Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 2: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

  • Câu 3: Thông hiểu

    Thực hiện gieo hai lần một con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện ít nhất một lần mặt năm chấm. Tính xác suất của biến cố A?

    Ta có: n(\Omega) = 6.6 = 36 và A là biến cố xuất hiện ít nhất một lần mặt năm chấm

    Suy ra \overline{A} là biến cố không lần nào xuất hiện mặt năm chấm.

    Ta có: n\left( \overline{A} ight) = 5.5
= 25 \Rightarrow P\left( \overline{A} ight) =
\frac{25}{36}

    \Rightarrow P(A) = 1 - \frac{25}{36} =
\frac{11}{36}

  • Câu 4: Thông hiểu

    Trong một thùng có chứa 7 bi xanh, 5 bi đỏ và 4 bi vàng. Lấy ngẫu nhiên 4 viên bi trong hộp. Hỏi có bao nhiêu cách chọn sao cho 4 viên bi được chọn có đủ ba màu?

    TH1: Lấy 1 bi xanh, 1 bi đỏ và 2 bi vàng ta có: 7.5.C_{4}^{2} cách.

    TH2: Lấy 2 bi xanh, 1 bi đỏ và 1 bi vàng ta có: 4.5.C_{7}^{2} cách.

    TH3: Lấy 1 bi xanh, 2 bi đỏ và 1 bi vàng ta có: 7.4.C_{5}^{2} cách.

    Vậy có tất cả 910 cách chọn số viên bi theo yêu cầu.

  • Câu 5: Vận dụng cao

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Đáp án là:

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Gọi A là biến cố làm đúng x câu hỏi của bạn H

    Ta có xác suất để làm đúng 1 câu là \frac{1}{4}, xác suất làm sai 1 câu là \frac{3}{4}

    Theo quy tắc nhân xác suất ta có:

    Xác suất của biến cố A là P(A) =C_{50}^{x}.\left( \frac{1}{4} ight)^{x}.\left( \frac{3}{4} ight)^{50- x} = \frac{C_{50}^{x}}{3^{x}}.\left( \frac{3}{4}ight)^{50}

    Xét hệ bất phương trình sau:

    \left\{ \begin{matrix}\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x + 1}}{3^{x + 1}}.\left( \dfrac{3}{4} ight)^{50} \\\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x - 1}}{3^{x - 1}}.\left( \dfrac{3}{4} ight)^{50} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3C_{50}^{x} \geq C_{50}^{x + 1} \\C_{50}^{x} \geq 3C_{50}^{x - 1} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3.\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x + 1)!(49 - x)!} \\\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x - 1)!(51 - x)!} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{3}{50 - x} \geq \dfrac{1}{x + 1} \\\dfrac{1}{x} \geq \dfrac{3}{51 - x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{47}{4} \\x \leq \dfrac{51}{4} \\\end{matrix} ight.\ ;\left( x\mathbb{\in Z} ight) \Rightarrow x =12

  • Câu 6: Thông hiểu

    Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.

    a) Xác suất để lấy được 3 quả cầu màu đỏ là \frac{35}{816} Đúng||Sai

    b) Xác suất để lấy được 3 quả cùng màu là \frac{67}{816} Sai||Đúng

    c) Xác suất để lấy được 3 quả cầu có đủ ba màu là \frac{35}{136} Đúng||Sai

    d) Xác suất để lấy được 3 quả cầu khác màu và khác số là \frac{121}{816}. Đúng||Sai

    Đáp án là:

    Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.

    a) Xác suất để lấy được 3 quả cầu màu đỏ là \frac{35}{816} Đúng||Sai

    b) Xác suất để lấy được 3 quả cùng màu là \frac{67}{816} Sai||Đúng

    c) Xác suất để lấy được 3 quả cầu có đủ ba màu là \frac{35}{136} Đúng||Sai

    d) Xác suất để lấy được 3 quả cầu khác màu và khác số là \frac{121}{816}. Đúng||Sai

    C_{18}^{3} = 816 cách lấy 3 quả cầu từ hộp.

    a) Số cách lấy được 3 quả cầu màu đỏ là: C_{7}^{3}

    Xác suất để lấy được 3 quả cầu màu đỏ là P = \frac{C_{7}^{3}}{C_{18}^{3}} =
\frac{35}{816}

    b) Số cách lấy được 3 quả cầu cùng màu là: C_{7}^{3} + C_{6}^{3} + C_{5}^{3}

    Xác suất để lấy được 3 quả cùng màu là P
= \frac{C_{7}^{3} + C_{6}^{3} + C_{5}^{3}}{C_{18}^{3}} = \frac{65}{816}
eq \frac{67}{816}

    c) Số cách lấy được 3 quả cầu có đủ 3 màu là: C_{7}^{1}.C_{6}^{1}.C_{5}^{1}

    Xác suất để lấy được 3 quả cầu có đủ ba màu là: P =
\frac{C_{7}^{3}.C_{6}^{3}.C_{5}^{3}}{C_{18}^{3}} = \frac{210}{816} =
\frac{35}{136}

    d) Bước 1: Lấy 1 quả cầu màu vàng có 5 cách.

    Bước 2: Lấy 1 quả cầu màu xanh có 5 cách. (vì khác số với quả vàng).

    Bước 3: Lấy một quả màu đỏ có 5 cách (vì khác số với quả xanh và quả vàng).

    Suy ra có 5.5.5 = 125 cách lấy 3 quả cầu khác màu và khác số,

    Suy ra xác suất của biến cố là: P =
\frac{125}{C_{18}^{3}} = \frac{125}{816}

  • Câu 7: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 8: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 9: Vận dụng

    Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:

    Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.

    Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau

    Coi 6 quyển sách là hai bộ sách Toán và Vật Lí

    Số cách sắp xếp hai bộ sách là 2! = 2 (cách)

    Cách sắp xếp bộ sách Toán là 3! = 6

    Cách sắp xếp bộ sách Vật Lí là 3! = 6 

    => Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)

    => Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là: P = \frac{{72}}{{720}} = \frac{1}{{10}}

  • Câu 10: Thông hiểu

    Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:

    Ta có:

    Số cách sắp xếp 3 viên bi đen thành một dãy bằng 3!

    Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 4!

    Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 5!

    Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 3!

    Vậy số phần tử của tập hợp A là: n(A) =
3!.4!.5!.3! = 103680

  • Câu 11: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 12: Thông hiểu

    Từ các chữ số 0, 1, 2, 3, 4, 5, 6 viết ngẫu nhiên một số tự nhiên có 5 chữ số đôi một khác nhau. Tính xác suất để các chữ số 1 và 2 có mặt trong số viết được.

    Gọi A là. biến cố: "Số được viết có mặt các chữ số 1 và 2"

    Tìm |\Omega|

    Giả sử số được viết có dạng \overline{abcde}.

    Có 6 cách chọn a.

    Tiếp theo có A_{6}^{4} cách chọn (b;c;d;e)

    Vậy số phần tử không gian mẫu là: |\Omega| = 6.A_{6}^{4} = 2160

    Tìm \left| \Omega_{A}
ight|

    Trường hợp 1: \overline{abcde} không có mặt chữ số 0:

    A_{5}^{2} cách chọn vị trí cho hai chữ số 1 và 2.

    Sau đó có A_{4}^{3} cách xếp 3 trong 4 chữ số 3, 4, 5, 6 vào ba vị trí còn lại.

    Vậy trường hợp này có A_{5}^{2}.A_{4}^{3}
= 480 khả năng.

    Trường hợp 2: \overline{abcde} có mặt ba chữ số 0, 1, 2:

    Có 4 cách chọn vị trí cho chữ số 0.

    Tiếp theo có A_{4}^{2} cách chọn vị trí cho hai chữ số 1 và 2.

    Cuối cùng có A_{4}^{2} cách chọn 2 trong 4 chữ số 3, 4, 5, 6 để viết vào hai vị trí còn lại.

    Vậy trường hợp này có 4.A_{4}^{2}.A_{4}^{2} = 576 khả năng.

    Số kết quả thuận lợi cho biến cố A là 480
+ 576 = 1056

    Vậy xác suất cần tính là: P(A) =
\frac{1056}{2160} = \frac{22}{45}

  • Câu 13: Thông hiểu

    Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?

    Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có: n(\Omega) = C_{10}^{5}

    Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.

    TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{3}.C_{6}^{2} cách.

    TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{4}.C_{6}^{1} cách.

    Suy ra n(\Omega) = C_{4}^{3}.C_{6}^{2} +
C_{4}^{4}.C_{6}^{1}

    Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{11}{42}

  • Câu 14: Thông hiểu

    Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:

    Đáp án: 7/8

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:

    Đáp án: 7/8

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Xét biến cố tuyển thủ A không chiến thắng chung cuộc khi tuyển thủ B thắng liên tiếp ba hiệp vào buổi chiều.

    Xác suất là: \frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Vậy xác suất để tuyển thủ A thắng chung cuộc là 1 - \frac{1}{8} = \frac{7}{8} .

  • Câu 15: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 16: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 17: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

  • Câu 18: Thông hiểu

    Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?

    Do số bi xanh và số bi đỏ lấy ra bằng nhau

    => Có hai trường hợp xảy ra:

    Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ

    => Số cách chọn là: C_8^1.C_5^1.C_3^2 = 120 cách

    Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ

    => Số cách chọn là: C_8^2.C_5^2 = 280 cách

    => Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách

  • Câu 19: Nhận biết

    Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm A;B;C;D;E;F phân biệt?

    Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.

    Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: C_{7}^{2} = 21 (đoạn thẳng.

    Vậy đáp án là 21 đoạn thẳng.

  • Câu 20: Thông hiểu

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 21: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 22: Thông hiểu

    Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ.

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{16}^3 = 560

    B là biến cố "3 viên bi lấy được đầu màu đỏ"

    => n\left( B ight) = C_3^3 = 1

    => Xác suất lấy được cả 3 viên bi đỏ là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{1}{{560}}

  • Câu 23: Thông hiểu

    Hai hộp gỗ được đặt trên bàn. Hộp A chứa 3 bi đỏ và 4 bi xanh. Hộp B chứ 2 bi đỏ và 5 bi xanh. Lấy ngẫu nhiên 1 viên bi từ hộp A sang hộp B rồi lấy ngẫu nhiên 1 viên bi trong hộp B ra. Tính xác suất để viên bi lấy ra ở hộp thứ hai có màu đỏ?

    Xảy ra hai trường hợp:

    TH1: Viên bi lấy ra từ hộp thứ nhất màu đỏ và đưa vào hộp thứ hai, khi đó hộp thứ hai có 3 viên bi đỏ và 5 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{1} =
\frac{3}{7}.\frac{3}{8} = \frac{9}{56}

    TH1: Viên bi lấy ra từ hộp thứ nhất màu xanh và đưa vào hộp thứ hai, khi đó hộp thứ hai có 2 viên bi đỏ và 6 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{2} =
\frac{4}{7}.\frac{2}{8} = \frac{8}{56}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} = \frac{9}{56} + \frac{8}{56} = \frac{17}{56}

  • Câu 24: Thông hiểu

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi B là biến cố: "Có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu".

    Số cách chọn 1 học sinh đạt yêu cầu là 27.

    Số cách chọn 1 học sinh không đạt yêu cầu là 3.

    Chọn 2 học sinh mà trong đó có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu là: 27.3 =
81

    Khi đó số kết quả thuận lợi cho biến cố B là 81

    Vậy xác suất để cần tìm là: P(B) =
\frac{81}{435} = \frac{9}{145}

  • Câu 25: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 26: Nhận biết

    Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là \frac{1}{5}\frac{2}{7}. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?

    Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:

    P(A).P(B) = \frac{1}{5}.\frac{2}{7} =
\frac{2}{35}

  • Câu 27: Vận dụng

    Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6.6 = 36

    Giả sử N là biến cố " Tổng số chấm trên hai mặt chia hết cho 3" 

    Trường hợp 1: Số chấm xuất hiện trong hai lần gieo là giống nhau

    (3; 3), (6; 6)

    Trường hợp 2: Số chấm xuất hiện trong hai lần gieo là khác nhau

    (1; 2), (1; 5); (2; 4), (3; 6), (4; 5)

    Mỗi khả năng xảy ra có 2 hoán vị nên số phần tử của biến cố là 10 khả năng xảy ra.

    => Số khả năng xảy ra của biến cố N là: 10 + 2 = 12 

    => Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là: P\left( N ight) = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 28: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 29: Nhận biết

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 30: Nhận biết

    Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số

  • Câu 31: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?

     Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Do số đang xét là số chẵn => e ∈ \{2; 4; 6\}

    => Có 3 cách chọn e

    => Số cách chọn a, b, c, d là: {6^4} = 1296

    => Từ tập A có thể lập được số các số chẵn có 5 chữ số là: 3 . 1296 = 3888 số

  • Câu 32: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 33: Nhận biết

    Gieo ngẫu nhiên một đồng xu cân đối và đồng chất 5 lần. Không gian mẫu của phép thử có bao nhiêu phần tử?

    Mỗi lần gieo đồng xu có hai khả năng xảy ra nên khi tung đồng xu đó 5 lần thì theo quy tắc nhân ta có: {2^5} = 32

    Vậy số phần tử của không gian mẫu là n\left( \Omega  ight) = 32

  • Câu 34: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 36: Nhận biết

    Một nhóm học sinh gồm 20 học sinh nam và 10 học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?

    10 + 20 = 30 cách chọn một học sinh.

  • Câu 37: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 38: Nhận biết

    Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:

    Biến cố đối của biến cố B là \overline{B}: “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.

  • Câu 39: Thông hiểu

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:

    Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.

    Theo đề bài ta có:

    0 ≤ 6k < 100

    => 0 ≤ k < 16,7

    Vậy có 17 chữ số thỏa mãn.

  • Câu 40: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}

    Trướng hợp 1: e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

    Trường hợp 2: e = 0 => Có 1 cách chọn e

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 6 . 5 . 4 . 3 = 360 số

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 900 + 360 = 1260 số

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo