Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Thể tích khối hộp chữ nhật có ba kích thước là 2;3;5 bằng:

    Thể tích cần tìm là: V = 2.3.5 =
30

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 3: Vận dụng

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {DH}?

    Hình vẽ minh họa

    Xác định góc giữa hai vectơ

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  AB \bot AE \hfill \\  AE//DH \hfill \\ \end{gathered}  ight. =  > AB \bot DH \hfill \\   \Rightarrow \widehat {\left( {AB,DH} ight)} = {90^0} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho hình hộp ABCD.A’B’C’D’. Giả sử tam giác AB’C và A’DC’ đều có ba góc nhọn. Góc giữa hai đường thẳng AC, A’D là góc nào sau đây?

    Xác định góc giữa hai đường thẳng AC, A’D

    Do ACC’A’ là hình bình hành nên AC song song với A’C’. Do đó:

    \left( {\widehat {AC;A'D}} ight) = \left( {\widehat {A'C';A'D}} ight)

    Như vậy \left( {\widehat {AC;A'D}} ight) = \widehat {DA'C'}

  • Câu 5: Thông hiểu

    Cho hình chóp S,ABC có đáy là tam giác vuông cân tại A. Tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt đáy. Tính d(SA;BC)?

    Hình vẽ minh họa

    Gọi H là trung điểm của BC. Suy ra SH\bot(ABC)

    Kẻ HK\bot SA;(K \in SA)(1)

    Ta có: \left\{ \begin{matrix}
BC\bot SH \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SHA) \Rightarrow BC\bot
KH(2)

    Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC

    Do đó d(SA;BC) = HK =
\frac{SH.HA}{\sqrt{SH^{2} + HA^{2}}} = \frac{a\sqrt{3}}{4}

  • Câu 6: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’. Đường thẳng AC’ vuông góc với mặt phẳng nào sau đây?

    Hình vẽ minh họa:

    Xác định mặt phẳng

    Ta có: AA’D’A là hình vuông => AD’ ⊥ A’D

    ABCD.A’B’C’D là hình lập phương => AB ⊥ A’D

    => A’D ⊥ (ABC’D’) => A’D ⊥ AC’

    Ta lại có: ABCD là hình vuông => AC ⊥ BD

    Mà A’A ⊥ BD => BD ⊥ (AA’C’C) => BD ⊥ AC’

    Kết hợp với A’D ⊥ AC’ => A’C ⊥ (A’BD)

  • Câu 7: Thông hiểu

    Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?

    Hình vẽ minh họa:

    Tính cosin góc giữa hai cạnh AJ và CI?

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    Ta có:

    \begin{matrix}  \overrightarrow {AJ}  = \dfrac{1}{2}\overrightarrow {AD}  + \dfrac{1}{2}\overrightarrow {AC}  \hfill \\  \overrightarrow {CI}  = \overrightarrow {AI}  - \overrightarrow {AC}  = \dfrac{1}{2}\overrightarrow {AB}  - \overrightarrow {AC}  \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  - 2\overrightarrow {AC} } ight).\left( {\overrightarrow {AC}  + \overrightarrow {AD} } ight) \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  =  - \dfrac{{{a^2}}}{2} \hfill \\   \Rightarrow \overrightarrow {CI}  = \overrightarrow {AJ}  = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {CI} ;\overrightarrow {AJ} } ight) = \dfrac{2}{3} \hfill \\ \end{matrix}

    Vậy cosin góc giữa hai cạnh AJ và CI bằng \frac{2}{3}

  • Câu 8: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.

    Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.

    Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).

    Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”

  • Câu 9: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC, có đáy ABC là tam giác đều và SA\bot(ABC). Gọi M là trung điểm của cạnh ACN là hình chiếu của B lên SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow BM\bot
SA

    BM\bot AC \Rightarrow BM\bot(SAC)
\supset SC \Rightarrow SC\bot BM(1)

    Theo giả thiết SC\bot BN(2)

    Từ (1) và (2) suy ra SC\bot(BMN)

    SC \subset (SBC) \Rightarrow
(BMN)\bot(SBC)

  • Câu 11: Vận dụng

    Cho hình chóp đều S.ABCD có cạnh đáy bằng a\sqrt{2} và cạnh bên bằng 2a. Gọi α là góc tạo bởi hai mặt phẳng (SAC) và (SCD). Tính cos α.

    Hình vẽ minh họa:

    Gọi tâm của đáy là O, M là trung điểm của CD

    Trong (SOM), kẻ OH vuông góc với SM tại H

    Khi đó ta có OH ⊥ (SCD). Mà OD ⊥ (SAC).

    Do đó ((SCD), (SAC)) = (OH, OD) = \widehat{HOD} = α.

    Ta có OD = a, SO = a\sqrt{3};OM =
\frac{a\sqrt{2}}{2}

    Xét tam giác OSM vuông tại O ta có:

    \begin{matrix}\dfrac{1}{OH^{2}} = \dfrac{1}{OS^{2}} + \dfrac{1}{OM^{2}} \hfill\\\Rightarrow OH = \dfrac{a\sqrt{21}}{7} \hfill\\\end{matrix}

    Xét tam giác OHD vuông tại H ta có:

    \cos\alpha = \frac{OH}{OD} =
\frac{\sqrt{21}}{7}

  • Câu 12: Nhận biết

    Cho hình chóp S.ABC, SA vuông góc với mặt phẳng (ABC)AB\bot BC. Hỏi có bao nhiêu mặt của hình chóp là tam giác vuông?

    Hình vẽ minh họa

    Ta có: AB\bot BC suy ra tam giác ABC vuông tại B

    Ta có: SA\bot(ABC) \Rightarrow \left\{
\begin{matrix}
SA\bot AB \\
SA\bot AC \\
\end{matrix} ight.

    Suy ra tam giác SAB và tam giác SAC là các tam giác vuông tại A

    Mặt khác \left\{ \begin{matrix}
AB\bot BC \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot SC suy ra tam giác SBC vuông tại B

    Vậy hình chóp có bốn mặt đều là tam giác vuông.

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 14: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 15: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = a;AA' = a\sqrt{6} (như hình vẽ)

    Gọi \alpha là góc giữa đường thẳng A'C và mặt phẳng đáy (ABCD). Khi đó:

    Hình vẽ minh họa

    Ta có: \left( A'C;(ABCD) ight) =
(A'C;AC) = \widehat{A'CA} = \alpha

    Lại có: AC = \sqrt{AB^{2} + BC^{2}} =
a\sqrt{2}

    Xét tam giác A'CA ta có:

    \Rightarrow \tan\alpha = \frac{AA}{AC} =
\frac{a\sqrt{6}}{a\sqrt{2}} = \sqrt{3}

    \Rightarrow \cos\alpha =
\frac{1}{2}

  • Câu 16: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 17: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 18: Nhận biết

    Cho hình lập phương như hình vẽ:

    Hỏi đường thẳng nào vuông góc với đường thẳng BC'?

    Ta có:

    \left\{ \begin{matrix}
AD'\bot AB \\
AD'\bot A'D \\
\end{matrix} ight.\  \Rightarrow AD'\bot(ABC'D')
\Rightarrow AD'\bot BC'

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 20: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'd(C;BB') = a\sqrt{5};d(A;BB') =
a;d(A;CC') = 2a, hình chiếu vuông góc của điểm A lên mặt phẳng (A'B'C') là trung điểm M của BC. Biết A'M = \frac{a\sqrt{15}}{3}. Thể tích khối lăng trụ ABC.A'B'C' bằng bao nhiêu?

    Hình vẽ minh họa:

    Kẻ AI\bot BB';AK\bot
CC'

    Lại có \left\{ \begin{matrix}
d(A;BB') = a \Rightarrow AI = a \\
d(A;CC') = 2a \Rightarrow AK = 2a \\
\end{matrix} ight.

    Gọi F là trung điểm của BC; A'M =
\frac{a\sqrt{15}}{3} khi đó \Rightarrow AF = \frac{a\sqrt{15}}{3}

    Ta có: \left\{ \begin{matrix}
AI\bot BB' \\
AK\bot BB' \\
\end{matrix} ight.\  \Rightarrow BB'\bot(AIK) \Rightarrow
BB'\bot IK

    C'C//B'B \Rightarrow
d(C;BB') = d(K;BB') = IK = a\sqrt{5}

    Vậy tam giác AIK vuông tại A

    Gọi E là trung điểm của IK

    => EF//BB' \Rightarrow EF\bot(AIK)
\Rightarrow EF\bot AE

    Lại có AM\bot(ABC) do đó góc giữa hai mặt phẳng (ABC) và (AIK) là góc giữa EF và AM và bằng góc \widehat{AME} bằng \widehat{FAE}

    Ta có: \cos\widehat{FAE} = \dfrac{AE}{AF}= \dfrac{\dfrac{a\sqrt{5}}{2}}{\dfrac{a\sqrt{15}}{3}} = \dfrac{\sqrt{3}}{2}\Rightarrow \widehat{FAE} = 30^{0}

    Hình chiếu vuông góc của tam giác ABC lên mặt phẳng (AIK) là tam giác AIK nên ta có:

    S_{AIK} = S_{ABC}.\cos\widehat{FAE}\Rightarrow a^{2} = S_{ABC}.\cos30^{0}

    \Rightarrow S_{ABC} =
\frac{2}{\sqrt{3}}a^{2}

    Xét tam giác AMF vuông tại A ta có:

    \tan\widehat{AMF} = \dfrac{AF}{AM}\Rightarrow AM = \dfrac{\dfrac{a\sqrt{15}}{3}}{\dfrac{a\sqrt{3}}{3}} =a\sqrt{5}

    Vậy V_{ABC.A'B'C} =
a\sqrt{5}.\frac{2a^{2}}{\sqrt{3}} =
\frac{2a^{3}\sqrt{15}}{3}

  • Câu 21: Thông hiểu

    Cho hình lăng trụ đứng ABC.A'B'C' có đáy là các tam giác đều cạnh bằng \sqrt{3} và cạnh bên bằng 1. Tính góc giữa hai đường thẳng BB'AC'?

    Hình vẽ minh họa

    Ta có:

    BB'//CC' \Rightarrow
(BB';AC') = (CC';AC') = \widehat{AC'C}

    Khi đó tam giác ACC' vuông cân tại C nên \tan\widehat{AC'C} =
\frac{AC}{CC'} = \frac{\sqrt{3}}{1} = \sqrt{3}

    \Rightarrow \widehat{AC'C} =
60^{0}

    \Rightarrow (BB';AC') =
\widehat{AC'C} = 60^{0}

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \widehat{ABC} = 60^{0} , tam giác SBC là tam giác đều có bằng cạnh 2a và nằm trong mặt phẳng vuông với đáy. Gọi \varphi là góc giữa hai mặt phẳng (SAC) và (ABC). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC, suy ra SH ⊥ BC

    => SH ⊥ (ABC).

    Gọi K là trung điểm AC=> HK // AB nên HK ⊥ AC.

    Ta có:

    \left\{ \begin{matrix}
AC\bot HK \\
AC\bot SH \\
\end{matrix} ight.\  \Rightarrow AC\bot(SHK) \Rightarrow AC\bot
SK.

    => ((SAC), (ABC)) = (SK, HK) = \widehat{SHK}

    Xét tam giác vuông ABC ta có:

    \begin{matrix}AB = BC.cos\widehat{ABC} = a \hfill\\\Rightarrow HK = \dfrac{1}{2}AB = \dfrac{a}{2} \hfill\\\end{matrix}

    Xét tam giác vuông SHK ta có: \tan\widehat{SHK} = \frac{SH}{HK} =
2\sqrt{3}

  • Câu 23: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 24: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

    Tính cosin góc giữa hai đường thẳng SB và AC

    +) Ta có:

    \begin{matrix}  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SH}  + \overrightarrow {HB} } ight)\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \overrightarrow {SH} .\overrightarrow {AB}  + \overrightarrow {SH} .\overrightarrow {BC}  + \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \dfrac{1}{2}A{B^2} = 2{a^2} \hfill \\ \end{matrix}

    +) Mặt khác

    \begin{matrix}  AC = a\sqrt 5 ;CH = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  SH = CH.\tan \widehat {SCH} = a\sqrt 6  \hfill \\  SB = \sqrt {S{H^2} + H{B^2}}  = \sqrt {{{\left( {a\sqrt 6 } ight)}^2} + {a^2}}  = a\sqrt 7  \hfill \\ \end{matrix}

    => \cos \left( {SB,AC} ight) = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } ight|}}{{SB.AC}} = \frac{{2{a^2}}}{{a\sqrt 7 .a\sqrt 5 }} = \frac{2}{{\sqrt {35} }}

  • Câu 25: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 26: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 27: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 28: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?

    Hình vẽ minh họa:

    Ta có: SA = SB = SC, G là trọng tâm tam giác ABC

    => G là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Gọi H là trung điểm của BC => BH = CH
= \frac{a}{2}

    Xét tam giác ABC đều cạnh a ta có:

    GH = \frac{AH}{3} =
\frac{a\sqrt{3}}{2}.\frac{1}{3} = \frac{a\sqrt{3}}{6}

    Xét tam giác SBH vuông tại H ta có:

    SH = \sqrt{SB^{2} - HB^{2}} =
\sqrt{m^{2} - \frac{a^{2}}{4}}

    Xét tam giác SGH vuông tại G ta có:

    \begin{matrix}SG = \sqrt{SH^{2} - GH^{2}} \hfill \\= \sqrt{m^{2} - \dfrac{a^{2}}{4} - \dfrac{a^{2}}{12}} = \dfrac{\sqrt{9m^{2}- 3a^{2}}}{3} \hfill \\\end{matrix}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    \widehat{(AC;AD)} = 90^{0} đúng

    AH\bot(SBC) đúng

    \widehat{(SC;HK)} = 90^{0} đúng

    Tam giác SBC cân tại B. sai

  • Câu 30: Vận dụng

    Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng:

    Hình vẽ minh họa:

    Ta có BC // B’C’ => BC // (AB’C’)

    => d(BC, AB’) = d(BC, (AB’C’)) = d(B, (AB’C’)) = d(A’ ,(AB’C’))

    Gọi I và H lần lượt là hình chiếu vuông góc của A’ trên B’C’ và AI

    Ta có: B’C’⊥ A’I và B’C’⊥ A’A nên B’C’⊥ (A’AI) => B’C’⊥ A’H

    Mà AI ⊥ A’H

    => (AB’C’) ⊥ A’H.

    Khi đó:

    d\left( A';(AB'C') ight) =A'H = \frac{AA'.A'I}{\sqrt{AA'^{2} +A'I^{2}}}

    =\dfrac{a.\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}} = \dfrac{a\sqrt{21}}{7}

    Vậy khoảng cách cần tìm là \frac{a\sqrt{21}}{7}

  • Câu 31: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Biết \left( (SAB);(ABCD) ight) = 90^{0} và tam giác SAB đều. Xác định thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.a^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 32: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có AB = AC = BB’ = a, \widehat{BAC} = 120^{0}. Gọi I là trung điểm của CC’. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).

    Hình vẽ minh họa:

    Gọi E là giao điểm của B’I và BC, H thuộc BC sao cho EA ⊥ AH tại A, K ∈ B’I sao cho KH ⊥ CB tại H.

    Ta có: KH ⊥ CB => KH // CC’

    => KH ⊥ (ABC) tại H => KH ⊥ EA mà EA ⊥ AH => EA ⊥ (AKH) => EA ⊥ AK

    Góc giữa hai mặt phẳng (AIB’) và (ACB) là \widehat{KAH}

    Ta có: BC = 2a.cos 300 = a\sqrt{3}

    Mặt khác AE2 = EC2 + AC2 − 2AC.EC. cos ACE

    AE2 = 3a2 + a2 − 2a.a\sqrt{3}.cos 1500= 7a2

    => AE = a\sqrt{7}

    Ta có:

    \cos\widehat{AEC} = \frac{AE^{2} +EC^{2} - AC^{2}}{2.AE.EC} = \frac{9}{2\sqrt{21}}

    \tan\widehat{AEC} =\sqrt{\frac{1}{cos^{2}\widehat{AEC}} - 1} =\frac{\sqrt{3}}{9}

    Ta có:

    \frac{EH}{EB} =\frac{HK}{BB'}

    \Rightarrow HK = \frac{BB'.EH}{EB} =\frac{AE.BB'}{2BC.cos\widehat{AEC}} = \frac{7a}{9}

    \cos\widehat{KAH} = \frac{AH}{AK} =\frac{AH}{\sqrt{AH^{2} + HK^{2}}} = \frac{\sqrt{30}}{10}

  • Câu 33: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 34: Nhận biết

    Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi C’ là hình chiếu vuông góc của đỉnh C lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?

    Vì C’ trùng với C nên tam giác ABC’ là tam giác vuông tại A.

  • Câu 35: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 36: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 37: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Gọi M là trung điểm của AB suy ra

    \left\{ \begin{matrix}
MO\bot AB \\
SM\bot AB \\
\end{matrix} ight.\  \Rightarrow \left( (SAB);(ABCD) ight) =
\widehat{SMO} = \varphi

    Tam giác SMO vuông tại O nên \varphi eq
90^{0}

    Do đó mặt phẳng (SAB) không vuông góc với (ABCD).

  • Câu 38: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 39: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 40: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 3a?

    Ta có: V = (3a)^{3} =
27a^{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo