Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC. Số đo góc (IJ; CD) bằng:

    Hình vẽ minh họa:

    Gọi O là tâm của hình thoi ABCD

    => OJ là đường trung bình của tam giác BCD => \left\{ \begin{matrix}OJ//CD \\OJ = \dfrac{1}{2}CD \\\end{matrix} ight.

    Vì CD // OJ => (IJ; CD) = (IJ; OJ)

    Xét tam giác IOJ có: \left\{\begin{matrix}IJ = \dfrac{1}{2}SB = \dfrac{a}{2} \\\begin{matrix}OJ = \dfrac{1}{2}CD = \dfrac{a}{2} \\OI = \dfrac{1}{2}SA = \dfrac{a}{2} \\\end{matrix} \\\end{matrix} ight.=> Tam giác IOJ đều

    Vậy (IJ; CD) = (IJ; OJ) = \widehat{IJO} =
60^{0}

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Gọi trung điểm các cạnh SC;SD lần lượt là M,N. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: MN là đường trung bình của tam giác SCD => MN//CD

    Ta có: \left\{ \begin{matrix}
MN//CD \\
BC\bot CD \\
\end{matrix} ight.\  \Rightarrow MN\bot BC

  • Câu 4: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của \overrightarrow {{B_1}M} .\overrightarrow {B{D_1}}

    Hình vẽ minh họa:

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {B{D_1}}  = \overrightarrow {BA}  + \overrightarrow {A{D_1}}  \hfill \\   \Rightarrow \overrightarrow {B{D_1}}  =  - \overrightarrow {AB}  + \overrightarrow {A{A_1}}  + \overrightarrow {AD}  \hfill \\  \overrightarrow {{B_1}M}  = \overrightarrow {{B_1}A}  + \overrightarrow {AM}  \hfill \\   \Rightarrow \overrightarrow {{B_1}M}  =  - \overrightarrow {AB}  - \overrightarrow {A{A_1}}  + \dfrac{1}{2}\overrightarrow {AD}  \hfill \\   \Rightarrow \overrightarrow {B{D_1}} .\overrightarrow {{B_1}M}  = A{B^2} - A{A_1}^2 + \dfrac{1}{2}A{D^2} \hfill \\   \Rightarrow \overrightarrow {B{D_1}} .\overrightarrow {{B_1}M}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 6: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 7: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB, AD. Gọi α là góc giữa SA và (SHK). Chọn mệnh đề đúng?

    Hình vẽ minh họa:

    Gọi I là giao điểm của HK và AC

    Dễ dàng suy ra HK // BD => HK ⊥ AC

    Ta lại có: AC ⊥ SH

    => AC ⊥ (SHK)

    => \left( SA;(SHK) ight) = (SA;SI) =
\widehat{ASI}

    Tam giác SIA vuông tại I ta có:

    \tan\widehat{ASI} = \dfrac{AI}{SI} =\dfrac{\dfrac{1}{4}AC}{\sqrt{SA^{2} - AI^{2}}} =\dfrac{\sqrt{7}}{7}

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, biết \Delta SAD đều. Tính \cos(BC;SA)?

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(AD;SA) = 60^{0}

    \Rightarrow \cos(BC;SA) =
\frac{1}{2}.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

  • Câu 11: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D. Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: B'C'\bot(ABB'A')
\Rightarrow B'C'\bot A'B

    Ta có: \left\{ \begin{matrix}
A'B\bot AB' \\
A'B\bot B'C' \\
AB' \cap B'C' = B' \\
AB';B'C' = B' \\
\end{matrix} ight.\  \Rightarrow A'B\bot(AB'C')
\Rightarrow A'B\bot AC'

    Mặt khác BD\bot(ACC'A')
\Rightarrow BD\bot AC'

    Ta có: \left\{ \begin{matrix}
A'B\bot AC' \\
BD\bot AC' \\
A'B \cap BD = B \\
A'B \cap BD \subset (A'BD) \\
\end{matrix} ight.\  \Rightarrow AC'\bot(A'BD)

  • Câu 12: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:

    Hình vẽ minh họa:

    Hoàn thành mệnh đề

    Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Tam giác SAI vuông tại I

    => SA2 = AI2 + SI2

    Tam giác SBI vuông tại I

    => SB2 = BI2 + SI2

    Tam giác SCI vuông tại I

    => SC2 = CI2 + SI2

    Kết hợp với điều kiện: SA = SB = SC

    => I là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABC, SA\bot(ABC) có đáy ABC là tam giác vuông cân tại B. Biết rằng SA = a\sqrt{2};AB = a. Gọi \alpha là góc giữa đường thẳng SC và mặt phẳng (ABC). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta thấy hình chiếu vuông góc của SC lên mặt phẳng ABCAC nên \left(
SC;(ABC) ight) = \widehat{SCA}

    Do tam giác ABC vuông cân tại B nên AC =
\sqrt{BC^{2} + AB^{2}} = a\sqrt{2}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = 1

    \Rightarrow \left( SC;(ABC) ight) =
\widehat{SCA} = 45^{0}

  • Câu 15: Thông hiểu

    Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto \overrightarrow {OM} ;\overrightarrow {BC}?

    Tính góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OM} .\overrightarrow {BC}  = \dfrac{1}{2}\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight).\left( {\overrightarrow {OC}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}O{B^2} = \dfrac{{ - 1}}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = \dfrac{{\overrightarrow {OM} .\overrightarrow {BC} }}{{OM.BC}} = \dfrac{{ - \dfrac{1}{2}}}{{\dfrac{{\sqrt 2 .\sqrt 2 }}{2}}} =  - \dfrac{1}{2} \hfill \\   \Rightarrow \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = {120^0} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 17: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 18: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 30^{0}

    Ta có: AM = \frac{AA'}{tan30^{0}} =
2a\sqrt{3}

    \Rightarrow BC = 2AM =
4a\sqrt{3}

    \Rightarrow S_{ABC} = \frac{1}{2}.AM.BC
= 12a^{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} = 24a^{3}

  • Câu 19: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = 2\sqrt{3} và AA’ = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A’B’, A’C’ và BC. Cosin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng:

    Hình vẽ minh họa:

    Gọi P, Q lần lượt là trung điểm của BC và B’C’; I = BM ∩ AB’, J = CN ∩ AC’, E = MN ∩ A’Q.

    Suy ra (MNP) ∩ (AB’C’) = (MNCB) ∩ (AB’C’) = IJ và gọi K = IJ ∩ PE

    => K ∈ AQ, với E là trung điểm của MN.

    (AA’QP) ⊥ IJ => AQ ⊥ IJ, PE ⊥ IJ

    => ((MNP), (AB’C’)) = (AQ, PE) = α.

    Ta có: AP = 3, PQ = 2

    \Rightarrow AQ = \sqrt{13} \Rightarrow
QK = \frac{\sqrt{13}}{3}

    PE = \frac{5}{2} \Rightarrow PK =
\frac{5}{3}

    \cos\alpha = \left| \cos\widehat{QKP}
ight| = \frac{\left| KQ^{2} + KP^{2} - PQ^{2} ight|}{2KQ.KP} =
\frac{\sqrt{13}}{65}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 21: Nhận biết

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q). Khi đó khẳng định nào là khẳng định đúng?

    Cho mặt phẳng (P) và (Q) vuông góc với nhau, đường thẳng a vuông góc với mặt phẳng (Q), khi đó a nằm trên (P) hoặc song song với (P).

  • Câu 22: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 23: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 3a?

    Ta có: V = (3a)^{3} =
27a^{3}

  • Câu 24: Vận dụng

    Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).

    Gọi M là trung điểm của SD.

    Tam giác SCD đều nên CM ⊥ SD.

    Tam giác SBD có SB = SD = a, BD =
a\sqrt{2} nên vuông tại S

    => SB ⊥ SD => OM ⊥ SD

    => ((SBD),(SCD)) = (OM, CM) = \widehat{OMC}

    Ta có: \left\{ \begin{matrix}
OC\bot BD \\
OC\bot SO \\
\end{matrix} ight.\  \Rightarrow OC\bot(SBD) \Rightarrow OC\bot
OM

    Tam giác vuông MOC ta có:

    \tan\widehat{OMC} = \frac{OC}{OM} =
\sqrt{2}

  • Câu 25: Nhận biết

    Cho hình chóp tam giác S.ABC có đáy ABC vuông tại B, SA\bot(ABC). Khi đó:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CB\bot SA \\
CB\bot AB \\
\end{matrix} ight.\  \Rightarrow CB\bot(SAB)

  • Câu 26: Vận dụng cao

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a, SA ⊥ (ABC). Gọi (α) là mặt phẳng đi qua B và vuông góc với sc. Tính diện tích S của thiết diện tạo bởi (α) và hình chóp đã cho.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AC => BI ⊥ AC

    Ta có:

    \begin{matrix}\left\{ \begin{matrix}BI\bot AC \hfill \\BI\bot SA \\\end{matrix} ight.\  \Rightarrow BI\bot(SAC) \hfill \\\Rightarrow BI\bot SC(*) \hfill \\\end{matrix}

    Kẻ IH ⊥ SC (**)

    Từ (*) và (**) => SC ⊥ (BIH)

    Vậy thiết diện cần tìm là tam giác IBH

    Do BI ⊥ (SAC) =? BI ⊥ IH => Tam giác IBH vuông tại I

    Ta có BI là đường cao của tam giác đều cạnh a

    => BI =
\frac{a\sqrt{3}}{2}

    Tam giác CHI đồng dạng tam giác CAS

    \begin{matrix}\Rightarrow \dfrac{IH}{SA} = \dfrac{CI}{CS} \hfill \\\Rightarrow IH = \dfrac{CI.SA}{CS} = \dfrac{CI.SA}{\sqrt{SA^{2} + AC^{2}}}= \dfrac{a\sqrt{5}}{5}  \hfill\\\Rightarrow S_{BIH} = \dfrac{1}{2}BI.IH = \dfrac{a^{2}\sqrt{15}}{20} \hfill \\\end{matrix}

  • Câu 27: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạng AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP.

    Do AC song song với MN nên góc giữa hai đường thẳng MN và AP là góc giữa hai đường thẳng AC và AP.

    Ta tính được: PC = \frac{{a\sqrt 5 }}{2};AP = \frac{{3a}}{2};AC = a\sqrt 2

    \begin{matrix}  \cos \left( {\widehat {CAP}} ight) = \dfrac{{A{P^2} + A{C^2} - P{C^2}}}{{2AP.AC}} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \to \widehat {CAP} = {45^0} \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 30: Thông hiểu

    Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc. Độ dài DE bằng:

    Ta có:

    EB ⊥ (ABCD) vì nó vuông góc với giao tuyến AB của hai mặt phẳng vuông góc đã cho

    => CD ⊥ (EBC) => CD ⊥ CE

    => Tam giác ECD vuông tại C.

    => DE = \sqrt {E{C^2} + C{D^2}}

    Ta có: EB ⊥ BC => Tam giác EBC vuông tại B

    => EC = \sqrt {B{E^2} + C{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    => DE = \sqrt {E{C^2} + C{D^2}}

    => DE =a\sqrt{3}

  • Câu 31: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Một đường thẳng d đi qua đỉnh D’ và tâm I của mặt bên BCC’B’. Hai điểm M, N thay đổi lần lượt thuộc các mặt phẳng (BCC’B’) và (ABCD) sao cho trung điểm K của MN thuộc đường thẳng d (tham khảo hình vẽ). Giá trị bé nhất của độ dài đoạn thẳng MN là:

    Hình vẽ minh họa:

    Kẻ ME vuông góc với CB, tam giác MEN vuông tại E nên MN = 2EK.

    Vậy MN bé nhất khi và chỉ khi EK bé nhất.

    Lúc này EK là đoạn vuông góc chung của hai đường thẳng d và đường thẳng CB.

    Qua I kẻ P Q song song với BC (như hình vẽ).

    Vậy d(BC, d) = d(BC,(D’PQ)) = d(C, (D’PQ)) = d(C’, (D’P Q)) = C’H (trong đó C’H vuông góc với D’P).

    Ta có:

    \frac{1}{C'H^{2}} = \frac{1}{a^{2}}+ \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow C'H =\frac{a\sqrt{5}}{2} \Rightarrow d(BC;d) =\frac{2a\sqrt{5}}{5}

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 33: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết AB = a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
\sqrt{3}a

    \Rightarrow AA' = \sqrt{\left(
a\sqrt{3} ight)^{2} - a^{2}} = a\sqrt{2}

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = \sqrt{2}a.\frac{1}{2}.a.a =
\frac{\sqrt{2}}{2}a^{3}

  • Câu 34: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 35: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 36: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 37: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S

    => SO ⊥ AC, SO ⊥ BD

    => SO ⊥ (ABCD)

  • Câu 39: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 40: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo