Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    => Số các số tự nhiên có 5 chữ số được tạo thành là: {5^5} = 3125 số

  • Câu 2: Thông hiểu

    Trên giá sách muốn xếp 20 cuốn sách khác nhau gồm sách tập 1 và sách tập 2. Có bao nhiêu cách sắp xếp sao cho tập 1 và tập 2 đặt cạnh nhau?

    Sắp xếp 20 cuốn sách trên giá là một hoán vị của 20 phần tử nên ta có 20! cách sắp xếp.

    Khi hai cuốn tập 1 và tập 2 đặt cạnh nhau (thay đổi vị trí cho nhau), ta coi đó là một phần tử và cùng sắp xếp với 18 cuốn sách còn lại trên giá nên có 2 . 19! cách sắp xếp.

    Vậy có tất cả 20! − 2 . 19! = 19! . 18 cách sắp xếp theo yêu cầu bài toán.

  • Câu 3: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 4: Thông hiểu

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Đáp án là:

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Gọi A là biến cố có ít nhất một động cơ chạy tốt

    B là biến cố chỉ có động cơ 1 chạy tốt.

    P(B) = 0,8(1 - 0,7) = 0,24

    Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.

    P(C) = 0,7(1 - 0,8) = 0,14

    Gọi D là biến cố cả hai động cơ đều chạy tốt

    P(D) = 0,8.0,7 = 0,56

    Vậy P(A) = P(B) + P(C) + P(D) =
0,94

  • Câu 5: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 6: Thông hiểu

    Hai máy cơm cùng bơm nước vào một bể chứa, chúng hoạt động độc lập với nhau. Xác suất để máy bơm 1 bị hỏng là \frac{1}{2}, xác suất để máy bơm 2 bị hỏng là \frac{2}{5}. Biết nếu cả hai máy bơm bị hỏng sẽ không đáp ứng đủ nước tiêu dùng cho hộ gia đình. Tính xác suất để hộ gia đình có đủ nước dùng?

    Gọi A là biến cố máy bơm 1 bị hỏng và B là biến cố máy bơm 2 bị hỏng

    Suy ra AB là biến cố cả hai máy bơm bị hỏng => Gia đình không đủ nước dùng.

    Lại thấy hai máy bơm hoạt động độc lập nên A và B là hai biến cố độc lập.

    Áp dụng quy tắc nhân xác suất ta được xác suất để hộ gia đình không đủ nước dùng là:

    P(AB) = 0,5.0,4 = 0,2

    Vậy xác suất để hộ gia đình có đủ nước dùng là 1 - 0,2 = 0,8

  • Câu 7: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''

    Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.

    Bộ các số tương ứng với số chấm có tổng bằng 2: không có.

    Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách

    Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách

    Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.

    Do đó số phần tử của biến cố B là \left|
\Omega_{B} ight| = 22

    Vậy xác suất cần tìm là: P(B) =
\frac{\left| \Omega_{B} ight|}{|\Omega|} = \frac{22}{216} =
\frac{11}{108}

  • Câu 9: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 10: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 11: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 12: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 13: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 14: Vận dụng

    Lấy 3 quả cầu từ một hộp có 4 quả cầu trắng, 5 quả cầu vàng, 6 quả cầu xanh. Tính xác suất để lấy được ít nhất 2 quả cầu cùng màu.

    Hộp có 4 + 5 + 6 = 15 quả cầu

    Số phần tử không gian mẫu là: C_{15}^3 = 455

    Gọi B là biến cố: "Ít nhất 2 quả cầu cùng màu"

    => \overline B là biến cố: "Không có 2 quả cầu nào cùng màu" 

    => Số phần tử của biến cố \overline B là: n\left( {\overline B } ight) = C_4^1.C_5^1.C_6^1 = 120

    => P\left( {\overline B } ight) = \frac{{n\left( {\overline B } ight)}}{{n\left( \Omega  ight)}} = \frac{{120}}{{455}} = \frac{{24}}{{91}}

    => P\left( B ight) = 1 - P\left( {\overline B } ight) = 1 - \frac{{24}}{{91}} = \frac{{67}}{{91}}

    Vậy xác suất để lấy được ít nhất 2 quả cầu cùng màu là \frac{{67}}{{91}}

  • Câu 15: Nhận biết

    Gieo hai lần liên tiếp một đồng xu. Gọi M là biến cố có ít nhất một lần mặt sấp xuất hiện, N là biến cố kết quả hai lần gieo giống nhau. Chọn khẳng định đúng?

    Ta có:

    M = \left\{ SS;SN;NS
ight\}

    N = \left\{ SS;NN ight\}

    \Rightarrow M \cup N = \left\{
SS;SN;NS;NN ight\}

  • Câu 16: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 17: Thông hiểu

    Một người bỏ ngẫu nhiên ba lá thu vào vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng phong bì của nó.

    Xét các bộ \left( x_{1};x_{2};x_{3}
ight) trong đó \left(
x_{1};x_{2};x_{3} ight) là một hoán vị của tập A = \left\{ 1;2;3 ight\}

    Ở đây x_{i} = i,(i = 1,2,3) tức là lá thư thứ i đã bỏ đúng địa chỉ.

    Gọi \Omega là tập họp tất cả các khả năng bỏ ba lá thư vào 3 phong bì, khi đó n_{\Omega} = 3! = 6

    Gọi A là biên cố "Có ít nhất một lá thư bő đúng phong bì".

    Các khả năng thuận lợi cho biến cố A là \Omega_{A} = \left\{
(1;2;3),(1;3;2),(3;2;1),(2,1,3) ight\}

    Vậy \left| \Omega_{A} ight| =
4 xác suất cần tính là P(A) =
\frac{2}{3}

  • Câu 18: Thông hiểu

    Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

    Cứ 3 đỉnh của đa giác sẽ tạo thành một tam giác

    Số cách chọn 3 trong 10 đỉnh của đa giác là: C_{10}^3 = 120

    Vậy số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là: 120 tam giác

  • Câu 19: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau.

    Trên giá sách có 4 + 3 + 2 = 9 quyển sách

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = C_9^3 = 84

    Gọi A là biến cố "3 quyển được lấy ra thuộc 3 môn khác nhau"

    => n\left( A ight) = C_4^1.C_3^1.C_2^1 = 24

    => Xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{24}}{{84}} = \frac{2}{7}

  • Câu 20: Thông hiểu

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm chia hết cho 10 => e = 0 => Có 1 cách chọn e

    Số cách chọn a là 9 cách

    Số cách chọn b là 10 cách

    Số cách chọn c là 10 cách

    Số cách chọn d là 10 cách

    => Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là: 9 . 10 . 10 . 10 = 9000 số

  • Câu 21: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 22: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 23: Nhận biết

    Lớp 11A chọn ngẫu nhiên 1 học sinh trong lớp để tham gia hoạt động đoàn trường. Xét hai biến cố:

    Biến cố A: “Học sinh đó là nam”

    Biến cố B: “Học sinh đó là học sinh giỏi”

    Khẳng định nào sau đây đúng khi mô tả biến cố A \cup B?

    Ta có:

    A \cup B: Học sinh đó là học sinh nam hoặc là học sinh giỏi

  • Câu 24: Thông hiểu

    Cấu trúc đề thi cuối học kì môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm. Giáo viên chủ nhiệm đã áp dụng phần mềm để hoán vị 4 phương án trong cùng câu hỏi với nhau. Xác suất để có hai đề thi được tạo ra chỉ có sự giống nhau ở năm câu hỏi là x%. Giá trị của x gần nhất với giá trị nào sau đây?

    Hoán vị 4 phương án trắc nghiệm có 4! = 24 cách

    Xác suất đẻ hai câu hỏi giống nhau là \frac{1}{24}, xác suất để hai câu hỏi khác nhau là \frac{23}{24}

    Chọn năm câu hỏi có sự giống nhau C_{20}^{5}

    Xác suất cần tìm là:

    x = C_{20}^{5}.\left( \frac{1}{24}
ight)^{5}.\left( \frac{23}{24} ight)^{45} = 0,0391 =
3,91\%

    Vậy giá trị của x gần nhất với giá trị 4%.

  • Câu 25: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 26: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 27: Thông hiểu

    Có bao nhiêu cách xếp 6 người ngồi xung quanh một bàn tròn có 6 chỗ, hai cách ngồi được coi là như nhau nếu có thể nhận được từ cách kia bằng cách quay bàn đi một góc nào đó?

    Vì bàn tròn ghế không có sắp xếp thứ tự.

    Ta chọn một người ngồi ở một vị trí trong 6 chỗ làm mốc.

    Xếp 5 người còn lại vào 5 vị trí trống còn lại ta được 5! = 120 cách

    Vậy ta có: 1 . 120 = 120 cách để sắp xếp 6 người ngồi vào bàn tròn 6 chỗ

  • Câu 28: Nhận biết

    Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số tự nhiên cần tìm là số chẵn => c = {2; 4; 6}

    => Số cách chọn c là 3 cách

    Số cách chọn a là 6 cách

    Số cách chọn b là 6 cách

    => Số các số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đã cho là: 3 . 6 . 6 = 108 số

  • Câu 29: Nhận biết

    Không gian mẫu của một phép thử được mô tả như sau \Omega = \left\{ 1;2;3;4;5;6;7
ight\}

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3;7 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 30: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 31: Nhận biết

    Một nhóm học sinh gồm 15 người. Cần chọn 3 người lần lượt làm các chức vụ nhóm trưởng, nhóm phó và kiểm soát. Số cách chọn là:

    Số cách chọn 3 người đảm nhiệm 3 chức vụ khác nhau từ 15 người là:

    A_{15}^{3} = 2730 (cách)

    Vậy có tất cả 2730 cách chọn.

  • Câu 32: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 33: Thông hiểu

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?

    Xác suất để học sinh thi được 9 điểm là: C_{10}^{5}.(0,25)^{5}.(0,75)^{5}.

    Xác suất để học sinh thi được 9,2 điểm là: C_{10}^{6}.(0,25)^{6}.(0,75)^{4}.

    Xác suất để học sinh thi được 9,4 điểm là: C_{10}^{7}.(0,25)^{7}.(0,75)^{3}.

    Xác suất để học sinh thi được 9,6 điểm là: C_{10}^{8}.(0,25)^{8}.(0,75)^{2}.

    Xác suất để học sinh thi được 9,8 điểm là: C_{10}^{9}.(0,25)^{9}.(0,75)^{1}.

    Xác suất để học sinh thi được 10 điểm là: (0,25)^{10}.

    Vậy xác suất để học sinh thi được không dưới 9 điểm là:

    \sum_{k = 5}^{10}{C_{10}^{k}.(0,25)^{k}.(0,75)^{10
- k}} \approx 0,0781

  • Câu 34: Vận dụng

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Đáp án là:

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline{A} là biến cố người đó không thắng trận nào.

    \overline{A} =
\overline{A_{1}}.\overline{A_{2}}.\overline{A_{3}}...\overline{A_{n}} trong đó \overline{A_{i}} là biến cố người đó thắng trận thứ i và P\left(
\overline{A_{i}} ight) = 0,6;i = \overline{1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,6^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,6^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,6^{n} > 0,95

    \Leftrightarrow 0,6^{n} <
0,05

    \Leftrightarrow n >\log_{0,6}0,05

    Vậy giá trị nhỏ nhất của n bằng 6.

  • Câu 35: Thông hiểu

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong đó có 1 học sinh nam là: C_{25}^1.C_{15}^2 = 2625 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455 cách

    => Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: 2625 + 455 = 3080 cách

  • Câu 36: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 37: Nhận biết

    Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm A;B;C;D;E;F phân biệt?

    Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.

    Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: C_{7}^{2} = 21 (đoạn thẳng.

    Vậy đáp án là 21 đoạn thẳng.

  • Câu 38: Vận dụng

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đáp án là:

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đánh số thứ tự các nhóm là A, B, C, D

    Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.

    Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.

    Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có C_{5}^{2} cách, xếp 3 học sinh khá còn lại có 3! cách.

    Bước 3: xếp 7 học sinh trung bình

    + Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.

    + Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.

    Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có C_{6}^{2}.3 cách.

    Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có C_{4}^{2}.2 cách.

    Xếp 2 học sinh trung bình còn lại có 1 cách.

    Do đó số cách sắp xếp là: 4!.4.C_{5}^{2}.3!.7.C_{6}^{2}.3.C_{4}^{2}..1 =21772800

    Vậy n(N) = 21772800

  • Câu 39: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 40: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo