Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 2: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 3: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, tam giác SAD là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng SABC.

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(BD;SA) = \widehat{SAD} = 60^{0}

    \Rightarrow \sin(BC;SA) =
\frac{\sqrt{3}}{2}

  • Câu 5: Nhận biết

    Trong các mệnh đề dưới đây, mệnh đề nào là mệnh đề đúng?

    Mệnh đề đúng: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia”.

  • Câu 6: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 7: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AB = 2, AD = 3, AA’ = 4. Góc giữa hai mặt phẳng (AB’D’) và (A’C’D) là α. Tính giá trị gần đúng của α.

    Hình vẽ minh họa:

    Phần 1: Xác định góc

    Bước 1: Tìm giao tuyến giữa hai mặt phẳng:

    Trong mặt phẳng (ADD’A’) gọi E là giao điểm của AD’ và A’D.

    Trong mặt phẳng (A’B’C’D’) gọi F là giao điểm của B’D’ và A’C’.

    Khi đó EF là giao tuyến của hai mặt phẳng (AB’D’) và (A’C’D).

    Bước 2: Trong mỗi mặt phẳng, ta cần tìm đường thẳng vuông góc với giao tuyến:

    Trong mặt phẳng (DA’C’) kẻ A’H ⊥ EF tại H, A’H cắt DC’ tại K.

    Ta chứng minh D’H ⊥ EF.

    Ta có: \left\{ \begin{matrix}
DC’\bot A’K \\
DC’\bot A’D’ \\
\end{matrix} ight.\  \Rightarrow DC’\bot(A’D’K) \Rightarrow DC’\bot
D’H

    Mặt khác: \left\{ \begin{matrix}
DC’\bot D’H \\
D’C//EF \\
\end{matrix} ight.\  \Rightarrow DH’\bot EF

    Bước 3: Xác định góc giữa hai mặt phẳng:

    Ta có: \left\{ \begin{matrix}
D’H \subset (AB’D’) \\
D’H\bot EF \\
A’H \subset (DA’C’) \\
A’H\bot EF \\
(AB’D’) \cap (DA’C’) = EF \\
\end{matrix} ight.

    => α = ((AB’D’), (DA’C’)) = (D’H, A’H)

    Phần 2: Tính góc α:

    Ta sẽ sử dụng định lý cosin trong tam giác A’HD’

    Bước 1: Chứng minh tam giác A’HD’ cân:

    Trong tam giác A’DC’ ta có EF là đường trung bình, nên suy ra H là trung điểm A’K.

    Vì A’D’ ⊥ (DD’C’C) nên A’D’ ⊥ D’K.

    Do đó tam giác A’D’K vuông tại D’.

    Xét tam giác A’D’K vuông tại D’ có D’K là đường trung tuyến ứng với cạnh huyền nên D’H = A’H = A’K/2

    Bước 2: Tính độ dài cạnh A’K:

    Ta tính đường cao A’K của tam giác ADC’ thông qua diện tích.

    Áp dụng định lý Pi – ta - go ta tính được độ dài các cạnh tam giác A’DC’ là: A'D = 5;A'C' =
\sqrt{13};D'C = 2\sqrt{5}

    Sử dụng công thức Hê-rông ta tính được S_{A'DC'} = \sqrt{61}

    Mặt khác

    S_{A'DC'} =
\frac{1}{2}A'K.DC' = \frac{1}{2}A'K.2\sqrt{5}

    \Rightarrow A'K =
\frac{\sqrt{305}}{5}

    Từ đó suy ra D’H = A’H = A’K/2 = \frac{\sqrt{305}}{10}

    Bước 3: Tính góc α bằng định lý cosin:

    Trong tam giác A’HD’ ta có:

    \cos\widehat{A'HD'} =
\frac{HA^{2} + HD^{2} - A'D'^{2}}{2HA.HD}

    = \dfrac{2\left( \dfrac{\sqrt{305}}{10}ight)^{2} - 3^{2}}{2\left( \dfrac{\sqrt{305}}{10} ight)^{2}} = -\dfrac{29}{61}

    \Rightarrow \widehat{A'HD'} =
118,4^{0}

    Do đó góc giữa hai đường thẳng A’H và D’H bằng 61,60

    Vậy α = 61,60

  • Câu 8: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:

     Hình vẽ minh họa:

    Xác định đường vuông góc chung của AB và CD

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AB \bot CM} \\   {AB \bot DM} \end{array}} ight. \Rightarrow AB \bot \left( {CDM} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {CD \bot MN} \\   {AB \bot \left( {CDM} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => MN là đường vuông góc chung của AB  và CD

  • Câu 9: Nhận biết

    Cho tứ diện ABCD. Chứng minh rằng nếu \overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AD} .\overrightarrow {AB} thì AB \bot CD;AC \bot BD;AD \bot BC. Điều ngược lại đúng không? Sau đây là lời giải

    Bước 1: Ta có sự tương đương

    Bước 2: Chứng minh tương tự ta có: AB \bot CD;AD \bot BC

    Bước 3: Ngược lại đúng, vì quá trình chứng minh ở bước 1 và bước 2 là quá trình biến đổi tương đương.

    Bước giải trên đúng hay sai? Nếu sai thì sai ở đâu?

    Lời giải đã cho là lời giải đúng

  • Câu 10: Vận dụng

    Cho lăng trụ đứng ABC.A’B’C’ có diện tích tam giác ABC bằng 2\sqrt{3}. Gọi M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’, diện tích tam giác MNP bằng 4. Tính góc giữa hai mặt phẳng (ABC) và (MNP).

    Hình vẽ minh họa:

    Gọi α là góc giữa 2 mặt phẳng (ABC) và (MNP).

    Dễ thấy tam giác ABC là hình chiếu của tam giác MNP trên mặt phẳng (ABC).

    => S_{ABC} =S_{MNP}.cos\alpha

    Từ đó suy ra:

    \begin{matrix}\cos\alpha = \dfrac{S_{ABC}}{S_{MNP}} = \dfrac{2\sqrt{3}}{4} =\dfrac{\sqrt{3}}{2} \hfill\\\Rightarrow \alpha = 30^{0}\hfill \\\end{matrix}

    Vậy góc giữa hai mặt phẳng (ABC) và (MNP) bằng 30◦

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 12: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 13: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, đáy ABCD cạnh bằng 2a, cạnh bên SB = a\sqrt{5}. Tính thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
S_{ABCD} = 4a^{2} \\
SO = \sqrt{SB^{2} - OB^{2}} = \sqrt{5a^{2} - 2a^{2}} = a\sqrt{3} \\
\end{matrix} ight.

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{a\sqrt{3}.4a^{2}}{3} =
\frac{4\sqrt{3}a^{3}}{3}

  • Câu 14: Thông hiểu

    Đáy của hình lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AA’ và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC. Khi đó AM ⊥ AA’ tại A, AM ⊥ BC tại M.

    Do đó, AM là đoạn vuông góc chung của AA’ và BC.

    => d(AA’, BC) = \frac{4\sqrt{3}}{2} =
2\sqrt{3}

  • Câu 15: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 16: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 17: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 18: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 19: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.

    Đường thẳng B’C vuông góc với đường thẳng:

    Hình vẽ minh họa:

    Đường thẳng B’C vuông góc với đường thẳng nào

    Ta có: 

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CC'}  + \overrightarrow {C'B'} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {CC'} .\overrightarrow {CD}  + \overrightarrow {C'B'} .\overrightarrow {CD}  \hfill \\   = CC'.CD.\cos \widehat {C'CD} + C'B'.CD.\cos \widehat {B'C'D'} \hfill \\   = a.a.\cos {60^0} + a.a.\cos \left( {{{180}^0} - \widehat {ABC}} ight) \hfill \\   = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} = 0 \hfill \\ \end{matrix}

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AM, AN lần lượt là đường cao của tam giác SAB và tam giác SAD. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Khẳng định đúng trong các khẳng định đã cho

    Ta có: SA ⊥ (ABCD) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB)

    => BC ⊥ AE

    Mà AM nằm trong mặt phẳng (SAB)

    Xét tam giác SAB có:

    AM ⊥ SB

    Mà BC ⊥ AM => AM ⊥ (SBC) => AM ⊥ SC

    Chứng minh tương tự ta được: AN ⊥ SC

    => SC ⊥ (AMN)

  • Câu 22: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}\widehat{(CD;SA)} = \widehat{(AB;SA)} = 90^{0} \\\Rightarrow \left\{ \begin{matrix}CD\bot SA \\CD\bot SD \\\end{matrix} ight.\  \Rightarrow CD\bot AD \\\end{matrix}

    => ABCD là hình chữ nhật, từ đó ta suy ra

    AC = BD

    AB ⊥ (SAD)

    BC ⊥ AB

    Đáp án SO ⊥ (ABCD) sai

    Nếu SO ⊥ (ABCD) thì \left\{\begin{matrix}CD\bot SO \\CD\bot SA \\\end{matrix} ight.\  \Rightarrow CD\bot AO điều này vô lí

  • Câu 23: Thông hiểu

    Cho hình chóp OABC có OA = OB = OC = 1, các cạnh OA, OB, OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vecto \overrightarrow {OC} ;\overrightarrow {MA}.

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OC} .\overrightarrow {MA}  = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {BA}  \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OA}  - \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OB}  \hfill \\   = 0 - 0 = 0 \hfill \\   \Rightarrow \overrightarrow {OC} .\overrightarrow {MA}  = 0 \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)

    => SA ⊥ BC

    Xét tam giác ABC vuông tại B ta có:

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC

    Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)

    => AC ⊥ AB (vô lí)

  • Câu 25: Thông hiểu

    Các đường thẳng cùng vuông góc với một đường thẳng thì:

    Đáp án "Thuộc một mặt phẳng" sai vì có thể xảy ra trường hợp nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng" đúng vì chúng đồng phẳng.

  • Câu 26: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a\sqrt 2 và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng

    Gọi O = AC \cap BD. Ta có S.ABCD là hình chóp tứ giác đều suy ra SO \bot \left( {ABCD} ight).

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  BD \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot BD

    \left\{ \begin{gathered}  BD \bot SO \hfill \\  BD \bot AC \hfill \\  SO,AC \subset \left( {SAC} ight) \hfill \\  SO \cap AC = \left\{ O ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BD \bot \left( {SAC} ight)

    Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.

    Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc \widehat {BSO}.

    BO = \frac{{BD}}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  OB \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot OB

    Xét tam giác SOB có

    Ta có \sin \widehat {BSO} = \frac{{BO}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow BSO = {30^0}

  • Câu 27: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Tính góc giữa đường thẳng SC và mặt phẳng đáy, biết rằng SA = a\sqrt{15};AB = a;BC = 2a.

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABC) từ đó suy ra \left( SC;(ABC) ight) = (SC;AC) =
\widehat{SCA}

    Trong tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{a^{2} + 4a^{2}} = a\sqrt{5}

    Trong tam giác SAC vuông tại A ta có: \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{a\sqrt{15}}{a\sqrt{15}} = \sqrt{3}

    \tan\widehat{SCA} = 60^{0}

    \Rightarrow \left( SC;(ABC) ight) =
60^{0}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

    Hình vẽ minh họa:

    Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB

    Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)

    Suy ra \left\{ \begin{matrix}SH\bot CH \\\widehat{\left( SC,(ABC) ight)} = \widehat{SCH} \\\end{matrix} ight.

    Ta có:

    ∆SAB = ∆CAB (c.c.c)

    => SH = CH. Do đó ∆SCH vuông cân tại H

    Vậy \widehat{\left( SC,(ABC) ight)} =\widehat{SCH} = 45^{0}

  • Câu 29: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC => SH ⊥ (ABC)

    Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)

    => \left( SA,(ABC) ight) = (SA,AH) =
\widehat{SAH}

    Xét tam giác SBC đều cạnh 2a => SH =
a\sqrt{3}

    Tam giác ABC vuông tại A => AH =
\frac{BC}{2} = a

    Tam giác SAH vuông nên

    \begin{matrix}\tan\widehat{SAH} = \dfrac{SH}{AH} = \sqrt{3}  \hfill\\\Rightarrow \widehat{SAH} = 60^{0} \hfill \\\end{matrix}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 31: Thông hiểu

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. Gọi H là trực tâm tam giác ABC. Kết luận nào sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OC \\
OB\bot OC \\
\end{matrix} ight.\  \Rightarrow OC\bot(OAB) \Rightarrow OC\bot
AB đúng

    Ta có: \left\{ \begin{matrix}
BC\bot AH \\
BC\bot OA \\
\end{matrix} ight.\  \Rightarrow BC\bot(OAH) \Rightarrow BC\bot
OH đúng

    Ta có: \left\{ \begin{matrix}
AB\bot CH \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(OCH) \Rightarrow AB\bot
OH

    BC\bot OH \Rightarrow
OH\bot(ABC) đúng

    Vậy OH\bot OA hay tam giác HOA vuông tại H sai

  • Câu 32: Nhận biết

    Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?

    "Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).

  • Câu 33: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’. Gọi α là góc giữa A’C và mặt phẳng (A’BCD’). Chọn khẳng định đúng trong các khẳng định sau?

    Hình vẽ minh họa:

    Gọi I là giao điểm của A’C và AC’

    H là giao điểm của C’D và CD’

    Ta có: \left\{ \begin{matrix}
C'D\bot CD' \\
C'D\bot A'D' \\
\end{matrix} ight.\  \Rightarrow
C'D\bot(A'BCD')

    => IH là hình chiếu vuông góc của AC’ và (A’BCD’). Do đó:

    \begin{matrix}
\left( AC';(A'BCD') ight) = \left(
C'I;(A'BCD') ight) \\
= (C'I;HI) = \widehat{C'IH} \\
\end{matrix}

    Xét tam giác C’HI vuông ta có:

    \tan\widehat{C'IH} =\dfrac{C'H}{IH} = \dfrac{\dfrac{AB\sqrt{2}}{2}}{\dfrac{AB}{2}} =\sqrt{2}

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)

    Lại có theo giả thiết SC ⊥ AK. (2)

    Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).

    Ta có: \left\{ \begin{matrix}
SC\bot(AHK) \\
AI \subset (AHK) \\
\end{matrix} ight.\  \Rightarrow SC\bot AI

    Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai

  • Câu 35: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 36: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

    Hình vẽ minh họa:

    Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.

    Vậy MN bé nhất khi và chỉ khi EK bé nhất.

    Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.

    Qua I kẻ P Q song song với BC (như hình vẽ).

    Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).

    Ta có:

    \frac{1}{C'H^{2}} = \frac{1}{a^{2}}+ \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow C'H =\frac{a\sqrt{5}}{2} \Rightarrow d(BC;d) =\frac{2a\sqrt{5}}{5}

  • Câu 37: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA=a\sqrt{2} và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Hình vẽ minh họa:

    Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Do AB // CD => d(B;(SCD))=d(A;(SCD))

    Kẻ AE ⊥ SD tại E (1)

    Ta có: \left\{ \begin{gathered}CD \bot AD \hfill \\CD \bot SA \hfill \\\end{gathered} ight. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AE(**)

    Từ (1) và (2) => AE ⊥ (SCD)

    => d(A;(SCD)) = AE

    Xét tam giác vuông SAD ta có:

    AE = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}

    Vậy d(B;(SCD))=AE=\frac{{a\sqrt 6 }}{3}

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo