Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥(ABC). Kẻ AH ⊥ SB. Chọn khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    AB ⊥ BC (hiển nhiên đúng)

    Ta có: SA ⊥(ABC) mà BC nằm trong (ABC) => SA ⊥ BC

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}BC\bot BA \subset (SAB) \\BC\bot SA \subset (SAB) \\BA \cap SA = A \hfill \\\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \hfill\\\Rightarrow BC\bot AH \hfill\\\left\{ \begin{matrix}BC\bot AH \\SB\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) \Rightarrow SC\bot AH \hfill \\\end{matrix}

    Dễ thấy AH ⊥ AC là khẳng định sai.

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight);SA = a\sqrt 2, ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD = 2a. Gọi O = AC \cap BD, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

    Tính sin của góc giữa OM và (SCD)

    Trong (SBD), gọi I = OM \cap SD \Rightarrow OM \cap \left( {SCD} ight) = I

    Ta có BC // AD, áp dụng định lý Ta – let ta được:

    \frac{{OB}}{{OD}} = \frac{{OC}}{{OA}} = \frac{{BC}}{{AD}} = \frac{1}{2}

    Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:

    \frac{{BO}}{{OD}}.\frac{{DI}}{{IS}}.\frac{{SM}}{{MB}} = 1 \Leftrightarrow \frac{1}{2}.\frac{{DI}}{{IS}}.1 = 1 \Leftrightarrow \frac{{DI}}{{IS}} = 2

    Tam giác SAD vuông tại A có

    SA = a\sqrt 2 ,AD = 2a \Rightarrow SD = a\sqrt 6

    => DI = \frac{3}{2}SD = \frac{{a\sqrt 6 }}{2}

    Mặt khác: \frac{{CO}}{{CA}} = \frac{1}{3} \Rightarrow \frac{{d\left( {O,\left( {SCD} ight)} ight)}}{{d\left( {A,\left( {SCD} ight)} ight)}} = \frac{1}{3}

    \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \frac{1}{3}d\left( {A,\left( {SCD} ight)} ight)

    Lại có ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD nên AC = CD = a\sqrt 2

    => AC \bot CD mà CD \bot SA \Rightarrow CD \bot \left( {SAC} ight)

    Kẻ AH \bot SC, có CD \bot AH (do CD \bot \left( {SBC} ight))

    \Rightarrow AH \bot \left( {SCD} ight) \Rightarrow d\left( {A,\left( {SCD} ight)} ight) = AH

    Xét tam giác SAC vuông tại A có SA = a\sqrt 2 ,\,AC = a\sqrt 2, AH là đường cao:

    \begin{matrix}   \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{S^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{1}{{{a^2}}} \hfill \\   \Rightarrow AH = a \hfill \\   \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \dfrac{1}{3}AH = \dfrac{a}{3} \hfill \\ \end{matrix}

    Xét tam giác SBD có:

    \begin{matrix}  SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {2{a^2} + 4{a^2}}  = a\sqrt 6  \hfill \\  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3  \hfill \\  BD = \sqrt {A{D^2} + A{B^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5  \hfill \\ \end{matrix}

    Xét tam giác DIO có:

    DI = 2SD = 2a\sqrt 6 ,DO = \frac{2}{3}DB = \frac{2}{3}a\sqrt 5 .

    Do đó:

    \begin{matrix}  \cos SDB = \cos IDO \Leftrightarrow \dfrac{{S{D^2} + B{D^2} - S{B^2}}}{{2.SD.BD}} = \dfrac{{I{D^2} + O{D^2} - O{I^2}}}{{2.ID.OD}} \hfill \\   \Leftrightarrow \dfrac{{6{a^2} + 5{a^2} - 3{a^2}}}{{2.a\sqrt 6 .a\sqrt 5 }} = \dfrac{{24{a^2} + \dfrac{{20{a^2}}}{9} - O{I^2}}}{{2.2a\sqrt 6 .\dfrac{2}{3}a\sqrt 5 }}. \hfill \\   \Leftrightarrow 8 = \dfrac{{\dfrac{{236}}{9}{a^2} - O{I^2}}}{{\dfrac{4}{3}{a^2}}} \Leftrightarrow O{I^2} = \dfrac{{140{a^2}}}{9} \Leftrightarrow OI = \dfrac{{2a\sqrt {35} }}{3} \hfill \\ \end{matrix}

    Mặt khác:

    \begin{matrix}  \sin \left( {OM,\left( {SCD} ight)} ight) = \sin \left( {OI,\left( {SCD} ight)} ight) \hfill \\   = \dfrac{{d\left( {O,\left( {SCD} ight)} ight)}}{{OI}} = \dfrac{{\dfrac{a}{3}}}{{\dfrac{{2a\sqrt {35} }}{3}}} = \dfrac{{\sqrt {35} }}{{70}} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 4: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 5: Nhận biết

    Mệnh đề nào sau đây đúng?

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau” sai vì hai mặt phẳng đó có thể cắt nhau.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì vuông góc với nhau.“ sai vì hai mặt phẳng đó có thể tạo với nhau những góc khác 900.

    Dễ thấy mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng song song với một đường thẳng.” đúng.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng vuông góc với một đường thẳng.“ sai vì trong trường hợp mặt phẳng (P) và mặt phẳng (Q) cùng vuông góc với mặt phẳng (R), (P) ⊥ (Q) thì không thể có đường thẳng nào cùng vuông góc với (P) và (Q).

  • Câu 6: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?

    Hình vẽ minh họa:

    Ta có: SA = SB = SC, G là trọng tâm tam giác ABC

    => G là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Gọi H là trung điểm của BC => BH = CH
= \frac{a}{2}

    Xét tam giác ABC đều cạnh a ta có:

    GH = \frac{AH}{3} =
\frac{a\sqrt{3}}{2}.\frac{1}{3} = \frac{a\sqrt{3}}{6}

    Xét tam giác SBH vuông tại H ta có:

    SH = \sqrt{SB^{2} - HB^{2}} =
\sqrt{m^{2} - \frac{a^{2}}{4}}

    Xét tam giác SGH vuông tại G ta có:

    \begin{matrix}SG = \sqrt{SH^{2} - GH^{2}} \hfill \\= \sqrt{m^{2} - \dfrac{a^{2}}{4} - \dfrac{a^{2}}{12}} = \dfrac{\sqrt{9m^{2}- 3a^{2}}}{3} \hfill \\\end{matrix}

  • Câu 7: Thông hiểu

    Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A

    => \left\{ \begin{matrix}PQ = MN = \dfrac{1}{2}AB \\PQ//AB//MN \\\end{matrix} ight.

    => MNPQ là hình bình hành

    Gọi H là trung điểm của AB

    Vì hai tam giác ABC và ABC’ đều nên \left\{ \begin{matrix}
CH\bot AB \\
C'H\bot AB \\
\end{matrix} ight.

    => AB\bot(CHC') \Rightarrow AB\bot
CC'

    Ta có: \left\{ \begin{matrix}
PQ//AB \\
\begin{matrix}
PN//CC' \\
AB\bot CC' \\
\end{matrix} \\
\end{matrix} ight.\  \Rightarrow PQ\bot PN

    Vậy tứ giác MNPQ là hình chữ nhật

  • Câu 8: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD; \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N là trung điểm của AB và CD. Góc giữa \overrightarrow {AB}\overrightarrow {CD} bằng:

    Hình vẽ minh họa

    Góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AD} } ight|\cos \left( {\overrightarrow {AB} ;\overrightarrow {AD} } ight) \hfill \\   - \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) \hfill \\   = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AD} } ight|\cos {60^0} \hfill \\   - \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos {60^0} \hfill \\ \end{matrix}

    AC = AD

    \overrightarrow {AB} .\overrightarrow {CD}  = 0 \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {CD} } ight) = {90^0}

  • Câu 9: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 11: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 12: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết AB = a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
\sqrt{3}a

    \Rightarrow AA' = \sqrt{\left(
a\sqrt{3} ight)^{2} - a^{2}} = a\sqrt{2}

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = \sqrt{2}a.\frac{1}{2}.a.a =
\frac{\sqrt{2}}{2}a^{3}

  • Câu 13: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?

     Ta có:

    BC⊥AB,BC⊥SA⇒BC⊥(SAB)⇒(SBC)⊥(SAB)

    => (SAB) \perp (SAC) đúng.

    ΔABC vuông cân tại B, M là trung điểm AC ⇒ BM⊥AC⇒ BM \perp AC đúng.

    BM⊥AC,BM⊥SA⇒BM⊥(SAC)⇒(SBM)⊥(SAC)

    => (SBM) \perp (SAC) đúng

  • Câu 17: Vận dụng cao

    Cho khối lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của AD, φ là góc giữa hai mặt phẳng (BMC’) và (ABB’A’). Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa:

    Do ABCD.A’B’C’D’ là hình lập phương

    => MA, CB, C’B’ cùng vuông góc với (ABB’A’)

    => Tam giác MBC’ có hình chiếu vuông góc lên mặt phẳng (ABB’A’) là tam giác ABB’.

    Ta có S_{ABB'} = S_{MBC'}.cos\phi
\Rightarrow \cos\phi = \frac{S_{ABB'}}{S_{MBC'}}

    Xét tam giác MBC’, ta có:

    \begin{matrix}MB = \sqrt{MA^{2} + AB^{2}} = \sqrt{\dfrac{a^{2}}{4} + a^{2}} =\dfrac{\sqrt{5}a}{2} \hfill\\C'B = \sqrt{2}a\hfill \\MC' = \sqrt{DM^{2} + DC'} = \sqrt{\dfrac{a^{2}}{4} + 2a^{2}} =\dfrac{3a}{2} \hfill\\\end{matrix}

    Đặt p = (MB + MC’ + BC’)/2

    Áp dụng công thức Hê-rông ta có:

    S_{MBC'} = \sqrt{p(p - MC')(p -
MB)(p - BC')} = \frac{3a^{2}}{4}

    Mặt khác S_{ABB'} = \dfrac{a^{2}}{2}\Rightarrow \cos\phi = \dfrac{S_{ABB'}}{S_{MBC'}} =\dfrac{\dfrac{a^{2}}{2}}{\dfrac{3a^{2}}{4}} = \dfrac{2}{3}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a\sqrt{2}.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Ta có: AD // BC => d\left( {D;\left( {SCD} ight)} ight) = d\left( {A;\left( {SBC} ight)} ight)

    Gọi H là hình chiếu vuông góc của A lên SB => AK \bot SB (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AH\left( {**} ight)

    Từ (*) và (**) => AH \bot \left( {SBC} ight)

    \begin{matrix}  d\left( {A;\left( {SBC} ight)} ight) = AH \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a\sqrt 3 }}{3} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Chọn khẳng định đúng

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB

    => Tam giác SBC vuông tại B => I là trung điểm của SC

    Theo bài ra ta có: IH ⊥ (ABC) => IH // SA

    => H là trung điểm của cạnh AC,

    Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có AH ⊥ SB. Từ đó suy ra AH ⊥ (SBC) => AH ⊥ SC. (1)

    Lại có theo giả thiết SC ⊥ AK. (2)

    Từ (1) và (2) => SC ⊥ (AHK) => (SBC) ⊥ (AHK).

    Ta có: \left\{ \begin{matrix}
SC\bot(AHK) \\
AI \subset (AHK) \\
\end{matrix} ight.\  \Rightarrow SC\bot AI

    Dùng phương pháp loại trừ thì khẳng định “Tam giác IAC đều” là sai

  • Câu 21: Nhận biết

    Cho hình hộp ABCD.A’B’C’D’. Giả sử tam giác AB’C và A’DC’ đều có ba góc nhọn. Góc giữa hai đường thẳng AC, A’D là góc nào sau đây?

    Xác định góc giữa hai đường thẳng AC, A’D

    Do ACC’A’ là hình bình hành nên AC song song với A’C’. Do đó:

    \left( {\widehat {AC;A'D}} ight) = \left( {\widehat {A'C';A'D}} ight)

    Như vậy \left( {\widehat {AC;A'D}} ight) = \widehat {DA'C'}

  • Câu 22: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = DC = a; cạnh bên SA = a và vuông góc với đáy. Mặt phẳng (α) qua SD và vuông góc với mặt phẳng (SAC). Tính diện tích (α) của thiết diện tạo bởi (α) với hình chóp đã cho.

    Hình vẽ minh họa:

    Gọi E là trung điểm AB, suy ra AECD là hình vuông nên DE ⊥ AC. (1)

    Mặt khác SA ⊥ (ABCD) => SA ⊥ DE (2)

    Từ (1) và (2) suy ra DE ⊥ (SAC) => (SAD) ⊥ (SAC)

    Ta có: \left\{ \begin{matrix}
(SDE) \supset S \\
(SDE)\bot(SAC) \\
\end{matrix} ight.\  \Rightarrow (\alpha) \equiv (SDE)

    Vậy thiết diện là tam giác SDE.

    Ta có:

    \begin{matrix}
SD = \sqrt{SA^{2} + DA^{2}} = a\sqrt{2} \\
SE = \sqrt{SA^{2} + AE^{2}} = a\sqrt{2} \\
DE = AC = DC\sqrt{2} = a\sqrt{2} \\
\end{matrix}

    Do đó tam giác SDE đều có cạnh a √ 2 nên S_{SDE} = \frac{SD^{2}\sqrt{3}}{4} =
\frac{a^{2}\sqrt{3}}{2}

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương.

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông với AC=\frac{a\sqrt{2}}{2}. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.

    Ta có AD // BC => AD // (SBC) => d(AD;SC)=d(A;(SBC))

    Kẻ AP⊥SB =>d(A;(SBC))=AP =>d(AD;SC)=AP

    Ta có:

    \begin{matrix}  AB = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{a}{2} \hfill \\  \dfrac{1}{{A{P^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\ \end{matrix}

    Lại có \left( {SB;\left( {ABCD} ight)} ight) = \widehat {SBA} = {60^0}

    \begin{matrix}   \Rightarrow \tan {60^0} = \dfrac{{SA}}{{AB}} \Rightarrow SA = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow AP = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

  • Câu 25: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 26: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 27: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 28: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 31: Nhận biết

    Cho hai đường thẳng phân biệt a,b và mặt phẳng (M). Biết rằng a//(M). Mệnh đề nào sau đây đúng?

    Nếu a//(M);b\bot(M) thì b\bot a.

  • Câu 32: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 33: Nhận biết

    Trong các mệnh đề sau mệnh đề nào đúng?

    Mệnh đề đúng là: Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c)

  • Câu 34: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 35: Vận dụng cao

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Điểm M và N tương ứng là trung điểm các đoạn AC, BB’. Cosin góc giữa đường thẳng MN và (BA’C’) bằng:

    Hình vẽ minh họa:

    Gọi I là trung điểm của A’C’

    => BMIB’ là hình chữ nhật

    Gọi K = MN ∩ BI.

    Ta có: IM ⊥ A’C’; BI ⊥ A’C’

    => A’C’ ⊥ (BMI)

    => (BMI) ⊥ (A’C’B) và (BMI) ∩ (A’C’B) = BI

    Trong mặt phẳng (BMI), dựng MH ⊥ BI => MH ⊥ (A’C’B)

    => (MN; (BA’C’)) = (MK; (BA’C’)) = \widehat{MKH} = \widehat{MKI}

    Ta có \Delta NKB\sim\Delta MKI
\Rightarrow \frac{NK}{MK} = \frac{BK}{IK} = \frac{NB}{MI} =
\frac{1}{2}

    \left\{ \begin{matrix}NK = \dfrac{1}{2}MK \\IK = 2KB \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}MK = \dfrac{2}{3}MN = \dfrac{2}{3}a \\IK = \dfrac{2}{3}IB = \dfrac{2}{3}.\dfrac{a\sqrt{7}}{2} =\dfrac{a\sqrt{7}}{3} \\\end{matrix} ight.

    Áp dụng định lý Cô-sin trong tam giác 4IKM, ta có:

    \cos\widehat{MKI} = \frac{IK^{2} +
MK^{2} - IM^{2}}{2IK.MK} = \frac{\sqrt{7}}{14}

  • Câu 36: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 37: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 38: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Điểm cách đều 4 điểm A, B, C, D là:

    Hình vẽ minh họa

    Tìm điểm cách đều 4 điểm A, B, C, D

    Gọi O là trung điểm của AD.

    Từ giả thiết ta có:

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {BC \bot CD} \end{array}} ight. \Rightarrow CD \bot \left( {ABC} ight) \Rightarrow CD \bot AC

    Vậy ΔACD vuông tại C

    Do đó OA=OC=OD (1)

    Mặt khác 

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {AB \bot BC} \end{array}} ight. \Rightarrow AB \bot \left( {BCD} ight) \Rightarrow AB \bot BD

    => ΔABD vuông tại B.

    Do đó OA=OB=OD (2)

    Từ (1) và (2) ta có OA=OB=OC=OD

    Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.

  • Câu 39: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo