Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?
Sử dụng định nghĩa biến cố đối ta được:
là biến cố “Hai học sinh được chọn đều là nữ”.
Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?
Sử dụng định nghĩa biến cố đối ta được:
là biến cố “Hai học sinh được chọn đều là nữ”.
Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?
Số cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài là số chỉnh hợp chập 4 của 6 phần tử.
=> Có cách.
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng câu là
Với .
Xét hàm với
và
.
Ta có lớn nhất
.
Suy ra .
Vậy .
Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?
Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.
Do đó số phần tử của không gian mẫu là: 5! = 120
Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.
Lá thứ nhất có đúng 1 cách chọn.
Lá thứ 2 có 4 cách chọn.
Lá thứ 3 có 3 cách chọn
Lá thứ 4 có 2 cách chọn
Lá thứ 5 có 1 cách chọn
Suy ra
Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số
Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?
Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ
Khi đó ta có:
TH1: lấy được 5 viên bi xanh cách
TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ cách
TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ cách
Do đó xác suất của biến cố A là:
Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.
Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:
Có 8 cách chọn bút chì.
Có 6 cách chọn bút bi.
Có 10 cách chọn cuốn tập.
Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.
Trong một xưởng sản xuất sử dụng hai hệ thống máy móc chạy song song. Xác xuất để hệ thống máy A hoạt động tốt là , xác suất để hệ thống máy B hoạt động tốt là
. Tính xác suất để xưởng sản xuất hoàn thành đơn hàng đúng hạn. Biết rằng xưởng chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy phải hoạt động tốt.
Xác suất để hệ thống A hoạt động tốt, B hoạt động không tốt là:
Xác suất để hệ thống A hoạt động không tốt, B hoạt động tốt là:
Xác suất để cả hai hệ thống A, B hoạt động tốt là:
Xác suất để công ty hoàn thành đơn hàng đúng hạn là:
Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:
Số phần tử không gian mẫu là 3! = 6
Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.
Ta xét các trường hợp sau:
Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.
Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách
Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.
Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.
Cả ba lá thư đều bỏ đúng có duy nhất 1 cách
=> n(A) = 4
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?
Xếp 5 quyển sách Văn kề nhau có 5! cách
Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách
Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.
Ta có:
Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”
Ta có:
Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là và
?
Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2
A là biến cố cả hai người cùng bắn trúng.
Lúc đó
Vì là hai biến cố độc lập nên
Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là , xác suất để cầu thủ A đá trúng lưới là
. Tính xác suất để có đúng một cầu thủ đá trúng lưới?
Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới
Suy ra biến cố có đúng một cầu thủ đá trúng lưới là
Vì là hai biến cố xung khắc nên
Vì là hai biến cố độc lập nên
Tương tự
Vậy
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi B là biến cố: "Có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu".
Số cách chọn 1 học sinh đạt yêu cầu là 27.
Số cách chọn 1 học sinh không đạt yêu cầu là 3.
Chọn 2 học sinh mà trong đó có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu là:
Khi đó số kết quả thuận lợi cho biến cố B là 81
Vậy xác suất để cần tìm là:
Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi là biến cố sản phẩm được kiểm tra lần thứ
thuộc loại không đạt,
. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các
?
Mô tả đúng là:
Cho . Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?
Số tự nhiên có 5 chữ số có dạng:
Do số đang xét là số chẵn
=> Có 3 cách chọn e
=> Số cách chọn là:
=> Từ tập A có thể lập được số các số chẵn có 5 chữ số là: số
Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: . Tính xác suất để Lấy được ba số đều là số chẵn và tổng của chúng nhỏ hơn 19?
Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau:
Do đó số phần tử của không gian mẫu là:
Gọi C là biến cố “ba số đều là số chẵn và tổng của chúng nhỏ hơn 19”.
Bộ ba số thỏa yêu cầu gồm: (2,4,6); (2,4,8), (2,4,10); (2,6,8); (2,6,10); (4,6,8).
Suy ra ta có
Vậy xác suất cần tìm là:
Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp . Gọi
là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố
?
Ta có: là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.
Cho phép thử có không gian mẫu . Gọi
là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố
?
Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Số tự nhiên có hai chữ số có dạng:
Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số
Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số
Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số
Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số
Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số
Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số
Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số
Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số
Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số
=> Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số
Cho . Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Số cần tìm là số chẵn => e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Số cách chọn a, b, c, d là:
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: số
Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.
Số tự nhiên có 7 chữ số có dạng:
Xét trường hợp có chữ số 0 đứng đầu
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là
=> Số các số được tạo thành là:
Xét trường hợp không có chữ số 0 đứng đầu
Ta có:
Vì a = 0 => a có 1 cách chọn
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách
=> Số các số được tạo thành là:
Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có số
TH2: Nếu cố 432 đứng đầu thì có số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có cách chọn số còn lại. Do đó trường hợp này có
Suy ra số phần tử của tập hợp S là
Vậy số phần tử không gian mẫu là
Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: . Tính xác suất để tổng ba số được chọn là số lẻ?
Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau:
Do đó số phần tử của không gian mẫu là:
Gọi B là biến cố “Tổng ba số được chọn là số lẻ”
Tổng ba số được chọn tạo thành số lẻ thì ba số được chọn cần thỏa điều kiện: 3 số đều là số lẻ, hai số chẵn và 1 số lẻ.
TH1: 3 số đều là số lẻ:
TH2: số cách chọn hai số chẵn và 1 số lẻ là
Suy ra ta có
Vậy xác suất cần tìm là:
Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:
M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.
N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.
T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.
Hai biến cố nào xung khắc với nhau?
Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.
Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.
Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A “có đúng 2 lần xuất hiện mặt sấp”?
Gieo một đồng tiền liên tiếp 3 lần
=> Số phần tử không gian mẫu là:
Ta có:
Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:
Số điện thoại cần tìm có dạng
Số cách chọn a có 10 cách
Số cách chọn b có 10 cách
Số cách chọn c có 10 cách
Số cách chọn d có 10 cách
=> Có tối đa số điện thoại là: 10.10.10.10 = 104 = 10 000 số
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?
Số tự nhiên có ba chữ số khác nhau có dạng:
Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}
=> Có 2 cách chọn c
Số cách chọn a là 3 cách
Số cách chọn b là 2 cách
=> Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số
Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.
Số học sinh của lớp là: 20 + 26 = 46 (học sinh)
Số cách chọn 3 học sinh làm cán bộ lớp là:
Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là:
Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:
cách chọn
Cho . Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?
Số tự nhiên có 3 chữ số có dạng:
Do số cần tìm chia hết cho 5 => c ∈ {0; 5}
=> Có 2 cách chọn c
Số cách chọn a là 5 cách
Số cách chọn b là 6 cách
=> Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Một lớp học sinh có 40 học sinh gồm 25 nam và 15 nữ. Chọn ngẫu nhiên 5 học sinh để trực nhật lớp. Hỏi số cách chọn 5 học sinh đó, biết rằng nhóm học sinh được chọn có 3 nam và 2 nữ?
Chọn 3 học sinh nam từ 25 học sinh nam có cách.
Chọn 2 học sinh nam từ 15 học sinh nam có cách.
Vậy số cách chọn thỏa mãn yêu cầu đề bài là chọn.
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?
Xác suất trả lời đúng trong một câu là:
Xác suất trả lời sai trong một câu là:
Gọi x là số câu Tuấn trả lời đúng.
Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra
Do đó Tuấn cần trả lời đúng không quá 3 câu
TH1: Học sinh trả lời đúng 3 câu:
TH2: Học sinh trả lời đúng 2 câu:
TH3: Học sinh trả lời đúng 1 câu:
TH4: Học sinh trả lời không đúng câu nào:
Vậy xác suất cần tìm là
Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:
Một con súc sắc cân đối đồng chất được gieo 5 lần
=> Số phần tử của không gian mẫu là:
Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"
=> Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}
=>
=> Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:
Cho 5 chữ số 0; 1; 2; 3; 4. Từ 5 chữ số đó có thể lập được bao nhiêu chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần?
Số tự nhiên có năm chữ số có dạng:
Do mỗi số đó mỗi chữ số trên có mặt một lần =>
Số cần tìm là số chẵn => e ∈ {0; 2; 4}
Trường hợp 1: e = 0 => e có 1 cách chọn
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 1 là: 4.3.2 = 24 số
Trường hợp 2: e ∈ {2; 4} => Có 2 cách chọn e
Số cách chọn a là 3 cách (Do a khác 0)
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 2 là: 2.3.3.2 = 36 số
=> Có thể lập được số các chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần là 36 + 24 = 60 số