Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì có thể vuông góc với nhau
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì có thể vuông góc với nhau
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?
Hình vẽ minh họa:
Ta có: SA = SB = SC, G là trọng tâm tam giác ABC
=> G là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Gọi H là trung điểm của BC =>
Xét tam giác ABC đều cạnh a ta có:
Xét tam giác SBH vuông tại H ta có:
Xét tam giác SGH vuông tại G ta có:
Cho hình chóp S.ABC có AB = AC và
. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.
Hình vẽ minh họa:

Xét
Ta có:
Từ (1) và (2)
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Cho hình chóp
có đáy là hình vuông cạnh bằng
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
,
. Tính tan góc giữa
và mặt phẳng
, biết thể tích khối chóp
bằng
?
Hình vẽ minh họa
Kẻ , gọi
Ta có:
Lại có:
Do tam giác SAB cân tại S nên H là trung điểm của AB
Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.
Hình vẽ minh họa:
Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)
Lại có theo giả thiết SC ⊥ AK. (2)
Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).
Ta có:
Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho hình chóp
có đáy là hình vuông cạnh bằng
,
và
. Giả sử
. Chọn kết luận đúng?
Hình vẽ minh họa
Dễ thấy
Ta có:
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình chóp S.ABCD có
, ABCD là hình thang vuông tại A, B và
. Gọi
, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

Trong (SBD), gọi
Ta có BC // AD, áp dụng định lý Ta – let ta được:
Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:
Tam giác SAD vuông tại A có
=>
Mặt khác:
Lại có ABCD là hình thang vuông tại A, B và nên
=> mà
Kẻ , có
(do
)
Xét tam giác SAC vuông tại A có , AH là đường cao:
Xét tam giác SBD có:
Xét tam giác DIO có:
Do đó:
Mặt khác:
Cho hai đường thẳng phân biệt
và mặt phẳng
. Biết rằng
. Mệnh đề nào sau đây đúng?
Nếu thì
.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.
Hình vẽ minh họa:
Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’
=> KD’ là đường trung bình của ∆PCC’
=> D’ là trung điểm của PC’
Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’
Ta có: A’D // B’C => A’D // (AKB’)
=> d(CK, A’D) = d (A’,(CKB’)) = d(C’,(CPB’))
Xét tứ diện PCC’B’ ta có:
C’P, C’B và C’B đôi một vuông góc với nhau
Đặt d(C’, (CPB’)) = x, thì:
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với
. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho
. Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:
Hình vẽ minh họa:
Ta có:
Đặt AB = x =>
Ta có:
Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)
d(MN, AC’) = d(N, (ABC’)) = d(A’, (ABC’)
Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)
=> d(MN, AC’) =
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng
, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

Ta có tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)
Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc
Khi đó
Cho hình chóp
có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Hình vẽ minh họa:
Hình chóp tứ diện đều S.ABCD có tất cả các cạnh đều bằng a, ta tìm góc giữa hai mặt phẳng (SAD) và (SBC).
Gọi M, N là trung điểm các cạnh AD và BC, khi đó SM ⊥ AD và SN ⊥ BC (do các tam giác SBC; SAD là các tam giác đều).
Vì BC // AD nên giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d qua S và song song AD, BC.
Vì SM ⊥ AD và SN ⊥ BC nên SM ⊥ d và SN ⊥ d mà SM ⊂ (SAD); SN ⊂ (SBC) góc giữa hai mặt phẳng (SAD) và (SBC) là góc .
Mặt bên là các tam giác đều cạnh a nên ; MN = AB = a.
Khi đó:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,
. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Hình vẽ minh họa:

Gọi M là trung điểm của BC
=>
Gọi N là trung điểm của AC
=>
Kẻ
Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA⊥(ABC), SA = a. Mặt phẳng (α) qua A và vuông góc với trung tuyến SI của tam giác SBC. Tính diện tích S của thiết diện tạo bởi (α) với hình chóp đã cho.
Hình vẽ minh họa:
Ta có: I là trung điểm của BC => AI ⊥ BC. Kẻ AK ⊥ SI (K ∈ SI)
Từ K kẻ đường thẳng song song với BC cắt SB và SC lần lượt tại M và M.
Khi đó thiết diện là tam giác AMN. Ta có:
Xét tam giác SAI vuông ta có:
Xét tam giác SBC ta có:
Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
. Biết
và tam giác
đều. Xác định thể tích hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Thể tích khối chóp là:
Cho tứ diện đều ABCD, M là trung điểm của BC. Khi đó cos(AB; DM) là:
Hình vẽ minh họa:

Giả sử cạnh của tứ diện là a
Tam giác BCD đều =>
Tam giác ABC đều =>
Ta có:
Mặt khác
Khẳng định nào sau đây là sai?
Mệnh đề sai là: “Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d ⊥ (α).”
Vì thiếu điều kiện “cắt nhau” của hai đường thẳng nằm trong (α).
Ví dụ đường thẳng a vuông góc với hai đường thẳng b và c nằm trong (α) nhưng b và c song song với nhau thì khi đó a chưa chắc vuông góc với (α).
Cho hình chóp tam giác
có
và
. Tính cosin góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC
Mặt khác ta có:
Ta có:
Xét tam giác NAC có:
Xét tam giác MNQ ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a √ 2 và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa mặt phẳng (SBD) và (ABCD). Nếu
thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng
Hình vẽ minh họa:
Gọi O là tâm hình vuông ABCD, H, K lần lượt là hình chiếu của A lên SB, SC.
Ta dễ dàng chứng minh được AH ⊥ (SBC) => AH ⊥ SC.
Mà AK ⊥ SC nên SC ⊥ (AHK) => SC ⊥ HK.
Ta có:
(SAC) ∩ (SBC) = SC
AK ⊥ SC
HK ⊥ SC
=> ((SAC), (SBC)) = (AK; HK) = .
Ta cũng có: ((SBD); (ABCD)) = (SO; AO) = = α
=> tan α = SA/AO => SA = a
Do đó: tam giác SAB vuông cân tại A =>
Xét tam giác SAC có:
Xét tam giác AHK vuông tại H, ta có:
Vậy ((SAC); (SBC)) = 300.
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

Hình vẽ minh họa:
Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB
Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)
Suy ra
Ta có:
∆SAB = ∆CAB (c.c.c)
=> SH = CH. Do đó ∆SCH vuông cân tại H
Vậy
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là: