Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:
Hình vẽ minh họa

Các tam giác ABC và ABD là tam giác đều
=> Tam giác ACD cân
=> BN ⊥ CD và AN ⊥ CD
=> là góc của hai mặt phẳng (ACD) và (BCD)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình chóp
có
. Biết
là hình chữ nhật có
. Giả sử
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có: nên AC là hình chiếu của SC lên mặt phẳng đáy.
=>
Mặt khác
Xét tam giác vuông SAC có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
bằng góc giữa hai đường thẳng
và
và bằng góc
Mà tam giác ACD’ là tam giác đều nên
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc phẳng đỉnh B đều bằng 600.
Cặp đường thẳng nào sau đây không vuông góc với nhau?
Hình ảnh minh họa

Xét tam giác CB'D' có ba cạnh bằng nên tam giác không vuông.
=> B’C và CD’ không vuông góc với nhau.
Cho hình chóp
có đáy
là hình tam giác vuông tại A,
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có:
Ta có:
=>
Kẻ (1)
Ta có:
Từ (1) và (2) =>
Một hình chóp
có đáy
là tam giác đều cạnh
,
vuông góc với mặt phẳng đáy. Biết góc giữa
và mặt phẳng
bằng
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Gọi M là trung điểm của BC thì
Từ đây dễ thấy góc cần tìm là
Do đó tam giác SAM vuông cân tại A và
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, E là điểm đối xứng của D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. Xác định góc giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi H là giao điểm của DF và SA. => H là trung điểm của ED
Gọi I là giao điểm của AC và BD => I là trung điểm của BD
=> HI là trung điểm của tam giác BED => HI // EB (*)
Ta có: BD ⊥ HI (**)
Từ (*) và (**) => BD ⊥ EB
Gọi Q là trung điểm của AB dễ thấy NQ là đường trung bình của tam giác ABE
=> NQ //BE => BD ⊥ NQ
Gọi M là trung điểm của BC, dễ thấy MQ // AC mà AC ⊥ BD => MQ ⊥ BD
Ta có:
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?
Hình vẽ minh họa
Ta có:
là hình chữ nhật nên
không vuông góc với
Vậy không vuông góc với mặt phẳng
Mệnh đề nào đúng trong các mệnh đề sau?
Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.
Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.
Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
. Biết
và tam giác
đều. Xác định thể tích hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Thể tích khối chóp là:
Cho hình chóp tứ giác đều
có cạnh bằng
, tâm
. Gọi trung điểm các cạnh
lần lượt là
. Biết rằng góc giữa đường thẳng
và mặt phẳng
bằng
. Khi đó cosin góc giữa
và mặt phẳng
bằng:
Hình vẽ minh họa
Ta có:
Với
Khi đó
Ta có:
Lại có
Do vậy
Ta có: (vì OC là đường trung bình trong tam giác BDF)
Vậy .
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA = SC, SB = SD. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Vì =>
cân tại S
Mà O là trung điểm AC =>
Tương tự, ta cũng có mà
=>
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình tứ diện ABCD có AB, CD, BC đôi một vuông góc. Khi đó ta có:
Hình vẽ minh họa:
Ta có:
Ta có:
Nếu (Vô lí)
Nếu (Vô lí)
Nếu (Vô lí)
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto
và
?
Hình vẽ minh họa

Ta có:
Một tấm ván hình chữ nhật
được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33![]()
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Gọi ,
lần lượt là hình chiếu của
,
lên đáy hố là mặt phẳng
.
Khi đó có hình chiếu lên đáy là
, suy ra
.
Với độ sâu hố là (m), ta có
.
.
.
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
,
. Giả sử
là mặt phẳng đi qua điểm
và vuông góc với
. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng
?
Hình vẽ minh họa
Ta có:
Từ O dựng OH vuông góc với SC
Ta có:
Lại có
Vậy thiết diện cần tìm là tam giác BHD
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong
thì
chỉ đúng khi hai đường thẳng đó cắt nhau.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là một điểm nằm trên đoạn thẳng BC. Mặt phẳng (SAB) tạo với (SBC) một góc 600 và mặt phẳng (SAC) tạo với (SBC) một góc ϕ thỏa mãn
. Gọi ϕ là góc tạo bởi SA và mặt phẳng (ABC), tính tan ϕ.
Hình vẽ minh họa:
Dựng hình chữ nhật HNAM, suy ra tam giác HNC vuông cân tại N và tam giác HMB vuông cân tại M, suy ra AC ⊥ (SHN) và AB ⊥ (SHM).
Kẻ HE ⊥ SB và HF ⊥ SC, HP ⊥ SN và HK ⊥ SM, suy ra HP ⊥ (SAC), HK ⊥ (SAB).
Ta có:
=> là góc giữa (SAB) và (SBC) bằng 600
Suy ra:
Suy ra
Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC, AA’ = 2a. M là trung điểm của B’C’. Khi đó khoảng cách từ C’ đến mặt phẳng (A’BM) là.
Hình vẽ minh họa:
Gọi N là trung điểm của BC, G là trọng tâm tam giác ABC.
Dựng hình chữ nhật AND
Kẻ GI // BC (I ∈ BD), GH ⊥ A’I (H ∈ A’I)
Ta có: C’N // (A’MB) (do C’N // MB)
=> d(C’, (A’BM)) = d(N, (A’BM))
Mà GN // (A’BM) (do GN // A’M)
=> d(N, (A’BM)) = d(G, (A’BM))
=> d(C’, (A’BM)) = d(G,(A’BM))
Ta có: BD // AN, AN // A’M => BD // A’M => A’, M, B, D đồng phẳng.
BD ⊥ GI (do ANBD là hình chữ nhật)
BD ⊥ A’G (do A’G ⊥ (ABC))
=> BD ⊥ (A’GI) => BD ⊥ GH
Mà A’I ⊥ GH => GH ⊥ (A’MB) => d(G, (A’BM)) = GH
Tính GH: ∆ABC đều, cạnh a
=>
Xét tam giác AA’G vuông tại G
=>
Ta lại có: GNBI là hình chữ nhật =>
Xét tam giác A’GI vuông tại G có GH ⊥ A’I
=>
Suy ra
Một hình chóp
có đáy
là cân
. Tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính thể tích khối chóp
theo
.
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Xét tam giác AHS vuông tại H ta có: