Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 2: Nhận biết

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có 3 bạn nam và 2 bạn nữ?

    Số cách chọn 3 bạn nam là: C_6^3 = 20 cách

    Số cách chọn 2 bạn nữ là: C_5^2 = 10 cách

    Áp dụng quy tắc nhân ta có: 

    C_6^3.C_5^2 = 20.10 = 200 cách

  • Câu 3: Vận dụng cao

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 4: Thông hiểu

    Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:

    Ta có: \overline{M} là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.

    Do đó số phần tử của \overline{M} =
C_{4}^{4} + C_{6}^{4} = 16

  • Câu 5: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 6: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 7: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 8: Thông hiểu

    Trên giá sách muốn xếp 20 cuốn sách khác nhau gồm sách tập 1 và sách tập 2. Có bao nhiêu cách sắp xếp sao cho tập 1 và tập 2 đặt cạnh nhau?

    Sắp xếp 20 cuốn sách trên giá là một hoán vị của 20 phần tử nên ta có 20! cách sắp xếp.

    Khi hai cuốn tập 1 và tập 2 đặt cạnh nhau (thay đổi vị trí cho nhau), ta coi đó là một phần tử và cùng sắp xếp với 18 cuốn sách còn lại trên giá nên có 2 . 19! cách sắp xếp.

    Vậy có tất cả 20! − 2 . 19! = 19! . 18 cách sắp xếp theo yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi N_{k} là biến cố sản phẩm được kiểm tra lần thứ k thuộc loại không đạt, k \in \left\{ 1;2;3;4 ight\}. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các N_{k}?

    Mô tả đúng là:

    N_{1}N_{2}N_{3}\overline{N_{4}} +
N_{1}N_{2}\overline{N_{3}}N_{4} + N_{1}\overline{N_{2}}N_{3}N_{4} +
\overline{N_{1}}N_{2}N_{3}N_{4}

  • Câu 10: Thông hiểu

    Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm một tấm thẻ. Tính xác suất để tổng các số ghi trên hai tấm thẻ rút ra không nhỏ hơn 3.

    Không gian mẫu \Omega = \left\{ (x;y)|x,y
\in \mathbb{N}^{*};1 \leq x \leq 5;1 \leq y \leq 5 ight\}

    Vì có 5 cách chọn x và có 5 cách chọn y nên |\Omega| = 5.5 = 25

    Gọi A là biến cố “Tổng hai số ghi trên hai tấm thẻ không nhỏ hơn 3”.

    Khi đó \overline{A} là biến cố “Tổng hai số ghi trên tấm thẻ nhỏ hơn 3”.

    Ta có: \Omega_{A} = \left\{ (1;1)
ight\} \Rightarrow \left| \Omega_{A} ight| = 1 \Rightarrow P\left(
\overline{A} ight) = \frac{1}{25}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{25} = 0,96

  • Câu 11: Thông hiểu

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?

    Số tự nhiên có 5 chữ số khác nhau được tạo thành từ dãy số có dạng:

    \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Trường hợp 1: e = 0

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 5 . 4 . 3 . 2 = 120 số

    Trường hợp 2: e ≠ 0

    => e = {2; 8}

    => Số cách chọn e là 2 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 2 .4. 4. 3 . 2 = 192 số

    => Từ dãy số tạo được số các số chẵn có 5 chữ số khác nhau là 120 + 192 = 312 số

  • Câu 12: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 13: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là \frac{1}{10};\frac{1}{10};\frac{1}{20}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.

    Ta có:

    Q = (A \cap B) \cup (C)

    Suy ra P(Q) = P(AB) + P(C) -
P(ABC)

    P(Q) = P(A).P(B) + P(C) -
P(A).P(B).P(C)

    = 0,1.0,1 + 0,05 - 0,1.0,1.0,05 =
0,0595

  • Câu 14: Vận dụng

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Đáp án là:

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Gọi A là biến cố: “Chọn được hộp A”

    B là biến cố: “Chọn được hộp B”

    C là biến cố: “Chọn được hộp C”

    Ta có:

    P(A) = P(B) = P(C) =
\frac{1}{3}

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{3}.\frac{3}{7} = \frac{1}{7}

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{1}{3}.\frac{2}{5} =
\frac{2}{15}

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{C_{2}^{1}}{C_{4}^{1}} =
\frac{1}{2}

    d) E là biến cố: “Bi chọn ra có màu đỏ”.

    Xác suất để lấy được một viên bi đỏ là

    P\left( E|A ight) =
\frac{4}{7};P\left( E|B ight) = \frac{3}{5};P\left( E|C ight) =
\frac{1}{2}

    Áp dụng công thức ta có:

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    \Rightarrow P(E) =
\frac{1}{3}.\frac{4}{7} + \frac{1}{3}.\frac{3}{5} +
\frac{1}{3}.\frac{1}{2} = \frac{39}{70}

  • Câu 15: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?

    Số cách lấy 2 viên bi màu xanh là: C_5^2 = 10 cách

    Số cách lấy 4 viên bi màu vàng là: C_7^4 = 35 cách 

    Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:

    C_5^2.C_7^4 = 10.35 = 350 cách

  • Câu 16: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 17: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 18: Vận dụng

    Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

    Đa giác đều có 12 cạnh tương ứng với 12 đỉnh

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{12}^2 = 66 đoạn thẳng

    Mà số cạnh của đa giác là 12 cạnh

    => Số đường chéo thu được là: 66 - 12 = 54 đường chéo

  • Câu 19: Vận dụng

    Sắp xếp 6 học sinh nam; 5 học sinh nữ cùng một giáo viên chủ nhiệm thành một vòng tròn sao cho giáo viên đứng giữa hai học sinh nam. Tính số cách sắp xếp?

    Ta có:

    Cố định giáo viên tại một vị trí

    Chọn 2 học sinh nam để xếp cạnh giáo viên => Có C_{6}^{2} cách.

    Xếp hai học sinh nam vừa chọn cạnh giáo viên => Có 2! cách.

    Cuối cùng xếp 9 học sinh còn lại vào các vị trí còn trống => Có 9! cách.

    Vậy số cách sắp xếp theo yêu cầu bài toán là: C_{6}^{2}.2!.9!.

  • Câu 20: Nhận biết

    Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số từ 4 chữ số khác nhau?

     Số tự nhiên có 4 chữ số khác nhau được tạo thành từ dãy số đã cho có dạng:

    \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a là: 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    Áp dụng quy tắc nhân ta có số các chữ số được tạo thành thỏa mãn yêu cầu bài toán là: 7 . 6 . 5 . 4 (số)

  • Câu 21: Thông hiểu

    Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?

    Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là \frac{1}{6}

    Xác suất để người chơi thắng cuộc trong một lần gieo là C_{3}^{2}.\left( \frac{1}{2}
ight)^{2}.\frac{5}{6} + \left( \frac{1}{6} ight)^{3} =
\frac{2}{27}

    Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:

    C_{3}^{2}.\left( \frac{2}{27}
ight)^{2}.\left( 1 - \frac{2}{27} ight) + \left( \frac{2}{27}
ight)^{3} = \frac{308}{19683}

  • Câu 22: Thông hiểu

    Hai máy cơm cùng bơm nước vào một bể chứa, chúng hoạt động độc lập với nhau. Xác suất để máy bơm 1 bị hỏng là \frac{1}{2}, xác suất để máy bơm 2 bị hỏng là \frac{2}{5}. Biết nếu cả hai máy bơm bị hỏng sẽ không đáp ứng đủ nước tiêu dùng cho hộ gia đình. Tính xác suất để hộ gia đình có đủ nước dùng?

    Gọi A là biến cố máy bơm 1 bị hỏng và B là biến cố máy bơm 2 bị hỏng

    Suy ra AB là biến cố cả hai máy bơm bị hỏng => Gia đình không đủ nước dùng.

    Lại thấy hai máy bơm hoạt động độc lập nên A và B là hai biến cố độc lập.

    Áp dụng quy tắc nhân xác suất ta được xác suất để hộ gia đình không đủ nước dùng là:

    P(AB) = 0,5.0,4 = 0,2

    Vậy xác suất để hộ gia đình có đủ nước dùng là 1 - 0,2 = 0,8

  • Câu 23: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 24: Thông hiểu

    Trong kho hàng có n sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}. Biến cố X cả n sản phẩm đều tốt là:

    Ta có:

    X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}

    Nên \overline{X_{i}} là biến cố sản phẩm thứ i tốt với i \in \overline{1,n}

    Biến cố X cả n sản phẩm đều tốt là: X =
\overline{X_{1}}.\overline{X_{2}}....\overline{X_{n}}

  • Câu 25: Nhận biết

    Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?

    Sử dụng định nghĩa biến cố đối ta được:

    \overline{X} là biến cố “Hai học sinh được chọn đều là nữ”.

  • Câu 26: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

  • Câu 27: Thông hiểu

    Một người bỏ ngẫu nhiên ba lá thu vào vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng phong bì của nó.

    Xét các bộ \left( x_{1};x_{2};x_{3}
ight) trong đó \left(
x_{1};x_{2};x_{3} ight) là một hoán vị của tập A = \left\{ 1;2;3 ight\}

    Ở đây x_{i} = i,(i = 1,2,3) tức là lá thư thứ i đã bỏ đúng địa chỉ.

    Gọi \Omega là tập họp tất cả các khả năng bỏ ba lá thư vào 3 phong bì, khi đó n_{\Omega} = 3! = 6

    Gọi A là biên cố "Có ít nhất một lá thư bő đúng phong bì".

    Các khả năng thuận lợi cho biến cố A là \Omega_{A} = \left\{
(1;2;3),(1;3;2),(3;2;1),(2,1,3) ight\}

    Vậy \left| \Omega_{A} ight| =
4 xác suất cần tính là P(A) =
\frac{2}{3}

  • Câu 28: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 29: Nhận biết

    Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọn

    Số cách chọn một cây bút mực là tổ hợp chập 1 của 8: C_8^1 = 8 cách 

    Số cách chọn một cây bút chì là tổ hợp chập 1 của 8: C_8^1 = 8 cách

    => Số cách chọn một cây bút mực và một cây bút chì là: 8 . 8 = 64 cách

  • Câu 30: Nhận biết

    Tung một đồng xu hai lần liên tiếp. Tập hợp không gian mẫu là:

    Không gian mẫu là: \Omega = \left\{
SS;SN;NS;NN ight\}.

  • Câu 31: Thông hiểu

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"

    => B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

    => n\left( B ight) = 6

    => Xác suất để sau hai lần gieo kết quả như nhau là: P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{36}} = \frac{1}{6}

  • Câu 32: Nhận biết

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 33: Thông hiểu

    Khi gửi tiền vào ngân hàng, chị X được tham gia chương trình “Bốc thăm trúng thưởng”. Chị được bốc lần lượt 2 lá thăm trong hộp gồm 20 lá thăm. Biết trong hộp chỉ có 2 lá thăm ghi “Trúng thưởng”. Tính xác suất để cả hai lá thăm đều trúng thưởng?

    Gọi A là biến cố lá thăm rút được lần đầu có thưởng

    => P(A) = \frac{2}{20} =
\frac{1}{10}

    Gọi B là biến cố lá thăm rút được lần sau có thưởng.

    => P(B) = \frac{1}{19}

    \Rightarrow P(AB) = P(A).P(B) =
\frac{1}{10}.\frac{1}{19} = \frac{1}{190}

  • Câu 34: Thông hiểu

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 35: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.

    Lá thứ nhất có đúng 1 cách chọn.

    Lá thứ 2 có 4 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(B) = 24 \Rightarrow P(B) =
\frac{24}{120} = \frac{1}{5}

  • Câu 36: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 37: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 38: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 39: Nhận biết

    Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?

    Ta có:

    \Omega = \left\{
SSS;SSN;SNS;NSS;SNN;NSN;NNS;NNN ight\}

    Biến cố \overline{D} là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.

    \Rightarrow \overline{D} = \left\{
SNN;NSN;NNS;NNN ight\}

  • Câu 40: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo