Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 2: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, AC=a\sqrt{3}. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ B đến mặt phẳng (SAC)

    Gọi M là trung điểm của BC

    => SH \bot BC \Rightarrow SH \bot \left( {ABC} ight)

    Gọi N là trung điểm của AC

    => MN \bot AC

    Kẻ ME \bot SN,\left( {E \in SN} ight)

     \begin{matrix} d\left( {B,\left( {SAC} ight)} ight) = 2d\left( {M;\left( {SAC} ight)} ight) \hfill \\   = 2ME = 2.\dfrac{{SM.MN}}{{\sqrt {S{M^2} + M{N^2}} }} = \dfrac{{2a\sqrt {39} }}{{13}} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Khẳng định nào sau đây là đúng?

    Đáp án "AB ⊥ (ACD)" sai vì chỉ có AB ⊥ CD

    Đáp án "BC ⊥ (ACD)" sai vì chỉ có: BC ⊥ CD

    Đáp án "CD ⊥ (ABC)" đúng vì \left\{ {\begin{array}{*{20}{l}}  {CD \bot AB} \\   {CD \bot BC} \end{array}} ight. ⇒CD⊥(ABC)

    Đáp án "AD ⊥ (BCD)" sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD).

  • Câu 5: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Gọi O là tâm hình vuông ABCD => SO \bot \left( {ABCD} ight)

    OA \cap \left( {SCD} ight) = C nên 

    \begin{matrix}  \dfrac{{d\left( {A;\left( {SCD} ight)} ight)}}{{d\left( {O;\left( {SCD} ight)} ight)}} = \dfrac{{AC}}{{OC}} = 2 \hfill \\   \Rightarrow d\left( {A;\left( {SCD} ight)} ight) = 2d\left( {O;\left( {SCD} ight)} ight) \hfill \\ \end{matrix}

    Gọi H là trung điểm của CD => OH \bot CD

    Gọi K là hình chiếu của O trên SH => OK \bot SH (*) 

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot OH} \\   {CD \bot SO} \end{array}} ight. \Rightarrow CD \bot \left( {SOH} ight) \Rightarrow CD \bot OK\left( ** ight)

    Từ (*) và (**) 

    \begin{matrix}  OK \bot \left( {SCD} ight) \Rightarrow d\left( {O;\left( {SCD} ight)} ight) = OK \hfill \\  OK = \dfrac{{SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }} \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  SO = \sqrt {S{A^2} - O{A^2}}  \hfill \\   = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}}  = \dfrac{{a\sqrt {14} }}{2} \hfill \\ \end{matrix}

    \Rightarrow OK = \dfrac{{\dfrac{{a\sqrt {14} }}{2}.\dfrac{a}{2}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {14} }}{2}} ight)}^2} + {{\left( {\dfrac{a}{2}} ight)}^2}} }} = \dfrac{{a\sqrt 7 }}{{\sqrt {30} }}

    d\left( {A;\left( {SCD} ight)} ight) = 2.OK = \frac{{2a\sqrt 7 }}{{\sqrt {30} }}

  • Câu 6: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 7: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 8: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 9: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.

    Hình vẽ minh họa:

    Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.

    => Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB

    Tức là \alpha =
\widehat{SBA}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Gọi (\alpha) là mặt phẳng qua B và vuông góc với AB \Rightarrow (\alpha) \cap (ABC) =
Bt//AC.

    Gọi (\beta) là mặt phẳng qua C và vuông góc với AC

    \Rightarrow (\beta) \cap (ABC) =Ct'//AB

    Khi đó, (\alpha) \cap (\beta) =
SH với H = Bt \cap Ct' là đỉnh thứ tư của hình vuông ABHC.

    Khi đó: \Delta SAB,\ \ \Delta
SAC là hai tam giác vuông bằng nhau có SB = SC = a\sqrt{3},SA = 2a.

    Gọi I là chân đường cao hạ từ đỉnh B của tam giác SAB, ta có BI\bot SA,CI\bot SA.

    Vậy góc giữa hai mặt phẳng (SAB)(SAC)(IB;IC).

    Xét \Delta IBC cân tại IIB = IC
= \frac{a\sqrt{3}.a}{2a} = \frac{a\sqrt{3}}{2},BC =
a\sqrt{2}.

    Ta có: \cos\widehat{BIC} = \frac{IB^{2} +IC^{2} - BC^{2}}{2IB.IC}= \dfrac{\dfrac{3a^{2}}{4} + \dfrac{3a^{2}}{4} -2a^{2}}{2.\dfrac{3a^{2}}{4}} = - \dfrac{1}{3}.

    Vậy cosin góc giữa hai mặt phẳng (SAB)(SAC) bằng \frac{1}{3}.

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCDSA\bot(ABCD). Biết ABCD là hình chữ nhật có AB = a;AD = a\sqrt{2}. Giả sử \alpha = \left( SC;(ABCD) ight). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên AC là hình chiếu của SC lên mặt phẳng đáy.

    => \alpha = \left( SC;(ABCD) ight) =
(SC;AC) = \widehat{SCA}

    Mặt khác AC = \sqrt{BC^{2} + AB^{2}} =
a\sqrt{3}

    Xét tam giác vuông SAC có:

    \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \alpha = \widehat{SCA} =
30^{0}

  • Câu 13: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng ABC'A'?

    Hình vẽ minh họa

    Ta có: Tam giác ABC là tam giác đều suy ra \widehat{BAC} =
60^{0}

    Lại có AC//A'C'

    \Rightarrow (AB;A'C') = (AB;CA) =
\widehat{BAC} = 60^{0}.

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là đúng?

     Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA = a\sqrt{2} và vuông góc với (ABCD). Tính cosin của góc giữa (SBC) và (SCD).

    Hình vẽ minh họa:

    Gọi H, N lần lượt là trung điểm của SC, AB.

    Ta có CN = 1/2 AB suy ra tam giác ABC vuông cân tại C.

    Suy ra: \left\{ \begin{matrix}
SA\bot BC \\
AC\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAC)

    Do tam giác SAC vuông cân tại A nên AH = a.

    Kẻ AK ⊥ SD. Khi đó: \left\{
\begin{matrix}
AH\bot(SBC) \\
AK\bot(SCD) \\
\end{matrix} ight.

    => ((SBC), (SCD)) = (AH, AK) = \widehat{KAH} = ϕ

    Xét tam giác vuông SAD có:

    \begin{matrix}\dfrac{1}{AK^{2}} = \dfrac{1}{SA^{2}} + \dfrac{1}{AD^{2}}\hfill \\\Rightarrow AK = \dfrac{a\sqrt{6}}{3}\hfill \\\end{matrix}

    Xét tam giác vuông AKH ta có:

    \cos\widehat{KAH} = \frac{AK}{AH} =
\frac{\sqrt{6}}{3}

  • Câu 16: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 17: Thông hiểu

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại C, AC = a;BC
= a\sqrt{2}, SA\bot(ABC);SA =
a. Tính góc tạo bởi SB và mặt phẳng đáy?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AB là hình chiếu của SA trên mặt phẳng đáy.

    \Rightarrow \left( SB;(ABC) ight) =
(SB;AB) = \widehat{SBA}

    Mặt khác tam giác ABC vuông tại C nên AB
= \sqrt{AC^{2} + BC^{2}} = a\sqrt{3}

    \Rightarrow \tan\widehat{SBA} =
\frac{SA}{AB} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SB;(ABC) ight) =
\widehat{SBA} = 30^{0}

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA\bot(ABCD);SA = a\sqrt{3}. Giả sử (\alpha) là mặt phẳng đi qua điểm B và vuông góc với SC. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

    Từ O dựng OH vuông góc với SC

    Ta có: \left\{ \begin{matrix}
SC\bot BD \\
SC\bot OE \\
\end{matrix} ight.\  \Rightarrow SC\bot(BDH)

    Lại có \left\{ \begin{matrix}
(\alpha) \cap (SBC) = BH \\
(\alpha) \cap (SCD) = HD \\
(\alpha) \cap (ABCD) = DB \\
\end{matrix} ight.

    Vậy thiết diện cần tìm là tam giác BHD

    S_{BHD} = \frac{1}{2}OH.BD =
\frac{1}{2}\frac{SA.CO}{CA}.BD = \frac{a^{2}\sqrt{15}}{10}

  • Câu 19: Thông hiểu

    Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

    Tính giá trị cos α

    Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a

    Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.

    Tương tự BH ⊥ AC.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAC} ight) \bot \left( {ABC} ight)} \\   {\left( {DAC} ight) \cap \left( {ABC} ight)} \\   {DH \bot AC} \\   {DH \subset \left( {DAC} ight)} \end{array}} ight. \Rightarrow DH \bot \left( {ABC} ight)

    Gọi K là trung điểm của DB.

    Ta có: ABD cân tại A nên AK \bot BD

    Và CBD cân tại C nên CK \bot DB

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAB} ight) \cap \left( {DBC} ight) = BD} \\   {AK \bot BD;AK \subset \left( {DAB} ight)} \\   {CK \bot BD;CK \subset \left( {DAB} ight)} \end{array}} ight.

    Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.

    Ta có DH = a\sqrt 3 ;BH = a\sqrt 3 nên BDH vuông cân tại H.

    Từ đó ta có: \left\{ {\begin{array}{*{20}{c}}  {DB = \sqrt {D{H^2} + H{B^2}}  = a\sqrt 6 } \\   {HK = \dfrac{1}{2}BD = \dfrac{{a\sqrt 6 }}{2}} \end{array}} ight.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AC \bot DH} \\   {AC \bot BH} \\   {DH \cap BH = H} \\   {DH;BH \subset \left( {DBH} ight)} \end{array}} ight. \Rightarrow AC \bot \left( {DBH} ight)HK \subset \left( {DBH} ight) \Rightarrow AC \bot HK

    Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.

    Nên ta có: KH là phân giác của góc \widehat {AKC} suy ra \widehat {AKC} = 2\widehat {CKH}

    Ta có: t = \tan \widehat {CKH} = \frac{{HC}}{{HK}} = \frac{a}{{a\sqrt 6 :3}} = \frac{{\sqrt 6 }}{3}

    Vậy \cos \alpha  = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{6}{9}}}{{1 + \frac{6}{9}}} = \frac{1}{5}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD đáy ABCD là hình thoi tâm I, cạnh bên SA vuông góc với đáy. Gọi H;K lần lượt là hình chiếu của A lên SC;SD. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA;do\ SA\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

  • Câu 21: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a. SA = SB = SC = \frac{{a\sqrt 3 }}{3}. Góc giữa đường thẳng SA và (ABC) bằng

    Góc giữa đường thẳng SA và (ABC) là

    +) Gọi H là trung điểm BC.

    Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Ta có: SA = SB = SC\,\left( {gt} ight) \Rightarrow SH \bot \left( {ABC} ight)

    => Hình chiếu của SA lên (ABC) là HA

    \Rightarrow \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {\left( {SA,HA} ight)} = \widehat {SAH} (vì tam giác SAH vuông tại H)

    +) Ta có: AH = \frac{{BC}}{2} = \frac{a}{2}

    Xét tam giác SHA vuông tại H:

    \cos \widehat {SAH} = \dfrac{{AH}}{{SA}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 3 }}{3}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {SAH} = 30^\circ

    Vậy \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {SAH} = 30^\circ

  • Câu 23: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 24: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

  • Câu 25: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: ABCD là hình vuông nên BD\bot AC

    SA\bot(ABCD) \Rightarrow SA\bot
BD

    \Rightarrow BD\bot(SAC)

  • Câu 26: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{2a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{2a\sqrt{3}}{3}.8a^{2} = \frac{16a^{3}\sqrt{3}}{3}

  • Câu 27: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh bằng a. Gọi I;J lần lượt là trung điểm của SC;BC. Tính số đo góc giữa hai đường thẳng JICD?

    Hình vẽ minh họa

    Từ giả thiết ta có: JI//AB (do IJ là đường trung bình tam giác SAB)

    \Rightarrow (IJ;CD) =(SB;AB)

    Mặt khác ta lại có tam giác SAB đều nên \widehat{SBA} = 60^{0}

    \Rightarrow (SB;AB) = 60^{0} \Rightarrow(IJ;CD) = 60^{0}

  • Câu 28: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 2a2, AB = a\sqrt{2}, BC = 2a. Gọi M là trung điểm của DC. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:

    Hình vẽ minh họa:

    Gọi H = AM ∩ BD

    Ta có: \left\{ \begin{matrix}(SBD)\bot(ABC) \\(SAM)\bot(ABC) \\(SBD)\  \cap \ (SAM) = SH \\\end{matrix} ight.

    => SH ⊥ (ABC)

    Vì AB song song CD nên theo định lý Ta-lét ta có:

    \frac{HB}{HD} = \frac{AB}{DM} =2

    \Rightarrow \frac{d\left( B;(SAM)ight)}{d\left( D;(SAM) ight)} = 2

    => d(B; (SAM)) = 2d(D; (SAM))

    Kẻ DK ⊥ AM tại K.

    Ta có: \left\{ \begin{matrix}DK\bot AM \\DK\bot SH \\\end{matrix} ight.=> DK ⊥ (SAM) tại K => d(D; (SAM)) = DK

    => d(B; (SAM)) = 2DK

    Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2a2 nên ta có:

    S_{ADM} = \frac{1}{2}S_{ADC} =\frac{1}{4}S_{ABDC} = \frac{2a^{2}}{4} = \frac{a^{2}}{2}

    Lại có CD = AB = a\sqrt{2}

    \Rightarrow \left\{ \begin{matrix}DM = \dfrac{a\sqrt{2}}{2} \\AD = BC = 2a \\\end{matrix} ight.

    Khi đó

    S_{ADM} =\frac{1}{2}AM.DM.sin\widehat{D}

    \Leftrightarrow \frac{a^{2}}{2} =\frac{1}{2}.2a.sin\widehat{D}

    \Rightarrow \sin\widehat{D} =\frac{\sqrt{2}}{2} \Rightarrow \widehat{D} = 45^{0}

    Do vậy xét trong tam giác ADM ta có:

    \begin{matrix}AM^{2} = AD^{2} + DM^{2} - 2AD.DM.cos45^{0} \hfill\\AM^{2} = 4a^{2} + \dfrac{a}{2}^{2} -2.2a.\dfrac{a\sqrt{2}}{2}.\dfrac{\sqrt{2}}{2} \hfill\\AM^{2} = \dfrac{5a^{2}}{2} \hfill\\\end{matrix}

    AM = \frac{a\sqrt{10}}{2}

    Lại có S_{ADM} =\frac{1}{2}DK.AM

    \Rightarrow DK = \frac{2S_{ADM}}{AM} =\frac{2a}{\sqrt{10}} = \frac{a\sqrt{10}}{5}

    Từ đó d\left( B;(SAM) ight) = 2.DK =\frac{2a\sqrt{10}}{5}

  • Câu 29: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sau đây sai?

    Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”

    Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.

  • Câu 30: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 31: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 32: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Tam giác SAB đều và \left( (SAB);(ABCD) ight) = 90^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều nên SH\bot
AB

    Lại có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Tính được SH = a\sqrt{3}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.(2a)^{2}.a\sqrt{3} = \frac{4a^{3}\sqrt{3}}{3}

  • Câu 33: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.

    Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

    Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”

  • Câu 34: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD; \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Chọn kết luận sai

    Xét tam giác ABD có AB = AD và \widehat {BAD} = {60^0}

    => Tam giác ABD là tam giác đều

    => DM = \frac{{AB\sqrt 3 }}{2} (Vì DM là trung tuyến)

    Xét tam giác ABC có AB = AC và \widehat {BAC} = {60^0}

    => Tam giác ABC là tam giác đều

    => CM = \frac{{AB\sqrt 3 }}{2} (Vì CM là trung tuyến)

    => DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)

    Suy ra MN là đường cao của tam giác MCD

    => MN ⊥ CD

    Chứng minh tương tự:

    Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN

    => Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB

    Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.

  • Câu 35: Nhận biết

    Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?

    Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.

  • Câu 36: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = a\sqrt{5};d(A;BB') =
a;d(A;CC') = 2a, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{a\sqrt{15}}{3}. Thể tích khối lăng trụ ABC.A'B'C' bằng bao nhiêu?

    Hình vẽ minh họa:

    Kẻ AI\bot BB';AK\bot
CC'

    Lại có \left\{ \begin{matrix}
d(A;BB') = a \Rightarrow AI = a \\
d(A;CC') = 2a \Rightarrow AK = 2a \\
\end{matrix} ight.

    Gọi F là trung điểm của BC; A'M =
\frac{a\sqrt{15}}{3} khi đó \Rightarrow AF = \frac{a\sqrt{15}}{3}

    Ta có: \left\{ \begin{matrix}
AI\bot BB' \\
AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AIK) \Rightarrow
BB'\bot IK

    C'C//B'B \Rightarrow
d(C;BB') = d(K;BB') = IK = a\sqrt{5}

    Vậy tam giác AIK vuông tại A

    Gọi E là trung điểm của IK

    => EF//BB' \Rightarrow EF\bot(AIK)
\Rightarrow EF\bot AE

    Lại có AM\bot(ABC) do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc \widehat{AME} bằng \widehat{FAE}

    Ta có: \cos\widehat{FAE} = \dfrac{AE}{AF}= \dfrac{\dfrac{a\sqrt{5}}{2}}{\dfrac{a\sqrt{15}}{3}} = \dfrac{\sqrt{3}}{2}\Rightarrow \widehat{FAE} = 30^{0}

    Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:

    S_{AIK} = S_{ABC}.\cos\widehat{FAE}\Rightarrow a^{2} = S_{ABC}.\cos30^{0}

    \Rightarrow S_{ABC} =
\frac{2}{\sqrt{3}}a^{2}

    Xét tam giác AMF vuông tại A ta có:

    \tan\widehat{AMF} = \dfrac{AF}{AM}\Rightarrow AM = \dfrac{\dfrac{a\sqrt{15}}{3}}{\dfrac{a\sqrt{3}}{3}} =a\sqrt{5}

    Vậy V_{ABC.A'B'C} =
a\sqrt{5}.\frac{2a^{2}}{\sqrt{3}} =
\frac{2a^{3}\sqrt{15}}{3}

  • Câu 37: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a và các góc \widehat{BAD};\widehat{DAA'};\widehat{A'AB} đều bằng 60^{0}. Gọi trung điểm của các cạnh AA',CD lần lượt là M,N. Gọi \alpha là góc tạo bởi hai đường thẳng MNB'C. Xác định \cos\alpha?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
A'D//B'C \\
MN//A'P \\
\end{matrix} ight. với P là trung điểm của D’C

    Suy ra (MN,B'C) = (A'P;A'D) =
\widehat{DA'P}

    \widehat{BAD} = \widehat{DAA'} =
\widehat{A'AB} = 60^{0} và các cạnh của hình hộp bằng a

    Do đó A'D = a;C'D = C'A'
= a\sqrt{3}

    A'P = \frac{A'D^{2} +
A'C'^{2}}{2} - \frac{DC'^{2}}{4}

    \Rightarrow A'P =
\frac{a\sqrt{5}}{2}

    Áp dụng định lí cosin cho tam giác A’DP ta có:

    \cos\alpha = \frac{A'D^{2} +
A'P^{2} - DP^{2}}{2A'D.A'P} =
\frac{3\sqrt{5}}{10}

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 39: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 40: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 30^{0}

    Ta có: AM = \frac{AA'}{tan30^{0}} =
2a\sqrt{3}

    \Rightarrow BC = 2AM =
4a\sqrt{3}

    \Rightarrow S_{ABC} = \frac{1}{2}.AM.BC
= 12a^{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} = 24a^{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo