Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình lập phương
có các cạnh bằng
. Tính khoảng cách giữa hai mặt phẳng
và
.
Hình vẽ minh họa
Vì là hình lập phương nên
và
.
Khoảng cách giữa hai mặt phẳng và
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:
Hình vẽ minh họa:
Kẻ HI // BC (I ∈ CD) ta có:
=> Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc
Dựng hình bình hành ADBE
Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))
Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ
Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))
Ta có:
Với
Vậy
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Cho hình lập phương
. Tính
?
Hình vẽ minh họa
Ta có:
Do là các đường chéo hình vuông bằng nhau.
Vậy tam giác là tam giác đều
Cho hình hộp
có đáy là hình thoi. Gọi mặt phẳng
chứa cạnh
và cắt
lần lượt tại
. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
mà
Mặt khác
.
Cho tứ diện S.ABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?
Hình vẽ minh họa:

Ta có: SBC là tam giác đều có H là trung điểm BC nên
Mà (SBC)⊥(ABC) theo giao tuyến BC
=> đúng.
Ta có HI là đường trung bình của ΔABC nên
=> đúng.
Ta có
=> đúng
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho hình chóp tứ giác
có
và đáy là hình vuông. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,
. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:
Hình vẽ minh họa:
Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.
Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD =
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto
và
?
Hình vẽ minh họa

Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).
Hình vẽ minh họa:
Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:
Gọi O là giao điểm của AC và BD ta có:
Ta có: => Hình chiếu của SD trên mặt phẳng (SAC) là SO.
=>
=>
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là
. Nếu
là góc giữa hai đường thẳng a và a’ thì
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA ⊥ (ABCD). Chọn khẳng định sai trong các khẳng định sau?
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) => SA ⊥ BD
Mà ABCD là hình thoi nên AC ⊥ BD
=> BD ⊥ (SAC)
Mặt khác SO và SC thuộc mặt phẳng (SAC)
=> BD ⊥ SO, BD ⊥ SC
Và AD, SC là hai đường thẳng chéo nhau
=> AD ⊥ SC là khẳng định sai.
Cho hình chóp đều S.ABC có cạnh đáy bằng x, cạnh bên bằng y. Mặt phẳng (α) đi qua A và vuông góc với SC. Tìm hệ thức liên hệ giữa x và y để (α) cắt SC tại điểm C1 nằm giữa S và C.
Hình vẽ minh họa:
Gọi G là trọng tâm của tam giác ABC
Do S.ABC là hình chóp đều nên SG ⊥ (ABC). Gọi C’ là trung điểm của AB
=> C, C’, G thẳng hàng
Ta có:
Trong tam giác SAC kẻ AC1⊥SC
=> SC ⊥ (ABC1)
=> Thiết diện cần tìm là tam giác ABC1 thỏa mãn đi qua A và vuông góc với SC. Tam giác SAC cân tại S nên để C1 nằm giữa S và C khi và chỉ khi .
Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB = 2a, AD = CD = a. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABCD). Mệnh đề nào sau đây đúng?
Do đó ((SBC),(ABCD)) = (SC, AC) =
Tam giác SAC vuông tại A =>
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.
Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a
=> MD = a; AM = 2a
Tam giác SAB cân tại A nên AB ⊥ SK.
Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và
Ta có: (1)
Tam giác SCM đều nên CM ⊥ SH (2)
Từ (1) và (2) suy ra SH ⊥ (ABCD)
Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.
Suy ra và
Tam giác SCM đều cạnh bằng nên
Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).
Ta có:
Ta lại có:
Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)
Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc
Do BC // AD => BC //(SAD)
=>
Trong tam giác vuông BIS ta có:
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là:
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp
có đáy
là hình vuông cạnh bằng
;
. Gọi
lần lượt là hình chiếu vuông góc của
trên các cạnh
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Hình vẽ minh họa
Gọi
Ta có:
Ta có:
Cho hình chóp
đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAB) và (SBC) vuông góc vì
Hai mặt phẳng (SAB) và (SBC) vuông góc vì BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA
Cho hình chóp tứ giác
có đáy
là hình chữ nhật, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
lần lượt là hình chiếu vuông của
lên
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Lại có:
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì có thể vuông góc với nhau
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

+) Ta có:
+) Mặt khác
=>
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho hình chóp S.ABC có tam giác ABC vuông tại B và
. Tam giác SAC là tam giác đều và thuộc mặt phẳng vuông góc với (ABC). Xét điểm M thuộc cạnh SC sao cho mặt phẳng (MAB) tạo với hai mặt phẳng (SAB); (ABC) góc bằng nhau. Tỉ số
có giá trị bằng:
Gọi H là trung điểm của AC, suy ra SH ⊥ (ABC).
Gọi N là trung điểm của AB, suy ra AB ⊥ (SHN).
Lấy K là giao điểm của AM, SH. Do đó
Theo giả thiết, NK là phân giác của góc
Giả sử:
Mặt khác:
(tính chất phân giác).
Gọi E là trung điểm của CM, theo định lí Ta-lét thì:
Vậy
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau