Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 2: Thông hiểu

    Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là 80\%70\%?

    Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2

    A là biến cố cả hai người cùng bắn trúng.

    Lúc đó A = A_{1} \cap A_{2}

    A_{1};A_{2} là hai biến cố độc lập nên

    \Rightarrow P(A) = P\left( A_{1} \cap
A_{2} ight) = P\left( A_{1} ight).P\left( A_{2} ight)

    = 0,8.0,7 = 0,56 = 56\%

  • Câu 3: Thông hiểu

    Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .

    a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng

    b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là 0,8096 Đúng||Sai

    c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là 0,096 Sai||Đúng

    d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là 0,9904 Đúng||Sai

    Đáp án là:

    Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .

    a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng

    b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là 0,8096 Đúng||Sai

    c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là 0,096 Sai||Đúng

    d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là 0,9904 Đúng||Sai

    Ta có:

    A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”.

    a) Biến cố A và B là hai biến cố độc lập.

    b) Vì hai biến cố A và B là hai biến cố độc lập nên P(AB) = 0,92.0,88 = 0,8096.

    c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi là:

    P\left( \overline{AB} ight) = 0,08.0,12
= 0,0096.

    d) Xác suất để có ít nhất một trong hai bạn đạt điểm giỏi là:

    P(A \cup B) = P(A) + P(B) -
P(AB)

    = 0,92 + 0,88 - 0,8094 =
0,9904

  • Câu 4: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 5: Vận dụng

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 6: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 7: Vận dụng

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Đáp án là:

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Gọi A là biến cố: “Chọn được hộp A”

    B là biến cố: “Chọn được hộp B”

    C là biến cố: “Chọn được hộp C”

    Ta có:

    P(A) = P(B) = P(C) =
\frac{1}{3}

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{3}.\frac{3}{7} = \frac{1}{7}

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{1}{3}.\frac{2}{5} =
\frac{2}{15}

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{C_{2}^{1}}{C_{4}^{1}} =
\frac{1}{2}

    d) E là biến cố: “Bi chọn ra có màu đỏ”.

    Xác suất để lấy được một viên bi đỏ là

    P\left( E|A ight) =
\frac{4}{7};P\left( E|B ight) = \frac{3}{5};P\left( E|C ight) =
\frac{1}{2}

    Áp dụng công thức ta có:

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    \Rightarrow P(E) =
\frac{1}{3}.\frac{4}{7} + \frac{1}{3}.\frac{3}{5} +
\frac{1}{3}.\frac{1}{2} = \frac{39}{70}

  • Câu 8: Vận dụng

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^5} = 32

    Giả sử C là biến cố "được ít nhất một đồng tiền xuất hiện mặt sấp"

    => Biến cố \overline C " không có đồng tiền xuất hiện mặt sấp"

    => \overline C  = \left\{ {N,N,N,N,N} ight\}

    => n\left( {\overline C } ight) = 1 \Rightarrow P\left( {\overline C } ight) = \frac{1}{{32}}

    => P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{{32}} = \frac{{31}}{{32}}

  • Câu 9: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 10: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 11: Nhận biết

    Một thí sinh phải chọn 10 trong số 20 câu hỏi. Hỏi có bao nhiêu cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn:

    Ta có:

    Ba câu đầu phải được chọn => Có 1 cách chọn

    Chọn 7 câu còn lại trong số 17 câu còn lại => Có C_{17}^7 = 19448

    Vậy có 19448 cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn.

  • Câu 12: Vận dụng

    Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_9^2 = 36

    Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"

    Nghĩa là cả hai thẻ rút được đều mang số lẻ

    => Số phần tử của biến cố T là n\left( A ight) = C_5^2 = 10

    => Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{10}}{{36}} = \frac{5}{{18}}

  • Câu 13: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

  • Câu 14: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 15: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 16: Vận dụng

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần

    Một tuần có bảy ngày và mỗi ngày thăm một bạn.

    Có 12 cách chọn bạn vào ngày thứ nhất.

    Có 11 cách chọn bạn vào ngày thứ hai.

    Có 10 cách chọn bạn vào ngày thứ ba.

    Có 9 cách chọn bạn vào ngày thứ tư.

    Có 8 cách chọn bạn vào ngày thứ năm.

    Có 7 cách chọn bạn vào ngày thứ sáu.

    Có 6 cách chọn bạn vào ngày thứ bảy.

    Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.

  • Câu 17: Nhận biết

    Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?

    Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.

    => Có A_7^3 = 210 cách.

  • Câu 18: Thông hiểu

    Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?

    Gọi Y là biến cố “Trong đoàn cả 3 giáo viên đều là nữ”.

    \overline{Y} là biến cố “Trong đoàn công tác có ít nhất một giáo viên nam”

    Ta có Y = HTS với H;S;T là 3 biến cố độc lập.

    Suy ra P(Y) = P(HTS) =
\frac{1}{2}.\frac{2}{5}.\frac{1}{3} = \frac{1}{15}

    P\left( \overline{Y} ight) = 1 - P(Y)
= 1 - \frac{1}{15} = \frac{14}{15}

  • Câu 19: Thông hiểu

    Từ các số 1, 2, 3 có thể lập được bao nhiêu số khác nhau và mỗi số có các chữ số khác nhau:

    Dãy số đã cho có 3 chữ số 

    Mà những số cần tìm có các chữ số khác nhau

    => Số tự nhiên cần tìm có tối đa là 3 chữ số

    Số có 1 chữ số: 3 số

    Số có 2 chữ số khác nhau: 3 . 2 = 6 số

    Số có 3 chữ số khác nhau: 3 . 2 = 6 số

    => Có thể lập được số các số khác nhau và mỗi số có các chữ số khác nhau là: 3 + 6 + 6 = 15 số

  • Câu 20: Nhận biết

    Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?

    Số cách chọn một người từ 45 người là: C_{45}^{1} = 45 (cách)

    Vậy có 45 cách chọn tổ trưởng tổ dân phố.

  • Câu 21: Thông hiểu

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 22: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 23: Nhận biết

    Ban chấp hành liên chi đoàn khối 11 có 3 nam, 2 nữ. Cần thành lập một ban kiểm tra gồm 3 người trong đó có ít nhất 1 nữ. Số cách thành lập ban kiểm tra là:

    Số cách lập ban kiểm tra có 3 người là: C_5^3 = 10 cách

    Sô cách lập ban kiểm tra có 3 người trong đó không có nữ là: C_3^3 = 1 cách

    => Số cách thành lập ban kiểm tra có ít nhất một nữ là: 10 - 1 = 9 cách

  • Câu 24: Thông hiểu

    Đề thi Toán thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Một học sinh làm chắc chắn đúng 40 câu, vì thời gian còn lại hạn chế nên học sinh đã tô ngẫu nhiên 10 câu hỏi còn lại. Tính xác suất để học sinh đó được 9,2 điểm trong bài thi đó?

    Khi khoanh ngẫu nhiên 1 câu thì xác suất đúng là 0,25 và xác suất sai là 0,75

    Học sinh đó được 9,2 điểm nếu bạn khoanh đúng được 6 câu trong 10 câu còn lại

    Do đó xác suất để bạn học sinh đó được 9,2 điểm là: C_{10}^{4}.(0,25)^{6}.(0,75)^{4}.

  • Câu 25: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 26: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 27: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 28: Thông hiểu

    Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?

    Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.

    Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!

  • Câu 29: Nhận biết

    Có bao nhiêu cách chọn một tổ trưởng và một tổ phó từ một nhóm 12 học sinh? Biết khả năng được chọn của mỗi học sinh trong nhóm là như nhau.

    Mỗi cách chọn 2 người từ 12 người để làm một tổ trưởng và một tổ phó là một chỉnh hợp chập 2 của 12

    Vậy số cách chọn là A_{12}^{2} =
132.

  • Câu 30: Thông hiểu

    Lấy ngẫu nhiên hai viên bi trong hộp có 10 viên bi gồm 4 viên bi đỏ, 3 viên bi xanh, 2 viên bi vàng và 1 viên bi trắng. Tính xác suất của biến cố B “hai viên bi lấy ra có cùng màu”.

    Ta có:

    n(\Omega) = C_{10}^{2} = 45

    Gọi các biến cố

    D lấy được hai viên bi đỏ \Rightarrow
n(D) = C_{4}^{2} = 6

    E lấy được hai viên bi xanh \Rightarrow
n(E) = C_{3}^{2} = 3

    F lấy được 2 viên bi vàng \Rightarrow
n(F) = C_{2}^{2} = 1

    Ta có D, E, F là các biến cố đôi một xung khắc và B = D \cup E \cup F

    \Rightarrow P(B) = P(D) + P(E) +
P(F)

    = \frac{6}{45} + \frac{3}{45} +
\frac{1}{45} = \frac{2}{9}

  • Câu 31: Thông hiểu

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

  • Câu 32: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn có đúng một người nữ"

    => n\left( A ight) = C_3^1 .C_7^1= 21

    => Xác suất sao cho 2 người được chọn có đúng một người nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{21}}{{45}} = \frac{7}{{15}}

  • Câu 33: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra đều là môn toán.

    Trên giá sách có 4 + 3 + 2 = 9 quyển sách

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = C_9^3 = 84

    Gọi B là biến cố "3 quyển được lấy ra đều là môn toán"

    => n\left( B ight) = C_4^3=4

    => Xác suất để 3 quyển được lấy ra đều là môn toán là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{4}}{{84}} = \frac{1}{21}

  • Câu 34: Nhận biết

    Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử C là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố C?

    Các phần tử của biến cố là:

    C = \left\{
(1,2,3);(1,2,4);(1,2,5);(1,3,4) ight\}

    Vậy n(\Omega) = 4

  • Câu 35: Thông hiểu

    Có bao nhiêu cách xếp 6 người ngồi xung quanh một bàn tròn có 6 chỗ, hai cách ngồi được coi là như nhau nếu có thể nhận được từ cách kia bằng cách quay bàn đi một góc nào đó?

    Vì bàn tròn ghế không có sắp xếp thứ tự.

    Ta chọn một người ngồi ở một vị trí trong 6 chỗ làm mốc.

    Xếp 5 người còn lại vào 5 vị trí trống còn lại ta được 5! = 120 cách

    Vậy ta có: 1 . 120 = 120 cách để sắp xếp 6 người ngồi vào bàn tròn 6 chỗ

  • Câu 36: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 37: Thông hiểu

    Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?

    Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).

    Như vậy, ta có C_{15}^2 = \frac{{15!}}{{13!.2!}} = 105 trận đấu.

  • Câu 38: Nhận biết

    Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi X là biến cố “Ba lần liên tiếp kết quả như nhau” và Y là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp”. Chọn khẳng định đúng?

    Ta có:

    X = \left\{ SSS;NNN
ight\}

    Y = \left\{ SSS;SSN;NNN
ight\}

    \Rightarrow X \cup Y = \left\{
SSS;SSN;NSS;NNN ight\}

  • Câu 39: Thông hiểu

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để Lấy được ba số đều là số chẵn và tổng của chúng nhỏ hơn 19?

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi C là biến cố “ba số đều là số chẵn và tổng của chúng nhỏ hơn 19”.

    Bộ ba số thỏa yêu cầu gồm: (2,4,6); (2,4,8), (2,4,10); (2,6,8); (2,6,10); (4,6,8).

    Suy ra ta có n(C) = 6

    Vậy xác suất cần tìm là: P(C) =
\frac{6}{165} = \frac{2}{55}

  • Câu 40: Thông hiểu

    Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

    Cứ 3 đỉnh của đa giác sẽ tạo thành một tam giác

    Số cách chọn 3 trong 10 đỉnh của đa giác là: C_{10}^3 = 120

    Vậy số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là: 120 tam giác

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo