Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Ban chấp hành liên chi đoàn khối 11 có 3 nam, 2 nữ. Cần thành lập một ban kiểm tra gồm 3 người trong đó có ít nhất 1 nữ. Số cách thành lập ban kiểm tra là:
Số cách lập ban kiểm tra có 3 người là: cách
Sô cách lập ban kiểm tra có 3 người trong đó không có nữ là: cách
=> Số cách thành lập ban kiểm tra có ít nhất một nữ là: cách
Thực hiện một khảo sát nhỏ trong lớp 11A về việc tham gia câu lạc bộ A, B, C ta được số liệu ghi lại như sau:
Có 20% học sinh tham gia câu lạc bộ A, 15% tham gia câu lạc bộ B; 10% tham gia câu lạc bộ C.
Có 5% học sinh tham gia câu lạc bộ A và B, 3% tham gia câu lạc bộ B và C, 4% tham gia câu lạc bộ A và C.
Có 2% tham gia cả 3 câu lạc bộ.
Xác suất học sinh tham gia ít nhất một câu lạc bộ là:
Gọi A, B, C lần lượt là các biến cố học sinh tham gia câu lạc bộ A, B, C.
Ta có:
Ta có:
Gọi D là biến cố học sinh tham gia ít nhất một câu lạc bộ
Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?
Gọi số hiệp hai tuyển thủ thi đấu là
Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó
Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:
TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:
TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:
TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:
Vậy xác suất để tuyển thủ B thắng chung cuộc là
Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?
Vì nên hai biến cố H và K là hai biến cố đối nhau.
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Gieo hai con súc sắc cân đối và đồng chất
=> Số phần tử không gian mẫu là:
Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"
Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)
Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị
=>
=> Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:
Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.
Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau
Coi 6 quyển sách là hai bộ sách Toán và Vật Lí
Số cách sắp xếp hai bộ sách là 2! = 2 (cách)
Cách sắp xếp bộ sách Toán là 3! = 6
Cách sắp xếp bộ sách Vật Lí là 3! = 6
=> Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)
=> Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:
Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Gieo đồng tiền 2 lần nên ta có:
Số phần tử không gian mẫu là:
Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"
=> biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"
=>
=>
=> Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Số cách chọn 2 nữ trong 4 nữ là do đó xác suất của biến cố này là
.
Từ các chữ số
có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn
?
Gọi là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.
Trường hợp 1: a = 1
Số cách chọn là
số.
Trường hợp 2:
Số cách chọn là:
số.
Trường hợp 3:
Số cách chọn là:
số.
Vậy có 20 số thỏa mãn yêu cầu bài toán.
Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?
Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có:
Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.
TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có cách.
TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có cách.
Suy ra
Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là:
Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.
Số cách chọn 8 học sinh từ hai khối là:
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?
Xét các trường hợp:
TH1: Học sinh lớp 12 ngồi đầu dãy:
Chọn vị trí cho học sinh lớp 12 có 2 cách
Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách
Hoán vị các học sinh còn lại cho nhau có 4! Cách.
Trường hợp này được: 2.2.4! = 96 cách.
TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:
Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.
Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách
Trường hợp này được 4!.2! = 48 cách
Như vậy số cách sắp xếp là 48 + 96 = 144
Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:
Ta có: là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.
Do đó số phần tử của
Hai máy cơm cùng bơm nước vào một bể chứa, chúng hoạt động độc lập với nhau. Xác suất để máy bơm 1 bị hỏng là
, xác suất để máy bơm 2 bị hỏng là
. Biết nếu cả hai máy bơm bị hỏng sẽ không đáp ứng đủ nước tiêu dùng cho hộ gia đình. Tính xác suất để hộ gia đình có đủ nước dùng?
Gọi A là biến cố máy bơm 1 bị hỏng và B là biến cố máy bơm 2 bị hỏng
Suy ra AB là biến cố cả hai máy bơm bị hỏng => Gia đình không đủ nước dùng.
Lại thấy hai máy bơm hoạt động độc lập nên A và B là hai biến cố độc lập.
Áp dụng quy tắc nhân xác suất ta được xác suất để hộ gia đình không đủ nước dùng là:
Vậy xác suất để hộ gia đình có đủ nước dùng là
Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:
Bảng chữ cái Tiếng Anh có 26 chữ cái.
Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là: cách chọn.
Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?
Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách
Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách
Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc
Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách
=> Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng câu là
Với .
Xét hàm với
và
.
Ta có lớn nhất
.
Suy ra .
Vậy .
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?
Do số bi xanh và số bi đỏ lấy ra bằng nhau
=> Có hai trường hợp xảy ra:
Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ
=> Số cách chọn là: cách
Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ
=> Số cách chọn là: cách
=> Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách
Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 9 cách
Số cách chọn b là 9 cách
Số cách chọn c là 8 cách
Số cách chọn d là 7 cách
=> Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?
Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi là biến cố ở hiệp thứ I, người thứ j thắng
Vậy xác suất để bạn A giành chiến thắng là:
Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.
Theo bài ra ta có 5 ban nhạc đến từ các trường
Chọn ban nhạc Nha Trang biểu diễn đầu tiên
=> Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách
=> Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.
Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.
Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".
Tìm
Chọn 10 tấm thẻ trong 30 tấm thẻ: có cách chọn
Tìm
Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có cách chọn.
Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.
Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có cách chọn.
Vậy số kết quả thuận lợi cho biến cố A là
Vậy xác suất cần tìm là:
Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp
. Gọi
là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố
?
Ta có: là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.
Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số
Số các số có 1 chữ số là: 3
Số các số có 2 chữ số là: 32 = 9
Số các số có 3 chữ số là: 33 = 27
=> Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:
Số phần tử không gian mẫu là: 52
Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích
=> Số lá bích trong bộ bài là 13 lá
=> Xác suất để được lá bích là:
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
Số cách chọn người đàn ông là 10 cách
Do người đàn ông và người phụ nữ được chọn không là vợ chồng
=> Số cách chọn người phụ nữ là 9 cách
=> Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng là 9 . 10 = 90 cách
Một hộp chứa 10 quả cầu xanh và 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả cầu trong hộp. Tính xác suất của biến cố lấy được 5 quả cầu có đủ hai màu.
Số phần tử không gian mẫu là:
Gọi biến cố A lấy được 5 quả cầu có đủ 2 màu
=> lấy được 5 quả cầu lấy ra chỉ có 1 màu.
TH1: Lấy ra từ hộp 5 quả cầu xanh có cách
TH2: Lấy ra từ hộp 5 quả cầu đỏ có cách
Suy ra
Xác suất để được 5 quả đủ 2 màu là:
Vậy xác suất cần tìm là .
Với các chữ số
. Có thể lập được bao nhiêu số có mười chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần và các chữ số khác có mặt đúng 1 lần?
Trường hợp 1: Số 5 ở vị trí đầu tiên và 3 số 5 còn lại có cách xếp
Sáu chữ số còn lại có cách xếp.
=> Có số.
Trường hợp 2: Số 5 không ở vị trí đầu tiên có cách sắp xếp 4 số 5.
Vị trí đầu tiên có 5 cách xếp (trừ số 0).
5 vị trí còn lại có cách xếp.
=> Có số.
Vậy có thể lập được 60480 + 75600 = 136080 số thỏa mãn bài toán.
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.
Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là:
Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”
Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:
Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?
Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng trong đó
là 4 bạn nữ và
là 3 bạn nam.
Bước 1: Chọn 3 bạn nam trong 5 bạn nam có cách.
Bước 2: Gọi nhóm là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.
Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.
Do đó ta có: cách xếp thỏa mãn yêu cầu bài toán.
Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử
là biến cố lấy được tấm thẻ màu xanh từ hộp thứ
. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?
Biểu diễn đúng là:
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
Lấy một số từ dãy số đã cho ta được:
Giả sử A là biến cố "lấy được một số nguyên tố"
Ta có: A = {2} =>
=> Xác suất để lấy được một số nguyên tố là:
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}
=> Số cách chọn c là 3 cách
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số