Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 2: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 3: Thông hiểu

    Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.

    Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”

    Ta có: P(A) = \frac{3}{25};P(B) =
\frac{10}{25}

    Vì A và B là hai biến cố độc lập.

    Nên xác suất để hai quả cầu lấy ra đều màu trắng là

    P(AB) = P(A).P(B) = \frac{3}{25}.\frac{10}{25} =
\frac{30}{625}

    Tương tự xác suất để hai quả cầu lấy ra đều:

    Màu xanh: \frac{15}{25}.\frac{9}{25} =
\frac{135}{625}

    Mảu đỏ: \frac{7}{25}.\frac{6}{25} =
\frac{42}{625}

    Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:

    \frac{30}{625} + \frac{135}{625} + \frac{42}{625}
= \frac{207}{625}

  • Câu 4: Vận dụng

    Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?

    Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi A_{ij};j
\in \left\{ 1;2 ight\} là biến cố ở hiệp thứ I, người thứ j thắng

    Vậy xác suất để bạn A giành chiến thắng là:

    P\left( A_{(i + 1)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap A_{(i + 2)1} ight) + P\left(
\overline{A_{(i + 1)1}} \cap \overline{A_{(i + 2)1}} \cap A_{(i + 3)1}
ight)

    = \frac{1}{2} + \frac{1}{2}.\frac{1}{2}
+ \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{7}{8}

  • Câu 5: Thông hiểu

    Cho tập hợp A =
\left\{ 1;2;3;4 ight\}. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?

    Ta có:

    Số có 1 chữ số có 4 số.

    Số có 2 chữ số có A_{4}^{2} = 12 số.

    Số có 3 chữ số có A_{4}^{3} = 24 số.

    Số có 4 chữ số có P_{4} = 24 số.

    Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.

  • Câu 6: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 7: Thông hiểu

    Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:

    Chọn nhóm có 2 thành viên: C_{10}^2

    Chọn nhóm có 3 thành viên từ 8 thành viên còn lại: C_8^3

    Chọn nhóm có 5 thành viên từ 5 thành viên còn lại: C_5^5

    => Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: C_{10}^2.C_8^3.C_5^5

  • Câu 8: Thông hiểu

    Một lớp học sinh có 40 học sinh gồm 25 nam và 15 nữ. Chọn ngẫu nhiên 5 học sinh để trực nhật lớp. Hỏi số cách chọn 5 học sinh đó, biết rằng nhóm học sinh được chọn có 3 nam và 2 nữ?

    Chọn 3 học sinh nam từ 25 học sinh nam có C_{25}^{2} cách.

    Chọn 2 học sinh nam từ 15 học sinh nam có C_{15}^{2} cách.

    Vậy số cách chọn thỏa mãn yêu cầu đề bài là C_{25}^{2}.C_{15}^{2} = 241500 chọn.

  • Câu 9: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?

     Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Do số đang xét là số chẵn => e ∈ \{2; 4; 6\}

    => Có 3 cách chọn e

    => Số cách chọn a, b, c, d là: {6^4} = 1296

    => Từ tập A có thể lập được số các số chẵn có 5 chữ số là: 3 . 1296 = 3888 số

  • Câu 10: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 11: Thông hiểu

    Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.

    Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".

    Tìm |\Omega|

    Chọn 10 tấm thẻ trong 30 tấm thẻ: có C_{30}^{10} cách chọn \Rightarrow |\Omega| = C_{30}^{10}

    Tìm \left| \Omega_{A}
ight|

    Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có C_{15}^{5} cách chọn.

    Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.

    Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có C_{12}^{4} cách chọn.

    Vậy số kết quả thuận lợi cho biến cố A là \left| \Omega_{A} ight| =
3.C_{15}^{5}C_{12}^{4}

    Vậy xác suất cần tìm là: P(A) =
\frac{3.C_{15}^{5}C_{12}^{4}}{C_{30}^{10}} = \frac{99}{667}

  • Câu 12: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn có đúng một người nữ"

    => n\left( A ight) = C_3^1 .C_7^1= 21

    => Xác suất sao cho 2 người được chọn có đúng một người nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{21}}{{45}} = \frac{7}{{15}}

  • Câu 13: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 14: Thông hiểu

    Từ các chữ số 9;1;5;7;2 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 276?

    Gọi \overline{abc} là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.

    Trường hợp 1: a = 1

    Số cách chọn \overline{abc}1.4.3 = 12 số.

    Trường hợp 2: a = 2;b = 7

    Số cách chọn \overline{abc} là: 1.1.2 = 2 số.

    Trường hợp 3: \left\lbrack \begin{matrix}
a = 2;b = 1 \\
a = 2;b = 5 \\
\end{matrix} ight.

    Số cách chọn \overline{abc} là: 1.2.3 = 6 số.

    Vậy có 20 số thỏa mãn yêu cầu bài toán.

  • Câu 15: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 16: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 17: Vận dụng

    Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.

    Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m

    Số cách chọn được m là: A_3^2

    Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6

    Gọi \overline {abcd} ;\left( {a,b,c,d \in \left\{ {m,0;2;4;6} ight\}} ight) là số thỏa mãn yêu cầu bài toán

    Trường hợp 1:  Nếu a = m ta có:

    Số cách chọn a là 1 cách

    Số cách chọn b, c, d là A_4^3 cách

    Trướng hợp 2: Nếu a khác m thì ta có:

    Số cách chọn a là 3 cách

    Nếu b = m thì có 1 cách chọn b và A_3^2 cách chọn c, d

    Nếu c = m thì có 1 cách chọn c và A_3^2 cach chọn b, d

    => Số các số được tạo thành là: A_3^2.\left[ {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} ight)} ight] = 360

  • Câu 18: Thông hiểu

    Số cách sắp xếp A;B;C;D;E;F;G vào một dãy ghế dài sao cho hai đầu dãy ghế là vị trí của AG?

    Ta xếp A và G vào hai vị trí đầu dãy và có thể hoán đổi cho nhau nên ta có 2! cách xếp.

    Xếp 5 người còn lại vào 5 vị trí giữa ta có 5! cách xếp.

    Vậy ta có: 2!.5! = 240 cách xếp.

  • Câu 19: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào bia điểm. Biết xác suất bắn trúng 10 điểm của người thứ nhất và người thứ hai lần lượt là 0,750,85. Tính xác suất để có ít nhất một cung thủ bắn trúng 10 điểm?

    Gọi A là biến cố có ít nhất một cung thủ bắn trúng 10 điểm

    Suy ra \overline{A} là biến cố không có cung thủ nào trúng 10 điểm

    \Rightarrow P\left( \overline{A} ight)
= (1 - 0,75).(1 - 0,85) = 0,0375

    \Rightarrow P(A) = 1 - P\left(
\overline{A} ight) = 1 - 0,0375 = 0,9625

  • Câu 20: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm là số chẵn => e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Số cách chọn a, b, c, d là: A_6^4 = 360

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 3 . 360 = 1080 số

  • Câu 22: Nhận biết

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 23: Thông hiểu

    Trong thùng bóng đèn có 5 bóng đèn loại I và 7 bóng đèn loại II, các bóng đèn khác nhau cả về hình dáng và màu sắc. Lấy ra lần lượt 5 bóng đèn. Giả sử biến cố A_{k} là biến cố lấy được bóng đèn loại I lần thứ k. Mô tả biến cố lấy được 4 bóng đèn loại I theo các biến cố A_{k}.

    Vì lấy được 4 bóng loại I nên trong 5 lượt lấy có một lần lấy được bóng loại II. Từ giả thiết suy ra \overline{A_{k}} là biến cố lần thứ k lấy được bóng đèn loại II. Do đó ta có:

    A =A_{1}.A_{2}.A_{3}.A_{4}.\overline{A_{5}}\cup A_{1}.\overline{A_{2}}.A_{3}.A_{4}.A_{5}\cup A_{1}.A_{2}.\overline{A_{3}}.A_{4}.A_{4} \cup A_{1}.A_{2}.A_{3}.\overline{A_{4}}.A_{5}

  • Câu 24: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào mục tiêu. Biết xác suất bắn trúng bia của người thứ nhất 0,8 và người thứ hai lần lượt là 0,9. Tính xác suất của biến cố A chỉ có đúng 1 người bắn trúng bia?

    Gọi M là biến cố người thứ nhất bắn trúng mục tiêu

    N là biến cố người thứ hai bắn trúng mục tiêu (M,N,\overline{M},\overline{N} là các biến cố độc lập).

    Từ giả thiết ta có: P(M) = 0,8;P(N) =
0,9

    A = M\overline{N} \cup
\overline{M}N

    \Rightarrow P(A) = P(M)P\left(
\overline{N} ight) + P\left( \overline{M} ight)P(N)

    = 0,8(1 - 0,9) + 0,9(1 - 0,8) =
0,26

  • Câu 25: Vận dụng cao

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Theo bài ra ta có tổng số viên bi trong hộp là x + 8;\left( x \in \mathbb{N}^{*}
ight)

    Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là n(\Omega) = C_{x + 8}^{3}

    Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: n(A) =
C_{5}^{1}.C_{3}^{1}.C_{x}^{1} = 15x

    => Xác suất lấy được 3 viên bi có đủ 3 màu là:

    P(A) = \frac{45}{182}

    \Leftrightarrow \frac{15x}{C_{x +
8}^{3}} = \frac{45}{182}

    \Leftrightarrow \frac{90x}{(x + 6)(x +
7)(x + 8)} = \frac{45}{182}

    \Leftrightarrow x^{3} + 21x^{2} - 218x +
336 = 0

    \Leftrightarrow x = 6(tm)

    Do đó trong hộp có 14 viên bi và n(\Omega) = C_{14}^{3}

    Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ

    Suy ra \overline{B} là biến cố 3 viên bi lấy được đều là bi đỏ.

    Số kết quả thuận lợi cho \overline{B} là: n\left( \overline{B} ight) =
C_{5}^{3}

    Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:

    P = P(B) = 1 - P\left( \overline{B}
ight)

    = 1 - \frac{n\left( \overline{B}
ight)}{n(\Omega)} = 1 - \frac{C_{5}^{3}}{C_{14}^{3}} =
\frac{177}{182}

  • Câu 26: Nhận biết

    Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.

     Theo bài ra ta có 5 ban nhạc đến từ các trường

    Chọn ban nhạc Nha Trang biểu diễn đầu tiên

    => Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách

    => Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.

  • Câu 27: Nhận biết

    Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?

    Số cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài là số chỉnh hợp chập 4 của 6 phần tử.

    => Có A_6^4 = 360 cách.

  • Câu 28: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 29: Thông hiểu

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để "Cả 2 học sinh đều đạt yêu cầu"?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi C là biến cố: "Cả 2 học sinh đều đạt yêu cầu".

    Khi đó số kết quả thuận lợi cho biến cố C là C_{27}^{2} = 351

    Vậy xác suất để cần tìm là: P(C) =
\frac{351}{435} = \frac{119}{145}

  • Câu 30: Thông hiểu

    Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    Gieo đồng tiền 2 lần nên ta có:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^2} = 4

    Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"

    => \overline C biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"

    => \overline C  = \left\{ {N,N} ight\}

    => P\left( {\overline C } ight) = \frac{{n\left( {\overline C } ight)}}{{n\left( \Omega  ight)}} = \frac{1}{4}

    => Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{4} = \frac{3}{4}

  • Câu 31: Nhận biết

    Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi X là biến cố “Ba lần liên tiếp kết quả như nhau” và Y là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp”. Chọn khẳng định đúng?

    Ta có:

    X = \left\{ SSS;NNN
ight\}

    Y = \left\{ SSS;SSN;NNN
ight\}

    \Rightarrow X \cup Y = \left\{
SSS;SSN;NSS;NNN ight\}

  • Câu 32: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 33: Nhận biết

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 34: Vận dụng

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần

    Một tuần có bảy ngày và mỗi ngày thăm một bạn.

    Có 12 cách chọn bạn vào ngày thứ nhất.

    Có 11 cách chọn bạn vào ngày thứ hai.

    Có 10 cách chọn bạn vào ngày thứ ba.

    Có 9 cách chọn bạn vào ngày thứ tư.

    Có 8 cách chọn bạn vào ngày thứ năm.

    Có 7 cách chọn bạn vào ngày thứ sáu.

    Có 6 cách chọn bạn vào ngày thứ bảy.

    Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.

  • Câu 35: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 36: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 37: Nhận biết

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 38: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 39: Nhận biết

    Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?

    Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.

    Nếu chọn một quả trắng có 6 cách.

    Nếu chọn một quả đen có 3 cách.

    Theo quy tắc cộng, ta có 6 + 3 = 9 cách chọn.

  • Câu 40: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo