Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng
. Tính khoảng cách giữa hai đường thẳng CC’ và BD.
Hình vẽ minh họa:
Ta có:
OC ⊥ BD
OC ⊥ CC’
=> OC là đoạn vuông góc chung của CC’ và BD.
Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng
. Tính khoảng cách giữa hai đường thẳng CC’ và BD.
Hình vẽ minh họa:
Ta có:
OC ⊥ BD
OC ⊥ CC’
=> OC là đoạn vuông góc chung của CC’ và BD.
Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a
Cho tứ diện
có
đôi một vuông góc. Gọi
là trực tâm tam giác
. Kết luận nào sai?
Hình vẽ minh họa
Ta có: đúng
Ta có: đúng
Ta có:
Mà đúng
Vậy hay tam giác HOA vuông tại H sai
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình lăng trụ
có đáy
là tam giác vuông tại
,
và
. Chọn kết luận đúng về số đo góc giữa
và
?
Hình vẽ minh họa
Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC
Suy ra
Ta có:
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?
Hình vẽ minh họa

Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB
=> MP // AB’; MN // BC’
=> Góc cần tìm là góc giữa MP và MN
=>
Lấy Q là trung điểm của A’B’ khi đó suy ra:
Cho hình chóp S.ABC có AB = AC và
. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.
Hình vẽ minh họa:

Xét
Ta có:
Từ (1) và (2)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy và SA = a. Góc giữa hai mặt phẳng (SBC) và (SCD) bằng:
Hình ảnh minh họa:

Vẽ DE ⊥ SC tại E.
Vì các tam giác SBC và SDC là các tam giác vuông có các cạnh tương ứng bằng nhau nên BE ⊥ SC và BE = DE.
Tam giác SBC vuông tại B và BE là đường cao nên
Khi đó
Vậy ((SCD), (SBC)) = (DE, BE).
Ta có:
Khi đó (DE, BE) = 60◦. Vậy ((SCD), (SBC)) = 60◦
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
Hình vẽ minh họa:

Gọi M là trung điểm BC
=>AM ⊥ BC và
Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)
Ta có:
Từ (1) và (2)
Xét tam giác SAM ta có:
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.
Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?
Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).
Cho hình chóp
với
. Một mặt phẳng
thay đổi luôn đi qua trọng tâm của
cắt các cạnh
tại các điểm
. Tìm giá trị nhỏ nhất của biểu thức
?
Cho hình chóp với
. Một mặt phẳng
thay đổi luôn đi qua trọng tâm của
cắt các cạnh
tại các điểm
. Tìm giá trị nhỏ nhất của biểu thức
?
Một tấm ván hình chữ nhật
được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33![]()
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Gọi ,
lần lượt là hình chiếu của
,
lên đáy hố là mặt phẳng
.
Khi đó có hình chiếu lên đáy là
, suy ra
.
Với độ sâu hố là (m), ta có
.
.
.
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho hình lập phương
có các cạnh bằng
. Tính khoảng cách giữa hai mặt phẳng
và
.
Hình vẽ minh họa
Vì là hình lập phương nên
và
.
Khoảng cách giữa hai mặt phẳng và
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho hình chóp tứ giác đều
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB suy ra
Tam giác SMO vuông tại O nên
Do đó mặt phẳng không vuông góc với
.
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho tứ diện ABCD có độ dài các cạnh AB = a, AD = BC = b, AB là đoạn vuông góc chung của BC và AD và (AB, CD) = α, 00 < α < 900, tan α <
. Gọi I là trung điểm AB, điểm M thuộc đoạn AB sao cho IM = x và (P) là mặt phẳng đi qua M vuông góc với AB đồng thời cắt CD tại N. Diện tích hình tròn tâm M bán kính MN bằng
Hình vẽ minh họa:
Dựng hình lăng trụ đứng tam giác ADE.BFC như hình vẽ, trong đó AB là cạnh bên.
Khi đó mặt phẳng (P) song song với hai mặt phẳng đáy của hình lăng trụ nói trên.
Gọi P, Q lần lượt là giao điểm của (P) với CE và DF.
Không mất tính tổng quát, giả sử M thuộc đoạn AI.
Ta có = (CD, DF) = (CD, AB) = α, suy ra PQ = CF = a tan α.
Do đó:
Vậy
Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?
Hình vẽ minh họa:
Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A
=>
=> MNPQ là hình bình hành
Gọi H là trung điểm của AB
Vì hai tam giác ABC và ABC’ đều nên
=>
Ta có:
Vậy tứ giác MNPQ là hình chữ nhật
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp
có đáy
là hình vuông cạnh bằng 1, tam giác
là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng
và
.
Hình vẽ minh họa
Ta có:
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng
. Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng . Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:
Hình vẽ minh họa:

Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Tam giác SAI vuông tại I
=> SA2 = AI2 + SI2
Tam giác SBI vuông tại I
=> SB2 = BI2 + SI2
Tam giác SCI vuông tại I
=> SC2 = CI2 + SI2
Kết hợp với điều kiện: SA = SB = SC
=> I là tâm đường tròn ngoại tiếp tam giác ABC.
Cho khối lăng trụ đứng
, đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho hình tứ diện ABCD có AB, CD, BC đôi một vuông góc. Khi đó ta có:
Hình vẽ minh họa:
Ta có:
Ta có:
Nếu (Vô lí)
Nếu (Vô lí)
Nếu (Vô lí)
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Do tam giác ABC cân tại A, M là trung điểm của BC nên
Ta có:
Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?
Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.