Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
,
. Xác định thể tích
?
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60◦. Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Hình vẽ minh họa:
Gọi H là hình chiếu của S lên (ABCD).
Ta có:
=> AB ⊥ MH
=> MH là đường trung bình của hình vuông ABCD
Giả sử MH cắt CD tại N, ta có N là trung điểm CD
Ta cũng có SN ⊥ CD nên
Gọi P là trung điểm BC, ta có MP // AC nên AC // (SMP)
Do đó, d(SM, AC) = d(AC,(SMP)) = d(O,(SMP))
Gọi K là hình chiếu của H lên MP (nhận thấy HK // OB), I là hình chiếu của H lên SK
Khi đó d(H, (SMP)) = HI
Áp dụng định lý cosin cho tam giác SMN, ta có:
Xét tam giác vuông SHN ta có:
Xét tam giác SHK vuông tại H, ta có:
Mặt khác:
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính
?
Hình vẽ minh họa
Ta có: là hình vuông
Mặt khác
Suy ra
=> SD là hình chiếu của SC lên mặt phẳng (SAD)
Do đó
Xét tam giác vuông tại
ta có:
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, tam giác
đều và cạnh
. Gọi trung điểm các cạnh
lần lượt là
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có tam giác SAB đều cạnh bằng a nên
Mặt khác tam giác SBC có
Suy ra tam giác SBC vuông cân tại B hay
Từ
Tam giác ABS đều mà H là trung điểm của AB nên
Tam giác ABS đều nên AB không vuông góc với mặt phẳng
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB
=> Tam giác SBC vuông tại B => I là trung điểm của SC
Theo bài ra ta có: IH ⊥ (ABC) => IH // SA
=> H là trung điểm của cạnh AC,
Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho hình lập phương
có các cạnh bằng
. Tính khoảng cách giữa hai mặt phẳng
và
.
Hình vẽ minh họa
Vì là hình lập phương nên
và
.
Khoảng cách giữa hai mặt phẳng và
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Khi đó
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho khối chóp tứ giác đều
, đáy là tứ giác
cạnh bằng a. Biết cạnh bên gấp hai lần cạnh đáy. Tính thể tích khối chóp
.
Hình vẽ minh họa
Gọi I là tâm đáy.
Vì S.ABCD là hình chóp tứ giác đều nên SI là đường cao của hình chóp.
Ta có:
Vì AI là trung tuyến của tam giác ABD vuông tại A
Chiều cao của khối chóp là
Thể tích khối chóp là:
Cho hình chóp
có đáy là hình chữ nhật. Gọi trung điểm các cạnh
lần lượt là
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: MN là đường trung bình của tam giác SCD =>
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Cho hình chóp
có
. Kết luận nào sau đây sai về góc giữa
và ![]()
Vì nên AB là hình chiếu của SB trên (ABC)
Vậy .
Cho tứ diện S.ABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?
Hình vẽ minh họa:

Ta có: SBC là tam giác đều có H là trung điểm BC nên
Mà (SBC)⊥(ABC) theo giao tuyến BC
=> đúng.
Ta có HI là đường trung bình của ΔABC nên
=> đúng.
Ta có
=> đúng
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình lập phương
. Mặt phẳng nào dưới đây không vuông góc với
?
Hình vẽ minh họa
Dễ thấy mặt phẳng không vuông góc với
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và
. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:

Ta có:
Trong (SAC) kẻ OK⊥SA(1) ta có:
Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD
Khi đó
Cho hình chóp tam giác
có
. Biết rằng tam giác
vuông cân tại
và
. Tính góc giữa
và
?
Hình vẽ minh họa
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (ABC) là AB.
=> Góc giữa đường thẳng SB và mặt phẳng (ABC) là
Do tam giác ABC vuông cân tại B và nên
Suy ra tam giác SAB vuông cân tại A.
Do đó
Vậy góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 450.
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh bằng 2a. Hình chiếu của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60◦. Gọi ϕ là góc giữa hai mặt phẳng (BCC’B’) và (ABC). Tính cos ϕ.
Hình ảnh minh họa:
Gọi M là trung điểm của BC, suy ra
Gọi K là điểm đối xứng của H qua B, suy ra B’K // A’H, suy ra B’K ⊥ (ABC).
Trong (ABC), dựng BI ⊥ BC (với I ∈ BC).
Khi đó, góc giữa hai mặt phẳng (BCC’B’) và (ABC) là góc KIB’.
Do tứ giác AHKB’ là hình bình hành nên B’K = A’H = AH . tan 60◦ =
Ta có: KI = d(H, BC) = d(A,BC)/2 = AM/2 =
Xét ∆B’IK vuông tại K ta có:
Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là
. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?
Ta có:
Thể tích khối lăng trụ đã cho bằng:
Cho khối lăng trụ
có
, hình chiếu vuông góc của điểm
lên mặt phẳng
là trung điểm
của
. Biết
. Tính thể tích khối lăng trụ
?
Hình vẽ minh họa:
Gọi lần lượt là hình chiếu của A trên BB’ và CC’
Theo đề bài ta có:
Dễ thấy nên tam giác
vuông tại A
Gọi H là trung điểm của
Ta lại có
Suy ra
Vậy
Cho hình chóp
có đáy
là hình chữ nhật, cạnh bên
vuông góc với đáy. Kết luận nào đưới dây đúng?
Hình vẽ minh họa:
Ta có:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a (hình hộp như thế gọi là hình hộp thoi) và
. Tính diện tích tứ giác A’B’CD.
Hình vẽ minh họa:

Ta có:
=> A’B’ // CD và A’B’ = CD
=> Tứ giác A’B’CD là hình bình hành
Ngoài ra B’C = a = CD
=> => Tứ giác A’B’CD là hình thoi
Ta sẽ chứng minh tứ giác A’B’CD là hình vuông.
Ta có:
=> Tứ giác A’B’CD là hình vuông.
Diện tích hình vuông đó là a2
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Gọi
. Xác định
?
Hình vẽ minh họa
Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc
Cho hình chóp
có
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi I là trung điểm của AB.
Xét tam giác SAB có SA = SB =>
Xét tam giác CAB có: =>
Từ (1) và (2) suy ra .
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?
Hình vẽ minh họa:
Ta có: SA = SB = SC, G là trọng tâm tam giác ABC
=> G là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Gọi H là trung điểm của BC =>
Xét tam giác ABC đều cạnh a ta có:
Xét tam giác SBH vuông tại H ta có:
Xét tam giác SGH vuông tại G ta có:
Cho hình chóp
có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh
và
lần lượt là
. Xác định cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Theo giả thiết ta có:
là đường trung bình của tam giác
nên
Vì
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy là hình vuông
cạnh bằng
và cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
. Khi đó
bằng:
Ta có:
Lại có
Xét tam giác có
Theo định lí Pythagore đảo suy ra tam giác vuông tại
Suy ra hay
Cho ba vecto
bất kì đều khác với vecto
. Nếu vecto
vuông góc với cả hai vecto
và
thì
,
và
:
Nếu vecto vuông góc với cả hai vecto
và
thì
,
và
thì có thể đồng phẳng.