Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Điểm cách đều 4 điểm A, B, C, D là:
Hình vẽ minh họa

Gọi O là trung điểm của AD.
Từ giả thiết ta có:
Vậy vuông tại C
Do đó (1)
Mặt khác
=> vuông tại B.
Do đó (2)
Từ (1) và (2) ta có
Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Gọi d là đường thẳng qua M và vuông góc với (P). Do
Giả sử (R) là mặt phẳng chứa d. Mà
Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Tính góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Ta có: nên AC là hình chiếu của SC trên mặt phẳng (ABCD)
Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc
Đáy là hình vuông cạnh
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.
Hình vẽ minh họa:
Xác định góc 600
Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a
Xét tam giác ACB ta có:
=> Tam giác ACB vuông tại C
Lấy điểm E sao cho ACBE là hình chữ nhật
=> AC // BE
=> d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))
Kẻ AK ⊥ SE. Khi đó:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng 1, cạnh
vuông góc với đáy và
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Ta có: nên SA là đường cao của hình chóp
Thể tích khối chóp là
Cho tứ diện
có
. Gọi trung điểm của
lần lượt là
. Khi đó cosin góc giữa hai đường thẳng
và
bằng bao nhiêu?
Hình vẽ minh họa
Gọi M là trung điểm của AC khi đó góc giữa hai đường thẳng AB và CD bằng góc giữa hai đường thẳng MI và MJ.
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc H của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và
. Gọi α là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Gọi H là trung điểm BC.
Tam giác ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Theo giả thiết, ta có SH ⊥ (ABC).
Qua B kẻ Bx // AC. Khi đó (SB, AC) = (SB, Bx).
Kẻ HE ⊥ Bx tại E, cắt AC tại M.
=> AMEB là hình chữ nhật nên
Ta có:
Tam giác vuông SEB ta có:
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau
Cho hai đường thẳng phân biệt
và mặt phẳng
. Biết rằng
. Mệnh đề nào sau đây đúng?
Nếu thì
.
Cho hình lăng trụ ABC.A’B’C’ có
. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

Trong (ABC) kẻ ( điểm N thuộc cạnh AC)
Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)
Góc giữa MC’ và mp(ACC’A’) là góc
Ta có
CM là đường trung tuyến của tam giác ABC, nên có
Tam giác CMC’ vuông tại M, nên
Diện tích
Xét tam giác vuông MC’N, có
Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA =
. Khoảng cách giữa hai đường thẳng SB và CD là:
Hình vẽ minh họa:
Ta có:
BC ⊥ AB
BC ⊥ SA
=> BC ⊥ (SAB).
Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a
Cho hình chóp
có đáy là hình vuông cạnh bằng
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
,
. Tính tan góc giữa
và mặt phẳng
, biết thể tích khối chóp
bằng
?
Hình vẽ minh họa
Kẻ , gọi
Ta có:
Lại có:
Do tam giác SAB cân tại S nên H là trung điểm của AB
Cho hai đường thẳng
và mặt phẳng
. Chọn mệnh đề sai trong các mệnh đề dưới đây?
Mệnh đề: “Nếu thì
.” Sai vì đường thẳng b có thể nằm trong mặt phẳng (Q).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết
.
Hình vẽ minh họa:
Kẻ Mk // SO
Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)
=>
Ta có:
Xét tam giác CNK có:
Xét tam giác MNK vuông ta có:
Cho hình chóp
, có đáy
là hình thang vuông tại
và
. Biết
. Xác định kết luận sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB. Ta có:
Suy ra tam giác ACB vuông tại C.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:
Hình vẽ minh họa:
Kẻ HI // BC (I ∈ CD) ta có:
=> Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc
Dựng hình bình hành ADBE
Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))
Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ
Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))
Ta có:
Với
Vậy
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích khối lăng trụ
bằng bao nhiêu?
Hình vẽ minh họa:
Kẻ
Lại có
Gọi F là trung điểm của BC; khi đó
Ta có:
Vì
Vậy tam giác AIK vuông tại A
Gọi E là trung điểm của IK
=>
Lại có do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc
bằng
Ta có:
Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:
Xét tam giác AMF vuông tại A ta có:
Vậy
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình hộp
có độ dài tất cả các cạnh bằng
và
. Gọi
lần lượt là trung điểm câc các cạnh
. Tính cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi P là trung điểm của DC’. Ta có:
Suy ra
Xét tam giác ADA’ có suy ra tam giác ADA’ là tam giác đều
Xét tam giác A’AB có suy ra tam giác A’AB đều
Do đó tam giác DD’C đều
Vậy
Xét tam giác BAD có AD = AB và nên tam giác BAD là tam giác đều.
Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.
Gọi A’I là đường cao của tam giác B’A’D’
Khi đó:
Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên
Áp dụng định lí cosin cho tam giác A’DP có:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của hai đường chéo và SA = SC. Trong các khẳng định sau, khẳng định nào đúng?
Ta có: SA = SC => SAC là tam giác cân. Mặt khác O là trung điểm của AC
=> AC ⊥ SO
Ta có: AC ⊥ BD, AC ⊥ SO => AC ⊥ (SBD)
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Cho hình chóp
có đáy là hình vuông cạnh
,
. Tính
?
Hình vẽ minh họa
Ta có: nên góc giữa
và mặt phẳng đáy bằng góc
.
Ta có:
Vậy
Cho hình chóp
có đáy
là hình thoi
,
. Mặt phẳng nào sau đây vuông góc với mặt phẳng
?
Minh họa bằng hình vẽ:
Ta có:
Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B,
, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi
là góc tạo bởi A’H với (A’ACC’). Tính
?

Ta có nên A’H là đường cao của lăng trụ.
Kẻ (K thuộc đoạn AC)
Kẻ
Suy ra
Khi đó

+) Do tam giác MCB cân tại B nên
+) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng (theo giả thiết)
Và BM = AM = AB = a
=> Tam giác AMB là tam giác đều cạnh a
Vì vậy,