Cho tập hợp  . Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?
. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?
Ta có:
Số có 1 chữ số có 4 số.
Số có 2 chữ số có  số.
Số có 3 chữ số có  số.
Số có 4 chữ số có  số.
Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.
Cho tập hợp  . Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?
. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?
Ta có:
Số có 1 chữ số có 4 số.
Số có 2 chữ số có  số.
Số có 3 chữ số có  số.
Số có 4 chữ số có  số.
Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.
Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?
Quy ước gene A: quả tròn và gene a: quả dài
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1
Gọi  là biến cố cây được chọn lần thứ nhất là quả tròn
 là biến cố cây được chọn lần thứ hai là quả tròn.
Ta có:  độc lập và 
Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:
Với các chữ số  . Có thể lập được bao nhiêu số có mười chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần và các chữ số khác có mặt đúng 1 lần?
. Có thể lập được bao nhiêu số có mười chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần và các chữ số khác có mặt đúng 1 lần?
Trường hợp 1: Số 5 ở vị trí đầu tiên và 3 số 5 còn lại có  cách xếp
Sáu chữ số còn lại có  cách xếp.
=> Có  số.
Trường hợp 2: Số 5 không ở vị trí đầu tiên có  cách sắp xếp 4 số 5.
Vị trí đầu tiên có 5 cách xếp (trừ số 0).
5 vị trí còn lại có  cách xếp.
=> Có  số.
Vậy có thể lập được 60480 + 75600 = 136080 số thỏa mãn bài toán.
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là  và xác suất để động cơ 2 chạy tốt là
 và xác suất để động cơ 2 chạy tốt là  . Tìm xác suất để có ít nhất một động cơ chạy tốt.
 . Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là  và xác suất để động cơ 2 chạy tốt là 
 . Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Gọi A là biến cố có ít nhất một động cơ chạy tốt
B là biến cố chỉ có động cơ 1 chạy tốt.
Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.
Gọi D là biến cố cả hai động cơ đều chạy tốt
Vậy 
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?
Số cách chọn 2 trong 6 người có  cách
Vậy số phần tử không gian mẫu là 15.
Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: 
Cho  . Từ tập A có thể lập được bao nhiêu số lẻ có 5 chữ số đôi một khác nhau?
. Từ tập A có thể lập được bao nhiêu số lẻ có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng: 
Ta có: Số tự nhiên lẻ => e ∈ {1; 3; 5}
=> Có 3 cách chọn e
Ta có:  => Có 5 cách chọn a 
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số lẻ có 5 chữ số đôi một khác nhau được tạo thành là:  số
Có bao nhiêu số tự nhiên có 3 chữ số:
Ta có:
Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999
=> Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.
Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp  . Gọi
. Gọi  là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố
 là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố  ?
?
Ta có:  là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:
Số phần tử không gian mẫu là: 52
Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích
=> Số lá bích trong bộ bài là 13 lá
=> Xác suất để được lá bích là: 
Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần
Một tuần có bảy ngày và mỗi ngày thăm một bạn.
Có 12 cách chọn bạn vào ngày thứ nhất.
Có 11 cách chọn bạn vào ngày thứ hai.
Có 10 cách chọn bạn vào ngày thứ ba.
Có 9 cách chọn bạn vào ngày thứ tư.
Có 8 cách chọn bạn vào ngày thứ năm.
Có 7 cách chọn bạn vào ngày thứ sáu.
Có 6 cách chọn bạn vào ngày thứ bảy.
Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.
Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?
Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng  trong đó 
 là 4 bạn nữ và 
 là 3 bạn nam.
Bước 1: Chọn 3 bạn nam trong 5 bạn nam có  cách.
Bước 2: Gọi nhóm  là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.
Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.
Do đó ta có:  cách xếp thỏa mãn yêu cầu bài toán.
Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?
Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:
Có 5 cách chọn hoa hồng trắng.
Có 6 cách chọn hoa hồng đỏ.
Có 7 cách chọn hoa hồng vàng.
Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách
Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là  và
 và  . Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: .
Xác suất để xạ thủ thứ hai bắn không trúng bia là: .
Gọi biến cố :"Có ít nhất một xạ thủ không bắn trúng bia ".
Khi đó biến cố  có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: .
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: .
+) Xác suất cả hai người đều bắn không trúng bia: 
Khi đó .
Biết  và
 và  là hai biến cố đối nhau. Chọn khẳng định đúng?
 là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Cho hai tập hợp A = {a, b, c, d}; B = {c, d, e}. Chọn khẳng định sai trong các khẳng định
sau:
N(A) = 4 => Khẳng định đúng
N(B) = 3 => Khẳng định đúng
A ∩ B = {c, d} => N(A ∩ B) = 2 là khẳng định đúng
A ∪ B = {a, b, c, e} => N(A ∪ B) = 4 => Khẳng định sai là N(A ∪ B) = 7
Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?
 Gọi số tự nhiên có 5 chữ số khác nhau là: 
Do số tạo thành là số lẻ => e = {1; 7; 9}
=> Số cách chọn e là: 3 cách
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
Số cách chọn d là 2 cách
=> Số các số có 5 chữ số khác nhau được tạo thành là: 3 . 4 . 4 . 3 . 2 = 288 số
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là: 
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=> 
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là 
Vậy xác suất để Minh tô sai cả 5 câu là 
Cho  là các biến cố đôi một xung khắc và
 là các biến cố đôi một xung khắc và  là biến cố chắc chắn. Biết
 là biến cố chắc chắn. Biết  . Tính xác suất của biến cố
. Tính xác suất của biến cố  ?
?
Gọi  theo giả thiết ta có: 
Vì  là biến cố chắc chắn nên 
Mặt khác  là các biến cố đôi một xung khắc nên
Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi sao cho số bi xanh bằng số bi đỏ?
Do số bi xanh và số bi đỏ lấy ra bằng nhau
=> Có hai trường hợp xảy ra:
Trường hợp 1: Trong 4 viên có 1 viên bi xanh và 1 viên bi đỏ
=> Số cách chọn là:  cách
Trường hợp 2: Trong 4 viên bi có 2 viên bi xanh và 2 viên bi đỏ
=> Số cách chọn là:  cách
=> Số cách chọn 4 viên bi sao cho số bi xanh bằng số bi đỏ là 120 + 280 = 400 cách
Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố  là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Thực hiện gieo hai lần một con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện ít nhất một lần mặt năm chấm. Tính xác suất của biến cố A?
Ta có:  và A là biến cố xuất hiện ít nhất một lần mặt năm chấm
Suy ra  là biến cố không lần nào xuất hiện mặt năm chấm.
Ta có: 
Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?
Gọi số hiệp hai tuyển thủ thi đấu là 
Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó 
Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:
TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:
TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:
TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:
Vậy xác suất để tuyển thủ B thắng chung cuộc là
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Gọi số cạnh của đa giác là n (cạnh)
Điều kiện 
=> Số đỉnh tương ứng của đa giác là n đỉnh
Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)
=> Số đoạn thẳng tạo thành là  đoạn
Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n
Ta có phương trình:
Vậy đa giác đó có 7 cạnh.
Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là  , xác suất để cầu thủ A đá trúng lưới là
, xác suất để cầu thủ A đá trúng lưới là  . Tính xác suất để có đúng một cầu thủ đá trúng lưới?
. Tính xác suất để có đúng một cầu thủ đá trúng lưới?
Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới
Suy ra biến cố có đúng một cầu thủ đá trúng lưới là 
Vì  là hai biến cố xung khắc nên 
Vì  là hai biến cố độc lập nên 
Tương tự 
Vậy 
Ngân hàng đề thi gồm 100 câu hỏi. Mỗi đề thi có 5 câu. Một học sinh thuộc 80 câu. Tìm xác suất để học sinh đó ngẫu nhiên làm được một đề thi trong đó có 4 câu mình đã học thuộc.
Số cách chọn 1 đề thi bất ki (gồm 5 câu trong 100 câu) là 
Gọi biến cố A: “học sinh đó làm được một đề thi trong đó có 4 câu mình đã học thuộc”.
Học sinh đã học thuộc 80 câu nên có  cách chọn ra 4 câu đã học thuộc và có 
 cách chọn ra 1 câu hỏi còn lại chưa học thuộc.
Do đó 
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có  số
TH2: Nếu cố 432 đứng đầu thì có  số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có  cách chọn số còn lại. Do đó trường hợp này có 
Suy ra số phần tử của tập hợp S là 
Vậy số phần tử không gian mẫu là 
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và  viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
 viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là  ?
 ?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và  viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là 
 ?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Theo bài ra ta có tổng số viên bi trong hộp là 
Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là 
Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: 
=> Xác suất lấy được 3 viên bi có đủ 3 màu là:
Do đó trong hộp có 14 viên bi và 
Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ
Suy ra  là biến cố 3 viên bi lấy được đều là bi đỏ.
Số kết quả thuận lợi cho  là: 
Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”
S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”
T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”
Ta có: 
Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.
Ta có 
Lại có: 
Tung một đồng tiền xu cân đối và đồng chất 5 lần liên tiếp. Tính số phần tử của biến cố “Mặt sấp xuất hiện ít nhất 1 lần”.
Số phần tử không gian mẫu là:
Gọi A là biến cố “Mặt sấp xuất hiện ít nhất 1 lần” khi đó  là biến cố “Mặt sấp không xuất hiện”
Khi đó 
Khi đó 
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là 
Gọi  lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là 
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên 
Kết quả thuận lợi cho biến cố "3 sinh viên vào cù môt quán" là 
Vậy xác suất của biến cố này là 
Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:
Ta có:  là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.
Do đó số phần tử của 
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi  là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là 
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là  cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra 
Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?
Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách
Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách
Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc
Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách
=> Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là  cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu
Khi đó số kết quả thuận lợi cho biến cố A là: 
Vậy xác suất để cần tìm là: 
Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:
Bảng chữ cái Tiếng Anh có 26 chữ cái.
Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là:  cách chọn.
Cho  . Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng: 
Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}
Trướng hợp 1: e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Ta có:  => Có 5 cách chọn a
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số được tạo thành là:  số
Trường hợp 2: e = 0 => Có 1 cách chọn e
Ta có:  => Có 6 cách chọn a
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số được tạo thành là:  số
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là:  số
Gọi  là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ
 là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ  , xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?
, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?
+ Gọi số tự nhiên có 6 chữ số là  .
Chọn  : có 9 cách.
Chọn  : có 10 cách.
Chọn  : có 10 cách.
Chọn  : có 10 cách.
Chọn  : có 10 cách.
Chọn  : có 10 cách.
Suy ra số các phần tử của  là: 
 cách.
Chọn ngẫu nhiên một số từ .
+ Gọi  là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".
TH1: .
Có 5 vị trí để xếp số 0.
Và có  cách chọn 4 vị trí còn lại.
Suy ra có:  số.
TH2: 
Chọn : có 8 cách.
Xếp hai số 0 và 1 có:  cách.
Xếp vào 3 vị trí còn lại có:  cách.
Suy ra có:  số.
.
Lấy ngẫu nhiên hai viên bi trong hộp có 10 viên bi gồm 4 viên bi đỏ, 3 viên bi xanh, 2 viên bi vàng và 1 viên bi trắng. Tính xác suất của biến cố B “hai viên bi lấy ra có cùng màu”.
Ta có:
Gọi các biến cố
D lấy được hai viên bi đỏ 
E lấy được hai viên bi xanh 
F lấy được 2 viên bi vàng 
Ta có D, E, F là các biến cố đôi một xung khắc và 
Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:
Ta có:
Số cách sắp xếp 3 viên bi đen thành một dãy bằng 
Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 
Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 
Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 
Vậy số phần tử của tập hợp A là: 
