xét tam giác SBH vuông tại H có SH =
\sqrt{SB^{2} - HB^{2}} = \sqrt{\left( a\sqrt{2} ight)^{2} - a^{2}} =
a

    Diện tích đáy ABC là S_{ABC} =
\frac{1}{2}AB.AC = \frac{1}{2}a^{2}\sqrt{3}

    Thể tích khối chóp là V =
\frac{1}{3}SH.S_{ABC} = \frac{1}{3}.a.\frac{1}{2}a^{2}\sqrt{3} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 39: Thông hiểu

    Cho hình chóp tam giác S.ABCDABCD là hình bình hành tâm O. Tam giác ABD có tất cả các cạnh bằng a\sqrt{2}, SA\bot(ABCD);SA = \frac{3a\sqrt{2}}{2}. Góc giữa đường thẳng SO với mặt đáy bằng:

    Hình vẽ minh họa:

    Ta có: \left( SO;(ABCD) ight) = (SO;OA)
= \widehat{SOA}

    Xét tam giác SAO ta có:

    SA = \frac{3a\sqrt{2}}{2}

    AO = \sqrt{AB^{2} - OB^{2}}

    = \sqrt{AB^{2} - \left( \frac{BD}{2}
ight)^{2}} = \sqrt{2a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{6}}{2}

    \Rightarrow \tan\widehat{SOA} =
\frac{SA}{AO} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SO;(ABCD) ight) =
\widehat{SOA} = 30^{0}

  • Câu 40: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo