Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.

    Hình vẽ minh họa:

    Vì AB // CD ⇒ CD // (SAB)

    => d(CD, (SAB)) = d(D, (SAB))

    Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.

    Xét tam giác ABD vuông tại A ta có:

    AB2 + AD2 = BD2 = 4a2 => AD = a\sqrt{2}

  • Câu 2: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 4: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC =
a\sqrt{3}AA' = 3a. Chọn kết luận đúng về số đo góc giữa A'C(ABC)?

    Hình vẽ minh họa

    Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC

    Suy ra \left( A'C;(ABC) ight) =
(A'C;AC) = \widehat{A'CA}

    Ta có: \tan\widehat{A'CA} =
\frac{AA'}{AC} = \frac{3a}{a\sqrt{3}} = \sqrt{3}

    \Rightarrow \widehat{A'CA} = 60^{0}
\Rightarrow \left( A'C;(ABC) ight) = 60^{0}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD). Biết diện tích tam giác SBD bằng a^{2}. Khi đó SA bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy.

    Khi đó BD\bot(SAC) \Rightarrow BD\bot SO
\Rightarrow S_{SBD} = \frac{1}{2}.SO.BD = a^{2}

    \Rightarrow SO =
\frac{2a^{2}}{a\sqrt{2}} = a\sqrt{2}

    \Rightarrow SA = \sqrt{SO^{2} - AO^{2}}
= \sqrt{2a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{6}}{2}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và mặt bên SAB là tam giác vuông tại S. Tính số đo góc giữa hai đường thẳng SACD.

    Hình vẽ minh họa

    ABCD là hình bình hành nên CD//AB

    \Rightarrow (SA;CD) = (SA;AB) =
\widehat{SAB} = 45^{0}

  • Câu 7: Thông hiểu

    Cho hình chóp  S.ABC có đáy ABC là tam giác vuông tại A. Hình chiếu của S lên mặt phẳng đáy là trung điểm H của BC. Tính thể tích khối chóp S.ABC biết AB
= a;AC = a\sqrt{3};SB = a\sqrt{2}.

    Hình vẽ minh họa

    Xét tam giác ABC vuông tại C ta có: BC =
\sqrt{AB^{2} + AC^{2}} = \sqrt{a^{2} + \left( a\sqrt{3} ight)^{2}} =
2a

    H là trung điểm của BC nên BH =
a

    Xét tam giác SBH vuông tại H có SH =
\sqrt{SB^{2} - HB^{2}} = \sqrt{\left( a\sqrt{2} ight)^{2} - a^{2}} =
a

    Diện tích đáy ABC là S_{ABC} =
\frac{1}{2}AB.AC = \frac{1}{2}a^{2}\sqrt{3}

    Thể tích khối chóp là V =
\frac{1}{3}SH.S_{ABC} = \frac{1}{3}.a.\frac{1}{2}a^{2}\sqrt{3} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 8: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh bằng 2a. Hình chiếu của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60◦. Gọi ϕ là góc giữa hai mặt phẳng (BCC’B’) và (ABC). Tính cos ϕ.

    Hình ảnh minh họa:

    Gọi M là trung điểm của BC, suy ra AM = a\sqrt 3

    Gọi K là điểm đối xứng của H qua B, suy ra B’K // A’H, suy ra B’K ⊥ (ABC).

    Trong (ABC), dựng BI ⊥ BC (với I ∈ BC).

    Khi đó, góc giữa hai mặt phẳng (BCC’B’) và (ABC) là góc KIB’.

    Do tứ giác AHKB’ là hình bình hành nên B’K = A’H = AH . tan 60◦ = a\sqrt{3}

    Ta có: KI = d(H, BC) = d(A,BC)/2 = AM/2 = \frac{a\sqrt{3}}{2}

    Xét ∆B’IK vuông tại K ta có:

    \begin{matrix}B'I = \sqrt{B'K^{2} + KI^{2}} = \dfrac{a\sqrt{15}}{2} \hfill\\\cos\phi = \cos\widehat{KIB'} =\dfrac{a\sqrt{3}}{2}:\dfrac{a\sqrt{15}}{2} = \dfrac{\sqrt{5}}{5}\hfill \\\end{matrix}

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Gọi O là tâm hình vuông ABCD => SO \bot \left( {ABCD} ight)

    OA \cap \left( {SCD} ight) = C nên 

    \begin{matrix}  \dfrac{{d\left( {A;\left( {SCD} ight)} ight)}}{{d\left( {O;\left( {SCD} ight)} ight)}} = \dfrac{{AC}}{{OC}} = 2 \hfill \\   \Rightarrow d\left( {A;\left( {SCD} ight)} ight) = 2d\left( {O;\left( {SCD} ight)} ight) \hfill \\ \end{matrix}

    Gọi H là trung điểm của CD => OH \bot CD

    Gọi K là hình chiếu của O trên SH => OK \bot SH (*) 

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot OH} \\   {CD \bot SO} \end{array}} ight. \Rightarrow CD \bot \left( {SOH} ight) \Rightarrow CD \bot OK\left( ** ight)

    Từ (*) và (**) 

    \begin{matrix}  OK \bot \left( {SCD} ight) \Rightarrow d\left( {O;\left( {SCD} ight)} ight) = OK \hfill \\  OK = \dfrac{{SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }} \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  SO = \sqrt {S{A^2} - O{A^2}}  \hfill \\   = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}}  = \dfrac{{a\sqrt {14} }}{2} \hfill \\ \end{matrix}

    \Rightarrow OK = \dfrac{{\dfrac{{a\sqrt {14} }}{2}.\dfrac{a}{2}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {14} }}{2}} ight)}^2} + {{\left( {\dfrac{a}{2}} ight)}^2}} }} = \dfrac{{a\sqrt 7 }}{{\sqrt {30} }}

    d\left( {A;\left( {SCD} ight)} ight) = 2.OK = \frac{{2a\sqrt 7 }}{{\sqrt {30} }}

  • Câu 10: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 11: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 12: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với AC = a\sqrt{3}. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho \sin\alpha =\frac{\sqrt{6}}{4} . Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:

    Hình vẽ minh họa:

    Ta có:\left\{ \begin{matrix}\widehat{\left( BC’,(AA’C’C) ight)} = \widehat{BC’A} = 30^{0} \\\widehat{\left( BC’,(ABC) ight)} = \widehat{C'BC} = \alpha \\\end{matrix} ight.

    Đặt AB = x => BC = \sqrt{3a^{2} +x^{2}}

    BC = \sqrt{3a^{2} + x^{2}}

    CC' = BC.tan\alpha =\sqrt{\frac{3\left( x^{2} + 3a^{2} ight)}{5}}

    AC' = AB.cot30^{0} =\sqrt{\frac{3\left( x^{2} + 3a^{2} ight)}{5}}

    Ta có: AC^{2} + CC'^{2} =AC^{2}

    \Rightarrow x = a\sqrt{2}

    \Rightarrow CC' = a\sqrt{3};AC =a\sqrt{6}

    Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)

    d(MN, AC’) = d(N, (ABC’)) = \frac{1}{2}d(A’, (ABC’)

    Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)

    d\left( A';(ABC') ight) =A'H = \frac{AA'.A'C'}{AC'} =\frac{a\sqrt{6}}{2}

    => d(MN, AC’) = \frac{a\sqrt{6}}{4}

  • Câu 13: Thông hiểu

    Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {EG}?

    Hình vẽ minh họa

    Hãy xác định góc giữa cặp vecto

    Ta có: AEGC là hình chữ nhật nên EG // AC

    Vì ABCD là hình vuông nên

    => \left( {\overrightarrow {AB} ,\overrightarrow {EG} } ight) = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) = \widehat {BAC} = {45^0}

  • Câu 14: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}

    Hình vẽ minh họa

    Ta có: AB//A'B'(A'B',B'C') = 90^{0} \Rightarrow
(AB,B'C') = 90^{0}

    Vì tứ giác ABCD là hình vuông nên (AC;BC) = 45^{0}

    Ta có: BC//B'C' nên (AC,B'C') = 45^{0}

    Ta có: A'C'//AC và tam giác AVB' là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó (A'C',B'C) = (AC,B'C) =
60^{0}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 16: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 17: Vận dụng cao

    Cho hình chóp S.ABC cóSA = SC =
\frac{a\sqrt{6}}{2};SB = a\sqrt{2}, AB = BC = \frac{a\sqrt{2}}{2} và AC = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABC)

    Hình vẽ minh họa:

    Gọi I, J lần lượt là trung điểm của AC, SB

    H là hình chiếu vuông góc của điểm S trên IB.

    Do giả thiết SA = SC => Tam giác SAC cân đỉnh S => SI ⊥ AC

    Xét ∆SAB và ∆SBC ta có:

    SA = SC

    BA = BC

    SB chung

    => ∆SAB = ∆SCB => JA = JC

    Khi đó ∆JAC cân đỉnh J

    Mà I là trung điểm của AC nên IJ ⊥ AC (1)

    Mặt khác ∆SAC cân đỉnh S nên SI ⊥ AC (2)

    Từ (1) và (2) suy ra AC ⊥ (SIB) => AC ⊥ SH.

    => SH ⊥ AC, SH ⊥ BI => SH ⊥ (ABC)

    => \widehat{\left( SB;(ABC) ight)} =
\widehat{SBI}

    Xét ∆SIA theo định lý Py – ta – go:

    \begin{matrix}SA^{2} = SI^{2} + IA^{2}\hfill \\\Rightarrow SI = \sqrt{SA^{2} - IA^{2}} \hfill\\= \sqrt{\left( \dfrac{a\sqrt{6}}{2} ight)^{2} - \left( \dfrac{a}{2}ight)^{2}} = \dfrac{a\sqrt{5}}{2} \hfill\\\end{matrix}

    Tương tự trong ∆IAB ta có:

    \begin{matrix}
IB = \sqrt{AB^{2} - AI^{2}} \\
= \sqrt{\left( \frac{a\sqrt{2}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a}{2} \\
\end{matrix}

    Xét ∆SIB theo định lý hàm số cosin ta có:

    \begin{matrix}\cos\widehat{SBI} = \dfrac{SB^{2} + IB^{2} - SI^{2}}{2SB.IB}\hfill \\= \dfrac{\left( a\sqrt{2} ight)^{2} + \left( \dfrac{a}{2} ight)^{2} -\left( \dfrac{a\sqrt{5}}{2} ight)^{2}}{2.a\sqrt{2}.\dfrac{a}{2}} =\dfrac{1}{\sqrt{2}}\hfill \\\end{matrix}

    Vì 0 < \widehat{SBI} < 90◦ => \cos\widehat{SBI} =
\frac{1}{\sqrt{2}} \Rightarrow \widehat{SBI} = 45^{0}

  • Câu 18: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Ta có: AM = \frac{AA'}{tan60^{0}} =
\frac{2a\sqrt{3}}{3}

    \Rightarrow BC = 2AM =
\frac{4a\sqrt{3}}{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} =
2a.\frac{1}{2}.\frac{2a\sqrt{3}}{3}.\frac{4a\sqrt{3}}{3} =
\frac{8}{3}a^{3}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại AAB =
a\sqrt{2}. Biết SA\bot(ABC)SA = a. Góc nhị diện \lbrack S,\ BC,\ Abrack có số đo bằng:

    Hình vẽ minh họa

    Kẻ AM\bot BC tại M \Rightarrow M là trung điểm của BCAM =
\frac{1}{2}BC = \frac{\left( a\sqrt{2} ight)\sqrt{2}}{2} = a .

    Ta có \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
(SAM)\bot BC \\
(SAM) \cap (SBC) = SM \\
(SAM) \cap (ABC) = AM \\
\end{matrix} ight. \Rightarrow
\left( \widehat{(SBC),(ABC)} ight) = \left( \widehat{SM,AM}
ight).

    Suy ra góc giữa (SBC)(ABC) bằng góc \widehat{SMA}.

    Ta có: \tan\widehat{SMA} = \frac{SA}{AM} = \frac{a}{a} =
1 \Rightarrow \widehat{SMA} = 45{^\circ}

    Suy ra góc nhị diện \lbrack S,\ BC,\
Abrack có số đo bằng 45{^\circ}.

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB, AD. Gọi α là góc giữa SA và (SHK). Chọn mệnh đề đúng?

    Hình vẽ minh họa:

    Gọi I là giao điểm của HK và AC

    Dễ dàng suy ra HK // BD => HK ⊥ AC

    Ta lại có: AC ⊥ SH

    => AC ⊥ (SHK)

    => \left( SA;(SHK) ight) = (SA;SI) =
\widehat{ASI}

    Tam giác SIA vuông tại I ta có:

    \tan\widehat{ASI} = \dfrac{AI}{SI} =\dfrac{\dfrac{1}{4}AC}{\sqrt{SA^{2} - AI^{2}}} =\dfrac{\sqrt{7}}{7}

  • Câu 21: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Mệnh đề đúng: "Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau."

  • Câu 22: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 23: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có:

    Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Ta có:\left\{ \begin{matrix}
BC\bot BA \subset (SAB) \\
BC\bot SA \subset (SAB) \\
BA\  \cap \ SA\  = \ A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)\ \ \ (2)

    Lại có: \left\{ \begin{matrix}
(SBA)\  \cap \ (ABC)\  = \ BA \\
(SBA)\  \cap \ (SBC)\  = \ BS \\
\end{matrix} ight.\ (3)

    Từ (1), (2), (3) => \alpha =
\widehat{SBA}

  • Câu 25: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 26: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 27: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 28: Nhận biết

    Cho hình chóp tứ giác S.ABCDSA\bot(ABCD) và đáy là hình vuông. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
SA\bot BC \\
AB\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

  • Câu 29: Nhận biết

    Cho ABCD.A'B'C'D' là hình hộp. Khẳng định nào sau đây đúng?

    Nếu ABCD.A'B'C'D' là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.

  • Câu 30: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 31: Thông hiểu

    Cho tứ diện ABCDAB =
CD = a;IJ = \frac{a\sqrt{3}}{2}. Gọi trung điểm của AD;BC lần lượt là AD;BC. Khi đó cosin góc giữa hai đường thẳng ABCD bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi M là trung điểm của AC khi đó góc giữa hai đường thẳng AB và CD bằng góc giữa hai đường thẳng MI và MJ.

    Ta có:

    \cos\widehat{IMJ} = \frac{IM^{2} +
MJ^{2} - IJ^{2}}{2MI.MJ} = - \frac{1}{2}

    \Rightarrow \cos(AB;CD) =
\frac{1}{2}

  • Câu 32: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD; \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N là trung điểm của AB và CD. Góc giữa \overrightarrow {AB}\overrightarrow {CD} bằng:

    Hình vẽ minh họa

    Góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AD} } ight|\cos \left( {\overrightarrow {AB} ;\overrightarrow {AD} } ight) \hfill \\   - \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) \hfill \\   = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AD} } ight|\cos {60^0} \hfill \\   - \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos {60^0} \hfill \\ \end{matrix}

    AC = AD

    \overrightarrow {AB} .\overrightarrow {CD}  = 0 \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {CD} } ight) = {90^0}

  • Câu 33: Thông hiểu

    Trong mặt phẳng (P) cho tam giác ABC, M là điểm không nằm trên (P) sao cho MA = MB = MC, d là đường thẳng đi qua M và vuông góc với (P). Khi đó đường thẳng d đi qua:

    Gọi H là giao điểm của đường thẳng d và mặt phẳng (P)

    => H là hình chiếu của M trên (P) nên từ MA = MB = MC

    => HA = HB = HC

    => Khi đó đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 35: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a, A'B' = 2\sqrt 3 a, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’), AH = 2\sqrt 3 a. Gọi \alpha là góc giữa hai đường thẳng AD’ và DB’. Tính \cos \alpha.

    Tính góc giữa hai đường thẳng

    Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’

    Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E

    Suy ra \alpha  = \widehat {\left( {AD',\,DB'} ight)} = \widehat {\left( {DE,\,DB'} ight)}

    Bước 2: Tính \cos \alpha

    Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.

    Lấy điểm I sao cho ADIH là hình bình hành.

    Suy ra DI // AH , mà AH \bot \left( {A'B'C'D'} ight)

    => DI \bot \left( {A'B'C'D'} ight) \Rightarrow DI \bot IB'

    Ta có

    \begin{matrix}  DE = AD' = \sqrt {A{H^2} + H{{D'}^2}}  = \sqrt {{{\left( {2\sqrt 3 a} ight)}^2} + {{\left( {2a} ight)}^2}}  = 4a \hfill \\  EB' = \sqrt {A'{E^2} + A'{{B'}^2}}  = \sqrt {{4^2} + {{\left( {2\sqrt 3 } ight)}^2}} .a = 2\sqrt 7 a \hfill \\  IB' = \sqrt {I{F^2} + F{{B'}^2}}  = \sqrt {{3^2} + {{\left( {\sqrt 3 } ight)}^2}} .a = 2\sqrt 3 a \hfill \\  DB' = \sqrt {D{I^2} + I{{B'}^2}}  = \sqrt {{{\left( {2\sqrt 3 } ight)}^2} + {{\left( {2\sqrt 3 } ight)}^2}} .a = 2\sqrt 6 a \hfill \\ \end{matrix}

    Trong tam giác EDB’, có:

    \begin{matrix}  \cos \widehat {EDB'} = \dfrac{{D{E^2} + D{{B'}^2} - E{{B'}^2}}}{{2.DE.DB'}} \hfill \\   = \dfrac{{{{\left( {4a} ight)}^2} + {{\left( {2\sqrt 6 a} ight)}^2} - {{\left( {2\sqrt 7 a} ight)}^2}}}{{2.4a.2\sqrt 6 a}} \hfill \\   = \dfrac{{\sqrt 6 }}{8} > 0 \hfill \\ \end{matrix}

    Suy ra \cos \alpha  = \frac{{\sqrt 6 }}{8}

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 37: Vận dụng cao

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC), SA = a\sqrt{3}. Tính cosin của góc giữa hai mặt phẳng (SAB) và (SBC) là:

    Hình vẽ minh họa:

    Gọi M là trung điểm BC. Kẻ AK ⊥ SM tại K.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow
(SBC)\bot(SAM)

    Lại có AK ⊥ SM = (SBC) ∩ (SAM)

    => AK ⊥ (SBC) ⇒ AK ⊥ SB

    Kẻ AH ⊥ SB tại H. Suy ra SB ⊥ (AHK) ⇒ SB ⊥ HK

    Ta có:

    \left\{ \begin{matrix}
(SAB)\  \cap \ (SBC)\  = \ SB \\
AH\bot SB \\
HK\bot SB \\
\end{matrix} ight.=> ((SAB), (SBC)) = (AH, HK) = \widehat{AHK}

    Xét tam giác SAB có:

    \begin{matrix}AH = \dfrac{SA.AB}{AB} = \dfrac{SA.AB}{\sqrt{SA^{2} + AB^{2}}} =\dfrac{a\sqrt{3}}{2} \hfill\\AM = \dfrac{AB\sqrt{3}}{2} = \dfrac{a\sqrt{3}}{2} \hfill\\\end{matrix}

    Xét tam giác SAM có:

    \frac{1}{AK^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} \Rightarrow AK = \frac{a\sqrt{15}}{5}

    Xét tam giác AHK vuông tại K có:

    \begin{matrix}\sin\widehat{AHK} = \dfrac{AK}{AH} = \dfrac{2\sqrt{5}}{5} \hfill\\\Rightarrow \cos\widehat{AHK} = \sqrt{1 - \sin^{2}\widehat{AHK}} =\dfrac{\sqrt{5}}{5}\hfill \\\end{matrix}

  • Câu 38: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 39: Nhận biết

    Mệnh đề nào sau đây đúng?

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau” sai vì hai mặt phẳng đó có thể cắt nhau.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì vuông góc với nhau.“ sai vì hai mặt phẳng đó có thể tạo với nhau những góc khác 900.

    Dễ thấy mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng song song với một đường thẳng.” đúng.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng vuông góc với một đường thẳng.“ sai vì trong trường hợp mặt phẳng (P) và mặt phẳng (Q) cùng vuông góc với mặt phẳng (R), (P) ⊥ (Q) thì không thể có đường thẳng nào cùng vuông góc với (P) và (Q).

  • Câu 40: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Điểm cách đều 4 điểm A, B, C, D là:

    Hình vẽ minh họa

    Tìm điểm cách đều 4 điểm A, B, C, D

    Gọi O là trung điểm của AD.

    Từ giả thiết ta có:

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {BC \bot CD} \end{array}} ight. \Rightarrow CD \bot \left( {ABC} ight) \Rightarrow CD \bot AC

    Vậy ΔACD vuông tại C

    Do đó OA=OC=OD (1)

    Mặt khác 

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {AB \bot BC} \end{array}} ight. \Rightarrow AB \bot \left( {BCD} ight) \Rightarrow AB \bot BD

    => ΔABD vuông tại B.

    Do đó OA=OB=OD (2)

    Từ (1) và (2) ta có OA=OB=OC=OD

    Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo