Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với BC = 2AB = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Mặt phẳng (α) đi qua S vuông góc với AB. Tính diện tích S của thiết diện tạo bởi (α) và hình chóp đã cho.
Hình vẽ minh họa:
Gọi H là trung điểm của AB => SH ⊥ AB
=> SH ⊂ (α) và SH ⊥ (ABCD) (do (SAB) ⊥ (ABCD) theo giao tuyến AB)
Kể HM ⊥ AB khi đó ta có: HM ⊂ (α)
Do đó thiết diện là tam giác SHM vuông tại H
Ta có:
Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11,
,
. Tính khoảng cách d giữa hai đường thẳng AB và SD?
Hình vẽ minh họa:
Dựa vào định lý cosin ta dễ dàng tính được BC = 11,
=> ∆ABC vuông tại C
Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB
=> SH ⊥ (ABCD) và
Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, (Do
)
Trong tam giác vuông SHK, kẻ HI ⊥ SK
Do AB // CD => d(AB, SD) = d(H, SD) = HI
Ta có:
Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4,
. Cạnh bên
vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.
Hình vẽ minh họa:
Ta có:
=>
Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu của H xuống SC
=>
Ta có:
Cho tứ diện đều
cạnh bằng
,
là trung điểm của cạnh
. Xác định góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi N là trung điểm của AC thì MN // AB
Suy ra
Ta có:
Cho hình lăng trụ tam giác đều
có tất cả các cạnh bằng
. (như hình vẽ).

Tính
?
Hình vẽ minh họa
Gọi M là trung điểm cạnh BC.
Ta có tam giác ABC đều cạnh a nên ;
là hình lăng trụ tam giác đều nên
Do đó và
theo giao tuyến
Kẻ
Lại có
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA
=>
Xét tam giác SAB vuông ta có:
Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.
Hình vẽ minh họa:
Gọi M, N lần lượt là trung điểm của AB, CD.
Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN
Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB
Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM
Khi đó, tam giác MCD vuông cân tại M
=>
Ta lại có
Mà
=>
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA ⊥ (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABCD) nên tam giác SAB và tam giác SAD là tam giác vuông.
Ta có: CD ⊥ DA mà DA là hình chiếu của DA trên (ABCD) nên CD vuông góc với DS
=> Mặt bên SDC là tam giác vuông tại D
Tương tự ta có: mặt bên SBC là tam giác vuông tại B. Như vậy chỉ có khẳng định ”Mặt bên của hình chóp là những tam giác vuông” là chắc chắn đúng.
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông và một cạnh bên vuông góc với mặt đáy. Có bao nhiêu mặt bên vuông góc với mặt đáy?
Hình vẽ minh họa:
Giả sử SA ⊥ (ABCD). Khi đó có đúng 2 mặt bên vuông góc với mặt đáy là (SAB), (SAD).
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho tứ diện
có hai mặt
và
là tam giác đều. Khi đó
bằng:
Hình vẽ minh họa
Ta có: I là trung điểm của AB.
Vì và
là tam giác đều nên
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là:
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho tứ diện
có
, trung điểm các cạnh
lần lượt là
. Xác định độ dài đoạn thẳng
để góc giữa hai đường thẳng
và
bằng
.
Hình vẽ minh họa
Gọi P là trung điểm của AC
Ta có:
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng
. Tính khoảng cách giữa hai đường thẳng CC’ và BD.
Hình vẽ minh họa:
Ta có:
OC ⊥ BD
OC ⊥ CC’
=> OC là đoạn vuông góc chung của CC’ và BD.
Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp S.ABC có AB = AC,
. Tính số đo góc giữa hai đường thẳng SA và BC.
Ta có:
Vì
=> Góc giữa hai đường thẳng SA, BC là: 900
Trong các mệnh đề sau, mệnh đề nào sai?
Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).
Cho tứ diện
có
đôi một vuông góc. Gọi
là trực tâm tam giác
. Kết luận nào sai?
Hình vẽ minh họa
Ta có: đúng
Ta có: đúng
Ta có:
Mà đúng
Vậy hay tam giác HOA vuông tại H sai
Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình lăng trụ đứng tam giác
có đáy
vuông tại
. Giả sử
là góc giữa đường thẳng
và mặt phẳng
. Biết rằng
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Hạ ta có:
Trong tam giác có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB = 2a, AD = CD = a. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABCD). Mệnh đề nào sau đây đúng?
Do đó ((SBC),(ABCD)) = (SC, AC) =
Tam giác SAC vuông tại A =>
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.
Hình vẽ minh họa:
Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).
Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:
Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)
M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.
Khi đó ta có:
Tương tự ta có:
Khi đó
Tương tự suy ra
=>
=> I là tâm đường tròn nội tiếp tam giác ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. cạn bên SA vuông góc với đáy. Gọi H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa

Theo bài ra, ta có mà
Tam giác ABC vuông tại B, có =>
Khi đó
Nếu mà
suy ra
(vô lý).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của hai đường chéo và SA = SC. Trong các khẳng định sau, khẳng định nào đúng?
Ta có: SA = SC => SAC là tam giác cân. Mặt khác O là trung điểm của AC
=> AC ⊥ SO
Ta có: AC ⊥ BD, AC ⊥ SO => AC ⊥ (SBD)
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho khối lăng trụ tam giác đều
có cạnh bên bằng
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có:
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là: