Cho hình hộp
có đáy là hình thoi. Gọi mặt phẳng
chứa cạnh
và cắt
lần lượt tại
. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
mà
Mặt khác
.
Cho hình hộp
có đáy là hình thoi. Gọi mặt phẳng
chứa cạnh
và cắt
lần lượt tại
. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
mà
Mặt khác
.
Cho hình hộp ABCD.A’B’C’D có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau. Mệnh đề nào có thể sai?
Dễ thấy các đáp án A’C’ ⊥ BD, A’B ⊥ DC’, BC’ ⊥ A’D đúng
Đáp án BB’ ⊥ BD sẽ bị sai trong trường hợp hình hộp có cạnh bên không vuông góc với mặt đáy
Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.
Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)
=> BD ⊥ SC, BD ⊥ SO
Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí
Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a,
. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.
Hình vẽ minh họa:
Gọi O là giao điểm của AC và BD
Theo giả thiết ta có: B’O ⊥ (ABCD)
Dó đó
Vì tam giác ABD đều cạnh a =>
Tam giác B’BO vuông ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
Hình vẽ minh họa:

Gọi M là trung điểm BC
=>AM ⊥ BC và
Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)
Ta có:
Từ (1) và (2)
Xét tam giác SAM ta có:
Vậy
Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto
và
?
Hình vẽ minh họa

Ta có: AEGC là hình chữ nhật nên EG // AC
Vì ABCD là hình vuông nên
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.
Hình vẽ minh họa:
Vì AB // CD ⇒ CD // (SAB)
=> d(CD, (SAB)) = d(D, (SAB))
Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.
Xét tam giác ABD vuông tại A ta có:
AB2 + AD2 = BD2 = 4a2 => AD =
Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết AB = 2AD = 2DC = 2a, góc giữa hai mặt phẳng (SAB) và (SBC) là 60◦. Độ dài cạnh SA là:
Hình vẽ minh họa:
Gọi E là trung điểm của AB.
Ta dễ dàng chứng minh được ABCE là hình vuông
Trong (SAB) kẻ HE ⊥ SB ta có:
Xét tam giác vuông CEH có EH = CE. cot 60◦ =
Ta có ∆SAB ∼ ∆EHG (g - g)
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình hộp
có độ dài tất cả các cạnh bằng
và
. Gọi
lần lượt là trung điểm câc các cạnh
. Tính cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi P là trung điểm của DC’. Ta có:
Suy ra
Xét tam giác ADA’ có suy ra tam giác ADA’ là tam giác đều
Xét tam giác A’AB có suy ra tam giác A’AB đều
Do đó tam giác DD’C đều
Vậy
Xét tam giác BAD có AD = AB và nên tam giác BAD là tam giác đều.
Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.
Gọi A’I là đường cao của tam giác B’A’D’
Khi đó:
Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên
Áp dụng định lí cosin cho tam giác A’DP có:
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp
có cạnh bên
vuông góc với mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên cạnh
. Tìm khẳng định đúng dưới đây?
Hình vẽ minh họa
Ta có:
Mà
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)
Lại có theo giả thiết SC ⊥ AK. (2)
Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).
Ta có:
Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai
Một hình chóp
có đáy
là cân
. Tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính thể tích khối chóp
theo
.
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Xét tam giác AHS vuông tại H ta có:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.
Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
và
vuông góc với đáy. Tính
góc giữa
.
Hình vẽ minh hoạ
Gọi I là trung điểm của SD
=> OI là đường trung bình tam giác SBD
Suy ra
Ta có:
nên tam giác AOI cân tại I
Gọi H là tung điểm của OA
Xét tam giác OHI có:
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).
Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60◦. Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Hình vẽ minh họa:
Gọi H là hình chiếu của S lên (ABCD).
Ta có:
=> AB ⊥ MH
=> MH là đường trung bình của hình vuông ABCD
Giả sử MH cắt CD tại N, ta có N là trung điểm CD
Ta cũng có SN ⊥ CD nên
Gọi P là trung điểm BC, ta có MP // AC nên AC // (SMP)
Do đó, d(SM, AC) = d(AC,(SMP)) = d(O,(SMP))
Gọi K là hình chiếu của H lên MP (nhận thấy HK // OB), I là hình chiếu của H lên SK
Khi đó d(H, (SMP)) = HI
Áp dụng định lý cosin cho tam giác SMN, ta có:
Xét tam giác vuông SHN ta có:
Xét tam giác SHK vuông tại H, ta có:
Mặt khác:
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình hộp chữ nhật
có các kích thước
. Khoảng cách giữa hai đường thẳng
và
bằng:
Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).
Cho hình hộp chữ nhật có các kích thước
. Khoảng cách giữa hai đường thẳng
và
bằng:
Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Trong kẻ
.
Kẻ .
Do
Mà .
Ta có: là hình bình hành nên
.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Cho hình lập phương ABCD.A’B’C’D. Mặt phẳng (A’BCD’) vuông góc với mặt phẳng:
Hình vẽ minh họa:
Dễ thấy:
Do đó: (ADC’B’)⊥(A’BCD’)
Vậy mặt phẳng (A’BCD’) vuông góc với mặt phẳng (ADC’B’).
Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a,
, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’),
. Gọi
là góc giữa hai đường thẳng AD’ và DB’. Tính
.

Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’
Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E
Suy ra
Bước 2: Tính
Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.
Lấy điểm I sao cho ADIH là hình bình hành.
Suy ra DI // AH , mà
=>
Ta có
Trong tam giác EDB’, có:
Suy ra
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?
Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?
Hình vẽ minh họa:
Ta có: O và I lần lượt là trung điểm của AC và SC
=> OI là đường trung bình của tam giác SAC
=> OI // SA
Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)
Ta có: ABCD là hình chữ nhật => BC ⊥ AB
Mà SA ⊥ BC => BC ⊥ SB
Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD
Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.
Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”
Cho hình chóp tứ giác
có
và đáy là hình vuông. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Cho hình chóp
có
, tứ giác
là hình vuông. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có:
Ta có:
Ta có:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>