Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 2: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA=a\sqrt{2} và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Hình vẽ minh họa:

    Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Do AB // CD => d(B;(SCD))=d(A;(SCD))

    Kẻ AE ⊥ SD tại E (1)

    Ta có: \left\{ \begin{gathered}CD \bot AD \hfill \\CD \bot SA \hfill \\\end{gathered} ight. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AE(**)

    Từ (1) và (2) => AE ⊥ (SCD)

    => d(A;(SCD)) = AE

    Xét tam giác vuông SAD ta có:

    AE = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}

    Vậy d(B;(SCD))=AE=\frac{{a\sqrt 6 }}{3}

     

  • Câu 4: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD với các đường thẳng AB, AC, AD đôi một vuông góc, H là trực tâm tam giác BCD. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?

    Dễ thấy rằng BA⊥(ACD), AH⊥(BCD), suy ra góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng BA và AH, tức là bằng góc \widehat{BAH}

  • Câu 7: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Xác định đường thẳng vuông góc với đường thẳng C'B?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
A'D//B'C \\
B'C\bot BC' \\
\end{matrix} ight.\  \Rightarrow A'D\bot BC'

  • Câu 8: Thông hiểu

    Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA = SB =
2a. Mặt phẳng (SAB) tạo với mặt phẳng đáy một góc 90^{0}. Xác định thể tích khối chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB cân tại S nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{(2a)^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{15}}{2}

    Vậy thể tích hình chóp là:

    V = \frac{1}{3}.SH.S_{ABCD} =
\frac{1}{3}.\frac{a^{2}\sqrt{15}}{2}.a^{2} =
\frac{a^{3}\sqrt{15}}{6}

  • Câu 9: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng A'BAD' bằng:

    Hình vẽ minh họa

    Ta có: A'B//D'C nên góc giữa hai đường thẳng A'BAD' bằng góc giữa hai đường thẳng D'CAD' và bằng góc \widehat{AD'C}

    Mà tam giác ACD’ là tam giác đều nên \widehat{AD'C} = 60^{0}

    \Rightarrow (A'B;AD') =
60^{0}

  • Câu 10: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Hình ảnh minh họa

    Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Gọi O là tâm ABCD => SO \bot (ABCD)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {OB = \dfrac{{BD}}{2} = \dfrac{{\sqrt 2 }}{2}} \\   {OM = \dfrac{{AB}}{2} = \dfrac{1}{2}} \end{array}} ight.

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;OB} ight) = \widehat {SBO} \hfill \\  SO = OB.\tan \widehat {SBO} = \dfrac{{\sqrt 6 }}{2} \hfill \\ \end{matrix}

    Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot OM} \\   {BC \bot SO} \end{array}} ight. \Rightarrow BC \bot \left( {SOM} ight) \Rightarrow BC \bot OK\left( 2 ight)

    Xét tam giác vuông SOM ta có:

    \begin{matrix}  OK = \dfrac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }} = \dfrac{{\sqrt {42} }}{{14}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = OK = \dfrac{{\sqrt {42} }}{{14}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với đáy, kẻ AH vuông góc với BC (H thuộc BC). Hãy xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC) mà đường thẳng BC nằm trong (ABC)

    => SA ⊥ BC.

    Ta có BC ⊥ AH tại H.

    => \left\{ \begin{matrix}
BC\bot HA \subset (SAH) \\
BC\bot SA \subset (SAH) \\
HA\  \cap \ SA = A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH)(2)

    Ta lại có: \left\{ \begin{matrix}
(SHA)\  \cap \ (ABC)\  = \ HA \\
(SHA)\  \cap \ (SBC)\  = \ HS \\
\end{matrix} ight.

    Từ (1), (2), (3) => \alpha =
\widehat{SHA}

  • Câu 12: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác cân, AB = AC = a,\widehat{BAC} = 120^{0} và cạnh bên AA' = a\sqrt{2}. Tính góc giữa hai đường thẳng AB'BC?

    Hình vẽ minh họa

    Ta có: BC//B'C' \Rightarrow
(AB',BC) = (AB',B'C')

    Xét tam giác AB'C' ta có: AB' = AC' = \sqrt{AB^{2} +
BB'^{2}} = a\sqrt{3}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    BC^{2} = AB^{2} + AC^{2} -
2AB.AC.cos\widehat{BAC}

    = a^{2} + a^{2} - 2a.a.cos120^{0} =
3a^{2}

    \Rightarrow BC = B'C' =
a\sqrt{3}

    Vậy tam giác AB'C' đều

    \Rightarrow (AB',BC) =
(AB',B'C') = \widehat{AB'C'} = 60^{0}

  • Câu 13: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 14: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 15: Vận dụng cao

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 1, cạnh bên bằng \sqrt{3}. Gọi I là tâm của đáy ABC, d’ là khoảng cách từ A đến mặt phẳng (SBC) và d’’ là khoảng cách từ I đến mặt phẳng (SBC). Tính d = d’ + d’’.

    Gọi I là tâm của đáy ABC

    => d' = 3d'' \Rightarrow d= 4d'' = 4IK

    Xét tam giác ABC đều cạnh a có tâm I

    => AM = \dfrac{\sqrt{3}}{2} \Rightarrow\left\{ \begin{matrix}AI = \dfrac{\sqrt{3}}{3} \\IM = \dfrac{\sqrt{3}}{6} \\\end{matrix} ight.

    Xét tam giác SAI vuông tại I

    SI^{2} = SA^{2} - AI^{2} = 3^{2} -\frac{1}{3} = \frac{8}{3}

    \Rightarrow SI =\frac{2\sqrt{6}}{3}

    Xét ∆SIM vuông tại I có:

    \frac{1}{IK^{2}} = \frac{1}{SI^{2}} +\frac{1}{IM^{2}} = \frac{8}{99}

    \Rightarrow IK = \frac{2\sqrt{22}}{33}\Rightarrow d = \frac{8\sqrt{22}}{33}

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight);SA = a\sqrt 2, ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD = 2a. Gọi O = AC \cap BD, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

    Tính sin của góc giữa OM và (SCD)

    Trong (SBD), gọi I = OM \cap SD \Rightarrow OM \cap \left( {SCD} ight) = I

    Ta có BC // AD, áp dụng định lý Ta – let ta được:

    \frac{{OB}}{{OD}} = \frac{{OC}}{{OA}} = \frac{{BC}}{{AD}} = \frac{1}{2}

    Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:

    \frac{{BO}}{{OD}}.\frac{{DI}}{{IS}}.\frac{{SM}}{{MB}} = 1 \Leftrightarrow \frac{1}{2}.\frac{{DI}}{{IS}}.1 = 1 \Leftrightarrow \frac{{DI}}{{IS}} = 2

    Tam giác SAD vuông tại A có

    SA = a\sqrt 2 ,AD = 2a \Rightarrow SD = a\sqrt 6

    => DI = \frac{3}{2}SD = \frac{{a\sqrt 6 }}{2}

    Mặt khác: \frac{{CO}}{{CA}} = \frac{1}{3} \Rightarrow \frac{{d\left( {O,\left( {SCD} ight)} ight)}}{{d\left( {A,\left( {SCD} ight)} ight)}} = \frac{1}{3}

    \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \frac{1}{3}d\left( {A,\left( {SCD} ight)} ight)

    Lại có ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD nên AC = CD = a\sqrt 2

    => AC \bot CD mà CD \bot SA \Rightarrow CD \bot \left( {SAC} ight)

    Kẻ AH \bot SC, có CD \bot AH (do CD \bot \left( {SBC} ight))

    \Rightarrow AH \bot \left( {SCD} ight) \Rightarrow d\left( {A,\left( {SCD} ight)} ight) = AH

    Xét tam giác SAC vuông tại A có SA = a\sqrt 2 ,\,AC = a\sqrt 2, AH là đường cao:

    \begin{matrix}   \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{S^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{1}{{{a^2}}} \hfill \\   \Rightarrow AH = a \hfill \\   \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \dfrac{1}{3}AH = \dfrac{a}{3} \hfill \\ \end{matrix}

    Xét tam giác SBD có:

    \begin{matrix}  SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {2{a^2} + 4{a^2}}  = a\sqrt 6  \hfill \\  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3  \hfill \\  BD = \sqrt {A{D^2} + A{B^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5  \hfill \\ \end{matrix}

    Xét tam giác DIO có:

    DI = 2SD = 2a\sqrt 6 ,DO = \frac{2}{3}DB = \frac{2}{3}a\sqrt 5 .

    Do đó:

    \begin{matrix}  \cos SDB = \cos IDO \Leftrightarrow \dfrac{{S{D^2} + B{D^2} - S{B^2}}}{{2.SD.BD}} = \dfrac{{I{D^2} + O{D^2} - O{I^2}}}{{2.ID.OD}} \hfill \\   \Leftrightarrow \dfrac{{6{a^2} + 5{a^2} - 3{a^2}}}{{2.a\sqrt 6 .a\sqrt 5 }} = \dfrac{{24{a^2} + \dfrac{{20{a^2}}}{9} - O{I^2}}}{{2.2a\sqrt 6 .\dfrac{2}{3}a\sqrt 5 }}. \hfill \\   \Leftrightarrow 8 = \dfrac{{\dfrac{{236}}{9}{a^2} - O{I^2}}}{{\dfrac{4}{3}{a^2}}} \Leftrightarrow O{I^2} = \dfrac{{140{a^2}}}{9} \Leftrightarrow OI = \dfrac{{2a\sqrt {35} }}{3} \hfill \\ \end{matrix}

    Mặt khác:

    \begin{matrix}  \sin \left( {OM,\left( {SCD} ight)} ight) = \sin \left( {OI,\left( {SCD} ight)} ight) \hfill \\   = \dfrac{{d\left( {O,\left( {SCD} ight)} ight)}}{{OI}} = \dfrac{{\dfrac{a}{3}}}{{\dfrac{{2a\sqrt {35} }}{3}}} = \dfrac{{\sqrt {35} }}{{70}} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 19: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M, cắt a và vuông góc với a?

    Có 1 nếu M không thuộc a, có vô số nếu M thuộc a

  • Câu 20: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 21: Thông hiểu

    Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a\widehat{ABC} = \widehat{B'BA} =
\widehat{B'BC} = 60^{0}. Tứ giác A'B'CD là hình gì?

    Hình vẽ minh họa

    Ta có tứ giác A’B’CD là hình bình hành

    Do \widehat{B'BC} = 60^{0} nên tam giác BB’C đều \Rightarrow B'C =
a

    Do đó CD = B'C = a nên tứ giác A’B’CD là hình thoi

    Ta có

    \overrightarrow{CB'}.\overrightarrow{CD} =
\left( \overrightarrow{CB} + \overrightarrow{BB'}
ight).\overrightarrow{BA}

    =
\overrightarrow{CB}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BA} = - \frac{a^{2}}{2} +
\frac{a^{2}}{2} = 0

    Suy ra CB'\bot CD

    Vậy tứ giác A'B'CD là hình vuông.

  • Câu 22: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 24: Nhận biết

    Cho hai đường thẳng phân biệt a,b và mặt phẳng (M). Biết rằng a//(M). Mệnh đề nào sau đây đúng?

    Nếu a//(M);b\bot(M) thì b\bot a.

  • Câu 25: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’. Đường thẳng AC’ vuông góc với mặt phẳng nào sau đây?

    Hình vẽ minh họa:

    Xác định mặt phẳng

    Ta có: AA’D’A là hình vuông => AD’ ⊥ A’D

    ABCD.A’B’C’D là hình lập phương => AB ⊥ A’D

    => A’D ⊥ (ABC’D’) => A’D ⊥ AC’

    Ta lại có: ABCD là hình vuông => AC ⊥ BD

    Mà A’A ⊥ BD => BD ⊥ (AA’C’C) => BD ⊥ AC’

    Kết hợp với A’D ⊥ AC’ => A’C ⊥ (A’BD)

  • Câu 26: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 27: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?

    Hình vẽ minh họa:

    Ta có: SA = SB = SC, G là trọng tâm tam giác ABC

    => G là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Gọi H là trung điểm của BC => BH = CH
= \frac{a}{2}

    Xét tam giác ABC đều cạnh a ta có:

    GH = \frac{AH}{3} =
\frac{a\sqrt{3}}{2}.\frac{1}{3} = \frac{a\sqrt{3}}{6}

    Xét tam giác SBH vuông tại H ta có:

    SH = \sqrt{SB^{2} - HB^{2}} =
\sqrt{m^{2} - \frac{a^{2}}{4}}

    Xét tam giác SGH vuông tại G ta có:

    \begin{matrix}SG = \sqrt{SH^{2} - GH^{2}} \hfill \\= \sqrt{m^{2} - \dfrac{a^{2}}{4} - \dfrac{a^{2}}{12}} = \dfrac{\sqrt{9m^{2}- 3a^{2}}}{3} \hfill \\\end{matrix}

  • Câu 28: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.

    Đường thẳng B’C vuông góc với đường thẳng:

    Hình vẽ minh họa:

    Đường thẳng B’C vuông góc với đường thẳng nào

    Ta có: 

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CC'}  + \overrightarrow {C'B'} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {CC'} .\overrightarrow {CD}  + \overrightarrow {C'B'} .\overrightarrow {CD}  \hfill \\   = CC'.CD.\cos \widehat {C'CD} + C'B'.CD.\cos \widehat {B'C'D'} \hfill \\   = a.a.\cos {60^0} + a.a.\cos \left( {{{180}^0} - \widehat {ABC}} ight) \hfill \\   = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} = 0 \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q). Khi đó khẳng định nào là khẳng định đúng?

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q), khi đó a nằm trên (P) hoặc song song với (P).

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. cạn bên SA vuông góc với đáy. Gọi H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Theo bài ra, ta có SA⊥(ABC)BC⊂(ABC)⇒SA⊥BC

    Tam giác ABC vuông tại B, có AB⊥BC => BC⊥(SAB)⇒BC⊥AH

    Khi đó \left\{ {\begin{array}{*{20}{l}}  {AH \bot SB} \\   {AH \bot BC} \end{array}} ight.

    ⇒AH⊥(SBC)⇒AH⊥SC

    Nếu AH⊥ACSA⊥AC suy ra AC⊥(SAH)⇒AC⊥AB (vô lý).

  • Câu 31: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 32: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết AB = a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
\sqrt{3}a

    \Rightarrow AA' = \sqrt{\left(
a\sqrt{3} ight)^{2} - a^{2}} = a\sqrt{2}

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = \sqrt{2}a.\frac{1}{2}.a.a =
\frac{\sqrt{2}}{2}a^{3}

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 34: Vận dụng cao

    Cho hình chóp đều S.ABC có cạnh đáy bằng x, cạnh bên bằng y. Mặt phẳng (α) đi qua A và vuông góc với SC. Tìm hệ thức liên hệ giữa x và y để (α) cắt SC tại điểm C1 nằm giữa S và C.

    Hình vẽ minh họa:

    Gọi G là trọng tâm của tam giác ABC

    Do S.ABC là hình chóp đều nên SG ⊥ (ABC). Gọi C’ là trung điểm của AB

    => C, C’, G thẳng hàng

    Ta có: \left\{ \begin{matrix}
AB\bot CC' \\
SG\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(SC'C) \Rightarrow AB\bot
SC

    Trong tam giác SAC kẻ AC1⊥SC

    => SC ⊥ (ABC1)

    => Thiết diện cần tìm là tam giác ABC1 thỏa mãn đi qua A và vuông góc với SC. Tam giác SAC cân tại S nên để C1 nằm giữa S và C khi và chỉ khi \widehat{ASC}
< 90^{0}.

    \begin{matrix}
\Rightarrow \cos\widehat{ASC} > 0 \\
\Rightarrow SA^{2} + SC^{2} - AC^{2} > 0 \\
\Rightarrow 2b^{2} - a^{2} > 0 \Rightarrow a < b\sqrt{2} \\
\end{matrix}

  • Câu 35: Vận dụng

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.

    Hình vẽ minh họa:

    Gọi M, N lần lượt là trung điểm của AB, CD.

    Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN

    Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB

    Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM

    Khi đó, tam giác MCD vuông cân tại M

    => MN = \frac{AB}{2} = \frac{CD}{2}
\Rightarrow AB = CD = 2x

    Ta lại có AN = BN = \sqrt{AC^{2} -
AN^{2}} = \sqrt{a^{2} - x^{2}}

    AB^{2} = AN^{2} + BN^{2}

    => 2\left( a^{2} - x^{2} ight) =
4x^{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 36: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều và H là trung điểm cạnh BC. Gọi O là trung điểm AH của tam giác ABC, SO\bot(ABCD). Gọi I là trung điểm cạnh OH. Gọi mặt phẳng (\alpha) qua I và vuông góc với OH. Thiết diện của (\alpha) với hình chóp S.ABC là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)\bot OH \\
BC\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//BC

    => Qua I kẻ đường thẳng d_{1}//BC. Gọi \left\{ \begin{matrix}
d_{1} \cap AB = M \\
d_{1} \cap AC = N \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
SO\bot OH \\
(\alpha)\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//SO=> Qua I kẻ đường thẳng IK//SO;(K \in SH)

    (\alpha)//BC => Qua K kẻ đường thẳng d_{2}//BC. Gọi \left\{ \begin{matrix}
d_{2} \cap SB = Q \\
d_{2} \cap SC = P \\
\end{matrix} ight.

    => thiết diện (\alpha) và hình chóp là tứ giác MNPQ có IK là đường trung trực của MN và PQ.

    => MNPQ là hình thang cân.

  • Câu 38: Nhận biết

    Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Nếu đường thẳng a vuông góc với giao tuyến của (P) và (Q) thì a vuông góc với mặt phẳng (P) và vuông góc với mặt phẳng (Q).”

  • Câu 39: Nhận biết

    Cho hình chóp S.ABC đáy là tam giác ABC cân tại A, SA vuông góc với đáy. Gọi Mlà trung điểm của BC, J là trung điểm của BM. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: BC\bot SA;\left( do\ SA\bot(ABC)
ight)

    Tam giác ABC cân tại A nên AM\bot
BC

    \Rightarrow BC\bot(SAM)

  • Câu 40: Vận dụng cao

    Cho tứ diện ABCD có độ dài các cạnh AB = a, AD = BC = b, AB là đoạn vuông góc chung của BC và AD và (AB, CD) = α, 00 < α < 900, tan α < \frac{2b}{a}. Gọi I là trung điểm AB, điểm M thuộc đoạn AB sao cho IM = x và (P) là mặt phẳng đi qua M vuông góc với AB đồng thời cắt CD tại N. Diện tích hình tròn tâm M bán kính MN bằng

    Hình vẽ minh họa:

    Dựng hình lăng trụ đứng tam giác ADE.BFC như hình vẽ, trong đó AB là cạnh bên.

    Khi đó mặt phẳng (P) song song với hai mặt phẳng đáy của hình lăng trụ nói trên.

    Gọi P, Q lần lượt là giao điểm của (P) với CE và DF.

    Không mất tính tổng quát, giả sử M thuộc đoạn AI.

    Ta có \widehat{CDF} = (CD, DF) = (CD, AB) = α, suy ra PQ = CF = a tan α.

    Do đó:

    \begin{matrix}\dfrac{NQ}{CF} = \dfrac{DQ}{DF} = \dfrac{AM}{AB} = \dfrac{a - 2x}{2a} \hfill\\\Rightarrow NQ = \dfrac{(a - 2x)\tan\alpha}{2} \hfill \\\Rightarrow \cos\widehat{MQP} = \dfrac{MQ^{2} + PQ^{2} - MP^{2}}{2MQ.PQ} \hfill\\= \dfrac{PQ}{2MQ} = \dfrac{a\tan\alpha}{2b} \hfill\\MN^{2} = MQ^{2} + NQ^{2} - 2MQ.NQ \hfill\\\Rightarrow \cos\widehat{MQN} = \dfrac{4b^{2} + \tan^{2}\alpha\left(4x^{2} - a^{2} ight)}{4} \hfill\\\end{matrix}

    Vậy \frac{\pi}{4}\left\lbrack 4b^{2} +\left( 4x^{2} - a^{2} ight)tan^{2}\alphaightbrack

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo