Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau?

    Ta có:

    “Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.

    “Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.

    “Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.

    Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”

  • Câu 2: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 3: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.

    Hình vẽ minh họa:

    Xác định góc 600

    \widehat{\left( SC;(ABCD) ight)} =\widehat{(SC;AC)} = 60^{0} = \widehat{SCA}

    SA = AC.tan\widehat{SCA} =a\sqrt{6}

    Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a

    Xét tam giác ACB ta có:

    CM = a = \frac{1}{2}AB

    => Tam giác ACB vuông tại C

    Lấy điểm E sao cho ACBE là hình chữ nhật

    => AC // BE

    => d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))

    Kẻ AK ⊥ SE. Khi đó:

    d\left( A;(SBE) ight) = AK =\frac{SA.AE}{\sqrt{SA^{2} + AE^{2}}} = \frac{a\sqrt{6}}{2}

  • Câu 4: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?

    Hình vẽ minh họa

    Ta có:

    ABCD là hình chữ nhật nên BD không vuông góc với AC

    Vậy BD không vuông góc với mặt phẳng (SAC)

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA = a\sqrt{2}, SA ⊥ (ABCD). Tính góc giữa đường thẳng SC và mặt phẳng (SAD).

    Hình vẽ minh họa:

    Gọi M là trung điểm của AD

    => ABCM là hình vuông => CM ⊥ AD

    Ta có: \left\{ \begin{matrix}
CM\bot AC \\
CM\bot SA \\
\end{matrix} ight.\  \Rightarrow CM\bot(SAD)

    Suy ra hình chiếu vuông góc của SC trên mặt phẳng (SAD) là SM

    \Rightarrow \left( SC;(SAD) ight) =
(SC;SM) = \widehat{CSM}

    => \tan\widehat{CSM} = \frac{CM}{SM} =
\frac{AB}{\sqrt{SA^{2} + AM^{2}}} = \frac{1}{\sqrt{3}}

    => \widehat{CSM} = 30^{0}

  • Câu 7: Vận dụng

    Cho tứ diện ABCDAB =
CD = a, trung điểm các cạnh AD,BC lần lượt là M,N. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng ABMN bằng 30^{0}.

    Hình vẽ minh họa

    Gọi P là trung điểm của AC

    Ta có: \left\{ \begin{matrix}NP//AB \\MP//CD \\NP = NP = \dfrac{a}{2} \\\end{matrix} ight.\  \Rightarrow (AB,CD) = (NP,MN)

    \cos\widehat{MNP} = \frac{MN^{2} +
NP^{2} - MP^{2}}{2MN.NP}

    = \dfrac{MN^{2} + \dfrac{a}{4}^{2} -\dfrac{a}{4}^{2}}{2MN.\dfrac{a}{2}} = \dfrac{MN}{a}

    (AB,MN) = 30^{0} \Rightarrow \left\{
\begin{matrix}
\widehat{MNP} = 30^{0} \\
\widehat{MNP} = 150^{0} \\
\end{matrix} ight.

    \widehat{MNP} = 30^{0} \Rightarrow
\frac{MN}{a} = \frac{\sqrt{3}}{2} \Rightarrow MN =
\frac{a\sqrt{3}}{2}(TM)

    \widehat{MNP} = 150^{0} \Rightarrow
\frac{MN}{a} = - \frac{\sqrt{3}}{2} \Rightarrow MN = -
\frac{a\sqrt{3}}{2}(KTM)

  • Câu 8: Nhận biết

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Xác định khẳng định đúng dưới đây?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BC;SA \subset (SAB)

    BC\bot AB (vì đáy là tam giác vuông tại B); AB \subset (SAB)

    \Rightarrow BC\bot(SAB)

  • Câu 9: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 5a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 5a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{5}{3}a^{3}

  • Câu 10: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 11: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có AB = AC = BB’ = a, \widehat{BAC} = 120^{0}. Gọi I là trung điểm của CC’. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).

    Hình vẽ minh họa:

    Gọi E là giao điểm của B’I và BC, H thuộc BC sao cho EA ⊥ AH tại A, K ∈ B’I sao cho KH ⊥ CB tại H.

    Ta có: KH ⊥ CB => KH // CC’

    => KH ⊥ (ABC) tại H => KH ⊥ EA mà EA ⊥ AH => EA ⊥ (AKH) => EA ⊥ AK

    Góc giữa hai mặt phẳng (AIB’) và (ACB) là \widehat{KAH}

    Ta có: BC = 2a.cos 300 = a\sqrt{3}

    Mặt khác AE2 = EC2 + AC2 − 2AC.EC. cos ACE

    AE2 = 3a2 + a2 − 2a.a\sqrt{3}.cos 1500= 7a2

    => AE = a\sqrt{7}

    Ta có:

    \cos\widehat{AEC} = \frac{AE^{2} +EC^{2} - AC^{2}}{2.AE.EC} = \frac{9}{2\sqrt{21}}

    \tan\widehat{AEC} =\sqrt{\frac{1}{cos^{2}\widehat{AEC}} - 1} =\frac{\sqrt{3}}{9}

    Ta có:

    \frac{EH}{EB} =\frac{HK}{BB'}

    \Rightarrow HK = \frac{BB'.EH}{EB} =\frac{AE.BB'}{2BC.cos\widehat{AEC}} = \frac{7a}{9}

    \cos\widehat{KAH} = \frac{AH}{AK} =\frac{AH}{\sqrt{AH^{2} + HK^{2}}} = \frac{\sqrt{30}}{10}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC. Số đo góc (IJ; CD) bằng:

    Hình vẽ minh họa:

    Gọi O là tâm của hình thoi ABCD

    => OJ là đường trung bình của tam giác BCD => \left\{ \begin{matrix}OJ//CD \\OJ = \dfrac{1}{2}CD \\\end{matrix} ight.

    Vì CD // OJ => (IJ; CD) = (IJ; OJ)

    Xét tam giác IOJ có: \left\{\begin{matrix}IJ = \dfrac{1}{2}SB = \dfrac{a}{2} \\\begin{matrix}OJ = \dfrac{1}{2}CD = \dfrac{a}{2} \\OI = \dfrac{1}{2}SA = \dfrac{a}{2} \\\end{matrix} \\\end{matrix} ight.=> Tam giác IOJ đều

    Vậy (IJ; CD) = (IJ; OJ) = \widehat{IJO} =
60^{0}

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa:

    Ta có: O và I lần lượt là trung điểm của AC và SC

    => OI là đường trung bình của tam giác SAC

    => OI // SA

    Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)

    Ta có: ABCD là hình chữ nhật => BC ⊥ AB

    Mà SA ⊥ BC => BC ⊥ SB

    Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD

    Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.

    Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”

  • Câu 14: Thông hiểu

    Cho tứ diện ABCD có AB = AC, BD = CD. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC.

    Do tam giác ABC và tam giác BCD lần lượt là tam giác cân tại A và tại D

    => BC ⊥ MA, BC ⊥ MD

    => BC ⊥ (ADM)

    => BC ⊥ AD

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCDcó đáy ABCD là hình vuông tâm O cạnh bằng aSA =
a\sqrt{3} vuông góc với đáy. Tính cosin góc giữa SB;AC.

    Hình vẽ minh hoạ

    Gọi I là trung điểm của SD

    => OI là đường trung bình tam giác SBD

    Suy ra \left\{ \begin{matrix}OI//SB \\OI = \dfrac{SB}{2} = \dfrac{\sqrt{SA^{2} + AB^{2}}}{2} = a \\\end{matrix} ight.

    Ta có: AI = \frac{SD}{2} =
\frac{\sqrt{SA^{2} + AD^{2}}}{2} = a

    \Rightarrow AI = OI nên tam giác AOI cân tại I

    Gọi H là tung điểm của OA \Rightarrow\left\{ \begin{matrix}IH\bot OA \\OH = \dfrac{OA}{2} = \dfrac{AC}{4} = \dfrac{a\sqrt{2}}{4} \\\end{matrix} ight.

    Xét tam giác OHI có:

    \cos\widehat{HOI} = \dfrac{OH}{OI} =\dfrac{\dfrac{a\sqrt{2}}{4}}{a} = \dfrac{\sqrt{2}}{4}

    \cos(SB,AC) = \cos\widehat{HOI} =
\frac{\sqrt{2}}{4}

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 17: Thông hiểu

    Tính thể tích khối chóp tứ giác đều có tất cả các cạnh bằng 1cm?

    Hình vẽ minh họa

    Giả sử khối chóp tứ giác đều đã cho là S.ABCD

    Khi đó ABCD là hình vuông cạnh bằng 1 cm và SA = SB = SC = SD = 1cm

    Gọi H là tâm hình vuông ABCD thì SH\bot(ABCD) nên SH là chiều cao của khối chóp S.ABCD.

    Tính SH

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{1^{2} + 1^{2}} = \sqrt{2}(cm)

    Nhận thấy AC^{2} = SA^{2} +
SC^{2} nên tam giác SAC vuông tại S

    \Rightarrow SH = \frac{AC}{2} =
\frac{1}{\sqrt{2}}(cm)

    Diện tích đáy của khối chóp là S_{ABCD} =
1^{2} = 1\left( cm^{2} ight)

    Thể tích khối chóp S.ABCDV = \frac{1}{3}.S_{ABCD}.SH =
\frac{1}{3}.1.\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{6}\left( cm^{3}
ight)

  • Câu 18: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AB = 2, AD = 3, AA’ = 4. Góc giữa hai mặt phẳng (AB’D’) và (A’C’D) là α. Tính giá trị gần đúng của α.

    Hình vẽ minh họa:

    Phần 1: Xác định góc

    Bước 1: Tìm giao tuyến giữa hai mặt phẳng:

    Trong mặt phẳng (ADD’A’) gọi E là giao điểm của AD’ và A’D.

    Trong mặt phẳng (A’B’C’D’) gọi F là giao điểm của B’D’ và A’C’.

    Khi đó EF là giao tuyến của hai mặt phẳng (AB’D’) và (A’C’D).

    Bước 2: Trong mỗi mặt phẳng, ta cần tìm đường thẳng vuông góc với giao tuyến:

    Trong mặt phẳng (DA’C’) kẻ A’H ⊥ EF tại H, A’H cắt DC’ tại K.

    Ta chứng minh D’H ⊥ EF.

    Ta có: \left\{ \begin{matrix}
DC’\bot A’K \\
DC’\bot A’D’ \\
\end{matrix} ight.\  \Rightarrow DC’\bot(A’D’K) \Rightarrow DC’\bot
D’H

    Mặt khác: \left\{ \begin{matrix}
DC’\bot D’H \\
D’C//EF \\
\end{matrix} ight.\  \Rightarrow DH’\bot EF

    Bước 3: Xác định góc giữa hai mặt phẳng:

    Ta có: \left\{ \begin{matrix}
D’H \subset (AB’D’) \\
D’H\bot EF \\
A’H \subset (DA’C’) \\
A’H\bot EF \\
(AB’D’) \cap (DA’C’) = EF \\
\end{matrix} ight.

    => α = ((AB’D’), (DA’C’)) = (D’H, A’H)

    Phần 2: Tính góc α:

    Ta sẽ sử dụng định lý cosin trong tam giác A’HD’

    Bước 1: Chứng minh tam giác A’HD’ cân:

    Trong tam giác A’DC’ ta có EF là đường trung bình, nên suy ra H là trung điểm A’K.

    Vì A’D’ ⊥ (DD’C’C) nên A’D’ ⊥ D’K.

    Do đó tam giác A’D’K vuông tại D’.

    Xét tam giác A’D’K vuông tại D’ có D’K là đường trung tuyến ứng với cạnh huyền nên D’H = A’H = A’K/2

    Bước 2: Tính độ dài cạnh A’K:

    Ta tính đường cao A’K của tam giác ADC’ thông qua diện tích.

    Áp dụng định lý Pi – ta - go ta tính được độ dài các cạnh tam giác A’DC’ là: A'D = 5;A'C' =
\sqrt{13};D'C = 2\sqrt{5}

    Sử dụng công thức Hê-rông ta tính được S_{A'DC'} = \sqrt{61}

    Mặt khác

    S_{A'DC'} =
\frac{1}{2}A'K.DC' = \frac{1}{2}A'K.2\sqrt{5}

    \Rightarrow A'K =
\frac{\sqrt{305}}{5}

    Từ đó suy ra D’H = A’H = A’K/2 = \frac{\sqrt{305}}{10}

    Bước 3: Tính góc α bằng định lý cosin:

    Trong tam giác A’HD’ ta có:

    \cos\widehat{A'HD'} =
\frac{HA^{2} + HD^{2} - A'D'^{2}}{2HA.HD}

    = \dfrac{2\left( \dfrac{\sqrt{305}}{10}ight)^{2} - 3^{2}}{2\left( \dfrac{\sqrt{305}}{10} ight)^{2}} = -\dfrac{29}{61}

    \Rightarrow \widehat{A'HD'} =
118,4^{0}

    Do đó góc giữa hai đường thẳng A’H và D’H bằng 61,60

    Vậy α = 61,60

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Xác định góc giữa hai đường thẳng ABDM?

    Hình vẽ minh họa

    Gọi N là trung điểm của AC thì MN // AB

    Suy ra (AB,DM) = (MN,DM)

    Ta có: \cos\widehat{DMN} = \frac{MN^{2} +
DM^{2} - DN^{2}}{2MN.DM}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2\left( \dfrac{a}{2} ight).\left( \dfrac{a\sqrt{3}}{2}ight)} = \dfrac{\sqrt{3}}{6}

    \cos\widehat{DMN} = \frac{\sqrt{3}}{6}
\Rightarrow (AB;DM) = \arccos\frac{\sqrt{3}}{6}

  • Câu 21: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 22: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 23: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 24: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA ⊥ (ABCD), AD = CD = a, AB = 2a. Gọi E là trung điểm của AB. Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.

    Từ giả thiết suy ra ADCE là hình vuông

    => CE ⊥ AB, CE = AD = a

    Ta có: CE ⊥ AB, CE ⊥ SA => CE ⊥ (SAB)

    Vì CE = AD = a => CE =\frac{1}{2}AB

    => Tam giác ABC vuông tại C => CB ⊥ AB

    Kết hợp với CB ⊥ SA => CB ⊥ (SAC)

    Ta có:

    CD ⊥ AD, CD ⊥ SA => CD ⊥ (SAD)

    => Tam giác SDC vuông tại D

    Dùng phương pháp loại trừ nên ta có: CE ⊥ (SDC) là khẳng định sai.

  • Câu 26: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 27: Vận dụng

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc.

    Hình vẽ minh họa:

    Gọi M, N lần lượt là trung điểm của AB, CD.

    Ta có AN ⊥ CD mà (ACD) ⊥ (BCD) suy ra AN ⊥ (BCD) => AN ⊥ BN

    Tam giác ABC cân tại C, có M là trung điểm của AB suy ra CM ⊥ AB

    Giả sử (ABC) ⊥ (BCD) mà CM ⊥ AB suy ra CM ⊥ (ABD) => CM ⊥ DM

    Khi đó, tam giác MCD vuông cân tại M

    => MN = \frac{AB}{2} = \frac{CD}{2}
\Rightarrow AB = CD = 2x

    Ta lại có AN = BN = \sqrt{AC^{2} -
AN^{2}} = \sqrt{a^{2} - x^{2}}

    AB^{2} = AN^{2} + BN^{2}

    => 2\left( a^{2} - x^{2} ight) =
4x^{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 29: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 30: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).

  • Câu 31: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 32: Nhận biết

    Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là 3x^{2};2x. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}
B = 3x^{2} \\
h = 2x \\
\end{matrix} ight.

    Thể tích khối lăng trụ đã cho bằng: V =
B.h = 3x^{2}.2x = 6x^{3}

  • Câu 33: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 34: Thông hiểu

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại C, AC = a;BC
= a\sqrt{2}, SA\bot(ABC);SA =
a. Tính góc tạo bởi SB và mặt phẳng đáy?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AB là hình chiếu của SA trên mặt phẳng đáy.

    \Rightarrow \left( SB;(ABC) ight) =
(SB;AB) = \widehat{SBA}

    Mặt khác tam giác ABC vuông tại C nên AB
= \sqrt{AC^{2} + BC^{2}} = a\sqrt{3}

    \Rightarrow \tan\widehat{SBA} =
\frac{SA}{AB} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SB;(ABC) ight) =
\widehat{SBA} = 30^{0}

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC);SA = a\sqrt{3}, tam giác ABC đều có AB = a. Giả sử \alpha = \left( AB;(ABC) ight). Hãy xác định giá trị \sin\alpha?

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Kẻ đường cao AK của tam giác SAM.

    Tam giác ABC đều suy ra AM\bot BC
\Rightarrow BC\bot(SAM) \Rightarrow AK\bot(ABC)

    \Rightarrow \alpha = \left( AB;(ABC)
ight) = (AB;AK) = \widehat{ABK}

    Xét tam giác ABM vuông tại A ta có:

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AM^{2}}

    = \frac{1}{\left( a\sqrt{3} ight)^{2}}
+ \frac{1}{\left( \frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{5}{3a^{2}}

    \Rightarrow AK =
\frac{a\sqrt{15}}{5}

    AK\bot(ABC) \Rightarrow AK\bot
BK

    Xét tam giác ABK vuông tại K ta có:

    \sin\alpha = \frac{AK}{AB} =
\frac{\sqrt{15}}{5}

  • Câu 36: Vận dụng cao

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA = SB = SC = b. Gọi G là trọng tâm của tam giác ABC. Tính độ dài cạnh SG.

    Giả sử H là chân đường vuông góc hạ từ S xuống mặt phẳng (ABC)

    Khi đó, do SA, SB, SC bằng nhau nên HA = HB = HC hay H là tâm đường tròn ngoại tiếp tam giác ABC, tức là H trùng với G

    Vì tam giác ABC là tam giác đều cạnh a nên

    \begin{matrix}GC = \dfrac{a\sqrt{3}}{3} \hfill \\\Rightarrow SG = \sqrt{SC^{2} - GC^{2}} = \dfrac{1}{3}\sqrt{9b^{2} -3a^{2}} \hfill \\\end{matrix}

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có:

    (SAB) ⊥ (ABCD)

    BC ⊥ BA

    => BC ⊥ (SAB).

    Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.

    Ta có:

    Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB

  • Câu 38: Thông hiểu

    Cho hình chóp S,ABC có đáy là tam giác vuông cân tại A. Tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt đáy. Tính d(SA;BC)?

    Hình vẽ minh họa

    Gọi H là trung điểm của BC. Suy ra SH\bot(ABC)

    Kẻ HK\bot SA;(K \in SA)(1)

    Ta có: \left\{ \begin{matrix}
BC\bot SH \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SHA) \Rightarrow BC\bot
KH(2)

    Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC

    Do đó d(SA;BC) = HK =
\frac{SH.HA}{\sqrt{SH^{2} + HA^{2}}} = \frac{a\sqrt{3}}{4}

  • Câu 39: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 40: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo