Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 2: Thông hiểu

    Mệnh đề nào sau đây là đúng?

     

    • Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.

    • Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.

    • Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau

     

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều và H là trung điểm cạnh BC. Gọi O là trung điểm AH của tam giác ABC, SO\bot(ABCD). Gọi I là trung điểm cạnh OH. Gọi mặt phẳng (\alpha) qua I và vuông góc với OH. Thiết diện của (\alpha) với hình chóp S.ABC là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)\bot OH \\
BC\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//BC

    => Qua I kẻ đường thẳng d_{1}//BC. Gọi \left\{ \begin{matrix}
d_{1} \cap AB = M \\
d_{1} \cap AC = N \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
SO\bot OH \\
(\alpha)\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//SO=> Qua I kẻ đường thẳng IK//SO;(K \in SH)

    (\alpha)//BC => Qua K kẻ đường thẳng d_{2}//BC. Gọi \left\{ \begin{matrix}
d_{2} \cap SB = Q \\
d_{2} \cap SC = P \\
\end{matrix} ight.

    => thiết diện (\alpha) và hình chóp là tứ giác MNPQ có IK là đường trung trực của MN và PQ.

    => MNPQ là hình thang cân.

  • Câu 4: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1. Chọn khẳng định sai?

    Hình vẽ minh họa:

    Dễ thấy

    Góc giữa B1D1 và AC bằng 900

    Góc giữa AD và C1B bằng 450

    Góc giữa BD và CA1 bằng 900

    Đều là các đáp án đúng

    Góc giữa B1D1 và AA1 bằng 600 sai vì \widehat{\left(
B_{1}D_{1};AA_{1} ight)} = 90^{0}

  • Câu 5: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc H của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và SH =
\frac{a\sqrt{6}}{2}. Gọi α là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi H là trung điểm BC.

    Tam giác ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Theo giả thiết, ta có SH ⊥ (ABC).

    Qua B kẻ Bx // AC. Khi đó (SB, AC) = (SB, Bx).

    Kẻ HE ⊥ Bx tại E, cắt AC tại M.

    => AMEB là hình chữ nhật nên \left\{\begin{matrix}BE = AM = \dfrac{AC}{2} = \dfrac{a}{2} \\HE = HM = \dfrac{AB}{2} = \dfrac{a}{2} \\\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
Bx\bot HE \\
Bx\bot SH \\
\end{matrix} \Rightarrow Bx\bot(SHE) \Rightarrow Bx\bot SE. ight.

    Tam giác vuông SEB ta có:\cot\alpha =
\frac{BE}{SE} = \frac{AM}{\sqrt{SH^{2} + HE^{2}}} =
\frac{\sqrt{7}}{7}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa:

    Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.

    Gọi H là trung điểm AC => SH ⊥ AC.

    Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.

    Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.

    Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.

    Từ đó suy ra (ABI) ⊥ (SBC).

    Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 8: Thông hiểu

    Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, AB = a,\widehat {ACB} = 30^\circ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi \alpha là góc tạo bởi A’H với (A’ACC’). Tính \sin\alpha?

    Sin của góc tạo bởi A’H với (A’ACC’)

    Ta có A'H \bot \left( {ABC} ight) nên A’H là đường cao của lăng trụ.

    Kẻ HK \bot AC (K thuộc đoạn AC)

    Kẻ

    Suy ra HI \bot \left( {AA'C'C} ight)

    Khi đó \alpha  = \left( {A'H,A'I} ight) = \widehat {HA'K}

    Sin của góc tạo bởi A’H với (A’ACC’)

    +) Do tam giác MCB cân tại B nên \widehat {BMC} = \widehat {BCM} = 30^\circ

    \begin{matrix}  MH = \dfrac{1}{2}BM = \dfrac{1}{4}AC = \dfrac{1}{4}\dfrac{{AB}}{{\sin 30^\circ }} = \dfrac{a}{2} \hfill \\   \Rightarrow HK = MH.\sin 60^\circ  = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

    +) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng \widehat {A'AH} = 60^\circ (theo giả thiết)

    Và BM = AM = AB = a

    => Tam giác AMB là tam giác đều cạnh a

    \Rightarrow AH = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = AH.\tan 60^\circ  = \frac{{3a}}{2}

    Vì vậy, \sin \alpha  = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{{3a}}{2}}} = \dfrac{{\sqrt 3 }}{6}

  • Câu 9: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2, AB = a\sqrt{2}, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:

    Hình vẽ minh họa:

    Gọi H = AM ∩ BD

    Ta có: \left\{ \begin{matrix}(SBD)\bot(ABC) \\(SAM)\bot(ABC) \\(SBD)\  \cap \ (SAM) = SH \\\end{matrix} ight.

    => SH ⊥ (ABC)

    Vì AB song song CD nên theo định lý Ta-lét ta có:

    \frac{HB}{HD} = \frac{AB}{DM} =2

    \Rightarrow \frac{d\left( B;(SAM)ight)}{d\left( D;(SAM) ight)} = 2

    => d(B; (SAM)) = 2d(D; (SAM))

    Kẻ DK ⊥ AM tại K.

    Ta có: \left\{ \begin{matrix}DK\bot AM \\DK\bot SH \\\end{matrix} ight.=> DK ⊥ (SAM) tại K => d(D; (SAM)) = DK

    => d(B; (SAM)) = 2DK

    Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:

    S_{ADM} = \frac{1}{2}S_{ADC} =\frac{1}{4}S_{ABDC} = \frac{2a^{2}}{4} = \frac{a^{2}}{2}

    Lại có CD = AB = a\sqrt{2}

    \Rightarrow \left\{ \begin{matrix}DM = \dfrac{a\sqrt{2}}{2} \\AD = BC = 2a \\\end{matrix} ight.

    Khi đó

    S_{ADM} =\frac{1}{2}AM.DM.sin\widehat{D}

    \Leftrightarrow \frac{a^{2}}{2} =\frac{1}{2}.2a.sin\widehat{D}

    \Rightarrow \sin\widehat{D} =\frac{\sqrt{2}}{2} \Rightarrow \widehat{D} = 45^{0}

    Do vậy xét trong tam giác ADM ta có:

    \begin{matrix}AM^{2} = AD^{2} + DM^{2} - 2AD.DM.cos45^{0} \hfill\\AM^{2} = 4a^{2} + \dfrac{a}{2}^{2} -2.2a.\dfrac{a\sqrt{2}}{2}.\dfrac{\sqrt{2}}{2} \hfill\\AM^{2} = \dfrac{5a^{2}}{2} \hfill\\\end{matrix}

    AM = \frac{a\sqrt{10}}{2}

    Lại có S_{ADM} =\frac{1}{2}DK.AM

    \Rightarrow DK = \frac{2S_{ADM}}{AM} =\frac{2a}{\sqrt{10}} = \frac{a\sqrt{10}}{5}

    Từ đó d\left( B;(SAM) ight) = 2.DK =\frac{2a\sqrt{10}}{5}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Chọn khẳng định đúng

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB

    => Tam giác SBC vuông tại B => I là trung điểm của SC

    Theo bài ra ta có: IH ⊥ (ABC) => IH // SA

    => H là trung điểm của cạnh AC,

    Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 11: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 12: Vận dụng

    Cho vecto \vec{n}\vec{0} và hai vecto \vec{a}\vec{b} không cùng phương. Nếu vecto \vec{n} vuông góc với cả hai vecto \vec{a}\vec{b} thì \vec{n} , \vec{a}\vec{b}:

    Trường hợp "Đồng phẳng" và " Có thể đồng phẳng" sai vì có thể xảy ra trường hợp như hình vẽ sau:

    Hoàn thành mệnh đề

    Giả sử trường hợp "Không đồng phẳng" sai tức là ba vecto  \vec{n} , \vec{a}\vec{b} đồng phẳng. 

    Khi đó vì \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow n  \bot \overrightarrow a } \\   {\overrightarrow n  \bot \overrightarrow b } \end{array}} ight. \Rightarrow \overrightarrow a //\overrightarrow bđiều này mẫu thuẫn với giả thiết hai vecto  \vec{a}\vec{b} không cùng phương.

    Vậy đáp án đúng là "Không đồng phẳng"

  • Câu 13: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Điều kiện nào sau đây không phải là điều kiện cần và đủ để hai mặt phẳng (P) và (Q) vuông góc với nhau?

    Mỗi đường thẳng a nằm trong (P) đều có đường thẳng b nằm trong (Q) sao cho a vuông góc với b, khi đó (P) và (Q) có thể trùng nhau.

  • Câu 16: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 19: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 8a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 8a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{8}{3}a^{3}

  • Câu 20: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 21: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB = 2a, AD = CD = a. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABCD). Mệnh đề nào sau đây đúng?

    \left\{ \begin{matrix}BC\bot AC \\BC\bot SA \\\end{matrix} ight.\  \Rightarrow BC\bot(SAC) \Rightarrow BC\bot SC

    Do đó ((SBC),(ABCD)) = (SC, AC) = \widehat{SCA}

    Tam giác SAC vuông tại A => \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{\sqrt{2}}{2}

  • Câu 23: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 24: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 25: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi α là góc giữa đường thẳng SD và mặt phẳng (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?

    Hình vẽ minh họa:

    Giả sử H là trung điểm của AB => SH ⊥ AB => SH ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh HD.

    => \alpha = \left( SD,(ABCD) ight) =
(SD;HD) = \widehat{SDH}

    Tam giác SAB đều cạnh a => SH =
\frac{a\sqrt{3}}{2}

    Ta lại có: HD = \sqrt{AH^{2} + AB^{2}} =
\frac{a\sqrt{5}}{2}

    => \cot\alpha = \cot\widehat{SDH} =
\frac{DH}{SH} = \frac{5}{\sqrt{15}}

  • Câu 26: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'BB' = 2a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{2\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{4a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = 2a.\frac{4a^{2}\sqrt{3}}{9} =
\frac{8\sqrt{3}a^{3}}{9}

  • Câu 27: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: ABCD là hình vuông nên BD\bot AC

    SA\bot(ABCD) \Rightarrow SA\bot
BD

    \Rightarrow BD\bot(SAC)

  • Câu 28: Nhận biết

    Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?

    Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.

  • Câu 29: Thông hiểu

    Cho khối chóp S.ABCDSA\bot(ABCD); đáy ABCD là hình chữ nhật AB = a;AD = a\sqrt{3}. Tính thể tích khối chóp S.ABCD, biết mặt phẳng (SBC) tạo với mặt phẳng đáy một góc bằng 60^{0}.

    Hình vẽ minh họa

    Ta có: S_{ABCD} =
a^{2}\sqrt{3}

    \left\{ \begin{matrix}
(SBC) \cap (ABCD) = BC \\
BC\bot SB \subset (SBC) \\
BC\bot AB \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow \left( (SBC);(ABCD) ight) = (SB;AB)
= \widehat{SBA}

    Vậy \widehat{SBA} = 60^{0}

    Xét tam giác vuông SAB có

    \tan60^{0} = \frac{SA}{AB} \Rightarrow SA= AB.\tan60^{0} = a\sqrt{3}

    Vậy V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.a^{2}\sqrt{3}.a\sqrt{3} = a^{3}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 31: Thông hiểu

    Cho tứ diện SABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do SBC là tam giác đều có H là trung điểm BC => SH ⊥ BC.

    Mà ta có (SBC) ⊥ (ABC) theo giao tuyến BC

    => SH ⊥ (ABC) => SH ⊥ AB.

    Vì HI là đường trung bình của tam giác ABC => HI // AC => HI ⊥ AB.

    Ta có:

    \left\{ \begin{matrix}
SH\bot AB \\
HI\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(SHI) \Rightarrow
(SAB)\bot(SHI)

    Dùng phương pháp loại trừ thì khẳng định “(SAB) ⊥ (SAC)” là sai.

  • Câu 32: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau?

    Ta có:

    “Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.

    “Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.

    “Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.

    Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết: AB = a,AD = SA = a\sqrt 3. Hai bên mặt SAB và SAD vuông tại a. Gọi μ là góc giữa hai đường thẳng SB và AC. Tính cosμ?

    Hình vẽ minh họa:

    Xác định cosin góc giữa hai đường thẳng SB và AC

    Ta có:

    \begin{matrix}  \cos \left( {\overrightarrow {SB} ;\overrightarrow {AC} } ight) = \dfrac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{SB.AC}} = \dfrac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{4{a^2}}} \hfill \\  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SA}  + \overrightarrow {AB} } ight).\overrightarrow {AC}  \hfill \\   = \overrightarrow {SA} .\overrightarrow {AC}  + \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {AC}  = \overrightarrow {AS} .\left( {m\overrightarrow {AB}  + n\overrightarrow {AC} } ight) = 0 \hfill \\  \overrightarrow {AB} .\overrightarrow {AC}  = 2.2a.\cos {60^0} = {a^2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {SB} ,\overrightarrow {AC} } ight) = \frac{1}{4} \hfill \\   \Rightarrow \cos \mu  = \frac{1}{4} \hfill \\ \end{matrix}

     

  • Câu 34: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = a\sqrt{5};d(A;BB') =
a;d(A;CC') = 2a, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{a\sqrt{15}}{3}. Thể tích khối lăng trụ ABC.A'B'C' bằng bao nhiêu?

    Hình vẽ minh họa:

    Kẻ AI\bot BB';AK\bot
CC'

    Lại có \left\{ \begin{matrix}
d(A;BB') = a \Rightarrow AI = a \\
d(A;CC') = 2a \Rightarrow AK = 2a \\
\end{matrix} ight.

    Gọi F là trung điểm của BC; A'M =
\frac{a\sqrt{15}}{3} khi đó \Rightarrow AF = \frac{a\sqrt{15}}{3}

    Ta có: \left\{ \begin{matrix}
AI\bot BB' \\
AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AIK) \Rightarrow
BB'\bot IK

    C'C//B'B \Rightarrow
d(C;BB') = d(K;BB') = IK = a\sqrt{5}

    Vậy tam giác AIK vuông tại A

    Gọi E là trung điểm của IK

    => EF//BB' \Rightarrow EF\bot(AIK)
\Rightarrow EF\bot AE

    Lại có AM\bot(ABC) do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc \widehat{AME} bằng \widehat{FAE}

    Ta có: \cos\widehat{FAE} = \dfrac{AE}{AF}= \dfrac{\dfrac{a\sqrt{5}}{2}}{\dfrac{a\sqrt{15}}{3}} = \dfrac{\sqrt{3}}{2}\Rightarrow \widehat{FAE} = 30^{0}

    Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:

    S_{AIK} = S_{ABC}.\cos\widehat{FAE}\Rightarrow a^{2} = S_{ABC}.\cos30^{0}

    \Rightarrow S_{ABC} =
\frac{2}{\sqrt{3}}a^{2}

    Xét tam giác AMF vuông tại A ta có:

    \tan\widehat{AMF} = \dfrac{AF}{AM}\Rightarrow AM = \dfrac{\dfrac{a\sqrt{15}}{3}}{\dfrac{a\sqrt{3}}{3}} =a\sqrt{5}

    Vậy V_{ABC.A'B'C} =
a\sqrt{5}.\frac{2a^{2}}{\sqrt{3}} =
\frac{2a^{3}\sqrt{15}}{3}

  • Câu 35: Nhận biết

    Cho hình chóp S.ABC đáy là tam giác ABC cân tại A, SA vuông góc với đáy. Gọi Mlà trung điểm của BC, J là trung điểm của BM. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: BC\bot SA;\left( do\ SA\bot(ABC)
ight)

    Tam giác ABC cân tại A nên AM\bot
BC

    \Rightarrow BC\bot(SAM)

  • Câu 36: Vận dụng

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 37: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

  • Câu 38: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo