Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD. Gọi \alpha là góc tạo bởi đường thẳng BM và mặt phẳng (ABCD). Tính \tan\alpha?

    Minh họa bằng hình vẽ:

    Gọi O là tâm của hình vuông. Ta có: SO\bot(ABCD)SO = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{2}}{2}

    Gọi M là trung điểm của OD ta có: MH//SO nên H là hình chiếu của M lên mặt phẳng (ABCD)MH
= \frac{1}{2}SO = \frac{a\sqrt{2}}{4}

    Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD)\widehat{MBH}

    Khi đó ta có: \tan\widehat{MBH} =\dfrac{MH}{BH} = \dfrac{\dfrac{a\sqrt{2}}{4}}{\dfrac{3a\sqrt{2}}{4}} =\dfrac{1}{3}

    Vậy \tan\alpha =
\frac{1}{3}.

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 3: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C', hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{2a\sqrt{3}}{3};d(C;BB') =
2a;d(A;BB') = a;d(A;CC') = a\sqrt{3}. Thể tích của khối lăng trụ là:

    Hình vẽ minh họa:

    Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác A'B_{1}C_{1} có các cạnh:

    A'B_{1} = a;A'C_{1} =
a\sqrt{3};B_{1}C_{1} = 2a

    Suy ra tam giác A'B_{1}C_{1} vuông tại A’ và trung tuyến A’H của tam giác đó bằng a

    Gọi giao điểm của AM và A’H là T

    Ta có:

    A'M = \frac{2a\sqrt{3}}{3};A'H =
a

    \Rightarrow MH = \frac{a}{\sqrt{3}}
\Rightarrow \widehat{MA'H} = 30^{0} \Rightarrow \widehat{MA'A} =
60^{0}

    \Rightarrow AA' =
\frac{A'M}{\cos\widehat{MA'A}} =
\frac{4a}{\sqrt{3}}

    \Rightarrow V_{ABC.A'B'C'} =
V_{A'B_{1}C_{1}.ABC} = AA'.S_{A'B_{1}C_{1}} =
2a^{3}

  • Câu 4: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'. Mặt phẳng (BCD'A') vuông góc với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình hộp chữ nhật suy ra \left\{ \begin{matrix}
BC\bot AB \\
BC\bot BB' \\
\end{matrix} ight.\  \Rightarrow BC\bot(ABB'A')

    \Rightarrow
(BCD'A')\bot(ABB'A')

  • Câu 5: Nhận biết

    Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?

    Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.

    Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.

  • Câu 6: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 7: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 8: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.

    Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.

    Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).

    Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”

  • Câu 9: Thông hiểu

    Cho tứ diện đều ABCD. Gọi trung điểm của các cạnh AB;BC lần lượt là M;N. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của BD.

    Ta có: MN;NP;MP lần lượt là đường trung bình của tam giác ABC;BCD;ABD.

    Do đó:

    MN//AC;MN = \frac{1}{2}AC

    NP//CD;NP = \frac{1}{2}CD

    ABCD là tứ diện đều \Rightarrow AC = CD = AD

    \Rightarrow MN = NP = MP nên tam giác MNP là tam giác đều.

    \Rightarrow (MN;CD) = (MN;NP) =
\widehat{MNP} = 60^{0}

  • Câu 10: Thông hiểu

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại C, AC = a;BC
= a\sqrt{2}, SA\bot(ABC);SA =
a. Tính góc tạo bởi SB và mặt phẳng đáy?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AB là hình chiếu của SA trên mặt phẳng đáy.

    \Rightarrow \left( SB;(ABC) ight) =
(SB;AB) = \widehat{SBA}

    Mặt khác tam giác ABC vuông tại C nên AB
= \sqrt{AC^{2} + BC^{2}} = a\sqrt{3}

    \Rightarrow \tan\widehat{SBA} =
\frac{SA}{AB} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SB;(ABC) ight) =
\widehat{SBA} = 30^{0}

  • Câu 11: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số \frac{NB}{NC'} bằng:

    Hình vẽ minh họa:

    Gọi H, I lần lượt là trung điểm của AB, AC’

    Suy ra HI // BC’

    Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH

    Dễ thấy BK ⊥ (SCH)

    Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’

    Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành

    Khi đó MN là đoạn vuông góc chung cần tìm

    Ta có:

    \frac{NB}{BC'} = \frac{MK}{2HI} =\frac{1}{2}\left( 1 + \frac{HK}{A'H} ight)

    = \frac{1}{2}\left( 1 + \frac{HK}{HS}ight) = \frac{1}{2}\left( 1 + \frac{HB^{2}}{HS^{2}}ight)

    Do 2HB = SB nên:

    \frac{NB}{BC'} = \frac{1}{2}\left( 1+ \frac{HB^{2}}{HB^{2} + SB^{2}} ight)

    = \frac{1}{2}\left( 1 +\frac{HB^{2}}{HB^{2} + 4HB^{2}} ight) = \frac{3}{5}

    => \frac{NB}{NC'} =\frac{3}{2}

  • Câu 12: Thông hiểu

    Cho một khối lăng trụ đứng như hình vẽ:

    Biết đáy ABCD là hình thoi cạnh bằng a, CC' = 4a;BD =
a\sqrt{3}. Tính thể tích V của lăng trụ đứng đã cho?

    Kí hiệu hình vẽ như sau:

    Gọi giao điểm của AC và BD là I

    Ta có: \left\{ \begin{matrix}AC\bot BD \\BI = \dfrac{BD}{2} = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Xét tam giác vuông BAI vuông tại I ta có:

    AI^{2} = BA^{2} - BI^{2} = a^{2} -
\left( \frac{a\sqrt{3}}{2} ight)^{2} = \frac{a^{2}}{4}

    \Rightarrow AI = \frac{a}{2} \Rightarrow
AC = a

    Diện tích hình bình hành ABCD là:

    S_{ABCD} = 2S_{ABC} =
2.\frac{1}{2}.BI.AC

    = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2}.a =
\frac{a^{2}\sqrt{3}}{2}

    Vậy V_{ABCD.A'B'C'D'} =
S_{ABCD}.CC' = 2a^{3}\sqrt{3}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 14: Vận dụng

    Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

    Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD)

    Gọi I là trung điểm của AB. Khi đó SI \bot \left( {ABCD} ight)

    Ta có \left\{ \begin{gathered}  AD \bot AB \hfill \\  AD \bot SI \hfill \\ \end{gathered}  ight. \Rightarrow AD \bot \left( {SAB} ight)AD \subset \left( {SAD} ight) \Rightarrow \left( {SAD} ight) \bot \left( {SAB} ight)

    Dựng BH \bot SA tại H suy ra SH \bot \left( {SAD} ight)

    Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì CK \bot \left( {SAD} ight)

    Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc \widehat {CSK}

    Ta có BH = CK = \frac{{a\sqrt 3 }}{2}

    Trong tam giác SCI có

    SC = \sqrt {S{I^2} + I{C^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4}}  = a\sqrt 2

    Suy ra \sin \widehat {CSK} = \frac{{CK}}{{SC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng x, SA\bot(ABCD);SA = 2x. Gọi F trung điểm các cạnh AB, G là trung điểm của SF. Tính \cos(CG;BD)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD, H là trung điểm của SI.

    Ta có: GH // FI; BD // FI nên GH // BD => (CG;BD) = (CG;GH) = \widehat{CGH}

    Ta có: CI = \sqrt{CD^{2} + DI^{2}} =
\sqrt{x^{2} + \frac{x^{2}}{4}} = \frac{x\sqrt{5}}{2}

    \Rightarrow CI =
\frac{x\sqrt{5}}{2}

    SF = SI = \sqrt{SA^{2} + AF^{2}} =
\sqrt{(2x)^{2} + \left( \frac{x}{2} ight)^{2}} =
\frac{x\sqrt{17}}{2}

    SC = \sqrt{SA^{2} + AC^{2}} =
\sqrt{(2x)^{2} + \left( x\sqrt{2} ight)^{2}} = x\sqrt{6}

    Khi đó:

    CG = \sqrt{\frac{CF^{2} + SC^{2}}{2} -\frac{SF^{2}}{4}}= \sqrt{\dfrac{\dfrac{5x^{2}}{4} + 6x^{2}}{2} -\dfrac{9x^{2}}{4}} = \dfrac{x\sqrt{41}}{4}

    GH = \frac{1}{2}FI =
\frac{1}{2}.\frac{1}{2}BD = \frac{x\sqrt{2}}{4}

    Ta có: \cos\widehat{CGH} = \frac{GC^{2} +
GH^{2} - HC^{2}}{2.GC.GH}

    = \dfrac{\left( \dfrac{x\sqrt{41}}{4}ight)^{2} + \left( \dfrac{x\sqrt{2}}{4} ight)^{2} - \left(\dfrac{x\sqrt{41}}{4} ight)^{2}}{2.\left( \dfrac{x\sqrt{41}}{4}ight).\left( \dfrac{x\sqrt{2}}{4} ight)} =\dfrac{\sqrt{82}}{82}

    \Rightarrow \cos(CG;BD) =
\frac{\sqrt{82}}{82}

  • Câu 16: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC; \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Hãy xác định góc giữa cặp vecto \overrightarrow {SC} ,\overrightarrow {AB}?

    Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .(\overrightarrow {SB}  - \overrightarrow {SA} ) \hfill \\   = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA}  \hfill \\   = |\overrightarrow {SC} |.|\overrightarrow {SB} |.\cos (\overrightarrow {SC} ,\overrightarrow {SB} ) \hfill \\   - |\overrightarrow {SC} |.|\overrightarrow {SA} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = SC.SB.\cos \widehat {BSC} - SC.SA.\cos \widehat {ASC} \hfill \\ \end{matrix}

    Mà SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}

    => \overrightarrow {SC} .\overrightarrow {AB}  = 0 \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {AB} } ight) = {90^0}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 19: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Xác định đường thẳng vuông góc với đường thẳng C'B?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
A'D//B'C \\
B'C\bot BC' \\
\end{matrix} ight.\  \Rightarrow A'D\bot BC'

  • Câu 20: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 21: Vận dụng

    Cho hình chóp đều, các cạnh bên có độ dài bằng a và tạo với đáy một góc 60^{0}. Tính chu vi đáy P của hình chóp đó.

    Hình vẽ minh họa

    Kẻ SH\bot(ABC)

    H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC

    Ta có: \left( SA;(ABC) ight) =
\widehat{SAH} = 60^{0}

    \Rightarrow AH = SA.cos\widehat{SAH} =
SA.cos60^{0} = a.\frac{1}{2} = \frac{a}{2}

    Gọi M là trung điểm của BC

    \Rightarrow AM = \frac{3}{2}AH =
\frac{3}{2}.\frac{a}{2} = \frac{3a}{4}

    Gọi AB = BC = AC = x \Rightarrow BM =
\frac{x}{2}

    Vì M là trung điểm của BC nên AM\bot
BC

    \Rightarrow AB^{2} = BM^{2} +
AM^{2}

    \Leftrightarrow x^{2} = \frac{1}{4}x^{2}
+ \left( \frac{3a}{4} ight)^{2}

    \Leftrightarrow x =
\frac{a\sqrt{3}}{2}

    Chu vi đáy ABC bằng AB + BC + AC = 3.x =
3.\frac{a\sqrt{3}}{2} = \frac{3a\sqrt{3}}{2}

  • Câu 22: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Vì HA = HB, tam giác ABC cân => CH ⊥ AB

    Ta có: SA ⊥ (ABC) => SA ⊥ CH

    Mà CH ⊥ AB => CH ⊥ (SAB)

    Mặt khác AK thuộc mặt phẳng (SAB

    => CH ⊥ SA, CH ⊥ SB, CH ⊥ AK

    Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 24: Nhận biết

    Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?

    Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).

  • Câu 25: Vận dụng

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.

    Hình vẽ minh họa:

    Gọi M, N lần lượt là trung điểm của AB, CD.

    Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN

    Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB

    Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM

    Khi đó, tam giác MCD vuông cân tại M

    => MN = \frac{AB}{2} = \frac{CD}{2}
\Rightarrow AB = CD = 2x

    Ta lại có AN = BN = \sqrt{AC^{2} -
AN^{2}} = \sqrt{a^{2} - x^{2}}

    AB^{2} = AN^{2} + BN^{2}

    => 2\left( a^{2} - x^{2} ight) =
4x^{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 26: Nhận biết

    Cho tứ diện ABCD có đáy BCD là tam giác vuông cân tại C. Gọi trung điểm các cạnh AB,AC,BC,CD lần lượt là M,N,P,Q. Khi đó (MN,PQ) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN//BC \\
PQ//BD \\
\end{matrix} ight.

    \Rightarrow (MN,PQ) = (BC,BD) =
\widehat{DBC} = 45^{0}

  • Câu 27: Thông hiểu

    Đáy của hình lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AA’ và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC. Khi đó AM ⊥ AA’ tại A, AM ⊥ BC tại M.

    Do đó, AM là đoạn vuông góc chung của AA’ và BC.

    => d(AA’, BC) = \frac{4\sqrt{3}}{2} =
2\sqrt{3}

  • Câu 28: Nhận biết

    Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”

    Vì b có thể nằm trong (P).

  • Câu 29: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 31: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 32: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 33: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 34: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \widehat{ABC} = 60^{0} , tam giác SBC là tam giác đều có bằng cạnh 2a và nằm trong mặt phẳng vuông với đáy. Gọi \varphi là góc giữa hai mặt phẳng (SAC) và (ABC). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC, suy ra SH ⊥ BC

    => SH ⊥ (ABC).

    Gọi K là trung điểm AC=> HK // AB nên HK ⊥ AC.

    Ta có:

    \left\{ \begin{matrix}
AC\bot HK \\
AC\bot SH \\
\end{matrix} ight.\  \Rightarrow AC\bot(SHK) \Rightarrow AC\bot
SK.

    => ((SAC), (ABC)) = (SK, HK) = \widehat{SHK}

    Xét tam giác vuông ABC ta có:

    \begin{matrix}AB = BC.cos\widehat{ABC} = a \hfill\\\Rightarrow HK = \dfrac{1}{2}AB = \dfrac{a}{2} \hfill\\\end{matrix}

    Xét tam giác vuông SHK ta có: \tan\widehat{SHK} = \frac{SH}{HK} =
2\sqrt{3}

  • Câu 36: Nhận biết

    Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?

    Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.

  • Câu 37: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh x; SA\bot(ABCD). Góc tạo bởi cạnhSC và mặt phẳng (SAB) bằng 30^{0}. Xác định thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh bằng x nên S_{ABCD} = x^{2}

    Dễ dàng chứng minh được BC\bot(SAB)

    \Rightarrow \left( SC;(SAB) ight) =
\widehat{CSB} = 30^{0}

    Đặt SA = m \Rightarrow SB = \sqrt{m^{2} +
x^{2}}

    Tam giác SBC vuông tại B nên \tan\widehat{CSA} = \tan30^{0} = \frac{1}{\sqrt{3}}= \frac{BC}{SB}

    Ta được:

    BC = SB\sqrt{3} \Leftrightarrow
\sqrt{m^{2} + x^{2}} = x\sqrt{3} \Rightarrow m = x\sqrt{2}

    Vậy diện tích hình chóp là:

    V = \frac{1}{3}SA.S_{ABCD} =
\frac{1}{3}.x\sqrt{2}.x^{2} = \frac{x^{3}\sqrt{2}}{3}

  • Câu 39: Nhận biết

    Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.

    Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)

    => BD ⊥ SC, BD ⊥ SO

    Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo