Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 2: Vận dụng

    Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?

    Quy ước gene A: lông đen và gene a: lông trắng

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1

    Trong đàn vịt mới xác suất để được một con lông đen là \frac{3}{4} và con lông trắng là \frac{1}{4}

    Gọi A là biến cố có đúng 1 con lông đen trong 2 con được chọn

    \Rightarrow P(A) =
\frac{3}{4}.\frac{1}{4} = \frac{3}{16}

    Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn

    \Rightarrow P(B) =
\frac{3}{4}.\frac{3}{4} = \frac{9}{16}

    Khi đó A \cup B là biến cố có ít nhất 1 con lông đen trong 2 con được chọn

    Do A và B là hai biến cố xung khắc nên

    P(A \cup B) = P(A) + P(B) = \frac{3}{16}
+ \frac{9}{16} = \frac{3}{4}

  • Câu 3: Nhận biết

    Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi C = \left\{
(1,1,S);(2,2,S);(3,3,S);(4,4,S);(5,5,S);(6,6,S) ight\} là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố C?

    Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.

  • Câu 4: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a: 4 cách

    Số cách chọn b: 3 cách

    Số cách chọn c: 2 cách

    Số cách chọn d: 1 cách

    => Số các số có 4 chữ số khác nhau được tạo thành là  4! = 24  cách

  • Câu 5: Thông hiểu

    Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?

    Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).

    Như vậy, ta có C_{15}^2 = \frac{{15!}}{{13!.2!}} = 105 trận đấu.

  • Câu 6: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 7: Thông hiểu

    Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: “kết quả của 3 lần gieo là như nhau”. Tính xác suất của biến cố A?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có:

    \begin{matrix}  A = \left\{ {\left( {S;S;S} ight),\left( {N;N;N} ight)} ight\} \hfill \\   \Rightarrow n\left( A ight) = 2 \hfill \\   \Rightarrow P\left( A ight) = \dfrac{2}{8} = \dfrac{1}{4} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Cho các chữ số 0;1;2;3;4;5;6;7. Giả sử tập hợp M là tập hợp các số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số đã cho. Lấy ngẫu nhiên một số x \in M. Xác suất để chọn được x > 2020?

    Gọi số phần tử của tập hợp M là n(M) =
7.A_{7}^{3} = 1470

    Số phần tử của không gian mẫu là: n(\Omega) = C_{1470}^{1} = 1470

    Gọi A là biến cố chọn được số lớn hơn 2020.

    Giả sử số tự nhiên có 4 chữ số là x =
\overline{abcd} \in M ta có: x >
2020 nên ta có các trường hợp sau:

    TH1: a = 2;b = 0 \Rightarrow c \in
\left\{ 3;4;5;6;7 ight\} nên c có 5 cách chọn và d có 5 cách chọn.

    Do đó trường hợp này có: 1.1.5.5 =
25 số.

    TH2: a = 2;b \in \left\{ 1;3;4;5;6;7
ight\} thì \overline{cd}A_{6}^{2} cách chọn và sắp xếp.

    Do đó trường hợp này có 1.6.A_{6}^{2} =
180 số.

    TH3: a \in \left\{ 3;4;5;6;7
ight\} thì \overline{bcd}A_{7}^{3} cách chọn và sắp xếp.

    Do đó trường hợp này có 5.A_{7}^{3} =
1050 số.

    Vậy xác suất cần tính là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1255}{1470} =
\frac{251}{294}.

  • Câu 9: Thông hiểu

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5

    Xác suất không tham gia trong mỗi ngày là 0,5

    Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.

    Ta có: P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} +
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 10: Nhận biết

    Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

    Số điện thoại cần tìm có dạng \overline {790abcd}

    Số cách chọn a có 10 cách

    Số cách chọn b có 10 cách

    Số cách chọn c có 10 cách

    Số cách chọn d có 10 cách 

    => Có tối đa số điện thoại là: 10.10.10.10 = 104 = 10 000 số

  • Câu 11: Vận dụng cao

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Theo bài ra ta có tổng số viên bi trong hộp là x + 8;\left( x \in \mathbb{N}^{*}
ight)

    Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là n(\Omega) = C_{x + 8}^{3}

    Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: n(A) =
C_{5}^{1}.C_{3}^{1}.C_{x}^{1} = 15x

    => Xác suất lấy được 3 viên bi có đủ 3 màu là:

    P(A) = \frac{45}{182}

    \Leftrightarrow \frac{15x}{C_{x +
8}^{3}} = \frac{45}{182}

    \Leftrightarrow \frac{90x}{(x + 6)(x +
7)(x + 8)} = \frac{45}{182}

    \Leftrightarrow x^{3} + 21x^{2} - 218x +
336 = 0

    \Leftrightarrow x = 6(tm)

    Do đó trong hộp có 14 viên bi và n(\Omega) = C_{14}^{3}

    Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ

    Suy ra \overline{B} là biến cố 3 viên bi lấy được đều là bi đỏ.

    Số kết quả thuận lợi cho \overline{B} là: n\left( \overline{B} ight) =
C_{5}^{3}

    Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:

    P = P(B) = 1 - P\left( \overline{B}
ight)

    = 1 - \frac{n\left( \overline{B}
ight)}{n(\Omega)} = 1 - \frac{C_{5}^{3}}{C_{14}^{3}} =
\frac{177}{182}

  • Câu 12: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 13: Nhận biết

    Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?

    Ta có:

    \Omega = \left\{ 1,2,3,4,5,6
ight\}

    Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là: \left\{ 2;4;6 ight\}

  • Câu 14: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn không có nữ"

    => n\left( A ight) = C_7^2 = 21

    => Xác suất sao cho 2 người được chọn không có nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{21}{{45}} = \frac{7}{{15}}

  • Câu 15: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 16: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 17: Thông hiểu

    Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?

    Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại

    Số cách sắp xếp là 2!.2! = 4

    Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.

    Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách

  • Câu 18: Thông hiểu

    Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng:

    Ta có:

    Ông An hay bà An đứng ở dầu hoặc cuối hàng

    => Có hai cách sắp xếp

    Tiếp theo xếp 6 đứa con đang lên máy bay theo một hàng dọc

    => Có 6! cách sắp xếp

    => Có tất cả 2 . 6! = 1440 cách 

  • Câu 19: Vận dụng

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đáp án là:

    Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?

    n(N) = 21772800

    Đánh số thứ tự các nhóm là A, B, C, D

    Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.

    Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.

    Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có C_{5}^{2} cách, xếp 3 học sinh khá còn lại có 3! cách.

    Bước 3: xếp 7 học sinh trung bình

    + Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.

    + Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.

    Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có C_{6}^{2}.3 cách.

    Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có C_{4}^{2}.2 cách.

    Xếp 2 học sinh trung bình còn lại có 1 cách.

    Do đó số cách sắp xếp là: 4!.4.C_{5}^{2}.3!.7.C_{6}^{2}.3.C_{4}^{2}..1 =21772800

    Vậy n(N) = 21772800

  • Câu 20: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 21: Nhận biết

    Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:

    Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc

    => Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: C_{10}^6 = 210 cách

  • Câu 22: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 23: Thông hiểu

    Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.

    Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”

    Ta có: P(A) = \frac{3}{25};P(B) =
\frac{10}{25}

    Vì A và B là hai biến cố độc lập.

    Nên xác suất để hai quả cầu lấy ra đều màu trắng là

    P(AB) = P(A).P(B) = \frac{3}{25}.\frac{10}{25} =
\frac{30}{625}

    Tương tự xác suất để hai quả cầu lấy ra đều:

    Màu xanh: \frac{15}{25}.\frac{9}{25} =
\frac{135}{625}

    Mảu đỏ: \frac{7}{25}.\frac{6}{25} =
\frac{42}{625}

    Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:

    \frac{30}{625} + \frac{135}{625} + \frac{42}{625}
= \frac{207}{625}

  • Câu 24: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 25: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 26: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 27: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

  • Câu 28: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 29: Nhận biết

    Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:

    Biến cố đối của biến cố B là \overline{B}: “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.

  • Câu 30: Thông hiểu

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

  • Câu 31: Thông hiểu

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm, mỗi câu trả lời sai bị trừ 0,1 điểm. Một học sinh đã tô câu trả lời ngẫu nhiên cho cả 50 câu hỏi. Hỏi xác suất để học sinh đó đạt 4 điểm trong bài thi trên là bao nhiêu?

    Để đạt được điểm 4 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.

    Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75

    Vậy xác suất để học sinh đạt 4 điểm là: C_{50}^{30}.(0,25)^{30}.(0,75)^{20} \approx
1,3.10^{- 7}.

  • Câu 32: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 33: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 34: Vận dụng

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?

    Gọi A_{i} là biến cố bóng đèn thứ i sáng với i =
\overline{1;4}

    Gọi A là biến cố có ít nhất một bóng đèn sáng

    Để không có bóng đèn nào sáng ta có các trường hợp như sau:

    TH1: Cả 4 bóng đèn cùng hỏng

    B là biến cố bốn bóng đèn bị hỏng

    Khi đó xác suất để cả 4 bóng đèn bị hỏng là: P(B) = 0,05^{4} = 0,00000625

    TH2: Cả 3 bóng đèn cùng hỏng

    C là biến cố ba bóng đèn bị hỏng

    Khi đó xác suất để có 3 bóng đèn bị hỏng là: P(C) = 4.0,05^{3}.0,95 = 0,000475

    TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là: P(D) = 2.0,05^{2}.0,95^{2} =
0,0045125

    Vậy xác suất để có ít nhất 1 bóng đèn sáng là

    P(A) = 1 - \left\lbrack P(C) + P(B) +
P(D) ightbrack = 0,99500625

  • Câu 35: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

  • Câu 36: Thông hiểu

    Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A “có đúng 2 lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có:

    \begin{matrix}  A = \left\{ {\left( {S;S;N} ight),\left( {S;N;S} ight),\left( {N;S;S} ight)} ight\} \hfill \\   \Rightarrow n\left( A ight) = 3 \hfill \\   \Rightarrow P\left( A ight) = \dfrac{3}{8} \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển có ít nhất một nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Chọn 2 người trong số 6 người nói trên sao cho có ít nhất một nữ là

    C_{4}^{1}.C_{2}^{1} + C_{4}^{2} = 8 + 6 =
14

    Do đó xác suất của biến cố này là \frac{14}{15}.

  • Câu 38: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 39: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 40: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo