Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 2: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 3: Vận dụng

    Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

    Đa giác đều có 12 cạnh tương ứng với 12 đỉnh

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{12}^2 = 66 đoạn thẳng

    Mà số cạnh của đa giác là 12 cạnh

    => Số đường chéo thu được là: 66 - 12 = 54 đường chéo

  • Câu 4: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

  • Câu 5: Nhận biết

    Tung một đồng xu hai lần liên tiếp. Tập hợp không gian mẫu là:

    Không gian mẫu là: \Omega = \left\{
SS;SN;NS;NN ight\}.

  • Câu 6: Vận dụng

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?

    Ta có: \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{i} \cap M_{j} \cap
\overline{M_{k}} \cap \overline{M_{m}} với i;j;k \in \left\{ 1;2;3;4 ight\} và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.

  • Câu 7: Nhận biết

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 8: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 9: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 10: Vận dụng

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?

    Gọi A_{i} là biến cố bóng đèn thứ i sáng với i =
\overline{1;4}

    Gọi A là biến cố có ít nhất một bóng đèn sáng

    Để không có bóng đèn nào sáng ta có các trường hợp như sau:

    TH1: Cả 4 bóng đèn cùng hỏng

    B là biến cố bốn bóng đèn bị hỏng

    Khi đó xác suất để cả 4 bóng đèn bị hỏng là: P(B) = 0,05^{4} = 0,00000625

    TH2: Cả 3 bóng đèn cùng hỏng

    C là biến cố ba bóng đèn bị hỏng

    Khi đó xác suất để có 3 bóng đèn bị hỏng là: P(C) = 4.0,05^{3}.0,95 = 0,000475

    TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là: P(D) = 2.0,05^{2}.0,95^{2} =
0,0045125

    Vậy xác suất để có ít nhất 1 bóng đèn sáng là

    P(A) = 1 - \left\lbrack P(C) + P(B) +
P(D) ightbrack = 0,99500625

  • Câu 11: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 12: Thông hiểu

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để tổng ba số được chọn là 12.

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi A là biến cố “Tổng ba số được chọn là 12”.

    Ta có các bộ 3 số có tổng bằng 12 gồm: (1,2,9); (1,3,8); (1,4,7); (1,5,6); (2,3,7); (2;4;6); (3,4,5).

    Suy ra ta có n(A) = 7 \Rightarrow P(A) =
\frac{7}{165}

  • Câu 13: Thông hiểu

    Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?

    Ta chia thành các trường hợp như sau:

    TH1: Nếu số 234 đứng đầu thì có A_{7}^{2} số

    TH2: Nếu cố 432 đứng đầu thì có A_{7}^{2} số

    TH3: Nếu cố 234; 432 không đứng đầu

    Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có C_{6}^{1} cách chọn số còn lại. Do đó trường hợp này có 6.2.2.C_{6}^{1} =144

    Suy ra số phần tử của tập hợp S là 2.A_{7}^{2} + 144 = 228

    Vậy số phần tử không gian mẫu là n(\Omega) = C_{228}^{2} = 25878

  • Câu 14: Nhận biết

    Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?

    Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:

    Có 5 cách chọn hoa hồng trắng.

    Có 6 cách chọn hoa hồng đỏ.

    Có 7 cách chọn hoa hồng vàng.

    Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách

  • Câu 15: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 16: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?

    Số cách lấy 2 viên bi màu xanh là: C_5^2 = 10 cách

    Số cách lấy 4 viên bi màu vàng là: C_7^4 = 35 cách 

    Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:

    C_5^2.C_7^4 = 10.35 = 350 cách

  • Câu 17: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 18: Vận dụng cao

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Số phần tử không gian mẫu n(\Omega) =C_{15}^{5} = 3003

    Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu

    => \overline{A} là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:

    TH1: lấy được 5 quả cầu đỏ có 1 cách

    TH2: lấy được 5 quả màu vàng có C_{6}^{5}= 6 cách

    TH3: lấy được chỉ có xanh và đỏ C_{4}^{4}.C_{5}^{1} + C_{4}^{3}.C_{5}^{2} +C_{4}^{2}.C_{5}^{3} + C_{4}^{1}.C_{5}^{4} = 125 cách

    TH4: lấy được chỉ có xanh và vàng C_{4}^{4}.C_{6}^{1} + C_{4}^{3}.C_{6}^{2} +C_{4}^{2}.C_{6}^{3} + C_{4}^{1}.C_{6}^{4} = 246 cách

    TH5: lấy được chỉ có đỏ và vàng C_{5}^{4}.C_{6}^{1} + C_{5}^{3}.C_{6}^{2} +C_{5}^{2}.C_{6}^{3} + C_{5}^{1}.C_{6}^{4} = 455 cách

    Vậy n\left( \overline{A} ight) = 833\Rightarrow n(A) = n(\Omega) - n\left( \overline{A} ight) =2170

    \Rightarrow P(A) =\frac{310}{429}

  • Câu 19: Nhận biết

    Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?

    Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách

    Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách

    Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc

    Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách

    => Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.

  • Câu 20: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 21: Vận dụng

    Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?

    Xác suất trả lời đúng trong một câu là: \frac{1}{4}

    Xác suất trả lời sai trong một câu là: \frac{3}{4}

    Gọi x là số câu Tuấn trả lời đúng.

    Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra

    5x - 2(10 - x) \leq 1 \Leftrightarrow 7x
\leq 21 \Leftrightarrow x \leq 3

    Do đó Tuấn cần trả lời đúng không quá 3 câu

    TH1: Học sinh trả lời đúng 3 câu: P_{1} =
C_{10}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{7}

    TH2: Học sinh trả lời đúng 2 câu: P_{2} =
C_{10}^{2}.\left( \frac{1}{4} ight)^{2}.\left( \frac{3}{4}
ight)^{8}

    TH3: Học sinh trả lời đúng 1 câu: P_{3} =
C_{10}^{1}.\left( \frac{1}{4} ight)^{1}.\left( \frac{3}{4}
ight)^{9}

    TH4: Học sinh trả lời không đúng câu nào: P_{4} = \left( \frac{3}{4}
ight)^{10}

    Vậy xác suất cần tìm là P(A) = P_{1} +
P_{2} + P_{3} + P_{4} \approx 0,7759

  • Câu 22: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 23: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất và lá thứ hai đúng người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi C là biến cố “Lá thứ nhất và lá thứ hai đúng người nhận”.

    Vì mỗi lá thư chỉ được chọn duy nhất 1 phong bì nên số cách chọn cả 5 lá đều đúng người nhận là 1.

    Lá thứ nhất và lá thứ 2 có đúng 1 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(C) = 6 \Rightarrow P(C) =
\frac{6}{120} = \frac{1}{20}

  • Câu 24: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?

     Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}

    => Có 2 cách chọn c

    Số cách chọn a là 3 cách

    Số cách chọn b là 2 cách

    => Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số

  • Câu 25: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 26: Thông hiểu

    Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:

    Ta có: \overline{M} là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.

    Do đó số phần tử của \overline{M} =
C_{4}^{4} + C_{6}^{4} = 16

  • Câu 27: Nhận biết

    Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?

    Ta có:

    \Omega = \left\{ 1,2,3,4,5,6
ight\}

    Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là: \left\{ 2;4;6 ight\}

  • Câu 28: Vận dụng

    Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?

    Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng \overline{AaBbCcD} trong đó A;B;C;D là 4 bạn nữ và a,b,c là 3 bạn nam.

    Bước 1: Chọn 3 bạn nam trong 5 bạn nam có C_{5}^{3} cách.

    Bước 2: Gọi nhóm \overline{AaBbCcD} là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.

    Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.

    Do đó ta có: C_{5}^{3}.3!.3!.4! =
8640 cách xếp thỏa mãn yêu cầu bài toán.

  • Câu 29: Thông hiểu

    Gieo một đồng tiền xu liên tiếp 3 lần. Tính xác suất của biến cố A “ít nhất một lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có: 

    Biến cố A “ít nhất một lần xuất hiện mặt sấp”

    => Biến cố \overline A "không xuất hiện mặt sấp”

     \overline A  = \left\{ {\left( {N;N;N} ight)} ight\}

    => n\left( {\overline A } ight) = 1 \Rightarrow P\left( {\overline A } ight) = \frac{1}{8}

    => P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 30: Thông hiểu

    Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    Gieo đồng tiền 2 lần nên ta có:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^2} = 4

    Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"

    => \overline C biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"

    => \overline C  = \left\{ {N,N} ight\}

    => P\left( {\overline C } ight) = \frac{{n\left( {\overline C } ight)}}{{n\left( \Omega  ight)}} = \frac{1}{4}

    => Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{4} = \frac{3}{4}

  • Câu 31: Thông hiểu

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 32: Thông hiểu

    Chọn ngẫu nhiên ba người, biết rằng không có ai sinh vào năm nhuận. Hãy tính xác suất để có ít nhất hai người có sinh nhật trùng nhau (cùng ngày, cùng tháng).

    Gọi A là biến cố “Trong 3 người được chọn, có ít nhất 2 người cùng sinh nhật”.

    Khi đó biến cố \overline{A} là “Ba người được chọn có ngày sinh đôi một khác nhau”.

    Số trường hợp có thể là 365^{3}

    Số trường hợp thuận lợi là cho biến cố \overline{A} là 365 364 363

    Vậy P\left( \overline{A} ight) =
\frac{365.3634.363}{365^{3}} \Rightarrow P(A) = 1 -
\frac{365.3634.363}{365^{3}} \approx 0,0082

  • Câu 33: Thông hiểu

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Đáp án là:

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có: P(A) = 0,2;P\left( \overline{A} ight) =0,8

    B là biến cố “Bệnh nhân B bị suy thận” ta có: P(B) = 0,1;P\left( \overline{B} ight) =0,9

    Khi đó A \cap B là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”

    Khi đó \overline{A}\overline{B} là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.

    Khi đó A\overline{B} là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.

    b) Hai biến cố A, B độc lập nên ta có:

    P(A \cap B) = P(AB) = P(A).P(B) =0,2.0,1 = 0,02

    b) Hai biến cố \overline{A};\overline{B} độc lập nên ta có:

    P\left( \overline{A}\overline{B} ight)= P\left( \overline{A} ight).P\left( \overline{B} ight) = 0,8.0,9 =0,72

    c) Hai biến cố A;\overline{B} độc lập nên ta có:

    P\left( A\overline{B} ight) =P(A).P\left( \overline{B} ight) = 0,2.0,9 = 0,18

  • Câu 34: Thông hiểu

    Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:

    Số cách chọn người đàn ông là 10 cách

    Do người đàn ông và người phụ nữ được chọn không là vợ chồng

    => Số cách chọn người phụ nữ là 9 cách

    => Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng là 9 . 10 = 90 cách

  • Câu 35: Thông hiểu

    Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không đỏ.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{16}^3 = 560

    B là biến cố "cả 3 viên bi không đỏ"

    Trường hợp 1: Lấy được 1 viên bi trắng, 2 viên bi đen: C_7^1.C_6^2 cách

    Trường hợp 2: Lấy được 2 viên bi trắng, 1 viên bi đen: C_7^2.C_6^1 cách

    Trường hớp 3: Lấy được 3 viên chỉ màu trắng C_7^3 cách

    Trường hợp 4: Lấy được 3 viên chỉ màu đen C_6^3 cách 

    => n\left( B ight) = C_7^1.C_6^2 + C_7^2.C_6^1 + C_7^3 + C_6^3 = 286

    => Xác suất lấy được cả 3 viên bi không đỏ là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{286}}{{560}} = \frac{{143}}{{280}}

  • Câu 36: Thông hiểu

    Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:

    Xác suất để X không câu được cá là 1 - 0,1 = 0,9

    Xác suất để Y không câu được cá là 1 - 0,15 = 0,85

    Xác xuất X và Y trở về tay không (không có con cá nào) là

    P = P(A.B) = P(A).P(B) = 0,9 . 0,85 = 0,765

    => Xác suất X và Y ko trở về tay ko là: 1 - 0,765 = 0,235

  • Câu 37: Nhận biết

    Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?

    Số cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài là số chỉnh hợp chập 4 của 6 phần tử.

    => Có A_6^4 = 360 cách.

  • Câu 38: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 39: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 40: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo