Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 2: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 3: Nhận biết

    Gieo hai lần liên tiếp một đồng xu. Gọi M là biến cố có ít nhất một lần mặt sấp xuất hiện, N là biến cố kết quả hai lần gieo giống nhau. Chọn khẳng định đúng?

    Ta có:

    M = \left\{ SS;SN;NS
ight\}

    N = \left\{ SS;NN ight\}

    \Rightarrow M \cup N = \left\{
SS;SN;NS;NN ight\}

  • Câu 4: Thông hiểu

    Trong một hộp giấy chứa 15 viên bi gồm 4 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để lấy được 4 viên bi có đủ màu?

    Chọn 4 viên bi từ 15 viên bi ta có: n\left( \Omega  ight) = C_{15}^4

    Gọi A là biến cố lấy được 4 viên bi có đủ ba màu.

    Chọn 1 xanh, 1 đỏ và 2 vàng: C_4^1.C_5^1.C_6^2

    Chọn 1 xanh, 2 đỏ và 1 vàng: C_4^1.C_5^2.C_6^1

    Chọn 2 xanh, 1 đỏ và 1 vàng: C_4^2.C_5^1.C_6^1

    \Rightarrow n(A) =
C_{4}^{1}.C_{5}^{1}.C_{6}^{2} + C_{4}^{1}.C_{5}^{2}.C_{6}^{1} +
C_{4}^{2}.C_{5}^{1}.C_{6}^{1}

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{48}{91}

  • Câu 5: Vận dụng

    Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?

    Ta có:

    Số cách chọn 2 nữ làm tổ trưởng và tổ phó là A_{15}^{2} cách.

    Số cách chọn 3 công nhân còn lại là nữ là: C_{13}^{3} cách.

    Số cách chọn 3 công nhân còn lại trong 18 công nhân là C_{18}^{3} cách.

    Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:

    A_{15}^{2}.\left( C_{18}^{3} - C_{13}^{3}
ight) = 111300.

  • Câu 6: Vận dụng cao

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Đáp án là:

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Gọi A là biến cố làm đúng x câu hỏi của bạn H

    Ta có xác suất để làm đúng 1 câu là \frac{1}{4}, xác suất làm sai 1 câu là \frac{3}{4}

    Theo quy tắc nhân xác suất ta có:

    Xác suất của biến cố A là P(A) =C_{50}^{x}.\left( \frac{1}{4} ight)^{x}.\left( \frac{3}{4} ight)^{50- x} = \frac{C_{50}^{x}}{3^{x}}.\left( \frac{3}{4}ight)^{50}

    Xét hệ bất phương trình sau:

    \left\{ \begin{matrix}\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x + 1}}{3^{x + 1}}.\left( \dfrac{3}{4} ight)^{50} \\\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x - 1}}{3^{x - 1}}.\left( \dfrac{3}{4} ight)^{50} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3C_{50}^{x} \geq C_{50}^{x + 1} \\C_{50}^{x} \geq 3C_{50}^{x - 1} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3.\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x + 1)!(49 - x)!} \\\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x - 1)!(51 - x)!} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{3}{50 - x} \geq \dfrac{1}{x + 1} \\\dfrac{1}{x} \geq \dfrac{3}{51 - x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{47}{4} \\x \leq \dfrac{51}{4} \\\end{matrix} ight.\ ;\left( x\mathbb{\in Z} ight) \Rightarrow x =12

  • Câu 7: Thông hiểu

    Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{16}^3 = 560

    B là biến cố "3 viên bi lấy được đầu màu đỏ"

    => n\left( B ight) = C_3^3 = 1

    => Xác suất lấy được cả 3 viên bi đỏ là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{1}{{560}}

  • Câu 8: Thông hiểu

    Chọn ngẫu nhiên 2 quả cầu trong một hộp giấy có chứa 4 quả cầu xanh, 3 quả cầu đỏ và 2 quả cầu vàng. Giả sử T là biến cố chọn được 2 quả khác màu, Z là biến cố đối của biến cố T. Tính số kết quả thuận lợi cho biến cố Z?

    Ta có: T là biến cố chọn được 2 quả khác màu

    Khi đó \overline{T} là biến cố chọn được hai quả cùng màu.

    Ta có: n\left( \overline{T} ight) =
C_{4}^{2} + C_{3}^{2} + C_{2}^{2} = 10

    Mà Z là biến cố đối của biến cố T

    \Rightarrow n\left( \overline{T} ight)
= n(Z) = 10

  • Câu 9: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 10: Nhận biết

    Một thí sinh phải chọn 10 trong số 20 câu hỏi. Hỏi có bao nhiêu cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn:

    Ta có:

    Ba câu đầu phải được chọn => Có 1 cách chọn

    Chọn 7 câu còn lại trong số 17 câu còn lại => Có C_{17}^7 = 19448

    Vậy có 19448 cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn.

  • Câu 11: Thông hiểu

    Trong một bể cá cảnh có chứa 40 con gồm 10 cá đỏ, 15 cá vàng; 8 cá đen, còn lại là cá bạc. Chọn ngẫu nhiên 6 con cá trong bể. Tính xác suất để lấy được 6 con cá có cùng màu?

    Gọi A là biến cố lấy được 6 con cá đỏ \Rightarrow P(A) =
\frac{C_{10}^{6}}{C_{40}^{6}}

    B là biến cố lấy được 6 con cá vàng \Rightarrow P(B) =
\frac{C_{15}^{6}}{C_{40}^{6}}

    C là biến cố lấy được 6 con cá đen \Rightarrow P(C) =
\frac{C_{8}^{6}}{C_{40}^{6}}

    D là biến cố lấy được 6 con cá bạc \Rightarrow P(D) =
\frac{C_{7}^{6}}{C_{40}^{6}}

    E là biến cố lấy được 6 con cá cùng màu

    \Rightarrow E = A \cup B \cup C \cup
D

    \Rightarrow P(E) = P(A) + P(B) + P(C) +
P(D)

    \Rightarrow P(E) =
\frac{C_{10}^{6}}{C_{40}^{6}} + \frac{C_{15}^{6}}{C_{40}^{6}} +
\frac{C_{8}^{6}}{C_{40}^{6}} + \frac{C_{7}^{6}}{C_{40}^{6}} \approx
1,37.10^{- 3}

  • Câu 12: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

  • Câu 13: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào
    được dùng hai lần. Số các cách để chọn những màu cần dùng là:

     Số các cách để chọn những màu cần dùng là: A_5^3 = 20

  • Câu 15: Thông hiểu

    Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

     Xếp 5 quyển sách Văn kề nhau có 5! cách

    Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách

    Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.

  • Câu 16: Thông hiểu

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

  • Câu 17: Nhận biết

    Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.

    Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:

    \Omega =
\{(1,S);(1,N);(2,S);(2,N);(3,S);(3,N);(4,S);(4,N);(5,S);(5,N);(6,S);(6,N)\}

  • Câu 18: Thông hiểu

    Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.

    a) Xác suất để lấy được 3 quả cầu màu đỏ là \frac{35}{816} Đúng||Sai

    b) Xác suất để lấy được 3 quả cùng màu là \frac{67}{816} Sai||Đúng

    c) Xác suất để lấy được 3 quả cầu có đủ ba màu là \frac{35}{136} Đúng||Sai

    d) Xác suất để lấy được 3 quả cầu khác màu và khác số là \frac{121}{816}. Đúng||Sai

    Đáp án là:

    Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.

    a) Xác suất để lấy được 3 quả cầu màu đỏ là \frac{35}{816} Đúng||Sai

    b) Xác suất để lấy được 3 quả cùng màu là \frac{67}{816} Sai||Đúng

    c) Xác suất để lấy được 3 quả cầu có đủ ba màu là \frac{35}{136} Đúng||Sai

    d) Xác suất để lấy được 3 quả cầu khác màu và khác số là \frac{121}{816}. Đúng||Sai

    C_{18}^{3} = 816 cách lấy 3 quả cầu từ hộp.

    a) Số cách lấy được 3 quả cầu màu đỏ là: C_{7}^{3}

    Xác suất để lấy được 3 quả cầu màu đỏ là P = \frac{C_{7}^{3}}{C_{18}^{3}} =
\frac{35}{816}

    b) Số cách lấy được 3 quả cầu cùng màu là: C_{7}^{3} + C_{6}^{3} + C_{5}^{3}

    Xác suất để lấy được 3 quả cùng màu là P
= \frac{C_{7}^{3} + C_{6}^{3} + C_{5}^{3}}{C_{18}^{3}} = \frac{65}{816}
eq \frac{67}{816}

    c) Số cách lấy được 3 quả cầu có đủ 3 màu là: C_{7}^{1}.C_{6}^{1}.C_{5}^{1}

    Xác suất để lấy được 3 quả cầu có đủ ba màu là: P =
\frac{C_{7}^{3}.C_{6}^{3}.C_{5}^{3}}{C_{18}^{3}} = \frac{210}{816} =
\frac{35}{136}

    d) Bước 1: Lấy 1 quả cầu màu vàng có 5 cách.

    Bước 2: Lấy 1 quả cầu màu xanh có 5 cách. (vì khác số với quả vàng).

    Bước 3: Lấy một quả màu đỏ có 5 cách (vì khác số với quả xanh và quả vàng).

    Suy ra có 5.5.5 = 125 cách lấy 3 quả cầu khác màu và khác số,

    Suy ra xác suất của biến cố là: P =
\frac{125}{C_{18}^{3}} = \frac{125}{816}

  • Câu 19: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?

    Số cách chọn 1 học sinh nam là: C_{25}^1 = 25 cách

    Số cách chọn 2 học sinh nữ là: C_{15}^2 = 105 cách

    Áp dụng quy tắc nhân ta có:

    Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:

    C_{25}^1.C_{15}^2 = 25.105 = 2625 cách

  • Câu 20: Vận dụng

    Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:

    Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.

    Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau

    Coi 6 quyển sách là hai bộ sách Toán và Vật Lí

    Số cách sắp xếp hai bộ sách là 2! = 2 (cách)

    Cách sắp xếp bộ sách Toán là 3! = 6

    Cách sắp xếp bộ sách Vật Lí là 3! = 6 

    => Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)

    => Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là: P = \frac{{72}}{{720}} = \frac{1}{{10}}

  • Câu 21: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 22: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b, c, d, e là: A_6^4 = 360 cách

    => Số các số tự nhiên có 5 chữ số đôi một khác nhau được tạo thành là: 360 . 6 = 2160 số

  • Câu 23: Nhận biết

    Cho 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    => Số các số tự nhiên có 5 chữ số được tạo thành là: {5^5} = 3125 số

  • Câu 24: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 25: Thông hiểu

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Tính xác suất của biến cố C?

    Ta có hai biến cố A và B là hai biến cố xung khắc suy ra P(A \cup B) = P(A) + P(B) = P(C)

    n(\Omega) = C_{9}^{2} = 36

    Biến cố A là tập hợp tất cả các tập con có hai phần tử của tập \left\{ 2;4;6;8 ight\}

    n(A) = C_{4}^{2} = 6 \Rightarrow P(A) =
\frac{6}{36} = \frac{1}{6}

    Biến cố B được hình thành từ hai công đoạn:

    + Chọn một số chẵn từ tập \left\{ 2;4;6;8
ight\} có 4 cách

    + Chọn một số lẻ từ tập \left\{ 1;3;5;7;9
ight\} có 4 cách

    Theo quy tắc nhân tập B có 4.5 = 20 cách

    Do đó n(B) = 20 \Rightarrow P(B) =
\frac{20}{36}

    \Rightarrow P(C) = P(A) + P(B) =
\frac{1}{6} + \frac{20}{36} = \frac{13}{18}

  • Câu 26: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 27: Vận dụng

    Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?

    Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi A_{ij};j
\in \left\{ 1;2 ight\} là biến cố ở hiệp thứ I, người thứ j thắng

    Vậy xác suất để bạn A giành chiến thắng là:

    P\left( A_{(i + 1)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap A_{(i + 2)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap \overline{A_{(i + 2)1}} \cap A_{(i + 3)1}
ight)

    = \frac{1}{2} + \frac{1}{2}.\frac{1}{2}
+ \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{7}{8}

  • Câu 28: Nhận biết

    Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là \frac{1}{5}\frac{2}{7}. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?

    Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:

    P(A).P(B) = \frac{1}{5}.\frac{2}{7} =
\frac{2}{35}

  • Câu 29: Thông hiểu

    Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?

    Ta có: n(\Omega) = 7! = 5040

    Biến cố B là hai quyển sách cùng loại nằm cạnh nhau

    \Rightarrow \overline{B} là biến cố các quyển sách không cùng loại nằm cạnh nhau.

    Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.

    \Rightarrow n\left( \overline{B} ight)
= 3!.4! = 144

    \Rightarrow n(B) = n(\Omega) - n\left(
\overline{B} ight) = 5040 - 144 = 4896

  • Câu 30: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 31: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''

    Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.

    Bộ các số tương ứng với số chấm có tổng bằng 2: không có.

    Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách

    Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách

    Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.

    Do đó số phần tử của biến cố B là \left|
\Omega_{B} ight| = 22

    Vậy xác suất cần tìm là: P(B) =
\frac{\left| \Omega_{B} ight|}{|\Omega|} = \frac{22}{216} =
\frac{11}{108}

  • Câu 32: Thông hiểu

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:

    Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.

    Theo đề bài ta có:

    0 ≤ 6k < 100

    => 0 ≤ k < 16,7

    Vậy có 17 chữ số thỏa mãn.

  • Câu 33: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 34: Nhận biết

    Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?

    Số cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài là số chỉnh hợp chập 4 của 6 phần tử.

    => Có A_6^4 = 360 cách.

  • Câu 35: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 36: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.

    Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn đều là nữ"

    => n\left( A ight) = C_3^2 = 3

    => Xác suất sao cho 2 người được chọn đều là nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{3}{{45}} = \frac{1}{{15}}

  • Câu 37: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào mục tiêu. Biết xác suất bắn trúng bia của người thứ nhất 0,8 và người thứ hai lần lượt là 0,9. Tính xác suất của biến cố A chỉ có đúng 1 người bắn trúng bia?

    Gọi M là biến cố người thứ nhất bắn trúng mục tiêu

    N là biến cố người thứ hai bắn trúng mục tiêu (M,N,\overline{M},\overline{N} là các biến cố độc lập).

    Từ giả thiết ta có: P(M) = 0,8;P(N) =
0,9

    A = M\overline{N} \cup
\overline{M}N

    \Rightarrow P(A) = P(M)P\left(
\overline{N} ight) + P\left( \overline{M} ight)P(N)

    = 0,8(1 - 0,9) + 0,9(1 - 0,8) =
0,26

  • Câu 38: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm là số chẵn => e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Số cách chọn a, b, c, d là: A_6^4 = 360

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 3 . 360 = 1080 số

  • Câu 39: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}

    Trướng hợp 1: e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

    Trường hợp 2: e = 0 => Có 1 cách chọn e

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 6 . 5 . 4 . 3 = 360 số

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 900 + 360 = 1260 số

  • Câu 40: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo