Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là
và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Thể tích khối chóp là:
Thể tích hình lăng trụ là:
Khi đó:
Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.
Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)
=> BD ⊥ SC, BD ⊥ SO
Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Gọi d là đường thẳng qua M và vuông góc với (P). Do
Giả sử (R) là mặt phẳng chứa d. Mà
Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).
Cho hình chóp S.ABC có AB = AC và
. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.
Hình vẽ minh họa:

Xét
Ta có:
Từ (1) và (2)
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = DC = a; cạnh bên SA = a và vuông góc với đáy. Mặt phẳng (α) qua SD và vuông góc với mặt phẳng (SAC). Tính diện tích (α) của thiết diện tạo bởi (α) với hình chóp đã cho.
Hình vẽ minh họa:
Gọi E là trung điểm AB, suy ra AECD là hình vuông nên DE ⊥ AC. (1)
Mặt khác SA ⊥ (ABCD) => SA ⊥ DE (2)
Từ (1) và (2) suy ra DE ⊥ (SAC) => (SAD) ⊥ (SAC)
Ta có:
Vậy thiết diện là tam giác SDE.
Ta có:
Do đó tam giác SDE đều có cạnh a √ 2 nên
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Kết quả: 6 cm3
Cho hình chóp tứ giác đều có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Kết quả: 6 cm3
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Diện tích đáy
Góc giữa SB và mặt phẳng đáy là
ABCD là hình vuông nên
Xét tam giác vuông SOB ta có:
Khi đó thể tích khối chóp là:
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.
Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.
Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).
Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)
=> SA ⊥ BC
Xét tam giác ABC vuông tại B ta có:
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC
Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)
=> AC ⊥ AB (vô lí)
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
. Biết
và tam giác
đều. Xác định thể tích hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy là tam giác
vuông tại
. Đường thẳng vuông góc với đáy
. Đường thẳng
vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có
Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh
, cạnh bên bằng
.
Hình vẽ minh họa
Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là và chiều cao
(vì lăng trụ là lăng trụ đứng)
Vậy thể tích hình lăng trụ là:
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho tứ diện đều
cạnh bằng
,
là trung điểm của cạnh
. Xác định góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi N là trung điểm của AC thì MN // AB
Suy ra
Ta có:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạng AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP.
Do AC song song với MN nên góc giữa hai đường thẳng MN và AP là góc giữa hai đường thẳng AC và AP.
Ta tính được:
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Khi đó
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình chóp
có đáy
là hình thoi tâm
, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
là góc giữa đường thẳng
với mặt phẳng đáy. Khi đó:
Hình vẽ minh họa
Ta có: suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)
Suy ra
Vậy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng
. Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng . Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có:
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a,
,
và SA ⊥ (ABCD). Tính góc giữa đường thẳng SA và mặt phẳng (SBD).
Hình vẽ minh họa:
Vì tam giác ABC cân và có góc 600 nên nó là tam giác đều
Gọi O là trung điểm của AC.
Ta có: Hai mặt phẳng (SAC) và (SBD) vuông góc nhau theo giao tuyến SO
=> Hình chiếu vuông góc của SA lên mặt phẳng (SBD) là SO
=>
Xét tam giác vuông SOA ta có:
=>
Vậy góc giữa SA và mặt phẳng (SBD) bằng 300.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA =
. Khoảng cách giữa hai đường thẳng SB và CD là:
Hình vẽ minh họa:
Ta có:
BC ⊥ AB
BC ⊥ SA
=> BC ⊥ (SAB).
Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a
Cho hình chóp
có đáy
là hình vuông,
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
vì
vì
vì
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Tính thể tích khối lăng trụ
?
Hình vẽ minh họa:
Gọi lần lượt là hình chiếu của A trên BB’ và CC’
Theo đề bài ta có:
Dễ thấy nên tam giác
vuông tại A
Gọi H là trung điểm của
Ta lại có
Suy ra
Vậy
Cho tứ diện ABCD có AB, BC, BD đôi một vuông góc. Trong các khẳng định dưới đây khẳng định nào đúng?
Hình vẽ minh họa:

sai vì
CB ⊥ BD, CB ⊥ BA => CB ⊥ (ABD)
=> B là hình chiếu của C trên mặt phẳng (ABD)
=>
đúng vì
AB ⊥ BC, AB ⊥ BD => AB ⊥ (BCD)
=> B là hình chiếu của A trên mặt phẳng (BCD)
=>
sai vì
BD⊥ BA, BD ⊥ BC => BD ⊥ (ABC)
=> B là hình chiếu của D trên mặt phẳng (ABC)
=>
sai vì
=> B là hình chiếu của C trên mặt phẳng (ABD)
=>
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng
. Tính khoảng cách giữa hai đường thẳng CC’ và BD.
Hình vẽ minh họa:
Ta có:
OC ⊥ BD
OC ⊥ CC’
=> OC là đoạn vuông góc chung của CC’ và BD.
Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a
Cho hình chóp S.ABCD có
, ABCD là hình thang vuông tại A, B và
. Gọi
, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

Trong (SBD), gọi
Ta có BC // AD, áp dụng định lý Ta – let ta được:
Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:
Tam giác SAD vuông tại A có
=>
Mặt khác:
Lại có ABCD là hình thang vuông tại A, B và nên
=> mà
Kẻ , có
(do
)
Xét tam giác SAC vuông tại A có , AH là đường cao:
Xét tam giác SBD có:
Xét tam giác DIO có:
Do đó:
Mặt khác:
Cho hình lập phương
. Đường thẳng nào dưới đây vuông góc với mặt phẳng
?
Hình vẽ minh họa
Ta có: nên
cách đều các điểm
nên
cách đều các điểm
Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác
Cho tứ diện ABCD. Chứng minh rằng nếu
thì
. Điều ngược lại đúng không? Sau đây là lời giải
Bước 1: Ta có sự tương đương
Bước 2: Chứng minh tương tự ta có: ![]()
Bước 3: Ngược lại đúng, vì quá trình chứng minh ở bước 1 và bước 2 là quá trình biến đổi tương đương.
Bước giải trên đúng hay sai? Nếu sai thì sai ở đâu?
Lời giải đã cho là lời giải đúng
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)