Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:

    Xác suất để X không câu được cá là 1 - 0,1 = 0,9

    Xác suất để Y không câu được cá là 1 - 0,15 = 0,85

    Xác xuất X và Y trở về tay không (không có con cá nào) là

    P = P(A.B) = P(A).P(B) = 0,9 . 0,85 = 0,765

    => Xác suất X và Y ko trở về tay ko là: 1 - 0,765 = 0,235

  • Câu 2: Thông hiểu

    Cho hai thùng giấy đựng các viên bi trong đó:

    Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.

    Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.

    Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88

    Đáp án là:

    Cho hai thùng giấy đựng các viên bi trong đó:

    Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.

    Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.

    Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88

    Ta có các kết quả thuận lợi cho biến cố A như sau:

    Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: C_{4}^{1}C_{7}^{1} cách.

    Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: C_{5}^{1}C_{6}^{1} cách.

    Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: C_{6}^{1}C_{5}^{1} cách.

    Suy ra số phần tử của biến cố A là: n(A)
= C_{4}^{1}C_{7}^{1} + C_{5}^{1}C_{6}^{1} + C_{6}^{1}C_{5}^{1} =
88

  • Câu 3: Thông hiểu

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 4: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 5: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 6: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 7: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số

  • Câu 8: Nhận biết

    Gieo ngẫu nhiên một đồng xu cân đối và đồng chất 5 lần. Không gian mẫu của phép thử có bao nhiêu phần tử?

    Mỗi lần gieo đồng xu có hai khả năng xảy ra nên khi tung đồng xu đó 5 lần thì theo quy tắc nhân ta có: {2^5} = 32

    Vậy số phần tử của không gian mẫu là n\left( \Omega  ight) = 32

  • Câu 9: Thông hiểu

    Chọn ngẫu nhiên ba người, biết rằng không có ai sinh vào năm nhuận. Hãy tính xác suất để có ít nhất hai người có sinh nhật trùng nhau (cùng ngày, cùng tháng).

    Gọi A là biến cố “Trong 3 người được chọn, có ít nhất 2 người cùng sinh nhật”.

    Khi đó biến cố \overline{A} là “Ba người được chọn có ngày sinh đôi một khác nhau”.

    Số trường hợp có thể là 365^{3}

    Số trường hợp thuận lợi là cho biến cố \overline{A} là 365 364 363

    Vậy P\left( \overline{A} ight) =
\frac{365.3634.363}{365^{3}} \Rightarrow P(A) = 1 -
\frac{365.3634.363}{365^{3}} \approx 0,0082

  • Câu 10: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 11: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?

    Số cách lấy 2 viên bi màu xanh là: C_5^2 = 10 cách

    Số cách lấy 4 viên bi màu vàng là: C_7^4 = 35 cách 

    Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:

    C_5^2.C_7^4 = 10.35 = 350 cách

  • Câu 12: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 13: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 14: Thông hiểu

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 15: Thông hiểu

    Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?

    Do số bi xanh và số bi đỏ lấy ra bằng nhau

    => Có hai trường hợp xảy ra:

    Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ

    => Số cách chọn là: C_8^1.C_5^1.C_3^2 = 120 cách

    Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ

    => Số cách chọn là: C_8^2.C_5^2 = 280 cách

    => Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách

  • Câu 16: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 17: Thông hiểu

    Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng. Hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi, tính xác suất để 2 viên bi được lấy ra có cùng màu.?

    Gọi A;B;C;D lần lượt là các biến cố: “Lấy được bi đỏ từ hộp thứ nhất”, “Lấy được bi đỏ từ hộp thứ hai”; “Lấy được bi trắng từ hộp thứ nhất”, “Lấy được bi trắng từ hộp thứ hai”.

    Khi đó \left\{ \begin{matrix}P(A) = \dfrac{4}{7};P(B) = \dfrac{2}{6} = \dfrac{1}{3} \\P(C) = \dfrac{3}{7};P(D) = \dfrac{4}{6} = \dfrac{2}{3} \\\end{matrix} ight.

    Gọi E; F lần lượt là các biến cố: “Hai viên bi lấy ra cùng màu đỏ”, “Hai viên bi lấy ra cùng màu trắng”.

    Khi đó E = AB;F = CD

    Do A và B và hai biến cố độc lập nên P(E)
= P(AB) = P(A).P(B) = \frac{4}{21}

    Do C và D là hai biến cố độc lập nên P(F)
= P(CD) = P(C).P(D) = \frac{2}{7}

    Do E và F là hai biến cố xung khắc nên xác suất để lấy được hai viên bi cùng màu là

    P(E \cup F) = P(E) + P(F) =
\frac{4}{21} + \frac{2}{7} = \frac{10}{21}.

  • Câu 18: Vận dụng

    Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?

    Gọi số hiệp hai tuyển thủ thi đấu là x;\left( {x \in {\mathbb{N}^*}} ight)

    Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó 3 \leqslant x \leqslant 5

    Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:

    TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:

    P_{1} = (0,4)^{3} = 0,064

    TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:

    P_{2} = 3.0,6.(0,4)^{3} =
0,1152

    TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:

    P_{3} = C_{4}^{2}.(0,6)^{2}.(0,4)^{3} =
0,13824

    Vậy xác suất để tuyển thủ B thắng chung cuộc là

    P = P_{1} + P_{2} + P_{3} = 0,064 +
0,1152 + 0,13824 = 0,31744

  • Câu 19: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 20: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 21: Nhận biết

    Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số

    Số các số có 1 chữ số là: 3

    Số các số có 2 chữ số là: 32 = 9

    Số các số có 3 chữ số là: 33 = 27

    => Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39

  • Câu 22: Thông hiểu

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 23: Vận dụng

    Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?

    Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi A_{ij};j
\in \left\{ 1;2 ight\} là biến cố ở hiệp thứ I, người thứ j thắng

    Vậy xác suất để bạn A giành chiến thắng là:

    P\left( A_{(i + 1)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap A_{(i + 2)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap \overline{A_{(i + 2)1}} \cap A_{(i + 3)1}
ight)

    = \frac{1}{2} + \frac{1}{2}.\frac{1}{2}
+ \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{7}{8}

  • Câu 24: Nhận biết

    Gieo hai lần liên tiếp một con xúc xắc. Giả sử H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm. Biến cố đối của biến cố H là:

    H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm thì biến cố đối của biến cố H là không xuất hiện mặt 3 chấm.

  • Câu 25: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.

    Gọi số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Do số tự nhiên tạo thành có các chữ số đôi một khác nhau => a e b e c e d e e e f

    Khi đó:

    Số cách chọn f là 1 cách

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là 2 cách

    => Số các số tạo thành thỏa mãn điều kiện đề bài là:

    6.5.4.3.2.1 = 720 số

  • Câu 26: Thông hiểu

    Hai hộp gỗ được đặt trên bàn. Hộp A chứa 3 bi đỏ và 4 bi xanh. Hộp B chứ 2 bi đỏ và 5 bi xanh. Lấy ngẫu nhiên 1 viên bi từ hộp A sang hộp B rồi lấy ngẫu nhiên 1 viên bi trong hộp B ra. Tính xác suất để viên bi lấy ra ở hộp thứ hai có màu đỏ?

    Xảy ra hai trường hợp:

    TH1: Viên bi lấy ra từ hộp thứ nhất màu đỏ và đưa vào hộp thứ hai, khi đó hộp thứ hai có 3 viên bi đỏ và 5 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{1} =
\frac{3}{7}.\frac{3}{8} = \frac{9}{56}

    TH1: Viên bi lấy ra từ hộp thứ nhất màu xanh và đưa vào hộp thứ hai, khi đó hộp thứ hai có 2 viên bi đỏ và 6 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{2} =
\frac{4}{7}.\frac{2}{8} = \frac{8}{56}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} = \frac{9}{56} + \frac{8}{56} = \frac{17}{56}

  • Câu 27: Thông hiểu

    Một kệ sách có 15 quyển sách (4 quyển sách Toán khác nhau, 5 quyển sách Lý khác nhau và 6 quyển sách Văn khác nhau). Người ta lấy ngẫu nhiên 4 quyển sách từ kệ. Tính xác suất để số sách lấy ra không đủ ba môn.

    Số phần tử của không gian mẫu là |\Omega|
= C_{15}^{4} = 1365

    Gọi A là biến cố “Lấy ra 4 quyển sách có đủ 3 môn”.

    Trường hợp 1: 2 sách Toán, 1 sách Lý, 1 sách Văn có C_{4}^{2}.C_{5}^{1}.C_{6}^{1} cách lấy.

    Trường hợp 2: 1 sách Toán, 2 sách Lý, 1 sách Văn có C_{4}^{1}.C_{5}^{2}.C_{6}^{1}cách lấy.

    Trường hợp 3: 1 sách Toán, 1 sách Lý, 2 sách Văn có C_{4}^{1}.C_{5}^{1}.C_{6}^{2} cách lấy.

    Vậy kết quả thuận lợi cho biến cố A là C_{4}^{2}.C_{5}^{1}.C_{6}^{1} +
C_{4}^{1}.C_{5}^{2}.C_{6}^{1} + C_{4}^{1}.C_{5}^{1}.C_{6}^{2} =
720

    Xác suất của biến cố A là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} =
\frac{720}{1365}

    Xác suất cần tìm là: P\left( \overline{A}
ight) = 1 - P(A) = 1 - \frac{720}{1365} = \frac{43}{91}

  • Câu 28: Nhận biết

    Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:

    Biến cố đối của biến cố B là \overline{B}: “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.

  • Câu 29: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 30: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 31: Vận dụng

    Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số 0;1;2;3;4;5;6;7 mà chữ số đứng ở vị trí thứ ba luôn chia hết cho 6?

    Gọi số cần tìm có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}}

    Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.

    Suy ra \left\{ \begin{matrix}
a_{6} \in \left\{ 1;3;5;7 ight\} \\
a_{3} \in \left\{ 0;6 ight\} \\
\end{matrix} ight.

    TH1: Với a_{3} = 0 chữ số a_{6} có 4 cách chọn, a_{1} có 6 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.6.A_{6}^{3} số.

    TH2: Với a_{3} = 6 chữ số a_{6} có 4 cách chọn, a_{1} có 5 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.5.A_{6}^{3} số.

    Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: 4.6.A_{6}^{3} + 4.5.A_{6}^{3} = 2640.

  • Câu 32: Vận dụng

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần

    Một tuần có bảy ngày và mỗi ngày thăm một bạn.

    Có 12 cách chọn bạn vào ngày thứ nhất.

    Có 11 cách chọn bạn vào ngày thứ hai.

    Có 10 cách chọn bạn vào ngày thứ ba.

    Có 9 cách chọn bạn vào ngày thứ tư.

    Có 8 cách chọn bạn vào ngày thứ năm.

    Có 7 cách chọn bạn vào ngày thứ sáu.

    Có 6 cách chọn bạn vào ngày thứ bảy.

    Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.

  • Câu 33: Thông hiểu

    Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?

    + Gọi số tự nhiên có 6 chữ số là \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} .

    Chọn a_{1} : có 9 cách.

    Chọn a_{2} : có 10 cách.

    Chọn a_{3} : có 10 cách.

    Chọn a_{4} : có 10 cách.

    Chọn a_{5} : có 10 cách.

    Chọn a_{6} : có 10 cách.

    Suy ra số các phần tử của S là: 9.10^{5} cách.

    Chọn ngẫu nhiên một số từ S \Rightarrow
n(\Omega) = 9.10^{5}.

    + Gọi A là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".

    TH1: a_1= 1.

    Có 5 vị trí để xếp số 0.

    Và có A_{8}^{4} cách chọn 4 vị trí còn lại.

    Suy ra có: 5.A_{8}^{4} = 8400 số.

    TH2: a_1 = 2,\ldots,9

    Chọn a_{1}: có 8 cách.

    Xếp hai số 0 và 1 có: A_{5}^{2} =
20 cách.

    Xếp vào 3 vị trí còn lại có: A_{7}^{3} =
210 cách.

    Suy ra có: 8.20.210 = 33600 số.

    \Rightarrow n(A) = 8400 + 33600 =
42000

    \Rightarrow P(A) = \frac{n(A)}{n(\Omega)}
= \frac{42000}{900000} = \frac{7}{150}.

  • Câu 34: Thông hiểu

    Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?

    Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”

    S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”

    T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”

    Ta có: \left\{ \begin{matrix}
P(H) = \frac{3}{6} = \frac{1}{2};P(S) = \frac{2}{5};P(T) = \frac{1}{3}
\\
P\left( \overline{H} ight) = \frac{1}{2};P\left( \overline{S} ight)
= \frac{3}{5};P\left( \overline{T} ight) = \frac{2}{3} \\
\end{matrix} ight.

    Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.

    Ta có X = H\overline{S}\overline{T} \cup
\overline{H}S\overline{T} \cup \overline{H}\overline{S}T

    \Rightarrow P(X) = P\left(
H\overline{S}\overline{T} \cup \overline{H}S\overline{T} \cup
\overline{H}\overline{S}T ight)

    = P\left( H\overline{S}\overline{T}
ight) + P\left( \overline{H}S\overline{T} ight) + P\left(
\overline{H}\overline{S}T ight)

    Lại có: \left\{ \begin{matrix}P\left( H\overline{S}\overline{T} ight) =\dfrac{3}{6}.\dfrac{3}{5}.\dfrac{2}{3} \\P\left( \overline{H}S\overline{T} ight) =\dfrac{3}{6}.\dfrac{2}{5}.\dfrac{2}{3} \\P\left( \overline{H}\overline{S}T ight) =\frac{3}{6}.\dfrac{3}{5}.\dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow P(X) = \frac{13}{30}

  • Câu 35: Nhận biết

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?

     Gọi số tự nhiên có 5 chữ số khác nhau là: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Do số tạo thành là số lẻ => e = {1; 7; 9}

    => Số cách chọn e là: 3 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số có 5 chữ số khác nhau được tạo thành là: 3 . 4 . 4 . 3 . 2 = 288 số

  • Câu 36: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 37: Vận dụng

    Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.

    Gọi A là biến cố chọn được hộp A

    B là biến cố chọn được hộp B

    C là biến cố chọn được hộp C

    E là biến cố bi chọn ra là bi màu đỏ.

    Ta có:\left\{ \begin{matrix}P(A) = P(B) = P(C) = \dfrac{1}{3} \\P\left( E|A ight) = \dfrac{4}{7} \\P\left( E|B ight) = \dfrac{3}{5} \\P\left( E|C ight) = \dfrac{1}{2} \\\end{matrix} ight.

    Theo công thức

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    = \frac{1}{3}.\frac{4}{7} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{1}{2} =
\frac{39}{70}

  • Câu 38: Thông hiểu

    Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: “lần đầu tiên xuất hiện mặt sấp”. Hỏi P(A) có giá trị bằng bao nhiêu?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có: 

    \begin{matrix}  A = \left\{ {\left( {S;S;S} ight),\left( {S;N;N} ight),\left( {S;N;S} ight),\left( {S;S;N} ight)} ight\} \hfill \\   \Rightarrow n\left( A ight) = 4 \hfill \\   \Rightarrow P\left( A ight) = \dfrac{4}{8} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Gieo hai lần liên tiếp một đồng xu. Gọi M là biến cố có ít nhất một lần mặt sấp xuất hiện, N là biến cố kết quả hai lần gieo giống nhau. Chọn khẳng định đúng?

    Ta có:

    M = \left\{ SS;SN;NS
ight\}

    N = \left\{ SS;NN ight\}

    \Rightarrow M \cup N = \left\{
SS;SN;NS;NN ight\}

  • Câu 40: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo