Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết:
. Hai bên mặt SAB và SAD vuông tại a. Gọi μ là góc giữa hai đường thẳng SB và AC. Tính cosμ?
Hình vẽ minh họa:

Ta có:
Ta lại có:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết:
. Hai bên mặt SAB và SAD vuông tại a. Gọi μ là góc giữa hai đường thẳng SB và AC. Tính cosμ?
Hình vẽ minh họa:

Ta có:
Ta lại có:
Cho hình hộp
có đáy là hình thoi. Gọi mặt phẳng
chứa cạnh
và cắt
lần lượt tại
. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
mà
Mặt khác
.
Cho lăng trụ đứng ABC.A’B’C’ có AB = AC = BB’ = a,
. Gọi I là trung điểm của CC’. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).
Hình vẽ minh họa:
Gọi E là giao điểm của B’I và BC, H thuộc BC sao cho EA ⊥ AH tại A, K ∈ B’I sao cho KH ⊥ CB tại H.
Ta có: KH ⊥ CB => KH // CC’
=> KH ⊥ (ABC) tại H => KH ⊥ EA mà EA ⊥ AH => EA ⊥ (AKH) => EA ⊥ AK
Góc giữa hai mặt phẳng (AIB’) và (ACB) là
Ta có: BC = 2a.cos 300 =
Mặt khác AE2 = EC2 + AC2 − 2AC.EC. cos ACE
AE2 = 3a2 + a2 − 2a..cos 1500= 7a2
=>
Ta có:
Ta có:
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?
Hình vẽ minh họa:
Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.
Gọi H là trung điểm AC => SH ⊥ AC.
Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.
Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.
Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.
Từ đó suy ra (ABI) ⊥ (SBC).
Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai
Cho
là hình hộp. Khẳng định nào sau đây đúng?
Nếu là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và điểm M thuộc đoạn OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng:

Hình ảnh minh họa:
Do AB // C’D’ nên giao tuyến của (MAB) và (MC’D’) là đường thẳng ∆ // AB // C’D’.
Gọi P, Q lần lượt là trung điểm của D’C’ và AB ta có:
=> MP ⊥ ∆, MQ ⊥ ∆.
Như vậy góc giữa (MAB) và (MC0’’) là góc giữa MP và MQ.
Không mất tính tổng quát, ta cho cạnh hình lập phương là 6.
Khi đó
Áp dụng định lí cosin cho tam giác MPQ ta được:
Góc α là góc giữa hai mặt phẳng (MC’D’) và (MAB) ta có:
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA⊥(ABC), SA = a. Mặt phẳng (α) qua A và vuông góc với trung tuyến SI của tam giác SBC. Tính diện tích S của thiết diện tạo bởi (α) với hình chóp đã cho.
Hình vẽ minh họa:
Ta có: I là trung điểm của BC => AI ⊥ BC. Kẻ AK ⊥ SI (K ∈ SI)
Từ K kẻ đường thẳng song song với BC cắt SB và SC lần lượt tại M và M.
Khi đó thiết diện là tam giác AMN. Ta có:
Xét tam giác SAI vuông ta có:
Xét tam giác SBC ta có:
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:
Hình vẽ minh họa:
Do ABCD là hình vuông cạnh a
=>
=> Tam giác SAC vuông tại S
Từ giả thiết ta có MN là đường trung bình của tam giác DSA
=> . Khi đó
=>
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình lập phương ABCD.A’B’C’D’. Đường thẳng AC’ vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa:

Ta có: AA’D’A là hình vuông => AD’ ⊥ A’D
ABCD.A’B’C’D là hình lập phương => AB ⊥ A’D
=> A’D ⊥ (ABC’D’) => A’D ⊥ AC’
Ta lại có: ABCD là hình vuông => AC ⊥ BD
Mà A’A ⊥ BD => BD ⊥ (AA’C’C) => BD ⊥ AC’
Kết hợp với A’D ⊥ AC’ => A’C ⊥ (A’BD)
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình chóp
có đáy
là hình thoi tâm
. Gọi
lần lượt là trung điểm của các cạnh
và
.

Khẳng định nào sau đây đúng?
Vì IJ là đường trung bình của tam giác SAC nên
Ta có:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho tứ diện
có
. Gọi trung điểm của
lần lượt là
. Khi đó cosin góc giữa hai đường thẳng
và
bằng bao nhiêu?
Hình vẽ minh họa
Gọi M là trung điểm của AC khi đó góc giữa hai đường thẳng AB và CD bằng góc giữa hai đường thẳng MI và MJ.
Ta có:
Cho khối lăng trụ tam giác đều
có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Khi đó
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
,
. Xác định độ lớn khoảng cách từ điểm
đến mặt phẳng
?
Hình vẽ minh họa
Gọi
Kẻ
Ta có:
Mà
Từ (*) và (**) suy ra
Từ (1) và (2) suy ra
Xét tam giác vuông tại
ta có:
Cho hình lập phương
. Mặt phẳng nào dưới đây không vuông góc với
?
Hình vẽ minh họa
Dễ thấy mặt phẳng không vuông góc với
.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA
=>
Xét tam giác SAB vuông ta có:
Cho hình chóp tứ giác đều
, đáy
cạnh bằng
, cạnh bên
. Tính thể tích hình chóp
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Ta có:
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Gọi . Do
nên suy ra
(vì
)
Kẻ ta có:
Từ (1) và (2) , khi đó
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
. Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và
. Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi
là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính
.

Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).
Khi đó:
Ta có:
Xét tam giác ACM có:
Vậy
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”
Vì b có thể nằm trong (P).
Cho vecto
≠
và hai vecto
và
không cùng phương. Nếu vecto
vuông góc với cả hai vecto
và
thì
,
và
:
Trường hợp "Đồng phẳng" và " Có thể đồng phẳng" sai vì có thể xảy ra trường hợp như hình vẽ sau:

Giả sử trường hợp "Không đồng phẳng" sai tức là ba vecto ,
và
đồng phẳng.
Khi đó vì điều này mẫu thuẫn với giả thiết hai vecto
và
không cùng phương.
Vậy đáp án đúng là "Không đồng phẳng"
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Vì AH ⊥ (BCD) => AH ⊥ CD (*)
Do H là trực tâm tam giác BCD => BH ⊥ CD (**)
Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng
, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

Ta có tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)
Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc
Khi đó
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của ![]()
Hình vẽ minh họa:

Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có: