Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Độ dài AD bằng:
Hình vẽ minh họa

Ta có:
=> Tam giác ABD vuông tại B.
Lại có nên tam giác BCD vuông tại C.
Khi đó:
Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Độ dài AD bằng:
Hình vẽ minh họa

Ta có:
=> Tam giác ABD vuông tại B.
Lại có nên tam giác BCD vuông tại C.
Khi đó:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình lăng trụ
có đáy
là tam giác cân tại
. Gọi
là trung điểm cạnh
. Chọn kết luận đúng?
Hình vẽ minh họa
Vì tam giác ABC cân tại A và M là trung điểm của BC
=>
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và
, SB = a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Gọi γ là góc giữa đường thẳng SB và mặt phẳng (SCD). Tính sinγ.
Hình vẽ minh họa:
Gọi M là trung điểm của SD
Góc giữa SB và (SCD) cùng bằng góc giữa OM và (SCD)
(Vì OM // SB)
Gọi H là hình chiếu của O trên (SCD) => (OM; (SCD)) = (OM; MH) = OMH
Trong (SBD) kẻ OE // SK, trong đó K là hình chiếu của S lên mặt đáy, khi đó tứ diện OECD là tứ diện vuông cân nên
Vì tam giác AOM vuông tại H
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = AB = a, AD = 3a. Gọi M là trung điểm của BC. Tính cosin của góc tạo bởi hai mặt phẳng (ABCD) và (SDM).
Hình vẽ minh họa:
Gọi H là hình chiếu vuông góc của A lên DM, ta có DM ⊥ (SAH).
Gọi α là góc giữa (SDM) và (ABCD) ta có:
Ta có:
Ta có:
Ta lại có:
Vậy
Cho hình hộp ABCD.A’B’C’D có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau. Mệnh đề nào có thể sai?
Dễ thấy các đáp án A’C’ ⊥ BD, A’B ⊥ DC’, BC’ ⊥ A’D đúng
Đáp án BB’ ⊥ BD sẽ bị sai trong trường hợp hình hộp có cạnh bên không vuông góc với mặt đáy
Cho hai đường thẳng
và mặt phẳng
. Chọn mệnh đề sai trong các mệnh đề dưới đây?
Mệnh đề: “Nếu thì
.” Sai vì đường thẳng b có thể nằm trong mặt phẳng (Q).
Cho tứ diện ABCD có AB = AC = AD và
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Cho hình chóp đều S.ABCD có cạnh đáy bằng
và cạnh bên bằng 2a. Gọi α là góc tạo bởi hai mặt phẳng (SAC) và (SCD). Tính cos α.
Hình vẽ minh họa:
Gọi tâm của đáy là O, M là trung điểm của CD
Trong (SOM), kẻ OH vuông góc với SM tại H
Khi đó ta có OH ⊥ (SCD). Mà OD ⊥ (SAC).
Do đó ((SCD), (SAC)) = (OH, OD) = = α.
Ta có OD = a,
Xét tam giác OSM vuông tại O ta có:
Xét tam giác OHD vuông tại H ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và
. Gọi
là trọng tâm của tam giác SAB. Khoảng cách từ
đến mặt phẳng
bằng:
Hình vẽ minh họa
Gọi là trung điểm của
(vì
cân)
Ta có:
Và tại
.
Do đó .
Ta có: .
Vì là trọng tâm của
nên
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho hình lăng trụ
có đáy
là tam giác vuông cân tại
,
. Tính
?
Hình vẽ minh họa:
Ta có: Tam giác ABC vuông cân tại A và có
Tam giác vuông tại A suy ra
Ta có:
Suy ra BA’ là hình chiếu của BC’ lên mặt phẳng
=>
Tam giác A’BC’ vuông tại A’ =>
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
và
vuông góc với đáy. Tính
góc giữa
.
Hình vẽ minh hoạ
Gọi I là trung điểm của SD
=> OI là đường trung bình tam giác SBD
Suy ra
Ta có:
nên tam giác AOI cân tại I
Gọi H là tung điểm của OA
Xét tam giác OHI có:
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Gọi d là đường thẳng qua M và vuông góc với (P). Do
Giả sử (R) là mặt phẳng chứa d. Mà
Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng
. Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)
Hình vẽ minh họa

Giả sử O là tâm của tam giác đều ABC
Do S.ABC đều nên =>
Gọi E là trung điểm của BC ta có:
Xét (SAE) kẻ
Ta có:
Ta có:
Xét tam giác vuông SOE ta có:
Cho khối lăng trụ tam giác đều
có cạnh bên bằng
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có:
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Gọi
là chân đường cao kẻ từ đỉnh
của tam giác
. Xác định kết luận sai?
Hình vẽ minh họa
Ta có:
Ta có:
Lại có:
Tính thể tích khối chóp tứ giác đều có tất cả các cạnh bằng
?
Hình vẽ minh họa
Giả sử khối chóp tứ giác đều đã cho là
Khi đó ABCD là hình vuông cạnh bằng 1 cm và
Gọi H là tâm hình vuông ABCD thì nên SH là chiều cao của khối chóp
.
Tính SH
Xét tam giác ABC vuông tại B ta có:
Nhận thấy nên tam giác SAC vuông tại S
Diện tích đáy của khối chóp là
Thể tích khối chóp là
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 1, cạnh bên bằng
. Gọi I là tâm của đáy ABC, d’ là khoảng cách từ A đến mặt phẳng (SBC) và d’’ là khoảng cách từ I đến mặt phẳng (SBC). Tính d = d’ + d’’.
Gọi I là tâm của đáy ABC
=>
Xét tam giác ABC đều cạnh a có tâm I
=>
Xét tam giác SAI vuông tại I
Xét ∆SIM vuông tại I có:
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
,
. Giả sử
là mặt phẳng đi qua điểm
và vuông góc với
. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng
?
Hình vẽ minh họa
Ta có:
Từ O dựng OH vuông góc với SC
Ta có:
Lại có
Vậy thiết diện cần tìm là tam giác BHD
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho tứ diện ABCD có M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AB và DM.
Hình vẽ minh họa:

Gọi N là trung điểm của AC
I là trung điểm của MN
Ta có:
=>
Ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng
, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

Ta có tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)
Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc
Khi đó
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.
Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.
Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).
Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Cho hình chóp
,
có đáy
là tam giác vuông cân tại
. Biết rằng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta thấy hình chiếu vuông góc của lên mặt phẳng
là
nên
Do tam giác ABC vuông cân tại B nên
Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Gọi . Do
nên suy ra
(vì
)
Kẻ ta có:
Từ (1) và (2) , khi đó
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi
là góc giữa hai đường thẳng AM và BC. Giá trị
bằng:

Giả sử cạnh của tứ diện đều bằng a
Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.
=>
Ta có:
=>
=>
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho tứ diện đều ABCD, M là trung điểm của AB. Gọi α là góc giữa hai đường thẳng CM và DM. Tính giá trị của cos α?
Gọi a là độ dài cạnh của tứ diện đều. Khi đó:
Ta có hình vẽ minh họa:

Áp dụng định lí cosin vào tam giác CMD ta được: