Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng
thỏa mãn
hoặc
.
Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng thỏa mãn
hoặc
.
Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng
thỏa mãn
hoặc
.
Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng thỏa mãn
hoặc
.
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}
=> Số cách chọn c là 3 cách
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số
Sơ đồ phân phối điện như hình vẽ:

Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là
. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.
Ta có:
Suy ra
Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?
Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu có số phần tử là
Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.
TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.
TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có khả năng.
TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có khả năng.
Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.
Theo bài ra ta có 5 ban nhạc đến từ các trường
Chọn ban nhạc Nha Trang biểu diễn đầu tiên
=> Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách
=> Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Trong tủ sách có tất cả 10 cuốn sách. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Coi quyển sách thứ nhất và quyển sách thứ hai thành một quyển sách
=> Khi đó ta có 9 quyển sách
Hoán vị hai quyển sách ban đầu ta có 2! = 2 cách
Sắp xếp 9 quyển sách vào 9 vị trí => Có 9! cách
=> Có 2.9! = 725760 cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Cho hai hộp đựng các viên bi nhiều màu:
Hộp 1 có 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Hộp 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên mỗi hộp 1 viên bi. Gọi A là biến cố “Hai viên bi lấy ra cùng màu”. Tính
?
Giả sử là biến cố hai viên bi lấy được cùng màu trắng
Khi đó
là biến cố hai viên bi lấy được cùng màu đỏ
Khi đó
là biến cố hai viên bi lấy được cùng màu xanh
Khi đó
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:
Tổng số viên bi là 4 + 6 = 10 (viên bi)
Số cách lấy hai viên bi từ số viên bi đã cho là: (Số phần tử không gian mẫu)
Số cách để rút được một bi xanh và 1 bi đỏ là:
=> Xác suất để rút được một bi xanh và 1 bi đỏ là:
Lớp 11A chọn ngẫu nhiên 1 học sinh trong lớp để tham gia hoạt động đoàn trường. Xét hai biến cố:
Biến cố A: “Học sinh đó là nam”
Biến cố B: “Học sinh đó là học sinh giỏi”
Khẳng định nào sau đây đúng khi mô tả biến cố
?
Ta có:
: Học sinh đó là học sinh nam hoặc là học sinh giỏi
Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:
M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.
N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.
T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.
Hai biến cố nào xung khắc với nhau?
Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.
Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.
Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Chọn ngẫu nhiên và đồng thời hai viên bi trong hộp chứa 3 trắng và 2 bi đỏ. Ta có các biến cố sau:
E “Hai viên bi cùng màu trắng”
F “Hai viên bi cùng màu đỏ”
G “Hai viên bi cùng màu”
H “Hai viên bi khác màu”
Khẳng định nào sau đây đúng?
Ta có: nên biến cố
xung khắc với các biến cố
.
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi Y là biến cố “Trong đoàn cả 3 giáo viên đều là nữ”.
là biến cố “Trong đoàn công tác có ít nhất một giáo viên nam”
Ta có với
là 3 biến cố độc lập.
Suy ra
Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số được chọn là số chẵn => c = {2; 4}
=> Số cách chọn c là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số
Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp
. Gọi
là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố
?
Ta có: là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:
Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.
Trường hợp 1: Số 9 đứng đầu
Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.
=> Trường hợp 1 có 9 số được lập
Trường hợp 2: Số 8 đứng đầu
Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần
Vậy cả 2 trường hợp có 9 + 1 = 10 số
Đề thi Hóa học thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Bạn Phong đã làm đúng 40 câu và trả lời ngẫu nhiên cho 10 câu hỏi còn lại. Hỏi xác suất để Phong đạt trên 8,5 điểm?
Vì mỗi câu có 4 phương án trả lời và chỉ có đúng 1 phương án đúng nên xác suất để chọn đúng đáp án là ; xác suất trả lời sai là
Gọi A là biến cố bạn Phong được trên 8,5 điểm thì là biến cố bạn Phong được dưới 8,5 điểm.
Vì bạn Phong đã làm chắc chắn đúng 40 câu nên để có xảy ra 2 trường hợp:
TH1: Bạn Phong chọn được một câu đúng trong 10 câu còn lại xác suất xảy ra là:
TH2: Bạn Phong chọn được hai câu đúng trong 10 câu còn lại xác suất xảy ra là:
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Gọi số cạnh của đa giác là n (cạnh)
Điều kiện
=> Số đỉnh tương ứng của đa giác là n đỉnh
Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)
=> Số đoạn thẳng tạo thành là đoạn
Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n
Ta có phương trình:
Vậy đa giác đó có 7 cạnh.
Lấy ngẫu nhiên 3 số từ tập
. Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?
Kết quả: 310/429
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?
Kết quả: 310/429
(Kết quả ghi dưới dạng phân số tối giản a/b)
Số phần tử không gian mẫu
Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu
=> là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:
TH1: lấy được 5 quả cầu đỏ có 1 cách
TH2: lấy được 5 quả màu vàng có cách
TH3: lấy được chỉ có xanh và đỏ cách
TH4: lấy được chỉ có xanh và vàng cách
TH5: lấy được chỉ có đỏ và vàng cách
Vậy
Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?
Số cách chọn ba học sinh trong đó có 1 học sinh nam là: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là: cách
=> Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: cách
Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:
Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách
=> Có 10 . 9 = 90 trận
Mỗi đội đá 2 trận sân nhà, 2 trận sân khách
=> Số trận đấu là 2.90 =180 trận
Có hai hòm đựng thẻ, mỗi hòm đựng 13 thẻ đánh số từ 1 đến 13. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 9.
Gọi A là biến cố "Trong hai thẻ rút ra có ít nhất một thẻ đánh số 9 "; H là biến cố "Thẻ rút ra từ hòm thứ nhất không đánh số 9 "; K là biến cố "Thẻ rút ra từ hòm thứ hai không đánh số 9 ".
Khi đó . Ta có:
Vì H và K là hai biến cố độc lập nên
Do đó đây là hợp của các biến cố xung khắc.
Do đó:
Mà
Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?
Xét các trường hợp:
TH1: Học sinh lớp 12 ngồi đầu dãy:
Chọn vị trí cho học sinh lớp 12 có 2 cách
Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách
Hoán vị các học sinh còn lại cho nhau có 4! Cách.
Trường hợp này được: 2.2.4! = 96 cách.
TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:
Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.
Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách
Trường hợp này được 4!.2! = 48 cách
Như vậy số cách sắp xếp là 48 + 96 = 144
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?
Số cách chọn 1 học sinh nam là: cách
Số cách chọn 2 học sinh nữ là: cách
Áp dụng quy tắc nhân ta có:
Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:
cách
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?
Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
…
Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
Theo quy tắc nhân có:
Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?
Gọi B là biến cố có ít nhất một tấm thẻ xanh
Suy ra là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.
Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là
và
. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?
Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia
Khi đó là biến cố cả hai xạ thủ đều bắn trúng bia.
Trong một hộp có 7 quả cầu xanh, 5 quả cầu đỏ, 4 quả cầu vàng. Chọn ngẫu nhiên 4 quả trong hộp. Hỏi có bao nhiêu cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu?
Số cách chọn 2 quả xanh, 1 quả đỏ, 1 quả vàng là: cách
Số cách chọn 1 quả xanh, 2 quả đỏ, 1 quả vàng là: cách
Số cách chọn 1 quả xanh, 1 quả đỏ, 2 quả vàng là: cách
=> Số cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu là 420 + 280 + 210 = 910 cách
Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là
và
?
Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2
A là biến cố cả hai người cùng bắn trúng.
Lúc đó
Vì là hai biến cố độc lập nên
Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Giả sử N là biến cố “Có ít nhất một mặt 6 chấm xuất hiện” Mô tả nào sau đây đúng khi mô tả biến cố N?
Mô tả đúng biến cố N là:
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:
Đáp án: 7/8
(Kết quả ghi dưới dạng phân số tối giản a/b)
Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:
Đáp án: 7/8
(Kết quả ghi dưới dạng phân số tối giản a/b)
Xét biến cố tuyển thủ A không chiến thắng chung cuộc khi tuyển thủ B thắng liên tiếp ba hiệp vào buổi chiều.
Xác suất là:
Vậy xác suất để tuyển thủ A thắng chung cuộc là .
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?
Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là:
=> Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: cách
Lập số có 5 chữ số khác nhau
từ các chữ số
. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn
?
Lập số có 5 chữ số khác nhau từ các chữ số
. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn
?
Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:
Chọn nhóm có 2 thành viên:
Chọn nhóm có 3 thành viên từ 8 thành viên còn lại:
Chọn nhóm có 5 thành viên từ 5 thành viên còn lại:
=> Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: