Cho hình chóp tứ giác đều
, cạnh đáy bằng
, đường cao bằng
. Giả sử
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Gọi , M là trung điểm của CD.
Ta có:
Trong tam giác SMO có
Cho hình chóp tứ giác đều
, cạnh đáy bằng
, đường cao bằng
. Giả sử
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Gọi , M là trung điểm của CD.
Ta có:
Trong tam giác SMO có
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh
, cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.
Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)
=> SA ⊥ BC
Xét tam giác ABC vuông tại B ta có:
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC
Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)
=> AC ⊥ AB (vô lí)
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với
. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho
. Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:
Hình vẽ minh họa:
Ta có:
Đặt AB = x =>
Ta có:
Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)
d(MN, AC’) = d(N, (ABC’)) = d(A’, (ABC’)
Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)
=> d(MN, AC’) =
Cho hình chóp
với
. Một mặt phẳng
thay đổi luôn đi qua trọng tâm của
cắt các cạnh
tại các điểm
. Tìm giá trị nhỏ nhất của biểu thức
?
Cho hình chóp với
. Một mặt phẳng
thay đổi luôn đi qua trọng tâm của
cắt các cạnh
tại các điểm
. Tìm giá trị nhỏ nhất của biểu thức
?
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H
Do nên
Ta có:
Nên
Vậy khoảng cách
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng:
Hình vẽ minh họa:
Ta có BC // B’C’ => BC // (AB’C’)
=> d(BC, AB’) = d(BC, (AB’C’)) = d(B, (AB’C’)) = d(A’ ,(AB’C’))
Gọi I và H lần lượt là hình chiếu vuông góc của A’ trên B’C’ và AI
Ta có: B’C’⊥ A’I và B’C’⊥ A’A nên B’C’⊥ (A’AI) => B’C’⊥ A’H
Mà AI ⊥ A’H
=> (AB’C’) ⊥ A’H.
Khi đó:
Vậy khoảng cách cần tìm là
Cho hình chop SABC có SA ⊥ (ABC), tam giác ABC đều cạnh 2a, SB tạo với mặt phẳng đáy một góc 300. Khi đó mặt phẳng (SBC) tạo với đáy một góc x. Tính tan x.
Hình vẽ minh họa:
Ta có SA ⊥ (ABC)
=> AB là hình chiếu của AB lên (ABC).
Gọi M là trung điểm của BC, ta có ∆ABC đều cạnh 2a
=> và
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?
Hình vẽ minh họa:
Ta có: O và I lần lượt là trung điểm của AC và SC
=> OI là đường trung bình của tam giác SAC
=> OI // SA
Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)
Ta có: ABCD là hình chữ nhật => BC ⊥ AB
Mà SA ⊥ BC => BC ⊥ SB
Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD
Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.
Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong
thì
chỉ đúng khi hai đường thẳng đó cắt nhau.
Cho hình hộp chữ nhật
có
. Gọi mặt phẳng
qua
và vuông góc với
. Tính diện tích thiết diện tạo bởi
và hình hộp chữ nhật đã cho?
Hình vẽ minh họa
Hình chữ nhật có
. Lấy
là trung điểm của
. Ta dễ dàng chứng minh
Ta lại có suy ra mặt phẳng
chính là mặt phẳng
.
Qua điểm M kẻ MN // AD. Thiết diện khi đó là hình chữ nhật ADMN.
Ta tính được
Suy ra diện tích hình chữ nhật ADMN là: .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và
. Gọi
là trọng tâm của tam giác SAB. Khoảng cách từ
đến mặt phẳng
bằng:
Hình vẽ minh họa
Gọi là trung điểm của
(vì
cân)
Ta có:
Và tại
.
Do đó .
Ta có: .
Vì là trọng tâm của
nên
.
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc tạo bởi đường thẳng BD với (SAD). Tính sin α.
Hình vẽ minh họa:
Vì (SAB) ⊥ (ABCD), AD ⊥ AB nên AD ⊥ (SAB)
Trong (SAB), kẻ BH ⊥ SA = H, ta có BH ⊥ (SAD)
Khi đó sin (BD, (SAD)) = sinα = BH/BD
Xét tam giác SAB đều cạnh a có đường cao
=>
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Cho hình lập phương
. Ghép nối các đáp án với nhau.
Cho hình lập phương . Ghép nối các đáp án với nhau.
Hình vẽ minh họa
Ta có: mà
Vì tứ giác là hình vuông nên
Ta có: nên
Ta có: và tam giác
là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho hình hộp thoi
có tất cả các cạnh bằng
và
. Tứ giác
là hình gì?
Hình vẽ minh họa
Ta có tứ giác A’B’CD là hình bình hành
Do nên tam giác BB’C đều
Do đó nên tứ giác A’B’CD là hình thoi
Ta có
Suy ra
Vậy tứ giác là hình vuông.
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp
có đáy là hình vuông cạnh
và
. Số đo góc giữa đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Ta có:
Mà nên SC là hình chiếu của SB lên mặt phẳng (SAB)
Góc giữa đường thẳng SC và mặt phẳng (SAB) là góc giữa SC và SB hay góc .
Trong tam giác SAB vuông tại A có
Trong tam giác SBC vuông tại B có
Số đo góc giữa đường thẳng và mặt phẳng
bằng
.
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết:
. Hai bên mặt SAB và SAD vuông tại a. Gọi μ là góc giữa hai đường thẳng SB và AC. Tính cosμ?
Hình vẽ minh họa:

Ta có:
Ta lại có:
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

Xét vuông cân tại A, ta có:
Góc giữa 2 đường thẳng BA và BD bằng , suy ra
Xét vuông cân tại A, ta có:
Vì là trung điểm của SB nên:
Ta có:
(Do , nên
)
Do đó:
Vậy góc giữa AM bằng BD bằng
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?
Hình vẽ minh họa:
Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.
Gọi H là trung điểm AC => SH ⊥ AC.
Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.
Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.
Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.
Từ đó suy ra (ABI) ⊥ (SBC).
Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
“Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.
“Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.
“Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.
Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính khoảng cách giữa hai đường chéo nhau
và
bằng:
Hình vẽ minh họa
Kẻ đường thẳng d qua B và song song AC
Gọi M là hình chiếu vuông góc của A lên d
Gọi H là hình chiếu của A lên SM.
Ta có:
Xét tam giác SAM có đường cao AH nên
Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và
, CD = a. Gọi E là trung điểm của AD. Tính góc giữa hai đường thẳng AB và CE.

Kí hiệu hình vẽ như sau:

Gọi H là trung điểm của BD. Khi đó EH // AB, EH ⊥ (BCD)
Góc giữa AB và CE bằng góc giữa EH và EC chính là góc
Ta có:
Ta lại có:
Vậy góc giữa AB và CE là 450
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Khi đó
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình chóp
có đáy
là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?
Hình vẽ minh họa
Ta có:
Hình chiếu của SB lên mặt phẳng (SAC) là SO.
Vậy
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có: