Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 2: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \widehat{ABC} = 60^{0}, SB = a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Gọi γ là góc giữa đường thẳng SB và mặt phẳng (SCD). Tính sinγ.

    Hình vẽ minh họa:

    Gọi M là trung điểm của SD

    Góc giữa SB và (SCD) cùng bằng góc giữa OM và (SCD)

    (Vì OM // SB)

    Gọi H là hình chiếu của O trên (SCD) => (OM; (SCD)) = (OM; MH) = OMH

    Trong (SBD) kẻ OE // SK, trong đó K là hình chiếu của S lên mặt đáy, khi đó tứ diện OECD là tứ diện vuông cân nên

    \begin{matrix}\dfrac{1}{OH^{2}} = \dfrac{1}{OC^{2}} + \dfrac{1}{OD^{2}} +\dfrac{1}{OE^{2}}\hfill \\OC = \dfrac{a}{2},OD = \dfrac{a\sqrt{3}}{2}\hfill \\\dfrac{OE}{SK} = \dfrac{OD}{KD} = \dfrac{3}{4} \Rightarrow OE =\dfrac{3}{4}SK\hfill \\\Rightarrow SK = \sqrt{SB^{2} - BK^{2}} = \sqrt{a^{2} - \left(\dfrac{a\sqrt{3}}{3} ight)^{2}} = \dfrac{a\sqrt{6}}{3} \hfill\\\Rightarrow OE = \dfrac{3}{4}SK = \dfrac{3}{4} \cdot \dfrac{a\sqrt{6}}{3} =\dfrac{a\sqrt{6}}{4}\hfill \\\Rightarrow \dfrac{1}{OH^{2}} = \dfrac{1}{\left( \dfrac{a}{2} ight)^{2}}+ \dfrac{1}{\left( \dfrac{a\sqrt{3}}{2} ight)^{2}} + \dfrac{1}{\left(\dfrac{a\sqrt{6}}{4} ight)^{2}} = \dfrac{a^{2}}{8}\hfill \\\Rightarrow OH = \dfrac{a\sqrt{2}}{4}\hfill \\\end{matrix}

    Vì tam giác AOM vuông tại H

    \begin{matrix}\Rightarrow OM = \dfrac{1}{2}SB = \dfrac{a}{2},OH = \dfrac{a\sqrt{2}}{4}\hfill \hfill\\\Rightarrow \sin\widehat{OMH} = \dfrac{OH}{OM} = \dfrac{\sqrt{2}}{2}\Rightarrow \sin\varphi = \dfrac{\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 3: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 4: Nhận biết

    Mệnh đề nào sau đây sai?

    Mệnh đề sai: "Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau."

  • Câu 5: Vận dụng cao

    Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

    Hình vẽ minh họa:

    Gọi H là trung điểm của CD.

    Do tam giác ACD cân tại A và tam giác BCD cân tại B.

    \Rightarrow \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} \Rightarrow CD\bot(ABH) \Rightarrow CD\bot AB. ight.

    Gọi E là trung điểm của AB, do tam giác ABC cân tại C

    \Rightarrow \left\{ \begin{matrix}
CD\bot AB \\
AB\bot AE \\
\end{matrix} \Rightarrow AB\bot(CDE) \Rightarrow AB\bot DE. ight.

    \Rightarrow \left\{ \begin{matrix}
(ABC) \cap (ABD) = AB \\
(ABC) \supset CE\bot AB \\
(ABC) \supset DE\bot AB \\
\end{matrix} ight.

    \Rightarrow \widehat{\left( (ABC);(ABD)
ight)} = \widehat{(CE;DE)} = 90^{0}

    Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.

    CD = CE\sqrt{2} \Rightarrow 2x =
CE\sqrt{2} \Rightarrow CE = x\sqrt{2}(*)

    Xét tam giác vuông CBH có BH^{2} = BC^{2}
- BH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ACH có AH^{2} = AC^{2}
- CH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ABH có:

    \begin{matrix}AB^{2} = AH^{2} + BH^{2} = 2a^{2} - 2x^{2}\hfill \\\Rightarrow AE = \dfrac{\sqrt{2a^{2} - 2x^{2}}}{2}\hfill \\\end{matrix}

    Xét tam giác vuông ACE có:

    CE^{2} = AC^{2} - AE^{2}

    = a^{2} - \frac{a^{2} - x^{2}}{2} =
\frac{a^{2} + x^{2}}{2}

    \Rightarrow CE = \sqrt{\frac{a^{2} +
x^{2}}{2}}

    Thay CE vào (*) ta được

    \sqrt{\frac{a^{2} + x^{2}}{2}} =
x\sqrt{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 6: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.

    Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

    Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”

  • Câu 7: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 8: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số \frac{NB}{NC'} bằng:

    Hình vẽ minh họa:

    Gọi H, I lần lượt là trung điểm của AB, AC’

    Suy ra HI // BC’

    Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH

    Dễ thấy BK ⊥ (SCH)

    Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’

    Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành

    Khi đó MN là đoạn vuông góc chung cần tìm

    Ta có:

    \frac{NB}{BC'} = \frac{MK}{2HI} =\frac{1}{2}\left( 1 + \frac{HK}{A'H} ight)

    = \frac{1}{2}\left( 1 + \frac{HK}{HS}ight) = \frac{1}{2}\left( 1 + \frac{HB^{2}}{HS^{2}}ight)

    Do 2HB = SB nên:

    \frac{NB}{BC'} = \frac{1}{2}\left( 1+ \frac{HB^{2}}{HB^{2} + SB^{2}} ight)

    = \frac{1}{2}\left( 1 +\frac{HB^{2}}{HB^{2} + 4HB^{2}} ight) = \frac{3}{5}

    => \frac{NB}{NC'} =\frac{3}{2}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật, SA\bot(ABCD). Gọi AE;AF lần lượt là đường cao của tam giác SABSAD. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    SA\bot(ABCD) \Rightarrow SA\bot
BC

    AB\bot BC \Rightarrow
BC\bot(SAB)

    \Rightarrow BC\bot AE \subset
(SAB)

    Tam giác SAB có đường cao AE \Rightarrow
AE\bot SB

    AE\bot CB \Rightarrow AE\bot(SBC)
\Rightarrow AE\bot SC

    Tương tự chứng minh ta được: AF\bot SC
\Rightarrow SC\bot(AEF)

  • Câu 11: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' (như hình vẽ)

    Tính sin của góc tạo bởi AC' và mặt phẳng đáy (ABCD)?

    Ta có: \left( AC';(ABCD) ight) =
(AC';AC) = \widehat{CAC'} = \alpha

    Giả sử hình lập phương có cạnh bằng a.

    Trong tam giác A'AC ta có: \sin\alpha = \frac{CC'}{AC'} =
\frac{a}{\sqrt{2a^{2} + a^{2}}} = \frac{\sqrt{3}}{3}

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 13: Vận dụng

    Cho tứ diện ABCDAB =
CD = a, trung điểm các cạnh AD,BC lần lượt là M,N. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng ABMN bằng 30^{0}.

    Hình vẽ minh họa

    Gọi P là trung điểm của AC

    Ta có: \left\{ \begin{matrix}NP//AB \\MP//CD \\NP = NP = \dfrac{a}{2} \\\end{matrix} ight.\  \Rightarrow (AB,CD) = (NP,MN)

    \cos\widehat{MNP} = \frac{MN^{2} +
NP^{2} - MP^{2}}{2MN.NP}

    = \dfrac{MN^{2} + \dfrac{a}{4}^{2} -\dfrac{a}{4}^{2}}{2MN.\dfrac{a}{2}} = \dfrac{MN}{a}

    (AB,MN) = 30^{0} \Rightarrow \left\{
\begin{matrix}
\widehat{MNP} = 30^{0} \\
\widehat{MNP} = 150^{0} \\
\end{matrix} ight.

    \widehat{MNP} = 30^{0} \Rightarrow
\frac{MN}{a} = \frac{\sqrt{3}}{2} \Rightarrow MN =
\frac{a\sqrt{3}}{2}(TM)

    \widehat{MNP} = 150^{0} \Rightarrow
\frac{MN}{a} = - \frac{\sqrt{3}}{2} \Rightarrow MN = -
\frac{a\sqrt{3}}{2}(KTM)

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H;K lần lượt là hình chiếu của điểm A trên cạnh SB;SC. Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SA\bot(ABC) \\BC \subset (ABC) \\\end{matrix} ight.\  \Rightarrow SA\bot BC;AB\bot BC

    \Rightarrow BC\bot(SAB) đúng

    Ta có: \left\{ \begin{matrix}BC\bot AH \\SC\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) đúng

    Ta có: \left\{ \begin{matrix}AH\bot SC \\AK\bot SC \\\end{matrix} ight.\  \Rightarrow SC\bot(AHK) đúng

    Vậy kết luận sai là: AK\bot(SBC).

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA ⊥ (ABCD). Chọn khẳng định sai trong các khẳng định sau?

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) => SA ⊥ BD

    Mà ABCD là hình thoi nên AC ⊥ BD

    => BD ⊥ (SAC)

    Mặt khác SO và SC thuộc mặt phẳng (SAC)

    => BD ⊥ SO, BD ⊥ SC

    Và AD, SC là hai đường thẳng chéo nhau

    => AD ⊥ SC là khẳng định sai.

  • Câu 16: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 17: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 3a?

    Ta có: V = (3a)^{3} =
27a^{3}

  • Câu 18: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB = SH = a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC).

    Hình vẽ minh họa:

    Ta có SH ⊥ (ABC) => SH ⊥ CH. (1)

    Tam giác ABC cân tại C => CH ⊥ AB (2)

    Từ (1) và (2) => CH ⊥ (SAB)

    Gọi I là trung điểm AC => HI // BC => HI ⊥ AC (3)

    Mặt khác AC ⊥ SH (do SH ⊥ (ABC) (4)

    Từ (3) và (4) => AC ⊥ (SHI)

    Kẻ HK ⊥ SI (K ∈ SI) (5)

    Từ AC ⊥ (SHI) => AC ⊥ HK (6)

    Từ (5) và (6), suy ra HK ⊥ (SAC)

    Vì HK ⊥ (SAC) và HC ⊥ (SAB) nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC

    Xét tam giác CHK vuông tại K ta có:

    CH = \frac{1}{2}AB =
\frac{a}{2}

    \frac{1}{HK^{2}} = \frac{1}{SH^{2}} +
\frac{1}{HI^{2}} \Rightarrow HK = \frac{a}{3}

    Do đó \cos\alpha =
\frac{2}{3}

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 20: Nhận biết

    Khẳng định nào sau đây là sai?

    Mệnh đề sai là: “Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d ⊥ (α).”

    Vì thiếu điều kiện “cắt nhau” của hai đường thẳng nằm trong (α).

    Ví dụ đường thẳng a vuông góc với hai đường thẳng b và c nằm trong (α) nhưng b và c song song với nhau thì khi đó a chưa chắc vuông góc với (α).

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 22: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 23: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng A'BAD' bằng:

    Hình vẽ minh họa

    Ta có: A'B//D'C nên góc giữa hai đường thẳng A'BAD' bằng góc giữa hai đường thẳng D'CAD' và bằng góc \widehat{AD'C}

    Mà tam giác ACD’ là tam giác đều nên \widehat{AD'C} = 60^{0}

    \Rightarrow (A'B;AD') =
60^{0}

  • Câu 24: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 25: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA\bot(ABCD);SA = a\sqrt{3}. Giả sử (\alpha) là mặt phẳng đi qua điểm B và vuông góc với SC. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

    Từ O dựng OH vuông góc với SC

    Ta có: \left\{ \begin{matrix}
SC\bot BD \\
SC\bot OE \\
\end{matrix} ight.\  \Rightarrow SC\bot(BDH)

    Lại có \left\{ \begin{matrix}
(\alpha) \cap (SBC) = BH \\
(\alpha) \cap (SCD) = HD \\
(\alpha) \cap (ABCD) = DB \\
\end{matrix} ight.

    Vậy thiết diện cần tìm là tam giác BHD

    S_{BHD} = \frac{1}{2}OH.BD =
\frac{1}{2}\frac{SA.CO}{CA}.BD = \frac{a^{2}\sqrt{15}}{10}

  • Câu 26: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 27: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 28: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 29: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{4\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{8a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{\sqrt{3}}{4}.4a.\left( \frac{8a}{3} ight)^{2}
= \frac{64\sqrt{3}a^{3}}{9}

  • Câu 30: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 31: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.

    Hình vẽ minh họa:

    Số đo góc giữa hai đường thẳng chéo nhau

    \begin{matrix}  \overrightarrow {SC} \overrightarrow {AB}  =  - \overrightarrow {CS} .(\overrightarrow {CB}  - \overrightarrow {CA} ) \hfill \\   = \overrightarrow {CS} .\overrightarrow {CA}  - \overrightarrow {CS} .\overrightarrow {CB}  \hfill \\   = CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB} \hfill \\   = CS.CA.\dfrac{{S{C^2} + C{A^2} - S{A^2}}}{{2SC.CA}} \hfill \\   - CS.CB.\dfrac{{S{C^2} + C{B^2} - S{B^2}}}{{2SC.CB}} \hfill \\   = \frac{{S{C^2} + C{A^2} - S{A^2}}}{2} - \dfrac{{S{C^2} + C{B^2} - S{B^2}}}{2} = 0 \hfill \\  ({\text{Do }}SA = SB{\text{ v\`a  }}CA = CB) \Rightarrow SC \bot AB \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC);SA = 2a, tam giác ABC vuông tại \widehat{B}AB = a\sqrt{2}. Tính \left( SC;(ABC) ight)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SC \cap (ABC) = \left\{ C ight\} \\
SA\bot(ABC) \\
\end{matrix} ight.

    \Rightarrow \left( SC;(ABC) ight) =
(SC;AC) = \widehat{SCA}

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{2a^{2} + 2a^{2}} = 2a = SA

    Vì tam giác SCA vuông cân tại A \Rightarrow \left( SC;(ABC) ight) =
45^{0}

  • Câu 34: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = AC = aBC =
a\sqrt{2}. Kết quả nào dưới đây đúng?

    Ta có:

    BC^{2} = AB^{2} + AC^{2} suy ra tam giác ABC vuông tại A

    => M là tâm đường tròn ngoại tiếp tam giác ABC.

    SA = SB = SC nên SM là đường cao của hình chóp S.ABC.

    Hình vẽ minh họa

    Gọi N, I lần lượt là trung điểm cạnh AC và SB.

    Ta có: MN // AB và IM // SC nên (SC,AB) =
(IM,MN)

    BN = \sqrt{AB^{2} + AN^{2}} =
\sqrt{a^{2} + \frac{a^{2}}{4}} = \frac{a\sqrt{5}}{2}

    SN = \sqrt{SC^{2} - NC^{2}} =
\sqrt{a^{2} - \frac{a^{2}}{4}} = \frac{a\sqrt{3}}{2}

    MN = \frac{a}{2};MI =
\frac{a}{2}

    Xét tam giác IMN có

    \cos\widehat{NMI} = \dfrac{MN^{2} +IM^{2} - IN^{2}}{2.MN.IM}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMI} =
120^{0}

    \Rightarrow (SC,AB) = (IM,MN) =
60^{0}

  • Câu 35: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 36: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a\sqrt{5} và BC = . Tính khoảng cách giữa SD và BC.

    Hình vẽ minh họa:

    Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.

    CD = \sqrt{AC^{2} - BC^{2}} =\sqrt{5a^{2} - 2a^{2}} = a\sqrt{3}

  • Câu 38: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.

    Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo