Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 3: Vận dụng

    Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa hai mặt bên không liền kề nhau.

    Hình vẽ minh họa:

    Hình chóp tứ diện đều S.ABCD có tất cả các cạnh đều bằng a, ta tìm góc giữa hai mặt phẳng (SAD) và (SBC).

    Gọi M, N là trung điểm các cạnh AD và BC, khi đó SM ⊥ AD và SN ⊥ BC (do các tam giác SBC; SAD là các tam giác đều).

    Vì BC // AD nên giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d qua S và song song AD, BC.

    Vì SM ⊥ AD và SN ⊥ BC nên SM ⊥ d và SN ⊥ d mà SM ⊂ (SAD); SN ⊂ (SBC) góc giữa hai mặt phẳng (SAD) và (SBC) là góc \widehat{MSN}.

    Mặt bên là các tam giác đều cạnh a nên SM
= SN = \frac{a\sqrt{3}}{2}; MN = AB = a.

    Khi đó:

    \begin{matrix}\cos\widehat{MSN} = \dfrac{SM^{2} + SN^{2} - MN^{2}}{2.SM.SN} \hfill \\= \dfrac{\left( \dfrac{a\sqrt{3}}{2} ight)^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2} -a^{2}}{2.\dfrac{a\sqrt{3}}{2}.\dfrac{a\sqrt{3}}{2}} = \frac{1}{3} \hfill \\\end{matrix}

  • Câu 4: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 5: Thông hiểu

    Mệnh đề nào sau đây là đúng?

     

    • Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.

    • Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.

    • Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau

     

  • Câu 6: Nhận biết

    Hình chóp tam giác đều S.ABC. Gọi Glà trọng tâm tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có khối chóp tam giác đều S.ABC có đáy ABC là tam giác đều, trọng tâm G cũng là tâm của đáy nên SG\bot(ABC).

  • Câu 7: Thông hiểu

    Cho tứ diện đều ABCD. Gọi trung điểm của các cạnh AB;BC lần lượt là M;N. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của BD.

    Ta có: MN;NP;MP lần lượt là đường trung bình của tam giác ABC;BCD;ABD.

    Do đó:

    MN//AC;MN = \frac{1}{2}AC

    NP//CD;NP = \frac{1}{2}CD

    ABCD là tứ diện đều \Rightarrow AC = CD = AD

    \Rightarrow MN = NP = MP nên tam giác MNP là tam giác đều.

    \Rightarrow (MN;CD) = (MN;NP) =
\widehat{MNP} = 60^{0}

  • Câu 8: Thông hiểu

    Trong mặt phẳng (P) cho tam giác ABC, M là điểm không nằm trên (P) sao cho MA = MB = MC, d là đường thẳng đi qua M và vuông góc với (P). Khi đó đường thẳng d đi qua:

    Gọi H là giao điểm của đường thẳng d và mặt phẳng (P)

    => H là hình chiếu của M trên (P) nên từ MA = MB = MC

    => HA = HB = HC

    => Khi đó đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại AAB =
a\sqrt{2}. Biết SA\bot(ABC)SA = a. Góc nhị diện \lbrack S,\ BC,\ Abrack có số đo bằng:

    Hình vẽ minh họa

    Kẻ AM\bot BC tại M \Rightarrow M là trung điểm của BCAM =
\frac{1}{2}BC = \frac{\left( a\sqrt{2} ight)\sqrt{2}}{2} = a .

    Ta có \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
(SAM)\bot BC \\
(SAM) \cap (SBC) = SM \\
(SAM) \cap (ABC) = AM \\
\end{matrix} ight. \Rightarrow
\left( \widehat{(SBC),(ABC)} ight) = \left( \widehat{SM,AM}
ight).

    Suy ra góc giữa (SBC)(ABC) bằng góc \widehat{SMA}.

    Ta có: \tan\widehat{SMA} = \frac{SA}{AM} = \frac{a}{a} =
1 \Rightarrow \widehat{SMA} = 45{^\circ}

    Suy ra góc nhị diện \lbrack S,\ BC,\
Abrack có số đo bằng 45{^\circ}.

  • Câu 10: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 11: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'AA' = 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Khi đó \left( (A'BC);(ABC) ight) =
\widehat{A'MA} = 30^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan30^{0}} =
4\sqrt{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = 8a

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{(8a)^{2}\sqrt{3}}{4} =
64\sqrt{3}a^{3}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SC vuông góc với đáy và SC = a\sqrt{3}. Tính tan góc giữa đường thẳng SA và mặt phẳng (SBC).

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AB\bot SC \\AB\bot BC \\\end{matrix} ight.

    => AB ⊥ (SBC)

    Suy ra hình chiếu của SA lên (SBC) là SB

    => \widehat{\left( SA,(SBC) ight)} =\widehat{(SA,\ SB)} = \widehat{ASB}

    Trong tam giác SCB vuông tại C, ta có:

    SB = \sqrt{SC^{2} + CB^{2}} =\sqrt{4a^{2}} = 2a

    Trong tam giác SBA vuông tại B, ta có:

    \tan\widehat{BSA} = \frac{AB}{SB} =\frac{a}{2a} = \frac{1}{2}

    Vậy tan góc giữa đường thẳng SA và mặt phẳng (SBC) là \frac{1}{2}

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 14: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 15: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 16: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD. Gọi \alpha là góc tạo bởi đường thẳng BM và mặt phẳng (ABCD). Tính \tan\alpha?

    Minh họa bằng hình vẽ:

    Gọi O là tâm của hình vuông. Ta có: SO\bot(ABCD)SO = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a\sqrt{2}}{2}

    Gọi M là trung điểm của OD ta có: MH//SO nên H là hình chiếu của M lên mặt phẳng (ABCD)MH
= \frac{1}{2}SO = \frac{a\sqrt{2}}{4}

    Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD)\widehat{MBH}

    Khi đó ta có: \tan\widehat{MBH} =\dfrac{MH}{BH} = \dfrac{\dfrac{a\sqrt{2}}{4}}{\dfrac{3a\sqrt{2}}{4}} =\dfrac{1}{3}

    Vậy \tan\alpha =
\frac{1}{3}.

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 19: Nhận biết

    Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Nếu đường thẳng a vuông góc với giao tuyến của (P) và (Q) thì a vuông góc với mặt phẳng (P) và vuông góc với mặt phẳng (Q).”

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a\sqrt{5} và BC = . Tính khoảng cách giữa SD và BC.

    Hình vẽ minh họa:

    Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.

    CD = \sqrt{AC^{2} - BC^{2}} =\sqrt{5a^{2} - 2a^{2}} = a\sqrt{3}

  • Câu 21: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 22: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh 2a, cạnh bên bằng 3a.

    Hình vẽ minh họa

    Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là \frac{(2a)^{2}\sqrt{3}}{4} và chiều cao AA' = 3a (vì lăng trụ là lăng trụ đứng)

    Vậy thể tích hình lăng trụ là: V =
\frac{(2a)^{2}\sqrt{3}}{4}.3a = 3\sqrt{3}a^{3}

  • Câu 23: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Giả sử mặt phẳng (\alpha) đi qua điểm C vuông góc với BD. Thiết diện tạo bởi (\alpha) và hình lập phương là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CA\bot BD \\
CC'\bot BD \\
\end{matrix} ight.\  \Rightarrow (ACC'A')\bot BD

    Vậy (\alpha) chính là mặt phẳng (ACC'A'). Thiết diện là một hình chữ nhật.

  • Câu 24: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.

    Hình vẽ minh họa:

    Xác định góc 600

    \widehat{\left( SC;(ABCD) ight)} =\widehat{(SC;AC)} = 60^{0} = \widehat{SCA}

    SA = AC.tan\widehat{SCA} =a\sqrt{6}

    Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a

    Xét tam giác ACB ta có:

    CM = a = \frac{1}{2}AB

    => Tam giác ACB vuông tại C

    Lấy điểm E sao cho ACBE là hình chữ nhật

    => AC // BE

    => d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))

    Kẻ AK ⊥ SE. Khi đó:

    d\left( A;(SBE) ight) = AK =\frac{SA.AE}{\sqrt{SA^{2} + AE^{2}}} = \frac{a\sqrt{6}}{2}

  • Câu 25: Nhận biết

    Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?

    Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, tam giác SBA đều và cạnh SC = a\sqrt{2}. Gọi trung điểm các cạnh AB,CD lần lượt là H,K. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Ta có tam giác SAB đều cạnh bằng a nên AB
= SB = a

    Mặt khác tam giác SBC có SB^{2} + BC^{2}
= SC^{2} = 2a^{2}

    Suy ra tam giác SBC vuông cân tại B hay BC\bot SB

    Từ BC\bot(SAB) \Rightarrow BC\bot
SH

    Tam giác ABS đều mà H là trung điểm của AB nên SH\bot AB

    \Rightarrow SH\bot(ABCD)

    Tam giác ABS đều nên AB không vuông góc với mặt phẳng (SAD)

    Ta có: \left\{ \begin{matrix}
AB\bot HK \\
AB\bot SH \\
\end{matrix} ight.\  \Rightarrow AB\bot(SHK) \Rightarrow
CD\bot(SHK)

  • Câu 27: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \widehat{ABC} = 60^{0}, SB = a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Gọi γ là góc giữa đường thẳng SB và mặt phẳng (SCD). Tính sinγ.

    Hình vẽ minh họa:

    Gọi M là trung điểm của SD

    Góc giữa SB và (SCD) cùng bằng góc giữa OM và (SCD)

    (Vì OM // SB)

    Gọi H là hình chiếu của O trên (SCD) => (OM; (SCD)) = (OM; MH) = OMH

    Trong (SBD) kẻ OE // SK, trong đó K là hình chiếu của S lên mặt đáy, khi đó tứ diện OECD là tứ diện vuông cân nên

    \begin{matrix}\dfrac{1}{OH^{2}} = \dfrac{1}{OC^{2}} + \dfrac{1}{OD^{2}} +\dfrac{1}{OE^{2}}\hfill \\OC = \dfrac{a}{2},OD = \dfrac{a\sqrt{3}}{2}\hfill \\\dfrac{OE}{SK} = \dfrac{OD}{KD} = \dfrac{3}{4} \Rightarrow OE =\dfrac{3}{4}SK\hfill \\\Rightarrow SK = \sqrt{SB^{2} - BK^{2}} = \sqrt{a^{2} - \left(\dfrac{a\sqrt{3}}{3} ight)^{2}} = \dfrac{a\sqrt{6}}{3} \hfill\\\Rightarrow OE = \dfrac{3}{4}SK = \dfrac{3}{4} \cdot \dfrac{a\sqrt{6}}{3} =\dfrac{a\sqrt{6}}{4}\hfill \\\Rightarrow \dfrac{1}{OH^{2}} = \dfrac{1}{\left( \dfrac{a}{2} ight)^{2}}+ \dfrac{1}{\left( \dfrac{a\sqrt{3}}{2} ight)^{2}} + \dfrac{1}{\left(\dfrac{a\sqrt{6}}{4} ight)^{2}} = \dfrac{a^{2}}{8}\hfill \\\Rightarrow OH = \dfrac{a\sqrt{2}}{4}\hfill \\\end{matrix}

    Vì tam giác AOM vuông tại H

    \begin{matrix}\Rightarrow OM = \dfrac{1}{2}SB = \dfrac{a}{2},OH = \dfrac{a\sqrt{2}}{4}\hfill \hfill\\\Rightarrow \sin\widehat{OMH} = \dfrac{OH}{OM} = \dfrac{\sqrt{2}}{2}\Rightarrow \sin\varphi = \dfrac{\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 28: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)

    => Tam giác ABD vuông tại B.

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    Ta có: \left\{ \begin{matrix}
AD^{2} = AB^{2} + BD^{2} \\
BD^{2} = BC^{2} + CD^{2} \\
\end{matrix} ight.

    \begin{matrix}\Rightarrow AD^{2} = AB^{2} + BC^{2} + CD^{2} \hfill \\\Rightarrow AD = \sqrt{AB^{2} + BC^{2} + CD^{2}} \hfill \\\Rightarrow AD = \sqrt{a^{2} + b^{2} + c^{2}} \hfill \\\end{matrix}

  • Câu 29: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 31: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; SAB là tam giác cân tại S; AD = 3BC = 3AB = 3a. Gọi M là điểm thuộc đoạn AD sao cho AD = 3MD. Biết rằng SCM là tam giác đều. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Khi đó cos α nhận giá trị là

    Tính giá trị cos α

    Gọi K là trung điểm AB, N là trung điểm của AM, H là trung điểm của CM.

    Điểm M thuộc đoạn AD sao cho 3MD = AD = 3a

    => MD = a; AM = 2a

    Tam giác SAB cân tại A nên AB ⊥ SK.

    Vì HK là đường trung bình của hình thang vuông ABCM nên AB ⊥ HK và HK = \frac{{3a}}{2}

    Ta có: \left\{ \begin{gathered}  AB \bot SK \hfill \\  AB \bot HK \hfill \\ \end{gathered}  ight. \Rightarrow AB \bot SH (1)

    Tam giác SCM đều nên CM ⊥ SH (2)

    Từ (1) và (2) suy ra SH ⊥ (ABCD)

    Ta có AN = MN = MD = a nên ABCN là hình vuông, từ đó tam giác CMN vuông cân tại N.

    Suy ra HM = HN = \frac{1}{2}CM = \frac{{a\sqrt 2 }}{2}HM \bot HN

    Tam giác SCM đều cạnh bằng a\sqrt 2 nên SH = \frac{{a\sqrt 6 }}{2}

    Tứ diện HSMN có HS, MN, HN đôi một vuông góc, đặt d = d(H, (SMN)).

    Ta có: \frac{1}{{{d^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{H{N^2}}} + \frac{1}{{H{S^2}}}

    = \frac{4}{{2{a^2}}} + \frac{4}{{2{a^2}}} + \frac{4}{{6{a^2}}} = \frac{{14}}{{3{a^2}}} \Rightarrow d = \frac{{a\sqrt {42} }}{{14}}

    Ta lại có:

    SB = \sqrt {S{H^2} + B{H^2}}  = \sqrt {S{H^2} + B{K^2} + K{H^2}}

    = \sqrt {\frac{{3{a^2}}}{2} + \frac{{{a^2}}}{4} + \frac{{9{a^2}}}{4}}  = 2a

    Gọi I là hình chiếu của điểm B trên mặt phẳng (SAD)

    Khi đó góc giữa đường thẳng SB và mặt phẳng (SAD) là góc \widehat {BSI} = \alpha

    Do BC // AD => BC //(SAD)

    => BI = d\left( {B;\left( {SAD} ight)} ight) = d\left( {C;\left( {SAD} ight)} ight) = 2d\left( {H,\left( {SAD} ight)} ight) = \frac{{a\sqrt {42} }}{7}

    Trong tam giác vuông BIS ta có:

    \sin \alpha  = \frac{{BI}}{{SB}} = \frac{{\sqrt {42} }}{{14}} \Rightarrow \cos \alpha  = \frac{{\sqrt {154} }}{{14}}

  • Câu 32: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, SA =
SC. Mặt phẳng (SAC) vuông góc với mặt phẳng nào dưới đây?

    Hình vẽ minh họa

    Ta có: O là tâm hình thoi ABCD \Rightarrow \left\{ \begin{matrix}
OB = OD \\
OA = OC \\
\end{matrix} ight.

    Mặt khác SA = SC \Rightarrow SO\bot
AC (tính chất tam giác cân)

    AC\bot BD (tính chất hình thoi)

    Từ (1) và (2) suy ra AC\bot(SBD)
\Rightarrow (SAC)\bot(SBD)

  • Câu 33: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 34: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy chứng mình AB ⊥ CD.

    Một bạn chứng mình qua các bước sau:

    Bước 1. \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {AD}

    Bước 2. \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AC}  - \overrightarrow {AD} } ight)

    Bước 3. \overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AB} .\overrightarrow {AD}  = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} = 0

    Bước 4. Suy ra AB ⊥ CD

    Theo em. Lời giải trên sai từ:

    Bài toán sai từ bước 1 vì

    Theo quy tắc trừ hai vectơ ta có:

    \overrightarrow {CD}  = \overrightarrow {AD}  - \overrightarrow {AC} {\text{ }}

  • Câu 35: Nhận biết

    Cho tứ diện ABCD có đáy BCD là tam giác vuông cân tại C. Gọi trung điểm các cạnh AB,AC,BC,CD lần lượt là M,N,P,Q. Khi đó (MN,PQ) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN//BC \\
PQ//BD \\
\end{matrix} ight.

    \Rightarrow (MN,PQ) = (BC,BD) =
\widehat{DBC} = 45^{0}

  • Câu 36: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 3, BC = 4. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy, khoảng cách từ điểm C đến đường thẳng SA bằng 4. Cosin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

    Hình vẽ minh họa:

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{3^{2} + 4^{2}} = 5

    Gọi K là chân đường vuông góc kẻ từ C xuống SA.

    Xét tam giác CAK vuông tại K ta có:

    AK = \sqrt{CA^{2} - CK^{2}} = \sqrt{5^{2}
- 4^{2}} = 3

    Kẻ SH ⊥ AC, H ∈ AC. Vì (SAC) ⊥ (ABCD) và (SAC) ∩ (ABCD) = AC nên SA ⊥ (ABCD).

    Kẻ SH ⊥ AC, H ∈ AC và KP // SH, P ∈ AC thì KP ⊥ (ABCD).

    Xét tam giác BAC vuông tại B và tam giác KAC vuông tại K ta thấy các cạnh tương ứng bằng nhau và KP là đường cao của tam giác KAC nên BP là đường cao của tam giác BAC.

    Kẻ PM ⊥ KA, M ∈ KA.

    Vì KA ⊥ P B và KA ⊥ PM nên KA ⊥ (PMB).

    Suy ra KA ⊥ MB.

    Như vậy, góc giữa mặt phẳng (SAC) và (SAB) bằng góc \widehat{PMB}

    Xét tam giác KAC vuông tại K ta có:

    KP.AC = KA.KC \Rightarrow KP =
\frac{KA.KC}{AC} = \frac{3.4}{5} = \frac{12}{5}

    Suy ra: BP = KP =
\frac{12}{5}

    Xét tam giác KPA vuông tại P ta có:

    PA = \sqrt{KA^{2} - KP^{2}} =
\sqrt{3^{2} - \left( \frac{12}{5} ight)^{2}} =
\frac{9}{5}

    Lại có: PM.AK = PA.PK \Rightarrow PM =
\frac{PA.PK}{AK} = \frac{36}{25}

    Xét tam giác PMB vuông tại P ta có:

    MB = \sqrt{PB^{2} + PM^{2}} =
\sqrt{\left( \frac{12}{5} ight)^{2} + \left( \frac{36}{25}
ight)^{2}} = \frac{12\sqrt{34}}{25}

    Ta có: \cos\widehat{PMB} = \frac{MP}{MB}
= \frac{36}{25}.\frac{25}{12\sqrt{34}} =
\frac{3\sqrt{34}}{34}

  • Câu 37: Thông hiểu

    Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:

    Hình vẽ minh họa:

    Góc giữa hai đường thẳng IC và AD

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \begin{matrix}  \overrightarrow {AD} .\overrightarrow {AB}  = {a^2}.\cos {60^0} = \dfrac{{{a^2}}}{2} \hfill \\  \overrightarrow {AC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  \overrightarrow {IC}  = \overrightarrow {AC}  - \overrightarrow {AI}  = \overrightarrow {AC}  - \dfrac{1}{2}\overrightarrow {AB}  \hfill \\   \Rightarrow \overrightarrow {IC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{\left| {\overrightarrow {IC} .\overrightarrow {AD} } ight|}}{{IC.AD}} \hfill \\   \Rightarrow \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{{a^2}}}{4}:\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{1}{{2\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Gọi I;J lần lượt là trung điểm của các cạnh SASC.

    Khẳng định nào sau đây đúng?

    Vì IJ là đường trung bình của tam giác SAC nên IJ//AC

    Ta có: \left\{ \begin{matrix}
IJ//AC \\
BD\bot AC \\
\end{matrix} ight.\  \Rightarrow BD\bot IJ

  • Câu 39: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 40: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo