Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Số cách chọn 2 nữ trong 4 nữ là do đó xác suất của biến cố này là
.
Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm, mỗi câu trả lời sai bị trừ 0,1 điểm. Một học sinh đã tô câu trả lời ngẫu nhiên cho cả 50 câu hỏi. Hỏi xác suất để học sinh đó đạt 4 điểm trong bài thi trên là bao nhiêu?
Để đạt được điểm 4 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.
Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75
Vậy xác suất để học sinh đạt 4 điểm là: .
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a: 4 cách
Số cách chọn b: 3 cách
Số cách chọn c: 2 cách
Số cách chọn d: 1 cách
=> Số các số có 4 chữ số khác nhau được tạo thành là 4! = 24 cách
Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:
Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là:
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là
Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là
Sai||Đúng
Cho ba chiếc hộp đựng các viên bi được mô tả như sau:
Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.
Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.
Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.
Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.
a) Xác suất để lấy được một viên bi trắng từ hộp A là: Đúng||Sai
b) Xác suất để lấy được viên bi màu vàng trong hộp B là Đúng||Sai
c) Xác suất để lấy được viên bi đỏ trong hộp C là Sai||Đúng
d) Xác suất để lấy được một viên bi đỏ là Sai||Đúng
Gọi A là biến cố: “Chọn được hộp A”
B là biến cố: “Chọn được hộp B”
C là biến cố: “Chọn được hộp C”
Ta có:
a) Xác suất để lấy được một viên bi trắng từ hộp A là:
b) Xác suất để lấy được viên bi màu vàng trong hộp B là
c) Xác suất để lấy được viên bi đỏ trong hộp C là
d) E là biến cố: “Bi chọn ra có màu đỏ”.
Xác suất để lấy được một viên bi đỏ là
Áp dụng công thức ta có:
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có số
TH2: Nếu cố 432 đứng đầu thì có số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có cách chọn số còn lại. Do đó trường hợp này có
Suy ra số phần tử của tập hợp S là
Vậy số phần tử không gian mẫu là
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh?
Hộp chứa 5 + 7 = 12 viên bi
Số cách lấy 6 viên bi trong hộp là: cách
Số cách lấy 6 viên bi trong đó không có viên bi màu xanh là: cách
=> Số cách lấy ra 6 viên bi sao cho có ít nhất 1 viên bi màu xanh là: 924 - 7 = 917 cách
Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.
Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:
Không gian mẫu
Cho các chữ số
. Giả sử tập hợp
là tập hợp các số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số đã cho. Lấy ngẫu nhiên một số
. Xác suất để chọn được
?
Gọi số phần tử của tập hợp M là
Số phần tử của không gian mẫu là:
Gọi A là biến cố chọn được số lớn hơn .
Giả sử số tự nhiên có 4 chữ số là ta có:
nên ta có các trường hợp sau:
TH1: nên c có 5 cách chọn và d có 5 cách chọn.
Do đó trường hợp này có: số.
TH2: thì
có
cách chọn và sắp xếp.
Do đó trường hợp này có số.
TH3: thì
có
cách chọn và sắp xếp.
Do đó trường hợp này có số.
Vậy xác suất cần tính là: .
Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.
a) Xác suất để lấy được 4 viên bi đều màu trắng
Đúng||Sai
b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ
Sai||Đúng
c) Xác suất để lấy được số bi có đủ 3 màu
Sai||Đúng
d) Xác suất để lấy được số bi không đủ 3 màu
Đúng||Sai
Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.
a) Xác suất để lấy được 4 viên bi đều màu trắng Đúng||Sai
b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ Sai||Đúng
c) Xác suất để lấy được số bi có đủ 3 màu Sai||Đúng
d) Xác suất để lấy được số bi không đủ 3 màu Đúng||Sai
Số phần tử không gian mẫu là
a) Gọi A là biến cố “Lấy được 4 viên bi màu trắng”
Số phần tử của A là
Vậy xác suất để lấy được cả 4 viên bi màu trắng là:
b) Gọi D là biến cố lấy được số bi trắng gấp hai lần số bi đen và đỏ
Ta có các kết quả thuận lợi cho biến cố D là lấy 2 bi trắng 1 bi đen và 1 bi đỏ
Ta có số phần tử của biến cố D là:
Vậy xác suất cần tìm là .
c) Gọi E là biến cố lấy được các viên bi có đủ 3 màu
Ta có các trường hợp thuận lợi cho biến cố E:
Th1: Chọn 1 bi đen, 1 bi đỏ và 2 bi trắng nên ta có: cách
Th2: Chọn 1 bi đen, 2 bi đỏ và 1 bi trắng nên ta có: cách
Th3: Chọn 2 bi đen, 1 bi đỏ và 1 bi trắng nên ta có: cách
Suy ra số phần tử của biến cố E là
Vậy
d) Ta có: E là biến cố lấy được các viên bi có đủ 3 màu khi đó là biến cố lấy được các viên bi không đủ 3 màu
Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là
và
. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?
Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:
Cho hai tập hợp A = {a, b, c, d}; B = {c, d, e}. Chọn khẳng định sai trong các khẳng định
sau:
N(A) = 4 => Khẳng định đúng
N(B) = 3 => Khẳng định đúng
A ∩ B = {c, d} => N(A ∩ B) = 2 là khẳng định đúng
A ∪ B = {a, b, c, e} => N(A ∪ B) = 4 => Khẳng định sai là N(A ∪ B) = 7
Gọi
là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ
, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?
+ Gọi số tự nhiên có 6 chữ số là .
Chọn : có 9 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Suy ra số các phần tử của là:
cách.
Chọn ngẫu nhiên một số từ .
+ Gọi là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".
TH1: .
Có 5 vị trí để xếp số 0.
Và có cách chọn 4 vị trí còn lại.
Suy ra có: số.
TH2:
Chọn : có 8 cách.
Xếp hai số 0 và 1 có: cách.
Xếp vào 3 vị trí còn lại có: cách.
Suy ra có: số.
.
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ
Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng
Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu
Sai||Đúng
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Số cách chọn 5 viên bi trong 15 viên bi là .
Gọi : “5 viên bi lấy được có đủ 3 màu "
Gọi : " 5 viên bi lấy được có không đủ 3 màu "
Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp
+ 5 viên màu đỏ có 1 cách
+ 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có cách.
Chỉ có xanh và đỏ có .
Chỉ có xanh và vàng có .
Chỉ có đỏ và vàng có .
Vậy .
Lấy ngẫu nhiên 3 số từ tập
. Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?
Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.
Do đó số phần tử của không gian mẫu là: 5! = 120
Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.
Lá thứ nhất có đúng 1 cách chọn.
Lá thứ 2 có 4 cách chọn.
Lá thứ 3 có 3 cách chọn
Lá thứ 4 có 2 cách chọn
Lá thứ 5 có 1 cách chọn
Suy ra
Khi gửi tiền vào ngân hàng, chị X được tham gia chương trình “Bốc thăm trúng thưởng”. Chị được bốc lần lượt 2 lá thăm trong hộp gồm 20 lá thăm. Biết trong hộp chỉ có 2 lá thăm ghi “Trúng thưởng”. Tính xác suất để cả hai lá thăm đều trúng thưởng?
Gọi A là biến cố lá thăm rút được lần đầu có thưởng
=>
Gọi B là biến cố lá thăm rút được lần sau có thưởng.
=>
Cho 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số?
Số tự nhiên có 5 chữ số có dạng:
=> Số các số tự nhiên có 5 chữ số được tạo thành là: số
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:
Số phần tử của không gian mẫu là:
Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"
=> B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}
=>
=> Xác suất để sau hai lần gieo kết quả như nhau là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?
Số tự nhiên có 3 chữ số đôi một khác nhau có dạng:
Do số cần tìm chia hết cho 5 => c = 5
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: số
Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:
Số quả cầu có trong bình là: 5 + 4 + 3 = 12 quả
Số phần tử không gian mẫu là:
Giả sử A là biến cố "3 quả cầu khác màu"
=> Số phần tử của biến cố A là:
=> Xác suất để được 3 quả cầu khác màu là
Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?
Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng trong đó
là 4 bạn nữ và
là 3 bạn nam.
Bước 1: Chọn 3 bạn nam trong 5 bạn nam có cách.
Bước 2: Gọi nhóm là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.
Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.
Do đó ta có: cách xếp thỏa mãn yêu cầu bài toán.
Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.
Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng
câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của
?
Đáp án: 12
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của
?
Đáp án: 12
Gọi A là biến cố làm đúng x câu hỏi của bạn H
Ta có xác suất để làm đúng 1 câu là , xác suất làm sai 1 câu là
Theo quy tắc nhân xác suất ta có:
Xác suất của biến cố A là
Xét hệ bất phương trình sau:
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

Biết xác suất hỏng của mỗi bóng đèn là
. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?
Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:
Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm
phân biệt?
Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.
Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: (đoạn thẳng.
Vậy đáp án là 21 đoạn thẳng.
Hai hộp gỗ được đặt trên bàn. Hộp A chứa 3 bi đỏ và 4 bi xanh. Hộp B chứ 2 bi đỏ và 5 bi xanh. Lấy ngẫu nhiên 1 viên bi từ hộp A sang hộp B rồi lấy ngẫu nhiên 1 viên bi trong hộp B ra. Tính xác suất để viên bi lấy ra ở hộp thứ hai có màu đỏ?
Xảy ra hai trường hợp:
TH1: Viên bi lấy ra từ hộp thứ nhất màu đỏ và đưa vào hộp thứ hai, khi đó hộp thứ hai có 3 viên bi đỏ và 5 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:
TH1: Viên bi lấy ra từ hộp thứ nhất màu xanh và đưa vào hộp thứ hai, khi đó hộp thứ hai có 2 viên bi đỏ và 6 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:
Vậy xác suất cần tìm là:
Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi
là biến cố sản phẩm được kiểm tra lần thứ
thuộc loại không đạt,
. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các
?
Mô tả đúng là:
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Số cần tìm là số chẵn => e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Số cách chọn a, b, c, d là:
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: số
Một hộp chứa 10 quả cầu xanh và 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả cầu trong hộp. Tính xác suất của biến cố lấy được 5 quả cầu có đủ hai màu.
Số phần tử không gian mẫu là:
Gọi biến cố A lấy được 5 quả cầu có đủ 2 màu
=> lấy được 5 quả cầu lấy ra chỉ có 1 màu.
TH1: Lấy ra từ hộp 5 quả cầu xanh có cách
TH2: Lấy ra từ hộp 5 quả cầu đỏ có cách
Suy ra
Xác suất để được 5 quả đủ 2 màu là:
Vậy xác suất cần tìm là .
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.
Theo bài ra ta có 5 ban nhạc đến từ các trường
Chọn ban nhạc Nha Trang biểu diễn đầu tiên
=> Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách
=> Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố
.
Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần
Khi đó là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có:
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?
Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là:
=> Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: cách
Gọi
là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập
. Chọn ngẫu nhiên một số từ tập
. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.
Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.
Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng
Ta có: do đó
suy ra
khi và chỉ khi
TH1: khi đó
khi và chỉ khi
Vậy trong trường hợp này có 5.4! = 120 số tự nhiên
TH2: khi đó
dư 1 khi và chỉ khi
Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên
Do đó