Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 2: Vận dụng cao

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Điểm M và N tương ứng là trung điểm các đoạn AC, BB’. Cosin góc giữa đường thẳng MN và (BA’C’) bằng:

    Hình vẽ minh họa:

    Gọi I là trung điểm của A’C’

    => BMIB’ là hình chữ nhật

    Gọi K = MN ∩ BI.

    Ta có: IM ⊥ A’C’; BI ⊥ A’C’

    => A’C’ ⊥ (BMI)

    => (BMI) ⊥ (A’C’B) và (BMI) ∩ (A’C’B) = BI

    Trong mặt phẳng (BMI), dựng MH ⊥ BI => MH ⊥ (A’C’B)

    => (MN; (BA’C’)) = (MK; (BA’C’)) = \widehat{MKH} = \widehat{MKI}

    Ta có \Delta NKB\sim\Delta MKI
\Rightarrow \frac{NK}{MK} = \frac{BK}{IK} = \frac{NB}{MI} =
\frac{1}{2}

    \left\{ \begin{matrix}NK = \dfrac{1}{2}MK \\IK = 2KB \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}MK = \dfrac{2}{3}MN = \dfrac{2}{3}a \\IK = \dfrac{2}{3}IB = \dfrac{2}{3}.\dfrac{a\sqrt{7}}{2} =\dfrac{a\sqrt{7}}{3} \\\end{matrix} ight.

    Áp dụng định lý Cô-sin trong tam giác 4IKM, ta có:

    \cos\widehat{MKI} = \frac{IK^{2} +
MK^{2} - IM^{2}}{2IK.MK} = \frac{\sqrt{7}}{14}

  • Câu 3: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 4: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a\sqrt{2}. Tính khoảng cách giữa hai đường thẳng CC’ và BD.

    Hình vẽ minh họa:

    Ta có:

    OC ⊥ BD

    OC ⊥ CC’

    => OC là đoạn vuông góc chung của CC’ và BD.

    Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:

    Hình vẽ minh họa:

    Hoàn thành mệnh đề

    Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Tam giác SAI vuông tại I

    => SA2 = AI2 + SI2

    Tam giác SBI vuông tại I

    => SB2 = BI2 + SI2

    Tam giác SCI vuông tại I

    => SC2 = CI2 + SI2

    Kết hợp với điều kiện: SA = SB = SC

    => I là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 6: Nhận biết

    Mệnh đề nào sau đây đúng?

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau” sai vì hai mặt phẳng đó có thể cắt nhau.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì vuông góc với nhau.“ sai vì hai mặt phẳng đó có thể tạo với nhau những góc khác 900.

    Dễ thấy mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng song song với một đường thẳng.” đúng.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng vuông góc với một đường thẳng.“ sai vì trong trường hợp mặt phẳng (P) và mặt phẳng (Q) cùng vuông góc với mặt phẳng (R), (P) ⊥ (Q) thì không thể có đường thẳng nào cùng vuông góc với (P) và (Q).

  • Câu 7: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 8: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 9: Nhận biết

    Cho hình chóp tứ giác S.ABCDSA\bot(ABCD) và đáy là hình vuông. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
SA\bot BC \\
AB\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

  • Câu 10: Vận dụng

    Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).

    Gọi M là trung điểm của SD.

    Tam giác SCD đều nên CM ⊥ SD.

    Tam giác SBD có SB = SD = a, BD =
a\sqrt{2} nên vuông tại S

    => SB ⊥ SD => OM ⊥ SD

    => ((SBD),(SCD)) = (OM, CM) = \widehat{OMC}

    Ta có: \left\{ \begin{matrix}
OC\bot BD \\
OC\bot SO \\
\end{matrix} ight.\  \Rightarrow OC\bot(SBD) \Rightarrow OC\bot
OM

    Tam giác vuông MOC ta có:

    \tan\widehat{OMC} = \frac{OC}{OM} =
\sqrt{2}

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Gọi I;J lần lượt là trung điểm của các cạnh SASC.

    Khẳng định nào sau đây đúng?

    Vì IJ là đường trung bình của tam giác SAC nên IJ//AC

    Ta có: \left\{ \begin{matrix}
IJ//AC \\
BD\bot AC \\
\end{matrix} ight.\  \Rightarrow BD\bot IJ

  • Câu 12: Thông hiểu

    Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A

    => \left\{ \begin{matrix}PQ = MN = \dfrac{1}{2}AB \\PQ//AB//MN \\\end{matrix} ight.

    => MNPQ là hình bình hành

    Gọi H là trung điểm của AB

    Vì hai tam giác ABC và ABC’ đều nên \left\{ \begin{matrix}
CH\bot AB \\
C'H\bot AB \\
\end{matrix} ight.

    => AB\bot(CHC') \Rightarrow AB\bot
CC'

    Ta có: \left\{ \begin{matrix}
PQ//AB \\
\begin{matrix}
PN//CC' \\
AB\bot CC' \\
\end{matrix} \\
\end{matrix} ight.\  \Rightarrow PQ\bot PN

    Vậy tứ giác MNPQ là hình chữ nhật

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).

    Hình vẽ minh họa:

    Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:

    \begin{matrix}
\left( SC;(ABCD) ight) = (SC;AC) = \widehat{SCA} \\
\Rightarrow SA = AC = 2a\sqrt{2} \\
\end{matrix}

    Gọi O là giao điểm của AC và BD ta có:

    Ta có: \left\{ \begin{matrix}
DO\bot AC \\
DO\bot SA \\
\end{matrix} ight.\  \Rightarrow DO\bot(SAC)=> Hình chiếu của SD trên mặt phẳng (SAC) là SO.

    => \left( SD;(SAC) ight) = (SD;SO) =
\widehat{DSO}

    \left\{ \begin{matrix}DO = \dfrac{1}{2}BD = a\sqrt{2} \hfill \\SO = \sqrt{SA^{2} + AO^{2}} = a\sqrt{10} \hfill \\\end{matrix} ight.

    => \tan\widehat{DSO} = \frac{DO}{SO} =
\frac{\sqrt{5}}{5}

  • Câu 14: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 15: Vận dụng

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {DH}?

    Hình vẽ minh họa

    Xác định góc giữa hai vectơ

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  AB \bot AE \hfill \\  AE//DH \hfill \\ \end{gathered}  ight. =  > AB \bot DH \hfill \\   \Rightarrow \widehat {\left( {AB,DH} ight)} = {90^0} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA ⊥ (ABCD), AD = CD = a, AB = 2a. Gọi E là trung điểm của AB. Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.

    Từ giả thiết suy ra ADCE là hình vuông

    => CE ⊥ AB, CE = AD = a

    Ta có: CE ⊥ AB, CE ⊥ SA => CE ⊥ (SAB)

    Vì CE = AD = a => CE =\frac{1}{2}AB

    => Tam giác ABC vuông tại C => CB ⊥ AB

    Kết hợp với CB ⊥ SA => CB ⊥ (SAC)

    Ta có:

    CD ⊥ AD, CD ⊥ SA => CD ⊥ (SAD)

    => Tam giác SDC vuông tại D

    Dùng phương pháp loại trừ nên ta có: CE ⊥ (SDC) là khẳng định sai.

  • Câu 18: Thông hiểu

    Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B, AB = a,\widehat {ACB} = 30^\circ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi \alpha là góc tạo bởi A’H với (A’ACC’). Tính \sin\alpha?

    Sin của góc tạo bởi A’H với (A’ACC’)

    Ta có A'H \bot \left( {ABC} ight) nên A’H là đường cao của lăng trụ.

    Kẻ HK \bot AC (K thuộc đoạn AC)

    Kẻ

    Suy ra HI \bot \left( {AA'C'C} ight)

    Khi đó \alpha  = \left( {A'H,A'I} ight) = \widehat {HA'K}

    Sin của góc tạo bởi A’H với (A’ACC’)

    +) Do tam giác MCB cân tại B nên \widehat {BMC} = \widehat {BCM} = 30^\circ

    \begin{matrix}  MH = \dfrac{1}{2}BM = \dfrac{1}{4}AC = \dfrac{1}{4}\dfrac{{AB}}{{\sin 30^\circ }} = \dfrac{a}{2} \hfill \\   \Rightarrow HK = MH.\sin 60^\circ  = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

    +) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng \widehat {A'AH} = 60^\circ (theo giả thiết)

    Và BM = AM = AB = a

    => Tam giác AMB là tam giác đều cạnh a

    \Rightarrow AH = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = AH.\tan 60^\circ  = \frac{{3a}}{2}

    Vì vậy, \sin \alpha  = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{{3a}}{2}}} = \dfrac{{\sqrt 3 }}{6}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 20: Nhận biết

    Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?

    (1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.

    (2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    (3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 22: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 23: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 24: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = 2a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = 2a\sqrt{3}.8a^{2}
= 16a^{3}\sqrt{3}

  • Câu 25: Thông hiểu

    Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

    Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)

    Hình chóp S.ABCD đều, O là tâm của đáy nên SO \bot \left( {ABCD} ight);BD \bot \left( {SAC} ight)

    ABCD là hình vuông cạnh a nên AC = BD = a\sqrt 2 ;OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}

    Ta có: \left( {SAB} ight) \cap \left( {AMO} ight) = AM

    Khi đó: \sin \varphi  = \frac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} với \varphi là góc giữa hai mặt phẳng (AMO) và (SAB).

    Do BD \bot \left( {SAC} ight) suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc \widehat {BSO} = {60^0}.

    Tam giác SBO vuông tại O nên ta có:

    \begin{matrix}  SO = \dfrac{{OB}}{{\tan {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6} \hfill \\  SB = \dfrac{{OB}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3} \hfill \\   \Rightarrow MB = \dfrac{{a\sqrt 6 }}{6} \hfill \\ \end{matrix}

    Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AB \bot OI} \\   {AB \bot SO} \end{array}} ight. \Rightarrow AB \bot \left( {SOI} ight) \Rightarrow OH \bot AB (2)

    Từ (1) và (2) suy ra OH \bot \left( {SAB} ight) \Rightarrow d\left( {O;\left( {SAB} ight)} ight) = OH

    Vì OI là đường trung bình của tam giác ABD nên OI = \frac{1}{2}AD = \frac{a}{2}

    Tam giác SOI vuông tại O, đường cao OH, có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{S{O^2}}} = \frac{{10}}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt {10} }}

    Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:

    \begin{matrix}  A{M^2} = \dfrac{{2A{B^2} + 2S{A^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow AM = a\sqrt {\dfrac{2}{3}}  \hfill \\  C{M^2} = \dfrac{{2C{B^2} - 2C{S^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow CM = a\sqrt {\dfrac{2}{3}}  \hfill \\ \end{matrix}

    Trong tam giác AMC, có:

    \cos \widehat {CAM} = \frac{{A{M^2} + A{C^2} - M{C^2}}}{{2AMM.AC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {CAM} = {30^0}

    \begin{matrix}  d\left( {O;AM} ight) = \dfrac{{d\left( {C;AM} ight)}}{2} \hfill \\   = \frac{1}{2}AC.\sin \widehat {CAM} = \dfrac{1}{2}AC.\sin {30^0} = \dfrac{{a\sqrt 2 }}{4} \hfill \\   \Rightarrow \sin \varphi  = \dfrac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} = \dfrac{a}{{\sqrt {10} }}:\dfrac{{a\sqrt 2 }}{4} = \dfrac{2}{{\sqrt 5 }} \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy. Biết góc giữa SA và mặt phẳng (SBC) bằng 45^{0}. Tính thể tích khối chóp S.ABC đã cho.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC thì \left\{
\begin{matrix}
AM\bot BC \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    Từ đây dễ thấy góc cần tìm là \alpha =
\widehat{ASM} = 45^{0}

    Do đó tam giác SAM vuông cân tại A và SA
= AM = \frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{8}

  • Câu 27: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số \frac{NB}{NC'} bằng:

    Hình vẽ minh họa:

    Gọi H, I lần lượt là trung điểm của AB, AC’

    Suy ra HI // BC’

    Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH

    Dễ thấy BK ⊥ (SCH)

    Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’

    Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành

    Khi đó MN là đoạn vuông góc chung cần tìm

    Ta có:

    \frac{NB}{BC'} = \frac{MK}{2HI} =\frac{1}{2}\left( 1 + \frac{HK}{A'H} ight)

    = \frac{1}{2}\left( 1 + \frac{HK}{HS}ight) = \frac{1}{2}\left( 1 + \frac{HB^{2}}{HS^{2}}ight)

    Do 2HB = SB nên:

    \frac{NB}{BC'} = \frac{1}{2}\left( 1+ \frac{HB^{2}}{HB^{2} + SB^{2}} ight)

    = \frac{1}{2}\left( 1 +\frac{HB^{2}}{HB^{2} + 4HB^{2}} ight) = \frac{3}{5}

    => \frac{NB}{NC'} =\frac{3}{2}

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 29: Vận dụng cao

    Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

    Hình vẽ minh họa:

    Gọi H là trung điểm của CD.

    Do tam giác ACD cân tại A và tam giác BCD cân tại B.

    \Rightarrow \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} \Rightarrow CD\bot(ABH) \Rightarrow CD\bot AB. ight.

    Gọi E là trung điểm của AB, do tam giác ABC cân tại C

    \Rightarrow \left\{ \begin{matrix}
CD\bot AB \\
AB\bot AE \\
\end{matrix} \Rightarrow AB\bot(CDE) \Rightarrow AB\bot DE. ight.

    \Rightarrow \left\{ \begin{matrix}
(ABC) \cap (ABD) = AB \\
(ABC) \supset CE\bot AB \\
(ABC) \supset DE\bot AB \\
\end{matrix} ight.

    \Rightarrow \widehat{\left( (ABC);(ABD)
ight)} = \widehat{(CE;DE)} = 90^{0}

    Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.

    CD = CE\sqrt{2} \Rightarrow 2x =
CE\sqrt{2} \Rightarrow CE = x\sqrt{2}(*)

    Xét tam giác vuông CBH có BH^{2} = BC^{2}
- BH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ACH có AH^{2} = AC^{2}
- CH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ABH có:

    \begin{matrix}AB^{2} = AH^{2} + BH^{2} = 2a^{2} - 2x^{2}\hfill \\\Rightarrow AE = \dfrac{\sqrt{2a^{2} - 2x^{2}}}{2}\hfill \\\end{matrix}

    Xét tam giác vuông ACE có:

    CE^{2} = AC^{2} - AE^{2}

    = a^{2} - \frac{a^{2} - x^{2}}{2} =
\frac{a^{2} + x^{2}}{2}

    \Rightarrow CE = \sqrt{\frac{a^{2} +
x^{2}}{2}}

    Thay CE vào (*) ta được

    \sqrt{\frac{a^{2} + x^{2}}{2}} =
x\sqrt{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 31: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 32: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng nào dưới đây vuông góc với mặt phẳng (A'BD)?

    Hình vẽ minh họa

    Ta có: AB = AD = AA' = a nên A cách đều các điểm B,D,A'

    BC' = DC' = C'A' =
a\sqrt{2} nên C' cách đều các điểm B,D,A'

    Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác A'BD

    \Rightarrow
AC'\bot(A'BD)

  • Câu 33: Nhận biết

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Xác định góc giữa hai đường thẳng ABDM?

    Hình vẽ minh họa

    Gọi N là trung điểm của AC thì MN // AB

    Suy ra (AB,DM) = (MN,DM)

    Ta có: \cos\widehat{DMN} = \frac{MN^{2} +
DM^{2} - DN^{2}}{2MN.DM}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2\left( \dfrac{a}{2} ight).\left( \dfrac{a\sqrt{3}}{2}ight)} = \dfrac{\sqrt{3}}{6}

    \cos\widehat{DMN} = \frac{\sqrt{3}}{6}
\Rightarrow (AB;DM) = \arccos\frac{\sqrt{3}}{6}

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa:

    Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.

    Gọi H là trung điểm AC => SH ⊥ AC.

    Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.

    Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.

    Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.

    Từ đó suy ra (ABI) ⊥ (SBC).

    Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai

  • Câu 35: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 36: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 37: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BA'CD là:

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (BA',CD) =
(BA',AB)

    ABB'A' là hình vuông nên (BA',AB) = \widehat{ABA'} =
45^{0}

  • Câu 38: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC =
a\sqrt{3}AA' = 3a. Chọn kết luận đúng về số đo góc giữa A'C(ABC)?

    Hình vẽ minh họa

    Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC

    Suy ra \left( A'C;(ABC) ight) =
(A'C;AC) = \widehat{A'CA}

    Ta có: \tan\widehat{A'CA} =
\frac{AA'}{AC} = \frac{3a}{a\sqrt{3}} = \sqrt{3}

    \Rightarrow \widehat{A'CA} = 60^{0}
\Rightarrow \left( A'C;(ABC) ight) = 60^{0}

  • Câu 39: Thông hiểu

    Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a\widehat{ABC} = \widehat{B'BA} =
\widehat{B'BC} = 60^{0}. Tứ giác A'B'CD là hình gì?

    Hình vẽ minh họa

    Ta có tứ giác A’B’CD là hình bình hành

    Do \widehat{B'BC} = 60^{0} nên tam giác BB’C đều \Rightarrow B'C =
a

    Do đó CD = B'C = a nên tứ giác A’B’CD là hình thoi

    Ta có

    \overrightarrow{CB'}.\overrightarrow{CD} =
\left( \overrightarrow{CB} + \overrightarrow{BB'}
ight).\overrightarrow{BA}

    =
\overrightarrow{CB}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BA} = - \frac{a^{2}}{2} +
\frac{a^{2}}{2} = 0

    Suy ra CB'\bot CD

    Vậy tứ giác A'B'CD là hình vuông.

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo