Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Cho hình chóp
có
, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có:
Suy ra tam giác ABC vuông tại A.
Gọi H, M, N lần lượt là trung điểm của AB, AB, SA
Xét tam giác SBC có: SB = SC nên
Lại H là tam đường tròn ngoại tiếp tam giác ABC
Mà SA = SB = SC = a nên
Suy ra tam giác SAH vuông cân tại H
Do đó tam giác MHN cạnh . Góc cần tìm bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc
. Tính khoảng cách d giữa hai đường thẳng AB và SO.
Hình vẽ minh họa:

Ta có suy ra
Mà => ΔSBD đều cạnh
Xét tam giác vuông SAB có:
Gọi E là trung điểm AD, suy ra và
Do đó
Kẻ
Ta có:
Từ (1) và (2)
=>
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SC. Tính cosin góc giữa hai đường thẳng BM và AC.
Hình vẽ minh họa:

Gọi H là tâm của hình vuông ABCD khi đó
Ta có:
Vì tam giác SBC đều cạnh a và BM là trung tuyến nên
Khi đó:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình lập phương ABCD.A’B’C’D. Hỏi mặt phẳng (ACC’A’) vuông góc với các mặt phẳng nào?
Hình vẽ minh họa:
Mặt phẳng (ACC’A’) vuông góc với các mặt phẳng (BDD’B’), (ABCD), (A’B’C’D’).
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Hình chóp tam giác đều
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Ta có khối chóp tam giác đều có đáy
là tam giác đều, trọng tâm G cũng là tâm của đáy nên
.
Cho hình chóp
. Biết rằng
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Gọi D là trung điểm của AB, vì tam giác SAB cân tại S và tam giác ABC cân tại C nên .
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình lập phương
(như hình vẽ)

Tính sin của góc tạo bởi
và mặt phẳng đáy
?
Ta có:
Giả sử hình lập phương có cạnh bằng .
Trong tam giác ta có:
Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”
Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AC = b, các cạnh bên có độ dài bằng b. Tính góc giữa đường thẳng AB và mặt phẳng (AB’C’)

(1)
Kẻ lần lượt
Ta có:
Lại có hay
=> K là hình chiếu vuông góc của lên mặt phẳng (AB’C’) (2)
Từ (1) và (2) => AK là hình chiếu vuông góc của AB lên mặt phẳng (AB’C’)
Tam giác ABC vuông cân tại A
Có ADBH là hình chữ nhật =>
Tam giác BDB’ vuông tại B
Tam giác BAK vuông tại K
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
vuông tại
và nằm trong mặt phẳng vuông góc với đáy. Cạnh
tạo với đáy một góc bằng
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Kẻ ta có:
Vậy SH là đường cao của hình chóp
Lại có , tam giác SAC vuông tại S và
nên
Thể tích hình chóp là
Tính thể tích khối lăng trụ trong hình vẽ sau, biết
.

Quan sát hình vẽ ta thấy
Tam giác đều có cạnh bằng a nên
Do khối lăng trụ là lăng trụ đứng nên đường cao của lăng trụ là
Thể tích khối lăng trụ là
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp
có
là hình vuông cạnh
;
. Khoảng cách giữa hai đường thẳng
bằng bao nhiêu?
Hình vẽ minh họa
Dựng
Dựng . Dễ thấy
Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto
là:
Hình vẽ minh họa:

Ta có tam giác ACF là tam giác đều
=> Góc giữa cặp vecto là:
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

Hình vẽ minh họa:
Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.
Vậy MN bé nhất khi và chỉ khi EK bé nhất.
Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.
Qua I kẻ P Q song song với BC (như hình vẽ).
Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).
Ta có:
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥(ABC). Kẻ AH ⊥ SB. Chọn khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
AB ⊥ BC (hiển nhiên đúng)
Ta có: SA ⊥(ABC) mà BC nằm trong (ABC) => SA ⊥ BC
Ta lại có:
Dễ thấy AH ⊥ AC là khẳng định sai.
Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27. Một mặt phẳng (α) tạo với mặt phẳng (ABCD) góc 600 và cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q. Tính diện tích của tứ giác MNPQ.
Hình vẽ minh họa:
Đặt AB = a
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA =
. Khoảng cách giữa hai đường thẳng SB và CD là:
Hình vẽ minh họa:
Ta có:
BC ⊥ AB
BC ⊥ SA
=> BC ⊥ (SAB).
Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a
Cho hình lăng trụ ABC.A’B’C’ có
. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

Trong (ABC) kẻ ( điểm N thuộc cạnh AC)
Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)
Góc giữa MC’ và mp(ACC’A’) là góc
Ta có
CM là đường trung tuyến của tam giác ABC, nên có
Tam giác CMC’ vuông tại M, nên
Diện tích
Xét tam giác vuông MC’N, có
Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho hình chóp
có đáy
là tam giác cân tại
,
. Gọi
là trung điểm của
,
là hình chiếu của
trên
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có:
Từ (1) và (2) suy ra
Mà nên
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
. Cạnh bên SA = 2a, SA ⊥ (ABCD). Mặt phẳng (α) đi qua A và vuông góc với SC. Tính diện tích S của thiết diện tạo bởi mặt phẳng (α) và hình chóp đã cho.
Hình vẽ minh họa:
Trong tam giác SAC có: AI ⊥ SC (I thuộc SC)
Trong mặt phẳng (SBC) dựng đường thẳng qua I và vuông góc với SC cắt SB tại M.
Trong mặt phẳng (SCD) dựng đường thẳng qua I và vuông góc với SC cắt SD tại N.
Khi đó thiết diện của hình chóp cắt bởi mặt phẳng (α) là tứ giác AMIN.
Ta có: SC ⊥ (α) => SC ⊥ AM (*)
Ta có:
Từ (*) và (**) => AM ⊥ (SBC) => AM ⊥ MI
Chứng minh tương tự ta được AN ⊥ NI
Vì AM, AI, AN lần lượt là các đường cao của tam giác SAB, SAC, SAD nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình lập phương
. Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Mặt khác
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).
Hình vẽ minh họa:
Gọi H là trung điểm của BC => SH ⊥ (ABC)
Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)
=>
Xét tam giác SBC đều cạnh 2a =>
Tam giác ABC vuông tại A =>
Tam giác SAH vuông nên