Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một thí sinh phải chọn 10 trong số 20 câu hỏi. Hỏi có bao nhiêu cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn:

    Ta có:

    Ba câu đầu phải được chọn => Có 1 cách chọn

    Chọn 7 câu còn lại trong số 17 câu còn lại => Có C_{17}^7 = 19448

    Vậy có 19448 cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn.

  • Câu 2: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 3: Nhận biết

    Có bao nhiêu số tự nhiên có 3 chữ số:

    Ta có:

    Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999

    => Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.

  • Câu 4: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 5: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 6: Thông hiểu

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để tổng ba số được chọn là 12.

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi A là biến cố “Tổng ba số được chọn là 12”.

    Ta có các bộ 3 số có tổng bằng 12 gồm: (1,2,9); (1,3,8); (1,4,7); (1,5,6); (2,3,7); (2;4;6); (3,4,5).

    Suy ra ta có n(A) = 7 \Rightarrow P(A) =
\frac{7}{165}

  • Câu 7: Vận dụng

    Cho hai biến cố A và B có P\left( A ight) = \frac{1}{3},P\left( B ight) = \frac{1}{4},P\left( {A \cup B} ight) = \frac{1}{2} ta kết luận hai biến cố A và B là:

    Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)

    Suy ra P(A) + P(B) ≠ P(A ∪ B)

    => Hai biến cố A và B không xung khắc

    Áp dụng công thức xác suất tổng hai biến cố ta có: 

    \begin{matrix}  P\left( A ight) + P\left( B ight) - P\left( {AB} ight) = P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left[ {P\left( A ight) + P\left( B ight)} ight] - P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left( {\dfrac{1}{3} + \dfrac{1}{4}} ight) - \dfrac{1}{2} = \dfrac{1}{2} \hfill \\ \end{matrix}

    P\left( A ight).P\left( B ight) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} = P\left( {AB} ight)

    => Hai biến cố A và B là hai biến cố độc lập.

  • Câu 8: Thông hiểu

    Cấu trúc đề thi cuối học kì I môn Vật lí gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Học sinh A chọn ngẫu nhiên đáp án cho các câu hỏi. Xác suất để học sinh A thi được 6 điểm môn Vật lí là:

    Để đạt được điểm 6 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.

    Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75

    Vậy xác suất để học sinh đạt 6 điểm là: C_{50}^{20}.0,25^{30}.0,75^{20}.

  • Câu 9: Thông hiểu

    Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.

    Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".

    Tìm |\Omega|

    Chọn 10 tấm thẻ trong 30 tấm thẻ: có C_{30}^{10} cách chọn \Rightarrow |\Omega| = C_{30}^{10}

    Tìm \left| \Omega_{A}
ight|

    Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có C_{15}^{5} cách chọn.

    Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.

    Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có C_{12}^{4} cách chọn.

    Vậy số kết quả thuận lợi cho biến cố A là \left| \Omega_{A} ight| =
3.C_{15}^{5}C_{12}^{4}

    Vậy xác suất cần tìm là: P(A) =
\frac{3.C_{15}^{5}C_{12}^{4}}{C_{30}^{10}} = \frac{99}{667}

  • Câu 10: Vận dụng cao

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Theo bài ra ta có tổng số viên bi trong hộp là x + 8;\left( x \in \mathbb{N}^{*}
ight)

    Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là n(\Omega) = C_{x + 8}^{3}

    Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: n(A) =
C_{5}^{1}.C_{3}^{1}.C_{x}^{1} = 15x

    => Xác suất lấy được 3 viên bi có đủ 3 màu là:

    P(A) = \frac{45}{182}

    \Leftrightarrow \frac{15x}{C_{x +
8}^{3}} = \frac{45}{182}

    \Leftrightarrow \frac{90x}{(x + 6)(x +
7)(x + 8)} = \frac{45}{182}

    \Leftrightarrow x^{3} + 21x^{2} - 218x +
336 = 0

    \Leftrightarrow x = 6(tm)

    Do đó trong hộp có 14 viên bi và n(\Omega) = C_{14}^{3}

    Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ

    Suy ra \overline{B} là biến cố 3 viên bi lấy được đều là bi đỏ.

    Số kết quả thuận lợi cho \overline{B} là: n\left( \overline{B} ight) =
C_{5}^{3}

    Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:

    P = P(B) = 1 - P\left( \overline{B}
ight)

    = 1 - \frac{n\left( \overline{B}
ight)}{n(\Omega)} = 1 - \frac{C_{5}^{3}}{C_{14}^{3}} =
\frac{177}{182}

  • Câu 11: Vận dụng

    Lấy 3 quả cầu từ một hộp có 4 quả cầu trắng, 5 quả cầu vàng, 6 quả cầu xanh. Tính xác suất để lấy được ít nhất 2 quả cầu cùng màu.

    Hộp có 4 + 5 + 6 = 15 quả cầu

    Số phần tử không gian mẫu là: C_{15}^3 = 455

    Gọi B là biến cố: "Ít nhất 2 quả cầu cùng màu"

    => \overline B là biến cố: "Không có 2 quả cầu nào cùng màu" 

    => Số phần tử của biến cố \overline B là: n\left( {\overline B } ight) = C_4^1.C_5^1.C_6^1 = 120

    => P\left( {\overline B } ight) = \frac{{n\left( {\overline B } ight)}}{{n\left( \Omega  ight)}} = \frac{{120}}{{455}} = \frac{{24}}{{91}}

    => P\left( B ight) = 1 - P\left( {\overline B } ight) = 1 - \frac{{24}}{{91}} = \frac{{67}}{{91}}

    Vậy xác suất để lấy được ít nhất 2 quả cầu cùng màu là \frac{{67}}{{91}}

  • Câu 12: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 13: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 14: Vận dụng

    Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?

    Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng \overline{AaBbCcD} trong đó A;B;C;D là 4 bạn nữ và a,b,c là 3 bạn nam.

    Bước 1: Chọn 3 bạn nam trong 5 bạn nam có C_{5}^{3} cách.

    Bước 2: Gọi nhóm \overline{AaBbCcD} là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.

    Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.

    Do đó ta có: C_{5}^{3}.3!.3!.4! =
8640 cách xếp thỏa mãn yêu cầu bài toán.

  • Câu 15: Thông hiểu

    Trong một bể cá cảnh có chứa 40 con gồm 10 cá đỏ, 15 cá vàng; 8 cá đen, còn lại là cá bạc. Chọn ngẫu nhiên 6 con cá trong bể. Tính xác suất để lấy được 6 con cá có cùng màu?

    Gọi A là biến cố lấy được 6 con cá đỏ \Rightarrow P(A) =
\frac{C_{10}^{6}}{C_{40}^{6}}

    B là biến cố lấy được 6 con cá vàng \Rightarrow P(B) =
\frac{C_{15}^{6}}{C_{40}^{6}}

    C là biến cố lấy được 6 con cá đen \Rightarrow P(C) =
\frac{C_{8}^{6}}{C_{40}^{6}}

    D là biến cố lấy được 6 con cá bạc \Rightarrow P(D) =
\frac{C_{7}^{6}}{C_{40}^{6}}

    E là biến cố lấy được 6 con cá cùng màu

    \Rightarrow E = A \cup B \cup C \cup
D

    \Rightarrow P(E) = P(A) + P(B) + P(C) +
P(D)

    \Rightarrow P(E) =
\frac{C_{10}^{6}}{C_{40}^{6}} + \frac{C_{15}^{6}}{C_{40}^{6}} +
\frac{C_{8}^{6}}{C_{40}^{6}} + \frac{C_{7}^{6}}{C_{40}^{6}} \approx
1,37.10^{- 3}

  • Câu 16: Vận dụng

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 17: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số cách chọn a là 4 cách (Do a khác 0)

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số

  • Câu 18: Thông hiểu

    Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?

    Ta chia thành các trường hợp như sau:

    TH1: Nếu số 234 đứng đầu thì có A_{7}^{2} số

    TH2: Nếu cố 432 đứng đầu thì có A_{7}^{2} số

    TH3: Nếu cố 234; 432 không đứng đầu

    Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có C_{6}^{1} cách chọn số còn lại. Do đó trường hợp này có 6.2.2.C_{6}^{1} =144

    Suy ra số phần tử của tập hợp S là 2.A_{7}^{2} + 144 = 228

    Vậy số phần tử không gian mẫu là n(\Omega) = C_{228}^{2} = 25878

  • Câu 19: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 20: Thông hiểu

    Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:

    Ta có:

    Số cách sắp xếp 3 viên bi đen thành một dãy bằng 3!

    Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 4!

    Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 5!

    Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 3!

    Vậy số phần tử của tập hợp A là: n(A) =
3!.4!.5!.3! = 103680

  • Câu 21: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 22: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

  • Câu 23: Nhận biết

    Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi C = \left\{
(1,1,S);(2,2,S);(3,3,S);(4,4,S);(5,5,S);(6,6,S) ight\} là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố C?

    Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.

  • Câu 24: Thông hiểu

    Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:

    Ta có: \overline{M} là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.

    Do đó số phần tử của \overline{M} =
C_{4}^{4} + C_{6}^{4} = 16

  • Câu 25: Nhận biết

    Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:

    Biến cố đối của biến cố B là \overline{B}: “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.

  • Câu 26: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 27: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 28: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 29: Thông hiểu

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

  • Câu 30: Thông hiểu

    Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tìm xác suất để trong 6 sản phẩm lấy ra có không quá một phế phẩm?

    Số cách chọn ra 6 sản phẩm từ 10 sản phẩm là n(\Omega) = C_{10}^{6}

    Gọi biến cố A: “Lấy 6 sản phẩm từ lô hàng đó có không quá một phế phẩm”.

    Trường hợp 1: Không có phế phẩm nào.

    Số cách chọn 6 sản phẩm không phải là phế phẩm là C_{8}^{6} cách.

    Trường hợp 2: Có 1 phế phẩm và 5 sản phẩm còn lại.

    Số cách chọn có 1 phế phẩm và 5 sản phẩm còn lại là C_{5}^{1}.C_{8}^{5} cách.

    Khi đó: n(A) = C_{8}^{6} +
C_{5}^{1}.C_{8}^{5} \Rightarrow P(A) = \frac{2}{3}

  • Câu 31: Thông hiểu

    Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng:

    Ta có:

    Ông An hay bà An đứng ở dầu hoặc cuối hàng

    => Có hai cách sắp xếp

    Tiếp theo xếp 6 đứa con đang lên máy bay theo một hàng dọc

    => Có 6! cách sắp xếp

    => Có tất cả 2 . 6! = 1440 cách 

  • Câu 32: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 33: Thông hiểu

    Có 10 hộp sữa trong đó có 3 hộp hư. Chọn ngẫu nhiên 4 hộp. Xác suất để được ít nhất 1 hộp hư.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^4

    Số hộp sữa không bị hư là: 10 - 3 = 7 (hộp)

    Số cách chọn 4 hộp sữa mà không hộp sữa nào bị hư nào là: C_{7}^4

    Số cách để chọn 4 hôp sữa ít nhất một hộp hư là: C_{10}^4 -C_{7}^4 =175 (cách chọn)

    => Xác suất để được ít nhất 1 hộp hư là: P = \frac{{175}}{{C_{10}^4}} = \frac{5}{6}

  • Câu 34: Nhận biết

    Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?

    Số cách chọn 2 giáo viên từ nhóm 5 giáo viên là: C_5^2 = 10 cách

    Số cách chọn 3 học sinh từ nhóm 6 học sinh là: C_6^3 = 20 cách

    Áp dụng quy tắc nhân ta có số cách chọn một hội đồng là: 10 . 20 = 200 cách

  • Câu 35: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số

  • Câu 36: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 37: Thông hiểu

    Học sinh A làm bài kiểm tra 15 phút môn Toán gồm 10 câu hỏi trắc nghiệm, mỗi câu hỏi gồm 4 phương án trả lời và chỉ có một phương án đúng. Nếu trả lời đúng 1 câu hỏi được 1 điểm, trả lời sai không có điểm. Biết A đã làm đúng 5 câu hỏi, vì thời gian hạn chế nên A đã khoanh trả lời ngẫu nhiên các câu hỏi còn lại. Tính xác suất để A đạt được ít nhất 8 điểm?

    Bạn A trả lời đúng 5 câu hỏi nên A đã đạt được 5 điểm

    Để được ít nhất 8 điểm thì A phải trả lời đúng ít nhất 3 câu trong 5 câu còn lại.

    TH1: 3 câu đúng, 2 câu sai P_{1} =
C_{5}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{2}

    TH2: 4 câu đúng, 1 câu sai P_{2} =
C_{5}^{4}.\left( \frac{1}{4} ight)^{4}.\left( \frac{3}{4}
ight)^{1}

    TH3: 5 câu đúng P_{3} = C_{5}^{5}.\left(
\frac{1}{4} ight)^{5}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} + P_{3} \approx 0,1035

  • Câu 38: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 39: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 40: Thông hiểu

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Đáp án là:

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có: P(A) = 0,2;P\left( \overline{A} ight) =0,8

    B là biến cố “Bệnh nhân B bị suy thận” ta có: P(B) = 0,1;P\left( \overline{B} ight) =0,9

    Khi đó A \cap B là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”

    Khi đó \overline{A}\overline{B} là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.

    Khi đó A\overline{B} là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.

    b) Hai biến cố A, B độc lập nên ta có:

    P(A \cap B) = P(AB) = P(A).P(B) =0,2.0,1 = 0,02

    b) Hai biến cố \overline{A};\overline{B} độc lập nên ta có:

    P\left( \overline{A}\overline{B} ight)= P\left( \overline{A} ight).P\left( \overline{B} ight) = 0,8.0,9 =0,72

    c) Hai biến cố A;\overline{B} độc lập nên ta có:

    P\left( A\overline{B} ight) =P(A).P\left( \overline{B} ight) = 0,2.0,9 = 0,18

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo