Cho
. Chọn khẳng định đúng?
Theo giả thiết ta có:
Vậy hai biến cố A và B là hai biến cố độc lập.
Cho
. Chọn khẳng định đúng?
Theo giả thiết ta có:
Vậy hai biến cố A và B là hai biến cố độc lập.
Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần
Một tuần có bảy ngày và mỗi ngày thăm một bạn.
Có 12 cách chọn bạn vào ngày thứ nhất.
Có 11 cách chọn bạn vào ngày thứ hai.
Có 10 cách chọn bạn vào ngày thứ ba.
Có 9 cách chọn bạn vào ngày thứ tư.
Có 8 cách chọn bạn vào ngày thứ năm.
Có 7 cách chọn bạn vào ngày thứ sáu.
Có 6 cách chọn bạn vào ngày thứ bảy.
Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
Số cách chọn món ăn là: cách
Số cách chọn hoa quả là: cách
Số cách chọn nước uống là: cách
=> Số cách chọn thực đơn là: 5 .5. 3 = 75 thực đơn
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: cách
Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: cách
Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: cách
=> Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: cách
Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?
Vì nên hai biến cố H và K là hai biến cố đối nhau.
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi B là biến cố: "Có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu".
Số cách chọn 1 học sinh đạt yêu cầu là 27.
Số cách chọn 1 học sinh không đạt yêu cầu là 3.
Chọn 2 học sinh mà trong đó có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu là:
Khi đó số kết quả thuận lợi cho biến cố B là 81
Vậy xác suất để cần tìm là:
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển có ít nhất một nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Chọn 2 người trong số 6 người nói trên sao cho có ít nhất một nữ là
Do đó xác suất của biến cố này là .
Từ tập hợp các chữ số
có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?
Gọi
Gọi số có 4 chữ số là khi đó có 3 trường hợp xảy ra:
TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ
Có cách chọn 2 chữ số chẵn.
Có cách chọn 2 chữ số lẻ.
Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)
Có cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.
Vậy trường hợp này có: cách.
TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ
Có cách chọn 3 chữ số chẵn.
Có cách chọn 1 chữ số lẻ.
Có 4! cách xếp các số sau khi chọn
Vậy trường hợp này có: cách.
TH3: Số cần tìm có 4 chữ số chẵn
Có 4! = 24 cách xếp các số sau khi chọn
Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.
Xác suất sút bóng phạt đền 11m của hai cầu thủ A và B lần lượt là
và
. Biết rằng mỗi cầu thủ sút một quả phạt đền và hai người sút độc lập. Tìm xác suất để ít nhất 1 người sút bóng thành công?
Xác suất sút không thành công của cầu thủ A là
Xác suất sút không thành công của cầu thủ B là
Xác suất cả hai cầu thủ sút không thành công là
=> Xác suất để ít nhất 1 người sút bóng thành công là:
Có ba chiếc hộp:
Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.
Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.
Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.
Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:
Lấy ngẫu nhiên một hộp:
Gọi B là biến cố lấy được hộp 1
C là biến cố lấy được hộp 2
D là biến cố lấy được hộp 3
Suy ra
Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.
Ta có:
=>
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Số cách chọn 2 nữ trong 4 nữ là do đó xác suất của biến cố này là
.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:
Xác suất để X không câu được cá là 1 - 0,1 = 0,9
Xác suất để Y không câu được cá là 1 - 0,15 = 0,85
Xác xuất X và Y trở về tay không (không có con cá nào) là
=> Xác suất X và Y ko trở về tay ko là:
Sơ đồ phân phối điện như hình vẽ:

Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là
. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.
Ta có:
Suy ra
Một hộp chứa 7 quả cầu đỏ và 5 quả cầu xanh. Lấy ngẫu nhiên 3 quả cầu trong hộp. Số phần tử không gian mẫu là:
Số phần tử không gian mẫu là:
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:
Bảng chữ cái Tiếng Anh có 26 chữ cái.
Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là: cách chọn.
Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?
Chọn 1 người ngồi vào 1 vị trí bất kì.
Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: cách.
Vậy số cách sắp xếp là 6 cách.
Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Chọn mô tả đúng dưới đây?
Mô tả không gian mẫu đúng là:
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Cho một tập hợp A gồm 12 phần tử. Hỏi số tập hợp con gồm 3 phần tử của tập hợp A bằng bao nhiêu?
Ta có:
Mỗi tập con gồm 3 phân tử của tập A là một tổ hợp chập 3 của 12.
Vậy số tập con cần tìm là .
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?
Số cách lấy 2 viên bi màu xanh là: cách
Số cách lấy 4 viên bi màu vàng là: cách
Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:
cách
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?
Trong hộp có số viên bi là: 5 + 7 = 12 viên bi
Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử:
Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi
là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố
?
Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?
Số tự nhiên có 3 chữ số có dạng:
Do số cần tìm chia hết cho 5 => c ∈ {0; 5}
=> Có 2 cách chọn c
Số cách chọn a là 5 cách
Số cách chọn b là 6 cách
=> Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số
Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:
Ta có: là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.
Do đó số phần tử của
Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng:
Ta có:
Ông An hay bà An đứng ở dầu hoặc cuối hàng
=> Có hai cách sắp xếp
Tiếp theo xếp 6 đứa con đang lên máy bay theo một hàng dọc
=> Có 6! cách sắp xếp
=> Có tất cả 2 . 6! = 1440 cách
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau
Gọi số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
=> Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số
Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là
, xác suất để cầu thủ A đá trúng lưới là
. Tính xác suất để có đúng một cầu thủ đá trúng lưới?
Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới
Suy ra biến cố có đúng một cầu thủ đá trúng lưới là
Vì là hai biến cố xung khắc nên
Vì là hai biến cố độc lập nên
Tương tự
Vậy
Gọi
là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập
. Chọn ngẫu nhiên một số từ tập
. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.
Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.
Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng
Ta có: do đó
suy ra
khi và chỉ khi
TH1: khi đó
khi và chỉ khi
Vậy trong trường hợp này có 5.4! = 120 số tự nhiên
TH2: khi đó
dư 1 khi và chỉ khi
Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên
Do đó
Cho tập hợp
. Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh?
Hộp chứa 10 + 5 = 15 viên bi
Số cách lấy 4 viên bi trong hộp là: cách
Số cách lấy 4 viên bi không có viên bi xanh là: cách
Số cách lấy 4 viên bi có 1 viên bi xanh là: cách
=> Số lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh là: cách
Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?
Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là
Xác suất để người chơi thắng cuộc trong một lần gieo là
Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:
Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lí, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán.
Trên giá sách có 4 + 3 + 2 = 9 quyển sách
Số phần tử của không gian mẫu là:
Gọi C là biến cố "3 quyển lấy ra có ít nhất một quyển là Toán"
=> là biến cố "3 quyển lấy ra không có quyển Toán"
Trường hợp lấy được 1 quyển sách Lí, 2 quyển sách Hóa có: cách
Trường hợp lấy được 2 quyển sách Lí, 1 quyển sách Hóa có: cách
Trường hợp lấy được 3 quyển sách Lí có: cách
=>
=> Xác suất để 3 quyển lấy ra không có quyển Toán là:
=> Xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán là:
Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là
và
.
Giả sử có hai học sinh là A và B
Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là
Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.
Suy ra là biến cố cả hai bạn đều ném trúng bia, khi đó
Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt không nhỏ hơn 16?
Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố '' Tổng số chấm trên các mặt của ba lần gieo không nhỏ hơn 16”.
Ta có bộ các số tương ứng với số chấm có tổng không nhỏ hơn 16 là (4;6;6); (6;4;6), (6;6;4); (5;5;6), (6;5;5); (5;6;5); (5;6;6), (6;5;6), (6;6;5) và (6;6;6).
Do đó số phần tử của biến cố A là:
Vậy xác suất cần tìm là:
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để "Cả 2 học sinh đều đạt yêu cầu"?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi C là biến cố: "Cả 2 học sinh đều đạt yêu cầu".
Khi đó số kết quả thuận lợi cho biến cố C là
Vậy xác suất để cần tìm là: