Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp
có
vuông góc với mặt phẳng đáy
. Tìm mệnh đề sai trong các mệnh đề dưới đây?
Hình vẽ minh họa
Ta có:
Vậy mệnh đề sai là:
Cho hình hộp
có đáy là hình thoi. Gọi
lần lượt là tâm các hình bình hành
và
(như hình vẽ).

Trong các mệnh đề sau, mệnh đề nào đúng?
Hình vẽ minh họa
Ta có: lần lượt là tâm các hình bình hành
và
=> lần lượt là trung điểm của các cạnh
là đường trung bình tam giác
Vì đáy ABCD là hình thoi
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a,
. Tính góc giữa hai mặt phẳng (SCD) và (SAB).

Gọi M là trung điểm của AD.
Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a,
Suy ra ABCM là hình vuông => MC = AB = a
Xét tam giác ACD có AM là trung tuyến và
Suy ra ACD vuông tại C => AC ⊥ CD
Trong (SAC), dựng AH ⊥ SC
Ta có: mà AH ⊂ (SAC) suy ra CD ⊥ AH.
Ta có:
Ta có:
Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.
Xét tam giác ABC vuông tại B có:
Xét tam giác SAC vuông tại A có:
Xét tam giác SAC vuông tại A và nên SAC vuông cân tại A.
Suy ra H là trung điểm SC và
Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).
Ta có: suy ra
Vậy
Cho hình lập phương
. Xác định đường thẳng vuông góc với đường thẳng
?
Hình vẽ minh họa:
Ta có:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và
. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
Hình vẽ minh họa:
Gọi P là trung điểm BC và E = NP ∩ AC
=> PN // BD => BD // (MNP)
=> d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = d(A, (MNP))
Kẻ AK ⊥ ME
Khi đó d(A, (MNP)) = AK.
Ta tính được:
Xét tam giác vuông MAE ta có:
Trong các mệnh đề sau, mệnh đề nào sau đây sai?
Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”
Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.
Cho hình chóp tam giác
có
là hình bình hành tâm
. Tam giác
có tất cả các cạnh bằng
,
. Góc giữa đường thẳng
với mặt đáy bằng:
Hình vẽ minh họa:
Ta có:
Xét tam giác SAO ta có:
Điều kiện nào sau đây không phải là điều kiện cần và đủ để hai mặt phẳng (P) và (Q) vuông góc với nhau?
Mỗi đường thẳng a nằm trong (P) đều có đường thẳng b nằm trong (Q) sao cho a vuông góc với b, khi đó (P) và (Q) có thể trùng nhau.
Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:
Hình vẽ minh họa:
Gọi I là trung điểm BC.
Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).
Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.
Qua cách dựng ta có BC // (AMN). (1)
Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)
Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.
Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.
Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.
Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số
bằng:
Hình vẽ minh họa:
Gọi H, I lần lượt là trung điểm của AB, AC’
Suy ra HI // BC’
Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH
Dễ thấy BK ⊥ (SCH)
Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’
Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành
Khi đó MN là đoạn vuông góc chung cần tìm
Ta có:
Do 2HB = SB nên:
=>
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho hình lập phương như hình vẽ:

Biết
. Xác định thể tích của khối lập phương đã cho.
Gọi độ dài cạnh của khối lập phương là a; (x > 0)
Xét tam giác A’B’C’ vuông cân tại B’ ta có:
Xét tam giác A’AC’ vuông tại A’ ta có:
Vậy thể tích khối lập phương là
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp tam giác
có đáy
là tam giác vuông tại
,
,
. Tính góc tạo bởi
và mặt phẳng đáy?
Hình vẽ minh họa
Ta có: nên AB là hình chiếu của SA trên mặt phẳng đáy.
Mặt khác tam giác ABC vuông tại C nên
Cho
là hình hộp. Khẳng định nào sau đây đúng?
Nếu là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Trong các mệnh đề sau, mệnh đề nào sai?
Qua một điểm cho trước có thể kẻ được vô số mặt phẳng vuông góc với mặt phẳng cho trước.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:
Hình vẽ minh họa:

Ta có:
=> MN là đường vuông góc chung của AB và CD
Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?
Hình vẽ minh họa:
Ta có:
=> Tam giác ABD vuông tại B.
Ta có:
=> Tam giác BCD vuông tại C.
Ta có:
Cho tứ diện ABCD có
;
. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?
Hình vẽ minh họa

Xét tam giác ABD có AB = AD và
=> Tam giác ABD là tam giác đều
=> (Vì DM là trung tuyến)
Xét tam giác ABC có AB = AC và
=> Tam giác ABC là tam giác đều
=> (Vì CM là trung tuyến)
=> DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)
Suy ra MN là đường cao của tam giác MCD
=> MN ⊥ CD
Chứng minh tương tự:
Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN
=> Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB
Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.
Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Cho khối lăng trụ
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Thể tích của khối lăng trụ là:
Hình vẽ minh họa:
Cắt lăng trụ bởi một mặt phẳng qua A’ vuông góc với AA’ ta được một thiết diện là tam giác có các cạnh:
Suy ra tam giác vuông tại A’ và trung tuyến A’H của tam giác đó bằng a
Gọi giao điểm của AM và A’H là T
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa:
Ta có:
=> d(SA, BC) = AB
Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và
là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:

Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp
có
, đáy
là tam giác vuông tại
và
. Tính cosin góc giữa đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của S lên (ABC)
Do nên H là tâm đường tròn ngoại tiếp tam giác ABC hay H là trung điểm của BC
Ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Các đường thẳng cùng vuông góc với một đường thẳng thì:
Đáp án "Thuộc một mặt phẳng" sai vì có thể xảy ra trường hợp nằm trên nhiều mặt phẳng khác nhau.
Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.
Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.
Đáp án "Song song với một mặt phẳng" đúng vì chúng đồng phẳng.
Cho hình chóp tứ giác
có đáy
là hình thoi tâm
và
vuông góc với mặt đáy. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
là hình thoi
Cho hình chóp
có đáy là hình vuông
cạnh bằng
và cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
. Khi đó
bằng:
Ta có:
Lại có
Xét tam giác có
Theo định lí Pythagore đảo suy ra tam giác vuông tại
Suy ra hay
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
vuông tại
và nằm trong mặt phẳng vuông góc với đáy. Cạnh
tạo với đáy một góc bằng
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Kẻ ta có:
Vậy SH là đường cao của hình chóp
Lại có , tam giác SAC vuông tại S và
nên
Thể tích hình chóp là