Đề kiểm tra 45 phút Toán 11 Chương 8 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các mệnh đề dưới đây, mệnh đề nào là mệnh đề đúng?

    Mệnh đề đúng: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia”.

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a;BC
= a\sqrt{2}; SA\bot(ABC)SA = a. Góc giữa đường thằng SC và mặt phẳng đáy bằng:

    Hình vẽ minh họa

    Ta có góc giữa SC và mặt phẳng đáy là góc \widehat{SCA}

    Xét tam giác SCA vuông tại A có:

    AC = \sqrt{AB^{2} + BC^{2}} =
a\sqrt{3}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và mằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa:

    Tam giác SAC đều có I là trung điểm của SC => AI ⊥ SC.

    Gọi H là trung điểm AC => SH ⊥ AC.

    Mà (SAC) ⊥ (ABC) theo giao tuyến AC => SH ⊥ (ABC) => SH ⊥ BC.

    Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC ⊥ AC.

    Từ đó suy ra BC ⊥ (SAC) => BC ⊥ AI.

    Từ đó suy ra (ABI) ⊥ (SBC).

    Dùng phương pháp loại trừ thì khẳng định “(SBC) ⊥ (SAC)” là sai

  • Câu 4: Vận dụng

    Cho S.ABCD là hình chóp có đáy là hình chữ nhật. SA \bot \left( {ABCD} ight). Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết AB = a,AD = 2aKM = \frac{{a\sqrt {67} }}{6}. Tính cosin góc giữa KM và SQ.

    Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.

    Vậy MN \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {NK}  = \overrightarrow {NA}  + \overrightarrow {AB}  + \overrightarrow {BK}  \hfill \\   =  - \dfrac{1}{2}\overrightarrow {AD}  + \overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AD}  = \overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD}  \hfill \\ \end{matrix}

    Suy ra

    \begin{matrix}  N{K^2} = {\left( {\overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD} } ight)^2} = A{B^2} + \dfrac{1}{{36}}A{D^2} \hfill \\   = {a^2} + \dfrac{1}{{36}}.4{a^2} = \dfrac{{10}}{9}{a^2} \hfill \\ \end{matrix}

    Xét tam giác MNK vuông tại N (do MN \bot \left( {ABCD} ight)) ta có:

    \begin{matrix}  M{N^2} = M{K^2} - N{K^2} = \dfrac{{67}}{{36}}{a^2} - \dfrac{{10}}{9}{a^2} = \dfrac{3}{4}{a^2} \hfill \\   \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2} \Rightarrow SA = a\sqrt 3  \hfill \\ \end{matrix}

    Lại có

    \begin{matrix}  \overrightarrow {AQ}  = \overrightarrow {AD}  + \overrightarrow {DQ}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  \hfill \\   \Rightarrow A{Q^2} = {\left( {\overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB} } ight)^2} \hfill \\   = A{D^2} + \dfrac{9}{{16}}A{B^2} \hfill \\   = {(2a)^2} + \dfrac{9}{{16}}{a^2} = \dfrac{{73}}{{16}}{a^2} \hfill \\ \end{matrix}

    Xét tam giác SAQ vuông tại A nên

    \begin{matrix}  S{Q^2} = A{S^2} + A{Q^2} = 3{a^2} + \dfrac{{73}}{{16}}{a^2} = \dfrac{{121}}{{16}}{a^2} \hfill \\   \Rightarrow SQ = \dfrac{{11}}{4}a \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  \overrightarrow {KM}  = \overrightarrow {NM}  - \overrightarrow {NK}  = \dfrac{1}{2}\overrightarrow {AS}  - \overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AD}  \hfill \\  \overrightarrow {SQ}  = \overrightarrow {AQ}  - \overrightarrow {AS}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  - \overrightarrow {AS}  \hfill \\ \end{matrix}

    Khi đó

    \begin{matrix}  \overrightarrow {KM} .\overrightarrow {SQ}  =  - \dfrac{3}{4}A{B^2} + \dfrac{1}{6}A{D^2} - \dfrac{1}{2}A{S^2} \hfill \\   =  - \dfrac{3}{4}{a^2} + \dfrac{1}{6}.4{a^2} - \dfrac{1}{2}.3{a^2} = \dfrac{{ - 19}}{{12}}{a^2} \hfill \\ \end{matrix}

    Vậy

    \begin{matrix}  \cos \left( {KM,SQ} ight) = \left| {\cos \left( {\overrightarrow {KM} ,\overrightarrow {SQ} } ight)} ight| \hfill \\   = \dfrac{{\left| {\overrightarrow {KM} .\overrightarrow {SQ} } ight|}}{{KM.SQ}} = \dfrac{{\left| {\dfrac{{ - 19}}{{12}}{a^2}} ight|}}{{\dfrac{{a\sqrt {67} }}{6}.\dfrac{{11a}}{4}}} = \dfrac{{38}}{{11\sqrt {67} }} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a. SA = SB = SC = \frac{{a\sqrt 3 }}{3}. Góc giữa đường thẳng SA và (ABC) bằng

    Góc giữa đường thẳng SA và (ABC) là

    +) Gọi H là trung điểm BC.

    Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Ta có: SA = SB = SC\,\left( {gt} ight) \Rightarrow SH \bot \left( {ABC} ight)

    => Hình chiếu của SA lên (ABC) là HA

    \Rightarrow \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {\left( {SA,HA} ight)} = \widehat {SAH} (vì tam giác SAH vuông tại H)

    +) Ta có: AH = \frac{{BC}}{2} = \frac{a}{2}

    Xét tam giác SHA vuông tại H:

    \cos \widehat {SAH} = \dfrac{{AH}}{{SA}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 3 }}{3}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {SAH} = 30^\circ

    Vậy \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {SAH} = 30^\circ

  • Câu 6: Vận dụng

    Cho tứ diện ABCD. Nếu AB ⊥CD, AC ⊥ BDBC ⊥ AD thì:

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AC} .\overrightarrow {BD}  = \overrightarrow {AD} .\overrightarrow {CB}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } ight) = \overrightarrow {AC} \left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AD} .\left( {\overrightarrow {AB}  - \overrightarrow {AC} } ight) = 0 \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AB} .\overrightarrow {AD}  \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ

    => MQ // AB

    Tương tự ta có: MN // CD; NP // AB; QP // CD

    Khi đó tứ giác MNPQ là hình bình hành

    Ta có: MN ⊥ MQ (Do AB ⊥ CD)

    Hay tứ giác MNPQ là hình chữ nhật.

  • Câu 10: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, tam giác SAD là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng SABC.

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(BD;SA) = \widehat{SAD} = 60^{0}

    \Rightarrow \sin(BC;SA) =
\frac{\sqrt{3}}{2}

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh x; SA\bot(ABCD). Góc tạo bởi cạnhSC và mặt phẳng (SAB) bằng 30^{0}. Xác định thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh bằng x nên S_{ABCD} = x^{2}

    Dễ dàng chứng minh được BC\bot(SAB)

    \Rightarrow \left( SC;(SAB) ight) =
\widehat{CSB} = 30^{0}

    Đặt SA = m \Rightarrow SB = \sqrt{m^{2} +
x^{2}}

    Tam giác SBC vuông tại B nên \tan\widehat{CSA} = \tan30^{0} = \frac{1}{\sqrt{3}}= \frac{BC}{SB}

    Ta được:

    BC = SB\sqrt{3} \Leftrightarrow
\sqrt{m^{2} + x^{2}} = x\sqrt{3} \Rightarrow m = x\sqrt{2}

    Vậy diện tích hình chóp là:

    V = \frac{1}{3}SA.S_{ABCD} =
\frac{1}{3}.x\sqrt{2}.x^{2} = \frac{x^{3}\sqrt{2}}{3}

  • Câu 14: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 16: Thông hiểu

    Tính thể tích khối tứ diện đều A.BCD, biết AB = 3?

    Hình vẽ minh họa

    Gọi E là trung điểm của CD, H là trọng tâm giác giác BCD SH\bot(ABC)

    Tam giác BCD đều cạnh bằng 5

    \Rightarrow BE = \sqrt{3^{2} - \left(
\frac{3}{2} ight)^{2}} = \frac{3\sqrt{3}}{2} \Rightarrow BH =
\sqrt{3}

    Tam giác ABH vuông tại H nên

    \Rightarrow AH = \sqrt{AB^{2} - BH^{2}}
= \sqrt{3^{2} - \left( \sqrt{3} ight)^{2}} = \sqrt{6}

    \Rightarrow S_{ABCD} = \frac{1}{2}BE.CD
= \frac{1}{2}.\frac{3\sqrt{3}}{2}.3 = \frac{9\sqrt{3}}{4}

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{9\sqrt{3}}{4}.\sqrt{6} =
\frac{9\sqrt{2}}{4}cm^{3}

  • Câu 17: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 18: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a\sqrt{2}.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Ta có: AD // BC => d\left( {D;\left( {SCD} ight)} ight) = d\left( {A;\left( {SBC} ight)} ight)

    Gọi H là hình chiếu vuông góc của A lên SB => AK \bot SB (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AH\left( {**} ight)

    Từ (*) và (**) => AH \bot \left( {SBC} ight)

    \begin{matrix}  d\left( {A;\left( {SBC} ight)} ight) = AH \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a\sqrt 3 }}{3} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 21: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 22: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 23: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?

    Xét tứ giác MNPQ có: \left\{
\begin{matrix}
PQ//NP//AB \\
MN//PQ//CD \\
\end{matrix} ight.

    => MNPQ là hình bình hành

    Mặt khác AB\bot CD \Rightarrow MQ\bot
MN

    => MNPQ là hình chữ nhật

    Vì MQ // AB nên \frac{MQ}{AB} =
\frac{CM}{CB} = x \Rightarrow MQ = x.AB = 6x

    Theo giả thiết MC = x.BC => MB = (1 – x).BC

    Vì MN // CD nên \frac{MN}{CD} =
\frac{BM}{BC} = 1 - x

    => MN = (1 - x).DC = 6(1 -
x)

    Diện tích hình chữ nhật MNPQ là:

    \begin{matrix}S_{MNPQ} = MN.MQ \hfill\\= 6(1 - x).6x \hfill\\= 36x.(1 - x) \hfill\\\leq 36.\left( \dfrac{x + 1 - x}{2} ight)^{2} = 9 \hfill \\\Rightarrow S_{MNPQ} = 9 \hfill\\\end{matrix}

    Khi x = 1 – x => x = 1/2

    Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.

  • Câu 24: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 25: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước AB = 4,AD = 3,AA' = 5. Khoảng cách giữa hai đường thẳng AC'B'C bằng:

    Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước AB = 4,AD = 3,AA' = 5. Khoảng cách giữa hai đường thẳng AC'B'C bằng:

    Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Trong (BB'C'C) kẻ C'M//B'C;(M \in BC).

    \Rightarrow B^{'}C//\left(
AC^{'}M ight) \Rightarrow d\left( A^{'}C;B^{'}C ight) =
d\left( B^{'}C;\left( AC^{'}M ight) ight) = d\left( C;\left(
AC^{'}M ight) ight)

    Kẻ CH\bot AM;CK\bot
C^{'}H.

    Do \left\{ \begin{matrix}
CH\bot AM \\
CC^{'}\bot AM \\
\end{matrix} \Rightarrow AM\bot\left( CC^{'}H ight) \Rightarrow
AM\bot CK ight.

    CK\bot C^{'}H \Rightarrow
CK\bot\left( AC^{'}M ight) \Rightarrow d\left( C;\left(
AC^{'}M ight) ight) = CK.

    Ta có: B^{'}C^{'}MC là hình bình hành nên CM = B'C' =3.

    \frac{1}{d^{2}(B;AM)} = \frac{1}{AB^{2}}
+ \frac{1}{BM^{2}} \Rightarrow d(B;AM) =
\frac{12}{\sqrt{13}}

    \Rightarrow CH = \frac{1}{2}d(B;AM) =
\frac{6}{\sqrt{13}}.

    Áp dụng hệ thức lượng trong tam giác vuông C^{'}CH ta có:

    \frac{1}{CK^{2}} = \frac{1}{CH^{2}} +
\frac{1}{CC^{'2}} \Rightarrow CK = \frac{30}{19}.

  • Câu 26: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 27: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 31: Thông hiểu

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD. 

    Gọi E=HK∩AC. Do HK//BD nên suy ra

    d(HK;SD)=d(HK;(SBD))=d(E;(SBD))=d(A;(SBD))/2 (vì OE=AO/2=1/2)

    Kẻ AF⊥SO(1) ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SA} \end{array}} ight.

    ⇒BD⊥(SAC)⇒BD⊥AF(2)

    Từ (1) và (2) ⇒AF⊥(SBD), khi đó d(A;(SBD))=AF

    \begin{matrix}  AF = \dfrac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} \hfill \\   = \dfrac{{2a.\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {{{\left( {2a} ight)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{2a}}{3} \hfill \\   \Rightarrow d\left( {HK;SD} ight) = \dfrac{1}{2}AF = \dfrac{a}{3} \hfill \\ \end{matrix}

  • Câu 33: Vận dụng cao

    Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4, góc BAD = 1200. Cạnh bên SA =
2\sqrt{3} vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC và α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
MN//SD \\
NP//CD \\
\end{matrix} \Rightarrow (MNP)//(SCD) ight.

    => ((SAC), (MNP)) = ((SAC), (SCD)) = α.

    Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu vuông góc của H xuống SC, suy ra \alpha =
\widehat{AKH}

    Ta có V_{S.ACD} = \frac{1}{2}V_{S.ABCD} =
\frac{1}{2}.\frac{1}{3}.3.4.\frac{\sqrt{3}}{2}.2\sqrt{3} =
6

    Trong tam giác ABC có

    AC^{2} = AB^{2} + BC^{2} -
2AB.BC.cos\widehat{ABC}

    = 4^{2} + 3^{2} - 2.3.4.\frac{1}{2} =
13

    \Rightarrow SC^{2} = AC^{2} + SA^{2} =
13 + 12 = 25

    SD = \sqrt{SA^{2} + AD^{2}} = \sqrt{12 +
16} = \sqrt{28}

    \Rightarrow \sin\widehat{CSD} = \sqrt{1
- cos^{2}\widehat{CSD}} = \frac{3\sqrt{42}}{35}

    Do đó diện tích tam giác SCD là

    S_{SCD} =
\frac{1}{2}SC.SD.sin\widehat{CSD}

    =
\frac{1}{2}.5.\sqrt{28}.\frac{3\sqrt{42}}{35} = 3\sqrt{6}

    S_{SAC} = \frac{1}{2}AC.SA =
\frac{1}{2}AK.SC

    \Rightarrow AK = \frac{SA.AC}{SC} =
\frac{2\sqrt{3}.\sqrt{13}}{5} = \frac{2\sqrt{39}}{5}

    Theo công thức tính thể tích khối chóp A.SCD thì AH = \frac{3V_{A.SCD}}{S_{SCD}} =
\frac{3.6}{3\sqrt{6}} = \sqrt{6}

    => \sin\alpha = \dfrac{AH}{AK} =\dfrac{\sqrt{6}}{\dfrac{2\sqrt{39}}{5}} =\dfrac{5\sqrt{26}}{26}

    => α ∈ (600; 900)

  • Câu 34: Vận dụng

    Cho hình vuông ABCD cạnh a và SA ⊥ (ABCD). Để góc giữa (SCB) và (SCD) bằng 60◦ thì độ dài cạnh SA là:

    Hình vẽ minh họa:

    Đặt SA = a.

    Kẻ AM ⊥ SD, m ∈ SD, AN ⊥ SB, N ∈ SB, ta có: \left\{ \begin{matrix}
AM\bot(SCD) \\
AN\bot(SBC) \\
\end{matrix} ight.

    Suy ra: \widehat{\left( (SCD);(SBC)
ight)} = \widehat{(AM;AN)}

    Do ∆SAD = ∆SAB (c.g.c) => AM = AN

    Do đó => ((SCD); (SBC)) = 60◦ => (AM; AN) = 60◦

    Xét tam giác SAD, ta có:

    \frac{1}{AM^{2}} = \frac{1}{x^{2}} +
\frac{1}{a^{2}} \Rightarrow AM = MN \Rightarrow x = a

    \begin{matrix}\dfrac{MN}{BD} = \dfrac{SM}{SD} = \dfrac{SM.SD}{SD^{2}} =\dfrac{SA^{2}}{SD^{2}} = \dfrac{x^{2}}{a^{2} + x^{2}} \hfill\\\Rightarrow MN = \dfrac{ax^{2}\sqrt{2}}{a^{2} + x^{2}} \hfill\\\end{matrix}

    Nếu \widehat{MAN} = 60^{0} thì ∆AMN đều => AM = MN => x = a

    Nếu \widehat{MAN} = 120^{0} thì MN = \sqrt{3}AM \Rightarrow 2x^{2} = 3\left(
x^{2} + a^{2} ight) (Vô lý)

    Vậy SA = a

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 36: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 37: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 38: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 39: Nhận biết

    Điều kiện nào sau đây không phải là điều kiện cần và đủ để hai mặt phẳng (P) và (Q) vuông góc với nhau?

    Mỗi đường thẳng a nằm trong (P) đều có đường thẳng b nằm trong (Q) sao cho a vuông góc với b, khi đó (P) và (Q) có thể trùng nhau.

  • Câu 40: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:

     Hình vẽ minh họa:

    Xác định đường vuông góc chung của AB và CD

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AB \bot CM} \\   {AB \bot DM} \end{array}} ight. \Rightarrow AB \bot \left( {CDM} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {CD \bot MN} \\   {AB \bot \left( {CDM} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => MN là đường vuông góc chung của AB  và CD

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo