Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tính thể tích khối chóp
, biết
.
Hình vẽ minh họa
Kẻ
Ta có:
Lại có:
Xét tam giác SAB vuông tại A có:
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tính thể tích khối chóp
, biết
.
Hình vẽ minh họa
Kẻ
Ta có:
Lại có:
Xét tam giác SAB vuông tại A có:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)
Hình ảnh minh họa

Gọi O là tâm ABCD =>
Ta có:
Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)
Ta có:
Xét tam giác vuông SOM ta có:
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng 1, cạnh bên bằng
. Gọi I là tâm của đáy ABC, d’ là khoảng cách từ A đến mặt phẳng (SBC) và d’’ là khoảng cách từ I đến mặt phẳng (SBC). Tính d = d’ + d’’.
Gọi I là tâm của đáy ABC
=>
Xét tam giác ABC đều cạnh a có tâm I
=>
Xét tam giác SAI vuông tại I
Xét ∆SIM vuông tại I có:
Cho một khối chóp
có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Cho hình chóp
với
. Một mặt phẳng
thay đổi luôn đi qua trọng tâm của
cắt các cạnh
tại các điểm
. Tìm giá trị nhỏ nhất của biểu thức
?
Cho hình chóp với
. Một mặt phẳng
thay đổi luôn đi qua trọng tâm của
cắt các cạnh
tại các điểm
. Tìm giá trị nhỏ nhất của biểu thức
?
Cho hình chóp đều SABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:
Hình vẽ minh họa:
Gọi I là trung điểm BC.
Trong tam giác SAI kẻ AH ⊥ SI (H ∈ SI).
Trong tam giác SBC, qua H kẻ đường song song với BC, cắt SC ở M, cắt SB ở N.
Qua cách dựng ta có BC // (AMN). (1)
Ta có: SI ⊥ AH, SI ⊥ MN (do SI ⊥ BC) => SI ⊥ (AMN) => (SBC) ⊥ (AMN). (2)
Từ (1) và (2), suy ra thiết diện cần tìm là tam giác AMN.
Dễ thấy H là trung điểm của MN mà AH ⊥ (SBC) suy ra AH ⊥ MN.
Tam giác AMN có đường cao AH vừa là trung tuyến nên nó là tam giác cân đỉnh A.
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp tam giác
có
và
. Tính cosin góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC
Mặt khác ta có:
Ta có:
Xét tam giác NAC có:
Xét tam giác MNQ ta có:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:

Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)
Gọi M là giao điểm của AH và BC
Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)
Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM
Xét tam giác BOC vuông ta có:
Xét tam giác AOI vuông ta có:
Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)
Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)
Từ (1) và (2) => H là trực tâm tam giác ABC
Vậy là kết quả sai.
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho tứ diện O.ABC trong đó ba đường thẳng OB, OC, OA đôi một vuông góc. Trong các mệnh đề sau, mệnh đề nào sai?

Tam giác ABC luôn là tam giác nhọn
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và
. Gọi
là trọng tâm của tam giác SAB. Khoảng cách từ
đến mặt phẳng
bằng:
Hình vẽ minh họa
Gọi là trung điểm của
(vì
cân)
Ta có:
Và tại
.
Do đó .
Ta có: .
Vì là trọng tâm của
nên
.
Cho hình chóp S.ABC có tam giác ABC vuông tại B và
. Tam giác SAC là tam giác đều và thuộc mặt phẳng vuông góc với (ABC). Xét điểm M thuộc cạnh SC sao cho mặt phẳng (MAB) tạo với hai mặt phẳng (SAB); (ABC) góc bằng nhau. Tỉ số
có giá trị bằng:
Gọi H là trung điểm của AC, suy ra SH ⊥ (ABC).
Gọi N là trung điểm của AB, suy ra AB ⊥ (SHN).
Lấy K là giao điểm của AM, SH. Do đó
Theo giả thiết, NK là phân giác của góc
Giả sử:
Mặt khác:
(tính chất phân giác).
Gọi E là trung điểm của CM, theo định lí Ta-lét thì:
Vậy
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạng AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP.
Do AC song song với MN nên góc giữa hai đường thẳng MN và AP là góc giữa hai đường thẳng AC và AP.
Ta tính được:
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng và đường thẳng b với b vuông góc với (P).” sai vì hai góc này phụ nhau.
Mệnh đề: “Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng a và mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).” sai vì (P) có thể trùng với (Q).
Mệnh đề: “Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng b và mặt phẳng (P) thì a song song với b.” sai vì a có thể trùng với b.
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Điểm cách đều 4 điểm A, B, C, D là:
Hình vẽ minh họa

Gọi O là trung điểm của AD.
Từ giả thiết ta có:
Vậy vuông tại C
Do đó (1)
Mặt khác
=> vuông tại B.
Do đó (2)
Từ (1) và (2) ta có
Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.
Hai mặt phẳng vuông góc với nhau khi và chỉ khi
Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của ![]()
Hình vẽ minh họa:

Ta có:
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và
là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:

Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Cho hình chóp
có đáy
là hình tam giác vuông tại A,
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình chóp
có đáy
là tam giác cân tại
,
. Gọi
là trung điểm của
,
là hình chiếu của
trên
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có:
Từ (1) và (2) suy ra
Mà nên
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.
Hình vẽ minh họa:

Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính
?
Hình vẽ minh họa
Ta có: là hình vuông
Mặt khác
Suy ra
=> SD là hình chiếu của SC lên mặt phẳng (SAD)
Do đó
Xét tam giác vuông tại
ta có:
Trong mặt phẳng (P) cho tam giác ABC, M là điểm không nằm trên (P) sao cho MA = MB = MC, d là đường thẳng đi qua M và vuông góc với (P). Khi đó đường thẳng d đi qua:
Gọi H là giao điểm của đường thẳng d và mặt phẳng (P)
=> H là hình chiếu của M trên (P) nên từ MA = MB = MC
=> HA = HB = HC
=> Khi đó đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC.
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho hình chóp
có đáy là tam giác
vuông tại
. Đường thẳng vuông góc với đáy
. Đường thẳng
vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, tam giác
đều và cạnh
. Gọi trung điểm các cạnh
lần lượt là
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có tam giác SAB đều cạnh bằng a nên
Mặt khác tam giác SBC có
Suy ra tam giác SBC vuông cân tại B hay
Từ
Tam giác ABS đều mà H là trung điểm của AB nên
Tam giác ABS đều nên AB không vuông góc với mặt phẳng
Ta có:
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.