Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, E là điểm đối xứng của D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. Xác định góc giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi H là giao điểm của DF và SA. => H là trung điểm của ED

    Gọi I là giao điểm của AC và BD => I là trung điểm của BD

    => HI là trung điểm của tam giác BED => HI // EB (*)

    Ta có: BD ⊥ HI (**)

    Từ (*) và (**) => BD ⊥ EB

    Gọi Q là trung điểm của AB dễ thấy NQ là đường trung bình của tam giác ABE

    => NQ //BE => BD ⊥ NQ

    Gọi M là trung điểm của BC, dễ thấy MQ // AC mà AC ⊥ BD => MQ ⊥ BD

    Ta có:

    \begin{matrix}\left\{ \begin{matrix}BD\bot NQ \\BD\bot MQ \hfill \\\end{matrix} ight.\  \Rightarrow BD\bot(MNQ) \hfill \\\Rightarrow BD\bot MN \Rightarrow (MN;BQ) = 90^{0} \hfill\\\end{matrix}

  • Câu 2: Nhận biết

    Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?

    Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt 3, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

     Góc giữa hai đường thẳng SC và BD

    Gọi O là giao điểm của AC và BD và M là trung điểm của SA.

    Trong hình chữ nhật ABCD ta có

    OB = OD = \frac{{BD}}{2} = \frac{{\sqrt {A{D^2} + A{B^2}} }}{2} = \frac{{\sqrt {{a^2} + 3{a^2}} }}{2} = a

    Xét tam giác MAB vuông tại A, ta có:

    MB = \sqrt {A{B^2} + M{A^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Xét tam giác MAO vuông tại O, ta có:

    MO = \sqrt {A{O^2} + M{A^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.

    Áp dụng định lý cosin vào tam giác MOB ta có

    \begin{matrix}  {\text{cos}}\widehat {MOB} = \dfrac{{O{B^2} + O{M^2} - B{M^2}}}{{2.OB.OM}} \hfill \\   = \dfrac{{{a^2} + 2{a^2} - 2{a^2}}}{{2.a.a\sqrt 2 }} = \dfrac{1}{{2\sqrt 2 }} \Rightarrow \widehat {MOB} \approx {69^o} \hfill \\ \end{matrix}

  • Câu 5: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC);SA = 2a, tam giác ABC vuông tại \widehat{B}AB = a\sqrt{2}. Tính \left( SC;(ABC) ight)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SC \cap (ABC) = \left\{ C ight\} \\
SA\bot(ABC) \\
\end{matrix} ight.

    \Rightarrow \left( SC;(ABC) ight) =
(SC;AC) = \widehat{SCA}

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{2a^{2} + 2a^{2}} = 2a = SA

    Vì tam giác SCA vuông cân tại A \Rightarrow \left( SC;(ABC) ight) =
45^{0}

  • Câu 7: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng x, SA\bot(ABCD);SA = 2x. Gọi F trung điểm các cạnh AB, G là trung điểm của SF. Tính \cos(CG;BD)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD, H là trung điểm của SI.

    Ta có: GH // FI; BD // FI nên GH // BD => (CG;BD) = (CG;GH) = \widehat{CGH}

    Ta có: CI = \sqrt{CD^{2} + DI^{2}} =
\sqrt{x^{2} + \frac{x^{2}}{4}} = \frac{x\sqrt{5}}{2}

    \Rightarrow CI =
\frac{x\sqrt{5}}{2}

    SF = SI = \sqrt{SA^{2} + AF^{2}} =
\sqrt{(2x)^{2} + \left( \frac{x}{2} ight)^{2}} =
\frac{x\sqrt{17}}{2}

    SC = \sqrt{SA^{2} + AC^{2}} =
\sqrt{(2x)^{2} + \left( x\sqrt{2} ight)^{2}} = x\sqrt{6}

    Khi đó:

    CG = \sqrt{\frac{CF^{2} + SC^{2}}{2} -\frac{SF^{2}}{4}}= \sqrt{\dfrac{\dfrac{5x^{2}}{4} + 6x^{2}}{2} -\dfrac{9x^{2}}{4}} = \dfrac{x\sqrt{41}}{4}

    GH = \frac{1}{2}FI =
\frac{1}{2}.\frac{1}{2}BD = \frac{x\sqrt{2}}{4}

    Ta có: \cos\widehat{CGH} = \frac{GC^{2} +
GH^{2} - HC^{2}}{2.GC.GH}

    = \dfrac{\left( \dfrac{x\sqrt{41}}{4}ight)^{2} + \left( \dfrac{x\sqrt{2}}{4} ight)^{2} - \left(\dfrac{x\sqrt{41}}{4} ight)^{2}}{2.\left( \dfrac{x\sqrt{41}}{4}ight).\left( \dfrac{x\sqrt{2}}{4} ight)} =\dfrac{\sqrt{82}}{82}

    \Rightarrow \cos(CG;BD) =
\frac{\sqrt{82}}{82}

  • Câu 8: Thông hiểu

    Tính thể tích khối tứ diện đều A.BCD, biết AB = 3?

    Hình vẽ minh họa

    Gọi E là trung điểm của CD, H là trọng tâm giác giác BCD SH\bot(ABC)

    Tam giác BCD đều cạnh bằng 5

    \Rightarrow BE = \sqrt{3^{2} - \left(
\frac{3}{2} ight)^{2}} = \frac{3\sqrt{3}}{2} \Rightarrow BH =
\sqrt{3}

    Tam giác ABH vuông tại H nên

    \Rightarrow AH = \sqrt{AB^{2} - BH^{2}}
= \sqrt{3^{2} - \left( \sqrt{3} ight)^{2}} = \sqrt{6}

    \Rightarrow S_{ABCD} = \frac{1}{2}BE.CD
= \frac{1}{2}.\frac{3\sqrt{3}}{2}.3 = \frac{9\sqrt{3}}{4}

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{9\sqrt{3}}{4}.\sqrt{6} =
\frac{9\sqrt{2}}{4}cm^{3}

  • Câu 9: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

    Tính góc giữa hai mặt phẳng (MBD) và(ABCD)

    Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BD \bot SO} \\   {BD \bot AO} \end{array}} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot OM

    Do \left\{ {\begin{array}{*{20}{l}}  {(MBD) \cap (ABCD) = BD} \\   {OM \subset (MBD)} \\   {OM \bot BD} \\   {OC \subset (ABCD)} \\   {OC \bot BD} \end{array}} ight.

    \Rightarrow \widehat {\left( {MBD),(ABCD)} ight)} = (\widehat {OM,OC}) = \widehat {MOC}

    Tam giác SOC vuông tại O, trung tuyến OM, suy ra OM = MC = \frac{{CS}}{2} = \frac{a}{2}

    => Tam giác MOC cân tại M.

    => OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}

    Khi đó \cos \widehat {MOC} = \frac{{OC}}{{SC}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{a} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {MOC} = {45^{^0}}

    Vậy \widehat {\left( {\left( {MDB} ight);\left( {ABCD} ight)} ight)} = {45^0}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Tính \left( SC;(ABCD) ight)?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên góc giữa SC và mặt phẳng đáy bằng góc \widehat{SCA}.

    Ta có: SA = a\sqrt{2};AC =
a\sqrt{2}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = 1 \Rightarrow \widehat{SCA} = 45^{0}

    Vậy \left( SC;(ABCD) ight) =
45^{0}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)

    Lại có theo giả thiết SC ⊥ AK. (2)

    Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).

    Ta có: \left\{ \begin{matrix}
SC\bot(AHK) \\
AI \subset (AHK) \\
\end{matrix} ight.\  \Rightarrow SC\bot AI

    Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai

  • Câu 12: Thông hiểu

    Cho khối chóp S.ABCDSA\bot(ABCD); đáy ABCD là hình chữ nhật AB = a;AD = a\sqrt{3}. Tính thể tích khối chóp S.ABCD, biết mặt phẳng (SBC) tạo với mặt phẳng đáy một góc bằng 60^{0}.

    Hình vẽ minh họa

    Ta có: S_{ABCD} =
a^{2}\sqrt{3}

    \left\{ \begin{matrix}
(SBC) \cap (ABCD) = BC \\
BC\bot SB \subset (SBC) \\
BC\bot AB \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow \left( (SBC);(ABCD) ight) = (SB;AB)
= \widehat{SBA}

    Vậy \widehat{SBA} = 60^{0}

    Xét tam giác vuông SAB có

    \tan60^{0} = \frac{SA}{AB} \Rightarrow SA= AB.\tan60^{0} = a\sqrt{3}

    Vậy V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.a^{2}\sqrt{3}.a\sqrt{3} = a^{3}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 14: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh SCBC lần lượt là I;J. Xác định cosin góc giữa hai đường thẳng IJCD?

    Hình vẽ minh họa

    Theo giả thiết ta có:

    IJ là đường trung bình của tam giác SBC nên JI//SB

    \left\{ \begin{matrix}
JI//SB \\
CD//AB \\
\end{matrix} ight.\  \Rightarrow (IJ;CD) = (SB;AB) = \widehat{SBA} =
60^{0}

    \Rightarrow \cos(IJ;CD) =
\frac{1}{2}

  • Câu 16: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1. Chọn khẳng định sai?

    Hình vẽ minh họa:

    Dễ thấy

    Góc giữa B1D1 và AC bằng 900

    Góc giữa AD và C1B bằng 450

    Góc giữa BD và CA1 bằng 900

    Đều là các đáp án đúng

    Góc giữa B1D1 và AA1 bằng 600 sai vì \widehat{\left(
B_{1}D_{1};AA_{1} ight)} = 90^{0}

  • Câu 17: Nhận biết

    Cho hình chóp tam giác S.ABC có đáy ABC vuông tại B, SA\bot(ABC). Khi đó:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CB\bot SA \\
CB\bot AB \\
\end{matrix} ight.\  \Rightarrow CB\bot(SAB)

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)

    => SA ⊥ BC

    Xét tam giác ABC vuông tại B ta có:

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC

    Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)

    => AC ⊥ AB (vô lí)

  • Câu 19: Vận dụng

    Cho tứ diện ABCD có tam giác ABC vuông tại A, AB = 6, AC = 8. Tam giác BCD có độ dài đường cao kẻ từ đỉnh C bằng 8. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABC). Cosin góc giữa mặt phẳng (ABD) và (BCD) bằng:

    Hình vẽ minh họa:

    Kẻ AH ⊥ BC tại H, CK ⊥ BD tại K, HI ⊥ BD tại I.

    Theo giả thiết suy ra CK = 8.

    Vì (ABC) ⊥ (BCD) AH ⊥ BC nên AH ⊥ (BCD).

    Ta có: \left\{ \begin{matrix}
BD\bot HI \\
BD\bot AH \\
\end{matrix} ight.\  \Rightarrow BD\bot(AHI)

    => Góc AIH là góc giữa hai mặt phẳng (ABD) và (BCD).

    Xét tam giác ABC vuông tại A

    \begin{matrix}\Rightarrow \dfrac{1}{AH^{2}} = \dfrac{1}{AB^{2}} + \dfrac{1}{AC^{2}} \hfill \hfill\\\Rightarrow \dfrac{1}{AH^{2}} = \dfrac{1}{6^{2}} + \dfrac{1}{8^{2}} =\dfrac{25}{576} \\\Rightarrow AH = \dfrac{24}{5} \\BH \cdot BC = AB^{2} \hfill\\\Rightarrow \dfrac{BH}{BC} = \dfrac{AB^{2}}{BC^{2}} = \dfrac{6^{2}}{6^{2} +8^{2}} = \dfrac{9}{25} \hfill\\\end{matrix}

    Xét tam giác AHI vuông tại H

    => \tan\widehat{AIH} = \frac{AH}{HI} =\dfrac{\dfrac{24}{9}}{\dfrac{72}{25}} = \dfrac{9}{25}.8 =\frac{72}{25}

    \begin{matrix}cos^{2}\widehat{AIH} = \dfrac{1}{1 + tan^{2}\widehat{AIH}} = \dfrac{9}{34}\hfill\\\Rightarrow \cos\widehat{AIH} = \dfrac{3}{\sqrt{34}} \hfill\\\end{matrix}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 21: Thông hiểu

    Cho hình chóp tam giác S.ABCABC vuông tại BSA\bot(ABC). Kẻ đường cao AH của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ SA\bot(ABC) ight) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB) \Rightarrow
BC\bot AH

    AH\bot SB \Rightarrow
AH\bot(SBC)

    \Rightarrow \left\{ \begin{matrix}
AH\bot SC \\
AH\bot BC \\
\end{matrix} ight.

    Vậy khẳng định sai là: “AH\bot
AC”.

  • Câu 22: Thông hiểu

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AO và CD bằng bao nhiêu?

    Hình vẽ minh họa

    Góc giữa AO và CD bằng bao nhiêu?

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM ⊥ CD, OM ⊥ CD

    Ta có:

    \begin{matrix}  \overrightarrow {CD} .\overrightarrow {AO}  = \overrightarrow {CD} .\left( {\overrightarrow {AM}  + \overrightarrow {MO} } ight) \hfill \\   = \overrightarrow {CD} .\overrightarrow {AM}  + \overrightarrow {CD} .\overrightarrow {MO}  = \overrightarrow 0  \hfill \\ \end{matrix}

    => \overrightarrow {CD}  \bot \overrightarrow {AO} nên số đo góc giữa AO và CD là 900

  • Câu 23: Thông hiểu

    Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

    Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)

    Hình chóp S.ABCD đều, O là tâm của đáy nên SO \bot \left( {ABCD} ight);BD \bot \left( {SAC} ight)

    ABCD là hình vuông cạnh a nên AC = BD = a\sqrt 2 ;OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}

    Ta có: \left( {SAB} ight) \cap \left( {AMO} ight) = AM

    Khi đó: \sin \varphi  = \frac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} với \varphi là góc giữa hai mặt phẳng (AMO) và (SAB).

    Do BD \bot \left( {SAC} ight) suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc \widehat {BSO} = {60^0}.

    Tam giác SBO vuông tại O nên ta có:

    \begin{matrix}  SO = \dfrac{{OB}}{{\tan {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6} \hfill \\  SB = \dfrac{{OB}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3} \hfill \\   \Rightarrow MB = \dfrac{{a\sqrt 6 }}{6} \hfill \\ \end{matrix}

    Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AB \bot OI} \\   {AB \bot SO} \end{array}} ight. \Rightarrow AB \bot \left( {SOI} ight) \Rightarrow OH \bot AB (2)

    Từ (1) và (2) suy ra OH \bot \left( {SAB} ight) \Rightarrow d\left( {O;\left( {SAB} ight)} ight) = OH

    Vì OI là đường trung bình của tam giác ABD nên OI = \frac{1}{2}AD = \frac{a}{2}

    Tam giác SOI vuông tại O, đường cao OH, có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{S{O^2}}} = \frac{{10}}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt {10} }}

    Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:

    \begin{matrix}  A{M^2} = \dfrac{{2A{B^2} + 2S{A^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow AM = a\sqrt {\dfrac{2}{3}}  \hfill \\  C{M^2} = \dfrac{{2C{B^2} - 2C{S^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow CM = a\sqrt {\dfrac{2}{3}}  \hfill \\ \end{matrix}

    Trong tam giác AMC, có:

    \cos \widehat {CAM} = \frac{{A{M^2} + A{C^2} - M{C^2}}}{{2AMM.AC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {CAM} = {30^0}

    \begin{matrix}  d\left( {O;AM} ight) = \dfrac{{d\left( {C;AM} ight)}}{2} \hfill \\   = \frac{1}{2}AC.\sin \widehat {CAM} = \dfrac{1}{2}AC.\sin {30^0} = \dfrac{{a\sqrt 2 }}{4} \hfill \\   \Rightarrow \sin \varphi  = \dfrac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} = \dfrac{a}{{\sqrt {10} }}:\dfrac{{a\sqrt 2 }}{4} = \dfrac{2}{{\sqrt 5 }} \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

    Hình vẽ minh họa:

    Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB

    Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)

    Suy ra \left\{ \begin{matrix}SH\bot CH \\\widehat{\left( SC,(ABC) ight)} = \widehat{SCH} \\\end{matrix} ight.

    Ta có:

    ∆SAB = ∆CAB (c.c.c)

    => SH = CH. Do đó ∆SCH vuông cân tại H

    Vậy \widehat{\left( SC,(ABC) ight)} =\widehat{SCH} = 45^{0}

  • Câu 26: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều, SA vuông góc với mặt phẳng đáy. Gọi H là trung điểm cạnh AC, K là hình chiếu vuông góc của H trên SC. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BH

    Mà tam giác ABC là tam giác đều AC\bot
BH

    \Rightarrow BH\bot SCHK\bot SC

    \Rightarrow SC\bot(BHK) \Rightarrow
(SCB)\bot(BHK)

  • Câu 27: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Xác định thể tích S.ABCD?

    Hình vẽ minh họa

    Ta có:

    S_{ABCD} = a^{2} \Rightarrow V_{S.ABCD}
= \frac{1}{3}SA.S_{ABCD} = \frac{a^{3}\sqrt{2}}{3}

  • Câu 28: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 29: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a,SA\bot(ABCD). Tính thể tích khối chóp S.ABCD, biết d\left( A;(SBC) ight) =
\frac{a\sqrt{2}}{2}.

    Hình vẽ minh họa

    Kẻ AH\bot SB

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có: \left\{ \begin{matrix}
BC\bot AH \\
SB\bot AH \\
\end{matrix} ight.\  \Rightarrow AH\bot(SBC)

    \Rightarrow d\left( A;(SBC) ight) = AH
= \frac{a\sqrt{2}}{2}

    Xét tam giác SAB vuông tại A có:

    \frac{1}{AH^{2}} = \frac{1}{SA^{2}} +
\frac{1}{SB^{2}} \Rightarrow SA = a

    \Rightarrow V_{S.ABCD} =
\frac{1}{3}.SA.S_{ABCD} = \frac{a^{3}}{3}

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông với AC=\frac{a\sqrt{2}}{2}. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.

    Ta có AD // BC => AD // (SBC) => d(AD;SC)=d(A;(SBC))

    Kẻ AP⊥SB =>d(A;(SBC))=AP =>d(AD;SC)=AP

    Ta có:

    \begin{matrix}  AB = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{a}{2} \hfill \\  \dfrac{1}{{A{P^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\ \end{matrix}

    Lại có \left( {SB;\left( {ABCD} ight)} ight) = \widehat {SBA} = {60^0}

    \begin{matrix}   \Rightarrow \tan {60^0} = \dfrac{{SA}}{{AB}} \Rightarrow SA = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow AP = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 32: Thông hiểu

    Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Tam giác ABC là:

    Giả sử tam giác ABC vuông tại A

    Khi đó B có hai đường thẳng BO và BA cùng vuông góc với mặt phẳng (OCA) 

    Điều này vô lí, do đó tam giác ABC không thể là tam giác vuông

    Từ O hạ OH \perp AB => CH \perp AB (theo định lí ba đường vuông góc)

    Vì điểm H giữa hai điểm A và B nên tam giác ABC không thể có góc tù.

    Suy ra ABC có ba góc nhọn.

  • Câu 33: Vận dụng cao

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 1, cạnh bên bằng \sqrt{3}. Gọi I là tâm của đáy ABC, d’ là khoảng cách từ A đến mặt phẳng (SBC) và d’’ là khoảng cách từ I đến mặt phẳng (SBC). Tính d = d’ + d’’.

    Gọi I là tâm của đáy ABC

    => d' = 3d'' \Rightarrow d= 4d'' = 4IK

    Xét tam giác ABC đều cạnh a có tâm I

    => AM = \dfrac{\sqrt{3}}{2} \Rightarrow\left\{ \begin{matrix}AI = \dfrac{\sqrt{3}}{3} \\IM = \dfrac{\sqrt{3}}{6} \\\end{matrix} ight.

    Xét tam giác SAI vuông tại I

    SI^{2} = SA^{2} - AI^{2} = 3^{2} -\frac{1}{3} = \frac{8}{3}

    \Rightarrow SI =\frac{2\sqrt{6}}{3}

    Xét ∆SIM vuông tại I có:

    \frac{1}{IK^{2}} = \frac{1}{SI^{2}} +\frac{1}{IM^{2}} = \frac{8}{99}

    \Rightarrow IK = \frac{2\sqrt{22}}{33}\Rightarrow d = \frac{8\sqrt{22}}{33}

  • Câu 34: Vận dụng cao

    Cho hình chóp S.ABC có tam giác ABC đều cạnh aSA = SB
= SC = a\sqrt{3}. Lấy điểm M bất kì trong không gian. Gọi d là tổng khoảng cách từ điểm M đến tất cả các đường thẳng AB,BC,CA,SA,SB,SC. Tính giá trị nhỏ nhất của d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABC có tam giác ABC đều cạnh aSA = SB
= SC = a\sqrt{3}. Lấy điểm M bất kì trong không gian. Gọi d là tổng khoảng cách từ điểm M đến tất cả các đường thẳng AB,BC,CA,SA,SB,SC. Tính giá trị nhỏ nhất của d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 36: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 37: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

  • Câu 38: Thông hiểu

    Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {EG}?

    Hình vẽ minh họa

    Hãy xác định góc giữa cặp vecto

    Ta có: AEGC là hình chữ nhật nên EG // AC

    Vì ABCD là hình vuông nên

    => \left( {\overrightarrow {AB} ,\overrightarrow {EG} } ight) = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) = \widehat {BAC} = {45^0}

  • Câu 39: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 40: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo