Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:
Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.
Theo đề bài ta có:
0 ≤ 6k < 100
=> 0 ≤ k < 16,7
Vậy có 17 chữ số thỏa mãn.
Hai cung thủ thực hiện bắn mỗi người một mũi tên vào mục tiêu. Biết xác suất bắn trúng bia của người thứ nhất
và người thứ hai lần lượt là
. Tính xác suất của biến cố A chỉ có đúng 1 người bắn trúng bia?
Gọi M là biến cố người thứ nhất bắn trúng mục tiêu
N là biến cố người thứ hai bắn trúng mục tiêu ( là các biến cố độc lập).
Từ giả thiết ta có:
Mà
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?
Ta có: là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có: với
và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.
Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất và lá thứ hai đúng người nhận?
Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.
Do đó số phần tử của không gian mẫu là: 5! = 120
Gọi C là biến cố “Lá thứ nhất và lá thứ hai đúng người nhận”.
Vì mỗi lá thư chỉ được chọn duy nhất 1 phong bì nên số cách chọn cả 5 lá đều đúng người nhận là 1.
Lá thứ nhất và lá thứ 2 có đúng 1 cách chọn.
Lá thứ 3 có 3 cách chọn
Lá thứ 4 có 2 cách chọn
Lá thứ 5 có 1 cách chọn
Suy ra
Cho các chữ số
. Giả sử tập hợp
là tập hợp các số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số đã cho. Lấy ngẫu nhiên một số
. Xác suất để chọn được
?
Gọi số phần tử của tập hợp M là
Số phần tử của không gian mẫu là:
Gọi A là biến cố chọn được số lớn hơn .
Giả sử số tự nhiên có 4 chữ số là ta có:
nên ta có các trường hợp sau:
TH1: nên c có 5 cách chọn và d có 5 cách chọn.
Do đó trường hợp này có: số.
TH2: thì
có
cách chọn và sắp xếp.
Do đó trường hợp này có số.
TH3: thì
có
cách chọn và sắp xếp.
Do đó trường hợp này có số.
Vậy xác suất cần tính là: .
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:
Số phần tử của không gian mẫu là:
Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"
=> B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}
=>
=> Xác suất để sau hai lần gieo kết quả như nhau là:
Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là
và
. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?
Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia
Khi đó là biến cố cả hai xạ thủ đều bắn trúng bia.
Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:
Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:
Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi
là biến cố sản phẩm được kiểm tra lần thứ
thuộc loại không đạt,
. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các
?
Mô tả đúng là:
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Rút ngẫu nhiên 2 tấm thẻ từ một hộp chứa 20 thẻ được đánh số từ 1 đến 20. Tính số phần tử của biến cố M “tích hai tấm thẻ rút được là số chẵn”?
Tích hai số trên tấm thẻ được rút ra là số chẵn khi có ít nhất một số chẵn.
Trường hợp 1: Cả hai số lấy được đều là số chẵn
=> Số cách sắp xếp là: cách
Trường hợp 2: Hai tấm thẻ lấy được gồm một số chẵn và một số lẻ ta có: 10 . 10 = 100 cách
Suy ra phần tử.
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi Y là biến cố “Trong đoàn cả 3 giáo viên đều là nữ”.
là biến cố “Trong đoàn công tác có ít nhất một giáo viên nam”
Ta có với
là 3 biến cố độc lập.
Suy ra
Cho tập hợp
. Lập từ
số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Giáo viên trong lớp chuẩn bị 3 chiếc hộp:
Hộp 1 chứa 3 quả cầu đỏ và 5 quả cầu trắng.
Hộp 2 chứa 2 quả cầu đỏ và 2 quả cầu vàng.
Hộp 3 chứa 2 quả cầu đỏ và 3 quả cầu xanh.
Lấy ngẫu nhiên một hộp rồi lấy một quả cầu trong hộp đó. Gọi
là biến cố lấy được hộp 1,
là biến cố lấy được hộp 2,
là biến cố lấy được hộp 3. Khi đó biến cố lấy ngẫu nhiên một hộp rồi lấy được một quả màu đỏ trong hộp đó biểu diễn như thế nào?
Lấy ngẫu nhiên một hộp trong hộp đó lấy ngẫu nhiên 1 quả cầu được quả màu đỏ thì hoặc là lấy được quả đỏ từ hộp 1 hoặc là lấy được quả đỏ từ hộp 2 hoặc lấy được quả đỏ từ hộp 3. Do đó ta biểu diễn biến cố cần tìm như sau:
Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:
Gọi số cạnh của đa giác đều là n (cạnh)
=> Đa giác đó có n đỉnh tương ứng
Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)
Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: đoạn thẳng
Mà đa giác đều có 44 đường chéo nên ta có phương trình
Vậy đa giác đều có 11 cạnh
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?
Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là:
=> Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: cách
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:
Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.
Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau
Coi 6 quyển sách là hai bộ sách Toán và Vật Lí
Số cách sắp xếp hai bộ sách là 2! = 2 (cách)
Cách sắp xếp bộ sách Toán là 3! = 6
Cách sắp xếp bộ sách Vật Lí là 3! = 6
=> Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)
=> Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:
Khi gửi tiền vào ngân hàng, chị X được tham gia chương trình “Bốc thăm trúng thưởng”. Chị được bốc lần lượt 2 lá thăm trong hộp gồm 20 lá thăm. Biết trong hộp chỉ có 2 lá thăm ghi “Trúng thưởng”. Tính xác suất để cả hai lá thăm đều trúng thưởng?
Gọi A là biến cố lá thăm rút được lần đầu có thưởng
=>
Gọi B là biến cố lá thăm rút được lần sau có thưởng.
=>
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số
Số các số có 1 chữ số là: 3
Số các số có 2 chữ số là: 32 = 9
Số các số có 3 chữ số là: 33 = 27
=> Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39
Một thí sinh phải chọn 10 trong số 20 câu hỏi. Hỏi có bao nhiêu cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn:
Ta có:
Ba câu đầu phải được chọn => Có 1 cách chọn
Chọn 7 câu còn lại trong số 17 câu còn lại => Có
Vậy có 19448 cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn.
Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?
Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:
Có 5 cách chọn hoa hồng trắng.
Có 6 cách chọn hoa hồng đỏ.
Có 7 cách chọn hoa hồng vàng.
Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách
Cho
. Chọn khẳng định đúng?
Theo giả thiết ta có:
Vậy hai biến cố A và B là hai biến cố độc lập.
Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:
Tổng số viên bi là 4 + 6 = 10 (viên bi)
Số cách lấy hai viên bi từ số viên bi đã cho là: (Số phần tử không gian mẫu)
Số cách để rút được một bi xanh và 1 bi đỏ là:
=> Xác suất để rút được một bi xanh và 1 bi đỏ là:
Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
Lấy một số từ dãy số đã cho ta được:
Giả sử A là biến cố "lấy được một số nguyên tố"
Ta có: A = {2} =>
=> Xác suất để lấy được một số nguyên tố là:
Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:
Ta có:
Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là:
Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5
Xác suất không tham gia trong mỗi ngày là 0,5
Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.
Ta có:
Xác suất cần tìm là
Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ra 5 viên bi trong đó có 3 viên bi màu xanh?
Số cách chọn 5 viên bi trong đó có 3 viên bi màu xanh là: cách
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố
.
Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu
Khi đó là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có:
Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng. Hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi, tính xác suất để 2 viên bi được lấy ra có cùng màu.?
Gọi lần lượt là các biến cố: “Lấy được bi đỏ từ hộp thứ nhất”, “Lấy được bi đỏ từ hộp thứ hai”; “Lấy được bi trắng từ hộp thứ nhất”, “Lấy được bi trắng từ hộp thứ hai”.
Khi đó
Gọi E; F lần lượt là các biến cố: “Hai viên bi lấy ra cùng màu đỏ”, “Hai viên bi lấy ra cùng màu trắng”.
Khi đó
Do A và B và hai biến cố độc lập nên
Do C và D là hai biến cố độc lập nên
Do E và F là hai biến cố xung khắc nên xác suất để lấy được hai viên bi cùng màu là
.
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là
Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là
Sai||Đúng
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là: Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là Sai||Đúng
Gọi A là biến cố: “Chọn được hộp A”
B là biến cố: “Chọn được hộp B”
C là biến cố: “Chọn được hộp C”
Ta có:
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
c) Xác suất để lấy được viên bi đỏ trong hộp C là
d) E là biến cố: “Bi chọn ra có màu đỏ”.
Xác suất để lấy được một viên bi đỏ là
Áp dụng công thức ta có:
Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là
. Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96
Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96
Từ giả thiết suy ra xác suất để người thứ nhất, người thứ hai và người thứ ba không bắn trúng hồng tâm lần lượt là .
Để có đúng 2 người bắn trúng hồng tâm ta có các trường hợp sau:
|
Trường hợp 1 |
+ Người thứ nhất bắn trúng + Người thứ hai bắn trúng + Người thứ ba không trúng |
Xác suất: |
|
Trường hợp 2 |
+ Người thứ nhất bắn trúng + Người thứ hai không bắn trúng + Người thứ ba bắn trúng |
Xác suất: |
|
Trường hợp 3 |
+ Người thứ nhất không bắn trúng + Người thứ hai bắn trúng + Người thứ ba bắn trúng |
Xác suất: |
Vậy xác suất để có đúng 2 người bắn trúng đích là