Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 2: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:

    Hình vẽ minh họa:

    Hoàn thành mệnh đề

    Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Tam giác SAI vuông tại I

    => SA2 = AI2 + SI2

    Tam giác SBI vuông tại I

    => SB2 = BI2 + SI2

    Tam giác SCI vuông tại I

    => SC2 = CI2 + SI2

    Kết hợp với điều kiện: SA = SB = SC

    => I là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 4: Thông hiểu

    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “(P) là mặt phẳng trung trực của đoạn thẳng AB nếu nó đi qua ba điểm phân biệt cách đều A và B.”

  • Câu 5: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 6: Nhận biết

    Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?

    Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).

  • Câu 7: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có AB = AC = BB’ = a, \widehat{BAC} = 120^{0}. Gọi I là trung điểm của CC’. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).

    Hình vẽ minh họa:

    Gọi E là giao điểm của B’I và BC, H thuộc BC sao cho EA ⊥ AH tại A, K ∈ B’I sao cho KH ⊥ CB tại H.

    Ta có: KH ⊥ CB => KH // CC’

    => KH ⊥ (ABC) tại H => KH ⊥ EA mà EA ⊥ AH => EA ⊥ (AKH) => EA ⊥ AK

    Góc giữa hai mặt phẳng (AIB’) và (ACB) là \widehat{KAH}

    Ta có: BC = 2a.cos 300 = a\sqrt{3}

    Mặt khác AE2 = EC2 + AC2 − 2AC.EC. cos ACE

    AE2 = 3a2 + a2 − 2a.a\sqrt{3}.cos 1500= 7a2

    => AE = a\sqrt{7}

    Ta có:

    \cos\widehat{AEC} = \frac{AE^{2} +EC^{2} - AC^{2}}{2.AE.EC} = \frac{9}{2\sqrt{21}}

    \tan\widehat{AEC} =\sqrt{\frac{1}{cos^{2}\widehat{AEC}} - 1} =\frac{\sqrt{3}}{9}

    Ta có:

    \frac{EH}{EB} =\frac{HK}{BB'}

    \Rightarrow HK = \frac{BB'.EH}{EB} =\frac{AE.BB'}{2BC.cos\widehat{AEC}} = \frac{7a}{9}

    \cos\widehat{KAH} = \frac{AH}{AK} =\frac{AH}{\sqrt{AH^{2} + HK^{2}}} = \frac{\sqrt{30}}{10}

  • Câu 8: Vận dụng cao

    Cho hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh a, tâm O, đường cao AA’, SO = 2a. Gọi M là điểm thuộc đoạn OA’ (M khác O và A’). Mặt phẳng (α) đi qua M và vuông góc với AA’. Đặt MA = x. Tính diện tích S thiết diện tạo bởi mặt phẳng (α) và hình chóp.

    Hình vẽ minh họa:

    Vì S.ABC là hình chóp đều => SO⊥(ABC) (với O là tâm của tam giác ABC)

    Do đó: SO ⊥ AA’ mà (α) ⊥ AA’ => SO // (α)

    Tương tự ta cũng có BC // (α)

    Qua M kẻ IJ // BC (I thuộc AB, J thuộc AC), kẻ MN // SO với N thuộc SA’

    Qua N kẻ EF // BC với E thuộc SB và F thuộc SC

    Khi đó thiết diện là hình thang IJEF

    Diện tích hình thang là:

    S_{IJEF} = \frac{1}{2}(IJ +
EF).MN

    Xét tam giác ABC ta có:

    \frac{IJ}{BC} = \frac{AM}{AA'}
\Rightarrow IJ = \frac{AM.BC}{AA'} =
\frac{2x\sqrt{3}}{3}

    Xét tam giác SBC ta có:

    \frac{EF}{BC} = \frac{SN}{SA'} =
\frac{OM}{OA'} \Rightarrow EF = \frac{OM.BC}{OA'} = 2\left(
x\sqrt{3} - a ight)

    Xét tam giác SOA’ có:

    \frac{MN}{SO} = \frac{MA'}{OA'}
\Rightarrow MN = \frac{OS.MA'}{OA'} = 2\left( 3a - 2x\sqrt{3}
ight)

    \begin{matrix}S_{IJEF} = \dfrac{1}{2}(IJ + EF).MN \hfill \\= \dfrac{2}{3}\left( 4x\sqrt{3} - 3a ight)\left( 3a - 2x\sqrt{3}ight) \hfill\\= - 2\left( 8x^{2} - 6\sqrt{3}x + 3a^{2} ight) \hfill\\\end{matrix}

  • Câu 9: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 8a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 8a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{8}{3}a^{3}

  • Câu 10: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 11: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{4\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{8a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{\sqrt{3}}{4}.4a.\left( \frac{8a}{3} ight)^{2}
= \frac{64\sqrt{3}a^{3}}{9}

  • Câu 12: Thông hiểu

    Tính thể tích khối lăng trụ trong hình vẽ sau, biết AB = a;AA' = 2a.

    Quan sát hình vẽ ta thấy

    Tam giác ABC đều có cạnh bằng a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Do khối lăng trụ ABC.A'B'C' là lăng trụ đứng nên đường cao của lăng trụ là AA' =
2a

    Thể tích khối lăng trụ là V =
AA'.S_{ABCD} = 2a.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}\sqrt{3}}{2}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
AD\bot AB \\
SA\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(SAD)

    => Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA

    => \left( SB;(SAD) ight) = (SB;SA) =
\widehat{BSA}

    Xét tam giác SAB vuông ta có:

    \cos\widehat{BSA} = \frac{SA}{SB} =
\frac{SA}{\sqrt{SA^{2} + AB^{2}}} = \frac{2\sqrt{5}}{5}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a\sqrt{5} và BC = . Tính khoảng cách giữa SD và BC.

    Hình vẽ minh họa:

    Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.

    CD = \sqrt{AC^{2} - BC^{2}} =\sqrt{5a^{2} - 2a^{2}} = a\sqrt{3}

  • Câu 15: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A và SA ⊥ (ABC). M là trung điểm của BC. Hãy xác định góc giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Do tam giác ABC cân tại A và M là trung điểm BC => BC ⊥ AM tại M.

    Như vậy: \left\{ \begin{matrix}
BC\bot MA \subset (SAM) \\
BC\bot SA \subset (SAM) \\
MA\  \cap \ SA = A \\
\end{matrix} ight.\  \Rightarrow (SAM)\bot BC.\ (2)

    Lại có: \left\{ \begin{matrix}
(SMA) \cap (ABC) = MA \\
(SMA) \cap (SBC) = MS \\
\end{matrix} ight.

    Từ (1), (2), (3) => \alpha =
\widehat{SMA}

  • Câu 17: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 18: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 19: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số \frac{{DN}}{{DA}}

    Hình vẽ minh họa:

    Tính tỉ số giữa DN và DA

    Đặt \overrightarrow {AB}  = \overrightarrow b ;\overrightarrow {AC}  = \overrightarrow c ;\overrightarrow {AD}  = \overrightarrow d. Ta có:

    \begin{matrix}  \left| {\overrightarrow b } ight| = \left| {\overrightarrow c } ight| = \left| {\overrightarrow d } ight| = AB = a \hfill \\  \widehat {\left( {\overrightarrow b ;\overrightarrow c } ight)} = \widehat {\left( {\overrightarrow c ;\overrightarrow d } ight)} = \widehat {\left( {\overrightarrow d ;\overrightarrow b } ight)} = {60^0} \hfill \\   \Rightarrow \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow d  = \overrightarrow d .\overrightarrow b  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Giả sử AN = k.AD. Khi đó:

    \overrightarrow {BN}  = \overrightarrow {BA}  + \overrightarrow {AN}  =  - \overrightarrow b  + k.\overrightarrow d

    Vì M là trung điểm của CD nên 2\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {AD}  = \overrightarrow c  + \overrightarrow d

    Khi đó: BN ⊥ AM => \overrightarrow {BN} .\overrightarrow {AM}  = 0

    \begin{matrix}  \left( { - \overrightarrow b  + k.\overrightarrow d } ight).\left( {\overrightarrow c  + \overrightarrow d } ight) = 0 \hfill \\   \Rightarrow  - \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} + k.\dfrac{{{a^2}}}{2} + k.{a^2} = 0 \hfill \\   \Rightarrow k = \dfrac{2}{3} \hfill \\   \Rightarrow AN = \dfrac{2}{3}AD \hfill \\   \Rightarrow \dfrac{{DN}}{{DA}} = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm của AB => PN, PM lần lượt là đường trung bình của tam giác ABC và tam giác ABD.

    => \left\{ \begin{matrix}PN = \dfrac{1}{2}AC = \dfrac{a}{2} \\PM = \dfrac{1}{2}BD = \dfrac{3a}{2} \\\end{matrix} ight.

    Ta có: AC\bot BD \Rightarrow PN\botPM

    => MN = \sqrt{PN^{2} + PM^{2}} =\sqrt{\frac{a^{2}}{4} + \frac{9a^{2}}{4}} =\frac{a\sqrt{10}}{2}

  • Câu 21: Thông hiểu

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:

    \left\{ \begin{matrix}
AB\bot OH \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot CH

    Tương tự: BC\bot AH

    Vậy H là trực tâm tam giác ABC.

  • Câu 22: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sau đây sai?

    Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”

    Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.

  • Câu 23: Vận dụng

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Gọi \alpha là góc giữa hai đường thẳng ABDM. Khi đó \cos\alpha bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi N là trung điểm của BC

    => MN là đường trung bình tam giác ABC

    \Rightarrow \left\{ \begin{matrix}
MN//AB \\
MN = \frac{1}{2}AB \\
\end{matrix} ight.

    Vì tam giác BCD và tam giác ACD là các tam giác đều cạnh a

    \Rightarrow MD = ND =
\frac{a\sqrt{3}}{2}

    MN//AB \Rightarrow \alpha = (AB,DM) =
(MN,DM)

    Xét tam giác MND ta có:

    \cos\widehat{NMD} = \frac{MN^{2} +
MD^{2} - ND^{2}}{2MN.MD}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{2}} = \dfrac{\sqrt{3}}{6}> 0

    \Rightarrow \widehat{NMD} < 90^{0}
\Rightarrow (MN,DM) = \widehat{NMD}

    \Rightarrow \cos\alpha =
\cos\widehat{NMD} = \frac{\sqrt{3}}{6}

  • Câu 24: Vận dụng cao

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau. Biết AC = AD = BC = BD = a, CD = 2x. Tìm giá trị của x theo a để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau.

    Hình vẽ minh họa:

    Ta có AC = AD = BC = BD = a, suy ra các tam giác ACD, BCD, CAB, DAB là các tam giác cân.

    Gọi M là trung điểm của CD, suy ra AM ⊥ CD và BM ⊥ CD. Suy ra AM ⊥ MB và tam giác ABM vuông cân tại M.

    Ta có MD = MC = x, suy ra AM = AB = \sqrt{a^{2} - x^{2}}

    Gọi I là trung điểm của AB, suy ra IM = \frac{AM}{\sqrt{2}} = \frac{\sqrt{a^{2} -
x^{2}}}{\sqrt{2}}

    Mặt khác, (ABC) ⊥ (ABD) nên tam giác ICD vuông tại I.

    Suy ra: ID^{2} = IC^{2} = \frac{x^{2} +
a^{2}}{2}

    Ta có: ID^{2} + IC^{2} =
CD^{2}

    \Rightarrow a^{2} + x^{2} = 4x^{2}
\Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

    Tính góc giữa mặt phẳng (SAD) và (SCD)

    Tam giác ABC vuông cân tại B, suy ra AC = AB\sqrt 2  = a\sqrt 2

    SA \bot \left( {ABCD} ight) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

    Khi đó

    \begin{matrix}  \widehat {\left( {SC;\left( {ABCD} ight)} ight)} = \widehat {\left( {SC;AC} ight)} = \widehat {SCA} = {45^0} \hfill \\   \Rightarrow SA = AC = a\sqrt 2  \hfill \\ \end{matrix}

    Gọi M là trung điểm của AD => CM ⊥ AD.

    Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD

    Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {(SAD) \cap (SCD) = SD} \\   {MH \subset (SAD)} \\   {MH \bot SD} \\   {CH \subset (SCD)} \\   {CH \bot SD} \end{array}} ight. \hfill \\   \Rightarrow \widehat {((SAD),(SCD))} = \widehat {(MH,CH)} = \widehat {MHC} \hfill \\ \end{matrix}

    Ta lại có: SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 6 ;CM = AB = a

    \begin{matrix}  \Delta SAD \sim \Delta MHD \hfill \\   \Rightarrow \dfrac{{SA}}{{SD}} = \dfrac{{MH}}{{MD}} \hfill \\   \Rightarrow MH = \dfrac{{SA.MD}}{{SD}} = \dfrac{{a\sqrt 2 a}}{{a\sqrt 6 }} = \dfrac{{a\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác MHC vuông tại M

    \Rightarrow \tan \widehat {MHC} = \frac{{CM}}{{MH}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3  \Rightarrow \widehat {MHC} = {60^0}

    Vậy \left( {\widehat {\left( {SAD} ight);\left( {SCD} ight)}} ight) = {60^0}

  • Câu 26: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 27: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, cạnh bên AA’ = a. Gọi M, N lần lượt là trung điểm của BB’, B’C’. Lấy điểm P thuộc A’B’ sao cho PB' = \frac{a}{4}. Tính tan góc giữa đường thẳng AP và mặt phẳng (MNP).

    Tính tan góc giữa đường thẳng AP và mặt phẳng (MNP)

    Gọi H, K lần lượt là trung điểm của A’B’, BC.

    Khi đó ta có HB // PM, HB \bot AM. Suy ra AM \bot MP (1)

    Mặt khác ta có BC' \bot MK;BC' \bot AK (vì AK \bot \left( {BCB'} ight))

    \Rightarrow BC' \bot \left( {AMK} ight) \Rightarrow MN \bot AM (2)

    Từ (1) và (2) suy ra AM \bot \left( {MNP} ight). Vậy góc giữa đường thẳng AP và mặt phẳng (MNP) là góc \widehat {APM}

    Ta có AM = \sqrt {A{B^2} + M{B^2}}  = \sqrt {{a^2} + {{\left( {\frac{a}{2}} ight)}^2}}  = \frac{{\sqrt 5 }}{2}a

    MP = \sqrt {B'{M^2} + B'{P^2}}  = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {{\left( {\frac{a}{4}} ight)}^2}}  = \frac{{\sqrt 5 }}{4}a

    Suy ra \tan \widehat {APM} = \frac{{AM}}{{PM}} = 2

  • Câu 28: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

  • Câu 30: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BO\bot SA \\
BO\bot AC \\
\end{matrix} ight.\  \Rightarrow BO\bot(SAC)

    Hình chiếu của SB lên mặt phẳng (SAC) là SO.

    Vậy \widehat{\left( SC;(SAC) ight)} =
\widehat{BSO}

  • Câu 31: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {CD}?

     Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .(\overrightarrow {AD}  - \overrightarrow {AC} ) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos (\overrightarrow {AB} ;\overrightarrow {AD} ) \hfill \\   - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos {60^0}{\text{ }} \hfill \\  {\text{Do }}AC = AD \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {CD}  = 0 \hfill \\   \Rightarrow (\overrightarrow {AB} ,\overrightarrow {CD} ) = {90^0} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

    Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)

    Hình chóp S.ABCD đều, O là tâm của đáy nên SO \bot \left( {ABCD} ight);BD \bot \left( {SAC} ight)

    ABCD là hình vuông cạnh a nên AC = BD = a\sqrt 2 ;OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}

    Ta có: \left( {SAB} ight) \cap \left( {AMO} ight) = AM

    Khi đó: \sin \varphi  = \frac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} với \varphi là góc giữa hai mặt phẳng (AMO) và (SAB).

    Do BD \bot \left( {SAC} ight) suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc \widehat {BSO} = {60^0}.

    Tam giác SBO vuông tại O nên ta có:

    \begin{matrix}  SO = \dfrac{{OB}}{{\tan {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6} \hfill \\  SB = \dfrac{{OB}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3} \hfill \\   \Rightarrow MB = \dfrac{{a\sqrt 6 }}{6} \hfill \\ \end{matrix}

    Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AB \bot OI} \\   {AB \bot SO} \end{array}} ight. \Rightarrow AB \bot \left( {SOI} ight) \Rightarrow OH \bot AB (2)

    Từ (1) và (2) suy ra OH \bot \left( {SAB} ight) \Rightarrow d\left( {O;\left( {SAB} ight)} ight) = OH

    Vì OI là đường trung bình của tam giác ABD nên OI = \frac{1}{2}AD = \frac{a}{2}

    Tam giác SOI vuông tại O, đường cao OH, có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{S{O^2}}} = \frac{{10}}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt {10} }}

    Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:

    \begin{matrix}  A{M^2} = \dfrac{{2A{B^2} + 2S{A^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow AM = a\sqrt {\dfrac{2}{3}}  \hfill \\  C{M^2} = \dfrac{{2C{B^2} - 2C{S^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow CM = a\sqrt {\dfrac{2}{3}}  \hfill \\ \end{matrix}

    Trong tam giác AMC, có:

    \cos \widehat {CAM} = \frac{{A{M^2} + A{C^2} - M{C^2}}}{{2AMM.AC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {CAM} = {30^0}

    \begin{matrix}  d\left( {O;AM} ight) = \dfrac{{d\left( {C;AM} ight)}}{2} \hfill \\   = \frac{1}{2}AC.\sin \widehat {CAM} = \dfrac{1}{2}AC.\sin {30^0} = \dfrac{{a\sqrt 2 }}{4} \hfill \\   \Rightarrow \sin \varphi  = \dfrac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} = \dfrac{a}{{\sqrt {10} }}:\dfrac{{a\sqrt 2 }}{4} = \dfrac{2}{{\sqrt 5 }} \hfill \\ \end{matrix}

  • Câu 33: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 34: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Mệnh đề đúng: "Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau."

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 36: Nhận biết

    Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:

    "a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp

    a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c

    "a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp

    a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅

    =>a⊥(P)

    => "a không thể vuông góc với mặt phẳng (P)" là sai.

  • Câu 37: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 38: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 39: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo