Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 2: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 3: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 4: Thông hiểu

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?

    Số tự nhiên có 5 chữ số khác nhau được tạo thành từ dãy số có dạng:

    \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Trường hợp 1: e = 0

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 5 . 4 . 3 . 2 = 120 số

    Trường hợp 2: e ≠ 0

    => e = {2; 8}

    => Số cách chọn e là 2 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 2 .4. 4. 3 . 2 = 192 số

    => Từ dãy số tạo được số các số chẵn có 5 chữ số khác nhau là 120 + 192 = 312 số

  • Câu 5: Nhận biết

    Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?

    Ta có:

    \Omega = \left\{ 1,2,3,4,5,6
ight\}

    Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là: \left\{ 2;4;6 ight\}

  • Câu 6: Thông hiểu

    Cho hai hộp đựng các viên bi nhiều màu:

    Hộp 1 có 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.

    Hộp 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.

    Lấy ngẫu nhiên mỗi hộp 1 viên bi. Gọi A là biến cố “Hai viên bi lấy ra cùng màu”. Tính P(A)?

    Giả sử A_{1} là biến cố hai viên bi lấy được cùng màu trắng

    Khi đó P\left( A_{1} ight) =
\frac{4}{15}.\frac{7}{18}

    A_{2} là biến cố hai viên bi lấy được cùng màu đỏ

    Khi đó P\left( A_{2} ight) =
\frac{5}{15}.\frac{6}{18}

    A_{3} là biến cố hai viên bi lấy được cùng màu xanh

    Khi đó P\left( A_{3} ight) =
\frac{6}{15}.\frac{5}{18}

    \Rightarrow P(A) = P\left( A_{1} ight)
+ P\left( A_{2} ight) + P\left( A_{3} ight) =
\frac{44}{135}

  • Câu 7: Vận dụng

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?

    Gọi A_{i} là biến cố bóng đèn thứ i sáng với i =
\overline{1;4}

    Gọi A là biến cố có ít nhất một bóng đèn sáng

    Để không có bóng đèn nào sáng ta có các trường hợp như sau:

    TH1: Cả 4 bóng đèn cùng hỏng

    B là biến cố bốn bóng đèn bị hỏng

    Khi đó xác suất để cả 4 bóng đèn bị hỏng là: P(B) = 0,05^{4} = 0,00000625

    TH2: Cả 3 bóng đèn cùng hỏng

    C là biến cố ba bóng đèn bị hỏng

    Khi đó xác suất để có 3 bóng đèn bị hỏng là: P(C) = 4.0,05^{3}.0,95 = 0,000475

    TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng

    Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là: P(D) = 2.0,05^{2}.0,95^{2} =
0,0045125

    Vậy xác suất để có ít nhất 1 bóng đèn sáng là

    P(A) = 1 - \left\lbrack P(C) + P(B) +
P(D) ightbrack = 0,99500625

  • Câu 8: Thông hiểu

    Thực hiện gieo hai lần một con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện ít nhất một lần mặt năm chấm. Tính xác suất của biến cố A?

    Ta có: n(\Omega) = 6.6 = 36 và A là biến cố xuất hiện ít nhất một lần mặt năm chấm

    Suy ra \overline{A} là biến cố không lần nào xuất hiện mặt năm chấm.

    Ta có: n\left( \overline{A} ight) = 5.5
= 25 \Rightarrow P\left( \overline{A} ight) =
\frac{25}{36}

    \Rightarrow P(A) = 1 - \frac{25}{36} =
\frac{11}{36}

  • Câu 9: Thông hiểu

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

     Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số

    Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số

    Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số

    Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số

    Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số

    Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số

    Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số

    Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số

    Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số

    => Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số

  • Câu 10: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 11: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào mục tiêu. Biết xác suất bắn trúng bia của người thứ nhất 0,8 và người thứ hai lần lượt là 0,9. Tính xác suất của biến cố A chỉ có đúng 1 người bắn trúng bia?

    Gọi M là biến cố người thứ nhất bắn trúng mục tiêu

    N là biến cố người thứ hai bắn trúng mục tiêu (M,N,\overline{M},\overline{N} là các biến cố độc lập).

    Từ giả thiết ta có: P(M) = 0,8;P(N) =
0,9

    A = M\overline{N} \cup
\overline{M}N

    \Rightarrow P(A) = P(M)P\left(
\overline{N} ight) + P\left( \overline{M} ight)P(N)

    = 0,8(1 - 0,9) + 0,9(1 - 0,8) =
0,26

  • Câu 12: Thông hiểu

    Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?

    Đáp án: 8

    Đáp án là:

    Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?

    Đáp án: 8

     Đầu tiên, 9 con cá đói, mỗi con sẽ ăn 3 con cá đói khác để tạo thành 1 con cá no. Khi đó trong trò chơi còn lại 2 con cá đói và 9 con cá no.

    Để số con cá no là tối đa thì 1 con cá đói sẽ ăn 1 con cá đói còn lại và 2 con cá no khác.

    Khi đó, trong trò chơi sẽ không còn cá đói và có 8 con cá no.

  • Câu 13: Thông hiểu

    Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:

    Ta có: \overline{M} là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.

    Do đó số phần tử của \overline{M} =
C_{4}^{4} + C_{6}^{4} = 16

  • Câu 14: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 15: Nhận biết

    Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Chọn mô tả đúng dưới đây?

    Mô tả không gian mẫu đúng là: \Omega =
\left\{ (a;b)|a,b \in \left\{ 1;2;3;4;5;6 ight\} ight\}

  • Câu 16: Nhận biết

    Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:

    Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:2.C_{10}^2 = 90

  • Câu 17: Thông hiểu

    Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tìm xác suất để trong 6 sản phẩm lấy ra có không quá một phế phẩm?

    Số cách chọn ra 6 sản phẩm từ 10 sản phẩm là n(\Omega) = C_{10}^{6}

    Gọi biến cố A: “Lấy 6 sản phẩm từ lô hàng đó có không quá một phế phẩm”.

    Trường hợp 1: Không có phế phẩm nào.

    Số cách chọn 6 sản phẩm không phải là phế phẩm là C_{8}^{6} cách.

    Trường hợp 2: Có 1 phế phẩm và 5 sản phẩm còn lại.

    Số cách chọn có 1 phế phẩm và 5 sản phẩm còn lại là C_{5}^{1}.C_{8}^{5} cách.

    Khi đó: n(A) = C_{8}^{6} +
C_{5}^{1}.C_{8}^{5} \Rightarrow P(A) = \frac{2}{3}

  • Câu 18: Thông hiểu

    Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không đỏ.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{16}^3 = 560

    B là biến cố "cả 3 viên bi không đỏ"

    Trường hợp 1: Lấy được 1 viên bi trắng, 2 viên bi đen: C_7^1.C_6^2 cách

    Trường hợp 2: Lấy được 2 viên bi trắng, 1 viên bi đen: C_7^2.C_6^1 cách

    Trường hớp 3: Lấy được 3 viên chỉ màu trắng C_7^3 cách

    Trường hợp 4: Lấy được 3 viên chỉ màu đen C_6^3 cách 

    => n\left( B ight) = C_7^1.C_6^2 + C_7^2.C_6^1 + C_7^3 + C_6^3 = 286

    => Xác suất lấy được cả 3 viên bi không đỏ là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{286}}{{560}} = \frac{{143}}{{280}}

  • Câu 19: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 20: Thông hiểu

    Học sinh A làm bài kiểm tra 15 phút môn Toán gồm 10 câu hỏi trắc nghiệm, mỗi câu hỏi gồm 4 phương án trả lời và chỉ có một phương án đúng. Nếu trả lời đúng 1 câu hỏi được 1 điểm, trả lời sai không có điểm. Biết A đã làm đúng 5 câu hỏi, vì thời gian hạn chế nên A đã khoanh trả lời ngẫu nhiên các câu hỏi còn lại. Tính xác suất để A đạt được ít nhất 8 điểm?

    Bạn A trả lời đúng 5 câu hỏi nên A đã đạt được 5 điểm

    Để được ít nhất 8 điểm thì A phải trả lời đúng ít nhất 3 câu trong 5 câu còn lại.

    TH1: 3 câu đúng, 2 câu sai P_{1} =
C_{5}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{2}

    TH2: 4 câu đúng, 1 câu sai P_{2} =
C_{5}^{4}.\left( \frac{1}{4} ight)^{4}.\left( \frac{3}{4}
ight)^{1}

    TH3: 5 câu đúng P_{3} = C_{5}^{5}.\left(
\frac{1}{4} ight)^{5}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} + P_{3} \approx 0,1035

  • Câu 21: Vận dụng

    Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?

    Xác suất trả lời đúng trong một câu là: \frac{1}{4}

    Xác suất trả lời sai trong một câu là: \frac{3}{4}

    Gọi x là số câu Tuấn trả lời đúng.

    Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra

    5x - 2(10 - x) \leq 1 \Leftrightarrow 7x
\leq 21 \Leftrightarrow x \leq 3

    Do đó Tuấn cần trả lời đúng không quá 3 câu

    TH1: Học sinh trả lời đúng 3 câu: P_{1} =
C_{10}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{7}

    TH2: Học sinh trả lời đúng 2 câu: P_{2} =
C_{10}^{2}.\left( \frac{1}{4} ight)^{2}.\left( \frac{3}{4}
ight)^{8}

    TH3: Học sinh trả lời đúng 1 câu: P_{3} =
C_{10}^{1}.\left( \frac{1}{4} ight)^{1}.\left( \frac{3}{4}
ight)^{9}

    TH4: Học sinh trả lời không đúng câu nào: P_{4} = \left( \frac{3}{4}
ight)^{10}

    Vậy xác suất cần tìm là P(A) = P_{1} +
P_{2} + P_{3} + P_{4} \approx 0,7759

  • Câu 22: Thông hiểu

    Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?

    + Gọi số tự nhiên có 6 chữ số là \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} .

    Chọn a_{1} : có 9 cách.

    Chọn a_{2} : có 10 cách.

    Chọn a_{3} : có 10 cách.

    Chọn a_{4} : có 10 cách.

    Chọn a_{5} : có 10 cách.

    Chọn a_{6} : có 10 cách.

    Suy ra số các phần tử của S là: 9.10^{5} cách.

    Chọn ngẫu nhiên một số từ S \Rightarrow
n(\Omega) = 9.10^{5}.

    + Gọi A là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".

    TH1: a_1= 1.

    Có 5 vị trí để xếp số 0.

    Và có A_{8}^{4} cách chọn 4 vị trí còn lại.

    Suy ra có: 5.A_{8}^{4} = 8400 số.

    TH2: a_1 = 2,\ldots,9

    Chọn a_{1}: có 8 cách.

    Xếp hai số 0 và 1 có: A_{5}^{2} =
20 cách.

    Xếp vào 3 vị trí còn lại có: A_{7}^{3} =
210 cách.

    Suy ra có: 8.20.210 = 33600 số.

    \Rightarrow n(A) = 8400 + 33600 =
42000

    \Rightarrow P(A) = \frac{n(A)}{n(\Omega)}
= \frac{42000}{900000} = \frac{7}{150}.

  • Câu 23: Vận dụng

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

  • Câu 24: Nhận biết

    Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ra 5 viên bi trong đó có 3 viên bi màu xanh?

    Số cách chọn 5 viên bi trong đó có 3 viên bi màu xanh là: C_{10}^3.C_5^2 = 1200 cách

  • Câu 25: Vận dụng cao

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Số phần tử không gian mẫu n(\Omega) =C_{15}^{5} = 3003

    Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu

    => \overline{A} là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:

    TH1: lấy được 5 quả cầu đỏ có 1 cách

    TH2: lấy được 5 quả màu vàng có C_{6}^{5}= 6 cách

    TH3: lấy được chỉ có xanh và đỏ C_{4}^{4}.C_{5}^{1} + C_{4}^{3}.C_{5}^{2} +C_{4}^{2}.C_{5}^{3} + C_{4}^{1}.C_{5}^{4} = 125 cách

    TH4: lấy được chỉ có xanh và vàng C_{4}^{4}.C_{6}^{1} + C_{4}^{3}.C_{6}^{2} +C_{4}^{2}.C_{6}^{3} + C_{4}^{1}.C_{6}^{4} = 246 cách

    TH5: lấy được chỉ có đỏ và vàng C_{5}^{4}.C_{6}^{1} + C_{5}^{3}.C_{6}^{2} +C_{5}^{2}.C_{6}^{3} + C_{5}^{1}.C_{6}^{4} = 455 cách

    Vậy n\left( \overline{A} ight) = 833\Rightarrow n(A) = n(\Omega) - n\left( \overline{A} ight) =2170

    \Rightarrow P(A) =\frac{310}{429}

  • Câu 26: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 27: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 28: Thông hiểu

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong đó có 1 học sinh nam là: C_{25}^1.C_{15}^2 = 2625 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455 cách

    => Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: 2625 + 455 = 3080 cách

  • Câu 29: Nhận biết

    Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?

    Số học sinh của lớp là 20 + 15 = 35 (học sinh)

    Số cách chọn 3 học sinh làm ban cán sự lớp là: C_{35}^3 = 6545 (cách chọn)

  • Câu 30: Nhận biết

    Chọn ngẫu nhiên một số nguyên dương không vượt quá 20. Giả sử biến cố M là biến cố số được chọn là số nguyên tố. Mô tả nào sau đây đúng?

    Các số nguyên dương không lớn hơn 20 là: 1;2;3;4;....;20

    Các số nguyên tố không vượt quá 20 là: 2;3;5;7;11;13;17;19

    Vậy M = \left\{ 2;3;5;7;11;13;17;19ight\}

  • Câu 31: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 32: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

    Nếu đi bằng ô tô có 10 cách

    Nếu đi bằng tàu hỏa có 5 cách

    Nếu đi bằng tàu thủy có 3 cách

    Nếu đi bằng máy bay có 2 cách

    Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn

  • Câu 33: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 34: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 35: Thông hiểu

    Rút ngẫu nhiên 2 tấm thẻ từ một hộp chứa 20 thẻ được đánh số từ 1 đến 20. Tính số phần tử của biến cố M “tích hai tấm thẻ rút được là số chẵn”?

    Tích hai số trên tấm thẻ được rút ra là số chẵn khi có ít nhất một số chẵn.

    Trường hợp 1: Cả hai số lấy được đều là số chẵn

    => Số cách sắp xếp là: C_{10}^{2} cách

    Trường hợp 2: Hai tấm thẻ lấy được gồm một số chẵn và một số lẻ ta có: 10 . 10 = 100 cách

    Suy ra n(M) = C_{10}^{2} + 100 =
145 phần tử.

  • Câu 36: Thông hiểu

    Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?

    Xét các trường hợp:

    TH1: Học sinh lớp 12 ngồi đầu dãy:

    Chọn vị trí cho học sinh lớp 12 có 2 cách

    Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách

    Hoán vị các học sinh còn lại cho nhau có 4! Cách.

    Trường hợp này được: 2.2.4! = 96 cách.

    TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:

    Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.

    Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách

    Trường hợp này được 4!.2! = 48 cách

    Như vậy số cách sắp xếp là 48 + 96 = 144

    \Rightarrow n(W) = 144

  • Câu 37: Thông hiểu

    Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

     Xếp 5 quyển sách Văn kề nhau có 5! cách

    Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách

    Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.

  • Câu 38: Thông hiểu

    Lấy ngẫu nhiên hai viên bi trong hộp có 10 viên bi gồm 4 viên bi đỏ, 3 viên bi xanh, 2 viên bi vàng và 1 viên bi trắng. Tính xác suất của biến cố B “hai viên bi lấy ra có cùng màu”.

    Ta có:

    n(\Omega) = C_{10}^{2} = 45

    Gọi các biến cố

    D lấy được hai viên bi đỏ \Rightarrow
n(D) = C_{4}^{2} = 6

    E lấy được hai viên bi xanh \Rightarrow
n(E) = C_{3}^{2} = 3

    F lấy được 2 viên bi vàng \Rightarrow
n(F) = C_{2}^{2} = 1

    Ta có D, E, F là các biến cố đôi một xung khắc và B = D \cup E \cup F

    \Rightarrow P(B) = P(D) + P(E) +
P(F)

    = \frac{6}{45} + \frac{3}{45} +
\frac{1}{45} = \frac{2}{9}

  • Câu 39: Thông hiểu

    Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:

    Gieo hai con súc sắc cân đối và đồng chất

    => Số phần tử không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"

    Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)

    Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị 

    => n\left( D ight) = 12

    => Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là: 

    P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 40: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo