Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H;K lần lượt là hình chiếu của điểm A trên cạnh SB;SC. Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SA\bot(ABC) \\BC \subset (ABC) \\\end{matrix} ight.\  \Rightarrow SA\bot BC;AB\bot BC

    \Rightarrow BC\bot(SAB) đúng

    Ta có: \left\{ \begin{matrix}BC\bot AH \\SC\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) đúng

    Ta có: \left\{ \begin{matrix}AH\bot SC \\AK\bot SC \\\end{matrix} ight.\  \Rightarrow SC\bot(AHK) đúng

    Vậy kết luận sai là: AK\bot(SBC).

  • Câu 2: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a, A'B' = 2\sqrt 3 a, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’), AH = 2\sqrt 3 a. Gọi \alpha là góc giữa hai đường thẳng AD’ và DB’. Tính \cos \alpha.

    Tính góc giữa hai đường thẳng

    Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’

    Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E

    Suy ra \alpha  = \widehat {\left( {AD',\,DB'} ight)} = \widehat {\left( {DE,\,DB'} ight)}

    Bước 2: Tính \cos \alpha

    Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.

    Lấy điểm I sao cho ADIH là hình bình hành.

    Suy ra DI // AH , mà AH \bot \left( {A'B'C'D'} ight)

    => DI \bot \left( {A'B'C'D'} ight) \Rightarrow DI \bot IB'

    Ta có

    \begin{matrix}  DE = AD' = \sqrt {A{H^2} + H{{D'}^2}}  = \sqrt {{{\left( {2\sqrt 3 a} ight)}^2} + {{\left( {2a} ight)}^2}}  = 4a \hfill \\  EB' = \sqrt {A'{E^2} + A'{{B'}^2}}  = \sqrt {{4^2} + {{\left( {2\sqrt 3 } ight)}^2}} .a = 2\sqrt 7 a \hfill \\  IB' = \sqrt {I{F^2} + F{{B'}^2}}  = \sqrt {{3^2} + {{\left( {\sqrt 3 } ight)}^2}} .a = 2\sqrt 3 a \hfill \\  DB' = \sqrt {D{I^2} + I{{B'}^2}}  = \sqrt {{{\left( {2\sqrt 3 } ight)}^2} + {{\left( {2\sqrt 3 } ight)}^2}} .a = 2\sqrt 6 a \hfill \\ \end{matrix}

    Trong tam giác EDB’, có:

    \begin{matrix}  \cos \widehat {EDB'} = \dfrac{{D{E^2} + D{{B'}^2} - E{{B'}^2}}}{{2.DE.DB'}} \hfill \\   = \dfrac{{{{\left( {4a} ight)}^2} + {{\left( {2\sqrt 6 a} ight)}^2} - {{\left( {2\sqrt 7 a} ight)}^2}}}{{2.4a.2\sqrt 6 a}} \hfill \\   = \dfrac{{\sqrt 6 }}{8} > 0 \hfill \\ \end{matrix}

    Suy ra \cos \alpha  = \frac{{\sqrt 6 }}{8}

  • Câu 3: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60◦. Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.

    Hình vẽ minh họa:

    Gọi H là hình chiếu của S lên (ABCD).

    Ta có: \left\{ \begin{matrix}SM\bot AB \\AB\bot SH \\\end{matrix} ight.

    => AB ⊥ MH

    => MH là đường trung bình của hình vuông ABCD

    Giả sử MH cắt CD tại N, ta có N là trung điểm CD

    Ta cũng có SN ⊥ CD nên \widehat{\left((SCD),(ABCD) ight)} = \widehat{(SN,MN)} = \widehat{SNM}

    Gọi P là trung điểm BC, ta có MP // AC nên AC // (SMP)

    Do đó, d(SM, AC) = d(AC,(SMP)) = d(O,(SMP))

    Gọi K là hình chiếu của H lên MP (nhận thấy HK // OB), I là hình chiếu của H lên SK

    Khi đó d(H, (SMP)) = HI

    Áp dụng định lý cosin cho tam giác SMN, ta có:

    \begin{matrix}SM^{2} = MN^{2} + SN^{2} - 2MN.SN.cos60^{0} \hfill\\\Leftrightarrow 3a^{2} = 4a^{2} + SN^{2} - 2.2a.SN.\dfrac{1}{2} \hfill \\\Leftrightarrow a = SN \hfill \\\end{matrix}

    Xét tam giác vuông SHN ta có:

    SH = SN.sin60^{0} =\frac{a\sqrt{3}}{2}

    HN = SN.cos60^{0} =\frac{a}{2}

    \Rightarrow MH = \frac{3}{4}.MN\Rightarrow KH = \frac{3}{4}NP = \frac{3a\sqrt{2}}{4}

    Xét tam giác SHK vuông tại H, ta có:

    HI = \sqrt{\frac{HK^{2}.SH^{2}}{HK^{2} +SH^{2}}} = \frac{3a\sqrt{5}}{10}

    Mặt khác: d\left( O;(SMP) ight) =\frac{2}{3}d\left( H;(SMP) ight) = \frac{a\sqrt{5}}{5}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 5: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 7: Thông hiểu

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. Gọi H là trực tâm tam giác ABC. Kết luận nào sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OC \\
OB\bot OC \\
\end{matrix} ight.\  \Rightarrow OC\bot(OAB) \Rightarrow OC\bot
AB đúng

    Ta có: \left\{ \begin{matrix}
BC\bot AH \\
BC\bot OA \\
\end{matrix} ight.\  \Rightarrow BC\bot(OAH) \Rightarrow BC\bot
OH đúng

    Ta có: \left\{ \begin{matrix}
AB\bot CH \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(OCH) \Rightarrow AB\bot
OH

    BC\bot OH \Rightarrow
OH\bot(ABC) đúng

    Vậy OH\bot OA hay tam giác HOA vuông tại H sai

  • Câu 8: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = 2a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = 2a\sqrt{3}.8a^{2}
= 16a^{3}\sqrt{3}

  • Câu 9: Thông hiểu

    Trong mặt phẳng (P) cho tam giác ABC, M là điểm không nằm trên (P) sao cho MA = MB = MC, d là đường thẳng đi qua M và vuông góc với (P). Khi đó đường thẳng d đi qua:

    Gọi H là giao điểm của đường thẳng d và mặt phẳng (P)

    => H là hình chiếu của M trên (P) nên từ MA = MB = MC

    => HA = HB = HC

    => Khi đó đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a, SA \bot \left( {ABCD} ight);SA = a\sqrt 2. Tính góc giữa hai mặt phẳng (SCD) và (SAB).

     Tính góc giữa hai mặt phẳng (SCD) và (SAB)

    Gọi M là trung điểm của AD.

    Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a, \widehat {MAB} = {90^0}

    Suy ra ABCM là hình vuông => MC = AB = a

    Xét tam giác ACD có AM là trung tuyến và CM = \frac{1}{2}AD = a

    Suy ra ACD vuông tại C => AC ⊥ CD

    Trong (SAC), dựng AH ⊥ SC

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot AC} \\   {CD \bot SA} \\   {SA \cap AC = A} \\   {SA;AC \subset \left( {SAC} ight)} \end{array}} ight. \Rightarrow CD \bot \left( {SAC} ight) mà AH ⊂ (SAC) suy ra CD ⊥ AH.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AH \bot CD} \\   {AH \bot SC} \\   {CD \cap SC = C} \\   {CD;SC \subset \left( {SCD} ight)} \end{array}} ight. \Rightarrow AH \bot \left( {SCD} ight)\left( 1 ight)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AD \bot SA} \\   {AD \bot AB} \\   {SA \cap AB = A} \\   {SA;AB \subset \left( {SAB} ight)} \end{array}} ight. \Rightarrow AD \bot \left( {SAB} ight)\left( 2 ight)

    Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.

    Xét tam giác ABC vuông tại B có: AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Xét tam giác SAC vuông tại A có: SC = \sqrt {S{A^2} + A{C^2}}  = 2a

    Xét tam giác SAC vuông tại A và SA = AC = a\sqrt 2 nên SAC vuông cân tại A.

    Suy ra H là trung điểm SC và AH = \frac{1}{2}SC = a

    Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).

    Ta có: \cos \widehat {HAD} = \frac{{AH}}{{AD}} = \frac{a}{{2a}} = \frac{1}{2} suy ra \widehat {DAH} = {60^0}

    Vậy \left( {\widehat {\left( {SCD} ight);\left( {SAB} ight)}} ight) = {60^0}

  • Câu 11: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 12: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thoi tâm OSO vuông góc với mặt đáy. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SO\bot(ABCD) \Rightarrow SO\bot
AC;SO \subset (SBD)

    ABCD là hình thoi \Rightarrow AC\bot BD;BD \subset
(SBD)

    SO \cap BD = \left\{ O
ight\}

    \Rightarrow AC\bot(SBD)

  • Câu 13: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 14: Nhận biết

    Cho hình chóp S.ABC có AB = AC, \widehat {SAB} = \widehat {SAC}. Tính số đo góc giữa hai đường thẳng SA và BC.

    Ta có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BC}  = \overrightarrow {AS} .\left( {\overrightarrow {AC}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AS}  - \overrightarrow {AB} .\overrightarrow {AS}  \hfill \\   = AC.AS.\cos \widehat {SAC} - AB.AS.\cos \widehat {SAB} \hfill \\   = 0 \hfill \\ \end{matrix}

    AB = AC,\widehat {SAB} = \widehat {SAC}

    => Góc giữa hai đường thẳng SA, BC là: 900

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCSA =
SB = SC = \frac{a\sqrt{3}}{2}, đáy ABC là tam giác vuông tại ABC =
a. Tính cosin góc giữa đường thẳng SA và mặt phẳng (ABC) bằng:

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên (ABC)

    Do SA = SB = SC =
\frac{a\sqrt{3}}{2} nên H là tâm đường tròn ngoại tiếp tam giác ABC hay H là trung điểm của BC \Rightarrow
AH = \frac{a}{2}

    Ta có: \left( SA;(ABC) ight) =
\widehat{SAH}

    \Rightarrow \cos\widehat{SAH} =
\frac{AH}{SA} = \frac{\sqrt{3}}{3}

  • Câu 16: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'AA' = 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Khi đó \left( (A'BC);(ABC) ight) =
\widehat{A'MA} = 30^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan30^{0}} =
4\sqrt{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = 8a

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{(8a)^{2}\sqrt{3}}{4} =
64\sqrt{3}a^{3}

  • Câu 17: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng A'BAD' bằng:

    Hình vẽ minh họa

    Ta có: A'B//D'C nên góc giữa hai đường thẳng A'BAD' bằng góc giữa hai đường thẳng D'CAD' và bằng góc \widehat{AD'C}

    Mà tam giác ACD’ là tam giác đều nên \widehat{AD'C} = 60^{0}

    \Rightarrow (A'B;AD') =
60^{0}

  • Câu 18: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 19: Vận dụng

    Cho tứ diện ABCD có M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AB và DM.

    Hình vẽ minh họa:

    Cosin của góc tạo bởi hai đường thẳng AB và DM

    Gọi N là trung điểm của AC

    I là trung điểm của MN

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {MN//AB} \\   {DI \bot MN} \end{array}} ight. \Rightarrow \left( {AB,DM} ight) = \left( {MN,DM} ight)

    => \cos \left( {AB,DM} ight) = \cos \left( {MN,DM} ight) = \cos \widehat {IMD}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {DM = \dfrac{{\sqrt 3 }}{2}} \\   {MII = \dfrac{a}{4}} \end{array}} ight. \Rightarrow \cos \widehat {IMD} = \dfrac{{\sqrt 3 }}{6}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 21: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 22: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 23: Vận dụng cao

    Cho hình chóp đều S.ABC có đáy là tam giác ABC là tam giác đều tâm O cạnh bằng a, OS = 2a. Gọi M là điểm thuộc đoạn OA (M khác A và O). Mặt phẳng đi qua M và vuông góc với AO là mặt phẳng (α). Đặt AM = x. Tính diện tích thiết diện S của thiết diện tạo bởi (α) với hình chóp S.ABC.

    Hình vẽ minh họa:

    Ta có: S.ABC là hình chóp đều nên SO ⊥ (ABC)

    => SO ⊥ AA’ mà (α) ⊥ AA’ => SO // (α)

    Chứng minh tương tự ta có: BC // (α)

    Qua M kẻ IJ // BC với I ∈ AB, J ∈ AC, kẻ MK // SO với K ∈ SA.

    Khi đó thiết diện là tam giác KIJ

    Diện tích ram giác IJK là S_{IJK} =
\frac{1}{2}IJ.MK

    Trong tam giác ABC có:

    \frac{IJ}{BC} = \frac{AM}{AA'}
\Rightarrow IJ = \frac{AM.BC}{AA'} =
\frac{2x\sqrt{3}}{3}

    Tương tự trong tam giác SAO, ta có:

    \frac{MK}{SO} = \frac{AM}{AO}
\Rightarrow MK = \frac{AM.SO}{AO} = 2x\sqrt{3}

    Vậy S_{IJK} =
\frac{1}{2}.\frac{2x\sqrt{3}}{3}.2x\sqrt{3} = 2x^{2}

  • Câu 24: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC => SH ⊥ (ABC)

    Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)

    => \left( SA,(ABC) ight) = (SA,AH) =
\widehat{SAH}

    Xét tam giác SBC đều cạnh 2a => SH =
a\sqrt{3}

    Tam giác ABC vuông tại A => AH =
\frac{BC}{2} = a

    Tam giác SAH vuông nên

    \begin{matrix}\tan\widehat{SAH} = \dfrac{SH}{AH} = \sqrt{3}  \hfill\\\Rightarrow \widehat{SAH} = 60^{0} \hfill \\\end{matrix}

  • Câu 25: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết rằng SA\bot(ABC);SA = 2a;AB = 3a;BC =
a\sqrt{3}. Tính số đo góc tạo bởi đường thẳng SC và mặt phẳng đáy?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow \left(
SC;(ABC) ight) = \widehat{SCA}

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{9a^{2} + 3a^{2}} = 2a\sqrt{3}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{2a}{2a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 27: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 28: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Ta có:

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;AB} ight) = \widehat {SBA} \hfill \\   \Rightarrow SA = AB.\tan \widehat {SBA} = a\sqrt 3  \hfill \\ \end{matrix}

    Ta có: AD // BC => AD // (SBC)

    => d(D,(SBC)) = d(A; (SBC))

    Kẻ AK \bot SB (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AK\left( 2 ight)

    Từ (1) và (2) => AK \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = AK \hfill \\  AK = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    d\left( {D;\left( {SBC} ight)} ight) = AK = \frac{{a\sqrt 3 }}{2}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 31: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;D; AB =
a;AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI)(SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60^{0}. Tính khoảng cách từ trung điểm của cạnh SD đến mặt phẳng (SBC)?

    Từ I kẻ IP\bot BC \Rightarrow BC\bot
SP

    \Rightarrow \left( (SBC);(ABCD) ight)
= \widehat{SPI} = 60^{0}

    Gọi K là trung điểm của SD.

    Gọi Q = BC \cap AD, kẻ IH\bot SP

    Ta có:

    d\left( K;(SBC) ight) =
\frac{1}{2}d\left( D;(SBC) ight)

    = \frac{1}{4}d\left( I;(SBC) ight) =
\frac{1}{4}IH

    Xét tam giác ICQ có IP = \frac{CD.IQ}{QC}
= \frac{2a}{\sqrt{5}}

    Xét tam giác SIP vuông tại I có SI =
IP.tan60^{0} = \frac{2a\sqrt{3}}{5}

    \frac{1}{IH^{2}} = \frac{1}{IS^{2}} +
\frac{1}{IP^{2}} \Rightarrow IH = \frac{3a^{2}}{5}

    \Rightarrow IH =
\frac{a\sqrt{15}}{5}

    \Rightarrow d\left( K;(SBC) ight) =
\frac{a\sqrt{15}}{20}

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 33: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 34: Vận dụng cao

    Cho khối lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của AD, φ là góc giữa hai mặt phẳng (BMC’) và (ABB’A’). Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa:

    Do ABCD.A’B’C’D’ là hình lập phương

    => MA, CB, C’B’ cùng vuông góc với (ABB’A’)

    => Tam giác MBC’ có hình chiếu vuông góc lên mặt phẳng (ABB’A’) là tam giác ABB’.

    Ta có S_{ABB'} = S_{MBC'}.cos\phi
\Rightarrow \cos\phi = \frac{S_{ABB'}}{S_{MBC'}}

    Xét tam giác MBC’, ta có:

    \begin{matrix}MB = \sqrt{MA^{2} + AB^{2}} = \sqrt{\dfrac{a^{2}}{4} + a^{2}} =\dfrac{\sqrt{5}a}{2} \hfill\\C'B = \sqrt{2}a\hfill \\MC' = \sqrt{DM^{2} + DC'} = \sqrt{\dfrac{a^{2}}{4} + 2a^{2}} =\dfrac{3a}{2} \hfill\\\end{matrix}

    Đặt p = (MB + MC’ + BC’)/2

    Áp dụng công thức Hê-rông ta có:

    S_{MBC'} = \sqrt{p(p - MC')(p -
MB)(p - BC')} = \frac{3a^{2}}{4}

    Mặt khác S_{ABB'} = \dfrac{a^{2}}{2}\Rightarrow \cos\phi = \dfrac{S_{ABB'}}{S_{MBC'}} =\dfrac{\dfrac{a^{2}}{2}}{\dfrac{3a^{2}}{4}} = \dfrac{2}{3}

  • Câu 35: Nhận biết

    Cho (P) và (Q) là hai mặt phẳng vuông góc với nhau và giao tuyến của chúng là đường thẳng m. Gọi a, b, c, d là các đường thẳng. Xét các mệnh đề sau:

    (1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q).

    (2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q).

    (3) Nếu c // m thì c // (P) hoặc c // (Q).

    (4) Nếu d ⊥ m thì d ⊥ (P).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    (1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q). ---> đúng

    (2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q). ---> sai

    (3) Nếu c // m thì c // (P) hoặc c // (Q). ---> đúng

    (4) Nếu d ⊥ m thì d ⊥ (P). ---> sai

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

  • Câu 37: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 38: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCSA\bot(ABC);SA = a\sqrt{5}. Biết đáy ABC của hình chóp là tam giác vuông tại A cạnh AC = 2a. Giả sử \alpha = \left( SA;(SBC) ight). Khi đó:

    Hình vẽ minh họa

    Dựng AK vuông góc với BC, AH vuông góc với SK

    Ta có: \left\{ \begin{matrix}
BC\bot AK \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAK) \Rightarrow BC\bot
AH

    SK\bot AH \Rightarrow
AH\bot(SBC)

    Khi đó SK là hình chiếu vuông góc của SA trên mặt phẳng (SBC) nên

    \alpha = \left( SA;(SBC) ight) =
(SA;SK) = \widehat{ASK}

    Ta có: AK = \frac{AB.AC}{BC} =
\frac{AB.AC}{\sqrt{AB^{2} + AC^{2}}} = \frac{2a\sqrt{5}}{5}

    Khi đó: \tan\alpha = \dfrac{AK}{SA} =\dfrac{\dfrac{2a\sqrt{5}}{5}}{a\sqrt{5}} = \dfrac{2}{5}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD. 

    Gọi E=HK∩AC. Do HK//BD nên suy ra

    d(HK;SD)=d(HK;(SBD))=d(E;(SBD))=d(A;(SBD))/2 (vì OE=AO/2=1/2)

    Kẻ AF⊥SO(1) ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SA} \end{array}} ight.

    ⇒BD⊥(SAC)⇒BD⊥AF(2)

    Từ (1) và (2) ⇒AF⊥(SBD), khi đó d(A;(SBD))=AF

    \begin{matrix}  AF = \dfrac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} \hfill \\   = \dfrac{{2a.\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {2a} ight)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{2a}}{3} \hfill \\   \Rightarrow d\left( {HK;SD} ight) = \dfrac{1}{2}AF = \dfrac{a}{3} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo