Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là
và xác suất để động cơ 2 chạy tốt là
. Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là và xác suất để động cơ 2 chạy tốt là
. Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Gọi A là biến cố có ít nhất một động cơ chạy tốt
B là biến cố chỉ có động cơ 1 chạy tốt.
Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.
Gọi D là biến cố cả hai động cơ đều chạy tốt
Vậy
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?
Ta có: là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có: với
và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.
Trong một phép thử có không gian mẫu kí hiệu là
và
là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?
Khẳng định sai là: “ khi và chỉ khi
chắc chắn”.
Vì B là biến cố chắc chắn thì P(B) = 1.
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt không nhỏ hơn 16?
Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố '' Tổng số chấm trên các mặt của ba lần gieo không nhỏ hơn 16”.
Ta có bộ các số tương ứng với số chấm có tổng không nhỏ hơn 16 là (4;6;6); (6;4;6), (6;6;4); (5;5;6), (6;5;5); (5;6;5); (5;6;6), (6;5;6), (6;6;5) và (6;6;6).
Do đó số phần tử của biến cố A là:
Vậy xác suất cần tìm là:
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:
Đa giác đều có 12 cạnh tương ứng với 12 đỉnh
Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)
Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: đoạn thẳng
Mà số cạnh của đa giác là 12 cạnh
=> Số đường chéo thu được là: 66 - 12 = 54 đường chéo
Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:
Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:
Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số:
Số tự nhiên có 4 chữ số có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 4 cách
Số cách chọn d là 4 cách
=> Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số là 44 = 256 số
Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là
và
. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.
a) Xác suất để bệnh nhân A không bị biến chứng suy thận là
Đúng||Sai
b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận
Đúng||Sai
c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là
Sai||Đúng
d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là
Sai||Đúng
Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là và
. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.
a) Xác suất để bệnh nhân A không bị biến chứng suy thận là Đúng||Sai
b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận Đúng||Sai
c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là Sai||Đúng
d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là Sai||Đúng
Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có:
B là biến cố “Bệnh nhân B bị suy thận” ta có:
Khi đó là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”
Khi đó là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.
Khi đó là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.
b) Hai biến cố A, B độc lập nên ta có:
b) Hai biến cố độc lập nên ta có:
c) Hai biến cố độc lập nên ta có:
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Số cách chọn 2 nữ trong 4 nữ là do đó xác suất của biến cố này là
.
Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?
Số cách chọn 2 giáo viên từ nhóm 5 giáo viên là: cách
Số cách chọn 3 học sinh từ nhóm 6 học sinh là: cách
Áp dụng quy tắc nhân ta có số cách chọn một hội đồng là: 10 . 20 = 200 cách
Số cách sắp xếp
vào một dãy ghế dài sao cho hai đầu dãy ghế là vị trí của
và
?
Ta xếp A và G vào hai vị trí đầu dãy và có thể hoán đổi cho nhau nên ta có 2! cách xếp.
Xếp 5 người còn lại vào 5 vị trí giữa ta có 5! cách xếp.
Vậy ta có: 2!.5! = 240 cách xếp.
Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?
Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là
Xác suất để người chơi thắng cuộc trong một lần gieo là
Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Cấu trúc đề thi cuối học kì môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm. Giáo viên chủ nhiệm đã áp dụng phần mềm để hoán vị 4 phương án trong cùng câu hỏi với nhau. Xác suất để có hai đề thi được tạo ra chỉ có sự giống nhau ở năm câu hỏi là x%. Giá trị của x gần nhất với giá trị nào sau đây?
Hoán vị 4 phương án trắc nghiệm có 4! = 24 cách
Xác suất đẻ hai câu hỏi giống nhau là , xác suất để hai câu hỏi khác nhau là
Chọn năm câu hỏi có sự giống nhau
Xác suất cần tìm là:
Vậy giá trị của x gần nhất với giá trị 4%.
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn không có nữ"
=>
=> Xác suất sao cho 2 người được chọn không có nữ là:
Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:
Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là:
Do không có điều kiện về các chữ số còn lại
=> Số cách chọn các chữ số b, c, d, e là cách
=> Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số
Cho phép thử có không gian mẫu
. Gọi
là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố
?
Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:
Cho hai biến cố A và B có
ta kết luận hai biến cố A và B là:
Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)
Suy ra P(A) + P(B) ≠ P(A ∪ B)
=> Hai biến cố A và B không xung khắc
Áp dụng công thức xác suất tổng hai biến cố ta có:
Mà
=> Hai biến cố A và B là hai biến cố độc lập.
Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 9 cách
Số cách chọn b là 9 cách
Số cách chọn c là 8 cách
Số cách chọn d là 7 cách
=> Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?
Xếp 5 quyển sách Văn kề nhau có 5! cách
Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách
Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là:
Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?
Ta có:
Ba bạn được chọn có 1 nữ và 2 nam
=> Số cách chọn là: cách
Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?
Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ
Khi đó ta có:
TH1: lấy được 5 viên bi xanh cách
TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ cách
TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ cách
Do đó xác suất của biến cố A là:
Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là
. Số học sinh giỏi cả hai môn Toán và Vật lí là 5
Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là . Số học sinh giỏi cả hai môn Toán và Vật lí là 5
Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.
Ta có:
là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí
là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí
Ta có:
Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số được chọn là số chẵn => c = {2; 4}
=> Số cách chọn c là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số
Cho
. Chọn khẳng định đúng?
Theo giả thiết ta có:
Vậy hai biến cố A và B là hai biến cố độc lập.
Xác suất để thắng một trận game là
. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Đáp án: 6 trận
Xác suất để thắng một trận game là . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Đáp án: 6 trận
Gọi n là số trận người đó chơi.
A là biến cố người đó thắng ít nhất 1 trận
Suy ra là biến cố người đó không thắng trận nào.
trong đó
là biến cố người đó thắng trận thứ i và
Ta có bất phương trình
Vậy giá trị nhỏ nhất của n bằng 6.
Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?
Quy ước gene A: quả tròn và gene a: quả dài
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1
Gọi là biến cố cây được chọn lần thứ nhất là quả tròn
là biến cố cây được chọn lần thứ hai là quả tròn.
Ta có: độc lập và
Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:
Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:
Xác suất để X không câu được cá là 1 - 0,1 = 0,9
Xác suất để Y không câu được cá là 1 - 0,15 = 0,85
Xác xuất X và Y trở về tay không (không có con cá nào) là
=> Xác suất X và Y ko trở về tay ko là:
Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Gieo hai lần liên tiếp một con xúc xắc. Giả sử H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm. Biến cố đối của biến cố H là:
H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm thì biến cố đối của biến cố H là không xuất hiện mặt 3 chấm.
Gieo hai lần liên tiếp một đồng xu. Gọi M là biến cố có ít nhất một lần mặt sấp xuất hiện, N là biến cố kết quả hai lần gieo giống nhau. Chọn khẳng định đúng?
Ta có:
Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?
Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách
Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách
Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc
Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách
=> Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.
Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?
Do số bi xanh và số bi đỏ lấy ra bằng nhau
=> Có hai trường hợp xảy ra:
Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ
=> Số cách chọn là: cách
Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ
=> Số cách chọn là: cách
=> Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách
Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?
Xét các trường hợp:
TH1: Học sinh lớp 12 ngồi đầu dãy:
Chọn vị trí cho học sinh lớp 12 có 2 cách
Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách
Hoán vị các học sinh còn lại cho nhau có 4! Cách.
Trường hợp này được: 2.2.4! = 96 cách.
TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:
Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.
Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách
Trường hợp này được 4!.2! = 48 cách
Như vậy số cách sắp xếp là 48 + 96 = 144
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5
Xác suất không tham gia trong mỗi ngày là 0,5
Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.
Ta có:
Xác suất cần tìm là
Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?
Kết quả: 310/429
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?
Kết quả: 310/429
(Kết quả ghi dưới dạng phân số tối giản a/b)
Số phần tử không gian mẫu
Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu
=> là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:
TH1: lấy được 5 quả cầu đỏ có 1 cách
TH2: lấy được 5 quả màu vàng có cách
TH3: lấy được chỉ có xanh và đỏ cách
TH4: lấy được chỉ có xanh và vàng cách
TH5: lấy được chỉ có đỏ và vàng cách
Vậy