Cho hình chóp
có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh
và
lần lượt là
. Xác định cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Theo giả thiết ta có:
là đường trung bình của tam giác
nên
Vì
Cho hình chóp
có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh
và
lần lượt là
. Xác định cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Theo giả thiết ta có:
là đường trung bình của tam giác
nên
Vì
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)
Hình ảnh minh họa

Gọi O là tâm ABCD =>
Ta có:
Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)
Ta có:
Xét tam giác vuông SOM ta có:
Cho hình chóp
có đáy
là tam giác vuông tại
. Hình chiếu của
lên mặt phẳng đáy là trung điểm
của
. Tính thể tích khối chóp
biết
.
Hình vẽ minh họa
Xét tam giác ABC vuông tại C ta có:
H là trung điểm của BC nên
Xét tam giác SBH vuông tại H có
Diện tích đáy ABC là
Thể tích khối chóp là
Tính thể tích hình chóp đều
biết chiều cao bằng
và độ dài cạnh bên bằng
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Tam giác SOA vuông tại O nên
Vậy thể tích hình chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho hình chóp
có đáy
là hình vuông cạnh bằng
;
. Gọi
lần lượt là hình chiếu vuông góc của
trên các cạnh
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Hình vẽ minh họa
Gọi
Ta có:
Ta có:
Chọn mệnh đề đúng?
Mệnh đề đúng: “Cho đường thẳng , mọi mặt phẳng
thì
”.
Minh họa bằng hình vẽ:
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và
, CD = a. Gọi E là trung điểm của AD. Tính góc giữa hai đường thẳng AB và CE.

Kí hiệu hình vẽ như sau:

Gọi H là trung điểm của BD. Khi đó EH // AB, EH ⊥ (BCD)
Góc giữa AB và CE bằng góc giữa EH và EC chính là góc
Ta có:
Ta lại có:
Vậy góc giữa AB và CE là 450
Cho hình chóp
có đáy
là hình thoi tâm
,
. Mặt phẳng
vuông góc với mặt phẳng nào dưới đây?
Hình vẽ minh họa
Ta có: O là tâm hình thoi ABCD
Mặt khác (tính chất tam giác cân)
Và (tính chất hình thoi)
Từ (1) và (2) suy ra
Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa AC’ và BD?

Hình vẽ minh họa:
Ta có:
BD ⊥ AC (do ABCD là hình vuông)
BD ⊥ CC’
⇒ BD ⊥ AC’
Do đó góc giữa AC' và BD bằng 900
Cho tứ diện ABCD. Chứng minh rằng nếu
thì
. Điều ngược lại đúng không? Sau đây là lời giải
Bước 1: Ta có sự tương đương
Bước 2: Chứng minh tương tự ta có: ![]()
Bước 3: Ngược lại đúng, vì quá trình chứng minh ở bước 1 và bước 2 là quá trình biến đổi tương đương.
Bước giải trên đúng hay sai? Nếu sai thì sai ở đâu?
Lời giải đã cho là lời giải đúng
Cho tứ diện ABCD với các đường thẳng AB, BC, CD đôi một vuông góc. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng:
Như vậy góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AC và BC, tức là bằng góc
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

Gọi O là giao điểm của AC và BD và M là trung điểm của SA.
Trong hình chữ nhật ABCD ta có
Xét tam giác MAB vuông tại A, ta có:
Xét tam giác MAO vuông tại O, ta có:
Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.
Áp dụng định lý cosin vào tam giác MOB ta có
Cho hình chóp
có đáy
là hình vuông cạnh bằng
,
. Xác định độ lớn khoảng cách từ điểm
đến mặt phẳng
?
Hình vẽ minh họa
Gọi
Kẻ
Ta có:
Mà
Từ (*) và (**) suy ra
Từ (1) và (2) suy ra
Xét tam giác vuông tại
ta có:
Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.
Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho hình chóp
, có đáy
là hình thang vuông tại
và
. Biết
. Xác định kết luận sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB. Ta có:
Suy ra tam giác ACB vuông tại C.
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong
thì
chỉ đúng khi hai đường thẳng đó cắt nhau.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số
bằng:
Hình vẽ minh họa:
Gọi H, I lần lượt là trung điểm của AB, AC’
Suy ra HI // BC’
Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH
Dễ thấy BK ⊥ (SCH)
Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’
Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành
Khi đó MN là đoạn vuông góc chung cần tìm
Ta có:
Do 2HB = SB nên:
=>
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp tứ giác đều
. Tính khoảng cách từ đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy
Lấy M, N lần lượt là trung điểm AB, CD.
Kẻ
Có
Ta có:
Khi đó
Trong tam giác SON vuông tại O, có:
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp
đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình chóp
có đáy
là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu của điểm
trên cạnh
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
đúng
Ta có: đúng
Ta có: đúng
Vậy kết luận sai là: .
Cho hình chóp tam giác
có
và
. Tính cosin góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC
Mặt khác ta có:
Ta có:
Xét tam giác NAC có:
Xét tam giác MNQ ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:
Hình vẽ minh họa

Từ S vẽ SO ⊥ (ABCD) ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau) ⇒ O là tâm đường tròn ngoại tiếp đáy