Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 4: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy. Biết góc giữa SA và mặt phẳng (SBC) bằng 45^{0}. Tính thể tích khối chóp S.ABC đã cho.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC thì \left\{
\begin{matrix}
AM\bot BC \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    Từ đây dễ thấy góc cần tìm là \alpha =
\widehat{ASM} = 45^{0}

    Do đó tam giác SAM vuông cân tại A và SA
= AM = \frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{8}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

    Tính góc giữa mặt phẳng (SAD) và (SCD)

    Tam giác ABC vuông cân tại B, suy ra AC = AB\sqrt 2  = a\sqrt 2

    SA \bot \left( {ABCD} ight) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

    Khi đó

    \begin{matrix}  \widehat {\left( {SC;\left( {ABCD} ight)} ight)} = \widehat {\left( {SC;AC} ight)} = \widehat {SCA} = {45^0} \hfill \\   \Rightarrow SA = AC = a\sqrt 2  \hfill \\ \end{matrix}

    Gọi M là trung điểm của AD => CM ⊥ AD.

    Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD

    Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {(SAD) \cap (SCD) = SD} \\   {MH \subset (SAD)} \\   {MH \bot SD} \\   {CH \subset (SCD)} \\   {CH \bot SD} \end{array}} ight. \hfill \\   \Rightarrow \widehat {((SAD),(SCD))} = \widehat {(MH,CH)} = \widehat {MHC} \hfill \\ \end{matrix}

    Ta lại có: SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 6 ;CM = AB = a

    \begin{matrix}  \Delta SAD \sim \Delta MHD \hfill \\   \Rightarrow \dfrac{{SA}}{{SD}} = \dfrac{{MH}}{{MD}} \hfill \\   \Rightarrow MH = \dfrac{{SA.MD}}{{SD}} = \dfrac{{a\sqrt 2 a}}{{a\sqrt 6 }} = \dfrac{{a\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác MHC vuông tại M

    \Rightarrow \tan \widehat {MHC} = \frac{{CM}}{{MH}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3  \Rightarrow \widehat {MHC} = {60^0}

    Vậy \left( {\widehat {\left( {SAD} ight);\left( {SCD} ight)}} ight) = {60^0}

  • Câu 6: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương.

  • Câu 7: Thông hiểu

    Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm SC. Tính góc ϕ giữa hai mặt phẳng (MBD) và (ABCD).

    Hình vẽ minh họa:

    Gọi M’ là trung điểm OC.

    Khi đó MM’ // SO => MM’ ⊥ (ABCD).

    Theo công thức diện tích hình chiếu, ta có:

    \begin{matrix}\cos\phi = \dfrac{S_{M'BD}}{S_{MBD}} = \dfrac{BD.MO}{BD.M'O} =\dfrac{MO}{M'O} = \dfrac{\sqrt{2}}{2} \hfill \\\Rightarrow \phi = 45^{0} \hfill \\\end{matrix}

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD; SA\bot(ABCD)SA = AB. Gọi trung điểm của BC;SC lần lượt là E;F. Tính số đo góc giữa đường thẳng EF và mặt phẳng (SAD)?

    Hình vẽ minh họa

    Ta có:

    EF là đường trung bình của tam giác SBC \Rightarrow EF//SB

    Ta lại có: \left\{ \begin{matrix}AB\bot AD \\AB\bot SA \\\end{matrix} ight.\  \Rightarrow AB\bot(SAD) nên AB là hình chiếu vuông góc của SB lên (SAD)

    \Rightarrow \left( SB;(SAD) ight) =(SB;SA) = \widehat{BSA}

    Mặt khác \left\{ \begin{matrix}SA\bot(ABCD) \Rightarrow SA\bot AB \\SA = AB \\\end{matrix} ight.

    Suy ra tam giác SAB vuông cân tại A

    \Rightarrow \widehat{BSA} = 45^{0}\Rightarrow \left( EF;(SAD) ight) = 45^{0}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC; \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Hãy xác định góc giữa cặp vecto \overrightarrow {SC} ,\overrightarrow {AB}?

    Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .(\overrightarrow {SB}  - \overrightarrow {SA} ) \hfill \\   = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA}  \hfill \\   = |\overrightarrow {SC} |.|\overrightarrow {SB} |.\cos (\overrightarrow {SC} ,\overrightarrow {SB} ) \hfill \\   - |\overrightarrow {SC} |.|\overrightarrow {SA} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = SC.SB.\cos \widehat {BSC} - SC.SA.\cos \widehat {ASC} \hfill \\ \end{matrix}

    Mà SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}

    => \overrightarrow {SC} .\overrightarrow {AB}  = 0 \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {AB} } ight) = {90^0}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình thoi tâm O. Biết rằng SA = SC;SB = SD. Hãy chọn kết luận sai dưới đây?

    Hình vẽ minh họa

    Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao

    => SO\bot AC

    Trong tam giác SOA thì AC và SA không thể vuông tại A

    Vậy khẳng định sai là: AC\bot
SA.

  • Câu 11: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 12: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a (hình hộp như thế gọi là hình hộp thoi) và \widehat {ABC} = \widehat {B'BA} = \widehat {B'BC} = {60^0}. Tính diện tích tứ giác A’B’CD.

    Hình vẽ minh họa:

    Tính diện tích tứ giác

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {A'B'//C'D} \\   {A'B' = C'D'} \end{array}} ight.;\left\{ {\begin{array}{*{20}{c}}  {CD//C'D'} \\   {CD = C'D'} \end{array}} ight.

    => A’B’ // CD và A’B’ = CD

    => Tứ giác A’B’CD là hình bình hành

    Ngoài ra B’C = a = CD

    => => Tứ giác A’B’CD là hình thoi

    Ta sẽ chứng minh tứ giác A’B’CD là hình vuông.

    Ta có:

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CB}  + \overrightarrow {BB'} } ight).\overrightarrow {BA}  \hfill \\   = \overrightarrow {CB} .\overrightarrow {BA}  + \overrightarrow {BB'} .\overrightarrow {BA}  \hfill \\   = \overrightarrow {BB'} .\overrightarrow {BA}  - \overrightarrow {BC} .\overrightarrow {BA}  \hfill \\   = a.a.\cos {60^0} - a.a.\cos {60^0} = 0 \hfill \\   \Rightarrow CB' \bot CD \hfill \\ \end{matrix}

    => Tứ giác A’B’CD là hình vuông.

    Diện tích hình vuông đó là a2

  • Câu 13: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Biết \left( (SAB);(ABCD) ight) = 90^{0} và tam giác SAB đều. Xác định thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.a^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 14: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{4\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{8a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{\sqrt{3}}{4}.4a.\left( \frac{8a}{3} ight)^{2}
= \frac{64\sqrt{3}a^{3}}{9}

  • Câu 15: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 17: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 18: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với BC = 2AB = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Mặt phẳng (α) đi qua S vuông góc với AB. Tính diện tích S của thiết diện tạo bởi (α) và hình chóp đã cho.

    Hình vẽ minh họa:

    Gọi H là trung điểm của AB => SH ⊥ AB

    => SH ⊂ (α) và SH ⊥ (ABCD) (do (SAB) ⊥ (ABCD) theo giao tuyến AB)

    Kể HM ⊥ AB khi đó ta có: HM ⊂ (α)

    Do đó thiết diện là tam giác SHM vuông tại H

    Ta có:

    \begin{matrix}SH = \dfrac{a\sqrt{3}}{2};HM = BC = 2a \hfill \\\Rightarrow S_{SHM} = \dfrac{1}{2}.\dfrac{a\sqrt{3}}{2}.2a =\dfrac{a^{2}\sqrt{3}}{2} \hfill\\\end{matrix}

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD có AB = AC, BD = CD. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC.

    Do tam giác ABC và tam giác BCD lần lượt là tam giác cân tại A và tại D

    => BC ⊥ MA, BC ⊥ MD

    => BC ⊥ (ADM)

    => BC ⊥ AD

  • Câu 20: Thông hiểu

    Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Độ dài AD bằng:

     Hình vẽ minh họa

    Tính độ dài đoạn thẳng AD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot BC} \\   {AB \bot CD} \end{array}} ight. ⇒AB⊥(BCD)

    => Tam giác ABD vuông tại B.

    Lại có BC⊥CD nên tam giác BCD vuông tại C.

    Khi đó: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {A{D^2} = A{B^2} + B{D^2}} \\   {B{D^2} = B{C^2} + C{D^2}} \end{array}} ight. \hfill \\   \Rightarrow A{D^2} = A{B^2} + B{C^2} + C{D^2} \hfill \\   \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}}  \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 22: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 23: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 24: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 26: Vận dụng cao

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông cân tại B với trọng tâm G. Cạnh bên SA tạo với đáy (ABC) một góc 300. Biết hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SA và BC.

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
(SBG) \cap (SCG) = SG \\
(SBG)\bot(ABC) \\
(SCG)\bot(ABC) \\
\end{matrix} \Rightarrow SG\bot(ABC) ight.

    Gọi O, N lần lượt là trung điểm của AC và BC.

    Gọi D là điểm đối xứng của B qua O. Khi đó ABCD là hình vuông.

    Vì BC // AD nên (SA, BC) = (SA, AD).

    Gọi ϕ là góc giữa hai đường thẳng SA và AD.

    Đặt AB = BC = x => AD = x

    Ta có:

    \begin{matrix}AN^{2} = AB^{2} + BN^{2} = x^{2} + \dfrac{x^{2}}{4} = \dfrac{5x^{2}}{4}\hfill \\\Rightarrow AN = \dfrac{x\sqrt{5}}{2} \hfill\\AG = \dfrac{2}{3}AN = \dfrac{2}{3}.\dfrac{x\sqrt{5}}{2} =\dfrac{x\sqrt{5}}{3}\hfill \\\end{matrix}

    Góc giữa SA và mặt đáy (ABC) là \widehat{SAG} = 30^{0}

    Ta có:

    cos30^{0} = \frac{AG}{SA} \Rightarrow SA
= \frac{AG}{cos30^{0}} = \frac{2x\sqrt{15}}{9}

    Ta có:

    \begin{matrix}\tan30^{0} = \dfrac{SG}{AG}\hfill \\\Rightarrow SG = AG.\tan30^{0} = \dfrac{x\sqrt{15}}{9} \hfill\\GD = \dfrac{2}{3}BD = \dfrac{2}{3}x\sqrt{2} \\SD^{2} = SG^{2} + GD^{2} = \dfrac{15x^{2}}{81} + \dfrac{8x^{2}}{9} =\dfrac{87x^{2}}{81} \hfill\\\end{matrix}

    Áp dụng hệ quả của định lí cosin trong tam giác SAD ta có:

    \cos SAD = \frac{SA^{2} + AD^{2} -
SD^{2}}{2SA.AD} = \frac{\sqrt{15}}{10}

  • Câu 27: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD. 

    Gọi E=HK∩AC. Do HK//BD nên suy ra

    d(HK;SD)=d(HK;(SBD))=d(E;(SBD))=d(A;(SBD))/2 (vì OE=AO/2=1/2)

    Kẻ AF⊥SO(1) ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SA} \end{array}} ight.

    ⇒BD⊥(SAC)⇒BD⊥AF(2)

    Từ (1) và (2) ⇒AF⊥(SBD), khi đó d(A;(SBD))=AF

    \begin{matrix}  AF = \dfrac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} \hfill \\   = \dfrac{{2a.\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {2a} ight)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{2a}}{3} \hfill \\   \Rightarrow d\left( {HK;SD} ight) = \dfrac{1}{2}AF = \dfrac{a}{3} \hfill \\ \end{matrix}

  • Câu 29: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 31: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Gọi I;J lần lượt là trung điểm của các cạnh SASC.

    Khẳng định nào sau đây đúng?

    Vì IJ là đường trung bình của tam giác SAC nên IJ//AC

    Ta có: \left\{ \begin{matrix}
IJ//AC \\
BD\bot AC \\
\end{matrix} ight.\  \Rightarrow BD\bot IJ

  • Câu 32: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng nào dưới đây vuông góc với mặt phẳng (A'BD)?

    Hình vẽ minh họa

    Ta có: AB = AD = AA' = a nên A cách đều các điểm B,D,A'

    BC' = DC' = C'A' =
a\sqrt{2} nên C' cách đều các điểm B,D,A'

    Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác A'BD

    \Rightarrow
AC'\bot(A'BD)

  • Câu 33: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết AB = 2AD = 2DC = 2a, góc giữa hai mặt phẳng (SAB) và (SBC) là 60◦. Độ dài cạnh SA là:

    Hình vẽ minh họa:

    Gọi E là trung điểm của AB.

    Ta dễ dàng chứng minh được ABCE là hình vuông

    \left\{ \begin{matrix}
CE\bot AB \\
CE\bot SA \\
\end{matrix} ight.\  \Rightarrow CE\bot(SAB) \Rightarrow CE\bot
SB

    Trong (SAB) kẻ HE ⊥ SB ta có:

    \left\{ \begin{matrix}
SB\bot EH \\
SB\bot CE \\
\end{matrix} ight.\  \Rightarrow SB\bot(CHE) \Rightarrow SB\bot
CH

    \begin{matrix}
\left\{ \begin{matrix}
(SAB)\  \cap \ (SBC) = SB \\
(SAB) \supset EH\bot SB \\
(SAC) \supset CH\bot SB \\
\end{matrix} ight.\  \\
\Rightarrow \widehat{\left( (SAB),(SBC) ight)} = \widehat{(EH,CH)} =
\widehat{CHE} = 6 \\
\end{matrix}

    Xét tam giác vuông CEH có EH = CE. cot 60◦ = a\sqrt{3}

    Ta có ∆SAB ∼ ∆EHG (g - g)

    \begin{matrix}\Rightarrow \dfrac{SA}{EH} = \dfrac{SB}{BE} \hfill \\\Rightarrow SA = \dfrac{SB.EH}{BE} =\dfrac{\dfrac{a}{\sqrt{3}}.\sqrt{SA^{2} + 4a^{2}}}{a} \\\Rightarrow \sqrt{3SA} = \sqrt{SA^{2} + 4a^{2}}\hfill \\\Leftrightarrow SA = a\sqrt{2}\hfill \\\end{matrix}

  • Câu 34: Vận dụng

    Cho hình chóp đều, các cạnh bên có độ dài bằng a và tạo với đáy một góc 60^{0}. Tính chu vi đáy P của hình chóp đó.

    Hình vẽ minh họa

    Kẻ SH\bot(ABC)

    H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC

    Ta có: \left( SA;(ABC) ight) =
\widehat{SAH} = 60^{0}

    \Rightarrow AH = SA.cos\widehat{SAH} =
SA.cos60^{0} = a.\frac{1}{2} = \frac{a}{2}

    Gọi M là trung điểm của BC

    \Rightarrow AM = \frac{3}{2}AH =
\frac{3}{2}.\frac{a}{2} = \frac{3a}{4}

    Gọi AB = BC = AC = x \Rightarrow BM =
\frac{x}{2}

    Vì M là trung điểm của BC nên AM\bot
BC

    \Rightarrow AB^{2} = BM^{2} +
AM^{2}

    \Leftrightarrow x^{2} = \frac{1}{4}x^{2}
+ \left( \frac{3a}{4} ight)^{2}

    \Leftrightarrow x =
\frac{a\sqrt{3}}{2}

    Chu vi đáy ABC bằng AB + BC + AC = 3.x =
3.\frac{a\sqrt{3}}{2} = \frac{3a\sqrt{3}}{2}

  • Câu 35: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 36: Thông hiểu

    Các đường thẳng cùng vuông góc với một đường thẳng thì:

    Đáp án "Thuộc một mặt phẳng" sai vì có thể xảy ra trường hợp nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng" đúng vì chúng đồng phẳng.

  • Câu 37: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 38: Nhận biết

    Trong không gian cho đường thẳng \Delta và điểm A. Qua điểm A có bao nhiêu đường thẳng vuông góc với \Delta?

    Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight)SA = a\sqrt 3. Đáy ABCD là hình chữ nhật có AB = a,\,AD = a\sqrt 3. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị \tan \alpha bằng:

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.

    Ta có \left\{ \begin{gathered}  BM \bot AK \hfill \\  BM \bot SA\left( {V\`i \,SA \bot \left( {ABCD} ight)} ight) \hfill \\  AK,SA \subset \left( {SAK} ight) \hfill \\  AK \cap SA = \left\{ A ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BM \bot \left( {SAK} ight)

    AI \subset \left( {SAK} ight) \Rightarrow BM \bot AI

    Ta có \left\{ \begin{gathered}  AI \bot BM \hfill \\  AI \bot SK \hfill \\  BM,SK \subset \left( {SBM} ight) \hfill \\  BM \cap SK = \left\{ K ight\} \hfill \\ \end{gathered}  ight. \Rightarrow AI \bot \left( {SBM} ight)

    Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc \widehat {ASK}.

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \hfill \\  AK \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SA \bot AK

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    \begin{matrix}  {S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta AMD}} - {S_{\Delta BMC}} \hfill \\   = {a^2}\sqrt 3  - {a^2}\dfrac{{\sqrt 3 }}{4} - {a^2}\dfrac{{\sqrt 3 }}{4} = {a^2}\dfrac{{\sqrt 3 }}{2} \hfill \\  BM = \sqrt {B{C^2} + M{C^2}}  = \sqrt {3{a^2} + \frac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {13} }}{2} \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  {S_{\Delta ABM}} = \dfrac{1}{2}AK.BM \hfill \\   \Rightarrow AK = \dfrac{{2{S_{\Delta ABM}}}}{{BM}} = \dfrac{{{a^2}\sqrt 3 }}{{a\dfrac{{\sqrt {13} }}{2}}} = a\dfrac{{2\sqrt 3 }}{{\sqrt {13} }} \hfill \\ \end{matrix}

    Xét tam giác vuông SAK có \tan \widehat {ASK} = \frac{{AK}}{{SA}} = \frac{{a\frac{{2\sqrt 3 }}{{\sqrt {13} }}}}{{a\sqrt 3 }} = \frac{2}{{\sqrt {13} }}

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCDSA vuông góc với mặt phẳng đáy (ABCD). Tìm mệnh đề sai trong các mệnh đề dưới đây?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) \Rightarrow \left\{
\begin{matrix}
SA\bot CD \\
SA\bot BD \\
SA\bot BC \\
\end{matrix} ight.

    Vậy mệnh đề sai là: SA\bot
SB

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo