Cho phép thử có không gian mẫu
. Gọi
là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố
?
Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:
Cho phép thử có không gian mẫu
. Gọi
là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố
?
Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Tính xác suất của biến cố C?
Ta có hai biến cố A và B là hai biến cố xung khắc suy ra
Biến cố A là tập hợp tất cả các tập con có hai phần tử của tập
Biến cố B được hình thành từ hai công đoạn:
+ Chọn một số chẵn từ tập có 4 cách
+ Chọn một số lẻ từ tập có 4 cách
Theo quy tắc nhân tập B có 4.5 = 20 cách
Do đó
Lấy ngẫu nhiên 3 số từ tập
. Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 4 cách (Do a khác 0)
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số
Sơ đồ phân phối điện như hình vẽ:

Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là
. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.
Ta có:
Suy ra
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Lập số có 5 chữ số khác nhau
từ các chữ số
. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn
?
Lập số có 5 chữ số khác nhau từ các chữ số
. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn
?
Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:
Ta có:
Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là:
Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:
Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:
Số tự nhiên có 5 chữ số khác nhau có dạng:
Số cách chọn a là: 5 cách (vì a khác 0)
Số cách chọn b là: 5 cách
Số cách chọn c là: 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là: 2 cách
=> Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ
Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng
Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu
Sai||Đúng
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Số cách chọn 5 viên bi trong 15 viên bi là .
Gọi : “5 viên bi lấy được có đủ 3 màu "
Gọi : " 5 viên bi lấy được có không đủ 3 màu "
Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp
+ 5 viên màu đỏ có 1 cách
+ 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có cách.
Chỉ có xanh và đỏ có .
Chỉ có xanh và vàng có .
Chỉ có đỏ và vàng có .
Vậy .
Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp
. Gọi
là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố
?
Ta có: là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.
Lớp 11A chọn ngẫu nhiên 1 học sinh trong lớp để tham gia hoạt động đoàn trường. Xét hai biến cố:
Biến cố A: “Học sinh đó là nam”
Biến cố B: “Học sinh đó là học sinh giỏi”
Khẳng định nào sau đây đúng khi mô tả biến cố
?
Ta có:
: Học sinh đó là học sinh nam hoặc là học sinh giỏi
Cho tập hợp
. Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:
Xác suất để X không câu được cá là 1 - 0,1 = 0,9
Xác suất để Y không câu được cá là 1 - 0,15 = 0,85
Xác xuất X và Y trở về tay không (không có con cá nào) là
=> Xác suất X và Y ko trở về tay ko là:
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
Số cách chọn người đàn ông là 10 cách
Do người đàn ông và người phụ nữ được chọn không là vợ chồng
=> Số cách chọn người phụ nữ là 9 cách
=> Tổng số cách chọn một người đàn ông và một người đàn bà trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng là 9 . 10 = 90 cách
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có ít nhất một nữ.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn có ít nhất một nữ"
=> là biến cố "2 người được chọn không có nữ"
=>
=> Xác suất sao cho 2 người được chọn không có nữ là:
=> Xác suất sao cho 2 người được chọn có ít nhất một nữ:
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:
Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.
Trường hợp 1: Số 9 đứng đầu
Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.
=> Trường hợp 1 có 9 số được lập
Trường hợp 2: Số 8 đứng đầu
Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần
Vậy cả 2 trường hợp có 9 + 1 = 10 số
Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:
Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)
Xếp 3 nam có: 3.2.1 = 6 cách xếp
Xếp 3 nữ có: 3.2.1 = 6 cách xếp
Vậy có 2.(3.2.1)2 = 72 cách xếp
Ngân hàng đề thi gồm 100 câu hỏi. Mỗi đề thi có 5 câu. Một học sinh thuộc 80 câu. Tìm xác suất để học sinh đó ngẫu nhiên làm được một đề thi trong đó có 4 câu mình đã học thuộc.
Số cách chọn 1 đề thi bất ki (gồm 5 câu trong 100 câu) là
Gọi biến cố A: “học sinh đó làm được một đề thi trong đó có 4 câu mình đã học thuộc”.
Học sinh đã học thuộc 80 câu nên có cách chọn ra 4 câu đã học thuộc và có
cách chọn ra 1 câu hỏi còn lại chưa học thuộc.
Do đó
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?
Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ
Khi đó ta có:
TH1: lấy được 5 viên bi xanh cách
TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ cách
TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ cách
Do đó xác suất của biến cố A là:
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số
Đề thi Toán thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Một học sinh làm chắc chắn đúng 40 câu, vì thời gian còn lại hạn chế nên học sinh đã tô ngẫu nhiên 10 câu hỏi còn lại. Tính xác suất để học sinh đó được 9,2 điểm trong bài thi đó?
Khi khoanh ngẫu nhiên 1 câu thì xác suất đúng là 0,25 và xác suất sai là 0,75
Học sinh đó được 9,2 điểm nếu bạn khoanh đúng được 6 câu trong 10 câu còn lại
Do đó xác suất để bạn học sinh đó được 9,2 điểm là: .
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn đều là nữ"
=>
=> Xác suất sao cho 2 người được chọn đều là nữ là:
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi Y là biến cố “Trong đoàn cả 3 giáo viên đều là nữ”.
là biến cố “Trong đoàn công tác có ít nhất một giáo viên nam”
Ta có với
là 3 biến cố độc lập.
Suy ra
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a: 4 cách
Số cách chọn b: 3 cách
Số cách chọn c: 2 cách
Số cách chọn d: 1 cách
=> Số các số có 4 chữ số khác nhau được tạo thành là 4! = 24 cách
Gọi
là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập
. Chọn ngẫu nhiên một số từ tập
. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.
Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.
Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng
Ta có: do đó
suy ra
khi và chỉ khi
TH1: khi đó
khi và chỉ khi
Vậy trong trường hợp này có 5.4! = 120 số tự nhiên
TH2: khi đó
dư 1 khi và chỉ khi
Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên
Do đó
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?
Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.
Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.
Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.
Trường hợp này có 1 khả năng xảy ra.
Vậy số phần tử của biến cố B là:
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”
S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”
T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”
Ta có:
Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.
Ta có
Lại có:
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Số cần tìm là số chẵn => e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Số cách chọn a, b, c, d là:
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: số
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.
Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ
Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.
Ta có các trường hợp như sau:
TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn
Có
TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn
Có
TH3: 5 thẻ đều ghi số lẻ
Một phép thử có không gian mẫu là:
. Cặp biến cố nào sau đây không đối nhau?
Cặp biến cố không đối nhau là: vì
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?
Số cách lấy 2 viên bi màu xanh là: cách
Số cách lấy 4 viên bi màu vàng là: cách
Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:
cách
Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:
Biến cố đối của biến cố B là : “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.
Một nhóm gồm 20 học sinh. Giáo viên chủ nhiệm muốn chọn một nhóm nhỏ gồm 3 thành viên giữ các chức vụ trưởng ban, phó ban và thư kí trong sự kiện sắp tới. Hỏi có bao nhiêu cách chọn?
Chọn trưởng ban có 20 cách chọn.
Chọn phó ban có 19 cách chọn.
Chọn thư kí có 18 cách chọn.
Theo quy tắc nhân ta có số cách chọn là: .
Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Theo bài ra ta có:
Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần:
Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi
Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần:
Vậy số các số được tạo thành là: