Cho hình chóp
đáy là tam giác
vuông tại
và
. Mệnh đề nào sau đây sai?
Ta có:
Vậy đáp án sai là: .
Cho hình chóp
đáy là tam giác
vuông tại
và
. Mệnh đề nào sau đây sai?
Ta có:
Vậy đáp án sai là: .
Cho hình chóp
có cạnh bên
vuông góc với mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên cạnh
. Tìm khẳng định đúng dưới đây?
Hình vẽ minh họa
Ta có:
Mà
Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a,
, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’),
. Gọi
là góc giữa hai đường thẳng AD’ và DB’. Tính
.

Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’
Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E
Suy ra
Bước 2: Tính
Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.
Lấy điểm I sao cho ADIH là hình bình hành.
Suy ra DI // AH , mà
=>
Ta có
Trong tam giác EDB’, có:
Suy ra
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho khối chóp
có
; đáy
là hình chữ nhật
. Tính thể tích khối chóp
, biết mặt phẳng
tạo với mặt phẳng đáy một góc bằng
.
Hình vẽ minh họa
Ta có:
Vì
Vậy
Xét tam giác vuông SAB có
Vậy
Cho hình chóp
có đáy
là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?
Hình vẽ minh họa
Ta có:
Hình chiếu của SB lên mặt phẳng (SAC) là SO.
Vậy
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho khối lăng trụ đứng
, đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với đáy, kẻ AH vuông góc với BC (H thuộc BC). Hãy xác định góc α giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC) mà đường thẳng BC nằm trong (ABC)
=> SA ⊥ BC.
Ta có BC ⊥ AH tại H.
=>
Ta lại có:
Từ (1), (2), (3) =>
Cho ba vecto
bất kì đều khác với vecto
. Nếu vecto
vuông góc với cả hai vecto
và
thì
,
và
:
Nếu vecto vuông góc với cả hai vecto
và
thì
,
và
thì có thể đồng phẳng.
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Hình vẽ minh họa:
Hình chóp tứ diện đều S.ABCD có tất cả các cạnh đều bằng a, ta tìm góc giữa hai mặt phẳng (SAD) và (SBC).
Gọi M, N là trung điểm các cạnh AD và BC, khi đó SM ⊥ AD và SN ⊥ BC (do các tam giác SBC; SAD là các tam giác đều).
Vì BC // AD nên giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d qua S và song song AD, BC.
Vì SM ⊥ AD và SN ⊥ BC nên SM ⊥ d và SN ⊥ d mà SM ⊂ (SAD); SN ⊂ (SBC) góc giữa hai mặt phẳng (SAD) và (SBC) là góc .
Mặt bên là các tam giác đều cạnh a nên ; MN = AB = a.
Khi đó:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?
Hình vẽ minh họa:
Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ
=> MQ // AB
Tương tự ta có: MN // CD; NP // AB; QP // CD
Khi đó tứ giác MNPQ là hình bình hành
Ta có: MN ⊥ MQ (Do AB ⊥ CD)
Hay tứ giác MNPQ là hình chữ nhật.
Cho tứ diện
có
, các cạnh còn lại bằng nhau và bằng
. Mặt phẳng
chứa cạnh
và vuông góc với cạnh
tại
. Diện tích tam giác
lớn nhất bằng bao nhiêu?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4
Gọi H là trung điểm của AB ta có: và
Dấu bằng xảy ra khi và chỉ khi
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?
Hình vẽ minh họa:
Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A
=>
=> MNPQ là hình bình hành
Gọi H là trung điểm của AB
Vì hai tam giác ABC và ABC’ đều nên
=>
Ta có:
Vậy tứ giác MNPQ là hình chữ nhật
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB
=> Tam giác SBC vuông tại B => I là trung điểm của SC
Theo bài ra ta có: IH ⊥ (ABC) => IH // SA
=> H là trung điểm của cạnh AC,
Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính
?
Hình vẽ minh họa
Ta có: là hình vuông
Mặt khác
Suy ra
=> SD là hình chiếu của SC lên mặt phẳng (SAD)
Do đó
Xét tam giác vuông tại
ta có:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là
và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Thể tích khối chóp là:
Thể tích hình lăng trụ là:
Khi đó:
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng
. Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng . Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình hộp chữ nhật
có
(như hình vẽ)

Gọi
là góc giữa đường thẳng
và mặt phẳng đáy
. Khi đó:
Hình vẽ minh họa
Ta có:
Lại có:
Xét tam giác ta có:
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
“Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.
“Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.
“Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.
Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”
Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?
Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.
Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.
Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.
Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H
Do nên
Ta có:
Nên
Vậy khoảng cách
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Gọi J, K lần lượt là hình chiếu vuông góc của A lên BB’ và CC’, H là hình chiếu vuông góc của C lên BB’
Ta có:
Xét tam giác AJK có:
Vậy tam giác AJK vuông tại A
Gọi F là trung điểm của JK khi đó ta có:
Gọi N là trung điểm của BC, xét tam giác ANF có:
( vì
)
Lại có:
Xét tam giác AMA;’ vuông tại M ta có:
Hay
Vậy thể tích khối lăng trụ đã cho là:
Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Cho hình chóp tam giác
có đáy
là tam giác vuông tại
,
. Xác định khẳng định đúng dưới đây?
Hình vẽ minh họa
Ta có:
Mà (vì đáy là tam giác vuông tại B);
Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

Gọi O là tâm của hình vuông ABCD. Khi đó ta có (1).
Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên
(2)
Từ (1) và (2) ta có tại O
Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).
Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là
Xét tam giác vuông AB’O có
Vậy
Cho khối chóp tam giác có chiều cao bằng
, diện tích đáy bằng
. Thể tích của hình chóp bằng:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có:
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình tứ diện ABCD có AB, CD, BC đôi một vuông góc. Khi đó ta có:
Hình vẽ minh họa:
Ta có:
Ta có:
Nếu (Vô lí)
Nếu (Vô lí)
Nếu (Vô lí)
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, biết
đều. Tính
?
Hình vẽ minh họa
Ta có:
.