Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho khối chóp S.ABC có chiều cao bằng 6 đáy là tam giác ABC có diện tích bằng 12. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 12 \\
h = 6 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.12.6 = 24

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD), SA = AB = a. Gọi M là trung điểm cạnh SB. Tính (AM,BD)?

    Hình vẽ minh họa

    Xét tam giác SAB vuông tại A có: SB =
\sqrt{SA^{2} + AB^{2}} = a\sqrt{2}

    Gọi E là trung điểm cạnh MC, ta có:

    OE//AM \Rightarrow (AM;BD) =
(OE,BD)OE = \frac{1}{2}AM =
\frac{1}{4}SB = \frac{a\sqrt{2}}{4}

    Lại có: CB\bot AB;SA\bot CB \Rightarrow
CB\bot SB

    Suy ra tam giác SBC vuông tại B.

    Xét tam giá MBC vuông tại B ta có:

    MC = \sqrt{MB^{2} + BC^{2}} =
\sqrt{\frac{1}{4}.2a^{2} + a^{2}} = \frac{a\sqrt{6}}{2}

    BE = \frac{1}{2}MC =
\frac{a\sqrt{6}}{4}

    Xét tam giác EBOcó:

    \cos\widehat{EOB} = \frac{EO^{2} +
OB^{2} - EB^{2}}{2.EO.OB} = \frac{1}{2}

    \Rightarrow \widehat{EOB} = 60^{0}
\Rightarrow OE//AM \Rightarrow (AM;BD) = 60^{0}

  • Câu 3: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 4: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Ta có:

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;AB} ight) = \widehat {SBA} \hfill \\   \Rightarrow SA = AB.\tan \widehat {SBA} = a\sqrt 3  \hfill \\ \end{matrix}

    Ta có: AD // BC => AD // (SBC)

    => d(D,(SBC)) = d(A; (SBC))

    Kẻ AK \bot SB (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AK\left( 2 ight)

    Từ (1) và (2) => AK \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = AK \hfill \\  AK = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    d\left( {D;\left( {SBC} ight)} ight) = AK = \frac{{a\sqrt 3 }}{2}

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 6: Vận dụng

    Cho hình chóp đều S.ABCD có cạnh đáy bằng a\sqrt{2} và cạnh bên bằng 2a. Gọi α là góc tạo bởi hai mặt phẳng (SAC) và (SCD). Tính cos α.

    Hình vẽ minh họa:

    Gọi tâm của đáy là O, M là trung điểm của CD

    Trong (SOM), kẻ OH vuông góc với SM tại H

    Khi đó ta có OH ⊥ (SCD). Mà OD ⊥ (SAC).

    Do đó ((SCD), (SAC)) = (OH, OD) = \widehat{HOD} = α.

    Ta có OD = a, SO = a\sqrt{3};OM =
\frac{a\sqrt{2}}{2}

    Xét tam giác OSM vuông tại O ta có:

    \begin{matrix}\dfrac{1}{OH^{2}} = \dfrac{1}{OS^{2}} + \dfrac{1}{OM^{2}} \hfill\\\Rightarrow OH = \dfrac{a\sqrt{21}}{7} \hfill\\\end{matrix}

    Xét tam giác OHD vuông tại H ta có:

    \cos\alpha = \frac{OH}{OD} =
\frac{\sqrt{21}}{7}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Gọi \alpha = \left( SD;(ABCD) ight). Xác định \alpha?

    Hình vẽ minh họa

    Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc \widehat{SDA}

    \Rightarrow \alpha =
\widehat{SDA}

  • Câu 8: Nhận biết

    Các đường thẳng cùng vuông góc với một đường thẳng thì: 

    Đáp án "Thuộc một mặt phẳng"  sai vì có thể xảy ra trường hợp chúng nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng"  đúng vì chúng đồng phẳng.

  • Câu 9: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a, \widehat{ABC} = 60^{0}, SA = a\sqrt{3} và SA ⊥ (ABCD). Tính góc giữa đường thẳng SA và mặt phẳng (SBD).

    Hình vẽ minh họa:

    Vì tam giác ABC cân và có góc 600 nên nó là tam giác đều

    Gọi O là trung điểm của AC.

    Ta có: Hai mặt phẳng (SAC) và (SBD) vuông góc nhau theo giao tuyến SO

    => Hình chiếu vuông góc của SA lên mặt phẳng (SBD) là SO

    => \widehat{\left( SA,(SBD) ight)} =\widehat{(SA,\ SO)} = \widehat{ASO}

    Xét tam giác vuông SOA ta có: \left\{\begin{matrix}OA = \dfrac{AC}{2} = \dfrac{2a}{2} = a \\SA = a\sqrt{3} \\\end{matrix} ight.

    => \tan\widehat{OSA} = \frac{AO}{SA} =\frac{1}{\sqrt{3}} \Rightarrow \widehat{OSA} = 30^{0}

    Vậy góc giữa SA và mặt phẳng (SBD) bằng 300.

  • Câu 11: Vận dụng cao

    Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.

    Hình vẽ minh họa:

    Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.

    Dựng hình chữ nhật AND

    Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)

    Ta có: C’N // (A’MB) (do C’N // MB)

    => d(C’, (A’BM)) = d(N, (A’BM))

    Mà GN // (A’BM) (do GN // A’M)

    => d(N, (A’BM)) = d(G, (A’BM))

    => d(C’, (A’BM)) = d(G,(A’BM))

    Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.

    BD ⊥ GI (do ANBD là hình chữ nhật)

    BD ⊥ A’G (do A’G ⊥ (ABC))

    => BD ⊥ (A’GI) => BD ⊥ GH

    Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH

    Tính GH: ∆ABC đều, cạnh a

    => AN = \frac{a\sqrt{3}}{2};AG =\frac{2}{3}AN = \frac{a\sqrt{3}}{3}

    Xét tam giác AA’G vuông tại G

    => A'G = \sqrt{AA'^{2} -AG^{2}}

    \Rightarrow A'G = \sqrt{4a^{2} -\frac{a^{2}}{3}} = \frac{a\sqrt{33}}{3}

    Ta lại có: GNBI là hình chữ nhật => GI= NB = \frac{a}{2}

    Xét tam giác A’GI vuông tại G có GH ⊥ A’I

    => \frac{1}{GH^{2}} = \frac{1}{GI^{2}}+ \frac{1}{A'G^{2}}

    \Rightarrow \dfrac{1}{GH^{2}} =\dfrac{1}{\dfrac{a^{2}}{4}} + \dfrac{1}{\dfrac{11a^{2}}{3}} =\dfrac{47}{11a^{2}}

    Suy ra GH =\sqrt{\frac{11}{47}}a

    \Rightarrow d\left( C'(A'BM)ight) = \frac{a\sqrt{11}}{\sqrt{47}}

  • Câu 12: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 13: Thông hiểu

    Tính thể tích khối lăng trụ trong hình vẽ sau, biết AB = a;AA' = 2a.

    Quan sát hình vẽ ta thấy

    Tam giác ABC đều có cạnh bằng a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Do khối lăng trụ ABC.A'B'C' là lăng trụ đứng nên đường cao của lăng trụ là AA' =
2a

    Thể tích khối lăng trụ là V =
AA'.S_{ABCD} = 2a.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}\sqrt{3}}{2}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC);SA = 2a, tam giác ABC vuông tại \widehat{B}AB = a\sqrt{2}. Tính \left( SC;(ABC) ight)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SC \cap (ABC) = \left\{ C ight\} \\
SA\bot(ABC) \\
\end{matrix} ight.

    \Rightarrow \left( SC;(ABC) ight) =
(SC;AC) = \widehat{SCA}

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{2a^{2} + 2a^{2}} = 2a = SA

    Vì tam giác SCA vuông cân tại A \Rightarrow \left( SC;(ABC) ight) =
45^{0}

  • Câu 15: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi. Gọi O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A' (như hình vẽ).

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hình vẽ minh họa

    Ta có: O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A'

    => O;O' lần lượt là trung điểm của các cạnh A'D;A'B

    \Rightarrow OO' là đường trung bình tam giác A'BD \Rightarrow OO'//BD

    Vì đáy ABCD là hình thoi \Rightarrow
AC\bot BD

    Ta có: \left\{ \begin{matrix}
OO'//BD \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow AC\bot OO'

  • Câu 16: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 17: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 19: Nhận biết

    Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?

    Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).

  • Câu 20: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Tính (AB;A'C')?

    Hình vẽ minh họa

    AB//A'B' \Rightarrow
(AB;A'C') = (A'B';A'C') =
\widehat{B'A'C'}

    Tam giác A’B’C’ vuông cân tại B’ \Rightarrow \widehat{B'A'C'} =
45^{0}

    Vậy (AB;A'C') =
45^{0}.

  • Câu 21: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có tam giác ABC đều và M là trung điểm của BC nên AM\bot BC

    Ta có: \left\{ \begin{matrix}
AM\bot BC \\
BC//B'C' \\
\end{matrix} ight.\  \Rightarrow AM\bot B'C'

  • Câu 22: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Xác định thể tích S.ABCD?

    Hình vẽ minh họa

    Ta có:

    S_{ABCD} = a^{2} \Rightarrow V_{S.ABCD}
= \frac{1}{3}SA.S_{ABCD} = \frac{a^{3}\sqrt{2}}{3}

  • Câu 23: Vận dụng

    Cho tứ diện ABCD. Nếu AB ⊥CD, AC ⊥ BDBC ⊥ AD thì:

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AC} .\overrightarrow {BD}  = \overrightarrow {AD} .\overrightarrow {CB}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) = \overrightarrow {AC} \left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AD} .\left( {\overrightarrow {AB}  - \overrightarrow {AC} } ight) = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AB} .\overrightarrow {AD}  \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Gọi I là trung điểm của cạnh AB. Tính cosin của góc giữa hai đường thẳng A'DB'I ta được kết quả là:

    Hình vẽ minh họa:

    Gọi độ dài cạnh hình lập phương là a, a > 0

    Ta có:

    B'C//A'D \Rightarrow
(A'D;B'I) = (B'I,B'C)

    Tính được \left\{ \begin{matrix}B'I = \sqrt{a^{2} + \left( \dfrac{a}{2} ight)^{2}} =\dfrac{a\sqrt{5}}{2} = CI \\B'C = a\sqrt{2} \\\end{matrix} ight.

    Trong tam giác B’CI ta có:

    \cos\widehat{IB'C} = \dfrac{\left(\dfrac{a\sqrt{5}}{2} ight)^{2} + \left( a\sqrt{2} ight)^{2} - \left(\dfrac{a\sqrt{5}}{2}ight)^{2}}{2.\dfrac{a\sqrt{5}}{2}.a\sqrt{2}}

    = \frac{2a^{2}}{a^{2}\sqrt{10}} =
\frac{\sqrt{10}}{5}

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H;K lần lượt là hình chiếu của điểm A trên cạnh SB;SC. Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SA\bot(ABC) \\BC \subset (ABC) \\\end{matrix} ight.\  \Rightarrow SA\bot BC;AB\bot BC

    \Rightarrow BC\bot(SAB) đúng

    Ta có: \left\{ \begin{matrix}BC\bot AH \\SC\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) đúng

    Ta có: \left\{ \begin{matrix}AH\bot SC \\AK\bot SC \\\end{matrix} ight.\  \Rightarrow SC\bot(AHK) đúng

    Vậy kết luận sai là: AK\bot(SBC).

  • Câu 26: Nhận biết

    Cho ABCD.A'B'C'D' là hình hộp. Khẳng định nào sau đây đúng?

    Nếu ABCD.A'B'C'D' là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.

  • Câu 27: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 29: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 30: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.

    Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.

    Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).

    Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”

  • Câu 31: Nhận biết

    Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?

    (1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.

    (2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    (3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.

  • Câu 32: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 33: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a,SA\bot(ABCD). Tính thể tích khối chóp S.ABCD, biết d\left( A;(SBC) ight) =
\frac{a\sqrt{2}}{2}.

    Hình vẽ minh họa

    Kẻ AH\bot SB

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có: \left\{ \begin{matrix}
BC\bot AH \\
SB\bot AH \\
\end{matrix} ight.\  \Rightarrow AH\bot(SBC)

    \Rightarrow d\left( A;(SBC) ight) = AH
= \frac{a\sqrt{2}}{2}

    Xét tam giác SAB vuông tại A có:

    \frac{1}{AH^{2}} = \frac{1}{SA^{2}} +
\frac{1}{SB^{2}} \Rightarrow SA = a

    \Rightarrow V_{S.ABCD} =
\frac{1}{3}.SA.S_{ABCD} = \frac{a^{3}}{3}

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 35: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 36: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 37: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCSA =
SB = SC = \frac{a\sqrt{3}}{2}, đáy ABC là tam giác vuông tại ABC =
a. Tính cosin góc giữa đường thẳng SA và mặt phẳng (ABC) bằng:

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên (ABC)

    Do SA = SB = SC =
\frac{a\sqrt{3}}{2} nên H là tâm đường tròn ngoại tiếp tam giác ABC hay H là trung điểm của BC \Rightarrow
AH = \frac{a}{2}

    Ta có: \left( SA;(ABC) ight) =
\widehat{SAH}

    \Rightarrow \cos\widehat{SAH} =
\frac{AH}{SA} = \frac{\sqrt{3}}{3}

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Tam giác SAB vuông cân tại SM là trung điểm của BC\widehat{BSC} = 60^{0}. Gọi góc giữa hai đường thẳng ABCM\alpha. Chọn kết luận đúng?

    Hình vẽ minh họa

    Giả sử SA = a \Rightarrow \left\{
\begin{matrix}
SB = CA = CB = a \\
AB = a\sqrt{2} \\
\end{matrix} ight.

    Lại có: \widehat{BSC} = 60^{0} suy ra tam giác SBC đều suy ra SC =
a

    Suy ra CM = CN =
\frac{a\sqrt{3}}{2} hay MN//AB

    Khi đó (AB;CM) = (MN,CM)

    Áp dụng định lí cosin cho tam giác MNC ta có:

    \cos\widehat{CMN} = \frac{MC^{2} +
MN^{2} - NC^{2}}{2.MC.MN} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos(AB;CM) = \left|
\cos\widehat{CMN} ight| = \frac{\sqrt{6}}{6}

  • Câu 40: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a\sqrt{2}. Tính khoảng cách giữa hai đường thẳng CC’ và BD.

    Hình vẽ minh họa:

    Ta có:

    OC ⊥ BD

    OC ⊥ CC’

    => OC là đoạn vuông góc chung của CC’ và BD.

    Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo