Số cách xếp 6 học sinh
ngồi bất kì vào một ghế dài là:
Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử
Vậy số cách sắp xếp là cách.
Số cách xếp 6 học sinh
ngồi bất kì vào một ghế dài là:
Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử
Vậy số cách sắp xếp là cách.
Có bao nhiêu số tự nhiên có 3 chữ số:
Ta có:
Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999
=> Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là
và
?
Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2
A là biến cố cả hai người cùng bắn trúng.
Lúc đó
Vì là hai biến cố độc lập nên
Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?
Số tự nhiên có 5 chữ số khác nhau được tạo thành từ dãy số có dạng:
Trường hợp 1: e = 0
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
Số cách chọn d là 2 cách
=> Số các số được tạo thành là: 5 . 4 . 3 . 2 = 120 số
Trường hợp 2: e ≠ 0
=> e = {2; 8}
=> Số cách chọn e là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
Số cách chọn d là 2 cách
=> Số các số được tạo thành là: 2 .4. 4. 3 . 2 = 192 số
=> Từ dãy số tạo được số các số chẵn có 5 chữ số khác nhau là 120 + 192 = 312 số
Gieo một đồng tiền xu liên tiếp 3 lần. Tính xác suất của biến cố A “ít nhất một lần xuất hiện mặt sấp”?
Gieo một đồng tiền liên tiếp 3 lần
=> Số phần tử không gian mẫu là:
Ta có:
Biến cố A “ít nhất một lần xuất hiện mặt sấp”
=> Biến cố "không xuất hiện mặt sấp”
=>
=>
Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm
phân biệt?
Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.
Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: (đoạn thẳng.
Vậy đáp án là 21 đoạn thẳng.
Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?
Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi là biến cố ở hiệp thứ I, người thứ j thắng
Vậy xác suất để bạn A giành chiến thắng là:
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Gọi số cạnh của đa giác là n (cạnh)
Điều kiện
=> Số đỉnh tương ứng của đa giác là n đỉnh
Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)
=> Số đoạn thẳng tạo thành là đoạn
Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n
Ta có phương trình:
Vậy đa giác đó có 7 cạnh.
Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 4 cách (Do a khác 0)
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số
Cho một tập hợp A gồm 12 phần tử. Hỏi số tập hợp con gồm 3 phần tử của tập hợp A bằng bao nhiêu?
Ta có:
Mỗi tập con gồm 3 phân tử của tập A là một tổ hợp chập 3 của 12.
Vậy số tập con cần tìm là .
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?
Ta có:
Ba bạn được chọn có 1 nữ và 2 nam
=> Số cách chọn là: cách
Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:
Ta có:
Số cách sắp xếp 3 viên bi đen thành một dãy bằng
Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng
Số cách sắp xếp 3 viên bi xanh thành một dãy bằng
Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng
Vậy số phần tử của tập hợp A là:
Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là
và
. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: .
Xác suất để xạ thủ thứ hai bắn không trúng bia là: .
Gọi biến cố :"Có ít nhất một xạ thủ không bắn trúng bia ".
Khi đó biến cố có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: .
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: .
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó .
Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:
Số phần tử không gian mẫu là:
Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"
Nghĩa là cả hai thẻ rút được đều mang số lẻ
=> Số phần tử của biến cố T là
=> Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:
Số phần tử không gian mẫu là: 52
Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích
=> Số lá bích trong bộ bài là 13 lá
=> Xác suất để được lá bích là:
Có bao nhiêu cách lấy hai con bài từ cỗ bài tú lơ khơ gồm 52 con?
Mỗi cách lấy 2 con bài từ 52 con là một tổ hợp chập 2 của 52 phần tử.
Vậy số cách lấy hai con bài từ cỗ bài tú lơ khơ 52 con là cách.
Có bao nhiêu biển đăng kí xe máy nếu mỗi biển chứa một dãy gồm 1 chữ cái tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số?
Chọn một chữ cái trong 26 chữ cái có 26 cách
Chọn 1 chữ số khác 0 từ 1 đến 9 có 9 cách
Cuối cùng 5 chữ số còn lại mỗi số có 10 cách chọn
Vậy số các biển số xe thỏa mãn là 26.9.105 = 24300000 biển.
Cấu trúc đề thi cuối học kì môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm. Giáo viên chủ nhiệm đã áp dụng phần mềm để hoán vị 4 phương án trong cùng câu hỏi với nhau. Xác suất để có hai đề thi được tạo ra chỉ có sự giống nhau ở năm câu hỏi là x%. Giá trị của x gần nhất với giá trị nào sau đây?
Hoán vị 4 phương án trắc nghiệm có 4! = 24 cách
Xác suất đẻ hai câu hỏi giống nhau là , xác suất để hai câu hỏi khác nhau là
Chọn năm câu hỏi có sự giống nhau
Xác suất cần tìm là:
Vậy giá trị của x gần nhất với giá trị 4%.
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có số
TH2: Nếu cố 432 đứng đầu thì có số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có cách chọn số còn lại. Do đó trường hợp này có
Suy ra số phần tử của tập hợp S là
Vậy số phần tử không gian mẫu là
Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?
Ta có:
Biến cố B là hai quyển sách cùng loại nằm cạnh nhau
là biến cố các quyển sách không cùng loại nằm cạnh nhau.
Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.
Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?
Giả sử các ghế ngồi đánh số từ 1 đến 8.
Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).
Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.
Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.
Vậy có 3! · 4! = 144 cách.
Từ tập hợp các chữ số
có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?
Gọi
Gọi số có 4 chữ số là khi đó có 3 trường hợp xảy ra:
TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ
Có cách chọn 2 chữ số chẵn.
Có cách chọn 2 chữ số lẻ.
Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)
Có cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.
Vậy trường hợp này có: cách.
TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ
Có cách chọn 3 chữ số chẵn.
Có cách chọn 1 chữ số lẻ.
Có 4! cách xếp các số sau khi chọn
Vậy trường hợp này có: cách.
TH3: Số cần tìm có 4 chữ số chẵn
Có 4! = 24 cách xếp các số sau khi chọn
Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .
a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng
b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là
Đúng||Sai
c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là
Sai||Đúng
d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là
Đúng||Sai
Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .
a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng
b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là Đúng||Sai
c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là Sai||Đúng
d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là Đúng||Sai
Ta có:
A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”.
a) Biến cố A và B là hai biến cố độc lập.
b) Vì hai biến cố A và B là hai biến cố độc lập nên .
c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi là:
.
d) Xác suất để có ít nhất một trong hai bạn đạt điểm giỏi là:
Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?
Xác suất trả lời đúng trong một câu là:
Xác suất trả lời sai trong một câu là:
Gọi x là số câu Tuấn trả lời đúng.
Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra
Do đó Tuấn cần trả lời đúng không quá 3 câu
TH1: Học sinh trả lời đúng 3 câu:
TH2: Học sinh trả lời đúng 2 câu:
TH3: Học sinh trả lời đúng 1 câu:
TH4: Học sinh trả lời không đúng câu nào:
Vậy xác suất cần tìm là
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?
Số cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài là số chỉnh hợp chập 4 của 6 phần tử.
=> Có cách.
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để "Cả 2 học sinh đều đạt yêu cầu"?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi C là biến cố: "Cả 2 học sinh đều đạt yêu cầu".
Khi đó số kết quả thuận lợi cho biến cố C là
Vậy xác suất để cần tìm là:
Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:
Số phần tử không gian mẫu là 3! = 6
Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.
Ta xét các trường hợp sau:
Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.
Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách
Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.
Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.
Cả ba lá thư đều bỏ đúng có duy nhất 1 cách
=> n(A) = 4
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:
Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?
Đáp án: 8
Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?
Đáp án: 8
Đầu tiên, 9 con cá đói, mỗi con sẽ ăn 3 con cá đói khác để tạo thành 1 con cá no. Khi đó trong trò chơi còn lại 2 con cá đói và 9 con cá no.
Để số con cá no là tối đa thì 1 con cá đói sẽ ăn 1 con cá đói còn lại và 2 con cá no khác.
Khi đó, trong trò chơi sẽ không còn cá đói và có 8 con cá no.
Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần
Một tuần có bảy ngày và mỗi ngày thăm một bạn.
Có 12 cách chọn bạn vào ngày thứ nhất.
Có 11 cách chọn bạn vào ngày thứ hai.
Có 10 cách chọn bạn vào ngày thứ ba.
Có 9 cách chọn bạn vào ngày thứ tư.
Có 8 cách chọn bạn vào ngày thứ năm.
Có 7 cách chọn bạn vào ngày thứ sáu.
Có 6 cách chọn bạn vào ngày thứ bảy.
Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và
viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Theo bài ra ta có tổng số viên bi trong hộp là
Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là
Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là:
=> Xác suất lấy được 3 viên bi có đủ 3 màu là:
Do đó trong hộp có 14 viên bi và
Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ
Suy ra là biến cố 3 viên bi lấy được đều là bi đỏ.
Số kết quả thuận lợi cho là:
Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là
Gọi lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên
Kết quả thuận lợi cho biến cố "3 sinh viên vào cù môt quán" là
Vậy xác suất của biến cố này là
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu
Khi đó số kết quả thuận lợi cho biến cố A là:
Vậy xác suất để cần tìm là:
Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?
Do số bi xanh và số bi đỏ lấy ra bằng nhau
=> Có hai trường hợp xảy ra:
Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ
=> Số cách chọn là: cách
Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ
=> Số cách chọn là: cách
=> Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách
Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

Biết xác suất hỏng của mỗi bóng đèn là
. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?
Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là: