Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Gọi H là chân đường cao kẻ từ đỉnh A của tam giác SAB. Xác định kết luận sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) ightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ \ SA\bot(ABC) ight) \\
AB \cap SA = A \\
AB;SA \subset (SAB) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC;\left( do\ \ BC\bot(SAB) ight) \\
SB \cap BC = B \\
AB;BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow AH\bot(SBC) \Rightarrow
AH\bot BC \Rightarrow AH\bot BC

  • Câu 3: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi. Gọi mặt phẳng (\alpha) chứa cạnh A'C' và cắt AB;BC lần lượt tại I;J. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha) \cap (ABCD) = IJ \\
(\alpha) \cap (A'B'C'D') = A'C' \\
(A'B'C'D')//(ABCD) \\
\end{matrix} ight.

    \Rightarrow A'C'//IJA'C'//AC

    \Rightarrow AC//IJ

    Mặt khác BD\bot AC

    \Rightarrow BD\bot IJ.

  • Câu 4: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

  • Câu 5: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 6: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh 2a, cạnh bên bằng 3a.

    Hình vẽ minh họa

    Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là \frac{(2a)^{2}\sqrt{3}}{4} và chiều cao AA' = 3a (vì lăng trụ là lăng trụ đứng)

    Vậy thể tích hình lăng trụ là: V =
\frac{(2a)^{2}\sqrt{3}}{4}.3a = 3\sqrt{3}a^{3}

  • Câu 7: Nhận biết

    Cho hai đường thẳng a,b và mặt phẳng (Q). Chọn mệnh đề sai trong các mệnh đề dưới đây?

    Mệnh đề: “Nếu a//(Q),b\bot a thì b\bot(Q).” Sai vì đường thẳng b có thể nằm trong mặt phẳng (Q).

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}\widehat{(CD;SA)} = \widehat{(AB;SA)} = 90^{0} \\\Rightarrow \left\{ \begin{matrix}CD\bot SA \\CD\bot SD \\\end{matrix} ight.\  \Rightarrow CD\bot AD \\\end{matrix}

    => ABCD là hình chữ nhật, từ đó ta suy ra

    AC = BD

    AB ⊥ (SAD)

    BC ⊥ AB

    Đáp án SO ⊥ (ABCD) sai

    Nếu SO ⊥ (ABCD) thì \left\{\begin{matrix}CD\bot SO \\CD\bot SA \\\end{matrix} ight.\  \Rightarrow CD\bot AO điều này vô lí

  • Câu 9: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, tam giác SAD là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng SABC.

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(BD;SA) = \widehat{SAD} = 60^{0}

    \Rightarrow \sin(BC;SA) =
\frac{\sqrt{3}}{2}

  • Câu 11: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 12: Thông hiểu

    Cho hình chóp S,ABC có đáy là tam giác vuông cân tại A. Tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt đáy. Tính d(SA;BC)?

    Hình vẽ minh họa

    Gọi H là trung điểm của BC. Suy ra SH\bot(ABC)

    Kẻ HK\bot SA;(K \in SA)(1)

    Ta có: \left\{ \begin{matrix}
BC\bot SH \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SHA) \Rightarrow BC\bot
KH(2)

    Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC

    Do đó d(SA;BC) = HK =
\frac{SH.HA}{\sqrt{SH^{2} + HA^{2}}} = \frac{a\sqrt{3}}{4}

  • Câu 13: Vận dụng cao

    Cho hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh a, tâm O, đường cao AA’, SO = 2a. Gọi M là điểm thuộc đoạn OA’ (M khác O và A’). Mặt phẳng (α) đi qua M và vuông góc với AA’. Đặt MA = x. Tính diện tích S thiết diện tạo bởi mặt phẳng (α) và hình chóp.

    Hình vẽ minh họa:

    Vì S.ABC là hình chóp đều => SO⊥(ABC) (với O là tâm của tam giác ABC)

    Do đó: SO ⊥ AA’ mà (α) ⊥ AA’ => SO // (α)

    Tương tự ta cũng có BC // (α)

    Qua M kẻ IJ // BC (I thuộc AB, J thuộc AC), kẻ MN // SO với N thuộc SA’

    Qua N kẻ EF // BC với E thuộc SB và F thuộc SC

    Khi đó thiết diện là hình thang IJEF

    Diện tích hình thang là:

    S_{IJEF} = \frac{1}{2}(IJ +
EF).MN

    Xét tam giác ABC ta có:

    \frac{IJ}{BC} = \frac{AM}{AA'}
\Rightarrow IJ = \frac{AM.BC}{AA'} =
\frac{2x\sqrt{3}}{3}

    Xét tam giác SBC ta có:

    \frac{EF}{BC} = \frac{SN}{SA'} =
\frac{OM}{OA'} \Rightarrow EF = \frac{OM.BC}{OA'} = 2\left(
x\sqrt{3} - a ight)

    Xét tam giác SOA’ có:

    \frac{MN}{SO} = \frac{MA'}{OA'}
\Rightarrow MN = \frac{OS.MA'}{OA'} = 2\left( 3a - 2x\sqrt{3}
ight)

    \begin{matrix}S_{IJEF} = \dfrac{1}{2}(IJ + EF).MN \hfill \\= \dfrac{2}{3}\left( 4x\sqrt{3} - 3a ight)\left( 3a - 2x\sqrt{3}ight) \hfill\\= - 2\left( 8x^{2} - 6\sqrt{3}x + 3a^{2} ight) \hfill\\\end{matrix}

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 15: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có: \left\{ \begin{matrix}
a\bot b \\
b//c \\
\end{matrix} ight.\  \Rightarrow a\bot c

    Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 17: Vận dụng

    Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).

    Gọi M là trung điểm của SD.

    Tam giác SCD đều nên CM ⊥ SD.

    Tam giác SBD có SB = SD = a, BD =
a\sqrt{2} nên vuông tại S

    => SB ⊥ SD => OM ⊥ SD

    => ((SBD),(SCD)) = (OM, CM) = \widehat{OMC}

    Ta có: \left\{ \begin{matrix}
OC\bot BD \\
OC\bot SO \\
\end{matrix} ight.\  \Rightarrow OC\bot(SBD) \Rightarrow OC\bot
OM

    Tam giác vuông MOC ta có:

    \tan\widehat{OMC} = \frac{OC}{OM} =
\sqrt{2}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và cạnh bên đều bằng a . Gọi M;N lần lượt là trung điểm của AD;SD . Khi đó (MN,SC) bằng:

    Ta có: MN//SA \Rightarrow (MN,SC) =
(SA,SC)

    Lại có AC = a\sqrt{2}

    Xét tam giác SACAC^{2} = SA^{2} + SC^{2}

    Theo định lí Pythagore đảo suy ra tam giác SAC vuông tại S

    Suy ra \widehat{ASC} = 90^{0} hay (MN,SC) = (SA,SC) = 90^{0}

  • Câu 19: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có AB = AC = BB’ = a, \widehat{BAC} = 120^{0}. Gọi I là trung điểm của CC’. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).

    Hình vẽ minh họa:

    Gọi E là giao điểm của B’I và BC, H thuộc BC sao cho EA ⊥ AH tại A, K ∈ B’I sao cho KH ⊥ CB tại H.

    Ta có: KH ⊥ CB => KH // CC’

    => KH ⊥ (ABC) tại H => KH ⊥ EA mà EA ⊥ AH => EA ⊥ (AKH) => EA ⊥ AK

    Góc giữa hai mặt phẳng (AIB’) và (ACB) là \widehat{KAH}

    Ta có: BC = 2a.cos 300 = a\sqrt{3}

    Mặt khác AE2 = EC2 + AC2 − 2AC.EC. cos ACE

    AE2 = 3a2 + a2 − 2a.a\sqrt{3}.cos 1500= 7a2

    => AE = a\sqrt{7}

    Ta có:

    \cos\widehat{AEC} = \frac{AE^{2} +EC^{2} - AC^{2}}{2.AE.EC} = \frac{9}{2\sqrt{21}}

    \tan\widehat{AEC} =\sqrt{\frac{1}{cos^{2}\widehat{AEC}} - 1} =\frac{\sqrt{3}}{9}

    Ta có:

    \frac{EH}{EB} =\frac{HK}{BB'}

    \Rightarrow HK = \frac{BB'.EH}{EB} =\frac{AE.BB'}{2BC.cos\widehat{AEC}} = \frac{7a}{9}

    \cos\widehat{KAH} = \frac{AH}{AK} =\frac{AH}{\sqrt{AH^{2} + HK^{2}}} = \frac{\sqrt{30}}{10}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA\bot(ABC). Kết luận nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABC) \\
AC \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow AC\bot SA

    AC\bot AB \Rightarrow
AC\bot(SAB)

    Đồng thời AC \subset (SAC) \Rightarrow
(SAC)\bot(SAB)

  • Câu 21: Thông hiểu

    Cho hình chóp tam giác S.ABCSA\bot(ABC);SA = a\sqrt{2}. Biết rằng tam giác ABC vuông cân tại BAC =
2a. Tính góc giữa SB(ABC)?

    Hình vẽ minh họa

    Ta có: SB \cap
(ABC);SA\bot(ABC)

    => Hình chiếu vuông góc của SB trên mặt phẳng (ABC) là AB.

    => Góc giữa đường thẳng SB và mặt phẳng (ABC) là \widehat{SBA}

    Do tam giác ABC vuông cân tại B và AC =
2a nên AB = \frac{AC}{\sqrt{2}} =
a\sqrt{2} = SA

    Suy ra tam giác SAB vuông cân tại A.

    Do đó \widehat{SBA} = 45^{0}

    Vậy góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 450.

  • Câu 22: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 23: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 24: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh bằng a. Gọi I;J lần lượt là trung điểm của SC;BC. Tính số đo góc giữa hai đường thẳng JICD?

    Hình vẽ minh họa

    Từ giả thiết ta có: JI//AB (do IJ là đường trung bình tam giác SAB)

    \Rightarrow (IJ;CD) =(SB;AB)

    Mặt khác ta lại có tam giác SAB đều nên \widehat{SBA} = 60^{0}

    \Rightarrow (SB;AB) = 60^{0} \Rightarrow(IJ;CD) = 60^{0}

  • Câu 25: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 27: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA\bot(ABCD);SA = a\sqrt{3}. Giả sử (\alpha) là mặt phẳng đi qua điểm B và vuông góc với SC. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

    Từ O dựng OH vuông góc với SC

    Ta có: \left\{ \begin{matrix}
SC\bot BD \\
SC\bot OE \\
\end{matrix} ight.\  \Rightarrow SC\bot(BDH)

    Lại có \left\{ \begin{matrix}
(\alpha) \cap (SBC) = BH \\
(\alpha) \cap (SCD) = HD \\
(\alpha) \cap (ABCD) = DB \\
\end{matrix} ight.

    Vậy thiết diện cần tìm là tam giác BHD

    S_{BHD} = \frac{1}{2}OH.BD =
\frac{1}{2}\frac{SA.CO}{CA}.BD = \frac{a^{2}\sqrt{15}}{10}

  • Câu 28: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 29: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có:

    (SAB) ⊥ (ABCD)

    BC ⊥ BA

    => BC ⊥ (SAB).

    Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.

    Ta có:

    Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB

  • Câu 31: Nhận biết

    Hai mặt phẳng vuông góc với nhau khi và chỉ khi

    Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.

  • Câu 32: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.

    Hình vẽ minh họa:

    Từ A kẻ AH vuông góc với SB (H ∈ SB).

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Mà AH ⊥ SB suy ra AH ⊥ (SBC).

    Từ A kẻ AK vuông góc với SD (K ∈ SD), tương tự, chứng minh được AK ⊥ (SCD).

    Khi đó SC ⊥ (AHK) suy ra ((SBC); (SCD)) = (AH; AK) = \widehat{HAK} = 600.

    Lại có ∆SAB = ∆SAD => AH = AK mà \widehat{HAK} = 600 suy ra tam giác AHK đều.

    Tam giác SAB vuông tại S ta có:

    \frac{1}{AH^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AB^{2}} \Rightarrow AH = \frac{ax}{\sqrt{x^{2} +
a^{2}}}

    \begin{matrix}\Rightarrow SH = \sqrt{SA^{2} - AH^{2}} = \dfrac{x^{2}}{\sqrt{x^{2} +a^{2}}} \hfill\\\Rightarrow \dfrac{SH}{SB} = \dfrac{x^{2}}{x^{2} + a^{2}} \hfill \\\end{matrix}

    Vì HK // BD suy ra

    \begin{matrix}\dfrac{SH}{SB} = \dfrac{HK}{BD}\hfill \\\Leftrightarrow \dfrac{x^{2}}{x^{2} + a^{2}} =\dfrac{ax}{a\sqrt{2}\sqrt{x^{2} + a^{2}}}\hfill \\\Leftrightarrow \dfrac{x^{2}}{\sqrt{x^{2} + a^{2}}} = \dfrac{1}{\sqrt{2}}\hfill\\\end{matrix}

    => x = a

  • Câu 33: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 34: Thông hiểu

    Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

    Tính giá trị cos α

    Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a

    Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.

    Tương tự BH ⊥ AC.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAC} ight) \bot \left( {ABC} ight)} \\   {\left( {DAC} ight) \cap \left( {ABC} ight)} \\   {DH \bot AC} \\   {DH \subset \left( {DAC} ight)} \end{array}} ight. \Rightarrow DH \bot \left( {ABC} ight)

    Gọi K là trung điểm của DB.

    Ta có: ABD cân tại A nên AK \bot BD

    Và CBD cân tại C nên CK \bot DB

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAB} ight) \cap \left( {DBC} ight) = BD} \\   {AK \bot BD;AK \subset \left( {DAB} ight)} \\   {CK \bot BD;CK \subset \left( {DAB} ight)} \end{array}} ight.

    Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.

    Ta có DH = a\sqrt 3 ;BH = a\sqrt 3 nên BDH vuông cân tại H.

    Từ đó ta có: \left\{ {\begin{array}{*{20}{c}}  {DB = \sqrt {D{H^2} + H{B^2}}  = a\sqrt 6 } \\   {HK = \dfrac{1}{2}BD = \dfrac{{a\sqrt 6 }}{2}} \end{array}} ight.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AC \bot DH} \\   {AC \bot BH} \\   {DH \cap BH = H} \\   {DH;BH \subset \left( {DBH} ight)} \end{array}} ight. \Rightarrow AC \bot \left( {DBH} ight)HK \subset \left( {DBH} ight) \Rightarrow AC \bot HK

    Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.

    Nên ta có: KH là phân giác của góc \widehat {AKC} suy ra \widehat {AKC} = 2\widehat {CKH}

    Ta có: t = \tan \widehat {CKH} = \frac{{HC}}{{HK}} = \frac{a}{{a\sqrt 6 :3}} = \frac{{\sqrt 6 }}{3}

    Vậy \cos \alpha  = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{6}{9}}}{{1 + \frac{6}{9}}} = \frac{1}{5}

  • Câu 35: Vận dụng

    Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, SA = a\sqrt 3, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?

    Hình vẽ minh họa

    Góc giữa hai đường thẳng SB và AC trong mặt phẳng

    Lấy M là trung điểm của SD

    Góc cần tìm là góc giữa OM và SC

    Ta có MC là trung tuyến của tam giác SCD

    \begin{matrix}  M{C^2} = \dfrac{{S{C^2} + D{C^2}}}{2} - \dfrac{{S{D^2}}}{4} = 2{a^2} \hfill \\   \Rightarrow MC = a\sqrt 2  \hfill \\ \end{matrix}

    Xét tam giác MOC ta có:

    \begin{matrix}  \cos \widehat {MOC} = \dfrac{{M{O^2} + O{C^2} - M{C^2}}}{{2.MO.OC}} =  - \dfrac{1}{{2\sqrt 2 }} \hfill \\   \Rightarrow \alpha  \approx {69^0}17\prime  \hfill \\ \end{matrix}

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD. 

    Gọi E=HK∩AC. Do HK//BD nên suy ra

    d(HK;SD)=d(HK;(SBD))=d(E;(SBD))=d(A;(SBD))/2 (vì OE=AO/2=1/2)

    Kẻ AF⊥SO(1) ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SA} \end{array}} ight.

    ⇒BD⊥(SAC)⇒BD⊥AF(2)

    Từ (1) và (2) ⇒AF⊥(SBD), khi đó d(A;(SBD))=AF

    \begin{matrix}  AF = \dfrac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} \hfill \\   = \dfrac{{2a.\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {2a} ight)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{2a}}{3} \hfill \\   \Rightarrow d\left( {HK;SD} ight) = \dfrac{1}{2}AF = \dfrac{a}{3} \hfill \\ \end{matrix}

  • Câu 37: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight)SA = a\sqrt 3. Đáy ABCD là hình chữ nhật có AB = a,\,AD = a\sqrt 3. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị \tan \alpha bằng:

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.

    Ta có \left\{ \begin{gathered}  BM \bot AK \hfill \\  BM \bot SA\left( {V\`i \,SA \bot \left( {ABCD} ight)} ight) \hfill \\  AK,SA \subset \left( {SAK} ight) \hfill \\  AK \cap SA = \left\{ A ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BM \bot \left( {SAK} ight)

    AI \subset \left( {SAK} ight) \Rightarrow BM \bot AI

    Ta có \left\{ \begin{gathered}  AI \bot BM \hfill \\  AI \bot SK \hfill \\  BM,SK \subset \left( {SBM} ight) \hfill \\  BM \cap SK = \left\{ K ight\} \hfill \\ \end{gathered}  ight. \Rightarrow AI \bot \left( {SBM} ight)

    Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc \widehat {ASK}.

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \hfill \\  AK \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SA \bot AK

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    \begin{matrix}  {S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta AMD}} - {S_{\Delta BMC}} \hfill \\   = {a^2}\sqrt 3  - {a^2}\dfrac{{\sqrt 3 }}{4} - {a^2}\dfrac{{\sqrt 3 }}{4} = {a^2}\dfrac{{\sqrt 3 }}{2} \hfill \\  BM = \sqrt {B{C^2} + M{C^2}}  = \sqrt {3{a^2} + \frac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {13} }}{2} \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  {S_{\Delta ABM}} = \dfrac{1}{2}AK.BM \hfill \\   \Rightarrow AK = \dfrac{{2{S_{\Delta ABM}}}}{{BM}} = \dfrac{{{a^2}\sqrt 3 }}{{a\dfrac{{\sqrt {13} }}{2}}} = a\dfrac{{2\sqrt 3 }}{{\sqrt {13} }} \hfill \\ \end{matrix}

    Xét tam giác vuông SAK có \tan \widehat {ASK} = \frac{{AK}}{{SA}} = \frac{{a\frac{{2\sqrt 3 }}{{\sqrt {13} }}}}{{a\sqrt 3 }} = \frac{2}{{\sqrt {13} }}

  • Câu 39: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp S.BCD bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy

    \Rightarrow \left( SA;(ABCD) ight) =
\widehat{SAO} = 60^{0}

    ABCD là hình vuông nên OA = \frac{1}{2}AC
= \frac{a\sqrt{2}}{2}

    Xét tam giác vuông SOA ta có:

    SO = AO.\tan\widehat{SDO} =\frac{a\sqrt{2}}{2}.\tan60^{0} = \frac{a\sqrt{6}}{3}

    \Rightarrow S_{BCD} =
\frac{a^{2}}{2}

    \Rightarrow V_{S.BCD} =
\frac{1}{3}.SO.S_{BCD} = \frac{1}{3}.\frac{a\sqrt{6}}{2}.\frac{a^{2}}{2}
= \frac{a^{3}\sqrt{6}}{12}

  • Câu 40: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo