Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 2: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.

    Gọi số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Do số tự nhiên tạo thành có các chữ số đôi một khác nhau => a e b e c e d e e e f

    Khi đó:

    Số cách chọn f là 1 cách

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là 2 cách

    => Số các số tạo thành thỏa mãn điều kiện đề bài là:

    6.5.4.3.2.1 = 720 số

  • Câu 3: Thông hiểu

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để "Cả 2 học sinh đều đạt yêu cầu"?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi C là biến cố: "Cả 2 học sinh đều đạt yêu cầu".

    Khi đó số kết quả thuận lợi cho biến cố C là C_{27}^{2} = 351

    Vậy xác suất để cần tìm là: P(C) =
\frac{351}{435} = \frac{119}{145}

  • Câu 4: Thông hiểu

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

  • Câu 5: Vận dụng

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 6: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 7: Nhận biết

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 8: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 9: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 10: Vận dụng cao

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Theo bài ra ta có tổng số viên bi trong hộp là x + 8;\left( x \in \mathbb{N}^{*}
ight)

    Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là n(\Omega) = C_{x + 8}^{3}

    Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: n(A) =
C_{5}^{1}.C_{3}^{1}.C_{x}^{1} = 15x

    => Xác suất lấy được 3 viên bi có đủ 3 màu là:

    P(A) = \frac{45}{182}

    \Leftrightarrow \frac{15x}{C_{x +
8}^{3}} = \frac{45}{182}

    \Leftrightarrow \frac{90x}{(x + 6)(x +
7)(x + 8)} = \frac{45}{182}

    \Leftrightarrow x^{3} + 21x^{2} - 218x +
336 = 0

    \Leftrightarrow x = 6(tm)

    Do đó trong hộp có 14 viên bi và n(\Omega) = C_{14}^{3}

    Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ

    Suy ra \overline{B} là biến cố 3 viên bi lấy được đều là bi đỏ.

    Số kết quả thuận lợi cho \overline{B} là: n\left( \overline{B} ight) =
C_{5}^{3}

    Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:

    P = P(B) = 1 - P\left( \overline{B}
ight)

    = 1 - \frac{n\left( \overline{B}
ight)}{n(\Omega)} = 1 - \frac{C_{5}^{3}}{C_{14}^{3}} =
\frac{177}{182}

  • Câu 11: Thông hiểu

    Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:

    Ta có:

    Số cách sắp xếp 3 viên bi đen thành một dãy bằng 3!

    Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 4!

    Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 5!

    Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 3!

    Vậy số phần tử của tập hợp A là: n(A) =
3!.4!.5!.3! = 103680

  • Câu 12: Thông hiểu

    Số cách sắp xếp A;B;C;D;E;F;G vào một dãy ghế dài sao cho hai đầu dãy ghế là vị trí của AG?

    Ta xếp A và G vào hai vị trí đầu dãy và có thể hoán đổi cho nhau nên ta có 2! cách xếp.

    Xếp 5 người còn lại vào 5 vị trí giữa ta có 5! cách xếp.

    Vậy ta có: 2!.5! = 240 cách xếp.

  • Câu 13: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn không có nữ"

    => n\left( A ight) = C_7^2 = 21

    => Xác suất sao cho 2 người được chọn không có nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{21}{{45}} = \frac{7}{{15}}

  • Câu 14: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 15: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

  • Câu 16: Thông hiểu

    Có 10 hộp sữa trong đó có 3 hộp hư. Chọn ngẫu nhiên 4 hộp. Xác suất để được ít nhất 1 hộp hư.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^4

    Số hộp sữa không bị hư là: 10 - 3 = 7 (hộp)

    Số cách chọn 4 hộp sữa mà không hộp sữa nào bị hư nào là: C_{7}^4

    Số cách để chọn 4 hôp sữa ít nhất một hộp hư là: C_{10}^4 -C_{7}^4 =175 (cách chọn)

    => Xác suất để được ít nhất 1 hộp hư là: P = \frac{{175}}{{C_{10}^4}} = \frac{5}{6}

  • Câu 17: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 18: Nhận biết

    Nếu một công việc được chia thành hai trường hợp, trường hợp 1 có a cách thực hiện, trường hợp hai có b cách thực hiện. Biết rằng mỗi cách thực hiện ở trường hợp này không trùng với bất kì cách thực hiện nào ở trường hợp kia. Khi đó khẳng định nào sau đây đúng và số cách thực hiện công việc nói trên?

    Theo quy tắc nhân ta có số cách thực hiện công việc là a + b.

  • Câu 19: Thông hiểu

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Tính xác suất của biến cố C?

    Ta có hai biến cố A và B là hai biến cố xung khắc suy ra P(A \cup B) = P(A) + P(B) = P(C)

    n(\Omega) = C_{9}^{2} = 36

    Biến cố A là tập hợp tất cả các tập con có hai phần tử của tập \left\{ 2;4;6;8 ight\}

    n(A) = C_{4}^{2} = 6 \Rightarrow P(A) =
\frac{6}{36} = \frac{1}{6}

    Biến cố B được hình thành từ hai công đoạn:

    + Chọn một số chẵn từ tập \left\{ 2;4;6;8
ight\} có 4 cách

    + Chọn một số lẻ từ tập \left\{ 1;3;5;7;9
ight\} có 4 cách

    Theo quy tắc nhân tập B có 4.5 = 20 cách

    Do đó n(B) = 20 \Rightarrow P(B) =
\frac{20}{36}

    \Rightarrow P(C) = P(A) + P(B) =
\frac{1}{6} + \frac{20}{36} = \frac{13}{18}

  • Câu 20: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là \frac{1}{10};\frac{1}{10};\frac{1}{20}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.

    Ta có:

    Q = (A \cap B) \cup (C)

    Suy ra P(Q) = P(AB) + P(C) -
P(ABC)

    P(Q) = P(A).P(B) + P(C) -
P(A).P(B).P(C)

    = 0,1.0,1 + 0,05 - 0,1.0,1.0,05 =
0,0595

  • Câu 21: Thông hiểu

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 22: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 23: Vận dụng

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?

    Ta có: \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{i} \cap M_{j} \cap
\overline{M_{k}} \cap \overline{M_{m}} với i;j;k \in \left\{ 1;2;3;4 ight\} và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.

  • Câu 24: Thông hiểu

    Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?

    Giả sử các ghế ngồi đánh số từ 1 đến 8.

    Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).

    Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.

    Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.

    Vậy có 3! · 4! = 144 cách.

  • Câu 25: Thông hiểu

    Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số tận cùng là 0 là:

    Chọn một số có hai chữ số bất kì

    Số phần tử không gian mẫu là: C_{100}^1 = 100

    Số cách chọn số có chữ số tận cùng là 0 là: C_{10}^1 = 10

    => Xác suất để có một con số tận cùng là 0 là: P = \frac{{C_{10}^1}}{{C_{100}^1}} = 0,1

  • Câu 26: Thông hiểu

    Cho 5 chữ số 0; 1; 2; 3; 4. Từ 5 chữ số đó có thể lập được bao nhiêu chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần?

     Số tự nhiên có năm chữ số có dạng: \overline {abcde}

    Do mỗi số đó mỗi chữ số trên có mặt một lần => a e b e c e d e e

    Số cần tìm là số chẵn => e ∈ {0; 2; 4}

    Trường hợp 1:  e = 0 => e có 1 cách chọn

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách 

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Số các số lập được ở trường hợp 1 là: 4.3.2 = 24 số

    Trường hợp 2: e ∈ {2; 4} => Có 2 cách chọn e

    Số cách chọn a là 3 cách (Do a khác 0)

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Số các số lập được ở trường hợp 2 là: 2.3.3.2 = 36 số

    => Có thể lập được số các chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần là 36 + 24 = 60 số

  • Câu 27: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

  • Câu 28: Nhận biết

    Một nhóm học sinh gồm 20 học sinh nam và 10 học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?

    10 + 20 = 30 cách chọn một học sinh.

  • Câu 29: Nhận biết

    Số điện thoại ở Huyện Củ Chi có 7 chữ số và bắt đầu bởi 3 chữ số đầu tiên là 790. Hỏi ở Huyện Củ Chi có tối đa bao nhiêu máy điện thoại:

    Số điện thoại cần tìm có dạng \overline {790abcd}

    Số cách chọn a có 10 cách

    Số cách chọn b có 10 cách

    Số cách chọn c có 10 cách

    Số cách chọn d có 10 cách 

    => Có tối đa số điện thoại là: 10.10.10.10 = 104 = 10 000 số

  • Câu 30: Thông hiểu

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5

    Xác suất không tham gia trong mỗi ngày là 0,5

    Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.

    Ta có: P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} +
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 31: Vận dụng

    Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?

    Quy ước gene A: lông đen và gene a: lông trắng

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1

    Trong đàn vịt mới xác suất để được một con lông đen là \frac{3}{4} và con lông trắng là \frac{1}{4}

    Gọi A là biến cố có đúng 1 con lông đen trong 2 con được chọn

    \Rightarrow P(A) =
\frac{3}{4}.\frac{1}{4} = \frac{3}{16}

    Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn

    \Rightarrow P(B) =
\frac{3}{4}.\frac{3}{4} = \frac{9}{16}

    Khi đó A \cup B là biến cố có ít nhất 1 con lông đen trong 2 con được chọn

    Do A và B là hai biến cố xung khắc nên

    P(A \cup B) = P(A) + P(B) = \frac{3}{16}
+ \frac{9}{16} = \frac{3}{4}

  • Câu 32: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 33: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ cùng màu?

    Gọi A là biến cố lấy được 3 thẻ trắng \Rightarrow P(A) =
\frac{C_{10}^{3}}{C_{25}^{3}}

    B là biến cố lấy được 3 thẻ đỏ \Rightarrow P(B) =
\frac{C_{8}^{3}}{C_{25}^{3}}

    C là biến cố lấy được 3 thẻ xanh \Rightarrow P(C) =
\frac{C_{7}^{3}}{C_{25}^{3}}

    Gọi D là biến cố lấy được 3 thẻ cùng màu

    Khi đó D = A \cup B \cup C

    \Rightarrow P(D) = P(A) + P(B) + P(C)
\approx 0,092

  • Câu 34: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?

    Hộp chứa 5 + 7 = 12 viên bi

    Số cách lấy 6 viên bi trong hộp là: C_{12}^6 = 924 cách

    Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: C_7^6 = 7 cách

    => Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách

  • Câu 35: Nhận biết

    Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?

    Số cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài là số chỉnh hợp chập 4 của 6 phần tử.

    => Có A_6^4 = 360 cách.

  • Câu 36: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 37: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 38: Thông hiểu

    Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.

    Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - \frac{1}{3} = \frac{2}{3}.

    Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 - \frac{1}{4} = \frac{3}{4}.

    Gọi biến cố A:"Có ít nhất một xạ thủ không bắn trúng bia ".

    Khi đó biến cố A có 3 khả năng xảy ra:

    +) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: \frac{1}{3}.\frac{3}{4} =
\frac{1}{4}.

    +) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: \frac{2}{3}.\frac{1}{4} =
\frac{1}{6}.

    +) Xác suất cả hai người đều bắn không trúng bia: \frac{2}{3}.\frac{3}{4} = \frac{1}{2}

    Khi đó P(A) = \frac{1}{3}.\frac{3}{4} +
\frac{2}{3}.\frac{1}{4} + \frac{2}{3}.\frac{3}{4} =
\frac{11}{12}.

  • Câu 39: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 40: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo