Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Số cách chọn 2 nữ trong 4 nữ là do đó xác suất của biến cố này là
.
Cho
. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?
Số tự nhiên có 6 chữ số có dạng:
Số tự nhiên chẵn => f ∈ {2; 4; 6}
=> Có 3 cách chọn f
Số cách chọn a, b, c, d, e là:
=> Số các số chẵn có 6 chữ số đôi một khác nhau là: số
Lấy ngẫu nhiên 3 số từ tập
. Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Một phép thử có không gian mẫu là:
. Cặp biến cố nào sau đây không đối nhau?
Cặp biến cố không đối nhau là: vì
Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.
Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là:
Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”
Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:
Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không đỏ.
Số phần tử không gian mẫu là:
B là biến cố "cả 3 viên bi không đỏ"
Trường hợp 1: Lấy được 1 viên bi trắng, 2 viên bi đen: cách
Trường hợp 2: Lấy được 2 viên bi trắng, 1 viên bi đen: cách
Trường hớp 3: Lấy được 3 viên chỉ màu trắng cách
Trường hợp 4: Lấy được 3 viên chỉ màu đen cách
=>
=> Xác suất lấy được cả 3 viên bi không đỏ là:
Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.
Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:
Không gian mẫu
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau
Gọi số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
=> Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số
Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?
Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi là biến cố ở hiệp thứ I, người thứ j thắng
Vậy xác suất để bạn A giành chiến thắng là:
Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ra 5 viên bi trong đó có 3 viên bi màu xanh?
Số cách chọn 5 viên bi trong đó có 3 viên bi màu xanh là: cách
Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là
và
. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?
Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:
Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:
Biến cố đối của biến cố B là : “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.
Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?
Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là
Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là
Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là
Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:
|
Biến cố |
Xúc xắc 1; 2; 3 |
Xác suất |
|
B |
2 chấm, 2 chấm, 1 chấm |
|
|
C |
2 chấm, 1 chấm, 2 chấm |
|
|
D |
1 chấm, 2 chấm, hai chấm |
Do và các biến cố B, C, D đôi một xung khắc nên ta có:
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi B là biến cố: "Có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu".
Số cách chọn 1 học sinh đạt yêu cầu là 27.
Số cách chọn 1 học sinh không đạt yêu cầu là 3.
Chọn 2 học sinh mà trong đó có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu là:
Khi đó số kết quả thuận lợi cho biến cố B là 81
Vậy xác suất để cần tìm là:
Một lớp học sinh có 40 học sinh gồm 25 nam và 15 nữ. Chọn ngẫu nhiên 5 học sinh để trực nhật lớp. Hỏi số cách chọn 5 học sinh đó, biết rằng nhóm học sinh được chọn có 3 nam và 2 nữ?
Chọn 3 học sinh nam từ 25 học sinh nam có cách.
Chọn 2 học sinh nam từ 15 học sinh nam có cách.
Vậy số cách chọn thỏa mãn yêu cầu đề bài là chọn.
Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?
Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là
Xác suất để người chơi thắng cuộc trong một lần gieo là
Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:
Trong một thùng có chứa 7 bi xanh, 5 bi đỏ và 4 bi vàng. Lấy ngẫu nhiên 4 viên bi trong hộp. Hỏi có bao nhiêu cách chọn sao cho 4 viên bi được chọn có đủ ba màu?
TH1: Lấy 1 bi xanh, 1 bi đỏ và 2 bi vàng ta có: cách.
TH2: Lấy 2 bi xanh, 1 bi đỏ và 1 bi vàng ta có: cách.
TH3: Lấy 1 bi xanh, 2 bi đỏ và 1 bi vàng ta có: cách.
Vậy có tất cả 910 cách chọn số viên bi theo yêu cầu.
Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 4 cách (Do a khác 0)
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số
Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tìm xác suất để trong 6 sản phẩm lấy ra có không quá một phế phẩm?
Số cách chọn ra 6 sản phẩm từ 10 sản phẩm là
Gọi biến cố A: “Lấy 6 sản phẩm từ lô hàng đó có không quá một phế phẩm”.
Trường hợp 1: Không có phế phẩm nào.
Số cách chọn 6 sản phẩm không phải là phế phẩm là cách.
Trường hợp 2: Có 1 phế phẩm và 5 sản phẩm còn lại.
Số cách chọn có 1 phế phẩm và 5 sản phẩm còn lại là cách.
Khi đó:
Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?
Xác suất để học sinh thi được 9 điểm là: .
Xác suất để học sinh thi được 9,2 điểm là: .
Xác suất để học sinh thi được 9,4 điểm là: .
Xác suất để học sinh thi được 9,6 điểm là: .
Xác suất để học sinh thi được 9,8 điểm là: .
Xác suất để học sinh thi được 10 điểm là: .
Vậy xác suất để học sinh thi được không dưới 9 điểm là:
Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.
Số học sinh của lớp là: 20 + 26 = 46 (học sinh)
Số cách chọn 3 học sinh làm cán bộ lớp là:
Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là:
Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:
cách chọn
Học sinh A làm bài kiểm tra 15 phút môn Toán gồm 10 câu hỏi trắc nghiệm, mỗi câu hỏi gồm 4 phương án trả lời và chỉ có một phương án đúng. Nếu trả lời đúng 1 câu hỏi được 1 điểm, trả lời sai không có điểm. Biết A đã làm đúng 5 câu hỏi, vì thời gian hạn chế nên A đã khoanh trả lời ngẫu nhiên các câu hỏi còn lại. Tính xác suất để A đạt được ít nhất 8 điểm?
Bạn A trả lời đúng 5 câu hỏi nên A đã đạt được 5 điểm
Để được ít nhất 8 điểm thì A phải trả lời đúng ít nhất 3 câu trong 5 câu còn lại.
TH1: 3 câu đúng, 2 câu sai
TH2: 4 câu đúng, 1 câu sai
TH3: 5 câu đúng
Vậy xác suất cần tìm là:
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:
Số cách chọn nhóm có 2 người:
Số cách chọn nhóm có 3 người:
Số cách chọn nhóm có 4 người:
Số cách chọn nhóm có 5 người: 1
=> Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm
Cho 5 chữ số 0; 1; 2; 3; 4. Từ 5 chữ số đó có thể lập được bao nhiêu chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần?
Số tự nhiên có năm chữ số có dạng:
Do mỗi số đó mỗi chữ số trên có mặt một lần =>
Số cần tìm là số chẵn => e ∈ {0; 2; 4}
Trường hợp 1: e = 0 => e có 1 cách chọn
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 1 là: 4.3.2 = 24 số
Trường hợp 2: e ∈ {2; 4} => Có 2 cách chọn e
Số cách chọn a là 3 cách (Do a khác 0)
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 2 là: 2.3.3.2 = 36 số
=> Có thể lập được số các chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần là 36 + 24 = 60 số
Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.
Gọi A là biến cố chọn được hộp A
B là biến cố chọn được hộp B
C là biến cố chọn được hộp C
E là biến cố bi chọn ra là bi màu đỏ.
Ta có:
Theo công thức
Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?
Gọi số hiệp hai tuyển thủ thi đấu là
Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó
Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:
TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:
TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:
TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:
Vậy xác suất để tuyển thủ B thắng chung cuộc là
Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?
Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng trong đó
là 4 bạn nữ và
là 3 bạn nam.
Bước 1: Chọn 3 bạn nam trong 5 bạn nam có cách.
Bước 2: Gọi nhóm là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.
Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.
Do đó ta có: cách xếp thỏa mãn yêu cầu bài toán.
Có bao nhiêu cách lấy hai con bài từ cỗ bài tú lơ khơ gồm 52 con?
Mỗi cách lấy 2 con bài từ 52 con là một tổ hợp chập 2 của 52 phần tử.
Vậy số cách lấy hai con bài từ cỗ bài tú lơ khơ 52 con là cách.
Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi trong đó có đúng 2 viên bi xanh?
Trong 4 viên bi có đúng 2 viên bi màu xanh
=> 2 viên bi còn lại nằm trong 8 viên bi (màu đỏ và màu vàng)
=> Số cách chọn 4 viên bi trong đó có đúng 2 viên bi xanh là: cách
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Lớp 11A chọn ngẫu nhiên 1 học sinh trong lớp để tham gia hoạt động đoàn trường. Xét hai biến cố:
Biến cố A: “Học sinh đó là nam”
Biến cố B: “Học sinh đó là học sinh giỏi”
Khẳng định nào sau đây đúng khi mô tả biến cố
?
Ta có:
: Học sinh đó là học sinh nam hoặc là học sinh giỏi
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Khẳng định nào sau đây đúng?
Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.
Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.
Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.
Vậy biến cố C là biến cố hợp của A và B.
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Số học sinh có trong nhóm là: học sinh
Số cách chọn 5 học sinh trong nhóm là: cách
Số cách chọn số học sinh chỉ có nam là cách
Số cách chọn số học sinh chỉ có nữ là: cách
=> Số cách chọn ra 5 bạn trong đó có cả nam và nữ là: cách
Một tổ có 9 hoc sinh, trong đó có 5 nam và 4 nữ được xếp thành một hàng doc. Tính xác suất sao cho 5 ban nam phải đứng kề nhau?
Gọi A là biến cố "Xếp 9 học sinh thành một hàng dọc trong đó 5 bạn nam phải đứng kề nhau".
Tìm
Xếp 9 học sinh thành một hàng dọc, có 9! cách xếp
Tìm
Năm học sinh nam đứng kề nhau ta coi như 1 phần tử, cùng với 4 nữ là 5 phần tử.
Xếp 5 phần tử này thành một hàng dọc có cách xếp.
Năm học sinh nam đứng kề nhau hoán vị cho nhau: 5! cách xếp.
Do đó có cách xếp.
Vậy số phần tử của tập là 14400.
Vậy xác suất cần tính là:
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là
và xác suất để động cơ 2 chạy tốt là
. Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là và xác suất để động cơ 2 chạy tốt là
. Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Gọi A là biến cố có ít nhất một động cơ chạy tốt
B là biến cố chỉ có động cơ 1 chạy tốt.
Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.
Gọi D là biến cố cả hai động cơ đều chạy tốt
Vậy
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?
Ta có:
Số cách chọn 2 nữ làm tổ trưởng và tổ phó là cách.
Số cách chọn 3 công nhân còn lại là nữ là: cách.
Số cách chọn 3 công nhân còn lại trong 18 công nhân là cách.
Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:
.