Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 3: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    \widehat{(AC;AD)} = 90^{0} đúng

    AH\bot(SBC) đúng

    \widehat{(SC;HK)} = 90^{0} đúng

    Tam giác SBC cân tại B. sai

  • Câu 5: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là đúng?

     Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"

  • Câu 6: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD3CD =
4AB. Gọi trung điểm của các cạnh BC,AC,DB lần lượt là G,E,F. Biết rằng 6EF = 5AB. Tính (CD;AB)?

    Hình vẽ minh họa

    Đặt AB = a

    Vì trung điểm của các cạnh BC,AC,DB lần lượt là G,E,F

    Suy ra \left\{ \begin{matrix}GE = \dfrac{1}{2}AB = \dfrac{a}{2} \\GF = \dfrac{1}{2}CD = \dfrac{2}{3}AB = \dfrac{2a}{3} \\EF = \dfrac{5}{6}AB = \dfrac{5a}{6} \\\end{matrix} ight.

    Từ đó GE^{2} + GF^{2} = \frac{a^{2}}{4} +
\frac{4a^{2}}{9} = \frac{25a^{2}}{36} = EF^{2}

    Suy ra tam giác GEF vuông tại G.

    GE//AB;GF//CD nên (AB,CD) = (GE,GF) = \widehat{EGF} =
90^{}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD ABCD là hình vuông cạnh a, tam giác SAD đều. góc giữa BCSA là:

    Hình vẽ minh họa

    BC//AD \Rightarrow (BC,SA) = (AD,SA) =
60^{0}

  • Câu 9: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Xác định thể tích S.ABCD?

    Hình vẽ minh họa

    Ta có:

    S_{ABCD} = a^{2} \Rightarrow V_{S.ABCD}
= \frac{1}{3}SA.S_{ABCD} = \frac{a^{3}\sqrt{2}}{3}

  • Câu 10: Thông hiểu

    Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?

    Hình vẽ minh họa:

    Tính cosin góc giữa hai cạnh AJ và CI?

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    Ta có:

    \begin{matrix}  \overrightarrow {AJ}  = \dfrac{1}{2}\overrightarrow {AD}  + \dfrac{1}{2}\overrightarrow {AC}  \hfill \\  \overrightarrow {CI}  = \overrightarrow {AI}  - \overrightarrow {AC}  = \dfrac{1}{2}\overrightarrow {AB}  - \overrightarrow {AC}  \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  - 2\overrightarrow {AC} } ight).\left( {\overrightarrow {AC}  + \overrightarrow {AD} } ight) \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  =  - \dfrac{{{a^2}}}{2} \hfill \\   \Rightarrow \overrightarrow {CI}  = \overrightarrow {AJ}  = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {CI} ;\overrightarrow {AJ} } ight) = \dfrac{2}{3} \hfill \\ \end{matrix}

    Vậy cosin góc giữa hai cạnh AJ và CI bằng \frac{2}{3}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh x; SA\bot(ABCD). Góc tạo bởi cạnhSC và mặt phẳng (SAB) bằng 30^{0}. Xác định thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh bằng x nên S_{ABCD} = x^{2}

    Dễ dàng chứng minh được BC\bot(SAB)

    \Rightarrow \left( SC;(SAB) ight) =
\widehat{CSB} = 30^{0}

    Đặt SA = m \Rightarrow SB = \sqrt{m^{2} +
x^{2}}

    Tam giác SBC vuông tại B nên \tan\widehat{CSA} = \tan30^{0} = \frac{1}{\sqrt{3}}= \frac{BC}{SB}

    Ta được:

    BC = SB\sqrt{3} \Leftrightarrow
\sqrt{m^{2} + x^{2}} = x\sqrt{3} \Rightarrow m = x\sqrt{2}

    Vậy diện tích hình chóp là:

    V = \frac{1}{3}SA.S_{ABCD} =
\frac{1}{3}.x\sqrt{2}.x^{2} = \frac{x^{3}\sqrt{2}}{3}

  • Câu 12: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Tam giác SAB đều và \left( (SAB);(ABCD) ight) = 90^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều nên SH\bot
AB

    Lại có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Tính được SH = a\sqrt{3}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.(2a)^{2}.a\sqrt{3} = \frac{4a^{3}\sqrt{3}}{3}

  • Câu 13: Thông hiểu

    Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Điểm I là:

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot OI} \\   {AB \bot OC} \end{array}} ight. \Rightarrow AB \bot CI

    Chứng minh tương tự ta được: BC \bot AI

    Vậy I là trực tâm của tam giác ABC.

  • Câu 14: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 15: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3}. Cạnh bên SA = 2a, SA ⊥ (ABCD). Mặt phẳng (α) đi qua A và vuông góc với SC. Tính diện tích S của thiết diện tạo bởi mặt phẳng (α) và hình chóp đã cho.

    Hình vẽ minh họa:

    Trong tam giác SAC có: AI ⊥ SC (I thuộc SC)

    Trong mặt phẳng (SBC) dựng đường thẳng qua I và vuông góc với SC cắt SB tại M.

    Trong mặt phẳng (SCD) dựng đường thẳng qua I và vuông góc với SC cắt SD tại N.

    Khi đó thiết diện của hình chóp cắt bởi mặt phẳng (α) là tứ giác AMIN.

    Ta có: SC ⊥ (α) => SC ⊥ AM (*)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AM(**)

    Từ (*) và (**) => AM ⊥ (SBC) => AM ⊥ MI

    Chứng minh tương tự ta được AN ⊥ NI

    Vì AM, AI, AN lần lượt là các đường cao của tam giác SAB, SAC, SAD nên

    \begin{matrix}AM = \dfrac{SA.AB}{\sqrt{SA^{2} + AB^{2}}} = \dfrac{2a}{\sqrt{5}}  \hfill\\AI = \dfrac{SA.AC}{\sqrt{SA^{2} + AC^{2}}} = a\sqrt{2} \hfill \\AN = \dfrac{SA.AD}{\sqrt{SA^{2} + AD^{2}}} = \dfrac{2a\sqrt{21}}{7} \hfill \\\Rightarrow \left\{ \begin{matrix}MI = \sqrt{AI^{2} - AM^{2}} = \dfrac{a\sqrt{30}}{5} \hfill \\NI = \sqrt{AI^{2} - AN^{2}} = \dfrac{a\sqrt{14}}{7} \hfill \\\end{matrix} ight.\ \hfill  \\\Rightarrow S_{AMIN} = \dfrac{1}{2}\left(\dfrac{2a}{\sqrt{5}}.\dfrac{a\sqrt{30}}{5} +\dfrac{2a\sqrt{21}}{7}.\dfrac{a\sqrt{14}}{7} ight) =\dfrac{12a^{2}\sqrt{6}}{35} \hfill \\\end{matrix}

  • Câu 16: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.

    Hình vẽ minh họa:

    Số đo góc giữa hai đường thẳng chéo nhau

    \begin{matrix}  \overrightarrow {SC} \overrightarrow {AB}  =  - \overrightarrow {CS} .(\overrightarrow {CB}  - \overrightarrow {CA} ) \hfill \\   = \overrightarrow {CS} .\overrightarrow {CA}  - \overrightarrow {CS} .\overrightarrow {CB}  \hfill \\   = CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB} \hfill \\   = CS.CA.\dfrac{{S{C^2} + C{A^2} - S{A^2}}}{{2SC.CA}} \hfill \\   - CS.CB.\dfrac{{S{C^2} + C{B^2} - S{B^2}}}{{2SC.CB}} \hfill \\   = \frac{{S{C^2} + C{A^2} - S{A^2}}}{2} - \dfrac{{S{C^2} + C{B^2} - S{B^2}}}{2} = 0 \hfill \\  ({\text{Do }}SA = SB{\text{ v\`a  }}CA = CB) \Rightarrow SC \bot AB \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông tâm O, SA ⊥ (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) là:

    Hình vẽ minh họa:

    Ta có:

    Hai mặt phẳng (ABCD) và (SBD) cắt nhau theo giao tuyến BD.

    Lại có AO nằm trong (ABCD) và vuông góc với BD tại O

    Mà SO nằm trong (SBD) và vuông góc với BD tại O.

    => Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng góc giữa hai đường thẳng OA và OS, tức là góc \widehat{SOA}

  • Câu 19: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC, SA\bot(ABC) có đáy ABC là tam giác vuông cân tại B. Biết rằng SA = a\sqrt{2};AB = a. Gọi \alpha là góc giữa đường thẳng SC và mặt phẳng (ABC). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta thấy hình chiếu vuông góc của SC lên mặt phẳng ABCAC nên \left(
SC;(ABC) ight) = \widehat{SCA}

    Do tam giác ABC vuông cân tại B nên AC =
\sqrt{BC^{2} + AB^{2}} = a\sqrt{2}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = 1

    \Rightarrow \left( SC;(ABC) ight) =
\widehat{SCA} = 45^{0}

  • Câu 21: Vận dụng

    Cho hình chóp đều S.ABCD. Mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD). Thiết diện tạo bởi (α) với hình chóp đã cho là

    Hình vẽ minh họa:

    Gọi I, J lần lượt là trung điểm của CD và AB.

    Trong tam giác SIJ kẻ JK ⊥ SI.

    Trong tam giác SIJ, qua K kẻ đường thẳng song song với CD cắt SC tại M, cắt SD tại N.

    Ta dễ dàng chứng minh được (ABMN) ⊥ (SCD). Khi đó thiết diện cần tìm là hình thang ABMN. Vì hình chóp đã cho là hình chóp đều nên suy ra AN = BM.

    Vậy thiết diện là hình thang cân.

  • Câu 22: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 23: Nhận biết

    Trong không gian cho đường thẳng \Delta và điểm A. Qua điểm A có bao nhiêu đường thẳng vuông góc với \Delta?

    Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

  • Câu 24: Nhận biết

    Trong các mệnh đề dưới đây, mệnh đề nào là mệnh đề đúng?

    Mệnh đề đúng: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia”.

  • Câu 25: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 26: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 27: Vận dụng cao

    Cho hình chóp S.ABC có tam giác ABC vuông tại B và \widehat{ACB} = 30^{0}. Tam giác SAC là tam giác đều và thuộc mặt phẳng vuông góc với (ABC). Xét điểm M thuộc cạnh SC sao cho mặt phẳng (MAB) tạo với hai mặt phẳng (SAB); (ABC) góc bằng nhau. Tỉ số\frac{MS}{MC} có giá trị bằng:

    Gọi H là trung điểm của AC, suy ra SH ⊥ (ABC).

    Gọi N là trung điểm của AB, suy ra AB ⊥ (SHN).

    Lấy K là giao điểm của AM, SH. Do đó \left\{ \begin{matrix}
\left( (ABM),(ABC) ight) = \widehat{HNK} \\
\ \left( (ABM),(SAB) ight) = \widehat{KNS} \\
\end{matrix} ight.

    Theo giả thiết, NK là phân giác của góc \widehat{SNH}

    Giả sử: AB = 1 \Rightarrow BC = \sqrt{3}
\Rightarrow AC = 2 \Rightarrow SH = \sqrt{3}

    Mặt khác: SN = \sqrt{HN^{2} + SH^{2}} =
\frac{\sqrt{15}}{2}

    \Rightarrow \frac{KH}{KS} = \frac{HN}{SN}
= \frac{\sqrt{5}}{5} (tính chất phân giác).

    Gọi E là trung điểm của CM, theo định lí Ta-lét thì:

    \frac{KH}{KS} = \frac{ME}{MS} =
\frac{1}{\sqrt{5}}

    \Rightarrow \frac{MC}{MS} =
\frac{2ME}{MS} = \frac{2}{\sqrt{5}}

    \Rightarrow \frac{MC}{MS} =
\frac{2}{\sqrt{5}}

    Vậy \frac{MS}{MC} =
\frac{\sqrt{5}}{2}

  • Câu 28: Nhận biết

    Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?

    Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.

  • Câu 29: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

    Hình chiếu của SA lên mặt phẳng (ABC) là AH

    => Góc giữa SA và mặt phẳng (ABC) là \widehat{SAH}

    Tam giác ABC và SBC là các tam giác đều cùng cạnh a

    AH = SH =\frac{a\sqrt{3}}{2}

    Vậy tan α = 1

  • Câu 32: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại AAB =
a\sqrt{2}. Biết SA\bot(ABC)SA = a. Góc nhị diện \lbrack S,\ BC,\ Abrack có số đo bằng:

    Hình vẽ minh họa

    Kẻ AM\bot BC tại M \Rightarrow M là trung điểm của BCAM =
\frac{1}{2}BC = \frac{\left( a\sqrt{2} ight)\sqrt{2}}{2} = a .

    Ta có \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
(SAM)\bot BC \\
(SAM) \cap (SBC) = SM \\
(SAM) \cap (ABC) = AM \\
\end{matrix} ight. \Rightarrow
\left( \widehat{(SBC),(ABC)} ight) = \left( \widehat{SM,AM}
ight).

    Suy ra góc giữa (SBC)(ABC) bằng góc \widehat{SMA}.

    Ta có: \tan\widehat{SMA} = \frac{SA}{AM} = \frac{a}{a} =
1 \Rightarrow \widehat{SMA} = 45{^\circ}

    Suy ra góc nhị diện \lbrack S,\ BC,\
Abrack có số đo bằng 45{^\circ}.

  • Câu 34: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của SD\alpha là góc giữa hai đường thẳng ACBM. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi O là giao điểm của AC và BD, I là giao điểm của SO và BM.

    Trong mặt phẳng (SAC) kẻ NK // AC, NK
\cap SA = N;NK \cap SC = K

    Ta có: I là trọng tâm tam giác SBD.

    Ta có: SO = \sqrt{SA^{2} + AO^{2}} =
\frac{a\sqrt{3}}{2}

    Tam giác SBD đều cạnh bằng a\sqrt{2}
\Rightarrow BM = \frac{a\sqrt{2}.\sqrt{3}}{2} = \frac{a\sqrt{6}}{2}
\Rightarrow BI = \frac{2}{3}MB = \frac{a\sqrt{6}}{3}

    \Rightarrow \frac{IK}{OC} = \frac{2}{3}
\Rightarrow IK = \frac{2}{3}OC = \frac{2}{3}.\frac{a\sqrt{2}}{2} =
\frac{a\sqrt{2}}{3}

    \frac{SK}{SC} = \frac{2}{3} \Rightarrow
SK = \frac{2}{3}SC = \frac{2}{3}.a\sqrt{3}

    Tam giác SBC vuông tại B \Rightarrow
\cos\widehat{SBC} = \frac{SB}{SC} = \frac{a\sqrt{2}}{a\sqrt{3}} =
\frac{\sqrt{6}}{3}

    Lại có:

    KB^{2} = SK^{2} + SB^{2} -
2SK.SB.cos\widehat{BSK}

    = \left( \frac{2a\sqrt{3}}{3}
ight)^{2} + 2a^{2} -
2.\frac{2a\sqrt{3}}{3}.a\sqrt{2}.\frac{\sqrt{6}}{3} =
\frac{2}{3}a^{2}

    \Rightarrow \cos\widehat{KIB} =
\frac{IK^{2} + IB^{2} - KB^{2}}{2.IK.IB}

    = \frac{\left( \frac{a\sqrt{2}}{3}
ight)^{2} + \left( \frac{a\sqrt{6}}{3} ight)^{2} -
\frac{2a^{2}}{3}}{2.\frac{a\sqrt{2}}{3}.\frac{a\sqrt{6}}{3}} =
\frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}

    Vậy cosin góc giữa hai đường thẳng ACBM\frac{\sqrt{3}}{6}.

    VD

     

    1

  • Câu 35: Nhận biết

    Hình chóp tam giác đều S.ABC. Gọi Glà trọng tâm tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có khối chóp tam giác đều S.ABC có đáy ABC là tam giác đều, trọng tâm G cũng là tâm của đáy nên SG\bot(ABC).

  • Câu 36: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của BD'. Diện tích thiết diện tạo thành bằng:

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Ta có: EB
= ED' nên E thuộc mặt phẳng trung trực của BD'.

    Gọi F;G;H;I;K lần lượt là trung điểm của CD;CC';B'C';A'B';AA'

    Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của BD'

    Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD' là hình lục giác đều EFGHIK có cạnh bằng \frac{a\sqrt{2}}{2}.

    Vậy diện tích thiết diện là: S = 6.\left(
\frac{a\sqrt{2}}{2} ight)^{2}.\frac{\sqrt{3}}{4} =
\frac{3a^{2}\sqrt{3}}{4}

  • Câu 37: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 38: Thông hiểu

    Một khối chóp tứ giác đều có các cạnh bằng 2t (cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:

    SA = BA = BC = DA = DC

    \Rightarrow \Delta SAC = \Delta BAC =
\Delta DBC

    \Rightarrow \Delta SAC;\Delta BAC;\Delta
DBC lần lượt vuông tại S; B; D

    I là trung điểm của AC suy ra SA =
\frac{1}{2}AC = \frac{1}{2}.2t.\sqrt{2} = t\sqrt{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SI = \frac{1}{3}.(2t)^{2}.t\sqrt{2} =
\frac{4t^{3}\sqrt{2}}{3}

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AM, AN lần lượt là đường cao của tam giác SAB và tam giác SAD. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Khẳng định đúng trong các khẳng định đã cho

    Ta có: SA ⊥ (ABCD) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB)

    => BC ⊥ AE

    Mà AM nằm trong mặt phẳng (SAB)

    Xét tam giác SAB có:

    AM ⊥ SB

    Mà BC ⊥ AM => AM ⊥ (SBC) => AM ⊥ SC

    Chứng minh tương tự ta được: AN ⊥ SC

    => SC ⊥ (AMN)

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).

    Ta có:

    Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có

    d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ = \frac{3a}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo