Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?

    Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng \overline{AaBbCcD} trong đó A;B;C;D là 4 bạn nữ và a,b,c là 3 bạn nam.

    Bước 1: Chọn 3 bạn nam trong 5 bạn nam có C_{5}^{3} cách.

    Bước 2: Gọi nhóm \overline{AaBbCcD} là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.

    Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.

    Do đó ta có: C_{5}^{3}.3!.3!.4! =
8640 cách xếp thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng

    Cho hai biến cố A và B có P\left( A ight) = \frac{1}{3},P\left( B ight) = \frac{1}{4},P\left( {A \cup B} ight) = \frac{1}{2} ta kết luận hai biến cố A và B là:

    Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)

    Suy ra P(A) + P(B) ≠ P(A ∪ B)

    => Hai biến cố A và B không xung khắc

    Áp dụng công thức xác suất tổng hai biến cố ta có: 

    \begin{matrix}  P\left( A ight) + P\left( B ight) - P\left( {AB} ight) = P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left[ {P\left( A ight) + P\left( B ight)} ight] - P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left( {\dfrac{1}{3} + \dfrac{1}{4}} ight) - \dfrac{1}{2} = \dfrac{1}{2} \hfill \\ \end{matrix}

    P\left( A ight).P\left( B ight) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} = P\left( {AB} ight)

    => Hai biến cố A và B là hai biến cố độc lập.

  • Câu 3: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?

     Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Do số đang xét là số chẵn => e ∈ \{2; 4; 6\}

    => Có 3 cách chọn e

    => Số cách chọn a, b, c, d là: {6^4} = 1296

    => Từ tập A có thể lập được số các số chẵn có 5 chữ số là: 3 . 1296 = 3888 số

  • Câu 4: Nhận biết

    Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?

    Số cách chọn một người từ 45 người là: C_{45}^{1} = 45 (cách)

    Vậy có 45 cách chọn tổ trưởng tổ dân phố.

  • Câu 5: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 6: Thông hiểu

    Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:

    Số cách chọn nhóm có 2 người: C_5^2 = 10

    Số cách chọn nhóm có 3 người: C_5^3 = 10

    Số cách chọn nhóm có 4 người: C_5^4= 5

    Số cách chọn nhóm có 5 người: 1

    => Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm

  • Câu 7: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 8: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

  • Câu 9: Vận dụng

    Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:

    Gọi số cạnh của đa giác đều là n (cạnh)

    => Đa giác đó có n đỉnh tương ứng

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{n}^2 đoạn thẳng

    Mà đa giác đều có 44 đường chéo nên ta có phương trình

    44 + n = C_n^2 \Rightarrow n = 11

    Vậy đa giác đều có 11 cạnh

  • Câu 10: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''

    Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.

    Bộ các số tương ứng với số chấm có tổng bằng 2: không có.

    Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách

    Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách

    Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.

    Do đó số phần tử của biến cố B là \left|
\Omega_{B} ight| = 22

    Vậy xác suất cần tìm là: P(B) =
\frac{\left| \Omega_{B} ight|}{|\Omega|} = \frac{22}{216} =
\frac{11}{108}

  • Câu 11: Thông hiểu

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 12: Vận dụng

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 13: Thông hiểu

    Cho 5 chữ số 0; 1; 2; 3; 4. Từ 5 chữ số đó có thể lập được bao nhiêu chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần?

     Số tự nhiên có năm chữ số có dạng: \overline {abcde}

    Do mỗi số đó mỗi chữ số trên có mặt một lần => a e b e c e d e e

    Số cần tìm là số chẵn => e ∈ {0; 2; 4}

    Trường hợp 1:  e = 0 => e có 1 cách chọn

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách 

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Số các số lập được ở trường hợp 1 là: 4.3.2 = 24 số

    Trường hợp 2: e ∈ {2; 4} => Có 2 cách chọn e

    Số cách chọn a là 3 cách (Do a khác 0)

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Số các số lập được ở trường hợp 2 là: 2.3.3.2 = 36 số

    => Có thể lập được số các chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần là 36 + 24 = 60 số

  • Câu 14: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 15: Thông hiểu

    Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:

    Gieo hai con súc sắc cân đối và đồng chất

    => Số phần tử không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"

    Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)

    Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị 

    => n\left( D ight) = 12

    => Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là: 

    P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 16: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 17: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C, D, V. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C là \frac{1}{5} và của các trạm D, V là \frac{1}{10}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C, D, V là biến cố các trạm tải nhỏ A, B, C, D, V gặp sự cố kĩ thuật.

    Ta có:

    \overline{Q} = (A \cap B \cap C) \cup (D
\cap V)

    Suy ra P\left( \overline{Q} ight) =
P(ABC) + P(DV) - P(ABCDV)

    P\left( \overline{Q} ight) =
P(A).P(B).P(C) + P(D).P(V)

    - P(A).P(B).P(C).P(D).P(V)

    = 0,2.0,2.0,2 + 0,1.0,1 -
0,2.0,2.0,2.0,1.0,1 = 0,01792

    Vậy P\left( \overline{Q} ight) = 1 -
P(Q) = 0,98208

  • Câu 18: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 19: Nhận biết

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?

    Trong hộp có số viên bi là: 5 + 7 = 12 viên bi

    Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử: C_{12}^6 = 924

  • Câu 20: Thông hiểu

    Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?

    Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".

    Tìm |\Omega|

    Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có C_{9}^{3} cách.

    Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có C_{6}^{3} cách.

    Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.

    Vậy số phần tử của không gian mẫu là |\Omega| = C_{9}^{3}.C_{6}^{3}.1 =
1680

    Tìm \left| \Omega_{A}
ight|

    Phân 3 nữ vào ba nhóm có P_{3} = 3! =
6 cách khác nhau.

    Phân 6 nam vào ba nhóm theo cách trên có C_{6}^{2}.C_{4}^{2}.1 khác nhau

    Vậy số kết quả thuận lợi cho biến cố A là: \left| \Omega_{A} ight| =
6.C_{6}^{2}.C_{4}^{2}.1 = 540

    Vậy xác suất cần tìm là: P(A) =
\frac{540}{1680} = \frac{9}{26} \approx 0,32

  • Câu 21: Thông hiểu

    Có hai hòm đựng thẻ, mỗi hòm đựng 13 thẻ đánh số từ 1 đến 13. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 9.

    Gọi A là biến cố "Trong hai thẻ rút ra có ít nhất một thẻ đánh số 9 "; H là biến cố "Thẻ rút ra từ hòm thứ nhất không đánh số 9 "; K là biến cố "Thẻ rút ra từ hòm thứ hai không đánh số 9 ".

    Khi đó \overline{A} = HK. Ta có: P(H) = \frac{12}{13};P(K) =
\frac{12}{13}

    Vì H và K là hai biến cố độc lập nên P\left( \overline{A} ight) = P(HK) = P(H).P(K) =
\frac{144}{169}

    Do đó P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{144}{169} = \frac{25}{169} đây là hợp của các biến cố xung khắc.

    Do đó: P(X) = P\left(
H\overline{S}\overline{T} \cup \overline{H}S\overline{T} \cup
\overline{H}\overline{S}T ight)

    = P\left( H\overline{S}\overline{T}
ight) + P\left( \overline{H}S\overline{T} ight) + P\left(
\overline{H}\overline{S}T ight)

    \left\{ \begin{matrix}P\left( H\overline{S}\overline{T} ight) =\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{2}{3} = \dfrac{1}{5} \\P\left( \overline{H}S\overline{T} ight) =\dfrac{1}{2}.\dfrac{2}{5}.\dfrac{2}{3} = \dfrac{2}{15} \\\left( \overline{H}\overline{S}T ight) =\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{1}{3} = \dfrac{1}{10} \\\end{matrix} ight.

    \Rightarrow P(X) = P\left(
H\overline{S}\overline{T} ight) + P\left( \overline{H}S\overline{T}
ight) + P\left( \overline{H}\overline{S}T ight) = \frac{1}{5} +
\frac{2}{15} + \frac{1}{10} = \frac{13}{30}

  • Câu 22: Nhận biết

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có 3 bạn nam và 2 bạn nữ?

    Số cách chọn 3 bạn nam là: C_6^3 = 20 cách

    Số cách chọn 2 bạn nữ là: C_5^2 = 10 cách

    Áp dụng quy tắc nhân ta có: 

    C_6^3.C_5^2 = 20.10 = 200 cách

  • Câu 23: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.

    Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn đều là nữ"

    => n\left( A ight) = C_3^2 = 3

    => Xác suất sao cho 2 người được chọn đều là nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{3}{{45}} = \frac{1}{{15}}

  • Câu 24: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 25: Nhận biết

    Cho một tập hợp A gồm 12 phần tử. Hỏi số tập hợp con gồm 3 phần tử của tập hợp A bằng bao nhiêu?

    Ta có:

    Mỗi tập con gồm 3 phân tử của tập A là một tổ hợp chập 3 của 12.

    Vậy số tập con cần tìm là C_{12}^{3}.

  • Câu 26: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

  • Câu 27: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 28: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 29: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?

    Số cách lấy 2 viên bi màu xanh là: C_5^2 = 10 cách

    Số cách lấy 4 viên bi màu vàng là: C_7^4 = 35 cách 

    Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:

    C_5^2.C_7^4 = 10.35 = 350 cách

  • Câu 30: Thông hiểu

    Với 4 chữ số 1; 2; 3; 4 có thể lập được bao nhiêu số có các chữ số phân biệt?

     Với 4 chữ số 1; 2; 3; 4 có thể lập được số có tối đa 4 chữ số 

    Trường hợp số có 1 chữ số ta được 4 số

    Trường hợp số có 2 chữ số ta được 4 . 3 = 12 số

    Trường hợp số có 3 chữ số ta được: 4 . 3 . 2 = 24 số

    Trường hợp số có 4 chữ số ta được: 4! = 24 số

    => Có thể lập được số các số có các chữ số phân biệt là: 4 + 12 + 24 + 24 = 64 số

  • Câu 31: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 32: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

  • Câu 33: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 34: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

  • Câu 35: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 36: Nhận biết

    Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:

    Biến cố đối của biến cố B là \overline{B}: “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.

  • Câu 37: Thông hiểu

    Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là 0,5;0,6;0,8 . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96

    Đáp án là:

    Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là 0,5;0,6;0,8 . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96

    Từ giả thiết suy ra xác suất để người thứ nhất, người thứ hai và người thứ ba không bắn trúng hồng tâm lần lượt là 0,5;0,4;0,2.

    Để có đúng 2 người bắn trúng hồng tâm ta có các trường hợp sau:

    Trường hợp 1

    + Người thứ nhất bắn trúng

    + Người thứ hai bắn trúng

    + Người thứ ba không trúng

    Xác suất: 0,5.0,6.0,2

    Trường hợp 2

    + Người thứ nhất bắn trúng

    + Người thứ hai không bắn trúng

    + Người thứ ba bắn trúng

    Xác suất: 0,5.0,4.0,8

    Trường hợp 3

    + Người thứ nhất không bắn trúng

    + Người thứ hai bắn trúng

    + Người thứ ba bắn trúng

    Xác suất: 0,5.0,6.0,8

    Vậy xác suất để có đúng 2 người bắn trúng đích là

    0,5.0,6.0,2 + 0,5.0,4.0,8 + 0,5.0,6.0,8
= 0,46

  • Câu 38: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 39: Nhận biết

    Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:

    Số cách chọn món ăn là: C_5^1 = 5 cách 

    Số cách chọn hoa quả là: C_5^1 = 5 cách

    Số cách chọn nước uống là: C_3^1 = 3 cách

    => Số cách chọn thực đơn là: 5 .5. 3 = 75 thực đơn

  • Câu 40: Thông hiểu

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển có ít nhất một nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Chọn 2 người trong số 6 người nói trên sao cho có ít nhất một nữ là

    C_{4}^{1}.C_{2}^{1} + C_{4}^{2} = 8 + 6 =
14

    Do đó xác suất của biến cố này là \frac{14}{15}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo