Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 2: Nhận biết

    Một hộp chứa 7 quả cầu đỏ và 5 quả cầu xanh. Lấy ngẫu nhiên 3 quả cầu trong hộp. Số phần tử không gian mẫu là:

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{12}^{3} =
220

  • Câu 3: Nhận biết

    Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số từ 4 chữ số khác nhau?

     Số tự nhiên có 4 chữ số khác nhau được tạo thành từ dãy số đã cho có dạng:

    \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a là: 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    Áp dụng quy tắc nhân ta có số các chữ số được tạo thành thỏa mãn yêu cầu bài toán là: 7 . 6 . 5 . 4 (số)

  • Câu 4: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm là số chẵn => e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Số cách chọn a, b, c, d là: A_6^4 = 360

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 3 . 360 = 1080 số

  • Câu 5: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 6: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 7: Thông hiểu

    Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?

    Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có: n(\Omega) = C_{10}^{5}

    Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.

    TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{3}.C_{6}^{2} cách.

    TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{4}.C_{6}^{1} cách.

    Suy ra n(\Omega) = C_{4}^{3}.C_{6}^{2} +
C_{4}^{4}.C_{6}^{1}

    Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{11}{42}

  • Câu 8: Thông hiểu

    Từ các chữ số 0, 1, 2, 3, 4, 5, 6 viết ngẫu nhiên một số tự nhiên có 5 chữ số đôi một khác nhau. Tính xác suất để các chữ số 1 và 2 có mặt trong số viết được.

    Gọi A là. biến cố: "Số được viết có mặt các chữ số 1 và 2"

    Tìm |\Omega|

    Giả sử số được viết có dạng \overline{abcde}.

    Có 6 cách chọn a.

    Tiếp theo có A_{6}^{4} cách chọn (b;c;d;e)

    Vậy số phần tử không gian mẫu là: |\Omega| = 6.A_{6}^{4} = 2160

    Tìm \left| \Omega_{A}
ight|

    Trường hợp 1: \overline{abcde} không có mặt chữ số 0:

    A_{5}^{2} cách chọn vị trí cho hai chữ số 1 và 2.

    Sau đó có A_{4}^{3} cách xếp 3 trong 4 chữ số 3, 4, 5, 6 vào ba vị trí còn lại.

    Vậy trường hợp này có A_{5}^{2}.A_{4}^{3}
= 480 khả năng.

    Trường hợp 2: \overline{abcde} có mặt ba chữ số 0, 1, 2:

    Có 4 cách chọn vị trí cho chữ số 0.

    Tiếp theo có A_{4}^{2} cách chọn vị trí cho hai chữ số 1 và 2.

    Cuối cùng có A_{4}^{2} cách chọn 2 trong 4 chữ số 3, 4, 5, 6 để viết vào hai vị trí còn lại.

    Vậy trường hợp này có 4.A_{4}^{2}.A_{4}^{2} = 576 khả năng.

    Số kết quả thuận lợi cho biến cố A là 480
+ 576 = 1056

    Vậy xác suất cần tính là: P(A) =
\frac{1056}{2160} = \frac{22}{45}

  • Câu 9: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 10: Vận dụng

    Với các chữ số 0;1;2;3;4;5;6. Có thể lập được bao nhiêu số có mười chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần và các chữ số khác có mặt đúng 1 lần?

    Trường hợp 1: Số 5 ở vị trí đầu tiên và 3 số 5 còn lại có C_{9}^{3} = 84 cách xếp

    Sáu chữ số còn lại có P_{6} =
720 cách xếp.

    => Có 84.720 = 60480 số.

    Trường hợp 2: Số 5 không ở vị trí đầu tiên có C_{9}^{4} = 126 cách sắp xếp 4 số 5.

    Vị trí đầu tiên có 5 cách xếp (trừ số 0).

    5 vị trí còn lại có P_{5} = 120 cách xếp.

    => Có 126.5.12 = 75600 số.

    Vậy có thể lập được 60480 + 75600 = 136080 số thỏa mãn bài toán.

  • Câu 11: Thông hiểu

    Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm một tấm thẻ. Tính xác suất để tổng các số ghi trên hai tấm thẻ rút ra không nhỏ hơn 3.

    Không gian mẫu \Omega = \left\{ (x;y)|x,y
\in \mathbb{N}^{*};1 \leq x \leq 5;1 \leq y \leq 5 ight\}

    Vì có 5 cách chọn x và có 5 cách chọn y nên |\Omega| = 5.5 = 25

    Gọi A là biến cố “Tổng hai số ghi trên hai tấm thẻ không nhỏ hơn 3”.

    Khi đó \overline{A} là biến cố “Tổng hai số ghi trên tấm thẻ nhỏ hơn 3”.

    Ta có: \Omega_{A} = \left\{ (1;1)
ight\} \Rightarrow \left| \Omega_{A} ight| = 1 \Rightarrow P\left(
\overline{A} ight) = \frac{1}{25}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{25} = 0,96

  • Câu 12: Thông hiểu

    Từ các số 1, 2, 3 có thể lập được bao nhiêu số khác nhau và mỗi số có các chữ số khác nhau:

    Dãy số đã cho có 3 chữ số 

    Mà những số cần tìm có các chữ số khác nhau

    => Số tự nhiên cần tìm có tối đa là 3 chữ số

    Số có 1 chữ số: 3 số

    Số có 2 chữ số khác nhau: 3 . 2 = 6 số

    Số có 3 chữ số khác nhau: 3 . 2 = 6 số

    => Có thể lập được số các số khác nhau và mỗi số có các chữ số khác nhau là: 3 + 6 + 6 = 15 số

  • Câu 13: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

  • Câu 14: Vận dụng

    Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là \frac{2}{5}, xác suất để cầu thủ A đá trúng lưới là \frac{3}{10}. Tính xác suất để có đúng một cầu thủ đá trúng lưới?

    Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới

    Suy ra biến cố có đúng một cầu thủ đá trúng lưới là X\overline{Y} \cup \overline{X}Y

    X\overline{Y};\overline{X}Y là hai biến cố xung khắc nên P\left(
X\overline{Y} \cup \overline{X}Y ight) = P\left( X\overline{Y} ight)
+ P\left( \overline{X}Y ight)

    \overline{X};Y là hai biến cố độc lập nên P\left( X\overline{Y} ight) =
P(X).P\left( \overline{Y} ight) = 0,3.0,4 = 0,12

    Tương tự P\left( \overline{X}Y ight) =
P\left( \overline{X} ight).P(Y) = (1 - 0,3).(1 - 0,4) =
0,42

    Vậy P\left( X\overline{Y} \cup
\overline{X}Y ight) = P\left( X\overline{Y} ight) + P\left(
\overline{X}Y ight) = 0,54

  • Câu 15: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 16: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 17: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số lẻ có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên lẻ => e ∈ {1; 3; 5}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a 

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số lẻ có 5 chữ số đôi một khác nhau được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

  • Câu 18: Thông hiểu

    Trong một thùng giấy có chứa 8 bóng đèn màu đỏ, 12 bóng đèn màu xanh. Lấy ngẫu nhiên 2 bóng đèn trong thùng. Tính xác suất để lấy được 2 bóng đèn cùng màu?

    Ta có:

    n(\Omega) = C_{20}^{2} = 190

    Gọi A là biến cố lấy được hai bóng đèn cùng màu.

    A1 là biến cố lấy được hai bóng đèn màu đỏ. \Rightarrow n\left( A_{1} ight) =
C_{8}^{2}

    A2 là biến cố lấy được hai bóng đèn màu xanh \Rightarrow n\left( A_{1} ight) =
C_{12}^{2}

    Do A1, A2 là hai biến cố xung khắc nên theo quy tắc cộng xác suất ta có:

    P(A) = P\left( A_{1} ight) + P\left(
A_{2} ight) = \frac{C_{8}^{2}}{C_{20}^{2}} +
\frac{C_{12}^{2}}{C_{20}^{2}} = \frac{47}{95}

  • Câu 19: Thông hiểu

    Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?

    Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại

    Số cách sắp xếp là 2!.2! = 4

    Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.

    Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách

  • Câu 20: Nhận biết

    Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?

    Số cách chọn một người từ 45 người là: C_{45}^{1} = 45 (cách)

    Vậy có 45 cách chọn tổ trưởng tổ dân phố.

  • Câu 21: Nhận biết

    Một phép thử có không gian mẫu là: \Omega = \left\{ 1;2;3;4;5;6 ight\}. Cặp biến cố nào sau đây không đối nhau?

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 22: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 23: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 24: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 25: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào mục tiêu. Biết xác suất bắn trúng bia của người thứ nhất 0,8 và người thứ hai lần lượt là 0,9. Tính xác suất của biến cố A chỉ có đúng 1 người bắn trúng bia?

    Gọi M là biến cố người thứ nhất bắn trúng mục tiêu

    N là biến cố người thứ hai bắn trúng mục tiêu (M,N,\overline{M},\overline{N} là các biến cố độc lập).

    Từ giả thiết ta có: P(M) = 0,8;P(N) =
0,9

    A = M\overline{N} \cup
\overline{M}N

    \Rightarrow P(A) = P(M)P\left(
\overline{N} ight) + P\left( \overline{M} ight)P(N)

    = 0,8(1 - 0,9) + 0,9(1 - 0,8) =
0,26

  • Câu 26: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 27: Thông hiểu

    Trong 100 vé số, có 5 vé trúng thưởng. Nam mua 3 tờ vé số. Tính xác suất để Nam trúng số.

    Số phần tử không gian mẫu là: C_{100}^3 = 161700

    Số vé không trúng thưởng là: 100 - 5 = 95 vé

    Gọi A là biến cố: "Ba tờ vé số có vé trúng thưởng"

    Trường hợp 1: Có 1 vé trúng, 2 vé không trúng

    Kết quả là: C_5^1.C_{95}^2

    Trường hợp 2: Có 2 vé trúng, 1 vé không trúng

    Kết quả là: C_5^2.C_{95}^1

    Trường hợp 3: Có 3 vé đều trúng

    Kết quả là: C_5^3

    => Số phần tử của biến cố A là:

    n\left( A ight) = C_5^1.C_{95}^2 + C_5^2.C_{95}^1 + C_5^3 = 23285

    => Xác suất để Nam trúng số là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{23285}}{{161700}} = \frac{{4657}}{{32340}}

    Vậy kết quả là: \frac{{4657}}{{32340}}

  • Câu 28: Thông hiểu

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

     Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số

    Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số

    Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số

    Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số

    Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số

    Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số

    Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số

    Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số

    Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số

    => Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số

  • Câu 29: Nhận biết

    Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi X là biến cố “Ba lần liên tiếp kết quả như nhau” và Y là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp”. Chọn khẳng định đúng?

    Ta có:

    X = \left\{ SSS;NNN
ight\}

    Y = \left\{ SSS;SSN;NNN
ight\}

    \Rightarrow X \cup Y = \left\{
SSS;SSN;NSS;NNN ight\}

  • Câu 30: Nhận biết

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 31: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 32: Thông hiểu

    Trong một buổi lễ kỉ niệm nhân ngày 20/10 có 20 đại biểu nữ và 10 đại biểu nam. Ban tổ chức mời 5 đại biểu phát biểu ý kiến. Tính xác suất để trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam?

    Gọi A là biến cố "Trong 5 phát biểu mời có đúng một phát biểu là của đại biểu nam".

    Gọi B là biến cố "Trong 5 phát biểu mời có đúng hai phát biểu là của đại biểu nam".

    Biến cố P(A \cup B) là "Trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam".

    Vì A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B)

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{C_{10}^{1}.C_{20}^{4}}{C_{30}^{5}} \\P(B) = \dfrac{C_{10}^{2}.C_{20}^{3}}{C_{30}^{5}} \\\end{matrix} ight.\  \Rightarrow P(A \cup B) \approx 0,7

  • Câu 33: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 34: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 35: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 36: Thông hiểu

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Kết quả thuận lợi cho biến cố "3 sinh viên vào cù môt quán" là (1;1;1),(2;2;2),(3;3;3)

    Vậy xác suất của biến cố này là \frac{3}{27} = \frac{1}{9}

  • Câu 37: Vận dụng cao

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Đáp án là:

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Gọi A là biến cố làm đúng x câu hỏi của bạn H

    Ta có xác suất để làm đúng 1 câu là \frac{1}{4}, xác suất làm sai 1 câu là \frac{3}{4}

    Theo quy tắc nhân xác suất ta có:

    Xác suất của biến cố A là P(A) =C_{50}^{x}.\left( \frac{1}{4} ight)^{x}.\left( \frac{3}{4} ight)^{50- x} = \frac{C_{50}^{x}}{3^{x}}.\left( \frac{3}{4}ight)^{50}

    Xét hệ bất phương trình sau:

    \left\{ \begin{matrix}\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x + 1}}{3^{x + 1}}.\left( \dfrac{3}{4} ight)^{50} \\\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x - 1}}{3^{x - 1}}.\left( \dfrac{3}{4} ight)^{50} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3C_{50}^{x} \geq C_{50}^{x + 1} \\C_{50}^{x} \geq 3C_{50}^{x - 1} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3.\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x + 1)!(49 - x)!} \\\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x - 1)!(51 - x)!} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{3}{50 - x} \geq \dfrac{1}{x + 1} \\\dfrac{1}{x} \geq \dfrac{3}{51 - x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{47}{4} \\x \leq \dfrac{51}{4} \\\end{matrix} ight.\ ;\left( x\mathbb{\in Z} ight) \Rightarrow x =12

  • Câu 38: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 39: Thông hiểu

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

  • Câu 40: Thông hiểu

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?

    Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:

    P =
C_{4}^{3}.(0,05)^{3}.0,95

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo