Cho hàm số . Với
, giá trị của biểu thức
bằng:
Ta có:
Cho hàm số . Với
, giá trị của biểu thức
bằng:
Ta có:
Thu gọn biểu thức ta được kết quả ta được phân số tối giản
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra
Cho hình chóp S.ABC có và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:
Hình vẽ minh họa:
Đặt SA = a
Xét tam giác SAB vuông cân tại S ta có:
Xét tam giác SAC cân tại S ta có:
=> SA = SC = AC = a
Áp dụng định lí cosin cho tam giác SBC ra có:
Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC
Hay H là trung điểm của BC.
Cho hình chóp có
vuông góc với mặt phẳng đáy
. Tìm mệnh đề sai trong các mệnh đề dưới đây?
Hình vẽ minh họa
Ta có:
Vậy mệnh đề sai là:
Với thì
bằng:
Ta có:
Cho hình chóp có đáy
là hình vuông cạnh
,
. Góc giữa đường thẳng
và
bằng:
Hình vẽ minh họa
Gọi O là giao điểm của AC và BD
Vì
Ta có: nên SO là hình chiếu vuông góc của cạnh SA trên mặt phẳng (SBD)
Tam giác AOS vuông tại O ta có:
Xác định tập nghiệm của bất phương trình ?
Ta có:
Vậy tập nghiệm bất phương trình là
Cho hình chóp có đáy
là hình vuông cạnh
,
. Góc giữa đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Do nên góc giữa đường thẳng
và mặt phẳng đáy bằng góc
.
Ta có:
Vậy góc giữa đường thẳng và mặt phẳng
bằng
.
Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?
Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi là biến cố ở hiệp thứ I, người thứ j thắng
Vậy xác suất để bạn A giành chiến thắng là:
Tính giá trị biểu thức ?
Ta có:
Với a và b là hai số thực dương tùy ý thì bằng:
Ta có:
Giả sử phương trình có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là
Cho biết . Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm
Thu nhập (nghìn đồng) | Hộ gia đình |
|
[0; 100) | 5 |
|
[100; 200) | 7 |
|
[200; 300) | 12 | |
[300; 400) | 18 | |
[400; 500) | 16 | |
[500; 600) | 10 |
|
[600; 700) | 5 |
|
Khi đó ta tính mốt như sau:
Từ tập hợp các chữ số có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?
Gọi
Gọi số có 4 chữ số là khi đó có 3 trường hợp xảy ra:
TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ
Có cách chọn 2 chữ số chẵn.
Có cách chọn 2 chữ số lẻ.
Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)
Có cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.
Vậy trường hợp này có: cách.
TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ
Có cách chọn 3 chữ số chẵn.
Có cách chọn 1 chữ số lẻ.
Có 4! cách xếp các số sau khi chọn
Vậy trường hợp này có: cách.
TH3: Số cần tìm có 4 chữ số chẵn
Có 4! = 24 cách xếp các số sau khi chọn
Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.
Tìm tập nghiệm của bất phương trình: .
Điều kiện
Bất phương trình tương đương
Kết hợp với điều kiện ta được tập nghiệm bất phương trình là:
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
Vì HA = HB, tam giác ABC cân => CH ⊥ AB
Ta có: SA ⊥ (ABC) => SA ⊥ CH
Mà CH ⊥ AB => CH ⊥ (SAB)
Mặt khác AK thuộc mặt phẳng (SAB
=> CH ⊥ SA, CH ⊥ SB, CH ⊥ AK
Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho . Kết quả của
là:
Ta có:
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là
Để nhận được số tiền hơn 400 triệu thì
Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị ?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [20; 40)
(Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)
Khi đó ta tìm được các giá trị:
Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?
Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có:
Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.
TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có cách.
TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có cách.
Suy ra
Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là:
Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?
Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số
Lại từ hình vẽ suy đồ thị hàm số đi qua điểm
Kiểm tra ta thấy nên loại các hàm số
,
.
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Mẫu số liệu được chia thành bao nhiêu nhóm?
Mẫu số liệu được chia thành 7 nhóm.
Nếu một công việc được chia thành hai trường hợp, trường hợp 1 có a cách thực hiện, trường hợp hai có b cách thực hiện. Biết rằng mỗi cách thực hiện ở trường hợp này không trùng với bất kì cách thực hiện nào ở trường hợp kia. Khi đó khẳng định nào sau đây đúng và số cách thực hiện công việc nói trên?
Theo quy tắc nhân ta có số cách thực hiện công việc là .
Phương trình có bao nhiêu nghiệm thực?
Ta có:
Vậy phương trình có duy nhất 1 nghiệm.
Số cách xếp 6 học sinh ngồi bất kì vào một ghế dài là:
Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử
Vậy số cách sắp xếp là cách.
Rút đồng thời ngẫu nhiên 2 thẻ từ hộp có 9 thẻ được đánh số từ 1 đến 9. Tính xác suất để tích các số ghi trên thẻ rút được là số chẵn?
Ta có: 4 thẻ ghi số chẵn là {2; 4; 6; 8} và 5 thẻ ghi số lẻ là {1; 3; 5; 7; 9}
Rút ngẫu nhiên 2 thẻ từ 9 thẻ thì ta có số cách là
Số phần tử của không gian mẫu là
Gọi A là biến cố tích các số trên thẻ rút được là số chẵn
Số phần tử của biến cố A là:
Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, , SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?
Hình vẽ minh họa
Lấy M là trung điểm của SD
Góc cần tìm là góc giữa OM và SC
Ta có MC là trung tuyến của tam giác SCD
Xét tam giác MOC ta có:
Các đường thẳng cùng vuông góc với một đường thẳng thì:
Đáp án "Thuộc một mặt phẳng" sai vì có thể xảy ra trường hợp chúng nằm trên nhiều mặt phẳng khác nhau.
Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.
Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.
Đáp án "Song song với một mặt phẳng" đúng vì chúng đồng phẳng.
Cho hình chóp S.ABC có AB = AC, . Tính số đo góc giữa hai đường thẳng SA và BC.
Ta có:
Vì
=> Góc giữa hai đường thẳng SA, BC là: 900
Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?
Hình vẽ minh họa:
Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ
=> MQ // AB
Tương tự ta có: MN // CD; NP // AB; QP // CD
Khi đó tứ giác MNPQ là hình bình hành
Ta có: MN ⊥ MQ (Do AB ⊥ CD)
Hay tứ giác MNPQ là hình chữ nhật.
Tìm điều kiện xác định của hàm số ?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm:
Ta có:
.
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính giá trị trung bình của mẫu số liệu đã cho?
Ta có:
Số tiền (nghìn đồng) | Giá trị đại diện | Số người |
[0; 50) | 25 | 5 |
[50; 100) | 75 | 12 |
[100; 150) | 125 | 23 |
[150; 200) | 175 | 17 |
[200; 250) | 225 | 3 |
|
| N = 60 |
Giá trị trung bình cần tìm là:
Tính giá trị của biểu thức biết
thỏa mãn
?
Ta có:
Thay vào biểu thức Q ta được:
Xác định hàm số đồng biến trên ?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Cho tứ diện O.ABC trong đó ba đường thẳng OB, OC, OA đôi một vuông góc. Trong các mệnh đề sau, mệnh đề nào sai?
Tam giác ABC luôn là tam giác nhọn
Cho hình chóp có đáy
là hình vuông cạnh bằng
, tam giác
đều và cạnh
. Gọi trung điểm các cạnh
lần lượt là
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có tam giác SAB đều cạnh bằng a nên
Mặt khác tam giác SBC có
Suy ra tam giác SBC vuông cân tại B hay
Từ
Tam giác ABS đều mà H là trung điểm của AB nên
Tam giác ABS đều nên AB không vuông góc với mặt phẳng
Ta có:
Cho các số thực a và b thỏa mãn . Khẳng định nào sau đây là đúng?
Điều kiện để các căn thức có nghĩa là
Ta có:
Xét hiệu
Vì nên
Từ đó ta có:
Từ (*) và (**) suy ra
Mẫu nhóm số liệu ghép nhóm là tập hợp:
Mẫu số liệu ghép nhóm là tập hợp các giá trị của số liệu được ghép nhóm theo một tiêu chí xác định.