Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto
là:
Hình vẽ minh họa:

Ta có tam giác ACF là tam giác đều
=> Góc giữa cặp vecto là:
Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto
là:
Hình vẽ minh họa:

Ta có tam giác ACF là tam giác đều
=> Góc giữa cặp vecto là:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng α. Tang của góc giữa mặt bên và mặt đáy bằng:

Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)
=>
Gọi M là trung điểm của BC => OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Cho hình chóp
có đáy là hình chữ nhật. Gọi trung điểm các cạnh
lần lượt là
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: MN là đường trung bình của tam giác SCD =>
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB
=> Tam giác SBC vuông tại B => I là trung điểm của SC
Theo bài ra ta có: IH ⊥ (ABC) => IH // SA
=> H là trung điểm của cạnh AC,
Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.
Cho tứ diện đều
cạnh bằng
,
là trung điểm của cạnh
. Xác định góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi N là trung điểm của AC thì MN // AB
Suy ra
Ta có:
Cho hình chóp
đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình lập phương ABCD.A’B’C’D’ có độ dài mỗi cạnh bằng 1. Gọi (P) là mặt phẳng chứa CD’ và tạo với mặt phẳng BDD’B’ một góc x nhỏ nhất, cắt hình lập phương theo một thiết diện có diện tích S. Giá trị của S bằng:
Hình vẽ minh họa:
Góc của (P) qua CD’ hợp với (BB’D’D) một góc nhỏ nhất bằng với góc giữa đường thẳng CD’ và (BB’D’D).
Ta có:
=> D là trung điểm của BM.
Kéo dài MD’ cắt BB’ tại N. Đường thẳng CN cắt B’C’ tại I, ta được I là trung điểm B’C’.
Ta được thiết diện cần tìm là tam giác ICD’
Tính được:
Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên
. Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.
Hình vẽ minh họa:
Gọi N là trung điểm của BB’ => MN // B’C
=> B’C // (AMN)
=> d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))
Kẻ BH ⊥ AM, BK ⊥ HN
=> BK ⊥ (AMN)
=> d(AM, B’C) = d(B, (AMN)) = BK
Ta có:
Ta có:
Do tam giác ABM vuông tại B
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.
Hình vẽ minh họa:
Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2
Một hình chóp
có đáy
là tam giác đều cạnh
,
vuông góc với mặt phẳng đáy. Biết góc giữa
và mặt phẳng
bằng
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Gọi M là trung điểm của BC thì
Từ đây dễ thấy góc cần tìm là
Do đó tam giác SAM vuông cân tại A và
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 4a nên
Ta có:
Xét tam giác AOA’ có
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.
Hình vẽ minh họa:
Vì AB // CD ⇒ CD // (SAB)
=> d(CD, (SAB)) = d(D, (SAB))
Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.
Xét tam giác ABD vuông tại A ta có:
AB2 + AD2 = BD2 = 4a2 => AD =
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Dễ thấy:
SO ⊥ (ABCD)
AC ⊥ BD
BD ⊥ (SAC)
Là những khẳng định đúng.
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a,
,
và SA ⊥ (ABCD). Tính góc giữa đường thẳng SA và mặt phẳng (SBD).
Hình vẽ minh họa:
Vì tam giác ABC cân và có góc 600 nên nó là tam giác đều
Gọi O là trung điểm của AC.
Ta có: Hai mặt phẳng (SAC) và (SBD) vuông góc nhau theo giao tuyến SO
=> Hình chiếu vuông góc của SA lên mặt phẳng (SBD) là SO
=>
Xét tam giác vuông SOA ta có:
=>
Vậy góc giữa SA và mặt phẳng (SBD) bằng 300.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Một tấm ván hình chữ nhật
được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33![]()
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Gọi ,
lần lượt là hình chiếu của
,
lên đáy hố là mặt phẳng
.
Khi đó có hình chiếu lên đáy là
, suy ra
.
Với độ sâu hố là (m), ta có
.
.
.
Cho hình chóp đều S.ABCD có cạnh đáy bằng
và cạnh bên bằng 2a. Gọi α là góc tạo bởi hai mặt phẳng (SAC) và (SCD). Tính cos α.
Hình vẽ minh họa:
Gọi tâm của đáy là O, M là trung điểm của CD
Trong (SOM), kẻ OH vuông góc với SM tại H
Khi đó ta có OH ⊥ (SCD). Mà OD ⊥ (SAC).
Do đó ((SCD), (SAC)) = (OH, OD) = = α.
Ta có OD = a,
Xét tam giác OSM vuông tại O ta có:
Xét tam giác OHD vuông tại H ta có:
Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc
và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có: ABCD là hình thoi =>AB = AD mà nên tam giác ABD là tam giác đều (*)
Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)
Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với
. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho
. Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:
Hình vẽ minh họa:
Ta có:
Đặt AB = x =>
Ta có:
Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)
d(MN, AC’) = d(N, (ABC’)) = d(A’, (ABC’)
Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)
=> d(MN, AC’) =
Cho khối chóp tam giác có chiều cao bằng
, diện tích đáy bằng
. Thể tích của hình chóp bằng:
Ta có:
Thể tích khối chóp tam giác là
Cho lăng trụ đứng
có đáy ABC là tam giác đều cạnh
. Gọi
là trung điểm cạnh BC. Biết
, khoảng cách giữa hai đường thẳng
và
là:
Hình vẽ minh họa
Gọi là trung điểm của
, ta có
là hình bình hành
.
Kẻ .
Ta có: .
Suy ra,
Ta có: .
Xét vuông tại
ta có:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

Xét vuông cân tại A, ta có:
Góc giữa 2 đường thẳng BA và BD bằng , suy ra
Xét vuông cân tại A, ta có:
Vì là trung điểm của SB nên:
Ta có:
(Do , nên
)
Do đó:
Vậy góc giữa AM bằng BD bằng
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho tứ diện ABCD có AB = AC = AD và
. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Xét tam giác ICD có J là trung điểm của CD =>
Tam giác ABC có AB = AC và => Tam giác ABC đều => CI ⊥ AB
Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB
Ta có:
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Khối lăng trụ đứng
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a,
, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?
Hình vẽ minh họa

Lấy M là trung điểm của SD
Góc cần tìm là góc giữa OM và SC
Ta có MC là trung tuyến của tam giác SCD
Xét tam giác MOC ta có:
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.
Cho hình chóp tam giác
có
và
. Tính cosin góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC
Mặt khác ta có:
Ta có:
Xét tam giác NAC có:
Xét tam giác MNQ ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD bằng 600, SA = SB = SD =
. Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng:
Hình vẽ minh họa:
Theo giả thiết, ABD là tam giác đều.
Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.
Do SA = SB = SD nên S nằm trên trục của đường tròn ngoại tiếp tam giác ABD suy ra SH ⊥ (ABD) hay SH ⊥ (ABCD).
Do (SBC) ⊥ (SBH) nên từ H kẻ HK ⊥ SB tại K thì HK = d(H, (SBC)) và
=>
Mặt khác d(H, (SBC)) = 2/3d(A, (SBC)) = 2/3d(D, (SBC)) => d(D, (SBC)) =
Gọi O là hình chiếu vuông góc của điểm D trên (SBC).
Khi đó:
Xét tam giác SDO vuông tại O có:
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AM, AN lần lượt là đường cao của tam giác SAB và tam giác SAD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:

Ta có: SA ⊥ (ABCD) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB)
=> BC ⊥ AE
Mà AM nằm trong mặt phẳng (SAB)
Xét tam giác SAB có:
AM ⊥ SB
Mà BC ⊥ AM => AM ⊥ (SBC) => AM ⊥ SC
Chứng minh tương tự ta được: AN ⊥ SC
=> SC ⊥ (AMN)