Tính thể tích khối lập phương có cạnh bằng ?
Ta có:
Tính thể tích khối lập phương có cạnh bằng ?
Ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính . Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là
Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)
Gọi O là tâm của hình vuông ABCD. Khi đó ta có (1).
Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên
(2)
Từ (1) và (2) ta có tại O
Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).
Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là
Xét tam giác vuông AB’O có
Vậy
Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a, , H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’),
. Gọi
là góc giữa hai đường thẳng AD’ và DB’. Tính
.
Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’
Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E
Suy ra
Bước 2: Tính
Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.
Lấy điểm I sao cho ADIH là hình bình hành.
Suy ra DI // AH , mà
=>
Ta có
Trong tam giác EDB’, có:
Suy ra
Cho hình chóp có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi A’ là hình chiếu vuông góc của đỉnh A lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?
=> Góc BA’C là góc tù.
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , . Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho tứ diện ABCD có: ,
. Gọi M và N lần lượt là trung điểm của AB và CD. Đường vuông góc chung của AB và CD là:
Hình vẽ minh họa:
Ta có:
=> MN là đường vuông góc chung của AB và CD
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình lăng trụ có đáy
là tam giác vuông tại
,
và
. Chọn kết luận đúng về số đo góc giữa
và
?
Hình vẽ minh họa
Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC
Suy ra
Ta có:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)
Gọi M là giao điểm của AH và BC
Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)
Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM
Xét tam giác BOC vuông ta có:
Xét tam giác AOI vuông ta có:
Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)
Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)
Từ (1) và (2) => H là trực tâm tam giác ABC
Vậy là kết quả sai.
Cho hình chóp tam giác có
vuông tại
và
. Kẻ đường cao
của tam giác
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có:
Ta có:
Mà
Vậy khẳng định sai là: “”.
Cho tứ diện ABCD có ;
. Gọi M và N là trung điểm của AB và CD. Kết luận nào sau đây sai?
Hình vẽ minh họa
Xét tam giác ABD có AB = AD và
=> Tam giác ABD là tam giác đều
=> (Vì DM là trung tuyến)
Xét tam giác ABC có AB = AC và
=> Tam giác ABC là tam giác đều
=> (Vì CM là trung tuyến)
=> DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)
Suy ra MN là đường cao của tam giác MCD
=> MN ⊥ CD
Chứng minh tương tự:
Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: AN = BN
=> Tam giác ABN cân tại N có NM là đường trung tuyến nên MN ⊥ AB
Vậy kết luận "MN không vuông góc với AB và CD" là kết luận sai.
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H
Do nên
Ta có:
Nên
Vậy khoảng cách
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AB = 2, AD = 3, AA’ = 4. Góc giữa hai mặt phẳng (AB’D’) và (A’C’D) là α. Tính giá trị gần đúng của α.
Hình vẽ minh họa:
Phần 1: Xác định góc
Bước 1: Tìm giao tuyến giữa hai mặt phẳng:
Trong mặt phẳng (ADD’A’) gọi E là giao điểm của AD’ và A’D.
Trong mặt phẳng (A’B’C’D’) gọi F là giao điểm của B’D’ và A’C’.
Khi đó EF là giao tuyến của hai mặt phẳng (AB’D’) và (A’C’D).
Bước 2: Trong mỗi mặt phẳng, ta cần tìm đường thẳng vuông góc với giao tuyến:
Trong mặt phẳng (DA’C’) kẻ A’H ⊥ EF tại H, A’H cắt DC’ tại K.
Ta chứng minh D’H ⊥ EF.
Ta có:
Mặt khác:
Bước 3: Xác định góc giữa hai mặt phẳng:
Ta có:
=> α = ((AB’D’), (DA’C’)) = (D’H, A’H)
Phần 2: Tính góc α:
Ta sẽ sử dụng định lý cosin trong tam giác A’HD’
Bước 1: Chứng minh tam giác A’HD’ cân:
Trong tam giác A’DC’ ta có EF là đường trung bình, nên suy ra H là trung điểm A’K.
Vì A’D’ ⊥ (DD’C’C) nên A’D’ ⊥ D’K.
Do đó tam giác A’D’K vuông tại D’.
Xét tam giác A’D’K vuông tại D’ có D’K là đường trung tuyến ứng với cạnh huyền nên D’H = A’H = A’K/2
Bước 2: Tính độ dài cạnh A’K:
Ta tính đường cao A’K của tam giác ADC’ thông qua diện tích.
Áp dụng định lý Pi – ta - go ta tính được độ dài các cạnh tam giác A’DC’ là:
Sử dụng công thức Hê-rông ta tính được
Mặt khác
Từ đó suy ra D’H = A’H = A’K/2 =
Bước 3: Tính góc α bằng định lý cosin:
Trong tam giác A’HD’ ta có:
Do đó góc giữa hai đường thẳng A’H và D’H bằng 61,60
Vậy α = 61,60
Cho tứ diện ABCD có AB vuông góc với CD, AB = a, CD = 6. M là điểm thuộc cạnh BC sao cho MC = 2BM. Mặt phẳng (P) đi qua M song song với AB và CD. Diện tích thiết diện của P với tứ diện là:
Hình vẽ minh họa:
Ta có:
Tương tự ta có: MQ // CD, NP // CD, QP // AB
Do đó tứ giác MNPQ là hình bình hành
Ta có: (AB, CD) = (MN, MQ) = 900
=> ABCD là hình bình hành
Ta lại có:
=>
Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?
Hình vẽ minh họa:
Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ
=> MQ // AB
Tương tự ta có: MN // CD; NP // AB; QP // CD
Khi đó tứ giác MNPQ là hình bình hành
Ta có: MN ⊥ MQ (Do AB ⊥ CD)
Hay tứ giác MNPQ là hình chữ nhật.
Cho tứ diện có
. Gọi trung điểm của
lần lượt là
. Khi đó cosin góc giữa hai đường thẳng
và
bằng bao nhiêu?
Hình vẽ minh họa
Gọi M là trung điểm của AC khi đó góc giữa hai đường thẳng AB và CD bằng góc giữa hai đường thẳng MI và MJ.
Ta có:
Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M, cắt a và vuông góc với a?
Có 1 nếu M không thuộc a, có vô số nếu M thuộc a
Cho hình chóp có đáy
là tam giác cân tại
,
. Gọi
là trung điểm của
,
là hình chiếu của
trên
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có:
Từ (1) và (2) suy ra
Mà nên
Cho khối lăng trụ tam giác đều có
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có:
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp có đáy
là tam giác vuông cân tại
. Tam giác
vuông cân tại
có
là trung điểm của
và
. Gọi góc giữa hai đường thẳng
và
là
. Chọn kết luận đúng?
Hình vẽ minh họa
Giả sử
Lại có: suy ra tam giác SBC đều suy ra
Suy ra hay
Khi đó
Áp dụng định lí cosin cho tam giác MNC ta có:
Cho hình lập phương như hình vẽ:
Biết . Xác định thể tích của khối lập phương đã cho.
Gọi độ dài cạnh của khối lập phương là a; (x > 0)
Xét tam giác A’B’C’ vuông cân tại B’ ta có:
Xét tam giác A’AC’ vuông tại A’ ta có:
Vậy thể tích khối lập phương là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và . Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
Hình vẽ minh họa:
Gọi P là trung điểm BC và E = NP ∩ AC
=> PN // BD => BD // (MNP)
=> d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = d(A, (MNP))
Kẻ AK ⊥ ME
Khi đó d(A, (MNP)) = AK.
Ta tính được:
Xét tam giác vuông MAE ta có:
Cho lăng trụ đứng có đáy ABC là tam giác đều cạnh
. Gọi
là trung điểm cạnh BC. Biết
, khoảng cách giữa hai đường thẳng
và
là:
Hình vẽ minh họa
Gọi là trung điểm của
, ta có
là hình bình hành
.
Kẻ .
Ta có: .
Suy ra,
Ta có: .
Xét vuông tại
ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).
Hình vẽ minh họa
Gọi H là trung điểm của AB =>
Ta có: AH // CD =>
Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết AB = 2AD = 2DC = 2a, góc giữa hai mặt phẳng (SAB) và (SBC) là 60◦. Độ dài cạnh SA là:
Hình vẽ minh họa:
Gọi E là trung điểm của AB.
Ta dễ dàng chứng minh được ABCE là hình vuông
Trong (SAB) kẻ HE ⊥ SB ta có:
Xét tam giác vuông CEH có EH = CE. cot 60◦ =
Ta có ∆SAB ∼ ∆EHG (g - g)
Cho hình chóp có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Cho hình chóp có đáy là hình vuông
;
và
. Gọi trung điểm của
lần lượt là
. Tính số đo góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Ta có:
là đường trung bình của tam giác
Ta lại có: nên AB là hình chiếu vuông góc của SB lên (SAD)
Mặt khác
Suy ra tam giác SAB vuông cân tại A
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.
Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho hình hộp có đáy là hình thoi. Gọi
lần lượt là tâm các hình bình hành
và
(như hình vẽ).
Trong các mệnh đề sau, mệnh đề nào đúng?
Hình vẽ minh họa
Ta có: lần lượt là tâm các hình bình hành
và
=> lần lượt là trung điểm của các cạnh
là đường trung bình tam giác
Vì đáy ABCD là hình thoi
Ta có:
Trong không gian cho đường thẳng Δ không nằm trong mặt phẳng (P), đường thẳng Δ gọi là vuông góc với mặt phẳng (P) nếu
Đường thẳng Δ được gọi là vuông góc với mặt phẳng (P) nếu Δ vuông góc với mọi đường thẳng nằm trong (P).
Cho một khối chóp có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số bằng:
Hình vẽ minh họa:
Gọi H, I lần lượt là trung điểm của AB, AC’
Suy ra HI // BC’
Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH
Dễ thấy BK ⊥ (SCH)
Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’
Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành
Khi đó MN là đoạn vuông góc chung cần tìm
Ta có:
Do 2HB = SB nên:
=>
Cho tứ diện có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy