Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử
là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố
?
Các phần tử của biến cố là:
Vậy
Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử
là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố
?
Các phần tử của biến cố là:
Vậy
Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số được chọn là số chẵn => c = {2; 4}
=> Số cách chọn c là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số
Cho tập hợp E = {0; 1; 2; 3; 4; 5; 6; 7} có thể lập được bao nhiêu số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn?
Số các chữ số có 5 chữ số khác nhau được tạo thành từ các chữ số đã cho có dạng:
Do E là số chẵn =>
Trường hợp 1: e = 0
Số cách chọn a là 7 cách
Số cách chọn b là 6 cách
Số cách chọn c là 5 cách
Số cách chọn d là 4 cách
=> Số các chữ số được tạo thành là: 7.6.5.4.1 = 840 (số)
Trường hợp 2:
Số cách chọn e là 3 cách
Số cách chọn a là 6 cách (vì a khác 0)
Số cách chọn e là 6 cách
Số cách chọn e là 5 cách
Số cách chọn e là 4 cách
=> Số các chữ số được tạo thành là: 3.6.6.5.4 = 2160 (số)
Vậy số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn có thể lập được là:
840 + 2160 = 3000 số
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Gieo hai con súc sắc cân đối và đồng chất
=> Số phần tử không gian mẫu là:
Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"
Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)
Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị
=>
=> Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.
Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ
Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.
Ta có các trường hợp như sau:
TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn
Có
TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn
Có
TH3: 5 thẻ đều ghi số lẻ
Xác suất để thắng một trận game là
. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Đáp án: 6 trận
Xác suất để thắng một trận game là . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Đáp án: 6 trận
Gọi n là số trận người đó chơi.
A là biến cố người đó thắng ít nhất 1 trận
Suy ra là biến cố người đó không thắng trận nào.
trong đó
là biến cố người đó thắng trận thứ i và
Ta có bất phương trình
Vậy giá trị nhỏ nhất của n bằng 6.
Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?
Xác suất để học sinh thi được 9 điểm là: .
Xác suất để học sinh thi được 9,2 điểm là: .
Xác suất để học sinh thi được 9,4 điểm là: .
Xác suất để học sinh thi được 9,6 điểm là: .
Xác suất để học sinh thi được 9,8 điểm là: .
Xác suất để học sinh thi được 10 điểm là: .
Vậy xác suất để học sinh thi được không dưới 9 điểm là:
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là
và
. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?
Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia
Khi đó là biến cố cả hai xạ thủ đều bắn trúng bia.
Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
Số cách chọn người đàn ông là 10 cách
Do người đàn ông và người phụ nữ được chọn không là vợ chồng
=> Số cách chọn người phụ nữ là 9 cách
=> Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng là 9 . 10 = 90 cách
Một hộp chứa 10 quả cầu xanh và 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả cầu trong hộp. Tính xác suất của biến cố lấy được 5 quả cầu có đủ hai màu.
Số phần tử không gian mẫu là:
Gọi biến cố A lấy được 5 quả cầu có đủ 2 màu
=> lấy được 5 quả cầu lấy ra chỉ có 1 màu.
TH1: Lấy ra từ hộp 5 quả cầu xanh có cách
TH2: Lấy ra từ hộp 5 quả cầu đỏ có cách
Suy ra
Xác suất để được 5 quả đủ 2 màu là:
Vậy xác suất cần tìm là .
Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là
và
. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.
a) Xác suất để bệnh nhân A không bị biến chứng suy thận là
Đúng||Sai
b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận
Đúng||Sai
c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là
Sai||Đúng
d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là
Sai||Đúng
Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là và
. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.
a) Xác suất để bệnh nhân A không bị biến chứng suy thận là Đúng||Sai
b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận Đúng||Sai
c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là Sai||Đúng
d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là Sai||Đúng
Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có:
B là biến cố “Bệnh nhân B bị suy thận” ta có:
Khi đó là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”
Khi đó là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.
Khi đó là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.
b) Hai biến cố A, B độc lập nên ta có:
b) Hai biến cố độc lập nên ta có:
c) Hai biến cố độc lập nên ta có:
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu
Khi đó số kết quả thuận lợi cho biến cố A là:
Vậy xác suất để cần tìm là:
Ngân hàng đề thi gồm 100 câu hỏi. Mỗi đề thi có 5 câu. Một học sinh thuộc 80 câu. Tìm xác suất để học sinh đó ngẫu nhiên làm được một đề thi trong đó có 4 câu mình đã học thuộc.
Số cách chọn 1 đề thi bất ki (gồm 5 câu trong 100 câu) là
Gọi biến cố A: “học sinh đó làm được một đề thi trong đó có 4 câu mình đã học thuộc”.
Học sinh đã học thuộc 80 câu nên có cách chọn ra 4 câu đã học thuộc và có
cách chọn ra 1 câu hỏi còn lại chưa học thuộc.
Do đó
Gieo hai lần liên tiếp một con xúc xắc. Giả sử H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm. Biến cố đối của biến cố H là:
H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm thì biến cố đối của biến cố H là không xuất hiện mặt 3 chấm.
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?
Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.
Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.
Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.
Trường hợp này có 1 khả năng xảy ra.
Vậy số phần tử của biến cố B là:
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:
Số phần tử không gian mẫu là:
Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"
Nghĩa là cả hai thẻ rút được đều mang số lẻ
=> Số phần tử của biến cố T là
=> Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?
Số cách chọn 1 học sinh nam là: cách
Số cách chọn 2 học sinh nữ là: cách
Áp dụng quy tắc nhân ta có:
Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:
cách
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn đều là nữ"
=>
=> Xác suất sao cho 2 người được chọn đều là nữ là:
Nếu một công việc được chia thành hai trường hợp, trường hợp 1 có a cách thực hiện, trường hợp hai có b cách thực hiện. Biết rằng mỗi cách thực hiện ở trường hợp này không trùng với bất kì cách thực hiện nào ở trường hợp kia. Khi đó khẳng định nào sau đây đúng và số cách thực hiện công việc nói trên?
Theo quy tắc nhân ta có số cách thực hiện công việc là .
Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm một tấm thẻ. Tính xác suất để tổng các số ghi trên hai tấm thẻ rút ra không nhỏ hơn 3.
Không gian mẫu
Vì có 5 cách chọn x và có 5 cách chọn y nên
Gọi A là biến cố “Tổng hai số ghi trên hai tấm thẻ không nhỏ hơn 3”.
Khi đó là biến cố “Tổng hai số ghi trên tấm thẻ nhỏ hơn 3”.
Ta có:
Xác suất cần tìm là
Sắp xếp 6 học sinh nam; 5 học sinh nữ cùng một giáo viên chủ nhiệm thành một vòng tròn sao cho giáo viên đứng giữa hai học sinh nam. Tính số cách sắp xếp?
Ta có:
Cố định giáo viên tại một vị trí
Chọn 2 học sinh nam để xếp cạnh giáo viên => Có cách.
Xếp hai học sinh nam vừa chọn cạnh giáo viên => Có cách.
Cuối cùng xếp 9 học sinh còn lại vào các vị trí còn trống => Có cách.
Vậy số cách sắp xếp theo yêu cầu bài toán là: .
Từ các chữ số
có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn
?
Gọi là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.
Trường hợp 1: a = 1
Số cách chọn là
số.
Trường hợp 2:
Số cách chọn là:
số.
Trường hợp 3:
Số cách chọn là:
số.
Vậy có 20 số thỏa mãn yêu cầu bài toán.
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?
Số tự nhiên có 5 chữ số có dạng:
Do số đang xét là số chẵn
=> Có 3 cách chọn e
=> Số cách chọn là:
=> Từ tập A có thể lập được số các số chẵn có 5 chữ số là: số
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Khẳng định nào sau đây đúng?
Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.
Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.
Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.
Vậy biến cố C là biến cố hợp của A và B.
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
Số cách chọn món ăn là: cách
Số cách chọn hoa quả là: cách
Số cách chọn nước uống là: cách
=> Số cách chọn thực đơn là: 5 .5. 3 = 75 thực đơn
Cho phép thử có không gian mẫu
. Gọi
là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố
?
Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:
Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:
Một con súc sắc cân đối đồng chất được gieo 5 lần
=> Số phần tử của không gian mẫu là:
Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"
=> Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}
=>
=> Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Ta có: => Có 6 cách chọn a
Số cách chọn b, c, d, e là: cách
=> Số các số tự nhiên có 5 chữ số đôi một khác nhau được tạo thành là: số
Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau:
. Tính xác suất để tổng ba số được chọn là 12.
Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau:
Do đó số phần tử của không gian mẫu là:
Gọi A là biến cố “Tổng ba số được chọn là 12”.
Ta có các bộ 3 số có tổng bằng 12 gồm: (1,2,9); (1,3,8); (1,4,7); (1,5,6); (2,3,7); (2;4;6); (3,4,5).
Suy ra ta có
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Ta có các kết quả thuận lợi cho biến cố A như sau:
Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: cách.
Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: cách.
Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: cách.
Suy ra số phần tử của biến cố A là:
Lấy ngẫu nhiên 3 số từ tập
. Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và
viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Theo bài ra ta có tổng số viên bi trong hộp là
Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là
Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là:
=> Xác suất lấy được 3 viên bi có đủ 3 màu là:
Do đó trong hộp có 14 viên bi và
Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ
Suy ra là biến cố 3 viên bi lấy được đều là bi đỏ.
Số kết quả thuận lợi cho là:
Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:
Trong kho hàng có
sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử
là biến cố sản phẩm thứ
bị lỗi với
. Biến cố
cả n sản phẩm đều tốt là:
Ta có:
là biến cố sản phẩm thứ
bị lỗi với
Nên là biến cố sản phẩm thứ
tốt với
Biến cố cả n sản phẩm đều tốt là:
Từ tập hợp các chữ số
có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?
Gọi
Gọi số có 4 chữ số là khi đó có 3 trường hợp xảy ra:
TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ
Có cách chọn 2 chữ số chẵn.
Có cách chọn 2 chữ số lẻ.
Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)
Có cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.
Vậy trường hợp này có: cách.
TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ
Có cách chọn 3 chữ số chẵn.
Có cách chọn 1 chữ số lẻ.
Có 4! cách xếp các số sau khi chọn
Vậy trường hợp này có: cách.
TH3: Số cần tìm có 4 chữ số chẵn
Có 4! = 24 cách xếp các số sau khi chọn
Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”