Cho hình chóp
có đáy
là hình thoi
,
. Mặt phẳng nào sau đây vuông góc với mặt phẳng
?
Minh họa bằng hình vẽ:
Ta có:
Cho hình chóp
có đáy
là hình thoi
,
. Mặt phẳng nào sau đây vuông góc với mặt phẳng
?
Minh họa bằng hình vẽ:
Ta có:
Cho hình lập phương
. Xác định đường thẳng vuông góc với đường thẳng
?
Hình vẽ minh họa:
Ta có:
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

+) Ta có:
+) Mặt khác
=>
Cho hình chóp
có đáy
là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu của điểm
trên cạnh
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
đúng
Ta có: đúng
Ta có: đúng
Vậy kết luận sai là: .
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho tứ diện
có
đôi một vuông góc với nhau. Đường thẳng nào sau đây vuông góc với
?
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc phẳng đỉnh B đều bằng 600.
Cặp đường thẳng nào sau đây không vuông góc với nhau?
Hình ảnh minh họa

Xét tam giác CB'D' có ba cạnh bằng nên tam giác không vuông.
=> B’C và CD’ không vuông góc với nhau.
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Hai mặt phẳng vuông góc với nhau khi và chỉ khi
Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.
Cho hình chóp
có đáy
là hình vuông cạnh
tâm
,
vuông góc với mặt phẳng đáy. Biết
. Tính
?
Hình vẽ minh họa
Ta có: nên AI là hình chiếu vuông góc của SI trên mặt phẳng đáy.
Do đó góc giữa đường thẳng SI và mặt phẳng (ABCD) bằng góc giữa SI và AI.
Xét tam giác SAI vuông tại A nên
Vậy
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình chóp
có đáy
là hình vuông cạnh
,
. Tam giác
vuông tại
và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp
theo
?
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của S lên AC
Ta có:
Suy ra tam giác SAO đều
Thể tích khối chóp là:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:
Hình vẽ minh họa:

Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Tam giác SAI vuông tại I
=> SA2 = AI2 + SI2
Tam giác SBI vuông tại I
=> SB2 = BI2 + SI2
Tam giác SCI vuông tại I
=> SC2 = CI2 + SI2
Kết hợp với điều kiện: SA = SB = SC
=> I là tâm đường tròn ngoại tiếp tam giác ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 1, cạnh bên bằng
. Gọi I là tâm của đáy ABC, d’ là khoảng cách từ A đến mặt phẳng (SBC) và d’’ là khoảng cách từ I đến mặt phẳng (SBC). Tính d = d’ + d’’.
Gọi I là tâm của đáy ABC
=>
Xét tam giác ABC đều cạnh a có tâm I
=>
Xét tam giác SAI vuông tại I
Xét ∆SIM vuông tại I có:
Khẳng định nào sau đây là sai?
Mệnh đề sai là: “Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d ⊥ (α).”
Vì thiếu điều kiện “cắt nhau” của hai đường thẳng nằm trong (α).
Ví dụ đường thẳng a vuông góc với hai đường thẳng b và c nằm trong (α) nhưng b và c song song với nhau thì khi đó a chưa chắc vuông góc với (α).
Cho hình chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Hình chiếu vuông góc của
lên mặt phẳng
trùng với điểm
của
. Cosin của góc giữa
và
bằng:
Hình vẽ minh họa
Dựng
Ta có:
=> SE là hình chiếu vuông góc của SC lên mặt phẳng (SHD)
Do đó: Số đo của góc giữa SC lên mặt phẳng (SHD) bằng với số đo của góc
Ta có:
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là
và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Thể tích khối chóp là:
Thể tích hình lăng trụ là:
Khi đó:
Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a,
, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?
Hình vẽ minh họa

Lấy M là trung điểm của SD
Góc cần tìm là góc giữa OM và SC
Ta có MC là trung tuyến của tam giác SCD
Xét tam giác MOC ta có:
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp tam giác
, đáy là tam giác
vuông cân tại C và
. Biết tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Thể tích hình chóp tam giác
bằng bao nhiêu?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Tam giác SAB đều nên
Tam giác ABC vuông cân tại C nên
Vậy thể tích hình chóp là:
Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và
. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:

Ta có:
Trong (SAC) kẻ OK⊥SA(1) ta có:
Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD
Khi đó
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và
. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Ta có: MN // SB
=>
Do SH ⊥ (ABCD)
Ta có:
=>
Cho khối chóp
có
; đáy
là hình chữ nhật
. Tính thể tích khối chóp
, biết mặt phẳng
tạo với mặt phẳng đáy một góc bằng
.
Hình vẽ minh họa
Ta có:
Vì
Vậy
Xét tam giác vuông SAB có
Vậy
Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.
Hình vẽ minh họa:
Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
bằng góc giữa hai đường thẳng
và
và bằng góc
Mà tam giác ACD’ là tam giác đều nên
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAB) và (SBC) vuông góc vì
Hai mặt phẳng (SAB) và (SBC) vuông góc vì BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA
Cho hình chóp S.ABC có AB = AC,
. Tính số đo góc giữa hai đường thẳng SA và BC.
Ta có:
Vì
=> Góc giữa hai đường thẳng SA, BC là: 900