Cho hình lập phương như hình vẽ:

Hỏi đường thẳng nào vuông góc với đường thẳng
?
Ta có:
Cho hình lập phương như hình vẽ:

Hỏi đường thẳng nào vuông góc với đường thẳng
?
Ta có:
Cho hình chóp
có đáy
là tam giác vuông cân tại
và cạnh
vuông góc với mặt đáy. Biết rằng
và
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA
Tam giác ABC vuông cân tại A nên
Áp dụng định lí Pythagore cho tam giác SAB ta có:
Tam giác SAC vuông tại A nên
Cho hình chóp
có tất cả các cạnh bằng nhau và đáy
là hình vuông tâm
. Kết quả nào sau đây đúng?
Hình chóp có tất cả các cạnh bên và cạnh đáy bằng nhau
Do đó: suy ra tam giác SAC cân tại A
Lại có ABCD là hình vuông
=> O là trung điểm cạnh AC
=> SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC
=>
Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD
=>
Từ đó ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:

Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)
Gọi M là giao điểm của AH và BC
Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)
Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM
Xét tam giác BOC vuông ta có:
Xét tam giác AOI vuông ta có:
Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)
Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)
Từ (1) và (2) => H là trực tâm tam giác ABC
Vậy là kết quả sai.
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa

Vì H là trung điểm của AB, tam giác ABC cân =>
Ta có: =>
mà
=>
Mặt khác => CH vuông góc với các đường thẳng
Và chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho hình chóp
có đáy là hình vuông tâm
cạnh bằng
. Gọi
là trung điểm cạnh
,
là hình chiếu vuông góc của điểm
trên
. Biết
. Khi đó, cosin góc tạo bởi đường thẳng
và mặt phẳng
bằng:
Ta có:
suy ra tam giác OHI vuông cân tại H
Suy ra tam giác SCD đều
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:
Hình vẽ minh họa:

Ta có:
=> MN là đường vuông góc chung của AB và CD
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó
Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?
Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

Xét vuông cân tại A, ta có:
Góc giữa 2 đường thẳng BA và BD bằng , suy ra
Xét vuông cân tại A, ta có:
Vì là trung điểm của SB nên:
Ta có:
(Do , nên
)
Do đó:
Vậy góc giữa AM bằng BD bằng
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số
bằng:
Hình vẽ minh họa:
Gọi H, I lần lượt là trung điểm của AB, AC’
Suy ra HI // BC’
Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH
Dễ thấy BK ⊥ (SCH)
Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’
Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành
Khi đó MN là đoạn vuông góc chung cần tìm
Ta có:
Do 2HB = SB nên:
=>
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy
là tam giác vuông cân tại
. Tam giác
vuông cân tại
có
là trung điểm của
và
. Gọi góc giữa hai đường thẳng
và
là
. Chọn kết luận đúng?
Hình vẽ minh họa
Giả sử
Lại có: suy ra tam giác SBC đều suy ra
Suy ra hay
Khi đó
Áp dụng định lí cosin cho tam giác MNC ta có:
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Chọn mệnh đề đúng?
Mệnh đề đúng: “Cho đường thẳng , mọi mặt phẳng
thì
”.
Minh họa bằng hình vẽ:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,
. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:
Hình vẽ minh họa:
Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.
Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD =
Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số ![]()
Hình vẽ minh họa:

Đặt . Ta có:
Giả sử AN = k.AD. Khi đó:
Vì M là trung điểm của CD nên
Khi đó: BN ⊥ AM =>
Cho hình chóp tứ giác đều
. Tính khoảng cách từ đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy
Lấy M, N lần lượt là trung điểm AB, CD.
Kẻ
Có
Ta có:
Khi đó
Trong tam giác SON vuông tại O, có:
Trong không gian cho đường thẳng
và điểm
. Qua điểm
có bao nhiêu đường thẳng vuông góc với
?
Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Cho tứ diện SABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do SBC là tam giác đều có H là trung điểm BC => SH ⊥ BC.
Mà ta có (SBC) ⊥ (ABC) theo giao tuyến BC
=> SH ⊥ (ABC) => SH ⊥ AB.
Vì HI là đường trung bình của tam giác ABC => HI // AC => HI ⊥ AB.
Ta có:
Dùng phương pháp loại trừ thì khẳng định “(SAB) ⊥ (SAC)” là sai.
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’
Ta có:
Xét tam giác AJK có:
Vậy tam giác AJK vuông tại A
Gọi F là trung điểm của JK khi đó ta có:
Gọi N là trung điểm của BC, xét tam giác ANF có:
( vì
)
Lại có:
Xét tam giác AMA;’ vuông tại M ta có:
Hay
Vậy thể tích khối lăng trụ đã cho là:
Cho khối chóp tam giác đều
có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?
Hình vẽ minh họa
Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.
Theo định lí Pythagore ta có:
Trong tam giác SOA vuông tại O ta có:
Vậy thể tích khối chóp tam giác là:
Cho hình lăng trụ
có đáy
là tam giác vuông tại
,
và
. Chọn kết luận đúng về số đo góc giữa
và
?
Hình vẽ minh họa
Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC
Suy ra
Ta có:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.
Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.
Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).
Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”