Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp tam giác
có đáy
là tam giác vuông tại
,
,
. Tính góc tạo bởi
và mặt phẳng đáy?
Hình vẽ minh họa
Ta có: nên AB là hình chiếu của SA trên mặt phẳng đáy.
Mặt khác tam giác ABC vuông tại C nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh
, cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Cho hình chóp tứ giác đều
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB suy ra
Tam giác SMO vuông tại O nên
Do đó mặt phẳng không vuông góc với
.
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).
Khi đó
Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi , ta có
Ta có
. Kẻ
Từ
Cho lăng trụ đứng
có đáy ABC là tam giác đều cạnh
. Gọi
là trung điểm cạnh BC. Biết
, khoảng cách giữa hai đường thẳng
và
là:
Hình vẽ minh họa
Gọi là trung điểm của
, ta có
là hình bình hành
.
Kẻ .
Ta có: .
Suy ra,
Ta có: .
Xét vuông tại
ta có:
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: là hình lập phương nên các tứ giác
đều là hình vuông
Do đó
Suy ra
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB = 2a, AD = CD = a. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABCD). Mệnh đề nào sau đây đúng?
Do đó ((SBC),(ABCD)) = (SC, AC) =
Tam giác SAC vuông tại A =>
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Độ dài AD bằng:
Hình vẽ minh họa

Ta có:
=> Tam giác ABD vuông tại B.
Lại có nên tam giác BCD vuông tại C.
Khi đó:
Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11,
,
. Tính khoảng cách d giữa hai đường thẳng AB và SD?
Hình vẽ minh họa:
Dựa vào định lý cosin ta dễ dàng tính được BC = 11,
=> ∆ABC vuông tại C
Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB
=> SH ⊥ (ABCD) và
Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, (Do
)
Trong tam giác vuông SHK, kẻ HI ⊥ SK
Do AB // CD => d(AB, SD) = d(H, SD) = HI
Ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và
,
. Khẳng định nào sau đây là đúng?
Đáp án "" sai vì chỉ có
Đáp án "" sai vì chỉ có:
Đáp án "" đúng vì
Đáp án "" sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD).
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Gọi
. Xác định
?
Hình vẽ minh họa
Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc
Khối lăng trụ đứng
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình chóp
có đáy
là hình thang vuông tại hai đỉnh
. Biết rằng
,
. Chọn kết luận đúng dưới đây?
Hình vẽ minh họa
Ta có: vuông cân tại C nên
mà
Cho hình chóp
có đáy
là tam giác vuông cân tại
và cạnh
vuông góc với mặt đáy. Biết rằng
và
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Suy ra hình chiếu của SC trên mặt phẳng (SAB) là SA
Tam giác ABC vuông cân tại A nên
Áp dụng định lí Pythagore cho tam giác SAB ta có:
Tam giác SAC vuông tại A nên
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình chóp
có đáy
là hình bình hành và mặt bên
là tam giác vuông tại
. Tính số đo góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Vì là hình bình hành nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết
.
Hình vẽ minh họa:
Kẻ Mk // SO
Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)
=>
Ta có:
Xét tam giác CNK có:
Xét tam giác MNK vuông ta có:
Cho tứ diện
có
đôi một vuông góc với nhau. Đường thẳng nào sau đây vuông góc với
?
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?
Hình vẽ minh họa

Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB
=> MP // AB’; MN // BC’
=> Góc cần tìm là góc giữa MP và MN
=>
Lấy Q là trung điểm của A’B’ khi đó suy ra:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho tứ diện
có đáy
là tam giác vuông cân tại
. Gọi trung điểm các cạnh
lần lượt là
. Khi đó
bằng:
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có
.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có: AD // BC =>
Gọi H là hình chiếu vuông góc của A lên SB =>
Ta có:
Từ (*) và (**) =>
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA =
và vuông góc với (ABCD). Tính cosin của góc giữa (SBC) và (SCD).
Hình vẽ minh họa:
Gọi H, N lần lượt là trung điểm của SC, AB.
Ta có CN = 1/2 AB suy ra tam giác ABC vuông cân tại C.
Suy ra:
Do tam giác SAC vuông cân tại A nên AH = a.
Kẻ AK ⊥ SD. Khi đó:
=> ((SBC), (SCD)) = (AH, AK) = = ϕ
Xét tam giác vuông SAD có:
Xét tam giác vuông AKH ta có:
Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:
Hình vẽ minh họa:
Do ABCD là hình vuông cạnh a
=>
=> Tam giác SAC vuông tại S
Từ giả thiết ta có MN là đường trung bình của tam giác DSA
=> . Khi đó
=>
Cho hình lăng trụ tam giác đều
có tất cả các cạnh bằng
. (như hình vẽ).

Tính
?
Hình vẽ minh họa
Gọi M là trung điểm cạnh BC.
Ta có tam giác ABC đều cạnh a nên ;
là hình lăng trụ tam giác đều nên
Do đó và
theo giao tuyến
Kẻ
Lại có