Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 2: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a: 4 cách

    Số cách chọn b: 3 cách

    Số cách chọn c: 2 cách

    Số cách chọn d: 1 cách

    => Số các số có 4 chữ số khác nhau được tạo thành là  4! = 24  cách

  • Câu 3: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số lẻ có 2 chữ số đôi một khác nhau?

     Số tự nhiên có hai chữ số khác nhau có dạng: \overline {ab} ,\left( {a e b} ight)

    Do số cần tìm là số lẻ => b ∈ {1; 3; 5}

    => Có 3 cách chọn b

    Số cách chọn a là 4 cách

    => Có thể lập được số các số lẻ có 2 chữ số đôi một khác nhau là: 3 . 4 = 12 số

  • Câu 4: Thông hiểu

    Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tìm xác suất để trong 6 sản phẩm lấy ra có không quá một phế phẩm?

    Số cách chọn ra 6 sản phẩm từ 10 sản phẩm là n(\Omega) = C_{10}^{6}

    Gọi biến cố A: “Lấy 6 sản phẩm từ lô hàng đó có không quá một phế phẩm”.

    Trường hợp 1: Không có phế phẩm nào.

    Số cách chọn 6 sản phẩm không phải là phế phẩm là C_{8}^{6} cách.

    Trường hợp 2: Có 1 phế phẩm và 5 sản phẩm còn lại.

    Số cách chọn có 1 phế phẩm và 5 sản phẩm còn lại là C_{5}^{1}.C_{8}^{5} cách.

    Khi đó: n(A) = C_{8}^{6} +
C_{5}^{1}.C_{8}^{5} \Rightarrow P(A) = \frac{2}{3}

  • Câu 5: Nhận biết

    Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?

    Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách

    Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách

    Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc

    Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách

    => Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.

  • Câu 6: Vận dụng

    Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.

    Gọi A là biến cố chọn được hộp A

    B là biến cố chọn được hộp B

    C là biến cố chọn được hộp C

    E là biến cố bi chọn ra là bi màu đỏ.

    Ta có:\left\{ \begin{matrix}P(A) = P(B) = P(C) = \dfrac{1}{3} \\P\left( E|A ight) = \dfrac{4}{7} \\P\left( E|B ight) = \dfrac{3}{5} \\P\left( E|C ight) = \dfrac{1}{2} \\\end{matrix} ight.

    Theo công thức

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    = \frac{1}{3}.\frac{4}{7} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{1}{2} =
\frac{39}{70}

  • Câu 7: Thông hiểu

    Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?

    Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".

    Tìm |\Omega|

    Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có C_{9}^{3} cách.

    Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có C_{6}^{3} cách.

    Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.

    Vậy số phần tử của không gian mẫu là |\Omega| = C_{9}^{3}.C_{6}^{3}.1 =
1680

    Tìm \left| \Omega_{A}
ight|

    Phân 3 nữ vào ba nhóm có P_{3} = 3! =
6 cách khác nhau.

    Phân 6 nam vào ba nhóm theo cách trên có C_{6}^{2}.C_{4}^{2}.1 khác nhau

    Vậy số kết quả thuận lợi cho biến cố A là: \left| \Omega_{A} ight| =
6.C_{6}^{2}.C_{4}^{2}.1 = 540

    Vậy xác suất cần tìm là: P(A) =
\frac{540}{1680} = \frac{9}{26} \approx 0,32

  • Câu 8: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 9: Nhận biết

    Ban chấp hành liên chi đoàn khối 11 có 3 nam, 2 nữ. Cần thành lập một ban kiểm tra gồm 3 người trong đó có ít nhất 1 nữ. Số cách thành lập ban kiểm tra là:

    Số cách lập ban kiểm tra có 3 người là: C_5^3 = 10 cách

    Sô cách lập ban kiểm tra có 3 người trong đó không có nữ là: C_3^3 = 1 cách

    => Số cách thành lập ban kiểm tra có ít nhất một nữ là: 10 - 1 = 9 cách

  • Câu 10: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

  • Câu 11: Nhận biết

    Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số từ 4 chữ số khác nhau?

     Số tự nhiên có 4 chữ số khác nhau được tạo thành từ dãy số đã cho có dạng:

    \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a là: 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    Áp dụng quy tắc nhân ta có số các chữ số được tạo thành thỏa mãn yêu cầu bài toán là: 7 . 6 . 5 . 4 (số)

  • Câu 12: Thông hiểu

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để tổng ba số được chọn là 12.

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi A là biến cố “Tổng ba số được chọn là 12”.

    Ta có các bộ 3 số có tổng bằng 12 gồm: (1,2,9); (1,3,8); (1,4,7); (1,5,6); (2,3,7); (2;4;6); (3,4,5).

    Suy ra ta có n(A) = 7 \Rightarrow P(A) =
\frac{7}{165}

  • Câu 13: Thông hiểu

    Gieo một đồng tiền xu liên tiếp 3 lần. Tính xác suất của biến cố A “ít nhất một lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có: 

    Biến cố A “ít nhất một lần xuất hiện mặt sấp”

    => Biến cố \overline A "không xuất hiện mặt sấp”

     \overline A  = \left\{ {\left( {N;N;N} ight)} ight\}

    => n\left( {\overline A } ight) = 1 \Rightarrow P\left( {\overline A } ight) = \frac{1}{8}

    => P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 14: Thông hiểu

    Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?

    Do số bi xanh và số bi đỏ lấy ra bằng nhau

    => Có hai trường hợp xảy ra:

    Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ

    => Số cách chọn là: C_8^1.C_5^1.C_3^2 = 120 cách

    Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ

    => Số cách chọn là: C_8^2.C_5^2 = 280 cách

    => Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách

  • Câu 15: Vận dụng

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?

    Gọi A_{i} là biến cố bóng đèn thứ i sáng với i =
\overline{1;4}

    Gọi A là biến cố có ít nhất một bóng đèn sáng

    Để không có bóng đèn nào sáng ta có các trường hợp như sau:

    TH1: Cả 4 bóng đèn cùng hỏng

    B là biến cố bốn bóng đèn bị hỏng

    Khi đó xác suất để cả 4 bóng đèn bị hỏng là: P(B) = 0,05^{4} = 0,00000625

    TH2: Cả 3 bóng đèn cùng hỏng

    C là biến cố ba bóng đèn bị hỏng

    Khi đó xác suất để có 3 bóng đèn bị hỏng là: P(C) = 4.0,05^{3}.0,95 = 0,000475

    TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là: P(D) = 2.0,05^{2}.0,95^{2} =
0,0045125

    Vậy xác suất để có ít nhất 1 bóng đèn sáng là

    P(A) = 1 - \left\lbrack P(C) + P(B) +
P(D) ightbrack = 0,99500625

  • Câu 16: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 17: Vận dụng

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đáp án là:

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đánh số thứ tự các nhóm là A, B, C, D

    Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.

    Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.

    Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có C_{5}^{2} cách, xếp 3 học sinh khá còn lại có 3! cách.

    Bước 3: xếp 7 học sinh trung bình

    + Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.

    + Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.

    Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có C_{6}^{2}.3 cách.

    Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có C_{4}^{2}.2 cách.

    Xếp 2 học sinh trung bình còn lại có 1 cách.

    Do đó số cách sắp xếp là: 4!.4.C_{5}^{2}.3!.7.C_{6}^{2}.3.C_{4}^{2}..1 =21772800

    Vậy n(N) = 21772800

  • Câu 18: Thông hiểu

    Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?

    Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau

    n là số cách sắp xếp người xung quanh bàn tròn

    Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!

    Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.

    Vậy n = \frac{8!}{8} = 7!

    Xếp 4 nữ vào 4 vị trí ta có: \frac{4!}{4}
= 3! cách

    Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp 4!

    Vậy P(A) = \frac{3!.4!}{7!} =
\frac{1}{35}

  • Câu 19: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 20: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 21: Nhận biết

    Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Chọn tên 4 học sinh để cho đi du lịch. Hỏi có bao nhiêu cách chọn các học sinh:

     Số cách chọn 4 học sinh là tổ hợp chập 4 của 15 học sinh: C_{15}^4 = 1365

  • Câu 22: Thông hiểu

    Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?

    Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là \frac{1}{6}

    Xác suất để người chơi thắng cuộc trong một lần gieo là C_{3}^{2}.\left( \frac{1}{2}
ight)^{2}.\frac{5}{6} + \left( \frac{1}{6} ight)^{3} =
\frac{2}{27}

    Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:

    C_{3}^{2}.\left( \frac{2}{27}
ight)^{2}.\left( 1 - \frac{2}{27} ight) + \left( \frac{2}{27}
ight)^{3} = \frac{308}{19683}

  • Câu 23: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 24: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 25: Nhận biết

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?

    Trong hộp có số viên bi là: 5 + 7 = 12 viên bi

    Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử: C_{12}^6 = 924

  • Câu 26: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 27: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 28: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 29: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 30: Vận dụng

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 31: Nhận biết

    Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi trong đó có đúng 2 viên bi xanh?

    Trong 4 viên bi có đúng 2 viên bi màu xanh

    => 2 viên bi còn lại nằm trong 8 viên bi (màu đỏ và màu vàng)

    => Số cách chọn 4 viên bi trong đó có đúng 2 viên bi xanh là: C_8^2.C_8^2 = 784 cách

  • Câu 32: Thông hiểu

    Cho hai thùng giấy đựng các viên bi trong đó:

    Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.

    Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.

    Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88

    Đáp án là:

    Cho hai thùng giấy đựng các viên bi trong đó:

    Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.

    Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.

    Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88

    Ta có các kết quả thuận lợi cho biến cố A như sau:

    Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: C_{4}^{1}C_{7}^{1} cách.

    Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: C_{5}^{1}C_{6}^{1} cách.

    Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: C_{6}^{1}C_{5}^{1} cách.

    Suy ra số phần tử của biến cố A là: n(A)
= C_{4}^{1}C_{7}^{1} + C_{5}^{1}C_{6}^{1} + C_{6}^{1}C_{5}^{1} =
88

  • Câu 33: Thông hiểu

    Trong kho hàng có n sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}. Biến cố X cả n sản phẩm đều tốt là:

    Ta có:

    X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}

    Nên \overline{X_{i}} là biến cố sản phẩm thứ i tốt với i \in \overline{1,n}

    Biến cố X cả n sản phẩm đều tốt là: X =
\overline{X_{1}}.\overline{X_{2}}....\overline{X_{n}}

  • Câu 34: Vận dụng

    Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?

    Quy ước gene A: quả tròn và gene a: quả dài

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1

    Gọi A_{1} là biến cố cây được chọn lần thứ nhất là quả tròn

    A_{2} là biến cố cây được chọn lần thứ hai là quả tròn.

    Ta có: A_{1};A_{2} độc lập và P\left( A_{1} ight) = P\left( A_{2}
ight) = \frac{3}{4}

    Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:

    P\left( A_{1}\overline{A_{2}} \cup
\overline{A_{1}}A_{2} ight) = P\left( A_{1}\overline{A_{2}} ight) +
P\left( \overline{A_{1}}A_{2} ight)

    = P\left( A_{1} ight)P\left(
\overline{A_{2}} ight) + P\left( \overline{A_{1}} ight)P\left( A_{2}
ight)

    = \frac{3}{4}.\frac{1}{4} +
\frac{1}{4}.\frac{3}{4} = \frac{3}{8}

  • Câu 35: Thông hiểu

    Khi gửi tiền vào ngân hàng, chị X được tham gia chương trình “Bốc thăm trúng thưởng”. Chị được bốc lần lượt 2 lá thăm trong hộp gồm 20 lá thăm. Biết trong hộp chỉ có 2 lá thăm ghi “Trúng thưởng”. Tính xác suất để cả hai lá thăm đều trúng thưởng?

    Gọi A là biến cố lá thăm rút được lần đầu có thưởng

    => P(A) = \frac{2}{20} =
\frac{1}{10}

    Gọi B là biến cố lá thăm rút được lần sau có thưởng.

    => P(B) = \frac{1}{19}

    \Rightarrow P(AB) = P(A).P(B) =
\frac{1}{10}.\frac{1}{19} = \frac{1}{190}

  • Câu 36: Thông hiểu

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Đáp án là:

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Gọi A là biến cố có ít nhất một động cơ chạy tốt

    B là biến cố chỉ có động cơ 1 chạy tốt.

    P(B) = 0,8(1 - 0,7) = 0,24

    Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.

    P(C) = 0,7(1 - 0,8) = 0,14

    Gọi D là biến cố cả hai động cơ đều chạy tốt

    P(D) = 0,8.0,7 = 0,56

    Vậy P(A) = P(B) + P(C) + P(D) =
0,94

  • Câu 37: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 38: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 39: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 40: Thông hiểu

    Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:

    Ta có:

    Số cách sắp xếp 3 viên bi đen thành một dãy bằng 3!

    Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 4!

    Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 5!

    Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 3!

    Vậy số phần tử của tập hợp A là: n(A) =
3!.4!.5!.3! = 103680

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo