Số cách xếp 6 học sinh
ngồi bất kì vào một ghế dài là:
Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử
Vậy số cách sắp xếp là cách.
Số cách xếp 6 học sinh
ngồi bất kì vào một ghế dài là:
Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử
Vậy số cách sắp xếp là cách.
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn không có nữ"
=>
=> Xác suất sao cho 2 người được chọn không có nữ là:
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?
Gọi hai súc sắc là M; N
Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".
Ta có C là hợp của hai biến cố xung khắc tức là
Ta có
Vì A, B là hai biến cố độc lập với nhau
Nên và B độc lập với nhau;
và A độc lập với nhau
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là
Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là
Sai||Đúng
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là: Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là Sai||Đúng
Gọi A là biến cố: “Chọn được hộp A”
B là biến cố: “Chọn được hộp B”
C là biến cố: “Chọn được hộp C”
Ta có:
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
c) Xác suất để lấy được viên bi đỏ trong hộp C là
d) E là biến cố: “Bi chọn ra có màu đỏ”.
Xác suất để lấy được một viên bi đỏ là
Áp dụng công thức ta có:
Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.
Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”
Ta có:
Vì A và B là hai biến cố độc lập.
Nên xác suất để hai quả cầu lấy ra đều màu trắng là
Tương tự xác suất để hai quả cầu lấy ra đều:
Màu xanh:
Mảu đỏ:
Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:
Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?
Do số bi xanh và số bi đỏ lấy ra bằng nhau
=> Có hai trường hợp xảy ra:
Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ
=> Số cách chọn là: cách
Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ
=> Số cách chọn là: cách
=> Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách
Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không đỏ.
Số phần tử không gian mẫu là:
B là biến cố "cả 3 viên bi không đỏ"
Trường hợp 1: Lấy được 1 viên bi trắng, 2 viên bi đen: cách
Trường hợp 2: Lấy được 2 viên bi trắng, 1 viên bi đen: cách
Trường hớp 3: Lấy được 3 viên chỉ màu trắng cách
Trường hợp 4: Lấy được 3 viên chỉ màu đen cách
=>
=> Xác suất lấy được cả 3 viên bi không đỏ là:
Cho tập hợp E = {0; 1; 2; 3; 4; 5; 6; 7} có thể lập được bao nhiêu số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn?
Số các chữ số có 5 chữ số khác nhau được tạo thành từ các chữ số đã cho có dạng:
Do E là số chẵn =>
Trường hợp 1: e = 0
Số cách chọn a là 7 cách
Số cách chọn b là 6 cách
Số cách chọn c là 5 cách
Số cách chọn d là 4 cách
=> Số các chữ số được tạo thành là: 7.6.5.4.1 = 840 (số)
Trường hợp 2:
Số cách chọn e là 3 cách
Số cách chọn a là 6 cách (vì a khác 0)
Số cách chọn e là 6 cách
Số cách chọn e là 5 cách
Số cách chọn e là 4 cách
=> Số các chữ số được tạo thành là: 3.6.6.5.4 = 2160 (số)
Vậy số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn có thể lập được là:
840 + 2160 = 3000 số
Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?
Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại
Số cách sắp xếp là 2!.2! = 4
Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.
Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách
Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Chọn tên 4 học sinh để cho đi du lịch. Hỏi có bao nhiêu cách chọn các học sinh:
Số cách chọn 4 học sinh là tổ hợp chập 4 của 15 học sinh:
Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

Biết xác suất hỏng của mỗi bóng đèn là
. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?
Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}
=> Số cách chọn c là 3 cách
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số
Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?
Vì nên hai biến cố H và K là hai biến cố đối nhau.
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và
viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Theo bài ra ta có tổng số viên bi trong hộp là
Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là
Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là:
=> Xác suất lấy được 3 viên bi có đủ 3 màu là:
Do đó trong hộp có 14 viên bi và
Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ
Suy ra là biến cố 3 viên bi lấy được đều là bi đỏ.
Số kết quả thuận lợi cho là:
Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:
Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?
Ta có:
Số cách chọn 2 nữ làm tổ trưởng và tổ phó là cách.
Số cách chọn 3 công nhân còn lại là nữ là: cách.
Số cách chọn 3 công nhân còn lại trong 18 công nhân là cách.
Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:
.
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Biết rằng xác suất để thắng một trận game là
. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Gọi n là số trận người đó chơi.
A là biến cố người đó thắng ít nhất 1 trận
Suy ra là biến cố người đó không thắng trận nào.
trong đó
là biến cố người đó thắng trận thứ i và
Ta có bất phương trình
Vậy giá trị nhỏ nhất của n bằng 9.
Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt không nhỏ hơn 16?
Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố '' Tổng số chấm trên các mặt của ba lần gieo không nhỏ hơn 16”.
Ta có bộ các số tương ứng với số chấm có tổng không nhỏ hơn 16 là (4;6;6); (6;4;6), (6;6;4); (5;5;6), (6;5;5); (5;6;5); (5;6;6), (6;5;6), (6;6;5) và (6;6;6).
Do đó số phần tử của biến cố A là:
Vậy xác suất cần tìm là:
Có 10 hộp sữa trong đó có 3 hộp hư. Chọn ngẫu nhiên 4 hộp. Xác suất để được ít nhất 1 hộp hư.
Số phần tử không gian mẫu là:
Số hộp sữa không bị hư là: 10 - 3 = 7 (hộp)
Số cách chọn 4 hộp sữa mà không hộp sữa nào bị hư nào là:
Số cách để chọn 4 hôp sữa ít nhất một hộp hư là: (cách chọn)
=> Xác suất để được ít nhất 1 hộp hư là:
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?
Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.
Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.
Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.
Trường hợp này có 1 khả năng xảy ra.
Vậy số phần tử của biến cố B là:
Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi
là biến cố sản phẩm được kiểm tra lần thứ
thuộc loại không đạt,
. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các
?
Mô tả đúng là:
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?
Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là:
=> Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: cách
Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?
Chọn 1 người ngồi vào 1 vị trí bất kì.
Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: cách.
Vậy số cách sắp xếp là 6 cách.
Trong một thùng có chứa 7 bi xanh, 5 bi đỏ và 4 bi vàng. Lấy ngẫu nhiên 4 viên bi trong hộp. Hỏi có bao nhiêu cách chọn sao cho 4 viên bi được chọn có đủ ba màu?
TH1: Lấy 1 bi xanh, 1 bi đỏ và 2 bi vàng ta có: cách.
TH2: Lấy 2 bi xanh, 1 bi đỏ và 1 bi vàng ta có: cách.
TH3: Lấy 1 bi xanh, 2 bi đỏ và 1 bi vàng ta có: cách.
Vậy có tất cả 910 cách chọn số viên bi theo yêu cầu.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Số tự nhiên có hai chữ số có dạng:
Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số
Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số
Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số
Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số
Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số
Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số
Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số
Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số
Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số
=> Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số
Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Gieo đồng tiền 2 lần nên ta có:
Số phần tử không gian mẫu là:
Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"
=> biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"
=>
=>
=> Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là
Gọi lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên
Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".
Các kết quả thuận lợi cho biến cố B là
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và hai hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó.
Khi đó các kết quả thuận lợi cho biến cố B là:
Vậy xác suất của biến cố này là
Có ba chiếc hộp:
Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.
Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.
Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.
Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:
Lấy ngẫu nhiên một hộp:
Gọi B là biến cố lấy được hộp 1
C là biến cố lấy được hộp 2
D là biến cố lấy được hộp 3
Suy ra
Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.
Ta có:
=>
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:
Bảng chữ cái Tiếng Anh có 26 chữ cái.
Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là: cách chọn.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau:
. Tính xác suất để tổng ba số được chọn là 12.
Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau:
Do đó số phần tử của không gian mẫu là:
Gọi A là biến cố “Tổng ba số được chọn là 12”.
Ta có các bộ 3 số có tổng bằng 12 gồm: (1,2,9); (1,3,8); (1,4,7); (1,5,6); (2,3,7); (2;4;6); (3,4,5).
Suy ra ta có
Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.
Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:
Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?
21772800
Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?
21772800
Đánh số thứ tự các nhóm là A, B, C, D
Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.
Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.
Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có cách, xếp 3 học sinh khá còn lại có 3! cách.
Bước 3: xếp 7 học sinh trung bình
+ Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.
+ Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.
Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có cách.
Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có cách.
Xếp 2 học sinh trung bình còn lại có 1 cách.
Do đó số cách sắp xếp là:
Vậy
Từ các chữ số 1; 2; 5; 7; 8 lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 278?
Số các chữ số có ba chữ số khác nhau được tạo thành từ các số 1; 2; 5; 7; 8 có dạng:
Do số tự nhiên tạo thành nhỏ hơn số 276 =>
Trường hợp 1: a = 2
Nếu b = 7 mà số tự nhiên có ba chữ số khác nhau => c có 2 cách chọn {1; 5}
=> Số các số được tạo thành là: 1 . 1 . 2 = 2 (số)
Nếu b khác 7, b có 2 cách chọn {1, 5} => c sẽ có: 5 - 1 - 1 = 3 (cách chọn)
=> Số các số được tạo thành là: 1.2.3 = 6 (số)
Vậy trường hợp 1 ta có tất cả 8 số được tạo thành
Trường hợp 2: a = 1
Khi đó b sẽ có 4 cách chọn {2, 5, 7, 8} và c có 3 cách chọn
=> Số các số được tạo thành là: 1 . 4 . 3 = 12 (số)
=> Vậy số các số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 278 được tạo thành là: 8 + 12 = 20 số
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?
Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách
Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách
Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc
Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách
=> Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.
Cho một tập hợp A gồm 12 phần tử. Hỏi số tập hợp con gồm 3 phần tử của tập hợp A bằng bao nhiêu?
Ta có:
Mỗi tập con gồm 3 phân tử của tập A là một tổ hợp chập 3 của 12.
Vậy số tập con cần tìm là .