Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 2: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 4: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.

    Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

    Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)

    => SA ⊥ BC

    Xét tam giác ABC vuông tại B ta có:

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC

    Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)

    => AC ⊥ AB (vô lí)

  • Câu 6: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với AC = a\sqrt{3}. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho \sin\alpha =\frac{\sqrt{6}}{4} . Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:

    Hình vẽ minh họa:

    Ta có:\left\{ \begin{matrix}\widehat{\left( BC’,(AA’C’C) ight)} = \widehat{BC’A} = 30^{0} \\\widehat{\left( BC’,(ABC) ight)} = \widehat{C'BC} = \alpha \\\end{matrix} ight.

    Đặt AB = x => BC = \sqrt{3a^{2} +x^{2}}

    BC = \sqrt{3a^{2} + x^{2}}

    CC' = BC.tan\alpha =\sqrt{\frac{3\left( x^{2} + 3a^{2} ight)}{5}}

    AC' = AB.cot30^{0} =\sqrt{\frac{3\left( x^{2} + 3a^{2} ight)}{5}}

    Ta có: AC^{2} + CC'^{2} =AC^{2}

    \Rightarrow x = a\sqrt{2}

    \Rightarrow CC' = a\sqrt{3};AC =a\sqrt{6}

    Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)

    d(MN, AC’) = d(N, (ABC’)) = \frac{1}{2}d(A’, (ABC’)

    Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)

    d\left( A';(ABC') ight) =A'H = \frac{AA'.A'C'}{AC'} =\frac{a\sqrt{6}}{2}

    => d(MN, AC’) = \frac{a\sqrt{6}}{4}

  • Câu 7: Vận dụng cao

    Cho hình chóp S.ABC với SA = 3,SB = 4,SC = 5. Một mặt phẳng (\alpha) thay đổi luôn đi qua trọng tâm của S.ABC cắt các cạnh SA,SB,SC tại các điểm A_{1},B_{1},C_{1}. Tìm giá trị nhỏ nhất của biểu thức P = \frac{1}{SA_{1}^{2}} +
\frac{1}{SB_{1}^{2}} + \frac{1}{SC_{1}^{2}}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABC với SA = 3,SB = 4,SC = 5. Một mặt phẳng (\alpha) thay đổi luôn đi qua trọng tâm của S.ABC cắt các cạnh SA,SB,SC tại các điểm A_{1},B_{1},C_{1}. Tìm giá trị nhỏ nhất của biểu thức P = \frac{1}{SA_{1}^{2}} +
\frac{1}{SB_{1}^{2}} + \frac{1}{SC_{1}^{2}}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

  • Câu 10: Vận dụng

    Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng:

    Hình vẽ minh họa:

    Ta có BC // B’C’ => BC // (AB’C’)

    => d(BC, AB’) = d(BC, (AB’C’)) = d(B, (AB’C’)) = d(A’ ,(AB’C’))

    Gọi I và H lần lượt là hình chiếu vuông góc của A’ trên B’C’ và AI

    Ta có: B’C’⊥ A’I và B’C’⊥ A’A nên B’C’⊥ (A’AI) => B’C’⊥ A’H

    Mà AI ⊥ A’H

    => (AB’C’) ⊥ A’H.

    Khi đó:

    d\left( A';(AB'C') ight) =A'H = \frac{AA'.A'I}{\sqrt{AA'^{2} +A'I^{2}}}

    =\dfrac{a.\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}} = \dfrac{a\sqrt{21}}{7}

    Vậy khoảng cách cần tìm là \frac{a\sqrt{21}}{7}

  • Câu 11: Vận dụng cao

    Cho hình chop SABC có SA ⊥ (ABC), tam giác ABC đều cạnh 2a, SB tạo với mặt phẳng đáy một góc 300. Khi đó mặt phẳng (SBC) tạo với đáy một góc x. Tính tan x.

    Hình vẽ minh họa:

    Ta có SA ⊥ (ABC)

    => AB là hình chiếu của AB lên (ABC).

    \begin{matrix}\Rightarrow \widehat{SBA} = \widehat{\left( SB;(ABC) ight)} = 30^{0} \hfill\\SA = AB.\tan30^{0} = \dfrac{2a\sqrt{3}}{3}\hfill \\\end{matrix}

    Gọi M là trung điểm của BC, ta có ∆ABC đều cạnh 2a

    => AM = a\sqrt{3}\left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \widehat{SMA} =
\widehat{\left( (SBC);(ABC) ight)} = x

    \tan x = \frac{SA}{AM} =
\frac{2a\sqrt{3}}{3}.a\sqrt{3} = \frac{2}{3}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa:

    Ta có: O và I lần lượt là trung điểm của AC và SC

    => OI là đường trung bình của tam giác SAC

    => OI // SA

    Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)

    Ta có: ABCD là hình chữ nhật => BC ⊥ AB

    Mà SA ⊥ BC => BC ⊥ SB

    Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD

    Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.

    Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”

  • Câu 13: Nhận biết

    Khẳng định nào sau đây sai?

    Đường thẳng d vuông góc với hai đường thẳng nằm trong (\alpha) thì d\bot(\alpha) chỉ đúng khi hai đường thẳng đó cắt nhau.

  • Câu 14: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = a;AD = 2a;AA' = a\sqrt{2}. Gọi mặt phẳng (\alpha) qua A và vuông góc với A'B. Tính diện tích thiết diện tạo bởi (\alpha) và hình hộp chữ nhật đã cho?

    Hình vẽ minh họa

    Hình chữ nhật ABB'A'AB = a;AA' = a\sqrt{2}. Lấy M là trung điểm của BB'. Ta dễ dàng chứng minh AM\bot A'B

    Ta lại có AD\bot A'B suy ra mặt phẳng (\alpha) chính là mặt phẳng (ADM).

    Qua điểm M kẻ MN // AD. Thiết diện khi đó là hình chữ nhật ADMN.

    Ta tính được AM = \frac{a\sqrt{6}}{2};AD
= 2a

    Suy ra diện tích hình chữ nhật ADMN là: a^{2}\sqrt{6}.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và SA = AB = \sqrt{3}. Gọi G là trọng tâm của tam giác SAB. Khoảng cách từ G đến mặt phẳng (SBC) bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của SB \Rightarrow AM\bot SB (vì \Delta SAB cân)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} \Rightarrow BC\bot(SAB) \Rightarrow BC\bot AM ight.

    \left\{ \begin{matrix}
AM\bot SB \\
AM\bot BC \\
\end{matrix} \Rightarrow AM\bot(SBC) \Rightarrow GM\bot(SBC) ight. tại M.

    Do đó d(G;(SBC)) = GM.

    Ta có: SM = \sqrt{AB^{2} + SA^{2}} =
\sqrt{6} \Rightarrow AM = \frac{SB}{2} =
\frac{\sqrt{6}}{2}.

    G là trọng tâm của \Delta SAB nên GM = \frac{1}{3}AM =
\frac{\sqrt{6}}{6}.

  • Câu 16: Nhận biết

    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”

    Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.

  • Câu 17: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc tạo bởi đường thẳng BD với (SAD). Tính sin α.

    Hình vẽ minh họa:

    Vì (SAB) ⊥ (ABCD), AD ⊥ AB nên AD ⊥ (SAB)

    Trong (SAB), kẻ BH ⊥ SA = H, ta có BH ⊥ (SAD)

    Khi đó sin (BD, (SAD)) = sinα = BH/BD

    Xét tam giác SAB đều cạnh a có đường cao BH = \frac{a\sqrt{3}}{2}

    => \sin\alpha =
\frac{\sqrt{6}}{4}

  • Câu 19: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    Gọi H là tâm của tam giác đều ABC

    Khi đó SH\bot(ABC);BH =
\frac{a\sqrt{3}}{3}

    Theo bài ra ta có:

    \left( SB;(ABC) ight) = \widehat{SBH}
= 60^{0}

    Tam giác SBH vuông tại H có: SH =
BH.tan60^{0} = \frac{a\sqrt{3}}{3}.\sqrt{3} = a

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.a.\frac{a^{2}\sqrt{3}}{4} =
\frac{\sqrt{3}a^{3}}{12}

  • Câu 20: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}

    Hình vẽ minh họa

    Ta có: AB//A'B'(A'B',B'C') = 90^{0} \Rightarrow
(AB,B'C') = 90^{0}

    Vì tứ giác ABCD là hình vuông nên (AC;BC) = 45^{0}

    Ta có: BC//B'C' nên (AC,B'C') = 45^{0}

    Ta có: A'C'//AC và tam giác AVB' là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó (A'C',B'C) = (AC,B'C) =
60^{0}

  • Câu 21: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 22: Thông hiểu

    Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a\widehat{ABC} = \widehat{B'BA} =
\widehat{B'BC} = 60^{0}. Tứ giác A'B'CD là hình gì?

    Hình vẽ minh họa

    Ta có tứ giác A’B’CD là hình bình hành

    Do \widehat{B'BC} = 60^{0} nên tam giác BB’C đều \Rightarrow B'C =
a

    Do đó CD = B'C = a nên tứ giác A’B’CD là hình thoi

    Ta có

    \overrightarrow{CB'}.\overrightarrow{CD} =
\left( \overrightarrow{CB} + \overrightarrow{BB'}
ight).\overrightarrow{BA}

    =
\overrightarrow{CB}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BA} = - \frac{a^{2}}{2} +
\frac{a^{2}}{2} = 0

    Suy ra CB'\bot CD

    Vậy tứ giác A'B'CD là hình vuông.

  • Câu 23: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{2a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{2a\sqrt{3}}{3}.8a^{2} = \frac{16a^{3}\sqrt{3}}{3}

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh aSA\bot(ABCD);SA = a\sqrt{2}. Số đo góc giữa đường thẳng SC và mặt phẳng (SAB) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
SA\bot(ABCD) \Rightarrow SA\bot BC \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    BC\bot SB nên SC là hình chiếu của SB lên mặt phẳng (SAB)

    Góc giữa đường thẳng SC và mặt phẳng (SAB) là góc giữa SC và SB hay góc \widehat{CSB}.

    Trong tam giác SAB vuông tại A có SB =
\sqrt{SA^{2} + AB^{2}} = \sqrt{2a^{2} + a^{2}} = a\sqrt{3}

    Trong tam giác SBC vuông tại B có \tan\widehat{CSB} = \frac{BC}{SB} =
\frac{a}{a\sqrt{3}} = \frac{\sqrt{3}}{3}

    \Rightarrow \widehat{CSB} =
30^{0}

    Số đo góc giữa đường thẳng SC và mặt phẳng (SAB) bằng 30^{0}.

  • Câu 25: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 26: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 27: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết: AB = a,AD = SA = a\sqrt 3. Hai bên mặt SAB và SAD vuông tại a. Gọi μ là góc giữa hai đường thẳng SB và AC. Tính cosμ?

    Hình vẽ minh họa:

    Xác định cosin góc giữa hai đường thẳng SB và AC

    Ta có:

    \begin{matrix}  \cos \left( {\overrightarrow {SB} ;\overrightarrow {AC} } ight) = \dfrac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{SB.AC}} = \dfrac{{\overrightarrow {SB} .\overrightarrow {AC} }}{{4{a^2}}} \hfill \\  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SA}  + \overrightarrow {AB} } ight).\overrightarrow {AC}  \hfill \\   = \overrightarrow {SA} .\overrightarrow {AC}  + \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {AC}  = \overrightarrow {AS} .\left( {m\overrightarrow {AB}  + n\overrightarrow {AC} } ight) = 0 \hfill \\  \overrightarrow {AB} .\overrightarrow {AC}  = 2.2a.\cos {60^0} = {a^2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {SB} ,\overrightarrow {AC} } ight) = \frac{1}{4} \hfill \\   \Rightarrow \cos \mu  = \frac{1}{4} \hfill \\ \end{matrix}

     

  • Câu 29: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

    Góc giữa hai đường thẳng AM bằng BD

    Xét \Delta ABD vuông cân tại A, ta có:

    BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Góc giữa 2 đường thẳng BA và BD bằng 45^0, suy ra \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight) = {135^o}

    Xét \Delta SAB vuông cân tại A, ta có:

    \begin{matrix}  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  AM = \dfrac{{SA.AB}}{{SB}} = \dfrac{{a\sqrt 2 }}{2} \hfill \\ \end{matrix}

    Vì là trung điểm của SB nên: 2\overrightarrow {AM}  = \overrightarrow {AS}  + \overrightarrow {AB}

    Ta có:

    \begin{matrix}  2\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\overrightarrow {AS}  + \overrightarrow {AB} } ight).\overrightarrow {BD}  \hfill \\   = \overrightarrow {AS} .\overrightarrow {BD}  + \overrightarrow {AB} .\overrightarrow {BD}  = \overrightarrow {AB} .\overrightarrow {BD}  \hfill \\ \end{matrix}

    (Do \overrightarrow {AS}  \bot \overrightarrow {BD}, nên \overrightarrow {AS} .\overrightarrow {BD}  = 0)

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BD}  = \dfrac{{\overrightarrow {AB} .\overrightarrow {BD} }}{2} \hfill \\   = \dfrac{{AB.BD.\cos \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight)}}{2} \hfill \\   = \dfrac{{a.a\sqrt 2 .\cos \left( {{{135}^o}} ight)}}{2} = \dfrac{{ - {a^2}}}{2} \hfill \\ \end{matrix}

    Do đó: 

    \begin{matrix}  \cos \left( {\overrightarrow {AM} ,\overrightarrow {BD} } ight) = \dfrac{{\overrightarrow {AM} .\overrightarrow {BD} }}{{AM.BD}} \hfill \\   = \dfrac{{\dfrac{{ - {a^2}}}{2}}}{{\dfrac{{a\sqrt 2 }}{2}.a\sqrt 2 }} =  - \dfrac{1}{2} \Rightarrow \left( {\overrightarrow {AM} ,\overrightarrow {BD} } ight) = {120^o} \hfill \\ \end{matrix}

    Vậy góc giữa AM bằng BD bằng {60^o}

  • Câu 31: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa:

    Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.

    Gọi H là trung điểm AC => SH ⊥ AC.

    Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.

    Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.

    Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.

    Từ đó suy ra (ABI) ⊥ (SBC).

    Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai

  • Câu 33: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 34: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 35: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau?

    Ta có:

    “Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.

    “Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.

    “Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.

    Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 37: Vận dụng

    Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và AB = \frac{{a\sqrt 6 }}{2}, CD = a. Gọi E là trung điểm của AD. Tính góc giữa hai đường thẳng AB và CE.

    Tính góc giữa hai đường thẳng

     Kí hiệu hình vẽ như sau:

    Tính góc giữa hai đường thẳng

    Gọi H là trung điểm của BD. Khi đó EH // AB, EH ⊥ (BCD)

    Góc giữa AB và CE bằng góc giữa EH và EC chính là góc \widehat {HEC}

    Ta có:

    \begin{matrix}  EH = \dfrac{1}{2}AB = \dfrac{{a\sqrt 6 }}{4} \hfill \\  BC = \sqrt {A{C^2} - A{B^2}}  = \dfrac{{a\sqrt 2 }}{2} \hfill \\  C{H^2} = \dfrac{{2\left( {C{B^2} + C{D^2}} ight) - B{D^2}}}{4} = \dfrac{{3{a^2}}}{8} \hfill \\   \Rightarrow CH = \dfrac{{a\sqrt 6 }}{4} \hfill \\ \end{matrix}

    Ta lại có: \tan \widehat {HEC} = \frac{{CH}}{{EH}} = 1 \Rightarrow \widehat {HEC} = {45^0}

    Vậy góc giữa AB và CE là 450

  • Câu 38: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'AA' = 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Khi đó \left( (A'BC);(ABC) ight) =
\widehat{A'MA} = 30^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan30^{0}} =
4\sqrt{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = 8a

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{(8a)^{2}\sqrt{3}}{4} =
64\sqrt{3}a^{3}

  • Câu 39: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BO\bot SA \\
BO\bot AC \\
\end{matrix} ight.\  \Rightarrow BO\bot(SAC)

    Hình chiếu của SB lên mặt phẳng (SAC) là SO.

    Vậy \widehat{\left( SC;(SAC) ight)} =
\widehat{BSO}

  • Câu 40: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo