Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh?

    Hộp chứa 10 + 5 = 15 viên bi

    Số cách lấy 4 viên bi trong hộp là: C_{15}^4 = 1365 cách

    Số cách lấy 4 viên bi không có viên bi xanh là: C_5^4 = 5 cách

    Số cách lấy 4 viên bi có 1 viên bi xanh là: C_{10}^1.C_5^3 = 100 cách

    => Số lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh là: 1365 - 5 - 100 = 1260 cách

  • Câu 2: Thông hiểu

    Đề thi Toán thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Một học sinh làm chắc chắn đúng 40 câu, vì thời gian còn lại hạn chế nên học sinh đã tô ngẫu nhiên 10 câu hỏi còn lại. Tính xác suất để học sinh đó được 9,2 điểm trong bài thi đó?

    Khi khoanh ngẫu nhiên 1 câu thì xác suất đúng là 0,25 và xác suất sai là 0,75

    Học sinh đó được 9,2 điểm nếu bạn khoanh đúng được 6 câu trong 10 câu còn lại

    Do đó xác suất để bạn học sinh đó được 9,2 điểm là: C_{10}^{4}.(0,25)^{6}.(0,75)^{4}.

  • Câu 3: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 4: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số lẻ có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên lẻ => e ∈ {1; 3; 5}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a 

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số lẻ có 5 chữ số đôi một khác nhau được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

  • Câu 5: Thông hiểu

    Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:

    Số cách chọn người đàn ông là 10 cách

    Do người đàn ông và người phụ nữ được chọn không là vợ chồng

    => Số cách chọn người phụ nữ là 9 cách

    => Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng là 9 . 10 = 90 cách

  • Câu 6: Nhận biết

    Cho 6 chữ số 4, 5, 6, 7, 8, 9.  Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}

    => Số cách chọn c là 3 cách

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    => Số các số các số  tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số

  • Câu 7: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 9: Thông hiểu

    Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.

    Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - \frac{1}{3} = \frac{2}{3}.

    Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 - \frac{1}{4} = \frac{3}{4}.

    Gọi biến cố A:"Có ít nhất một xạ thủ không bắn trúng bia ".

    Khi đó biến cố A có 3 khả năng xảy ra:

    +) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: \frac{1}{3}.\frac{3}{4} =
\frac{1}{4}.

    +) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: \frac{2}{3}.\frac{1}{4} =
\frac{1}{6}.

    +) Xác suất cả hai người đều bắn không trúng bia: \frac{2}{3}.\frac{3}{4} = \frac{1}{2}

    Khi đó P(A) = \frac{1}{3}.\frac{3}{4} +
\frac{2}{3}.\frac{1}{4} + \frac{2}{3}.\frac{3}{4} =
\frac{11}{12}.

  • Câu 10: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 11: Nhận biết

    Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?

    Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.

    => Có A_7^3 = 210 cách.

  • Câu 12: Thông hiểu

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

  • Câu 13: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 14: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 15: Nhận biết

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 16: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 17: Thông hiểu

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Ta có: 1605632 =
2^{15}.7^{2}

    Suy ra số các ước nguyên dương của 1605632 là (15 + 1)(2 + 1) = 48.

    Số phần tử của không gian mẫu: n(\Omega)
= 48.

    Trong đó, số các số chia hết cho 7 là: (15 + 1).2 = 32.

    Xác xuất cần tìm là: P = \frac{32}{48} =
\frac{2}{3}.

  • Câu 18: Nhận biết

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có 3 bạn nam và 2 bạn nữ?

    Số cách chọn 3 bạn nam là: C_6^3 = 20 cách

    Số cách chọn 2 bạn nữ là: C_5^2 = 10 cách

    Áp dụng quy tắc nhân ta có: 

    C_6^3.C_5^2 = 20.10 = 200 cách

  • Câu 19: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

  • Câu 20: Nhận biết

    Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?

    Sử dụng định nghĩa biến cố đối ta được:

    \overline{X} là biến cố “Hai học sinh được chọn đều là nữ”.

  • Câu 21: Thông hiểu

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:

     Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.

    Trường hợp 1: Số 9 đứng đầu

    Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.

    => Trường hợp 1 có 9 số được lập

    Trường hợp 2: Số 8 đứng đầu

    Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần

    Vậy cả 2 trường hợp có 9 + 1 = 10 số

  • Câu 22: Thông hiểu

    Cho tập hợp A =
\left\{ 1;2;3;4 ight\}. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?

    Ta có:

    Số có 1 chữ số có 4 số.

    Số có 2 chữ số có A_{4}^{2} = 12 số.

    Số có 3 chữ số có A_{4}^{3} = 24 số.

    Số có 4 chữ số có P_{4} = 24 số.

    Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.

  • Câu 23: Nhận biết

    Có bao nhiêu cách chọn một tổ trưởng và một tổ phó từ một nhóm 12 học sinh? Biết khả năng được chọn của mỗi học sinh trong nhóm là như nhau.

    Mỗi cách chọn 2 người từ 12 người để làm một tổ trưởng và một tổ phó là một chỉnh hợp chập 2 của 12

    Vậy số cách chọn là A_{12}^{2} =
132.

  • Câu 24: Vận dụng

    Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?

    Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi A_{ij};j
\in \left\{ 1;2 ight\} là biến cố ở hiệp thứ I, người thứ j thắng

    Vậy xác suất để bạn A giành chiến thắng là:

    P\left( A_{(i + 1)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap A_{(i + 2)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap \overline{A_{(i + 2)1}} \cap A_{(i + 3)1}
ight)

    = \frac{1}{2} + \frac{1}{2}.\frac{1}{2}
+ \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{7}{8}

  • Câu 25: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 26: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 27: Thông hiểu

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 28: Thông hiểu

    Trong một xưởng sản xuất sử dụng hai hệ thống máy móc chạy song song. Xác xuất để hệ thống máy A hoạt động tốt là 90\%, xác suất để hệ thống máy B hoạt động tốt là 80\%. Tính xác suất để xưởng sản xuất hoàn thành đơn hàng đúng hạn. Biết rằng xưởng chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy phải hoạt động tốt.

    Xác suất để hệ thống A hoạt động tốt, B hoạt động không tốt là:

    90\%.80\%

    Xác suất để hệ thống A hoạt động không tốt, B hoạt động tốt là:

    90\%.20\%

    Xác suất để cả hai hệ thống A, B hoạt động tốt là:

    10\%.80\%

    Xác suất để công ty hoàn thành đơn hàng đúng hạn là:

    P = 90\%.80\% + 90\%.20\% + 10\%.80\% =
98\%

  • Câu 29: Vận dụng

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 30: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 31: Thông hiểu

    Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.

    Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”

    Ta có: P(A) = \frac{3}{25};P(B) =
\frac{10}{25}

    Vì A và B là hai biến cố độc lập.

    Nên xác suất để hai quả cầu lấy ra đều màu trắng là

    P(AB) = P(A).P(B) = \frac{3}{25}.\frac{10}{25} =
\frac{30}{625}

    Tương tự xác suất để hai quả cầu lấy ra đều:

    Màu xanh: \frac{15}{25}.\frac{9}{25} =
\frac{135}{625}

    Mảu đỏ: \frac{7}{25}.\frac{6}{25} =
\frac{42}{625}

    Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:

    \frac{30}{625} + \frac{135}{625} + \frac{42}{625}
= \frac{207}{625}

  • Câu 32: Nhận biết

    Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử C là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố C?

    Các phần tử của biến cố là:

    C = \left\{
(1,2,3);(1,2,4);(1,2,5);(1,3,4) ight\}

    Vậy n(\Omega) = 4

  • Câu 33: Thông hiểu

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để Lấy được ba số đều là số chẵn và tổng của chúng nhỏ hơn 19?

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi C là biến cố “ba số đều là số chẵn và tổng của chúng nhỏ hơn 19”.

    Bộ ba số thỏa yêu cầu gồm: (2,4,6); (2,4,8), (2,4,10); (2,6,8); (2,6,10); (4,6,8).

    Suy ra ta có n(C) = 6

    Vậy xác suất cần tìm là: P(C) =
\frac{6}{165} = \frac{2}{55}

  • Câu 34: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 35: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 36: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 37: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 38: Thông hiểu

    Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số lẻ và chia hết cho 9:

    Chọn một số có hai chữ số bất kì ta có: n\left( \Omega  ight) = C_{100}^1 = 100

    Chọn các số lẻ và chia hết cho 9 là các số: 09; 27; 45; 63; 81; 99

    => Xác suất để có một con số lẻ và chia hết cho 9 là: P = \frac{6}{{100}} = 0,06

  • Câu 39: Thông hiểu

    Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?

    + Gọi số tự nhiên có 6 chữ số là \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} .

    Chọn a_{1} : có 9 cách.

    Chọn a_{2} : có 10 cách.

    Chọn a_{3} : có 10 cách.

    Chọn a_{4} : có 10 cách.

    Chọn a_{5} : có 10 cách.

    Chọn a_{6} : có 10 cách.

    Suy ra số các phần tử của S là: 9.10^{5} cách.

    Chọn ngẫu nhiên một số từ S \Rightarrow
n(\Omega) = 9.10^{5}.

    + Gọi A là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".

    TH1: a_1= 1.

    Có 5 vị trí để xếp số 0.

    Và có A_{8}^{4} cách chọn 4 vị trí còn lại.

    Suy ra có: 5.A_{8}^{4} = 8400 số.

    TH2: a_1 = 2,\ldots,9

    Chọn a_{1}: có 8 cách.

    Xếp hai số 0 và 1 có: A_{5}^{2} =
20 cách.

    Xếp vào 3 vị trí còn lại có: A_{7}^{3} =
210 cách.

    Suy ra có: 8.20.210 = 33600 số.

    \Rightarrow n(A) = 8400 + 33600 =
42000

    \Rightarrow P(A) = \frac{n(A)}{n(\Omega)}
= \frac{42000}{900000} = \frac{7}{150}.

  • Câu 40: Thông hiểu

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5

    Xác suất không tham gia trong mỗi ngày là 0,5

    Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.

    Ta có: P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} +
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{8} = \frac{7}{8}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo