Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong tủ sách có tất cả 10 cuốn sách. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:

    Coi quyển sách thứ nhất và quyển sách thứ hai thành một quyển sách

    => Khi đó ta có 9 quyển sách

    Hoán vị hai quyển sách ban đầu ta có 2! = 2 cách

    Sắp xếp 9 quyển sách vào 9 vị trí =>  Có 9! cách

    => Có 2.9! = 725760 cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:

  • Câu 2: Thông hiểu

    Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.

    Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”

    Ta có: P(A) = \frac{3}{25};P(B) =
\frac{10}{25}

    Vì A và B là hai biến cố độc lập.

    Nên xác suất để hai quả cầu lấy ra đều màu trắng là

    P(AB) = P(A).P(B) = \frac{3}{25}.\frac{10}{25} =
\frac{30}{625}

    Tương tự xác suất để hai quả cầu lấy ra đều:

    Màu xanh: \frac{15}{25}.\frac{9}{25} =
\frac{135}{625}

    Mảu đỏ: \frac{7}{25}.\frac{6}{25} =
\frac{42}{625}

    Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:

    \frac{30}{625} + \frac{135}{625} + \frac{42}{625}
= \frac{207}{625}

  • Câu 3: Thông hiểu

    Cho tập hợp E = {0; 1; 2; 3; 4; 5; 6; 7} có thể lập được bao nhiêu số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn?

    Số các chữ số có 5 chữ số khác nhau được tạo thành từ các chữ số đã cho có dạng: 

    \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Do E là số chẵn => e \in \left\{ {0;2;4;6} ight\}

    Trường hợp 1: e = 0

    Số cách chọn a là 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    => Số các chữ số được tạo thành là: 7.6.5.4.1 = 840 (số)

    Trường hợp 2: e \in \left\{ {2;4;6} ight\}

    Số cách chọn e là 3 cách

    Số cách chọn a là 6 cách (vì a khác 0)

    Số cách chọn e là 6 cách

    Số cách chọn e là 5 cách

    Số cách chọn e là 4 cách

    => Số các chữ số được tạo thành là: 3.6.6.5.4 = 2160 (số)

    Vậy số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn có thể lập được là:

    840 + 2160 = 3000 số

  • Câu 4: Thông hiểu

    Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

    Cứ 3 đỉnh của đa giác sẽ tạo thành một tam giác

    Số cách chọn 3 trong 10 đỉnh của đa giác là: C_{10}^3 = 120

    Vậy số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là: 120 tam giác

  • Câu 5: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 6: Thông hiểu

    Ba bạn A, B, C độc lập với nhau thi ném phi tiêu vào cùng một bia. Biết xác xuất ném trúng của A, B, C lần lượt là 0,2;0,50,8. Tính xác suất để có ít nhất một người ném trúng bia?

    Gọi A, B, C tương ứng là biến cố A ném trúng bia, B ném trúng bia và C ném trúng bia

    A, B, C là các biến cố độc lập. Do đó A, B, C là các biến cố đôi một độc lập

    Xác suất để cả ba người đều không ném trúng là:

    P\left( \overline{ABC} ight) = P\left(
\overline{A} ight).P\left( \overline{B} ight).P\left( \overline{C}
ight)

    = (1 - 0,2)(1 - 0,5)(1 - 0,8) =
0,08

  • Câu 7: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C, D, V. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C là \frac{1}{5} và của các trạm D, V là \frac{1}{10}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C, D, V là biến cố các trạm tải nhỏ A, B, C, D, V gặp sự cố kĩ thuật.

    Ta có:

    \overline{Q} = (A \cap B \cap C) \cup (D
\cap V)

    Suy ra P\left( \overline{Q} ight) =
P(ABC) + P(DV) - P(ABCDV)

    P\left( \overline{Q} ight) =
P(A).P(B).P(C) + P(D).P(V)

    - P(A).P(B).P(C).P(D).P(V)

    = 0,2.0,2.0,2 + 0,1.0,1 -
0,2.0,2.0,2.0,1.0,1 = 0,01792

    Vậy P\left( \overline{Q} ight) = 1 -
P(Q) = 0,98208

  • Câu 8: Thông hiểu

    Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A “có đúng 2 lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có:

    \begin{matrix}  A = \left\{ {\left( {S;S;N} ight),\left( {S;N;S} ight),\left( {N;S;S} ight)} ight\} \hfill \\   \Rightarrow n\left( A ight) = 3 \hfill \\   \Rightarrow P\left( A ight) = \dfrac{3}{8} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:

    Chọn nhóm có 2 thành viên: C_{10}^2

    Chọn nhóm có 3 thành viên từ 8 thành viên còn lại: C_8^3

    Chọn nhóm có 5 thành viên từ 5 thành viên còn lại: C_5^5

    => Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: C_{10}^2.C_8^3.C_5^5

  • Câu 10: Thông hiểu

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 11: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết

    Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.

     Theo bài ra ta có 5 ban nhạc đến từ các trường

    Chọn ban nhạc Nha Trang biểu diễn đầu tiên

    => Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách

    => Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.

  • Câu 13: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 14: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 15: Thông hiểu

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Tính xác suất của biến cố C?

    Ta có hai biến cố A và B là hai biến cố xung khắc suy ra P(A \cup B) = P(A) + P(B) = P(C)

    n(\Omega) = C_{9}^{2} = 36

    Biến cố A là tập hợp tất cả các tập con có hai phần tử của tập \left\{ 2;4;6;8 ight\}

    n(A) = C_{4}^{2} = 6 \Rightarrow P(A) =
\frac{6}{36} = \frac{1}{6}

    Biến cố B được hình thành từ hai công đoạn:

    + Chọn một số chẵn từ tập \left\{ 2;4;6;8
ight\} có 4 cách

    + Chọn một số lẻ từ tập \left\{ 1;3;5;7;9
ight\} có 4 cách

    Theo quy tắc nhân tập B có 4.5 = 20 cách

    Do đó n(B) = 20 \Rightarrow P(B) =
\frac{20}{36}

    \Rightarrow P(C) = P(A) + P(B) =
\frac{1}{6} + \frac{20}{36} = \frac{13}{18}

  • Câu 16: Thông hiểu

    Đề thi Toán thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Một học sinh làm chắc chắn đúng 40 câu, vì thời gian còn lại hạn chế nên học sinh đã tô ngẫu nhiên 10 câu hỏi còn lại. Tính xác suất để học sinh đó được 9,2 điểm trong bài thi đó?

    Khi khoanh ngẫu nhiên 1 câu thì xác suất đúng là 0,25 và xác suất sai là 0,75

    Học sinh đó được 9,2 điểm nếu bạn khoanh đúng được 6 câu trong 10 câu còn lại

    Do đó xác suất để bạn học sinh đó được 9,2 điểm là: C_{10}^{4}.(0,25)^{6}.(0,75)^{4}.

  • Câu 17: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số lẻ có 2 chữ số đôi một khác nhau?

     Số tự nhiên có hai chữ số khác nhau có dạng: \overline {ab} ,\left( {a e b} ight)

    Do số cần tìm là số lẻ => b ∈ {1; 3; 5}

    => Có 3 cách chọn b

    Số cách chọn a là 4 cách

    => Có thể lập được số các số lẻ có 2 chữ số đôi một khác nhau là: 3 . 4 = 12 số

  • Câu 18: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 19: Thông hiểu

    Gieo một đồng tiền xu liên tiếp 3 lần. Tính xác suất của biến cố A “ít nhất một lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có: 

    Biến cố A “ít nhất một lần xuất hiện mặt sấp”

    => Biến cố \overline A "không xuất hiện mặt sấp”

     \overline A  = \left\{ {\left( {N;N;N} ight)} ight\}

    => n\left( {\overline A } ight) = 1 \Rightarrow P\left( {\overline A } ight) = \frac{1}{8}

    => P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 20: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: C = \left\{ (1;6),(6;1)
ight\}

    \Rightarrow n(C) = 2 \Rightarrow P(C) =
\frac{n(C)}{n(\Omega)} = \frac{2}{36} = \frac{1}{18}

  • Câu 21: Nhận biết

    Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là \frac{1}{5}\frac{2}{7}. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?

    Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:

    P(A).P(B) = \frac{1}{5}.\frac{2}{7} =
\frac{2}{35}

  • Câu 22: Thông hiểu

    Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:

    Số cách chọn nhóm có 2 người: C_5^2 = 10

    Số cách chọn nhóm có 3 người: C_5^3 = 10

    Số cách chọn nhóm có 4 người: C_5^4= 5

    Số cách chọn nhóm có 5 người: 1

    => Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm

  • Câu 23: Thông hiểu

    Một người bỏ ngẫu nhiên ba lá thu vào vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng phong bì của nó.

    Xét các bộ \left( x_{1};x_{2};x_{3}
ight) trong đó \left(
x_{1};x_{2};x_{3} ight) là một hoán vị của tập A = \left\{ 1;2;3 ight\}

    Ở đây x_{i} = i,(i = 1,2,3) tức là lá thư thứ i đã bỏ đúng địa chỉ.

    Gọi \Omega là tập họp tất cả các khả năng bỏ ba lá thư vào 3 phong bì, khi đó n_{\Omega} = 3! = 6

    Gọi A là biên cố "Có ít nhất một lá thư bő đúng phong bì".

    Các khả năng thuận lợi cho biến cố A là \Omega_{A} = \left\{
(1;2;3),(1;3;2),(3;2;1),(2,1,3) ight\}

    Vậy \left| \Omega_{A} ight| =
4 xác suất cần tính là P(A) =
\frac{2}{3}

  • Câu 24: Nhận biết

    Cho phép thử có không gian mẫu \Omega = \left\{ 1;2;3;4;5;...;12;13
ight\}. Gọi M là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố M?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:

    M = \left\{ 2;3;5;7;11;13
ight\}

  • Câu 25: Nhận biết

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có 3 bạn nam và 2 bạn nữ?

    Số cách chọn 3 bạn nam là: C_6^3 = 20 cách

    Số cách chọn 2 bạn nữ là: C_5^2 = 10 cách

    Áp dụng quy tắc nhân ta có: 

    C_6^3.C_5^2 = 20.10 = 200 cách

  • Câu 26: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a: 4 cách

    Số cách chọn b: 3 cách

    Số cách chọn c: 2 cách

    Số cách chọn d: 1 cách

    => Số các số có 4 chữ số khác nhau được tạo thành là  4! = 24  cách

  • Câu 27: Vận dụng

    Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

    Đa giác đều có 12 cạnh tương ứng với 12 đỉnh

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{12}^2 = 66 đoạn thẳng

    Mà số cạnh của đa giác là 12 cạnh

    => Số đường chéo thu được là: 66 - 12 = 54 đường chéo

  • Câu 28: Vận dụng

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Đáp án là:

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline{A} là biến cố người đó không thắng trận nào.

    \overline{A} =
\overline{A_{1}}.\overline{A_{2}}.\overline{A_{3}}...\overline{A_{n}} trong đó \overline{A_{i}} là biến cố người đó thắng trận thứ i và P\left(
\overline{A_{i}} ight) = 0,6;i = \overline{1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,6^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,6^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,6^{n} > 0,95

    \Leftrightarrow 0,6^{n} <
0,05

    \Leftrightarrow n >\log_{0,6}0,05

    Vậy giá trị nhỏ nhất của n bằng 6.

  • Câu 29: Thông hiểu

    Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?

    Giả sử các ghế ngồi đánh số từ 1 đến 8.

    Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).

    Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.

    Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.

    Vậy có 3! · 4! = 144 cách.

  • Câu 30: Nhận biết

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 31: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 32: Nhận biết

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 33: Vận dụng

    Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6.6 = 36

    Giả sử N là biến cố " Tổng số chấm trên hai mặt chia hết cho 3" 

    Trường hợp 1: Số chấm xuất hiện trong hai lần gieo là giống nhau

    (3; 3), (6; 6)

    Trường hợp 2: Số chấm xuất hiện trong hai lần gieo là khác nhau

    (1; 2), (1; 5); (2; 4), (3; 6), (4; 5)

    Mỗi khả năng xảy ra có 2 hoán vị nên số phần tử của biến cố là 10 khả năng xảy ra.

    => Số khả năng xảy ra của biến cố N là: 10 + 2 = 12 

    => Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là: P\left( N ight) = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 34: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 35: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

  • Câu 36: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

     Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 37: Thông hiểu

    Xác suất sút bóng phạt đền 11m của hai cầu thủ A và B lần lượt là 0,80,7. Biết rằng mỗi cầu thủ sút một quả phạt đền và hai người sút độc lập. Tìm xác suất để ít nhất 1 người sút bóng thành công?

    Xác suất sút không thành công của cầu thủ A là 1 - 0,8 = 0,2

    Xác suất sút không thành công của cầu thủ B là 1 - 0,7 = 0,3

    Xác suất cả hai cầu thủ sút không thành công là 0,2.0,3 = 0,06

    => Xác suất để ít nhất 1 người sút bóng thành công là: 1 - 0,06 = 0,94

  • Câu 38: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 39: Thông hiểu

    Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?

    Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ

    Khi đó ta có: n(\Omega) =
C_{13}^{5}

    TH1: lấy được 5 viên bi xanh C_{6}^{5} cách

    TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ C_{6}^{4}.C_{7}^{1} cách

    TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ C_{6}^{3}.C_{7}^{2} cách

    Do đó xác suất của biến cố A là:

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{59}{143}

  • Câu 40: Nhận biết

    Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.

    Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:

    Có 8 cách chọn bút chì.

    Có 6 cách chọn bút bi.

    Có 10 cách chọn cuốn tập.

    Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo