Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 2: Nhận biết

    Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.

    Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:

    \Omega =
\{(1,S);(1,N);(2,S);(2,N);(3,S);(3,N);(4,S);(4,N);(5,S);(5,N);(6,S);(6,N)\}

  • Câu 3: Thông hiểu

    Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

     Xếp 5 quyển sách Văn kề nhau có 5! cách

    Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách

    Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.

  • Câu 4: Thông hiểu

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".

    Các kết quả thuận lợi cho biến cố B là

    (1;1;2) và 2 hoán vị của nó,

    (1;1;3) và 2 hoán vị của nó,

    (2;2;1) và 2 hoán vị của nó,

    (2;2;3) và hai hoán vị của nó,

    (3;3;1) và 2 hoán vị của nó,

    (3;3;2) và 2 hoán vị của nó.

    Khi đó các kết quả thuận lợi cho biến cố B là: 3.6 = 18

    Vậy xác suất của biến cố này là P(B) =
\frac{18}{27} = \frac{2}{3}

  • Câu 5: Nhận biết

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?

    Trong hộp có số viên bi là: 5 + 7 = 12 viên bi

    Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử: C_{12}^6 = 924

  • Câu 6: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 7: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 8: Thông hiểu

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 9: Thông hiểu

    Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.

    Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - \frac{1}{3} = \frac{2}{3}.

    Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 - \frac{1}{4} = \frac{3}{4}.

    Gọi biến cố A:"Có ít nhất một xạ thủ không bắn trúng bia ".

    Khi đó biến cố A có 3 khả năng xảy ra:

    +) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: \frac{1}{3}.\frac{3}{4} =
\frac{1}{4}.

    +) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: \frac{2}{3}.\frac{1}{4} =
\frac{1}{6}.

    +) Xác suất cả hai người đều bắn không trúng bia: \frac{2}{3}.\frac{3}{4} = \frac{1}{2}

    Khi đó P(A) = \frac{1}{3}.\frac{3}{4} +
\frac{2}{3}.\frac{1}{4} + \frac{2}{3}.\frac{3}{4} =
\frac{11}{12}.

  • Câu 10: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 11: Thông hiểu

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5

    Xác suất không tham gia trong mỗi ngày là 0,5

    Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.

    Ta có: P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} +
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 12: Vận dụng

    Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:

    Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.

    Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau

    Coi 6 quyển sách là hai bộ sách Toán và Vật Lí

    Số cách sắp xếp hai bộ sách là 2! = 2 (cách)

    Cách sắp xếp bộ sách Toán là 3! = 6

    Cách sắp xếp bộ sách Vật Lí là 3! = 6 

    => Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)

    => Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là: P = \frac{{72}}{{720}} = \frac{1}{{10}}

  • Câu 13: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số

  • Câu 14: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 15: Nhận biết

    Cho 6 chữ số 4, 5, 6, 7, 8, 9.  Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}

    => Số cách chọn c là 3 cách

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    => Số các số các số  tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số

  • Câu 16: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 17: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 18: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 19: Thông hiểu

    Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.

    Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là: n(\Omega) = C_{8}^{3} =
56

    Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”

    Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:

    (1,2,3);(1,2,4);(1,2,5);(1,2,6);(1,3,4);(1,3,4);(2,3,4)

    n(A) = 7 \Rightarrow P(A) = \frac{7}{56}
= \frac{1}{8}

  • Câu 20: Thông hiểu

    Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?

    Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là \frac{1}{6}

    Xác suất để người chơi thắng cuộc trong một lần gieo là C_{3}^{2}.\left( \frac{1}{2}
ight)^{2}.\frac{5}{6} + \left( \frac{1}{6} ight)^{3} =
\frac{2}{27}

    Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:

    C_{3}^{2}.\left( \frac{2}{27}
ight)^{2}.\left( 1 - \frac{2}{27} ight) + \left( \frac{2}{27}
ight)^{3} = \frac{308}{19683}

  • Câu 21: Vận dụng

    Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.

    Gọi A là biến cố chọn được hộp A

    B là biến cố chọn được hộp B

    C là biến cố chọn được hộp C

    E là biến cố bi chọn ra là bi màu đỏ.

    Ta có:\left\{ \begin{matrix}P(A) = P(B) = P(C) = \dfrac{1}{3} \\P\left( E|A ight) = \dfrac{4}{7} \\P\left( E|B ight) = \dfrac{3}{5} \\P\left( E|C ight) = \dfrac{1}{2} \\\end{matrix} ight.

    Theo công thức

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    = \frac{1}{3}.\frac{4}{7} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{1}{2} =
\frac{39}{70}

  • Câu 22: Thông hiểu

    Trong chùm chìa khóa có 9 chiếc giống hệt nhau chỉ có đúng 2 chiếc khóa mở được cửa nhà kho. Chủ nhà thử ngẫu nhiên 1 chìa để mở. Hãy tính xác suất để mở được cửa trong lần mở thứ 3?

    Xác suất để mở được cửa ở lần mở thứ ba là:

    P(A) =
\frac{7}{9}.\frac{6}{8}.\frac{2}{7} = \frac{1}{6}

  • Câu 23: Nhận biết

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 24: Vận dụng cao

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ cùng màu?

    Gọi A là biến cố lấy được 3 thẻ trắng \Rightarrow P(A) =
\frac{C_{10}^{3}}{C_{25}^{3}}

    B là biến cố lấy được 3 thẻ đỏ \Rightarrow P(B) =
\frac{C_{8}^{3}}{C_{25}^{3}}

    C là biến cố lấy được 3 thẻ xanh \Rightarrow P(C) =
\frac{C_{7}^{3}}{C_{25}^{3}}

    Gọi D là biến cố lấy được 3 thẻ cùng màu

    Khi đó D = A \cup B \cup C

    \Rightarrow P(D) = P(A) + P(B) + P(C)
\approx 0,092

  • Câu 26: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 27: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 28: Vận dụng

    Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?

    Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu \Omega có số phần tử là n(\Omega) = (6.2)^{3} = 1728

    Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.

    TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.

    TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{2}.1.1.(12 - 1) = 33 khả năng.

    TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{1}.1.(12 - 1)(12 - 1) = 3.11.11 =
363 khả năng.

    \Rightarrow n(P) = 1 + 33 + 363 =
397

    \Rightarrow n\left( \overline{P} ight)
= 1728 - 397 = 1331

  • Câu 29: Vận dụng

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

  • Câu 30: Thông hiểu

    Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?

    Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.

    Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!

  • Câu 31: Nhận biết

    Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy 4 viên bi bất
    kỳ?

    Số viên bi có trong hộp là 10 + 5 = 15 viên bi

    Số cách lấy 4 viên bi bất kỳ trong hộp là tổ hợp chập 4 của 15 phần tử: C_{15}^4 = 1365

  • Câu 32: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}

    Trướng hợp 1: e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

    Trường hợp 2: e = 0 => Có 1 cách chọn e

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 6 . 5 . 4 . 3 = 360 số

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 900 + 360 = 1260 số

  • Câu 33: Thông hiểu

    Một người bỏ ngẫu nhiên ba lá thu vào vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng phong bì của nó.

    Xét các bộ \left( x_{1};x_{2};x_{3}
ight) trong đó \left(
x_{1};x_{2};x_{3} ight) là một hoán vị của tập A = \left\{ 1;2;3 ight\}

    Ở đây x_{i} = i,(i = 1,2,3) tức là lá thư thứ i đã bỏ đúng địa chỉ.

    Gọi \Omega là tập họp tất cả các khả năng bỏ ba lá thư vào 3 phong bì, khi đó n_{\Omega} = 3! = 6

    Gọi A là biên cố "Có ít nhất một lá thư bő đúng phong bì".

    Các khả năng thuận lợi cho biến cố A là \Omega_{A} = \left\{
(1;2;3),(1;3;2),(3;2;1),(2,1,3) ight\}

    Vậy \left| \Omega_{A} ight| =
4 xác suất cần tính là P(A) =
\frac{2}{3}

  • Câu 34: Thông hiểu

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 35: Thông hiểu

    Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:

    Số cách chọn người đàn ông là 10 cách

    Do người đàn ông và người phụ nữ được chọn không là vợ chồng

    => Số cách chọn người phụ nữ là 9 cách

    => Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng là 9 . 10 = 90 cách

  • Câu 36: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 37: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 38: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 39: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 40: Nhận biết

    Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm A;B;C;D;E;F phân biệt?

    Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.

    Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: C_{7}^{2} = 21 (đoạn thẳng.

    Vậy đáp án là 21 đoạn thẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo