Cho hình chóp
có đáy
là hình thoi tâm
, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
là góc giữa đường thẳng
với mặt phẳng đáy. Khi đó:
Hình vẽ minh họa
Ta có: suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)
Suy ra
Vậy
Cho hình chóp
có đáy
là hình thoi tâm
, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
là góc giữa đường thẳng
với mặt phẳng đáy. Khi đó:
Hình vẽ minh họa
Ta có: suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)
Suy ra
Vậy
Cho hình chóp tứ giác đều
có đáy là hình vuông
cạnh
. Gọi
là giao điểm hai đường chéo
. Biết rằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Suy ra tam giác SCD đều.
Cho hình chóp tứ giác đều
. Tính khoảng cách từ đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy
Lấy M, N lần lượt là trung điểm AB, CD.
Kẻ
Có
Ta có:
Khi đó
Trong tam giác SON vuông tại O, có:
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có:
Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.
Ta có:
Lại có:
Từ (1), (2), (3) =>
Cho hình chóp
có đáy
là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu của điểm
trên cạnh
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
đúng
Ta có: đúng
Ta có: đúng
Vậy kết luận sai là: .
Mệnh đề nào sau đây sai?
Mệnh đề sai: "Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau."
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AB = 2, AD = 3, AA’ = 4. Góc giữa hai mặt phẳng (AB’D’) và (A’C’D) là α. Tính giá trị gần đúng của α.
Hình vẽ minh họa:
Phần 1: Xác định góc
Bước 1: Tìm giao tuyến giữa hai mặt phẳng:
Trong mặt phẳng (ADD’A’) gọi E là giao điểm của AD’ và A’D.
Trong mặt phẳng (A’B’C’D’) gọi F là giao điểm của B’D’ và A’C’.
Khi đó EF là giao tuyến của hai mặt phẳng (AB’D’) và (A’C’D).
Bước 2: Trong mỗi mặt phẳng, ta cần tìm đường thẳng vuông góc với giao tuyến:
Trong mặt phẳng (DA’C’) kẻ A’H ⊥ EF tại H, A’H cắt DC’ tại K.
Ta chứng minh D’H ⊥ EF.
Ta có:
Mặt khác:
Bước 3: Xác định góc giữa hai mặt phẳng:
Ta có:
=> α = ((AB’D’), (DA’C’)) = (D’H, A’H)
Phần 2: Tính góc α:
Ta sẽ sử dụng định lý cosin trong tam giác A’HD’
Bước 1: Chứng minh tam giác A’HD’ cân:
Trong tam giác A’DC’ ta có EF là đường trung bình, nên suy ra H là trung điểm A’K.
Vì A’D’ ⊥ (DD’C’C) nên A’D’ ⊥ D’K.
Do đó tam giác A’D’K vuông tại D’.
Xét tam giác A’D’K vuông tại D’ có D’K là đường trung tuyến ứng với cạnh huyền nên D’H = A’H = A’K/2
Bước 2: Tính độ dài cạnh A’K:
Ta tính đường cao A’K của tam giác ADC’ thông qua diện tích.
Áp dụng định lý Pi – ta - go ta tính được độ dài các cạnh tam giác A’DC’ là:
Sử dụng công thức Hê-rông ta tính được
Mặt khác
Từ đó suy ra D’H = A’H = A’K/2 =
Bước 3: Tính góc α bằng định lý cosin:
Trong tam giác A’HD’ ta có:
Do đó góc giữa hai đường thẳng A’H và D’H bằng 61,60
Vậy α = 61,60
Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:
Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)
M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.
Khi đó ta có:
Tương tự ta có:
Khi đó
Tương tự suy ra
=>
=> I là tâm đường tròn nội tiếp tam giác ABC.
Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có đáy cạnh bằng a, góc giữa hai mặt phẳng (ABCD) và (ABC’) có số đo bằng 60◦. Độ dài cạnh bên của hình lăng trụ bằng:
Hình vẽ minh họa:
Vì ABCD.A’B’C’D’ là lăng trụ tứ giác đều
=> AB ⊥ (BB’C’B)
Khi đó:
=> ((ABC’); (ABCD)) = (BC’; BC) =
Đặt AA’ = x, tam giác BCC’ vuông tại C ta có
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình lăng trụ đứng
có đáy là các tam giác đều cạnh bằng
và cạnh bên bằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Khi đó tam giác vuông cân tại C nên
Cho tứ diện
. Gọi
là trực tâm tam giác
và
vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
H là trực tâm tam giác BCD nên
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho hình chóp tứ giác đều
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB suy ra
Tam giác SMO vuông tại O nên
Do đó mặt phẳng không vuông góc với
.
Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là
. Nếu
là góc giữa hai đường thẳng a và a’ thì
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
,
. Xác định độ lớn khoảng cách từ điểm
đến mặt phẳng
?
Hình vẽ minh họa
Gọi
Kẻ
Ta có:
Mà
Từ (*) và (**) suy ra
Từ (1) và (2) suy ra
Xét tam giác vuông tại
ta có:
Cho khối chóp tam giác đều
có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?
Hình vẽ minh họa
Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.
Theo định lí Pythagore ta có:
Trong tam giác SOA vuông tại O ta có:
Vậy thể tích khối chóp tam giác là:
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm SC. Tính góc ϕ giữa hai mặt phẳng (MBD) và (ABCD).
Hình vẽ minh họa:
Gọi M’ là trung điểm OC.
Khi đó MM’ // SO => MM’ ⊥ (ABCD).
Theo công thức diện tích hình chiếu, ta có:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?
Hình vẽ minh họa

Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB
=> MP // AB’; MN // BC’
=> Góc cần tìm là góc giữa MP và MN
=>
Lấy Q là trung điểm của A’B’ khi đó suy ra:
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau. Điểm nào cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD?
Hình vẽ minh họa:
Ta có:
=> Tam giác ABD vuông tại B.
=> IA = IB = ID = AD/2 (với I là trung điểm của AD)
Ta có:
=> Tam giác BCD vuông tại C.
=> EA = EC = ED = AD/2 (E là trung điểm của AD)
Vậy I trùng với E
Vậy điểm cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD là trung điểm của đoạn thẳng AD.
Cho hình chóp đều S.ABC có cạnh đáy bằng x, cạnh bên bằng y. Mặt phẳng (α) đi qua A và vuông góc với SC. Tìm hệ thức liên hệ giữa x và y để (α) cắt SC tại điểm C1 nằm giữa S và C.
Hình vẽ minh họa:
Gọi G là trọng tâm của tam giác ABC
Do S.ABC là hình chóp đều nên SG ⊥ (ABC). Gọi C’ là trung điểm của AB
=> C, C’, G thẳng hàng
Ta có:
Trong tam giác SAC kẻ AC1⊥SC
=> SC ⊥ (ABC1)
=> Thiết diện cần tìm là tam giác ABC1 thỏa mãn đi qua A và vuông góc với SC. Tam giác SAC cân tại S nên để C1 nằm giữa S và C khi và chỉ khi .
Cho hình chóp
có đáy
là tam giác vuông tại
. Hình chiếu của
lên mặt phẳng đáy là trung điểm
của
. Tính thể tích khối chóp
biết
.
Hình vẽ minh họa
Xét tam giác ABC vuông tại C ta có:
H là trung điểm của BC nên
Xét tam giác SBH vuông tại H có
Diện tích đáy ABC là
Thể tích khối chóp là
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11,
,
. Tính khoảng cách d giữa hai đường thẳng AB và SD?
Hình vẽ minh họa:
Dựa vào định lý cosin ta dễ dàng tính được BC = 11,
=> ∆ABC vuông tại C
Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB
=> SH ⊥ (ABCD) và
Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, (Do
)
Trong tam giác vuông SHK, kẻ HI ⊥ SK
Do AB // CD => d(AB, SD) = d(H, SD) = HI
Ta có:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

Xét vuông cân tại A, ta có:
Góc giữa 2 đường thẳng BA và BD bằng , suy ra
Xét vuông cân tại A, ta có:
Vì là trung điểm của SB nên:
Ta có:
(Do , nên
)
Do đó:
Vậy góc giữa AM bằng BD bằng
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có: