Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Từ các chữ số 9;1;5;7;2 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 276?

    Gọi \overline{abc} là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.

    Trường hợp 1: a = 1

    Số cách chọn \overline{abc}1.4.3 = 12 số.

    Trường hợp 2: a = 2;b = 7

    Số cách chọn \overline{abc} là: 1.1.2 = 2 số.

    Trường hợp 3: \left\lbrack \begin{matrix}
a = 2;b = 1 \\
a = 2;b = 5 \\
\end{matrix} ight.

    Số cách chọn \overline{abc} là: 1.2.3 = 6 số.

    Vậy có 20 số thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng

    Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?

    Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu \Omega có số phần tử là n(\Omega) = (6.2)^{3} = 1728

    Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.

    TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.

    TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{2}.1.1.(12 - 1) = 33 khả năng.

    TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{1}.1.(12 - 1)(12 - 1) = 3.11.11 =
363 khả năng.

    \Rightarrow n(P) = 1 + 33 + 363 =
397

    \Rightarrow n\left( \overline{P} ight)
= 1728 - 397 = 1331

  • Câu 3: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 4: Vận dụng

    Gọi P là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập A = \left\{ 0;1;2;3;4;5;6
ight\}. Chọn ngẫu nhiên một số từ tập P. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.

    Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.

    Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng \overline{abcde}

    Ta có: \left\{ \begin{matrix}
15 = 3.5 \\
(3,5) = 1 \\
\end{matrix} ight. do đó \overline{abcde} \vdots 15 \Leftrightarrow \left\{
\begin{matrix}
\overline{abcde} \vdots 5 \\
\overline{abcde} \vdots 3 \\
\end{matrix} ight. suy ra (a +
b + c + d) \vdots 3 khi và chỉ khi

    TH1: e = 1 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d) \vdots 3 khi và chỉ khi \left\lbrack \begin{matrix}
a;b;c;d \in \left\{ 1;2;3;6 ight\} \\
a;b;c;d \in \left\{ 1;2;4;5 ight\} \\
a;b;c;d \in \left\{ 1;3;5;6 ight\} \\
a;b;c;d \in \left\{ 2;3;5;6 ight\} \\
a;b;c;d \in \left\{ 3;4;5;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 5.4! = 120 số tự nhiên

    TH2: e = 5 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d + 5) \vdots 3

    \Rightarrow (a + b + c + d) \vdots
3 dư 1 khi và chỉ khi \left\lbrack
\begin{matrix}
a;b;c;d \in \left\{ 0;1;2;4 ight\} \\
a;b;c;d \in \left\{ 0;1;3;6 ight\} \\
a;b;c;d \in \left\{ 0;3;4;6 ight\} \\
a;b;c;d \in \left\{ 1;2;3;4 ight\} \\
a;b;c;d \in \left\{ 1;2;4;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên

    Do đó n(H) = 120 + 102 = 222

  • Câu 5: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 6: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 7: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 8: Vận dụng

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần

    Một tuần có bảy ngày và mỗi ngày thăm một bạn.

    Có 12 cách chọn bạn vào ngày thứ nhất.

    Có 11 cách chọn bạn vào ngày thứ hai.

    Có 10 cách chọn bạn vào ngày thứ ba.

    Có 9 cách chọn bạn vào ngày thứ tư.

    Có 8 cách chọn bạn vào ngày thứ năm.

    Có 7 cách chọn bạn vào ngày thứ sáu.

    Có 6 cách chọn bạn vào ngày thứ bảy.

    Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.

  • Câu 9: Thông hiểu

    Lấy ngẫu nhiên hai viên bi trong hộp có 10 viên bi gồm 4 viên bi đỏ, 3 viên bi xanh, 2 viên bi vàng và 1 viên bi trắng. Tính xác suất của biến cố B “hai viên bi lấy ra có cùng màu”.

    Ta có:

    n(\Omega) = C_{10}^{2} = 45

    Gọi các biến cố

    D lấy được hai viên bi đỏ \Rightarrow
n(D) = C_{4}^{2} = 6

    E lấy được hai viên bi xanh \Rightarrow
n(E) = C_{3}^{2} = 3

    F lấy được 2 viên bi vàng \Rightarrow
n(F) = C_{2}^{2} = 1

    Ta có D, E, F là các biến cố đôi một xung khắc và B = D \cup E \cup F

    \Rightarrow P(B) = P(D) + P(E) +
P(F)

    = \frac{6}{45} + \frac{3}{45} +
\frac{1}{45} = \frac{2}{9}

  • Câu 10: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a: 4 cách

    Số cách chọn b: 3 cách

    Số cách chọn c: 2 cách

    Số cách chọn d: 1 cách

    => Số các số có 4 chữ số khác nhau được tạo thành là  4! = 24  cách

  • Câu 11: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 12: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 13: Nhận biết

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 14: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 15: Thông hiểu

    Trong một hộp giấy chứa 15 viên bi gồm 4 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để lấy được 4 viên bi có đủ màu?

    Chọn 4 viên bi từ 15 viên bi ta có: n\left( \Omega  ight) = C_{15}^4

    Gọi A là biến cố lấy được 4 viên bi có đủ ba màu.

    Chọn 1 xanh, 1 đỏ và 2 vàng: C_4^1.C_5^1.C_6^2

    Chọn 1 xanh, 2 đỏ và 1 vàng: C_4^1.C_5^2.C_6^1

    Chọn 2 xanh, 1 đỏ và 1 vàng: C_4^2.C_5^1.C_6^1

    \Rightarrow n(A) =
C_{4}^{1}.C_{5}^{1}.C_{6}^{2} + C_{4}^{1}.C_{5}^{2}.C_{6}^{1} +
C_{4}^{2}.C_{5}^{1}.C_{6}^{1}

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{48}{91}

  • Câu 16: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 17: Thông hiểu

    Trong một hộp có 7 quả cầu xanh, 5 quả cầu đỏ, 4 quả cầu vàng. Chọn ngẫu nhiên 4 quả trong hộp. Hỏi có bao nhiêu cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu?

    Số cách chọn 2 quả xanh, 1 quả đỏ, 1 quả vàng là: C_7^2.C_5^1.C_4^1 = 420 cách

    Số cách chọn 1 quả xanh, 2 quả đỏ, 1 quả vàng là: C_7^1.C_5^2.C_4^1 = 280 cách

    Số cách chọn 1 quả xanh, 1 quả đỏ, 2 quả vàng là: C_7^1.C_5^1.C_4^2 = 210 cách

    => Số cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu là 420 + 280 + 210 = 910 cách

  • Câu 18: Thông hiểu

    Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:

    Đáp án: 7/8

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:

    Đáp án: 7/8

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Xét biến cố tuyển thủ A không chiến thắng chung cuộc khi tuyển thủ B thắng liên tiếp ba hiệp vào buổi chiều.

    Xác suất là: \frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Vậy xác suất để tuyển thủ A thắng chung cuộc là 1 - \frac{1}{8} = \frac{7}{8} .

  • Câu 19: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 20: Thông hiểu

    Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?

    Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là \frac{1}{6}

    Xác suất để người chơi thắng cuộc trong một lần gieo là C_{3}^{2}.\left( \frac{1}{2}
ight)^{2}.\frac{5}{6} + \left( \frac{1}{6} ight)^{3} =
\frac{2}{27}

    Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:

    C_{3}^{2}.\left( \frac{2}{27}
ight)^{2}.\left( 1 - \frac{2}{27} ight) + \left( \frac{2}{27}
ight)^{3} = \frac{308}{19683}

  • Câu 21: Thông hiểu

    Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{16}^3 = 560

    B là biến cố "lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ"

    => n\left( B ight) = C_7^1.C_6^1.C_3^1 = 126 

    => Xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{126}}{{560}} = \frac{{9}}{{40}}

  • Câu 22: Nhận biết

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?

    Trong hộp có số viên bi là: 5 + 7 = 12 viên bi

    Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử: C_{12}^6 = 924

  • Câu 23: Thông hiểu

    Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?

    Ta có: n(\Omega) = 7! = 5040

    Biến cố B là hai quyển sách cùng loại nằm cạnh nhau

    \Rightarrow \overline{B} là biến cố các quyển sách không cùng loại nằm cạnh nhau.

    Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.

    \Rightarrow n\left( \overline{B} ight)
= 3!.4! = 144

    \Rightarrow n(B) = n(\Omega) - n\left(
\overline{B} ight) = 5040 - 144 = 4896

  • Câu 24: Vận dụng

    Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?

    Xác suất trả lời đúng trong một câu là: \frac{1}{4}

    Xác suất trả lời sai trong một câu là: \frac{3}{4}

    Gọi x là số câu Tuấn trả lời đúng.

    Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra

    5x - 2(10 - x) \leq 1 \Leftrightarrow 7x
\leq 21 \Leftrightarrow x \leq 3

    Do đó Tuấn cần trả lời đúng không quá 3 câu

    TH1: Học sinh trả lời đúng 3 câu: P_{1} =
C_{10}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{7}

    TH2: Học sinh trả lời đúng 2 câu: P_{2} =
C_{10}^{2}.\left( \frac{1}{4} ight)^{2}.\left( \frac{3}{4}
ight)^{8}

    TH3: Học sinh trả lời đúng 1 câu: P_{3} =
C_{10}^{1}.\left( \frac{1}{4} ight)^{1}.\left( \frac{3}{4}
ight)^{9}

    TH4: Học sinh trả lời không đúng câu nào: P_{4} = \left( \frac{3}{4}
ight)^{10}

    Vậy xác suất cần tìm là P(A) = P_{1} +
P_{2} + P_{3} + P_{4} \approx 0,7759

  • Câu 25: Nhận biết

    Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?

    Số học sinh của lớp là 20 + 15 = 35 (học sinh)

    Số cách chọn 3 học sinh làm ban cán sự lớp là: C_{35}^3 = 6545 (cách chọn)

  • Câu 26: Thông hiểu

    Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là 80\%70\%?

    Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2

    A là biến cố cả hai người cùng bắn trúng.

    Lúc đó A = A_{1} \cap A_{2}

    A_{1};A_{2} là hai biến cố độc lập nên

    \Rightarrow P(A) = P\left( A_{1} \cap
A_{2} ight) = P\left( A_{1} ight).P\left( A_{2} ight)

    = 0,8.0,7 = 0,56 = 56\%

  • Câu 27: Thông hiểu

    Có bao nhiêu cách xếp 6 người ngồi xung quanh một bàn tròn có 6 chỗ, hai cách ngồi được coi là như nhau nếu có thể nhận được từ cách kia bằng cách quay bàn đi một góc nào đó?

    Vì bàn tròn ghế không có sắp xếp thứ tự.

    Ta chọn một người ngồi ở một vị trí trong 6 chỗ làm mốc.

    Xếp 5 người còn lại vào 5 vị trí trống còn lại ta được 5! = 120 cách

    Vậy ta có: 1 . 120 = 120 cách để sắp xếp 6 người ngồi vào bàn tròn 6 chỗ

  • Câu 28: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 29: Nhận biết

    Tung một đồng tiền xu cân đối và đồng chất 5 lần liên tiếp. Tính số phần tử của biến cố “Mặt sấp xuất hiện ít nhất 1 lần”.

    Số phần tử không gian mẫu là:

    n(\Omega) = 2^{5} = 32

    Gọi A là biến cố “Mặt sấp xuất hiện ít nhất 1 lần” khi đó \overline{A} là biến cố “Mặt sấp không xuất hiện”

    Khi đó \overline{A} = \left\{ NNNNN
ight\} \Rightarrow n\left( \overline{A} ight) = 1

    Khi đó n(A) = 32 - 1 = 31

  • Câu 30: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 31: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 33: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 34: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 35: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?

     Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}

    => Có 2 cách chọn c

    Số cách chọn a là 3 cách

    Số cách chọn b là 2 cách

    => Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số

  • Câu 36: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 37: Thông hiểu

    Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.

    Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là: n(\Omega) = C_{8}^{3} =
56

    Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”

    Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:

    (1,2,3);(1,2,4);(1,2,5);(1,2,6);(1,3,4);(1,3,4);(2,3,4)

    n(A) = 7 \Rightarrow P(A) = \frac{7}{56}
= \frac{1}{8}

  • Câu 38: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 39: Thông hiểu

    Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    Gieo đồng tiền 2 lần nên ta có:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^2} = 4

    Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"

    => \overline C biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"

    => \overline C  = \left\{ {N,N} ight\}

    => P\left( {\overline C } ight) = \frac{{n\left( {\overline C } ight)}}{{n\left( \Omega  ight)}} = \frac{1}{4}

    => Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{4} = \frac{3}{4}

  • Câu 40: Nhận biết

    Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?

    Số cách chọn 2 giáo viên từ nhóm 5 giáo viên là: C_5^2 = 10 cách

    Số cách chọn 3 học sinh từ nhóm 6 học sinh là: C_6^3 = 20 cách

    Áp dụng quy tắc nhân ta có số cách chọn một hội đồng là: 10 . 20 = 200 cách

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo