Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 2: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 3: Thông hiểu

    Từ các chữ số 0, 1, 2, 3, 4, 5, 6 viết ngẫu nhiên một số tự nhiên có 5 chữ số đôi một khác nhau. Tính xác suất để các chữ số 1 và 2 có mặt trong số viết được.

    Gọi A là. biến cố: "Số được viết có mặt các chữ số 1 và 2"

    Tìm |\Omega|

    Giả sử số được viết có dạng \overline{abcde}.

    Có 6 cách chọn a.

    Tiếp theo có A_{6}^{4} cách chọn (b;c;d;e)

    Vậy số phần tử không gian mẫu là: |\Omega| = 6.A_{6}^{4} = 2160

    Tìm \left| \Omega_{A}
ight|

    Trường hợp 1: \overline{abcde} không có mặt chữ số 0:

    A_{5}^{2} cách chọn vị trí cho hai chữ số 1 và 2.

    Sau đó có A_{4}^{3} cách xếp 3 trong 4 chữ số 3, 4, 5, 6 vào ba vị trí còn lại.

    Vậy trường hợp này có A_{5}^{2}.A_{4}^{3}
= 480 khả năng.

    Trường hợp 2: \overline{abcde} có mặt ba chữ số 0, 1, 2:

    Có 4 cách chọn vị trí cho chữ số 0.

    Tiếp theo có A_{4}^{2} cách chọn vị trí cho hai chữ số 1 và 2.

    Cuối cùng có A_{4}^{2} cách chọn 2 trong 4 chữ số 3, 4, 5, 6 để viết vào hai vị trí còn lại.

    Vậy trường hợp này có 4.A_{4}^{2}.A_{4}^{2} = 576 khả năng.

    Số kết quả thuận lợi cho biến cố A là 480
+ 576 = 1056

    Vậy xác suất cần tính là: P(A) =
\frac{1056}{2160} = \frac{22}{45}

  • Câu 4: Vận dụng

    Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_9^2 = 36

    Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"

    Nghĩa là cả hai thẻ rút được đều mang số lẻ

    => Số phần tử của biến cố T là n\left( A ight) = C_5^2 = 10

    => Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{10}}{{36}} = \frac{5}{{18}}

  • Câu 5: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 6: Thông hiểu

    Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lí, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán.

    Trên giá sách có 4 + 3 + 2 = 9 quyển sách

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = C_9^3 = 84

    Gọi C là biến cố "3 quyển lấy ra có ít nhất một quyển là Toán"

    => \overline C là biến cố "3 quyển lấy ra không có quyển Toán"

    Trường hợp lấy được 1 quyển sách Lí, 2 quyển sách Hóa có: C_3^1.C_2^2 cách

    Trường hợp lấy được 2 quyển sách Lí, 1 quyển sách Hóa có: C_3^2.C_2^1 cách

    Trường hợp lấy được 3 quyển sách Lí có: C_3^3 cách

    => n\left( {\overline C } ight) = C_3^1.C_2^2 + C_3^2.C_2^1 + C_3^3 = 10

    => Xác suất để 3 quyển lấy ra không có quyển Toán là:

    P\left( {\overline C } ight) = \frac{{n\left( {\overline C } ight)}}{{n\left( \Omega  ight)}} = \frac{{10}}{{84}} = \frac{5}{{42}}

    => Xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán là:

    P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{5}{{42}} = \frac{{37}}{{42}}

  • Câu 7: Nhận biết

    Lớp 11A chọn ngẫu nhiên 1 học sinh trong lớp để tham gia hoạt động đoàn trường. Xét hai biến cố:

    Biến cố A: “Học sinh đó là nam”

    Biến cố B: “Học sinh đó là học sinh giỏi”

    Khẳng định nào sau đây đúng khi mô tả biến cố A \cup B?

    Ta có:

    A \cup B: Học sinh đó là học sinh nam hoặc là học sinh giỏi

  • Câu 8: Thông hiểu

    Cấu trúc đề thi cuối học kì I môn Vật lí gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Học sinh A chọn ngẫu nhiên đáp án cho các câu hỏi. Xác suất để học sinh A thi được 6 điểm môn Vật lí là:

    Để đạt được điểm 6 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.

    Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75

    Vậy xác suất để học sinh đạt 6 điểm là: C_{50}^{20}.0,25^{30}.0,75^{20}.

  • Câu 9: Vận dụng

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Đáp án là:

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Gọi A là biến cố: “Chọn được hộp A”

    B là biến cố: “Chọn được hộp B”

    C là biến cố: “Chọn được hộp C”

    Ta có:

    P(A) = P(B) = P(C) =
\frac{1}{3}

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{3}.\frac{3}{7} = \frac{1}{7}

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{1}{3}.\frac{2}{5} =
\frac{2}{15}

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{C_{2}^{1}}{C_{4}^{1}} =
\frac{1}{2}

    d) E là biến cố: “Bi chọn ra có màu đỏ”.

    Xác suất để lấy được một viên bi đỏ là

    P\left( E|A ight) =
\frac{4}{7};P\left( E|B ight) = \frac{3}{5};P\left( E|C ight) =
\frac{1}{2}

    Áp dụng công thức ta có:

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    \Rightarrow P(E) =
\frac{1}{3}.\frac{4}{7} + \frac{1}{3}.\frac{3}{5} +
\frac{1}{3}.\frac{1}{2} = \frac{39}{70}

  • Câu 10: Nhận biết

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 11: Thông hiểu

    Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:

    Số cách chọn nhóm có 2 người: C_5^2 = 10

    Số cách chọn nhóm có 3 người: C_5^3 = 10

    Số cách chọn nhóm có 4 người: C_5^4= 5

    Số cách chọn nhóm có 5 người: 1

    => Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm

  • Câu 12: Thông hiểu

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 13: Thông hiểu

    Số cách sắp xếp A;B;C;D;E;F;G vào một dãy ghế dài sao cho hai đầu dãy ghế là vị trí của AG?

    Ta xếp A và G vào hai vị trí đầu dãy và có thể hoán đổi cho nhau nên ta có 2! cách xếp.

    Xếp 5 người còn lại vào 5 vị trí giữa ta có 5! cách xếp.

    Vậy ta có: 2!.5! = 240 cách xếp.

  • Câu 14: Thông hiểu

    Cấu trúc đề thi cuối học kì môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm. Giáo viên chủ nhiệm đã áp dụng phần mềm để hoán vị 4 phương án trong cùng câu hỏi với nhau. Xác suất để có hai đề thi được tạo ra chỉ có sự giống nhau ở năm câu hỏi là x%. Giá trị của x gần nhất với giá trị nào sau đây?

    Hoán vị 4 phương án trắc nghiệm có 4! = 24 cách

    Xác suất đẻ hai câu hỏi giống nhau là \frac{1}{24}, xác suất để hai câu hỏi khác nhau là \frac{23}{24}

    Chọn năm câu hỏi có sự giống nhau C_{20}^{5}

    Xác suất cần tìm là:

    x = C_{20}^{5}.\left( \frac{1}{24}
ight)^{5}.\left( \frac{23}{24} ight)^{45} = 0,0391 =
3,91\%

    Vậy giá trị của x gần nhất với giá trị 4%.

  • Câu 15: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 16: Vận dụng

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 17: Thông hiểu

    Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.

    Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”

    Ta có: P(A) = \frac{3}{25};P(B) =
\frac{10}{25}

    Vì A và B là hai biến cố độc lập.

    Nên xác suất để hai quả cầu lấy ra đều màu trắng là

    P(AB) = P(A).P(B) = \frac{3}{25}.\frac{10}{25} =
\frac{30}{625}

    Tương tự xác suất để hai quả cầu lấy ra đều:

    Màu xanh: \frac{15}{25}.\frac{9}{25} =
\frac{135}{625}

    Mảu đỏ: \frac{7}{25}.\frac{6}{25} =
\frac{42}{625}

    Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:

    \frac{30}{625} + \frac{135}{625} + \frac{42}{625}
= \frac{207}{625}

  • Câu 18: Nhận biết

    Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số

  • Câu 19: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 20: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 21: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 22: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 23: Thông hiểu

    Hai hộp gỗ được đặt trên bàn. Hộp A chứa 3 bi đỏ và 4 bi xanh. Hộp B chứ 2 bi đỏ và 5 bi xanh. Lấy ngẫu nhiên 1 viên bi từ hộp A sang hộp B rồi lấy ngẫu nhiên 1 viên bi trong hộp B ra. Tính xác suất để viên bi lấy ra ở hộp thứ hai có màu đỏ?

    Xảy ra hai trường hợp:

    TH1: Viên bi lấy ra từ hộp thứ nhất màu đỏ và đưa vào hộp thứ hai, khi đó hộp thứ hai có 3 viên bi đỏ và 5 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{1} =
\frac{3}{7}.\frac{3}{8} = \frac{9}{56}

    TH1: Viên bi lấy ra từ hộp thứ nhất màu xanh và đưa vào hộp thứ hai, khi đó hộp thứ hai có 2 viên bi đỏ và 6 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{2} =
\frac{4}{7}.\frac{2}{8} = \frac{8}{56}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} = \frac{9}{56} + \frac{8}{56} = \frac{17}{56}

  • Câu 24: Nhận biết

    Nếu một công việc được chia thành hai trường hợp, trường hợp 1 có a cách thực hiện, trường hợp hai có b cách thực hiện. Biết rằng mỗi cách thực hiện ở trường hợp này không trùng với bất kì cách thực hiện nào ở trường hợp kia. Khi đó khẳng định nào sau đây đúng và số cách thực hiện công việc nói trên?

    Theo quy tắc nhân ta có số cách thực hiện công việc là a + b.

  • Câu 25: Thông hiểu

    Cho hai hộp đựng các viên bi nhiều màu:

    Hộp 1 có 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.

    Hộp 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.

    Lấy ngẫu nhiên mỗi hộp 1 viên bi. Gọi A là biến cố “Hai viên bi lấy ra cùng màu”. Tính P(A)?

    Giả sử A_{1} là biến cố hai viên bi lấy được cùng màu trắng

    Khi đó P\left( A_{1} ight) =
\frac{4}{15}.\frac{7}{18}

    A_{2} là biến cố hai viên bi lấy được cùng màu đỏ

    Khi đó P\left( A_{2} ight) =
\frac{5}{15}.\frac{6}{18}

    A_{3} là biến cố hai viên bi lấy được cùng màu xanh

    Khi đó P\left( A_{3} ight) =
\frac{6}{15}.\frac{5}{18}

    \Rightarrow P(A) = P\left( A_{1} ight)
+ P\left( A_{2} ight) + P\left( A_{3} ight) =
\frac{44}{135}

  • Câu 26: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 27: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 28: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 29: Thông hiểu

    Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?

    Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại

    Số cách sắp xếp là 2!.2! = 4

    Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.

    Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách

  • Câu 30: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

  • Câu 31: Thông hiểu

    Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:

    Ta có: \overline{M} là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.

    Do đó số phần tử của \overline{M} =
C_{4}^{4} + C_{6}^{4} = 16

  • Câu 32: Thông hiểu

    Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:

    Chọn nhóm có 2 thành viên: C_{10}^2

    Chọn nhóm có 3 thành viên từ 8 thành viên còn lại: C_8^3

    Chọn nhóm có 5 thành viên từ 5 thành viên còn lại: C_5^5

    => Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: C_{10}^2.C_8^3.C_5^5

  • Câu 33: Vận dụng

    Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.

    Số học sinh của lớp là: 20 + 26 = 46 (học sinh)

    Số cách chọn 3 học sinh làm cán bộ lớp là: C_{46}^3

    Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là: C_{26}^3

    Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:

     C_{46}^3 -C_{26}^3 =12580 cách chọn

  • Câu 34: Thông hiểu

    Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề

    Mệnh đề đúng được phát biểu như sau:

    "Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước" 

  • Câu 35: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.

    Lá thứ nhất có đúng 1 cách chọn.

    Lá thứ 2 có 4 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(B) = 24 \Rightarrow P(B) =
\frac{24}{120} = \frac{1}{5}

  • Câu 36: Thông hiểu

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: C_{40}^3 = 9880 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455

    => Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: 9880 - 455 = 9425 cách

  • Câu 37: Vận dụng

    Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số 0;1;2;3;4;5;6;7 mà chữ số đứng ở vị trí thứ ba luôn chia hết cho 6?

    Gọi số cần tìm có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}}

    Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.

    Suy ra \left\{ \begin{matrix}
a_{6} \in \left\{ 1;3;5;7 ight\} \\
a_{3} \in \left\{ 0;6 ight\} \\
\end{matrix} ight.

    TH1: Với a_{3} = 0 chữ số a_{6} có 4 cách chọn, a_{1} có 6 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.6.A_{6}^{3} số.

    TH2: Với a_{3} = 6 chữ số a_{6} có 4 cách chọn, a_{1} có 5 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.5.A_{6}^{3} số.

    Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: 4.6.A_{6}^{3} + 4.5.A_{6}^{3} = 2640.

  • Câu 38: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt không nhỏ hơn 16?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi A là biến cố '' Tổng số chấm trên các mặt của ba lần gieo không nhỏ hơn 16”.

    Ta có bộ các số tương ứng với số chấm có tổng không nhỏ hơn 16 là (4;6;6); (6;4;6), (6;6;4); (5;5;6), (6;5;5); (5;6;5); (5;6;6), (6;5;6), (6;6;5) và (6;6;6).

    Do đó số phần tử của biến cố A là: \left|
\Omega_{A} ight| = 10

    Vậy xác suất cần tìm là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} = \frac{5}{108}

  • Câu 39: Vận dụng

    Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là \frac{2}{5}, xác suất để cầu thủ A đá trúng lưới là \frac{3}{10}. Tính xác suất để có đúng một cầu thủ đá trúng lưới?

    Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới

    Suy ra biến cố có đúng một cầu thủ đá trúng lưới là X\overline{Y} \cup \overline{X}Y

    X\overline{Y};\overline{X}Y là hai biến cố xung khắc nên P\left(
X\overline{Y} \cup \overline{X}Y ight) = P\left( X\overline{Y} ight)
+ P\left( \overline{X}Y ight)

    \overline{X};Y là hai biến cố độc lập nên P\left( X\overline{Y} ight) =
P(X).P\left( \overline{Y} ight) = 0,3.0,4 = 0,12

    Tương tự P\left( \overline{X}Y ight) =
P\left( \overline{X} ight).P(Y) = (1 - 0,3).(1 - 0,4) =
0,42

    Vậy P\left( X\overline{Y} \cup
\overline{X}Y ight) = P\left( X\overline{Y} ight) + P\left(
\overline{X}Y ight) = 0,54

  • Câu 40: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
Sắp xếp theo