Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

Hình vẽ minh họa:
Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB
Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)
Suy ra
Ta có:
∆SAB = ∆CAB (c.c.c)
=> SH = CH. Do đó ∆SCH vuông cân tại H
Vậy
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích khối lăng trụ
bằng bao nhiêu?
Hình vẽ minh họa:
Kẻ
Lại có
Gọi F là trung điểm của BC; khi đó
Ta có:
Vì
Vậy tam giác AIK vuông tại A
Gọi E là trung điểm của IK
=>
Lại có do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc
bằng
Ta có:
Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:
Xét tam giác AMF vuông tại A ta có:
Vậy
Cho hình chóp
có đáy
là hình thang vuông tại hai đỉnh
. Biết rằng
,
. Chọn kết luận đúng dưới đây?
Hình vẽ minh họa
Ta có: vuông cân tại C nên
mà
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:
Hình vẽ minh họa:

Ta có:
Mà
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình lập phương
. Đường thẳng nào dưới đây vuông góc với mặt phẳng
?
Hình vẽ minh họa
Ta có: nên
cách đều các điểm
nên
cách đều các điểm
Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp
có đáy
là tam giác vuông
. Tam giác
là tam giác đều có cạnh bằng
và hình chiếu vuông góc của
lên mặt phẳng
trùng với trung điểm của
. Tính
?
Hình vẽ minh họa
Gọi I là trung điểm của BC
Suy ra
Vì nên hình chiếu của SA trên (ABC) là AI
Do đó góc giữa SA và mặt phẳng (ABC) bằng góc giữa SA và AI bằng
Tma giác SAI vuông tại I ta có:
Cho hình lăng trụ đứng
có đáy là các tam giác đều cạnh bằng
và cạnh bên bằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Khi đó tam giác vuông cân tại C nên
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Khi đó
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?
Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.
Cho hình chóp
có
. Biết đáy
của hình chóp là tam giác vuông tại
cạnh
. Giả sử
. Khi đó:
Hình vẽ minh họa
Dựng AK vuông góc với BC, AH vuông góc với SK
Ta có:
Mà
Khi đó SK là hình chiếu vuông góc của SA trên mặt phẳng (SBC) nên
Ta có:
Khi đó:
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho một khối chóp
có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và
. Gọi
là trọng tâm của tam giác SAB. Khoảng cách từ
đến mặt phẳng
bằng:
Hình vẽ minh họa
Gọi là trung điểm của
(vì
cân)
Ta có:
Và tại
.
Do đó .
Ta có: .
Vì là trọng tâm của
nên
.
Góc giữa hai đường thẳng bất kì trong không gian là góc nào trong các góc dưới đây?
Góc giữa hai đường thẳng m và n trong không gian, kí hiệu là (m, n) là góc giữa hai đường thẳng a và b cùng đi qua một điểm và tương ứng song song với m và n.
Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.
Hình vẽ minh họa:
Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.
Dựng hình chữ nhật AND
Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)
Ta có: C’N // (A’MB) (do C’N // MB)
=> d(C’, (A’BM)) = d(N, (A’BM))
Mà GN // (A’BM) (do GN // A’M)
=> d(N, (A’BM)) = d(G, (A’BM))
=> d(C’, (A’BM)) = d(G,(A’BM))
Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.
BD ⊥ GI (do ANBD là hình chữ nhật)
BD ⊥ A’G (do A’G ⊥ (ABC))
=> BD ⊥ (A’GI) => BD ⊥ GH
Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH
Tính GH: ∆ABC đều, cạnh a
=>
Xét tam giác AA’G vuông tại G
=>
Ta lại có: GNBI là hình chữ nhật =>
Xét tam giác A’GI vuông tại G có GH ⊥ A’I
=>
Suy ra
Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho khối chóp
có
; đáy
là hình chữ nhật
. Tính thể tích khối chóp
, biết mặt phẳng
tạo với mặt phẳng đáy một góc bằng
.
Hình vẽ minh họa
Ta có:
Vì
Vậy
Xét tam giác vuông SAB có
Vậy
Cho hình chóp
, có đáy
là tam giác đều và
. Gọi
là trung điểm của cạnh
và
là hình chiếu của
lên
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Theo giả thiết
Từ (1) và (2) suy ra
Mà
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto
và
?
Hình vẽ minh họa

Ta có:
Cho hình lập phương
. Mặt phẳng nào dưới đây không vuông góc với
?
Hình vẽ minh họa
Dễ thấy mặt phẳng không vuông góc với
.
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho hình chóp tứ giác
có tất cả các cạnh bằng
. Gọi
lần lượt là trung điểm của
. Tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Từ giả thiết ta có: (do IJ là đường trung bình tam giác SAB)
Mặt khác ta lại có tam giác SAB đều nên
Cho tứ diện
có
đôi một vuông góc. Gọi
là trực tâm tam giác
. Kết luận nào sai?
Hình vẽ minh họa
Ta có: đúng
Ta có: đúng
Ta có:
Mà đúng
Vậy hay tam giác HOA vuông tại H sai
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho hình chóp tam giác
có đáy
là tam giác vuông tại
,
,
. Tính góc tạo bởi
và mặt phẳng đáy?
Hình vẽ minh họa
Ta có: nên AB là hình chiếu của SA trên mặt phẳng đáy.
Mặt khác tam giác ABC vuông tại C nên
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi α là góc giữa đường thẳng SD và mặt phẳng (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Giả sử H là trung điểm của AB => SH ⊥ AB => SH ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh HD.
=>
Tam giác SAB đều cạnh a =>
Ta lại có:
=>
Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:
"a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp
"a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp
=> "a không thể vuông góc với mặt phẳng (P)" là sai.
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
bằng góc giữa hai đường thẳng
và
và bằng góc
Mà tam giác ACD’ là tam giác đều nên