Cho tập hợp E = {0; 1; 2; 3; 4; 5; 6; 7} có thể lập được bao nhiêu số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn?
Số các chữ số có 5 chữ số khác nhau được tạo thành từ các chữ số đã cho có dạng:
Do E là số chẵn =>
Trường hợp 1: e = 0
Số cách chọn a là 7 cách
Số cách chọn b là 6 cách
Số cách chọn c là 5 cách
Số cách chọn d là 4 cách
=> Số các chữ số được tạo thành là: 7.6.5.4.1 = 840 (số)
Trường hợp 2:
Số cách chọn e là 3 cách
Số cách chọn a là 6 cách (vì a khác 0)
Số cách chọn e là 6 cách
Số cách chọn e là 5 cách
Số cách chọn e là 4 cách
=> Số các chữ số được tạo thành là: 3.6.6.5.4 = 2160 (số)
Vậy số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn có thể lập được là:
840 + 2160 = 3000 số