Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCBC =
a\sqrt{2}, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng SBAC bằng:

    Hình vẽ minh họa

    Ta có: AB^{2} + AC^{2} =
BC^{2}

    Suy ra tam giác ABC vuông tại A.

    Gọi H, M, N lần lượt là trung điểm của AB, AB, SA

    \Rightarrow \left\{ \begin{matrix}
MN//SB \\
MH//AC \\
\end{matrix} ight.\  \Rightarrow (SB,AC) = (MN,MH)

    \left\{ \begin{matrix}MN = \dfrac{SB}{2} = \dfrac{a}{2} \\NH = \dfrac{AC}{2} = \dfrac{a}{2} \\AH = \dfrac{BC}{2} = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    Xét tam giác SBC có: SB = SC nên SH\bot
BC \Rightarrow SH = \sqrt{SB^{2} - HB^{2}} =
\frac{a\sqrt{2}}{2}

    Lại H là tam đường tròn ngoại tiếp tam giác ABC

    Mà SA = SB = SC = a nên SH\bot(ABC)

    Suy ra tam giác SAH vuông cân tại H

    HN = \frac{SA}{2} =
\frac{a}{2}

    Do đó tam giác MHN cạnh \frac{a}{2}. Góc cần tìm bằng 60^{0}

  • Câu 3: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 4: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SC. Tính cosin góc giữa hai đường thẳng BM và AC.

    Hình vẽ minh họa:

    Tính cosin của góc giữa hai đường thẳng

    Gọi H là tâm của hình vuông ABCD khi đó SH \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {BM}  = \overrightarrow {HM}  - \overrightarrow {HB}  = \dfrac{1}{2}\overrightarrow {HS}  + \dfrac{1}{2}\overrightarrow {HC}  - \overrightarrow {HB}  \hfill \\  \overrightarrow {AC}  = 2\overrightarrow {HC}  \hfill \\  HC \bot HB,HC \bot SH \hfill \\   \Rightarrow \overrightarrow {AC} .\overrightarrow {BM}  = H{C^2} = \dfrac{{A{C^2}}}{4} = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Vì tam giác SBC đều cạnh a và BM là trung tuyến nên BM = \frac{{a\sqrt 3 }}{2}

    Khi đó: \cos \left( {\overrightarrow {AC} ,\overrightarrow {BM} } ight) = \frac{{\overrightarrow {AC} .\overrightarrow {BM} }}{{AC.BM}} = \frac{1}{{\sqrt 6 }} > 0

  • Câu 5: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 7: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D. Hỏi mặt phẳng (ACC’A’) vuông góc với các mặt phẳng nào?

    Hình vẽ minh họa:

    Mặt phẳng (ACC’A’) vuông góc với các mặt phẳng (BDD’B’), (ABCD), (A’B’C’D’).

  • Câu 8: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 9: Nhận biết

    Hình chóp tam giác đều S.ABC. Gọi Glà trọng tâm tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có khối chóp tam giác đều S.ABC có đáy ABC là tam giác đều, trọng tâm G cũng là tâm của đáy nên SG\bot(ABC).

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC. Biết rằng SA = SB;AC = BC. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi D là trung điểm của AB, vì tam giác SAB cân tại S và tam giác ABC cân tại C nên \left\{ \begin{matrix}
AB\bot SD \\
AB\bot CD \\
\end{matrix} ight.\  \Rightarrow AB\bot(SDC) \Rightarrow AB\bot
SC.

  • Câu 11: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

    Hình chiếu của SA lên mặt phẳng (ABC) là AH

    => Góc giữa SA và mặt phẳng (ABC) là \widehat{SAH}

    Tam giác ABC và SBC là các tam giác đều cùng cạnh a

    AH = SH =\frac{a\sqrt{3}}{2}

    Vậy tan α = 1

  • Câu 13: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' (như hình vẽ)

    Tính sin của góc tạo bởi AC' và mặt phẳng đáy (ABCD)?

    Ta có: \left( AC';(ABCD) ight) =
(AC';AC) = \widehat{CAC'} = \alpha

    Giả sử hình lập phương có cạnh bằng a.

    Trong tam giác A'AC ta có: \sin\alpha = \frac{CC'}{AC'} =
\frac{a}{\sqrt{2a^{2} + a^{2}}} = \frac{\sqrt{3}}{3}

  • Câu 14: Nhận biết

    Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”

    Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.

  • Câu 15: Vận dụng

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AC = b, các cạnh bên có độ dài bằng b. Tính góc giữa đường thẳng AB và mặt phẳng (AB’C’)

    Tính góc giữa đường thẳng AB và mặt phẳng (AB’C’)

    AB \cap \left( {AB'C'} ight) = A (1)

    Kẻ lần lượt Ax//\left( {BC} ight);BD \bot Ax;BK \bot DB'

    Ta có: \left. \begin{gathered}  AD \bot BD \hfill \\  AD \bot BB \prime \hfill \\ \end{gathered}  ight\} \Rightarrow AD \bot \left( {BDB'} ight) \Rightarrow AD \bot BK

    Lại có BK \bot DB' \Rightarrow BK \bot \left( {ADB'} ight) hay BK \bot \left( {AB'C'} ight)

    => K là hình chiếu vuông góc của lên mặt phẳng (AB’C’) (2)

    Từ (1) và (2) => AK là hình chiếu vuông góc của AB lên mặt phẳng (AB’C’)

    \Rightarrow \widehat {\left( {AB;\left( {AB'C'} ight)} ight)} = \widehat {\left( {AB;\,AK} ight)} = \widehat {BAK}

    Tam giác ABC vuông cân tại A

    \Rightarrow AH = \frac{{AB\sqrt 2 }}{2} = \frac{{b\sqrt 2 }}{2}

    Có ADBH là hình chữ nhật => BD = AH = \frac{{b\sqrt 2 }}{2}

    Tam giác BDB’ vuông tại B

    \begin{matrix}   \Rightarrow \frac{1}{{B{K^2}}} = \dfrac{1}{{B{D^2}}} + \dfrac{1}{{B{{B'}^2}}} = \dfrac{1}{{{{\left( {\dfrac{{b\sqrt 2 }}{2}} ight)}^2}}} + \dfrac{1}{{{b^2}}} = \dfrac{3}{{{b^2}}} \hfill \\   \Leftrightarrow BK = \dfrac{{b\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác BAK vuông tại K

    \begin{matrix}  \sin \left( {\widehat {BAK}} ight) = \dfrac{{BK}}{{AB}} = \dfrac{{\dfrac{{b\sqrt 3 }}{3}}}{b} = \dfrac{{\sqrt 3 }}{3} \hfill \\   \Rightarrow \cos \left( {\widehat {BAK}} ight) = \dfrac{{\sqrt 6 }}{3} = \cos \left( {\widehat {AB,\left( {AB'C'} ight)}} ight) \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 17: Thông hiểu

    Tính thể tích khối lăng trụ trong hình vẽ sau, biết AB = a;AA' = 2a.

    Quan sát hình vẽ ta thấy

    Tam giác ABC đều có cạnh bằng a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Do khối lăng trụ ABC.A'B'C' là lăng trụ đứng nên đường cao của lăng trụ là AA' =
2a

    Thể tích khối lăng trụ là V =
AA'.S_{ABCD} = 2a.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}\sqrt{3}}{2}

  • Câu 18: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.

    Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”

  • Câu 19: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 21: Nhận biết

    Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    Hình vẽ minh họa:

    Tính góc giữa hai vecto

    Ta có tam giác ACF là tam giác đều

    \overrightarrow {EG}  = \overrightarrow {AC}

    => Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    \left( {\overrightarrow {AF} ;\overrightarrow {EG} } ight) = \left( {\overrightarrow {AF} ;\overrightarrow {AC} } ight) = \widehat {CAF} = {60^0}

  • Câu 22: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

    Hình vẽ minh họa:

    Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.

    Vậy MN bé nhất khi và chỉ khi EK bé nhất.

    Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.

    Qua I kẻ P Q song song với BC (như hình vẽ).

    Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).

    Ta có:

    \frac{1}{C'H^{2}} = \frac{1}{a^{2}}+ \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow C'H =\frac{a\sqrt{5}}{2} \Rightarrow d(BC;d) =\frac{2a\sqrt{5}}{5}

  • Câu 23: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥(ABC). Kẻ AH ⊥ SB. Chọn khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    AB ⊥ BC (hiển nhiên đúng)

    Ta có: SA ⊥(ABC) mà BC nằm trong (ABC) => SA ⊥ BC

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}BC\bot BA \subset (SAB) \\BC\bot SA \subset (SAB) \\BA \cap SA = A \hfill \\\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \hfill\\\Rightarrow BC\bot AH \hfill\\\left\{ \begin{matrix}BC\bot AH \\SB\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) \Rightarrow SC\bot AH \hfill \\\end{matrix}

    Dễ thấy AH ⊥ AC là khẳng định sai.

  • Câu 25: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27. Một mặt phẳng (α) tạo với mặt phẳng (ABCD) góc 600 và cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q. Tính diện tích của tứ giác MNPQ.

    Hình vẽ minh họa:

    Đặt AB = a

    V_{ABCD.A'B'C'D'} =
a^{3} = 27 \Rightarrow a = 3

    Ta có:

    \begin{matrix}S_{ABCD} = S_{MNPQ}.cos60^{0} \hfill\\\Rightarrow S_{MNPQ} = \dfrac{S_{ABCD}}{cos60^{0}} =\dfrac{a^{2}}{\dfrac{1}{2}} = 2a^{2} = 18 \hfill\\\end{matrix}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

  • Câu 27: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

  • Câu 28: Thông hiểu

    Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

    Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)

    Hình chóp S.ABCD đều, O là tâm của đáy nên SO \bot \left( {ABCD} ight);BD \bot \left( {SAC} ight)

    ABCD là hình vuông cạnh a nên AC = BD = a\sqrt 2 ;OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}

    Ta có: \left( {SAB} ight) \cap \left( {AMO} ight) = AM

    Khi đó: \sin \varphi  = \frac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} với \varphi là góc giữa hai mặt phẳng (AMO) và (SAB).

    Do BD \bot \left( {SAC} ight) suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc \widehat {BSO} = {60^0}.

    Tam giác SBO vuông tại O nên ta có:

    \begin{matrix}  SO = \dfrac{{OB}}{{\tan {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6} \hfill \\  SB = \dfrac{{OB}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3} \hfill \\   \Rightarrow MB = \dfrac{{a\sqrt 6 }}{6} \hfill \\ \end{matrix}

    Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AB \bot OI} \\   {AB \bot SO} \end{array}} ight. \Rightarrow AB \bot \left( {SOI} ight) \Rightarrow OH \bot AB (2)

    Từ (1) và (2) suy ra OH \bot \left( {SAB} ight) \Rightarrow d\left( {O;\left( {SAB} ight)} ight) = OH

    Vì OI là đường trung bình của tam giác ABD nên OI = \frac{1}{2}AD = \frac{a}{2}

    Tam giác SOI vuông tại O, đường cao OH, có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{S{O^2}}} = \frac{{10}}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt {10} }}

    Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:

    \begin{matrix}  A{M^2} = \dfrac{{2A{B^2} + 2S{A^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow AM = a\sqrt {\dfrac{2}{3}}  \hfill \\  C{M^2} = \dfrac{{2C{B^2} - 2C{S^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow CM = a\sqrt {\dfrac{2}{3}}  \hfill \\ \end{matrix}

    Trong tam giác AMC, có:

    \cos \widehat {CAM} = \frac{{A{M^2} + A{C^2} - M{C^2}}}{{2AMM.AC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {CAM} = {30^0}

    \begin{matrix}  d\left( {O;AM} ight) = \dfrac{{d\left( {C;AM} ight)}}{2} \hfill \\   = \frac{1}{2}AC.\sin \widehat {CAM} = \dfrac{1}{2}AC.\sin {30^0} = \dfrac{{a\sqrt 2 }}{4} \hfill \\   \Rightarrow \sin \varphi  = \dfrac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} = \dfrac{a}{{\sqrt {10} }}:\dfrac{{a\sqrt 2 }}{4} = \dfrac{2}{{\sqrt 5 }} \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

  • Câu 30: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 31: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 32: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 33: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, SA\bot(ABC). Gọi I là trung điểm của AC, H là hình chiếu của I trên SC. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BI\bot AC \\
BI\bot SA;\left( SA\bot(ABC) ight) \\
\end{matrix} ight.\  \Rightarrow BI\bot(SAC) \Rightarrow BI\bot
SC(1)

    Theo giả thiết ta có: SC\bot
IH(2)

    Từ (1) và (2) suy ra SC\bot(BHI)

    SC \subset (SBC) nên (BHI)\bot(SBC)

  • Câu 34: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3}. Cạnh bên SA = 2a, SA ⊥ (ABCD). Mặt phẳng (α) đi qua A và vuông góc với SC. Tính diện tích S của thiết diện tạo bởi mặt phẳng (α) và hình chóp đã cho.

    Hình vẽ minh họa:

    Trong tam giác SAC có: AI ⊥ SC (I thuộc SC)

    Trong mặt phẳng (SBC) dựng đường thẳng qua I và vuông góc với SC cắt SB tại M.

    Trong mặt phẳng (SCD) dựng đường thẳng qua I và vuông góc với SC cắt SD tại N.

    Khi đó thiết diện của hình chóp cắt bởi mặt phẳng (α) là tứ giác AMIN.

    Ta có: SC ⊥ (α) => SC ⊥ AM (*)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AM(**)

    Từ (*) và (**) => AM ⊥ (SBC) => AM ⊥ MI

    Chứng minh tương tự ta được AN ⊥ NI

    Vì AM, AI, AN lần lượt là các đường cao của tam giác SAB, SAC, SAD nên

    \begin{matrix}AM = \dfrac{SA.AB}{\sqrt{SA^{2} + AB^{2}}} = \dfrac{2a}{\sqrt{5}}  \hfill\\AI = \dfrac{SA.AC}{\sqrt{SA^{2} + AC^{2}}} = a\sqrt{2} \hfill \\AN = \dfrac{SA.AD}{\sqrt{SA^{2} + AD^{2}}} = \dfrac{2a\sqrt{21}}{7} \hfill \\\Rightarrow \left\{ \begin{matrix}MI = \sqrt{AI^{2} - AM^{2}} = \dfrac{a\sqrt{30}}{5} \hfill \\NI = \sqrt{AI^{2} - AN^{2}} = \dfrac{a\sqrt{14}}{7} \hfill \\\end{matrix} ight.\ \hfill  \\\Rightarrow S_{AMIN} = \dfrac{1}{2}\left(\dfrac{2a}{\sqrt{5}}.\dfrac{a\sqrt{30}}{5} +\dfrac{2a\sqrt{21}}{7}.\dfrac{a\sqrt{14}}{7} ight) =\dfrac{12a^{2}\sqrt{6}}{35} \hfill \\\end{matrix}

  • Câu 35: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 36: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Tam giác SAB đều và \left( (SAB);(ABCD) ight) = 90^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều nên SH\bot
AB

    Lại có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Tính được SH = a\sqrt{3}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.(2a)^{2}.a\sqrt{3} = \frac{4a^{3}\sqrt{3}}{3}

  • Câu 37: Thông hiểu

    Mệnh đề nào sau đây là đúng?

     

    • Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.

    • Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.

    • Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau

     

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 39: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D. Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: B'C'\bot(ABB'A')
\Rightarrow B'C'\bot A'B

    Ta có: \left\{ \begin{matrix}
A'B\bot AB' \\
A'B\bot B'C' \\
AB' \cap B'C' = B' \\
AB';B'C' = B' \\
\end{matrix} ight.\  \Rightarrow A'B\bot(AB'C')
\Rightarrow A'B\bot AC'

    Mặt khác BD\bot(ACC'A')
\Rightarrow BD\bot AC'

    Ta có: \left\{ \begin{matrix}
A'B\bot AC' \\
BD\bot AC' \\
A'B \cap BD = B \\
A'B \cap BD \subset (A'BD) \\
\end{matrix} ight.\  \Rightarrow AC'\bot(A'BD)

  • Câu 40: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC => SH ⊥ (ABC)

    Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)

    => \left( SA,(ABC) ight) = (SA,AH) =
\widehat{SAH}

    Xét tam giác SBC đều cạnh 2a => SH =
a\sqrt{3}

    Tam giác ABC vuông tại A => AH =
\frac{BC}{2} = a

    Tam giác SAH vuông nên

    \begin{matrix}\tan\widehat{SAH} = \dfrac{SH}{AH} = \sqrt{3}  \hfill\\\Rightarrow \widehat{SAH} = 60^{0} \hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo