Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,
. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Hình vẽ minh họa:

Gọi M là trung điểm của BC
=>
Gọi N là trung điểm của AC
=>
Kẻ
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và
,
. Khẳng định nào sau đây là đúng?
Đáp án "" sai vì chỉ có
Đáp án "" sai vì chỉ có:
Đáp án "" đúng vì
Đáp án "" sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có:
Tính thể tích hình chóp đều
biết chiều cao bằng
và độ dài cạnh bên bằng
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Tam giác SOA vuông tại O nên
Vậy thể tích hình chóp là:
Cho hình chóp tứ giác đều
. Tính khoảng cách từ đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy
Lấy M, N lần lượt là trung điểm AB, CD.
Kẻ
Có
Ta có:
Khi đó
Trong tam giác SON vuông tại O, có:
Cho hình lăng trụ đứng tam giác
có đáy
là tam giác vuông tại
,
. Gọi
là trung điểm của
. Tính cosin góc giữa hai đường thẳng
và
.

Hình vẽ minh họa
Gọi N là trung điểm của BB’, ta có: MN//B’C nên
Ta có:
Áp dụng định lí cosin trong tam giác MNA ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.
Hình vẽ minh họa:
Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.
=> Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB
Tức là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho hình chóp
có
. Biết
là hình chữ nhật có
. Giả sử
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có: nên AC là hình chiếu của SC lên mặt phẳng đáy.
=>
Mặt khác
Xét tam giác vuông SAC có:
Cho hình lăng trụ tam giác
có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: Tam giác là tam giác đều suy ra
Lại có
.
Trong các mệnh đề sau, mệnh đề nào là đúng?
Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA =
và vuông góc với (ABCD). Tính cosin của góc giữa (SBC) và (SCD).
Hình vẽ minh họa:
Gọi H, N lần lượt là trung điểm của SC, AB.
Ta có CN = 1/2 AB suy ra tam giác ABC vuông cân tại C.
Suy ra:
Do tam giác SAC vuông cân tại A nên AH = a.
Kẻ AK ⊥ SD. Khi đó:
=> ((SBC), (SCD)) = (AH, AK) = = ϕ
Xét tam giác vuông SAD có:
Xét tam giác vuông AKH ta có:
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp tam giác
có đáy
là tam giác vuông tại
,
,
. Tính góc tạo bởi
và mặt phẳng đáy?
Hình vẽ minh họa
Ta có: nên AB là hình chiếu của SA trên mặt phẳng đáy.
Mặt khác tam giác ABC vuông tại C nên
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
,
. Giả sử
là mặt phẳng đi qua điểm
và vuông góc với
. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng
?
Hình vẽ minh họa
Ta có:
Từ O dựng OH vuông góc với SC
Ta có:
Lại có
Vậy thiết diện cần tìm là tam giác BHD
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho hình chóp
đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a.
. Góc giữa đường thẳng SA và (ABC) bằng

+) Gọi H là trung điểm BC.
Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có:
=> Hình chiếu của SA lên (ABC) là HA
(vì tam giác SAH vuông tại H)
+) Ta có:
Xét tam giác SHA vuông tại H:
Vậy
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời
Cho hình chóp tứ giác
có đáy
là hình vuông, cạnh bên
vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: là hình vuông nên
Và
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp tứ giác
có tất cả các cạnh bằng
. Gọi
lần lượt là trung điểm của
. Tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Từ giả thiết ta có: (do IJ là đường trung bình tam giác SAB)
Mặt khác ta lại có tam giác SAB đều nên
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2,
, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:
Hình vẽ minh họa:
Gọi H = AM ∩ BD
Ta có:
=> SH ⊥ (ABC)
Vì AB song song CD nên theo định lý Ta-lét ta có:
=> d(B; (SAM)) = 2d(D; (SAM))
Kẻ DK ⊥ AM tại K.
Ta có: => DK ⊥ (SAM) tại K => d(D; (SAM)) = DK
=> d(B; (SAM)) = 2DK
Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:
Lại có
Khi đó
Do vậy xét trong tam giác ADM ta có:
Lại có
Từ đó
Trong các mệnh đề sau, mệnh đề nào sau đây sai?
Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”
Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).
Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.
Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”
Cho tứ diện ABCD có
;
. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?
Hình vẽ minh họa

Xét tam giác ABD có AB = AD và
=> Tam giác ABD là tam giác đều
=> (Vì DM là trung tuyến)
Xét tam giác ABC có AB = AC và
=> Tam giác ABC là tam giác đều
=> (Vì CM là trung tuyến)
=> DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)
Suy ra MN là đường cao của tam giác MCD
=> MN ⊥ CD
Chứng minh tương tự:
Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN
=> Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB
Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.
Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?
Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích khối lăng trụ
bằng bao nhiêu?
Hình vẽ minh họa:
Kẻ
Lại có
Gọi F là trung điểm của BC; khi đó
Ta có:
Vì
Vậy tam giác AIK vuông tại A
Gọi E là trung điểm của IK
=>
Lại có do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc
bằng
Ta có:
Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:
Xét tam giác AMF vuông tại A ta có:
Vậy
Cho hình hộp
có độ dài tất cả các cạnh bằng
và các góc
đều bằng
. Gọi trung điểm của các cạnh
lần lượt là
. Gọi
là góc tạo bởi hai đường thẳng
và
. Xác định
?
Hình vẽ minh họa
Ta có: với P là trung điểm của D’C
Suy ra
Vì và các cạnh của hình hộp bằng a
Do đó
Áp dụng định lí cosin cho tam giác A’DP ta có:
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi
là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính ![]()
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có: