Đề kiểm tra 45 phút Toán 11 Chương 8 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?

    (1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.

    (2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    (3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.

  • Câu 2: Thông hiểu

    Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

    Tính giá trị cos α

    Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a

    Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.

    Tương tự BH ⊥ AC.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAC} ight) \bot \left( {ABC} ight)} \\   {\left( {DAC} ight) \cap \left( {ABC} ight)} \\   {DH \bot AC} \\   {DH \subset \left( {DAC} ight)} \end{array}} ight. \Rightarrow DH \bot \left( {ABC} ight)

    Gọi K là trung điểm của DB.

    Ta có: ABD cân tại A nên AK \bot BD

    Và CBD cân tại C nên CK \bot DB

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAB} ight) \cap \left( {DBC} ight) = BD} \\   {AK \bot BD;AK \subset \left( {DAB} ight)} \\   {CK \bot BD;CK \subset \left( {DAB} ight)} \end{array}} ight.

    Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.

    Ta có DH = a\sqrt 3 ;BH = a\sqrt 3 nên BDH vuông cân tại H.

    Từ đó ta có: \left\{ {\begin{array}{*{20}{c}}  {DB = \sqrt {D{H^2} + H{B^2}}  = a\sqrt 6 } \\   {HK = \dfrac{1}{2}BD = \dfrac{{a\sqrt 6 }}{2}} \end{array}} ight.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AC \bot DH} \\   {AC \bot BH} \\   {DH \cap BH = H} \\   {DH;BH \subset \left( {DBH} ight)} \end{array}} ight. \Rightarrow AC \bot \left( {DBH} ight)HK \subset \left( {DBH} ight) \Rightarrow AC \bot HK

    Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.

    Nên ta có: KH là phân giác của góc \widehat {AKC} suy ra \widehat {AKC} = 2\widehat {CKH}

    Ta có: t = \tan \widehat {CKH} = \frac{{HC}}{{HK}} = \frac{a}{{a\sqrt 6 :3}} = \frac{{\sqrt 6 }}{3}

    Vậy \cos \alpha  = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{6}{9}}}{{1 + \frac{6}{9}}} = \frac{1}{5}

  • Câu 3: Vận dụng cao

    Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với AC = a\sqrt{3}. Biết BC’ hợp với mặt phẳng (AA’C’C) với một góc 300 và hợp với mặt phẳng đáy góc α sao cho \sin\alpha =\frac{\sqrt{6}}{4} . Gọi M, N lần lượt là trung điểm cạnh BB’ và A’C’. Khoảng cách MN và AC’ là:

    Hình vẽ minh họa:

    Ta có:\left\{ \begin{matrix}\widehat{\left( BC’,(AA’C’C) ight)} = \widehat{BC’A} = 30^{0} \\\widehat{\left( BC’,(ABC) ight)} = \widehat{C'BC} = \alpha \\\end{matrix} ight.

    Đặt AB = x => BC = \sqrt{3a^{2} +x^{2}}

    BC = \sqrt{3a^{2} + x^{2}}

    CC' = BC.tan\alpha =\sqrt{\frac{3\left( x^{2} + 3a^{2} ight)}{5}}

    AC' = AB.cot30^{0} =\sqrt{\frac{3\left( x^{2} + 3a^{2} ight)}{5}}

    Ta có: AC^{2} + CC'^{2} =AC^{2}

    \Rightarrow x = a\sqrt{2}

    \Rightarrow CC' = a\sqrt{3};AC =a\sqrt{6}

    Gọi P là trung điểm của B’C’ => (MNP) // (ABC’)

    d(MN, AC’) = d(N, (ABC’)) = \frac{1}{2}d(A’, (ABC’)

    Kẻ A’H ⊥ AC’ tại H => A’H ⊥ (ABC’)

    d\left( A';(ABC') ight) =A'H = \frac{AA'.A'C'}{AC'} =\frac{a\sqrt{6}}{2}

    => d(MN, AC’) = \frac{a\sqrt{6}}{4}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa:

    Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.

    Gọi H là trung điểm AC => SH ⊥ AC.

    Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.

    Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.

    Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.

    Từ đó suy ra (ABI) ⊥ (SBC).

    Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai

  • Câu 5: Thông hiểu

    Cho tứ diện đều ABCD cạnh bằng 1, M là trung điểm của BC. Khi đó \cos(AB;DM) là:

    Hình vẽ minh họa

    Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.

    \Rightarrow \cos(AB,DM) = \cos(EM;DM) =
\widehat{DME}

    Ta có: ABCD là tứ diện đều cạnh bằng 1 và EA = EC;BM = MC

    \Rightarrow DM = \frac{\sqrt{3}}{2};DE =
\frac{\sqrt{3}}{2};EM = \frac{AB}{2} = \frac{1}{2}

    \Rightarrow \cos\widehat{DME} =
\frac{DM^{2} + ME^{2} - DE^{2}}{2.DM.EM} = \frac{1}{2\sqrt{3}} =
\frac{\sqrt{3}}{6}

    \Rightarrow \cos(AB,DM) =
\frac{\sqrt{3}}{6}

  • Câu 6: Vận dụng

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AC = b, các cạnh bên có độ dài bằng b. Tính góc giữa đường thẳng AB và mặt phẳng (AB’C’)

    Tính góc giữa đường thẳng AB và mặt phẳng (AB’C’)

    AB \cap \left( {AB'C'} ight) = A (1)

    Kẻ lần lượt Ax//\left( {BC} ight);BD \bot Ax;BK \bot DB'

    Ta có: \left. \begin{gathered}  AD \bot BD \hfill \\  AD \bot BB \prime \hfill \\ \end{gathered}  ight\} \Rightarrow AD \bot \left( {BDB'} ight) \Rightarrow AD \bot BK

    Lại có BK \bot DB' \Rightarrow BK \bot \left( {ADB'} ight) hay BK \bot \left( {AB'C'} ight)

    => K là hình chiếu vuông góc của lên mặt phẳng (AB’C’) (2)

    Từ (1) và (2) => AK là hình chiếu vuông góc của AB lên mặt phẳng (AB’C’)

    \Rightarrow \widehat {\left( {AB;\left( {AB'C'} ight)} ight)} = \widehat {\left( {AB;\,AK} ight)} = \widehat {BAK}

    Tam giác ABC vuông cân tại A

    \Rightarrow AH = \frac{{AB\sqrt 2 }}{2} = \frac{{b\sqrt 2 }}{2}

    Có ADBH là hình chữ nhật => BD = AH = \frac{{b\sqrt 2 }}{2}

    Tam giác BDB’ vuông tại B

    \begin{matrix}   \Rightarrow \frac{1}{{B{K^2}}} = \dfrac{1}{{B{D^2}}} + \dfrac{1}{{B{{B'}^2}}} = \dfrac{1}{{{{\left( {\dfrac{{b\sqrt 2 }}{2}} ight)}^2}}} + \dfrac{1}{{{b^2}}} = \dfrac{3}{{{b^2}}} \hfill \\   \Leftrightarrow BK = \dfrac{{b\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác BAK vuông tại K

    \begin{matrix}  \sin \left( {\widehat {BAK}} ight) = \dfrac{{BK}}{{AB}} = \dfrac{{\dfrac{{b\sqrt 3 }}{3}}}{b} = \dfrac{{\sqrt 3 }}{3} \hfill \\   \Rightarrow \cos \left( {\widehat {BAK}} ight) = \dfrac{{\sqrt 6 }}{3} = \cos \left( {\widehat {AB,\left( {AB'C'} ight)}} ight) \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 8: Vận dụng

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAB) và (SBC) vuông góc vì

    Hai mặt phẳng (SAB) và (SBC) vuông góc vì BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA

  • Câu 10: Nhận biết

    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”

    Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.

  • Câu 11: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.

    Đường thẳng B’C vuông góc với đường thẳng:

    Hình vẽ minh họa:

    Đường thẳng B’C vuông góc với đường thẳng nào

    Ta có: 

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CC'}  + \overrightarrow {C'B'} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {CC'} .\overrightarrow {CD}  + \overrightarrow {C'B'} .\overrightarrow {CD}  \hfill \\   = CC'.CD.\cos \widehat {C'CD} + C'B'.CD.\cos \widehat {B'C'D'} \hfill \\   = a.a.\cos {60^0} + a.a.\cos \left( {{{180}^0} - \widehat {ABC}} ight) \hfill \\   = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} = 0 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Tam giác SAB vuông cân tại SM là trung điểm của BC\widehat{BSC} = 60^{0}. Gọi góc giữa hai đường thẳng ABCM\alpha. Chọn kết luận đúng?

    Hình vẽ minh họa

    Giả sử SA = a \Rightarrow \left\{
\begin{matrix}
SB = CA = CB = a \\
AB = a\sqrt{2} \\
\end{matrix} ight.

    Lại có: \widehat{BSC} = 60^{0} suy ra tam giác SBC đều suy ra SC =
a

    Suy ra CM = CN =
\frac{a\sqrt{3}}{2} hay MN//AB

    Khi đó (AB;CM) = (MN,CM)

    Áp dụng định lí cosin cho tam giác MNC ta có:

    \cos\widehat{CMN} = \frac{MC^{2} +
MN^{2} - NC^{2}}{2.MC.MN} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos(AB;CM) = \left|
\cos\widehat{CMN} ight| = \frac{\sqrt{6}}{6}

  • Câu 13: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Biết \left( (SAB);(ABCD) ight) = 90^{0} và tam giác SAB đều. Xác định thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.a^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 14: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 15: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 16: Thông hiểu

    Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Điểm I là:

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot OI} \\   {AB \bot OC} \end{array}} ight. \Rightarrow AB \bot CI

    Chứng minh tương tự ta được: BC \bot AI

    Vậy I là trực tâm của tam giác ABC.

  • Câu 17: Vận dụng

    Cho tứ diện ABCDAB =
m;(m > 0), các cạnh còn lại bằng nhau và bằng 4. Mặt phẳng (\alpha) chứa cạnh AB và vuông góc với cạnh CD tại I. Diện tích tam giác ABI lớn nhất bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: (\alpha)\bot CD \equiv I
\Rightarrow \left\{ \begin{matrix}
AI\bot CD \\
BI\bot CD \\
\end{matrix} ight.

    Theo giả thiết AC = AD = BC = BD = CD =
4cm ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4

    \Rightarrow IA = IB =
4.\frac{\sqrt{3}}{2} = 2\sqrt{3}

    Gọi H là trung điểm của AB ta có: IH\bot
ABIH = \sqrt{IA^{2} -
\frac{m^{2}}{4}} = \sqrt{12 - \frac{m^{2}}{4}}

    S_{ABI} = \frac{1}{2}IH.AB

    = \frac{1}{2}m.\sqrt{12 -
\frac{m^{2}}{4}}

    = \sqrt{\frac{m^{2}}{4}.\left( 12 -
\frac{m^{2}}{4} ight)} \leq 6

    Dấu bằng xảy ra khi và chỉ khi x =
2\sqrt{6}

    Vậy \max S_{ABI} = 6

  • Câu 18: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a\sqrt{2}. Tính khoảng cách giữa hai đường thẳng CC’ và BD.

    Hình vẽ minh họa:

    Ta có:

    OC ⊥ BD

    OC ⊥ CC’

    => OC là đoạn vuông góc chung của CC’ và BD.

    Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA ⊥ (ABCD). Chọn khẳng định sai trong các khẳng định sau?

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) => SA ⊥ BD

    Mà ABCD là hình thoi nên AC ⊥ BD

    => BD ⊥ (SAC)

    Mặt khác SO và SC thuộc mặt phẳng (SAC)

    => BD ⊥ SO, BD ⊥ SC

    Và AD, SC là hai đường thẳng chéo nhau

    => AD ⊥ SC là khẳng định sai.

  • Câu 20: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 21: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD), SA = AB = a. Gọi M là trung điểm cạnh SB. Tính (AM,BD)?

    Hình vẽ minh họa

    Xét tam giác SAB vuông tại A có: SB =
\sqrt{SA^{2} + AB^{2}} = a\sqrt{2}

    Gọi E là trung điểm cạnh MC, ta có:

    OE//AM \Rightarrow (AM;BD) =
(OE,BD)OE = \frac{1}{2}AM =
\frac{1}{4}SB = \frac{a\sqrt{2}}{4}

    Lại có: CB\bot AB;SA\bot CB \Rightarrow
CB\bot SB

    Suy ra tam giác SBC vuông tại B.

    Xét tam giá MBC vuông tại B ta có:

    MC = \sqrt{MB^{2} + BC^{2}} =
\sqrt{\frac{1}{4}.2a^{2} + a^{2}} = \frac{a\sqrt{6}}{2}

    BE = \frac{1}{2}MC =
\frac{a\sqrt{6}}{4}

    Xét tam giác EBOcó:

    \cos\widehat{EOB} = \frac{EO^{2} +
OB^{2} - EB^{2}}{2.EO.OB} = \frac{1}{2}

    \Rightarrow \widehat{EOB} = 60^{0}
\Rightarrow OE//AM \Rightarrow (AM;BD) = 60^{0}

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 24: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 5a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 5a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{5}{3}a^{3}

  • Câu 25: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

  • Câu 27: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Gọi D là trung điểm cạnh BC. Biết AA' = 2a, khoảng cách giữa hai đường thẳng A'BC'D là:

    Hình vẽ minh họa

    Gọi D' là trung điểm của B'C', ta có BDC'D' là hình bình hành

    \Rightarrow C'D//BD' \Rightarrow
C'D//(A'BD').

    Kẻ B'H \bot BD'.

    Ta có: \left. \ \begin{matrix}A'D'\bot B'C' \\A'D'\bot BB' \\\end{matrix} ight\} \Rightarrow A'D'\bot(BCC'B')\Rightarrow A'D'\bot B'H.

    \left. \ \begin{matrix}
B'H\bot BD' \\
B'H\bot A'D' \\
\end{matrix} ight\} \Rightarrow
B'H\bot(A'BD')

    Suy ra,

    d(A'B,C'D) = d\left(
C'D;(A'BD') ight) = d\left( C';(A'BD') ight)
= d\left( B';(A'BD') ight) = B'H

    Ta có: B'D' = \frac{a}{2}; BB'= 2a.

    Xét \Delta BB'D' vuông tại B' ta có:

    \frac{1}{B'H^{2}} =
\frac{1}{BB'^{2}} + \frac{1}{B'D'^{2}} = \frac{1}{4a^{2}} +
\frac{4}{a^{2}} \Rightarrow BH = \frac{2a}{\sqrt{17}}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 29: Thông hiểu

    Cho hình chóp  S.ABC có đáy ABC là tam giác vuông tại A. Hình chiếu của S lên mặt phẳng đáy là trung điểm H của BC. Tính thể tích khối chóp S.ABC biết AB
= a;AC = a\sqrt{3};SB = a\sqrt{2}.

    Hình vẽ minh họa

    Xét tam giác ABC vuông tại C ta có: BC =
\sqrt{AB^{2} + AC^{2}} = \sqrt{a^{2} + \left( a\sqrt{3} ight)^{2}} =
2a

    H là trung điểm của BC nên BH =
a

    Xét tam giác SBH vuông tại H có SH =
\sqrt{SB^{2} - HB^{2}} = \sqrt{\left( a\sqrt{2} ight)^{2} - a^{2}} =
a

    Diện tích đáy ABC là S_{ABC} =
\frac{1}{2}AB.AC = \frac{1}{2}a^{2}\sqrt{3}

    Thể tích khối chóp là V =
\frac{1}{3}SH.S_{ABC} = \frac{1}{3}.a.\frac{1}{2}a^{2}\sqrt{3} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 30: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA’ = 2a; AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d giữa hai đường thẳng A’B’ và C’M.

    Ta có: AA’ = AM = MD = 2a nên tam giác AMA’ và tam giác MDD’ lần lượt là tam giác vuông tại A và D

    => \widehat{AMA'} =
\widehat{D'MD} = 45^{0} \Rightarrow A'M\bot MD' (1)

    Ta lại có: C'D'\bot(A'D'DA) \Rightarrow
C'D'\bot A'M (2)

    Từ (1) và (2) => A'M\bot(MC'Ð)

    Ta lại có A’B’ // C’D’ => A’B’ // (MC’D’)

    => Khoảng cách d = d(A’B’, (MC’D’)) = d(A’; (MC’D’))

    => A'M = \sqrt{AA'^{2} +
AM^{2}} = 2a\sqrt{2}

  • Câu 31: Vận dụng cao

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông cân tại B với trọng tâm G. Cạnh bên SA tạo với đáy (ABC) một góc 300. Biết hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SA và BC.

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
(SBG) \cap (SCG) = SG \\
(SBG)\bot(ABC) \\
(SCG)\bot(ABC) \\
\end{matrix} \Rightarrow SG\bot(ABC) ight.

    Gọi O, N lần lượt là trung điểm của AC và BC.

    Gọi D là điểm đối xứng của B qua O. Khi đó ABCD là hình vuông.

    Vì BC // AD nên (SA, BC) = (SA, AD).

    Gọi ϕ là góc giữa hai đường thẳng SA và AD.

    Đặt AB = BC = x => AD = x

    Ta có:

    \begin{matrix}AN^{2} = AB^{2} + BN^{2} = x^{2} + \dfrac{x^{2}}{4} = \dfrac{5x^{2}}{4}\hfill \\\Rightarrow AN = \dfrac{x\sqrt{5}}{2} \hfill\\AG = \dfrac{2}{3}AN = \dfrac{2}{3}.\dfrac{x\sqrt{5}}{2} =\dfrac{x\sqrt{5}}{3}\hfill \\\end{matrix}

    Góc giữa SA và mặt đáy (ABC) là \widehat{SAG} = 30^{0}

    Ta có:

    cos30^{0} = \frac{AG}{SA} \Rightarrow SA
= \frac{AG}{cos30^{0}} = \frac{2x\sqrt{15}}{9}

    Ta có:

    \begin{matrix}\tan30^{0} = \dfrac{SG}{AG}\hfill \\\Rightarrow SG = AG.\tan30^{0} = \dfrac{x\sqrt{15}}{9} \hfill\\GD = \dfrac{2}{3}BD = \dfrac{2}{3}x\sqrt{2} \\SD^{2} = SG^{2} + GD^{2} = \dfrac{15x^{2}}{81} + \dfrac{8x^{2}}{9} =\dfrac{87x^{2}}{81} \hfill\\\end{matrix}

    Áp dụng hệ quả của định lí cosin trong tam giác SAD ta có:

    \cos SAD = \frac{SA^{2} + AD^{2} -
SD^{2}}{2SA.AD} = \frac{\sqrt{15}}{10}

  • Câu 32: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 33: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 34: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng ABC'A'?

    Hình vẽ minh họa

    Ta có: Tam giác ABC là tam giác đều suy ra \widehat{BAC} =
60^{0}

    Lại có AC//A'C'

    \Rightarrow (AB;A'C') = (AB;CA) =
\widehat{BAC} = 60^{0}.

  • Câu 35: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 36: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 37: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 38: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 39: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC =
a\sqrt{3}AA' = 3a. Chọn kết luận đúng về số đo góc giữa A'C(ABC)?

    Hình vẽ minh họa

    Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC

    Suy ra \left( A'C;(ABC) ight) =
(A'C;AC) = \widehat{A'CA}

    Ta có: \tan\widehat{A'CA} =
\frac{AA'}{AC} = \frac{3a}{a\sqrt{3}} = \sqrt{3}

    \Rightarrow \widehat{A'CA} = 60^{0}
\Rightarrow \left( A'C;(ABC) ight) = 60^{0}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Tính góc giữa đường thẳng SC và mặt phẳng đáy, biết rằng SA = a\sqrt{15};AB = a;BC = 2a.

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABC) từ đó suy ra \left( SC;(ABC) ight) = (SC;AC) =
\widehat{SCA}

    Trong tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{a^{2} + 4a^{2}} = a\sqrt{5}

    Trong tam giác SAC vuông tại A ta có: \tan\widehat{SCA} = \frac{SA}{AC} =
\frac{a\sqrt{15}}{a\sqrt{15}} = \sqrt{3}

    \tan\widehat{SCA} = 60^{0}

    \Rightarrow \left( SC;(ABC) ight) =
60^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo