Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, đáy ABCD cạnh bằng 2a, cạnh bên SB = a\sqrt{5}. Tính thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
S_{ABCD} = 4a^{2} \\
SO = \sqrt{SB^{2} - OB^{2}} = \sqrt{5a^{2} - 2a^{2}} = a\sqrt{3} \\
\end{matrix} ight.

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{a\sqrt{3}.4a^{2}}{3} =
\frac{4\sqrt{3}a^{3}}{3}

  • Câu 3: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 4: Vận dụng

    Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:

    Hình vẽ minh họa:

    Gọi I là trung điểm BC.

    Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).

    Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.

    Qua cách dựng ta có BC // (AMN). (1)

    Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)

    Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.

    Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.

    Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.

  • Câu 5: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: ABCD là hình vuông nên BD\bot AC

    SA\bot(ABCD) \Rightarrow SA\bot
BD

    \Rightarrow BD\bot(SAC)

  • Câu 6: Nhận biết

    Cho ABCD.A'B'C'D' là hình hộp. Khẳng định nào sau đây đúng?

    Nếu ABCD.A'B'C'D' là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 9: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 10: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, tam giác SBA đều và cạnh SC = a\sqrt{2}. Gọi trung điểm các cạnh AB,CD lần lượt là H,K. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Ta có tam giác SAB đều cạnh bằng a nên AB
= SB = a

    Mặt khác tam giác SBC có SB^{2} + BC^{2}
= SC^{2} = 2a^{2}

    Suy ra tam giác SBC vuông cân tại B hay BC\bot SB

    Từ BC\bot(SAB) \Rightarrow BC\bot
SH

    Tam giác ABS đều mà H là trung điểm của AB nên SH\bot AB

    \Rightarrow SH\bot(ABCD)

    Tam giác ABS đều nên AB không vuông góc với mặt phẳng (SAD)

    Ta có: \left\{ \begin{matrix}
AB\bot HK \\
AB\bot SH \\
\end{matrix} ight.\  \Rightarrow AB\bot(SHK) \Rightarrow
CD\bot(SHK)

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật, SA\bot(ABCD). Gọi AE;AF lần lượt là đường cao của tam giác SABSAD. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    SA\bot(ABCD) \Rightarrow SA\bot
BC

    AB\bot BC \Rightarrow
BC\bot(SAB)

    \Rightarrow BC\bot AE \subset
(SAB)

    Tam giác SAB có đường cao AE \Rightarrow
AE\bot SB

    AE\bot CB \Rightarrow AE\bot(SBC)
\Rightarrow AE\bot SC

    Tương tự chứng minh ta được: AF\bot SC
\Rightarrow SC\bot(AEF)

  • Câu 13: Thông hiểu

    Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, AB = a,\widehat {ACB} = 30^\circ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi \alpha là góc tạo bởi A’H với (A’ACC’). Tính \sin\alpha?

    Sin của góc tạo bởi A’H với (A’ACC’)

    Ta có A'H \bot \left( {ABC} ight) nên A’H là đường cao của lăng trụ.

    Kẻ HK \bot AC (K thuộc đoạn AC)

    Kẻ

    Suy ra HI \bot \left( {AA'C'C} ight)

    Khi đó \alpha  = \left( {A'H,A'I} ight) = \widehat {HA'K}

    Sin của góc tạo bởi A’H với (A’ACC’)

    +) Do tam giác MCB cân tại B nên \widehat {BMC} = \widehat {BCM} = 30^\circ

    \begin{matrix}  MH = \dfrac{1}{2}BM = \dfrac{1}{4}AC = \dfrac{1}{4}\dfrac{{AB}}{{\sin 30^\circ }} = \dfrac{a}{2} \hfill \\   \Rightarrow HK = MH.\sin 60^\circ  = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

    +) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng \widehat {A'AH} = 60^\circ (theo giả thiết)

    Và BM = AM = AB = a

    => Tam giác AMB là tam giác đều cạnh a

    \Rightarrow AH = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = AH.\tan 60^\circ  = \frac{{3a}}{2}

    Vì vậy, \sin \alpha  = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{{3a}}{2}}} = \dfrac{{\sqrt 3 }}{6}

  • Câu 14: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 15: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 16: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:

     Hình vẽ minh họa:

    Xác định đường vuông góc chung của AB và CD

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AB \bot CM} \\   {AB \bot DM} \end{array}} ight. \Rightarrow AB \bot \left( {CDM} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {CD \bot MN} \\   {AB \bot \left( {CDM} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => MN là đường vuông góc chung của AB  và CD

  • Câu 17: Thông hiểu

    Cho hình chóp tam giác S.ABC, đáy là tam giác ABC vuông cân tại C và AB = a\sqrt{3};AC = a. Biết tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Thể tích hình chóp tam giác S.ABC bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp tam giác S.ABC

    Tam giác SAB đều nên SH =
\frac{3a}{2}

    Tam giác ABC vuông cân tại C nên

    AB^{2} = AC^{2} + BC^{2} \Rightarrow BC
= \sqrt{3a^{2} - a^{2}} = a\sqrt{2}

    Vậy thể tích hình chóp S.ABC là: V_{S.ABC} =
\frac{1}{3}.\frac{3a}{2}.\frac{1}{2}.a\sqrt{2}.a =
\frac{a^{3}\sqrt{2}}{4}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA=a\sqrt{2} và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Hình vẽ minh họa:

    Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Do AB // CD => d(B;(SCD))=d(A;(SCD))

    Kẻ AE ⊥ SD tại E (1)

    Ta có: \left\{ \begin{gathered}CD \bot AD \hfill \\CD \bot SA \hfill \\\end{gathered} ight. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AE(**)

    Từ (1) và (2) => AE ⊥ (SCD)

    => d(A;(SCD)) = AE

    Xét tam giác vuông SAD ta có:

    AE = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}

    Vậy d(B;(SCD))=AE=\frac{{a\sqrt 6 }}{3}

     

  • Câu 19: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \frac{a\sqrt{21}}{6}. Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)

    Giả sử O là tâm của tam giác đều ABC 

    Do S.ABC đều nên => SO \bot(ABC)

    Gọi E là trung điểm của BC ta có:

    \begin{matrix}  AO \cap \left( {SBC} ight) = E \hfill \\   \Rightarrow \dfrac{{d\left( {A;\left( {SBC} ight)} ight)}}{{d\left( {O;\left( {SBC} ight)} ight)}} = \dfrac{{AE}}{{OE}} = 3 \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 3d\left( {O;\left( {SBC} ight)} ight) \hfill \\ \end{matrix}

    Xét (SAE) kẻ OK \bot SE (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot AE} \\   {BC \bot SO} \end{array}} ight. \Rightarrow BC \bot \left( {SEA} ight) \Rightarrow BC \bot OK\left( {**} ight)

    Ta có:

    \begin{matrix}  SO = \sqrt {S{A^2} - {{\left( {\dfrac{2}{3}AE} ight)}^2}}  \hfill \\   = \sqrt {\dfrac{{21{a^2}}}{{36}} - {{\left( {\dfrac{2}{3}\dfrac{{a\sqrt 3 }}{2}} ight)}^2}}  = \dfrac{a}{2} \hfill \\  OE = \dfrac{1}{3}AE = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6} \hfill \\ \end{matrix}

    Xét tam giác vuông SOE ta có:

    OK = \frac{{SO.OE}}{{\sqrt {S{O^2} + O{E^2}} }} = \frac{a}{4}

    \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 3OK = \frac{{3a}}{4}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 21: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

  • Câu 22: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{3}, SA\bot(ABCD);SA = a\sqrt{2}. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD)?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên AC là hình chiếu của SC trên mặt phẳng (ABCD)

    Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc \widehat{SCA}

    Đáy ABCD là hình vuông cạnh a\sqrt{3} \Rightarrow AC =
a\sqrt{6}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{a\sqrt{2}}{a\sqrt{6}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 23: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 24: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 25: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA =
3a\sqrt{2};SA\bot(ABCD). Tính \tan\left( SC;(SAD) ight)?

    Hình vẽ minh họa

    Ta có: ABCD là hình vuông \Rightarrow AC\bot BD

    Mặt khác SA\bot(ABCD) \Rightarrow SA\bot
CD

    Suy ra CD\bot(SAD)

    => SD là hình chiếu của SC lên mặt phẳng (SAD)

    Do đó \left( SC;(SAD) ight) = (SC;SD) =
\widehat{CSD}

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{CSD} = \frac{CD}{SD} =
\frac{CD}{\sqrt{SA^{2} + AD^{2}}} = \frac{a^{2}}{\sqrt{\left( 3a\sqrt{2}
ight)^{2} + a^{2}}} = \frac{1}{\sqrt{19}} =
\frac{\sqrt{19}}{19}

  • Câu 27: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = 2a;d(A;BB') = a;d(A;CC') =
a\sqrt{3}, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = 2a. Tính thể tích khối lăng trụ ABC.A'B'C'?

    Hình vẽ minh họa:

    Gọi A_{1};A_{2} lần lượt là hình chiếu của A trên BB’ và CC’

    Theo đề bài ta có:

    AA_{1} = a;AA_{2} = a\sqrt{3};A_{1}A_{2}
= 2a

    Dễ thấy A{A_{1}}^{2} + A{A_{2}}^{2} =
A_{1}{A_{2}}^{2} nên tam giác AA_{1}A_{2} vuông tại A

    Gọi H là trung điểm của A_{1}A_{2}
\Rightarrow AH = \frac{A_{1}A_{2}}{2} = a

    Ta lại có MH//BB' \Rightarrow
MH\bot\left( AA_{1}A_{2} ight) \Rightarrow MH\bot AH

    \Rightarrow MH = \sqrt{AM^{2} - AH^{2}}
= a\sqrt{3}

    \Rightarrow \cos\left( (ABC);\left(
AA_{1}A_{2} ight) ight) = \cos(MH,AM)

    = \cos\widehat{HMA} = \frac{MH}{AM} =
\frac{\sqrt{3}}{2}

    Suy ra S_{ABC} =
\frac{S_{AA_{1}A_{2}}}{\cos\left( (ABC);\left( AA_{1}A_{2} ight)
ight)} = a^{2}

    Vậy V = AM.S_{ABC} = 2a^{3}

  • Câu 28: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot SA \\
AB\bot BC \\
\end{matrix} ight. => d(SA, BC) = AB

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?

    Hình vẽ minh họa

    Ta có:

    ABCD là hình chữ nhật nên BD không vuông góc với AC

    Vậy BD không vuông góc với mặt phẳng (SAC)

  • Câu 31: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = 2a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = 2a\sqrt{3}.8a^{2}
= 16a^{3}\sqrt{3}

  • Câu 32: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của SD\alpha là góc giữa hai đường thẳng ACBM. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi O là giao điểm của AC và BD, I là giao điểm của SO và BM.

    Trong mặt phẳng (SAC) kẻ NK // AC, NK
\cap SA = N;NK \cap SC = K

    Ta có: I là trọng tâm tam giác SBD.

    Ta có: SO = \sqrt{SA^{2} + AO^{2}} =
\frac{a\sqrt{3}}{2}

    Tam giác SBD đều cạnh bằng a\sqrt{2}
\Rightarrow BM = \frac{a\sqrt{2}.\sqrt{3}}{2} = \frac{a\sqrt{6}}{2}
\Rightarrow BI = \frac{2}{3}MB = \frac{a\sqrt{6}}{3}

    \Rightarrow \frac{IK}{OC} = \frac{2}{3}
\Rightarrow IK = \frac{2}{3}OC = \frac{2}{3}.\frac{a\sqrt{2}}{2} =
\frac{a\sqrt{2}}{3}

    \frac{SK}{SC} = \frac{2}{3} \Rightarrow
SK = \frac{2}{3}SC = \frac{2}{3}.a\sqrt{3}

    Tam giác SBC vuông tại B \Rightarrow
\cos\widehat{SBC} = \frac{SB}{SC} = \frac{a\sqrt{2}}{a\sqrt{3}} =
\frac{\sqrt{6}}{3}

    Lại có:

    KB^{2} = SK^{2} + SB^{2} -
2SK.SB.cos\widehat{BSK}

    = \left( \frac{2a\sqrt{3}}{3}
ight)^{2} + 2a^{2} -
2.\frac{2a\sqrt{3}}{3}.a\sqrt{2}.\frac{\sqrt{6}}{3} =
\frac{2}{3}a^{2}

    \Rightarrow \cos\widehat{KIB} =
\frac{IK^{2} + IB^{2} - KB^{2}}{2.IK.IB}

    = \frac{\left( \frac{a\sqrt{2}}{3}
ight)^{2} + \left( \frac{a\sqrt{6}}{3} ight)^{2} -
\frac{2a^{2}}{3}}{2.\frac{a\sqrt{2}}{3}.\frac{a\sqrt{6}}{3}} =
\frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}

    Vậy cosin góc giữa hai đường thẳng ACBM\frac{\sqrt{3}}{6}.

    VD

     

    1

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCBC =
a\sqrt{2}, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng SBAC bằng:

    Hình vẽ minh họa

    Ta có: AB^{2} + AC^{2} =
BC^{2}

    Suy ra tam giác ABC vuông tại A.

    Gọi H, M, N lần lượt là trung điểm của AB, AB, SA

    \Rightarrow \left\{ \begin{matrix}
MN//SB \\
MH//AC \\
\end{matrix} ight.\  \Rightarrow (SB,AC) = (MN,MH)

    \left\{ \begin{matrix}MN = \dfrac{SB}{2} = \dfrac{a}{2} \\NH = \dfrac{AC}{2} = \dfrac{a}{2} \\AH = \dfrac{BC}{2} = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    Xét tam giác SBC có: SB = SC nên SH\bot
BC \Rightarrow SH = \sqrt{SB^{2} - HB^{2}} =
\frac{a\sqrt{2}}{2}

    Lại H là tam đường tròn ngoại tiếp tam giác ABC

    Mà SA = SB = SC = a nên SH\bot(ABC)

    Suy ra tam giác SAH vuông cân tại H

    HN = \frac{SA}{2} =
\frac{a}{2}

    Do đó tam giác MHN cạnh \frac{a}{2}. Góc cần tìm bằng 60^{0}

  • Câu 34: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của BC. Khi đó cos(AB; DM) là:

    Hình vẽ minh họa:

    Cos(AB; DM) bằng bao nhiêu?

    Giả sử cạnh của tứ diện là a

    Tam giác BCD đều => DM = \frac{{a\sqrt 3 }}{2}

    Tam giác ABC đều => AM = \frac{{a\sqrt 3 }}{2}

    Ta có: \cos \left( {\overrightarrow {AB} ;\overrightarrow {DM} } ight) = \frac{{\overrightarrow {AB} .\overrightarrow {DM} }}{{\left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {DM} } ight|}} = \dfrac{{\overrightarrow {AB} .\overrightarrow {DM} }}{{a.\dfrac{{a\sqrt 3 }}{2}}}

    Mặt khác 

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {DM}  = \overrightarrow {AB} (\overrightarrow {AM}  - \overrightarrow {AD} ) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AM}  - \overrightarrow {AB} .\overrightarrow {AD}  \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AM} |.\cos (\overrightarrow {AB} .\overrightarrow {AM} ) \hfill \\   - |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos (\overrightarrow {AB} .\overrightarrow {AD} ) \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AM} |.\cos {30^0} - |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} \hfill \\   = a.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} - a.a.\dfrac{1}{2} \hfill \\   = \dfrac{{3{a^2}}}{4} - \dfrac{{{a^2}}}{2} = \dfrac{{{a^2}}}{4} \hfill \\   \Rightarrow \cos (\overrightarrow {AB} ,\overrightarrow {DM} ) = \dfrac{{\sqrt 3 }}{6} > 0 \hfill \\   \Rightarrow (\overrightarrow {AB} ,\overrightarrow {DM} ) = (AB,DM) \hfill \\   \Rightarrow \cos (AB,DM) = \dfrac{{\sqrt 3 }}{6} \hfill \\ \end{matrix}

  • Câu 35: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 36: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 37: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và cạnh SB vuông góc với mặt đáy. Biết rằng AB = a;SB = a\sqrt{2}\alpha = \left( SC;(SAB) ight). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AC\bot AB \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SAB)

    Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA

    \Rightarrow \alpha = \left( SC;(SAB)
ight) = (SC;SA) = \widehat{ASC}

    Tam giác ABC vuông cân tại A nên AC = AB
= a

    Áp dụng định lí Pythagore cho tam giác SAB ta có:

    SA = \sqrt{SB^{2} + AB^{2}} =
a\sqrt{3}

    Tam giác SAC vuông tại A nên \tan\widehat{ASC} = \frac{AC}{SA} =
\frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \tan\alpha =
\frac{1}{\sqrt{3}}

  • Câu 39: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0};\widehat {CAD} = {90^0}. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {IJ}?

    Hình vẽ minh họa:

    Hãy xác định góc giữa cặp vecto

    Xét tam giác ICD có J là trung điểm của CD => \overrightarrow {IJ}  = \frac{1}{2}\left( {\overrightarrow {JC}  + \overrightarrow {ID} } ight)

    Tam giác ABC có AB = AC và \widehat {BAC} = {60^0} => Tam giác ABC đều => CI ⊥ AB

    Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {IJ}  = \dfrac{1}{2}\overrightarrow {AB} .(\overrightarrow {IC}  + \overrightarrow {ID} ) \hfill \\   = \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {IC}  + \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {ID}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {IJ}  \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {IJ} } ight) = {90^0} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Xác định góc giữa hai đường thẳng ABDM?

    Hình vẽ minh họa

    Gọi N là trung điểm của AC thì MN // AB

    Suy ra (AB,DM) = (MN,DM)

    Ta có: \cos\widehat{DMN} = \frac{MN^{2} +
DM^{2} - DN^{2}}{2MN.DM}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2\left( \dfrac{a}{2} ight).\left( \dfrac{a\sqrt{3}}{2}ight)} = \dfrac{\sqrt{3}}{6}

    \cos\widehat{DMN} = \frac{\sqrt{3}}{6}
\Rightarrow (AB;DM) = \arccos\frac{\sqrt{3}}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo