Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Gọi
là chân đường cao kẻ từ đỉnh
của tam giác
. Xác định kết luận sai?
Hình vẽ minh họa
Ta có:
Ta có:
Lại có:
Cho hình hộp
có đáy là hình thoi. Gọi mặt phẳng
chứa cạnh
và cắt
lần lượt tại
. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
mà
Mặt khác
.
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng 1, cạnh
vuông góc với đáy và
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Ta có: nên SA là đường cao của hình chóp
Thể tích khối chóp là
Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh
, cạnh bên bằng
.
Hình vẽ minh họa
Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là và chiều cao
(vì lăng trụ là lăng trụ đứng)
Vậy thể tích hình lăng trụ là:
Cho hai đường thẳng
và mặt phẳng
. Chọn mệnh đề sai trong các mệnh đề dưới đây?
Mệnh đề: “Nếu thì
.” Sai vì đường thẳng b có thể nằm trong mặt phẳng (Q).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB vuông tại A và tam giác SCD vuông tại D. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa:
Ta có:
=> ABCD là hình chữ nhật, từ đó ta suy ra
AC = BD
AB ⊥ (SAD)
BC ⊥ AB
Đáp án SO ⊥ (ABCD) sai
Nếu SO ⊥ (ABCD) thì điều này vô lí
Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:
Hình vẽ minh họa:
Do ABCD là hình vuông cạnh a
=>
=> Tam giác SAC vuông tại S
Từ giả thiết ta có MN là đường trung bình của tam giác DSA
=> . Khi đó
=>
Cho hình chóp
có đáy
là hình vuông cạnh bằng 1, tam giác
là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng
và
.
Hình vẽ minh họa
Ta có:
Cho hình lăng trụ tam giác đều
có tất cả các cạnh bằng
. (như hình vẽ).

Tính
?
Hình vẽ minh họa
Gọi M là trung điểm cạnh BC.
Ta có tam giác ABC đều cạnh a nên ;
là hình lăng trụ tam giác đều nên
Do đó và
theo giao tuyến
Kẻ
Lại có
Cho hình chóp
có đáy là tam giác vuông cân tại
. Tam giác
là tam giác đều cạnh
và nằm trong mặt phẳng vuông góc với mặt đáy. Tính
?
Hình vẽ minh họa
Gọi H là trung điểm của . Suy ra
Kẻ
Ta có:
Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC
Do đó
Cho hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh a, tâm O, đường cao AA’, SO = 2a. Gọi M là điểm thuộc đoạn OA’ (M khác O và A’). Mặt phẳng (α) đi qua M và vuông góc với AA’. Đặt MA = x. Tính diện tích S thiết diện tạo bởi mặt phẳng (α) và hình chóp.
Hình vẽ minh họa:
Vì S.ABC là hình chóp đều => SO⊥(ABC) (với O là tâm của tam giác ABC)
Do đó: SO ⊥ AA’ mà (α) ⊥ AA’ => SO // (α)
Tương tự ta cũng có BC // (α)
Qua M kẻ IJ // BC (I thuộc AB, J thuộc AC), kẻ MN // SO với N thuộc SA’
Qua N kẻ EF // BC với E thuộc SB và F thuộc SC
Khi đó thiết diện là hình thang IJEF
Diện tích hình thang là:
Xét tam giác ABC ta có:
Xét tam giác SBC ta có:
Xét tam giác SOA’ có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi α là góc giữa hai mặt phẳng (SBD) và (SCD). Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Gọi O = AC ∩BD. Do hình chóp S.ABCD đều => SO ⊥ (ABCD).
Gọi M là trung điểm của SD.
Tam giác SCD đều nên CM ⊥ SD.
Tam giác SBD có SB = SD = a, nên vuông tại S
=> SB ⊥ SD => OM ⊥ SD
=> ((SBD),(SCD)) = (OM, CM) =
Ta có:
Tam giác vuông MOC ta có:
Cho hình chóp
có đáy là hình vuông
cạnh bằng
và cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
. Khi đó
bằng:
Ta có:
Lại có
Xét tam giác có
Theo định lí Pythagore đảo suy ra tam giác vuông tại
Suy ra hay
Cho lăng trụ đứng ABC.A’B’C’ có AB = AC = BB’ = a,
. Gọi I là trung điểm của CC’. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB’I).
Hình vẽ minh họa:
Gọi E là giao điểm của B’I và BC, H thuộc BC sao cho EA ⊥ AH tại A, K ∈ B’I sao cho KH ⊥ CB tại H.
Ta có: KH ⊥ CB => KH // CC’
=> KH ⊥ (ABC) tại H => KH ⊥ EA mà EA ⊥ AH => EA ⊥ (AKH) => EA ⊥ AK
Góc giữa hai mặt phẳng (AIB’) và (ACB) là
Ta có: BC = 2a.cos 300 =
Mặt khác AE2 = EC2 + AC2 − 2AC.EC. cos ACE
AE2 = 3a2 + a2 − 2a..cos 1500= 7a2
=>
Ta có:
Ta có:
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời
Cho hình chóp tam giác
có
. Biết rằng tam giác
vuông cân tại
và
. Tính góc giữa
và
?
Hình vẽ minh họa
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (ABC) là AB.
=> Góc giữa đường thẳng SB và mặt phẳng (ABC) là
Do tam giác ABC vuông cân tại B và nên
Suy ra tam giác SAB vuông cân tại A.
Do đó
Vậy góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 450.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Cho hình chóp tứ giác
có tất cả các cạnh bằng
. Gọi
lần lượt là trung điểm của
. Tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Từ giả thiết ta có: (do IJ là đường trung bình tam giác SAB)
Mặt khác ta lại có tam giác SAB đều nên
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa

Vì H là trung điểm của AB, tam giác ABC cân =>
Ta có: =>
mà
=>
Mặt khác => CH vuông góc với các đường thẳng
Và chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
,
. Giả sử
là mặt phẳng đi qua điểm
và vuông góc với
. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng
?
Hình vẽ minh họa
Ta có:
Từ O dựng OH vuông góc với SC
Ta có:
Lại có
Vậy thiết diện cần tìm là tam giác BHD
Một tấm ván hình chữ nhật
được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33![]()
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Gọi ,
lần lượt là hình chiếu của
,
lên đáy hố là mặt phẳng
.
Khi đó có hình chiếu lên đáy là
, suy ra
.
Với độ sâu hố là (m), ta có
.
.
.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Hai mặt phẳng vuông góc với nhau khi và chỉ khi
Hai mặt phẳng vuông góc với nhau khi và chỉ khi có một đường thẳng nằm trong mặt phẳng này và vuông góc với mặt phẳng kia.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.
Hình vẽ minh họa:
Từ A kẻ AH vuông góc với SB (H ∈ SB).
Ta có:
Mà AH ⊥ SB suy ra AH ⊥ (SBC).
Từ A kẻ AK vuông góc với SD (K ∈ SD), tương tự, chứng minh được AK ⊥ (SCD).
Khi đó SC ⊥ (AHK) suy ra ((SBC); (SCD)) = (AH; AK) = = 600.
Lại có ∆SAB = ∆SAD => AH = AK mà = 600 suy ra tam giác AHK đều.
Tam giác SAB vuông tại S ta có:
Vì HK // BD suy ra
=> x = a
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a,
, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?
Hình vẽ minh họa

Lấy M là trung điểm của SD
Góc cần tìm là góc giữa OM và SC
Ta có MC là trung tuyến của tam giác SCD
Xét tam giác MOC ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Gọi . Do
nên suy ra
(vì
)
Kẻ ta có:
Từ (1) và (2) , khi đó
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:
