Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Lấy ngẫu nhiên 3 số từ tập
. Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?
Giả sử các ghế ngồi đánh số từ 1 đến 8.
Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).
Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.
Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.
Vậy có 3! · 4! = 144 cách.
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 viết ngẫu nhiên một số tự nhiên có 5 chữ số đôi một khác nhau. Tính xác suất để các chữ số 1 và 2 có mặt trong số viết được.
Gọi A là. biến cố: "Số được viết có mặt các chữ số 1 và 2"
Tìm
Giả sử số được viết có dạng .
Có 6 cách chọn a.
Tiếp theo có cách chọn
Vậy số phần tử không gian mẫu là:
Tìm
Trường hợp 1: không có mặt chữ số 0:
Có cách chọn vị trí cho hai chữ số 1 và 2.
Sau đó có cách xếp 3 trong 4 chữ số 3, 4, 5, 6 vào ba vị trí còn lại.
Vậy trường hợp này có khả năng.
Trường hợp 2: có mặt ba chữ số 0, 1, 2:
Có 4 cách chọn vị trí cho chữ số 0.
Tiếp theo có cách chọn vị trí cho hai chữ số 1 và 2.
Cuối cùng có cách chọn 2 trong 4 chữ số 3, 4, 5, 6 để viết vào hai vị trí còn lại.
Vậy trường hợp này có khả năng.
Số kết quả thuận lợi cho biến cố A là
Vậy xác suất cần tính là:
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là
, xác suất để cầu thủ A đá trúng lưới là
. Tính xác suất để có đúng một cầu thủ đá trúng lưới?
Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới
Suy ra biến cố có đúng một cầu thủ đá trúng lưới là
Vì là hai biến cố xung khắc nên
Vì là hai biến cố độc lập nên
Tương tự
Vậy
Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử
là biến cố lấy được tấm thẻ màu xanh từ hộp thứ
. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?
Biểu diễn đúng là:
Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.
Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”
Ta có:
Vì A và B là hai biến cố độc lập.
Nên xác suất để hai quả cầu lấy ra đều màu trắng là
Tương tự xác suất để hai quả cầu lấy ra đều:
Màu xanh:
Mảu đỏ:
Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:
Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:
Số tự nhiên có 5 chữ số khác nhau có dạng:
Số cách chọn a là: 5 cách (vì a khác 0)
Số cách chọn b là: 5 cách
Số cách chọn c là: 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là: 2 cách
=> Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Tính xác suất của biến cố C?
Ta có hai biến cố A và B là hai biến cố xung khắc suy ra
Biến cố A là tập hợp tất cả các tập con có hai phần tử của tập
Biến cố B được hình thành từ hai công đoạn:
+ Chọn một số chẵn từ tập có 4 cách
+ Chọn một số lẻ từ tập có 4 cách
Theo quy tắc nhân tập B có 4.5 = 20 cách
Do đó
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?
Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là:
Ngân hàng đề thi gồm 100 câu hỏi. Mỗi đề thi có 5 câu. Một học sinh thuộc 80 câu. Tìm xác suất để học sinh đó ngẫu nhiên làm được một đề thi trong đó có 4 câu mình đã học thuộc.
Số cách chọn 1 đề thi bất ki (gồm 5 câu trong 100 câu) là
Gọi biến cố A: “học sinh đó làm được một đề thi trong đó có 4 câu mình đã học thuộc”.
Học sinh đã học thuộc 80 câu nên có cách chọn ra 4 câu đã học thuộc và có
cách chọn ra 1 câu hỏi còn lại chưa học thuộc.
Do đó
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là
Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là
Sai||Đúng
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là: Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là Sai||Đúng
Gọi A là biến cố: “Chọn được hộp A”
B là biến cố: “Chọn được hộp B”
C là biến cố: “Chọn được hộp C”
Ta có:
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
c) Xác suất để lấy được viên bi đỏ trong hộp C là
d) E là biến cố: “Bi chọn ra có màu đỏ”.
Xác suất để lấy được một viên bi đỏ là
Áp dụng công thức ta có:
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?
Ta có: là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có: với
và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Số học sinh có trong nhóm là: học sinh
Số cách chọn 5 học sinh trong nhóm là: cách
Số cách chọn số học sinh chỉ có nam là cách
Số cách chọn số học sinh chỉ có nữ là: cách
=> Số cách chọn ra 5 bạn trong đó có cả nam và nữ là: cách
Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:
Chọn nhóm có 2 thành viên:
Chọn nhóm có 3 thành viên từ 8 thành viên còn lại:
Chọn nhóm có 5 thành viên từ 5 thành viên còn lại:
=> Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:
Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ra 5 viên bi trong đó có 3 viên bi màu xanh?
Số cách chọn 5 viên bi trong đó có 3 viên bi màu xanh là: cách
Chọn ngẫu nhiên một biển số xe gắn máy cùng một họ F1, mỗi biển số có 4 chữ số. Tính xác suất để biển số có hai chữ số đầu giống nhau và hai chữ số sau giống nhau, biết 4 chữ số đó không hoàn toàn giống nhau?
Gọi A là biến cố "Biển số có hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau"
Tìm
Ta tìm "số" có 4 chữ số, chữ số đầu tiên có thể bằng 0
Giả sử có bốn chữ số chữ số đầu tiên có thể bằng 0.
Có 10 cách chọn a, 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.
Vậy có 104 số có 4 chữ số, chữ số đầu tiên có thể bằng
Tìm
Ta tìm "số" các số có 4 chữ số, trong đó hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau, chữ số đầu tiên có thể bằng 0.
Giả sử là một số như mô tả
Có 10 cách chọn m và 9 cách chọn p
Khi đó phần tử.
Xác suất cần tính là: .
Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.
Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:
Không gian mẫu
Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi
là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố
?
Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.
Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Chọn mô tả đúng dưới đây?
Mô tả không gian mẫu đúng là:
Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng. Hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi, tính xác suất để 2 viên bi được lấy ra có cùng màu.?
Gọi lần lượt là các biến cố: “Lấy được bi đỏ từ hộp thứ nhất”, “Lấy được bi đỏ từ hộp thứ hai”; “Lấy được bi trắng từ hộp thứ nhất”, “Lấy được bi trắng từ hộp thứ hai”.
Khi đó
Gọi E; F lần lượt là các biến cố: “Hai viên bi lấy ra cùng màu đỏ”, “Hai viên bi lấy ra cùng màu trắng”.
Khi đó
Do A và B và hai biến cố độc lập nên
Do C và D là hai biến cố độc lập nên
Do E và F là hai biến cố xung khắc nên xác suất để lấy được hai viên bi cùng màu là
.
Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọn
Số cách chọn một cây bút mực là tổ hợp chập 1 của 8: cách
Số cách chọn một cây bút chì là tổ hợp chập 1 của 8: cách
=> Số cách chọn một cây bút mực và một cây bút chì là: 8 . 8 = 64 cách
Chọn ngẫu nhiên và đồng thời hai viên bi trong hộp chứa 3 trắng và 2 bi đỏ. Ta có các biến cố sau:
E “Hai viên bi cùng màu trắng”
F “Hai viên bi cùng màu đỏ”
G “Hai viên bi cùng màu”
H “Hai viên bi khác màu”
Khẳng định nào sau đây đúng?
Ta có: nên biến cố
xung khắc với các biến cố
.
Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:
Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Cho tập hợp
. Lập từ
số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?
Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có:
Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.
TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có cách.
TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có cách.
Suy ra
Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là:
Từ các chữ số 1; 2; 5; 7; 8 lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 278?
Số các chữ số có ba chữ số khác nhau được tạo thành từ các số 1; 2; 5; 7; 8 có dạng:
Do số tự nhiên tạo thành nhỏ hơn số 276 =>
Trường hợp 1: a = 2
Nếu b = 7 mà số tự nhiên có ba chữ số khác nhau => c có 2 cách chọn {1; 5}
=> Số các số được tạo thành là: 1 . 1 . 2 = 2 (số)
Nếu b khác 7, b có 2 cách chọn {1, 5} => c sẽ có: 5 - 1 - 1 = 3 (cách chọn)
=> Số các số được tạo thành là: 1.2.3 = 6 (số)
Vậy trường hợp 1 ta có tất cả 8 số được tạo thành
Trường hợp 2: a = 1
Khi đó b sẽ có 4 cách chọn {2, 5, 7, 8} và c có 3 cách chọn
=> Số các số được tạo thành là: 1 . 4 . 3 = 12 (số)
=> Vậy số các số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 278 được tạo thành là: 8 + 12 = 20 số
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Ba bạn A, B, C độc lập với nhau thi ném phi tiêu vào cùng một bia. Biết xác xuất ném trúng của A, B, C lần lượt là
và
. Tính xác suất để có ít nhất một người ném trúng bia?
Gọi A, B, C tương ứng là biến cố A ném trúng bia, B ném trúng bia và C ném trúng bia
A, B, C là các biến cố độc lập. Do đó A, B, C là các biến cố đôi một độc lập
Xác suất để cả ba người đều không ném trúng là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?
Số tự nhiên có 3 chữ số đôi một khác nhau có dạng:
Do số cần tìm chia hết cho 5 => c = 5
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: số
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Biết rằng xác suất để thắng một trận game là
. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Gọi n là số trận người đó chơi.
A là biến cố người đó thắng ít nhất 1 trận
Suy ra là biến cố người đó không thắng trận nào.
trong đó
là biến cố người đó thắng trận thứ i và
Ta có bất phương trình
Vậy giá trị nhỏ nhất của n bằng 9.
Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.
Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:
Có 8 cách chọn bút chì.
Có 6 cách chọn bút bi.
Có 10 cách chọn cuốn tập.
Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Ta có các kết quả thuận lợi cho biến cố A như sau:
Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: cách.
Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: cách.
Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: cách.
Suy ra số phần tử của biến cố A là: