Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
. Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
. Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tam giác
đều và
. Tính thể tích của hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều nên
Lại có:
Vậy SH là đường cao của hình chóp
Tính được
Thể tích khối chóp là:
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Tính thể tích hình chóp đều
biết chiều cao bằng
và độ dài cạnh bên bằng
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Tam giác SOA vuông tại O nên
Vậy thể tích hình chóp là:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:
Hình vẽ minh họa:
Kẻ HI // BC (I ∈ CD) ta có:
=> Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc
Dựng hình bình hành ADBE
Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))
Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ
Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))
Ta có:
Với
Vậy
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình lăng trụ
có đáy
là tam giác cân tại
. Gọi
là trung điểm cạnh
. Chọn kết luận đúng?
Hình vẽ minh họa
Vì tam giác ABC cân tại A và M là trung điểm của BC
=>
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,
. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:
Hình vẽ minh họa:
Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.
Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD =
Cho hình lăng trụABC.A’B’Ccó đáy ABC là tam giác vuông tại B,
, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 600. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Gọi
là góc tạo bởi A’H với (A’ACC’). Tính
?

Ta có nên A’H là đường cao của lăng trụ.
Kẻ (K thuộc đoạn AC)
Kẻ
Suy ra
Khi đó

+) Do tam giác MCB cân tại B nên
+) Mặt khác, góc giữa cạnh bên A’A và mặt đáy bằng (theo giả thiết)
Và BM = AM = AB = a
=> Tam giác AMB là tam giác đều cạnh a
Vì vậy,
Cho hình tứ diện ABCD có AB, CD, BC đôi một vuông góc. Khi đó ta có:
Hình vẽ minh họa:
Ta có:
Ta có:
Nếu (Vô lí)
Nếu (Vô lí)
Nếu (Vô lí)
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AB = 2, AD = 3, AA’ = 4. Góc giữa hai mặt phẳng (AB’D’) và (A’C’D) là α. Tính giá trị gần đúng của α.
Hình vẽ minh họa:
Phần 1: Xác định góc
Bước 1: Tìm giao tuyến giữa hai mặt phẳng:
Trong mặt phẳng (ADD’A’) gọi E là giao điểm của AD’ và A’D.
Trong mặt phẳng (A’B’C’D’) gọi F là giao điểm của B’D’ và A’C’.
Khi đó EF là giao tuyến của hai mặt phẳng (AB’D’) và (A’C’D).
Bước 2: Trong mỗi mặt phẳng, ta cần tìm đường thẳng vuông góc với giao tuyến:
Trong mặt phẳng (DA’C’) kẻ A’H ⊥ EF tại H, A’H cắt DC’ tại K.
Ta chứng minh D’H ⊥ EF.
Ta có:
Mặt khác:
Bước 3: Xác định góc giữa hai mặt phẳng:
Ta có:
=> α = ((AB’D’), (DA’C’)) = (D’H, A’H)
Phần 2: Tính góc α:
Ta sẽ sử dụng định lý cosin trong tam giác A’HD’
Bước 1: Chứng minh tam giác A’HD’ cân:
Trong tam giác A’DC’ ta có EF là đường trung bình, nên suy ra H là trung điểm A’K.
Vì A’D’ ⊥ (DD’C’C) nên A’D’ ⊥ D’K.
Do đó tam giác A’D’K vuông tại D’.
Xét tam giác A’D’K vuông tại D’ có D’K là đường trung tuyến ứng với cạnh huyền nên D’H = A’H = A’K/2
Bước 2: Tính độ dài cạnh A’K:
Ta tính đường cao A’K của tam giác ADC’ thông qua diện tích.
Áp dụng định lý Pi – ta - go ta tính được độ dài các cạnh tam giác A’DC’ là:
Sử dụng công thức Hê-rông ta tính được
Mặt khác
Từ đó suy ra D’H = A’H = A’K/2 =
Bước 3: Tính góc α bằng định lý cosin:
Trong tam giác A’HD’ ta có:
Do đó góc giữa hai đường thẳng A’H và D’H bằng 61,60
Vậy α = 61,60
Cho hình hộp ABCD.A’B’C’D có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau. Mệnh đề nào có thể sai?
Dễ thấy các đáp án A’C’ ⊥ BD, A’B ⊥ DC’, BC’ ⊥ A’D đúng
Đáp án BB’ ⊥ BD sẽ bị sai trong trường hợp hình hộp có cạnh bên không vuông góc với mặt đáy
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA = SB = SC = b. Gọi G là trọng tâm của tam giác ABC. Tính độ dài cạnh SG.
Giả sử H là chân đường vuông góc hạ từ S xuống mặt phẳng (ABC)
Khi đó, do SA, SB, SC bằng nhau nên HA = HB = HC hay H là tâm đường tròn ngoại tiếp tam giác ABC, tức là H trùng với G
Vì tam giác ABC là tam giác đều cạnh a nên
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy lớn AB; cạnh bên SA vuông góc với đáy. Gọi Q là điểm trên cạnh SA và Q ≠ A, Q ≠ S; M là điểm trên đoạn AD và M ≠ A. Mặt phẳng (α) qua QM và vuông góc với mặt phẳng (SAD). Thiết diện tạo bởi (α) với hình chóp đã cho là
Hình vẽ minh họa:
Ta có: => AB ⊥ (SAD)
Mà (α) ⊥ (SAD) suy ra AB// (α).
Qua M kẻ đường thẳng song song với AB cắt BC tại N.
Qua E kẻ đường thẳng song song với AB cắt SB tại P.
Khi đó thiết diện là hình thang MNPQ (do MN // P Q).
Vì AB ⊥ (SAD) suy ra MN ⊥ (SAD) nên MN ⊥ QM.
Do đó thiết diện MNPQ là hình thang vuông tại Q và M
Mệnh đề nào đúng trong các mệnh đề sau?
Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.
Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.
Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.
Cho hình lăng trụ tam giác đều
có tất cả các cạnh bằng
. (như hình vẽ).

Tính
?
Hình vẽ minh họa
Gọi M là trung điểm cạnh BC.
Ta có tam giác ABC đều cạnh a nên ;
là hình lăng trụ tam giác đều nên
Do đó và
theo giao tuyến
Kẻ
Lại có
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình chóp
có đáy
là hình vuông,
,
. Gọi
là trung điểm cạnh
. Tính
?
Hình vẽ minh họa
Xét tam giác SAB vuông tại A có:
Gọi E là trung điểm cạnh MC, ta có:
và
Lại có:
Suy ra tam giác SBC vuông tại B.
Xét tam giá MBC vuông tại B ta có:
Xét tam giác có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và
là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:

Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)
=> SA ⊥ BC
Xét tam giác ABC vuông tại B ta có:
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC
Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)
=> AC ⊥ AB (vô lí)
Cho hình chóp tam giác
có
vuông tại
và
. Kẻ đường cao
của tam giác
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có:
Ta có:
Mà
Vậy khẳng định sai là: “”.
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính
. Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là

Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp
có đáy
là hình tam giác vuông tại A,
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, (SAB) ⊥ (ABCD), (SAC) ⊥ (ABCD), SA = 2a. Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Ta có:
=> Hình chiếu vuông góc của SB trên mặt phẳng (SAD) là SA
=>
Xét tam giác SAB vuông ta có:
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Trong không gian cho đường thẳng Δ không nằm trong mặt phẳng (P), đường thẳng Δ gọi là vuông góc với mặt phẳng (P) nếu
Đường thẳng Δ được gọi là vuông góc với mặt phẳng (P) nếu Δ vuông góc với mọi đường thẳng nằm trong (P).
Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa AC’ và BD?

Hình vẽ minh họa:
Ta có:
BD ⊥ AC (do ABCD là hình vuông)
BD ⊥ CC’
⇒ BD ⊥ AC’
Do đó góc giữa AC' và BD bằng 900
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Tính thể tích khối tứ diện đều
, biết
?
Hình vẽ minh họa
Gọi E là trung điểm của CD, H là trọng tâm giác giác BCD
Tam giác BCD đều cạnh bằng 5
Tam giác ABH vuông tại H nên
Vậy thể tích khối chóp tam giác là:
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Gọi
. Xác định
?
Hình vẽ minh họa
Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc