Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, E là điểm đối xứng của D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. Xác định góc giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi H là giao điểm của DF và SA. => H là trung điểm của ED
Gọi I là giao điểm của AC và BD => I là trung điểm của BD
=> HI là trung điểm của tam giác BED => HI // EB (*)
Ta có: BD ⊥ HI (**)
Từ (*) và (**) => BD ⊥ EB
Gọi Q là trung điểm của AB dễ thấy NQ là đường trung bình của tam giác ABE
=> NQ //BE => BD ⊥ NQ
Gọi M là trung điểm của BC, dễ thấy MQ // AC mà AC ⊥ BD => MQ ⊥ BD
Ta có:








