Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 2: Thông hiểu

    Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?

    Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”

    S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”

    T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”

    Ta có: \left\{ \begin{matrix}
P(H) = \frac{3}{6} = \frac{1}{2};P(S) = \frac{2}{5};P(T) = \frac{1}{3}
\\
P\left( \overline{H} ight) = \frac{1}{2};P\left( \overline{S} ight)
= \frac{3}{5};P\left( \overline{T} ight) = \frac{2}{3} \\
\end{matrix} ight.

    Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.

    Ta có X = H\overline{S}\overline{T} \cup
\overline{H}S\overline{T} \cup \overline{H}\overline{S}T

    \Rightarrow P(X) = P\left(
H\overline{S}\overline{T} \cup \overline{H}S\overline{T} \cup
\overline{H}\overline{S}T ight)

    = P\left( H\overline{S}\overline{T}
ight) + P\left( \overline{H}S\overline{T} ight) + P\left(
\overline{H}\overline{S}T ight)

    Lại có: \left\{ \begin{matrix}P\left( H\overline{S}\overline{T} ight) =\dfrac{3}{6}.\dfrac{3}{5}.\dfrac{2}{3} \\P\left( \overline{H}S\overline{T} ight) =\dfrac{3}{6}.\dfrac{2}{5}.\dfrac{2}{3} \\P\left( \overline{H}\overline{S}T ight) =\frac{3}{6}.\dfrac{3}{5}.\dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow P(X) = \frac{13}{30}

  • Câu 3: Nhận biết

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 4: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 5: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?

    Số cách chọn 1 học sinh nam là: C_{25}^1 = 25 cách

    Số cách chọn 2 học sinh nữ là: C_{15}^2 = 105 cách

    Áp dụng quy tắc nhân ta có:

    Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:

    C_{25}^1.C_{15}^2 = 25.105 = 2625 cách

  • Câu 6: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 7: Vận dụng

    Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:

    Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.

    Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau

    Coi 6 quyển sách là hai bộ sách Toán và Vật Lí

    Số cách sắp xếp hai bộ sách là 2! = 2 (cách)

    Cách sắp xếp bộ sách Toán là 3! = 6

    Cách sắp xếp bộ sách Vật Lí là 3! = 6 

    => Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)

    => Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là: P = \frac{{72}}{{720}} = \frac{1}{{10}}

  • Câu 8: Thông hiểu

    Chọn ngẫu nhiên ba người, biết rằng không có ai sinh vào năm nhuận. Hãy tính xác suất để có ít nhất hai người có sinh nhật trùng nhau (cùng ngày, cùng tháng).

    Gọi A là biến cố “Trong 3 người được chọn, có ít nhất 2 người cùng sinh nhật”.

    Khi đó biến cố \overline{A} là “Ba người được chọn có ngày sinh đôi một khác nhau”.

    Số trường hợp có thể là 365^{3}

    Số trường hợp thuận lợi là cho biến cố \overline{A} là 365 364 363

    Vậy P\left( \overline{A} ight) =
\frac{365.3634.363}{365^{3}} \Rightarrow P(A) = 1 -
\frac{365.3634.363}{365^{3}} \approx 0,0082

  • Câu 9: Thông hiểu

    Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.

    Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là: n(\Omega) = C_{8}^{3} =
56

    Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”

    Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:

    (1,2,3);(1,2,4);(1,2,5);(1,2,6);(1,3,4);(1,3,4);(2,3,4)

    n(A) = 7 \Rightarrow P(A) = \frac{7}{56}
= \frac{1}{8}

  • Câu 10: Thông hiểu

    Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?

    Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.

    Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!

  • Câu 11: Vận dụng

    Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?

    Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu \Omega có số phần tử là n(\Omega) = (6.2)^{3} = 1728

    Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.

    TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.

    TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{2}.1.1.(12 - 1) = 33 khả năng.

    TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{1}.1.(12 - 1)(12 - 1) = 3.11.11 =
363 khả năng.

    \Rightarrow n(P) = 1 + 33 + 363 =
397

    \Rightarrow n\left( \overline{P} ight)
= 1728 - 397 = 1331

  • Câu 12: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 13: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 14: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 15: Thông hiểu

    Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

     Xếp 5 quyển sách Văn kề nhau có 5! cách

    Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách

    Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.

  • Câu 16: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 17: Nhận biết

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?

     Gọi số tự nhiên có 5 chữ số khác nhau là: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Do số tạo thành là số lẻ => e = {1; 7; 9}

    => Số cách chọn e là: 3 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số có 5 chữ số khác nhau được tạo thành là: 3 . 4 . 4 . 3 . 2 = 288 số

  • Câu 18: Thông hiểu

    Trong một thùng giấy có chứa 8 bóng đèn màu đỏ, 12 bóng đèn màu xanh. Lấy ngẫu nhiên 2 bóng đèn trong thùng. Tính xác suất để lấy được 2 bóng đèn cùng màu?

    Ta có:

    n(\Omega) = C_{20}^{2} = 190

    Gọi A là biến cố lấy được hai bóng đèn cùng màu.

    A1 là biến cố lấy được hai bóng đèn màu đỏ. \Rightarrow n\left( A_{1} ight) =
C_{8}^{2}

    A2 là biến cố lấy được hai bóng đèn màu xanh \Rightarrow n\left( A_{1} ight) =
C_{12}^{2}

    Do A1, A2 là hai biến cố xung khắc nên theo quy tắc cộng xác suất ta có:

    P(A) = P\left( A_{1} ight) + P\left(
A_{2} ight) = \frac{C_{8}^{2}}{C_{20}^{2}} +
\frac{C_{12}^{2}}{C_{20}^{2}} = \frac{47}{95}

  • Câu 19: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 20: Thông hiểu

    Một lớp học sinh có 40 học sinh gồm 25 nam và 15 nữ. Chọn ngẫu nhiên 5 học sinh để trực nhật lớp. Hỏi số cách chọn 5 học sinh đó, biết rằng nhóm học sinh được chọn có 3 nam và 2 nữ?

    Chọn 3 học sinh nam từ 25 học sinh nam có C_{25}^{2} cách.

    Chọn 2 học sinh nam từ 15 học sinh nam có C_{15}^{2} cách.

    Vậy số cách chọn thỏa mãn yêu cầu đề bài là C_{25}^{2}.C_{15}^{2} = 241500 chọn.

  • Câu 21: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn không có nữ"

    => n\left( A ight) = C_7^2 = 21

    => Xác suất sao cho 2 người được chọn không có nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{21}{{45}} = \frac{7}{{15}}

  • Câu 22: Nhận biết

    Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọn

    Số cách chọn một cây bút mực là tổ hợp chập 1 của 8: C_8^1 = 8 cách 

    Số cách chọn một cây bút chì là tổ hợp chập 1 của 8: C_8^1 = 8 cách

    => Số cách chọn một cây bút mực và một cây bút chì là: 8 . 8 = 64 cách

  • Câu 23: Nhận biết

    Có bao nhiêu cách lấy hai con bài từ cỗ bài tú lơ khơ gồm 52 con?

    Mỗi cách lấy 2 con bài từ 52 con là một tổ hợp chập 2 của 52 phần tử.

    Vậy số cách lấy hai con bài từ cỗ bài tú lơ khơ 52 con là C_{52}^2 = 1326 cách.

  • Câu 24: Thông hiểu

    Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề

    Mệnh đề đúng được phát biểu như sau:

    "Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước" 

  • Câu 25: Thông hiểu

    Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?

    Ta chia thành các trường hợp như sau:

    TH1: Nếu số 234 đứng đầu thì có A_{7}^{2} số

    TH2: Nếu cố 432 đứng đầu thì có A_{7}^{2} số

    TH3: Nếu cố 234; 432 không đứng đầu

    Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có C_{6}^{1} cách chọn số còn lại. Do đó trường hợp này có 6.2.2.C_{6}^{1} =144

    Suy ra số phần tử của tập hợp S là 2.A_{7}^{2} + 144 = 228

    Vậy số phần tử không gian mẫu là n(\Omega) = C_{228}^{2} = 25878

  • Câu 26: Thông hiểu

    Trong một buổi lễ kỉ niệm nhân ngày 20/10 có 20 đại biểu nữ và 10 đại biểu nam. Ban tổ chức mời 5 đại biểu phát biểu ý kiến. Tính xác suất để trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam?

    Gọi A là biến cố "Trong 5 phát biểu mời có đúng một phát biểu là của đại biểu nam".

    Gọi B là biến cố "Trong 5 phát biểu mời có đúng hai phát biểu là của đại biểu nam".

    Biến cố P(A \cup B) là "Trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam".

    Vì A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B)

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{C_{10}^{1}.C_{20}^{4}}{C_{30}^{5}} \\P(B) = \dfrac{C_{10}^{2}.C_{20}^{3}}{C_{30}^{5}} \\\end{matrix} ight.\  \Rightarrow P(A \cup B) \approx 0,7

  • Câu 27: Thông hiểu

    Số cách sắp xếp A;B;C;D;E;F;G vào một dãy ghế dài sao cho hai đầu dãy ghế là vị trí của AG?

    Ta xếp A và G vào hai vị trí đầu dãy và có thể hoán đổi cho nhau nên ta có 2! cách xếp.

    Xếp 5 người còn lại vào 5 vị trí giữa ta có 5! cách xếp.

    Vậy ta có: 2!.5! = 240 cách xếp.

  • Câu 28: Vận dụng

    Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?

    Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng \overline{AaBbCcD} trong đó A;B;C;D là 4 bạn nữ và a,b,c là 3 bạn nam.

    Bước 1: Chọn 3 bạn nam trong 5 bạn nam có C_{5}^{3} cách.

    Bước 2: Gọi nhóm \overline{AaBbCcD} là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.

    Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.

    Do đó ta có: C_{5}^{3}.3!.3!.4! =
8640 cách xếp thỏa mãn yêu cầu bài toán.

  • Câu 29: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 30: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số cách chọn a là 4 cách (Do a khác 0)

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số

  • Câu 31: Thông hiểu

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Đáp án là:

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Gọi A là biến cố có ít nhất một động cơ chạy tốt

    B là biến cố chỉ có động cơ 1 chạy tốt.

    P(B) = 0,8(1 - 0,7) = 0,24

    Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.

    P(C) = 0,7(1 - 0,8) = 0,14

    Gọi D là biến cố cả hai động cơ đều chạy tốt

    P(D) = 0,8.0,7 = 0,56

    Vậy P(A) = P(B) + P(C) + P(D) =
0,94

  • Câu 32: Thông hiểu

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:

    Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.

    Theo đề bài ta có:

    0 ≤ 6k < 100

    => 0 ≤ k < 16,7

    Vậy có 17 chữ số thỏa mãn.

  • Câu 33: Thông hiểu

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"

    => B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

    => n\left( B ight) = 6

    => Xác suất để sau hai lần gieo kết quả như nhau là: P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{36}} = \frac{1}{6}

  • Câu 34: Nhận biết

    Có bao nhiêu cách chọn một tổ trưởng và một tổ phó từ một nhóm 12 học sinh? Biết khả năng được chọn của mỗi học sinh trong nhóm là như nhau.

    Mỗi cách chọn 2 người từ 12 người để làm một tổ trưởng và một tổ phó là một chỉnh hợp chập 2 của 12

    Vậy số cách chọn là A_{12}^{2} =
132.

  • Câu 35: Vận dụng

    Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng \overline{abcde} thỏa mãn a \leq b \leq c \leq d \leq e hoặc a \geq b \geq c \geq d \geq
e.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng \overline{abcde} thỏa mãn a \leq b \leq c \leq d \leq e hoặc a \geq b \geq c \geq d \geq
e.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 37: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 38: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

    Nếu đi bằng ô tô có 10 cách

    Nếu đi bằng tàu hỏa có 5 cách

    Nếu đi bằng tàu thủy có 3 cách

    Nếu đi bằng máy bay có 2 cách

    Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn

  • Câu 39: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: C = \left\{ (1;6),(6;1)
ight\}

    \Rightarrow n(C) = 2 \Rightarrow P(C) =
\frac{n(C)}{n(\Omega)} = \frac{2}{36} = \frac{1}{18}

  • Câu 40: Vận dụng cao

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo