Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của AB. Gọi α là góc giữa hai đường thẳng CM và DM. Tính giá trị của cos α?

    Gọi a là độ dài cạnh của tứ diện đều. Khi đó:

    CD = a;MC = MD = \frac{{a\sqrt 3 }}{2}

    Ta có hình vẽ minh họa:

    Tính cosin góc giữa hai đường thẳng

    Áp dụng định lí cosin vào tam giác CMD ta được:

    \begin{matrix}  \cos \widehat {CMD} = \dfrac{{M{C^2} + M{D^2} - C{D^2}}}{{2MC.MD}} \hfill \\   = \dfrac{{\dfrac{{3{a^2}}}{2} - {a^2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{{\dfrac{{{a^2}}}{2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{1}{3} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho tam giác ACD và tam giác BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a;CD =
2a. Với giá trị nào của x thì hai mặt phẳng (ABC)(ABD)?

    Hình vẽ minh họa

    Gọi I, J lần lượt là trung điểm của AB và CD

    Suy ra CI\bot AB;DI\bot AB(ABC) \cap (ABD) = AB

    Do đó (ABC)\bot(ABD) \Rightarrow
\widehat{CID} = 90^{0} \Rightarrow IJ = \frac{1}{2}CD

    Ta có: \left\{ \begin{matrix}
(ACD)\bot(BCD) \\
AJ\bot CD \\
\end{matrix} ight.\  \Rightarrow AJ\bot(BCD) \Rightarrow AJ\bot
JB

    Mặt khác JA = JB;(\Delta ACD = \Delta
BCD) nên tam giác JAB vuông cân tại J

    Do đó IJ = \frac{\sqrt{2}}{2}JA =
\frac{\sqrt{2}}{2}\sqrt{AC^{2} - JC^{2}} = \frac{\sqrt{2}}{2}\sqrt{a^{2}
- x^{2}}

    Vậy \frac{\sqrt{2}}{2}\sqrt{a^{2} -
x^{2}} = x \Leftrightarrow a^{2} = 3x^{2} \Leftrightarrow x =
\frac{a\sqrt{3}}{3}

  • Câu 3: Vận dụng cao

    Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng 2. Gọi điểm M là điểm nằm trên cạnh AA' sao cho mặt phẳng (C'MB) tạo với mặt phẳng (ABC) một góc nhỏ nhất. Khi đó diện tích tam giác C'MB có dạng \frac{a\sqrt{b}}{c};\left( a,b,c\mathbb{\in N}ight). Tính giá trị của biểu thức T = a + b - c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng 2. Gọi điểm M là điểm nằm trên cạnh AA' sao cho mặt phẳng (C'MB) tạo với mặt phẳng (ABC) một góc nhỏ nhất. Khi đó diện tích tam giác C'MB có dạng \frac{a\sqrt{b}}{c};\left( a,b,c\mathbb{\in N}ight). Tính giá trị của biểu thức T = a + b - c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho hình chóp OABC có OA = OB = OC = 1, các cạnh OA, OB, OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vecto \overrightarrow {OC} ;\overrightarrow {MA}.

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OC} .\overrightarrow {MA}  = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {BA}  \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OA}  - \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OB}  \hfill \\   = 0 - 0 = 0 \hfill \\   \Rightarrow \overrightarrow {OC} .\overrightarrow {MA}  = 0 \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh SCBC lần lượt là I;J. Xác định cosin góc giữa hai đường thẳng IJCD?

    Hình vẽ minh họa

    Theo giả thiết ta có:

    IJ là đường trung bình của tam giác SBC nên JI//SB

    \left\{ \begin{matrix}
JI//SB \\
CD//AB \\
\end{matrix} ight.\  \Rightarrow (IJ;CD) = (SB;AB) = \widehat{SBA} =
60^{0}

    \Rightarrow \cos(IJ;CD) =
\frac{1}{2}

  • Câu 6: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 7: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB = SH = a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC).

    Hình vẽ minh họa:

    Ta có SH ⊥ (ABC) => SH ⊥ CH. (1)

    Tam giác ABC cân tại C => CH ⊥ AB (2)

    Từ (1) và (2) => CH ⊥ (SAB)

    Gọi I là trung điểm AC => HI // BC => HI ⊥ AC (3)

    Mặt khác AC ⊥ SH (do SH ⊥ (ABC) (4)

    Từ (3) và (4) => AC ⊥ (SHI)

    Kẻ HK ⊥ SI (K ∈ SI) (5)

    Từ AC ⊥ (SHI) => AC ⊥ HK (6)

    Từ (5) và (6), suy ra HK ⊥ (SAC)

    Vì HK ⊥ (SAC) và HC ⊥ (SAB) nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC

    Xét tam giác CHK vuông tại K ta có:

    CH = \frac{1}{2}AB =
\frac{a}{2}

    \frac{1}{HK^{2}} = \frac{1}{SH^{2}} +
\frac{1}{HI^{2}} \Rightarrow HK = \frac{a}{3}

    Do đó \cos\alpha =
\frac{2}{3}

  • Câu 8: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 9: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Điểm cách đều 4 điểm A, B, C, D là:

    Hình vẽ minh họa

    Tìm điểm cách đều 4 điểm A, B, C, D

    Gọi O là trung điểm của AD.

    Từ giả thiết ta có:

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {BC \bot CD} \end{array}} ight. \Rightarrow CD \bot \left( {ABC} ight) \Rightarrow CD \bot AC

    Vậy ΔACD vuông tại C

    Do đó OA=OC=OD (1)

    Mặt khác 

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {AB \bot BC} \end{array}} ight. \Rightarrow AB \bot \left( {BCD} ight) \Rightarrow AB \bot BD

    => ΔABD vuông tại B.

    Do đó OA=OB=OD (2)

    Từ (1) và (2) ta có OA=OB=OC=OD

    Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông với AC=\frac{a\sqrt{2}}{2}. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.

    Ta có AD // BC => AD // (SBC) => d(AD;SC)=d(A;(SBC))

    Kẻ AP⊥SB =>d(A;(SBC))=AP =>d(AD;SC)=AP

    Ta có:

    \begin{matrix}  AB = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{a}{2} \hfill \\  \dfrac{1}{{A{P^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\ \end{matrix}

    Lại có \left( {SB;\left( {ABCD} ight)} ight) = \widehat {SBA} = {60^0}

    \begin{matrix}   \Rightarrow \tan {60^0} = \dfrac{{SA}}{{AB}} \Rightarrow SA = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow AP = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D. Mặt phẳng (A’BCD’) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Dễ thấy: \left\{ \begin{matrix}
AB’\bot A’B \\
AB’\bot A’D’ \\
\end{matrix} \Rightarrow AB’\bot(A’BCD’) ight.

    Do đó: (ADC’B’)⊥(A’BCD’)

    Vậy mặt phẳng (A’BCD’) vuông góc với mặt phẳng (ADC’B’).

  • Câu 14: Nhận biết

    Hai mặt phẳng vuông góc với nhau khi và chỉ khi

    Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.

  • Câu 15: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Ta có: AM = \frac{AA'}{tan60^{0}} =
\frac{2a\sqrt{3}}{3}

    \Rightarrow BC = 2AM =
\frac{4a\sqrt{3}}{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} =
2a.\frac{1}{2}.\frac{2a\sqrt{3}}{3}.\frac{4a\sqrt{3}}{3} =
\frac{8}{3}a^{3}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 17: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 19: Nhận biết

    Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?

    Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.

  • Câu 20: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 21: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 22: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 23: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 24: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M và vuông góc với a?

    Trong không gian cho đường thẳng a và điểm M. Gọi (P) là mặt phẳng đi qua M vuông góc với a. Khi đó mọi đường thẳng nằm trong mặt phẳng (P) và đi qua M đều vuông góc với a.

    => Vậy có vô số đường thẳng đi qua M và vuông góc với a.

  • Câu 25: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 26: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D. Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: B'C'\bot(ABB'A')
\Rightarrow B'C'\bot A'B

    Ta có: \left\{ \begin{matrix}
A'B\bot AB' \\
A'B\bot B'C' \\
AB' \cap B'C' = B' \\
AB';B'C' = B' \\
\end{matrix} ight.\  \Rightarrow A'B\bot(AB'C')
\Rightarrow A'B\bot AC'

    Mặt khác BD\bot(ACC'A')
\Rightarrow BD\bot AC'

    Ta có: \left\{ \begin{matrix}
A'B\bot AC' \\
BD\bot AC' \\
A'B \cap BD = B \\
A'B \cap BD \subset (A'BD) \\
\end{matrix} ight.\  \Rightarrow AC'\bot(A'BD)

  • Câu 27: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều, SA vuông góc với mặt phẳng đáy. Gọi H là trung điểm cạnh AC, K là hình chiếu vuông góc của H trên SC. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BH

    Mà tam giác ABC là tam giác đều AC\bot
BH

    \Rightarrow BH\bot SCHK\bot SC

    \Rightarrow SC\bot(BHK) \Rightarrow
(SCB)\bot(BHK)

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 29: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight);SA = a\sqrt 2, ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD = 2a. Gọi O = AC \cap BD, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

    Tính sin của góc giữa OM và (SCD)

    Trong (SBD), gọi I = OM \cap SD \Rightarrow OM \cap \left( {SCD} ight) = I

    Ta có BC // AD, áp dụng định lý Ta – let ta được:

    \frac{{OB}}{{OD}} = \frac{{OC}}{{OA}} = \frac{{BC}}{{AD}} = \frac{1}{2}

    Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:

    \frac{{BO}}{{OD}}.\frac{{DI}}{{IS}}.\frac{{SM}}{{MB}} = 1 \Leftrightarrow \frac{1}{2}.\frac{{DI}}{{IS}}.1 = 1 \Leftrightarrow \frac{{DI}}{{IS}} = 2

    Tam giác SAD vuông tại A có

    SA = a\sqrt 2 ,AD = 2a \Rightarrow SD = a\sqrt 6

    => DI = \frac{3}{2}SD = \frac{{a\sqrt 6 }}{2}

    Mặt khác: \frac{{CO}}{{CA}} = \frac{1}{3} \Rightarrow \frac{{d\left( {O,\left( {SCD} ight)} ight)}}{{d\left( {A,\left( {SCD} ight)} ight)}} = \frac{1}{3}

    \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \frac{1}{3}d\left( {A,\left( {SCD} ight)} ight)

    Lại có ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD nên AC = CD = a\sqrt 2

    => AC \bot CD mà CD \bot SA \Rightarrow CD \bot \left( {SAC} ight)

    Kẻ AH \bot SC, có CD \bot AH (do CD \bot \left( {SBC} ight))

    \Rightarrow AH \bot \left( {SCD} ight) \Rightarrow d\left( {A,\left( {SCD} ight)} ight) = AH

    Xét tam giác SAC vuông tại A có SA = a\sqrt 2 ,\,AC = a\sqrt 2, AH là đường cao:

    \begin{matrix}   \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{S^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{1}{{{a^2}}} \hfill \\   \Rightarrow AH = a \hfill \\   \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \dfrac{1}{3}AH = \dfrac{a}{3} \hfill \\ \end{matrix}

    Xét tam giác SBD có:

    \begin{matrix}  SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {2{a^2} + 4{a^2}}  = a\sqrt 6  \hfill \\  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3  \hfill \\  BD = \sqrt {A{D^2} + A{B^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5  \hfill \\ \end{matrix}

    Xét tam giác DIO có:

    DI = 2SD = 2a\sqrt 6 ,DO = \frac{2}{3}DB = \frac{2}{3}a\sqrt 5 .

    Do đó:

    \begin{matrix}  \cos SDB = \cos IDO \Leftrightarrow \dfrac{{S{D^2} + B{D^2} - S{B^2}}}{{2.SD.BD}} = \dfrac{{I{D^2} + O{D^2} - O{I^2}}}{{2.ID.OD}} \hfill \\   \Leftrightarrow \dfrac{{6{a^2} + 5{a^2} - 3{a^2}}}{{2.a\sqrt 6 .a\sqrt 5 }} = \dfrac{{24{a^2} + \dfrac{{20{a^2}}}{9} - O{I^2}}}{{2.2a\sqrt 6 .\dfrac{2}{3}a\sqrt 5 }}. \hfill \\   \Leftrightarrow 8 = \dfrac{{\dfrac{{236}}{9}{a^2} - O{I^2}}}{{\dfrac{4}{3}{a^2}}} \Leftrightarrow O{I^2} = \dfrac{{140{a^2}}}{9} \Leftrightarrow OI = \dfrac{{2a\sqrt {35} }}{3} \hfill \\ \end{matrix}

    Mặt khác:

    \begin{matrix}  \sin \left( {OM,\left( {SCD} ight)} ight) = \sin \left( {OI,\left( {SCD} ight)} ight) \hfill \\   = \dfrac{{d\left( {O,\left( {SCD} ight)} ight)}}{{OI}} = \dfrac{{\dfrac{a}{3}}}{{\dfrac{{2a\sqrt {35} }}{3}}} = \dfrac{{\sqrt {35} }}{{70}} \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 31: Nhận biết

    Cho khối chóp S.ABC có chiều cao bằng 6 đáy là tam giác ABC có diện tích bằng 12. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 12 \\
h = 6 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.12.6 = 24

  • Câu 32: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 33: Nhận biết

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 34: Thông hiểu

    Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A

    => \left\{ \begin{matrix}PQ = MN = \dfrac{1}{2}AB \\PQ//AB//MN \\\end{matrix} ight.

    => MNPQ là hình bình hành

    Gọi H là trung điểm của AB

    Vì hai tam giác ABC và ABC’ đều nên \left\{ \begin{matrix}
CH\bot AB \\
C'H\bot AB \\
\end{matrix} ight.

    => AB\bot(CHC') \Rightarrow AB\bot
CC'

    Ta có: \left\{ \begin{matrix}
PQ//AB \\
\begin{matrix}
PN//CC' \\
AB\bot CC' \\
\end{matrix} \\
\end{matrix} ight.\  \Rightarrow PQ\bot PN

    Vậy tứ giác MNPQ là hình chữ nhật

  • Câu 35: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết MN =
\frac{a\sqrt{10}}{2}.

    Hình vẽ minh họa:

    Kẻ Mk // SO

    Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)

    => \left( MN;(ABCD) ight) = (MN,NK)
= \widehat{MNK}

    Ta có: CK = \frac{3}{4}CA =
\frac{3a\sqrt{2}}{4}

    Xét tam giác CNK có:

    \begin{matrix}cos45^{0} = \dfrac{CN^{2} + CK^{2} - NK^{2}}{2.CN.CK} \hfill \\\Rightarrow KN = \dfrac{a\sqrt{10}}{4} \hfill \\\end{matrix}

    Xét tam giác MNK vuông ta có:

    \cos\widehat{MNK} = \frac{NK}{MN} =
\frac{1}{2} \Rightarrow \widehat{MNK} = 60^{0}

  • Câu 36: Thông hiểu

    Cho tứ diện ABCD. Gọi H là trực tâm của tam giác BCD và AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Vì AH vuông góc với (BCD) suy ra AH⊥CD (1)

    Mà H là trực tâm của tam giác BCD ⇒BH⊥CD (2)

    Từ (1), (2) suy ra: \left\{ {\begin{array}{*{20}{l}}  {CD \bot AH} \\   {CD \bot BH} \end{array}} ight.

    ⇒CD⊥(ABH)⇒CD⊥AB

  • Câu 37: Nhận biết

    Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”

    Vì b có thể nằm trong (P).

  • Câu 38: Nhận biết

    Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?

    Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).

  • Câu 39: Vận dụng

    Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và AB = \frac{{a\sqrt 6 }}{2}, CD = a. Gọi E là trung điểm của AD. Tính góc giữa hai đường thẳng AB và CE.

    Tính góc giữa hai đường thẳng

     Kí hiệu hình vẽ như sau:

    Tính góc giữa hai đường thẳng

    Gọi H là trung điểm của BD. Khi đó EH // AB, EH ⊥ (BCD)

    Góc giữa AB và CE bằng góc giữa EH và EC chính là góc \widehat {HEC}

    Ta có:

    \begin{matrix}  EH = \dfrac{1}{2}AB = \dfrac{{a\sqrt 6 }}{4} \hfill \\  BC = \sqrt {A{C^2} - A{B^2}}  = \dfrac{{a\sqrt 2 }}{2} \hfill \\  C{H^2} = \dfrac{{2\left( {C{B^2} + C{D^2}} ight) - B{D^2}}}{4} = \dfrac{{3{a^2}}}{8} \hfill \\   \Rightarrow CH = \dfrac{{a\sqrt 6 }}{4} \hfill \\ \end{matrix}

    Ta lại có: \tan \widehat {HEC} = \frac{{CH}}{{EH}} = 1 \Rightarrow \widehat {HEC} = {45^0}

    Vậy góc giữa AB và CE là 450

  • Câu 40: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo