Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường MC’ và mặt phẳng (ABC). Khi đó tan α bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: CM là hình chiếu của C’M lên (ABC)

    => Góc giữa MC’ và (ABC) là góc giữa MC’ và MC.

    Xét tam giác MCC’ vuông tại C ta có:

    \tan\alpha = \dfrac{CC'}{MC} =\dfrac{a}{\dfrac{a\sqrt{3}}{2}} = \dfrac{2\sqrt{3}}{3}

  • Câu 2: Thông hiểu

    Tính thể tích khối lăng trụ trong hình vẽ sau, biết AB = a;AA' = 2a.

    Quan sát hình vẽ ta thấy

    Tam giác ABC đều có cạnh bằng a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Do khối lăng trụ ABC.A'B'C' là lăng trụ đứng nên đường cao của lăng trụ là AA' =
2a

    Thể tích khối lăng trụ là V =
AA'.S_{ABCD} = 2a.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}\sqrt{3}}{2}

  • Câu 3: Thông hiểu

    Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:

    Hình vẽ minh họa:

    Góc giữa hai đường thẳng IC và AD

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \begin{matrix}  \overrightarrow {AD} .\overrightarrow {AB}  = {a^2}.\cos {60^0} = \dfrac{{{a^2}}}{2} \hfill \\  \overrightarrow {AC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  \overrightarrow {IC}  = \overrightarrow {AC}  - \overrightarrow {AI}  = \overrightarrow {AC}  - \dfrac{1}{2}\overrightarrow {AB}  \hfill \\   \Rightarrow \overrightarrow {IC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{\left| {\overrightarrow {IC} .\overrightarrow {AD} } ight|}}{{IC.AD}} \hfill \\   \Rightarrow \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{{a^2}}}{4}:\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{1}{{2\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 5: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD; \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N là trung điểm của AB và CD. Góc giữa \overrightarrow {AB}\overrightarrow {CD} bằng:

    Hình vẽ minh họa

    Góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AD} } ight|\cos \left( {\overrightarrow {AB} ;\overrightarrow {AD} } ight) \hfill \\   - \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) \hfill \\   = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AD} } ight|\cos {60^0} \hfill \\   - \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos {60^0} \hfill \\ \end{matrix}

    AC = AD

    \overrightarrow {AB} .\overrightarrow {CD}  = 0 \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {CD} } ight) = {90^0}

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCBC =
a\sqrt{2}, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng SBAC bằng:

    Hình vẽ minh họa

    Ta có: AB^{2} + AC^{2} =
BC^{2}

    Suy ra tam giác ABC vuông tại A.

    Gọi H, M, N lần lượt là trung điểm của AB, AB, SA

    \Rightarrow \left\{ \begin{matrix}
MN//SB \\
MH//AC \\
\end{matrix} ight.\  \Rightarrow (SB,AC) = (MN,MH)

    \left\{ \begin{matrix}MN = \dfrac{SB}{2} = \dfrac{a}{2} \\NH = \dfrac{AC}{2} = \dfrac{a}{2} \\AH = \dfrac{BC}{2} = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    Xét tam giác SBC có: SB = SC nên SH\bot
BC \Rightarrow SH = \sqrt{SB^{2} - HB^{2}} =
\frac{a\sqrt{2}}{2}

    Lại H là tam đường tròn ngoại tiếp tam giác ABC

    Mà SA = SB = SC = a nên SH\bot(ABC)

    Suy ra tam giác SAH vuông cân tại H

    HN = \frac{SA}{2} =
\frac{a}{2}

    Do đó tam giác MHN cạnh \frac{a}{2}. Góc cần tìm bằng 60^{0}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Do tam giác ABC cân tại A, M là trung điểm của BC nên BC\bot AM

    Ta có: \left\{ \begin{matrix}
BC\bot SA \\
BC\bot AM \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

  • Câu 9: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 10: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 11: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Mặt phẳng (BCD) vuông góc với mặt phẳng nào

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BN \bot CD} \\   {AN \bot CD} \end{array} \Rightarrow } ight.CD \bot \left( {ABN} ight)

    CD \subset \left( {BCD} ight) \Rightarrow \left( {BCD} ight) \bot \left( {ABN} ight)

  • Câu 12: Nhận biết

    Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là 3x^{2};2x. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}
B = 3x^{2} \\
h = 2x \\
\end{matrix} ight.

    Thể tích khối lăng trụ đã cho bằng: V =
B.h = 3x^{2}.2x = 6x^{3}

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 14: Nhận biết

    Cho tứ diện ABCD có đáy BCD là tam giác vuông cân tại C. Gọi trung điểm các cạnh AB,AC,BC,CD lần lượt là M,N,P,Q. Khi đó (MN,PQ) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN//BC \\
PQ//BD \\
\end{matrix} ight.

    \Rightarrow (MN,PQ) = (BC,BD) =
\widehat{DBC} = 45^{0}

  • Câu 15: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 16: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{2a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{2a\sqrt{3}}{3}.8a^{2} = \frac{16a^{3}\sqrt{3}}{3}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:

    Hình vẽ minh họa

    Khoảng cách từ điểm S đến mặt phẳng (ABCD)

    Từ S vẽ SO ⊥ (ABCD) ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau) ⇒ O là tâm đường tròn ngoại tiếp đáy

    \begin{matrix}  S{O^2} = S{A^2} - A{O^2} \hfill \\   = {a^2} - {\left( {\dfrac{{a\sqrt 3 }}{2}} ight)^2} = \dfrac{{{a^2}}}{4} \hfill \\   \Rightarrow SO = \dfrac{a}{2} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Gọi trung điểm các cạnh SC;SD lần lượt là M,N. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: MN là đường trung bình của tam giác SCD => MN//CD

    Ta có: \left\{ \begin{matrix}
MN//CD \\
BC\bot CD \\
\end{matrix} ight.\  \Rightarrow MN\bot BC

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)

    => SA ⊥ BC

    Xét tam giác ABC vuông tại B ta có:

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC

    Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)

    => AC ⊥ AB (vô lí)

  • Câu 21: Nhận biết

    Cho khối chóp S.ABC có chiều cao bằng 6 đáy là tam giác ABC có diện tích bằng 12. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 12 \\
h = 6 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.12.6 = 24

  • Câu 22: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA ⊥ (ABCD). Gọi I, J, K lần lượt là trung điểm của các cạnh AB, BC, SB. Khẳng định nào sau đây là khẳng định đúng?

    Hình vẽ minh họa:

    Xác định góc giữa đường thẳng và mặt phẳng

    Xét tam giác SBC ta có: \frac{{BK}}{{BS}} = \frac{{BJ}}{{BC}} = \frac{1}{2}

    => KJ // SC (*)

    Xét tam giác SAB ta có: \frac{{BI}}{{BA}} = \frac{{BK}}{{BS}} = \frac{1}{2}

    => KI // SA (**)

    Từ (*) và (**) => (IJK) // (SAC) (1)

    Vì ABCD là hình vuông => BD ⊥ AC

    Mà SA ⊥ BD => BD ⊥ (SAC)

    Kết hợp với (1) => BD ⊥ (IJK)

    => \widehat {\left( {SC;BD} ight)} = {90^0}

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng đáy. Biết rằng AB = a;BC = 3a;SA = a\sqrt{30}. Tính \left( SC;(ABC) ight)?

    Hình vẽ minh họa

    Do AC là hình chiếu vuông góc của SC trên mặt phẳng (ABC) nên \left( SC;(ABC) ight) =
\widehat{SCA}

    Ta có: AC = \sqrt{AB^{2} + BC^{2}} =
a\sqrt{10}

    Khi đó \tan\widehat{SCA} = \frac{SA}{AC}
= \frac{a\sqrt{30}}{a\sqrt{10}} = \sqrt{3}

    \Rightarrow \widehat{SCA} =
60^{0}

    \Rightarrow \left( SC;(ABC) ight) =
60^{0}

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 25: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}\widehat{(CD;SA)} = \widehat{(AB;SA)} = 90^{0} \\\Rightarrow \left\{ \begin{matrix}CD\bot SA \\CD\bot SD \\\end{matrix} ight.\  \Rightarrow CD\bot AD \\\end{matrix}

    => ABCD là hình chữ nhật, từ đó ta suy ra

    AC = BD

    AB ⊥ (SAD)

    BC ⊥ AB

    Đáp án SO ⊥ (ABCD) sai

    Nếu SO ⊥ (ABCD) thì \left\{\begin{matrix}CD\bot SO \\CD\bot SA \\\end{matrix} ight.\  \Rightarrow CD\bot AO điều này vô lí

  • Câu 26: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Ta có: AM = \frac{AA'}{tan60^{0}} =
\frac{2a\sqrt{3}}{3}

    \Rightarrow BC = 2AM =
\frac{4a\sqrt{3}}{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} =
2a.\frac{1}{2}.\frac{2a\sqrt{3}}{3}.\frac{4a\sqrt{3}}{3} =
\frac{8}{3}a^{3}

  • Câu 27: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:

    Hình vẽ minh họa

    Xác định góc giữa hai mặt phẳng (ACD) và (BCD)

    Các tam giác ABC và ABD là tam giác đều

    => Tam giác ACD cân

    => BN ⊥ CD và AN ⊥ CD

    => \widehat {ANB} là góc của hai mặt phẳng (ACD) và (BCD)

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA = SC, SB = SD. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Khẳng định nào sau đây là đúng

    SA=SC => ΔSAC cân tại S

    Mà O là trung điểm AC => SO⊥AC

    Tương tự, ta cũng có SO⊥BDAC∩BD=O⊂(ABCD)

    => SO⊥(ABCD)

  • Câu 29: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc H của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và SH =
\frac{a\sqrt{6}}{2}. Gọi α là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi H là trung điểm BC.

    Tam giác ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Theo giả thiết, ta có SH ⊥ (ABC).

    Qua B kẻ Bx // AC. Khi đó (SB, AC) = (SB, Bx).

    Kẻ HE ⊥ Bx tại E, cắt AC tại M.

    => AMEB là hình chữ nhật nên \left\{\begin{matrix}BE = AM = \dfrac{AC}{2} = \dfrac{a}{2} \\HE = HM = \dfrac{AB}{2} = \dfrac{a}{2} \\\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
Bx\bot HE \\
Bx\bot SH \\
\end{matrix} \Rightarrow Bx\bot(SHE) \Rightarrow Bx\bot SE. ight.

    Tam giác vuông SEB ta có:\cot\alpha =
\frac{BE}{SE} = \frac{AM}{\sqrt{SH^{2} + HE^{2}}} =
\frac{\sqrt{7}}{7}

  • Câu 30: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}

    Hình vẽ minh họa

    Ta có: AB//A'B'(A'B',B'C') = 90^{0} \Rightarrow
(AB,B'C') = 90^{0}

    Vì tứ giác ABCD là hình vuông nên (AC;BC) = 45^{0}

    Ta có: BC//B'C' nên (AC,B'C') = 45^{0}

    Ta có: A'C'//AC và tam giác AVB' là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó (A'C',B'C) = (AC,B'C) =
60^{0}

  • Câu 31: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 32: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = a\sqrt{5};d(A;BB') =
a;d(A;CC') = 2a, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{a\sqrt{15}}{3}. Thể tích khối lăng trụ ABC.A'B'C' bằng bao nhiêu?

    Hình vẽ minh họa:

    Kẻ AI\bot BB';AK\bot
CC'

    Lại có \left\{ \begin{matrix}
d(A;BB') = a \Rightarrow AI = a \\
d(A;CC') = 2a \Rightarrow AK = 2a \\
\end{matrix} ight.

    Gọi F là trung điểm của BC; A'M =
\frac{a\sqrt{15}}{3} khi đó \Rightarrow AF = \frac{a\sqrt{15}}{3}

    Ta có: \left\{ \begin{matrix}
AI\bot BB' \\
AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AIK) \Rightarrow
BB'\bot IK

    C'C//B'B \Rightarrow
d(C;BB') = d(K;BB') = IK = a\sqrt{5}

    Vậy tam giác AIK vuông tại A

    Gọi E là trung điểm của IK

    => EF//BB' \Rightarrow EF\bot(AIK)
\Rightarrow EF\bot AE

    Lại có AM\bot(ABC) do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc \widehat{AME} bằng \widehat{FAE}

    Ta có: \cos\widehat{FAE} = \dfrac{AE}{AF}= \dfrac{\dfrac{a\sqrt{5}}{2}}{\dfrac{a\sqrt{15}}{3}} = \dfrac{\sqrt{3}}{2}\Rightarrow \widehat{FAE} = 30^{0}

    Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:

    S_{AIK} = S_{ABC}.\cos\widehat{FAE}\Rightarrow a^{2} = S_{ABC}.\cos30^{0}

    \Rightarrow S_{ABC} =
\frac{2}{\sqrt{3}}a^{2}

    Xét tam giác AMF vuông tại A ta có:

    \tan\widehat{AMF} = \dfrac{AF}{AM}\Rightarrow AM = \dfrac{\dfrac{a\sqrt{15}}{3}}{\dfrac{a\sqrt{3}}{3}} =a\sqrt{5}

    Vậy V_{ABC.A'B'C} =
a\sqrt{5}.\frac{2a^{2}}{\sqrt{3}} =
\frac{2a^{3}\sqrt{15}}{3}

  • Câu 33: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 34: Nhận biết

    Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Nếu đường thẳng a vuông góc với giao tuyến của (P) và (Q) thì a vuông góc với mặt phẳng (P) và vuông góc với mặt phẳng (Q).”

  • Câu 35: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 36: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 37: Thông hiểu

    Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

    Tính giá trị cos α

    Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a

    Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.

    Tương tự BH ⊥ AC.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAC} ight) \bot \left( {ABC} ight)} \\   {\left( {DAC} ight) \cap \left( {ABC} ight)} \\   {DH \bot AC} \\   {DH \subset \left( {DAC} ight)} \end{array}} ight. \Rightarrow DH \bot \left( {ABC} ight)

    Gọi K là trung điểm của DB.

    Ta có: ABD cân tại A nên AK \bot BD

    Và CBD cân tại C nên CK \bot DB

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAB} ight) \cap \left( {DBC} ight) = BD} \\   {AK \bot BD;AK \subset \left( {DAB} ight)} \\   {CK \bot BD;CK \subset \left( {DAB} ight)} \end{array}} ight.

    Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.

    Ta có DH = a\sqrt 3 ;BH = a\sqrt 3 nên BDH vuông cân tại H.

    Từ đó ta có: \left\{ {\begin{array}{*{20}{c}}  {DB = \sqrt {D{H^2} + H{B^2}}  = a\sqrt 6 } \\   {HK = \dfrac{1}{2}BD = \dfrac{{a\sqrt 6 }}{2}} \end{array}} ight.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AC \bot DH} \\   {AC \bot BH} \\   {DH \cap BH = H} \\   {DH;BH \subset \left( {DBH} ight)} \end{array}} ight. \Rightarrow AC \bot \left( {DBH} ight)HK \subset \left( {DBH} ight) \Rightarrow AC \bot HK

    Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.

    Nên ta có: KH là phân giác của góc \widehat {AKC} suy ra \widehat {AKC} = 2\widehat {CKH}

    Ta có: t = \tan \widehat {CKH} = \frac{{HC}}{{HK}} = \frac{a}{{a\sqrt 6 :3}} = \frac{{\sqrt 6 }}{3}

    Vậy \cos \alpha  = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{6}{9}}}{{1 + \frac{6}{9}}} = \frac{1}{5}

  • Câu 38: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 30^{0}

    Ta có: AM = \frac{AA'}{tan30^{0}} =
2a\sqrt{3}

    \Rightarrow BC = 2AM =
4a\sqrt{3}

    \Rightarrow S_{ABC} = \frac{1}{2}.AM.BC
= 12a^{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} = 24a^{3}

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo