Đề thi giữa HK2 Toán 11 Cánh Diều năm học 2023 – 2024 (Đề 4)

Mô tả thêm: Đề thi giữa học kì 2 Toán 11 được biên soạn chuẩn ma trận đề thi gồm 40 các câu hỏi trắc nghiệm bám sát chương trình sách Cánh diều, giúp bạn học củng cố kiến thức chuẩn bị cho kì thi sắp tới
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Giải bất phương trình 3^{x} > 9 thu được tập nghiệm là:

    Ta có:

    3^{x} > 9 \Leftrightarrow 3^{x} >
3^{2} \Leftrightarrow x > 2

    Vậy bất phương trình đã cho có tập nghiệm là: x \in (2; + \infty).

  • Câu 2: Thông hiểu

    Từ các chữ số 9;1;5;7;2 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 276?

    Gọi \overline{abc} là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.

    Trường hợp 1: a = 1

    Số cách chọn \overline{abc}1.4.3 = 12 số.

    Trường hợp 2: a = 2;b = 7

    Số cách chọn \overline{abc} là: 1.1.2 = 2 số.

    Trường hợp 3: \left\lbrack \begin{matrix}
a = 2;b = 1 \\
a = 2;b = 5 \\
\end{matrix} ight.

    Số cách chọn \overline{abc} là: 1.2.3 = 6 số.

    Vậy có 20 số thỏa mãn yêu cầu bài toán.

  • Câu 3: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m \in \lbrack - 2019;2019brack để hàm số y = \frac{\ln x - 6}{\ln x -
3m} đồng biến trên khoảng \left(
1;e^{6} ight)?

    Đặt t = \ln x. Khi đó hàm số đã cho đồng biến trên khoảng \left( 1;e^{6}
ight) khi và chỉ khi hàm số y =
\frac{t - 6}{t - 3m} đồng biến trên khoảng (0;6).

    Hàm số f(t) đồng biến trên khoảng (0;6) khi và chỉ khi:

    \left\{ \begin{matrix}
- 3m + 6 > 0 \\
3m otin (0;6) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \leq 0 \\
m \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2019; - 2018;...;0 ight\}

    Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.

  • Câu 4: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 5: Nhận biết

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Cỡ mẫu của mẫu số liệu ghép nhóm là:

    N = 5 + 18 + 40 + 26 + 8 + 3 =100

  • Câu 6: Thông hiểu

    Tìm số nghiệm phương trình \log_{2}x^{2} = 2\log_{2}(3x + 4)?

    Điều kiện \left\{ \begin{matrix}x^{2} > 0 \\3x + 4 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 0 \\x > - \dfrac{4}{3} \\\end{matrix} ight.

    Ta có:

    \log_{2}x^{2} = 2\log_{2}(3x +4)

    \Leftrightarrow \log_{2}x^{2} =\log_{2}(3x + 4)^{2}

    \Leftrightarrow x^{2} = (3x + 4)^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3x + 4 \\
x = - 3x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = - 2(ktm) \\
\end{matrix} ight.

    Vậy phương trình có 1 nghiệm.

  • Câu 7: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

    Nếu đi bằng ô tô có 10 cách

    Nếu đi bằng tàu hỏa có 5 cách

    Nếu đi bằng tàu thủy có 3 cách

    Nếu đi bằng máy bay có 2 cách

    Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn

  • Câu 8: Nhận biết

    Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.

    Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:

    \Omega =
\{(1,S);(1,N);(2,S);(2,N);(3,S);(3,N);(4,S);(4,N);(5,S);(5,N);(6,S);(6,N)\}

  • Câu 9: Nhận biết

    Tìm tập xác định của hàm số y = \left( \frac{5\sqrt{3}}{2}
ight)^{x}?

    Tập xác định của hàm số y = \left(
\frac{5\sqrt{3}}{2} ight)^{x}D=\mathbb{R}.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 11: Vận dụng cao

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Đáp án là:

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Gọi A là biến cố làm đúng x câu hỏi của bạn H

    Ta có xác suất để làm đúng 1 câu là \frac{1}{4}, xác suất làm sai 1 câu là \frac{3}{4}

    Theo quy tắc nhân xác suất ta có:

    Xác suất của biến cố A là P(A) =C_{50}^{x}.\left( \frac{1}{4} ight)^{x}.\left( \frac{3}{4} ight)^{50- x} = \frac{C_{50}^{x}}{3^{x}}.\left( \frac{3}{4}ight)^{50}

    Xét hệ bất phương trình sau:

    \left\{ \begin{matrix}\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x + 1}}{3^{x + 1}}.\left( \dfrac{3}{4} ight)^{50} \\\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x - 1}}{3^{x - 1}}.\left( \dfrac{3}{4} ight)^{50} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3C_{50}^{x} \geq C_{50}^{x + 1} \\C_{50}^{x} \geq 3C_{50}^{x - 1} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3.\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x + 1)!(49 - x)!} \\\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x - 1)!(51 - x)!} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{3}{50 - x} \geq \dfrac{1}{x + 1} \\\dfrac{1}{x} \geq \dfrac{3}{51 - x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{47}{4} \\x \leq \dfrac{51}{4} \\\end{matrix} ight.\ ;\left( x\mathbb{\in Z} ight) \Rightarrow x =12

  • Câu 12: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Số học sinh lớp 11A là:

    Số học sinh lớp 11A là:

    4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)

  • Câu 13: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm thứ tư là:

    Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là \frac{60 + 80}{2} = 70.

  • Câu 14: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Nhóm chứa tứ phân vị thứ nhất và nhóm chứa tứ phân vị thứ ba lần lượt là:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.

    Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)

    => BD ⊥ SC, BD ⊥ SO

    Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Do tam giác ABC cân tại A, M là trung điểm của BC nên BC\bot AM

    Ta có: \left\{ \begin{matrix}
BC\bot SA \\
BC\bot AM \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

  • Câu 17: Thông hiểu

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?

    Xác suất để học sinh thi được 9 điểm là: C_{10}^{5}.(0,25)^{5}.(0,75)^{5}.

    Xác suất để học sinh thi được 9,2 điểm là: C_{10}^{6}.(0,25)^{6}.(0,75)^{4}.

    Xác suất để học sinh thi được 9,4 điểm là: C_{10}^{7}.(0,25)^{7}.(0,75)^{3}.

    Xác suất để học sinh thi được 9,6 điểm là: C_{10}^{8}.(0,25)^{8}.(0,75)^{2}.

    Xác suất để học sinh thi được 9,8 điểm là: C_{10}^{9}.(0,25)^{9}.(0,75)^{1}.

    Xác suất để học sinh thi được 10 điểm là: (0,25)^{10}.

    Vậy xác suất để học sinh thi được không dưới 9 điểm là:

    \sum_{k = 5}^{10}{C_{10}^{k}.(0,25)^{k}.(0,75)^{10
- k}} \approx 0,0781

  • Câu 18: Nhận biết

    Trong không gian cho đường thẳng \Delta và điểm A. Qua điểm A có bao nhiêu đường thẳng vuông góc với \Delta?

    Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

  • Câu 19: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 20: Nhận biết

    Biết các số a,b,c là các số thực dương và a,b eq 1. Tìm khẳng định sai trong các khẳng định dưới đây?

    Ta có:

    \log_{a}c = \frac{1}{\log_{c}a} eq -\log_{c}a

    Vậy khẳng định sai là: \log_{a}c = -\log_{c}a

  • Câu 21: Vận dụng cao

    Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác ABC vuông cân tại a, BC = a\sqrt{2}, AA’ = a, AA’ ⊥ (ABC). Mặt phẳng (β) qua trung điểm M của cạnh BC và vuông góc với AB’. Thiết diện tạo bởi (β) với hình lăng trụ đã cho là:

    Hình vẽ minh họa:

    Giả sử lấy điểm N là trung điểm của AB => MN ⊥ AB. Ta có:

    \begin{matrix}\left\{ \begin{matrix}MN\bot AB \\MN\bot AA'  \\\end{matrix} ight.\  \Rightarrow MN\bot(ABB'A') \hfill \\\Rightarrow MN\bot A'B \Rightarrow MN \subset (\beta) \hfill \\\end{matrix}

    Từ giả thiết => AB = a = AA’

    => ABA’B’ là hình vuông

    => BA’ ⊥ AB’

    Trong mặt phẳng (ABB’A’) kẻ NQ // BA’ (Q thuộc AA’)

    Trong mặt phẳng (ACC’A’) kẻ QR // AC (R thuộc CC’)

    Do MN và QR cùng song song với AC và MN ⊥ NQ

    Vậy thiết diện là hình thang MNQR vuông.

  • Câu 22: Nhận biết

    Biết x > 0;x
eq 1. Chọn khẳng định đúng?

    Ta có: \log_{x}\sqrt[5]{x} =\log_{x}(x)^{\frac{1}{5}} = \frac{1}{5}\log_{x}x =\frac{1}{5}

  • Câu 23: Nhận biết

    Trong các mệnh đề sau mệnh đề nào đúng?

    Mệnh đề đúng là: Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c)

  • Câu 24: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 25: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 26: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Nhóm

    Tần số

    (0; 10]

    x

    (10; 20]

    8

    (20; 30]

    20

    (30; 40]

    15

    (40; 50]

    7

    (50; 60]

    y

    Tổng

    N = 60

    Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?

    Bảng số liệu được ghi như sau:

    Nhóm

    Tần số

    Tần số tích lũy

    (0; 10]

    x

    x

    (10; 20]

    8

    x + 8

    (20; 30]

    20

    x + 28

    (30; 40]

    15

    x + 43

    (40; 50]

    7

    x + 50

    (50; 60]

    y

    x + y + 50

    Tổng

    N = 60

     

    Ta có: N = 60

    \Rightarrow x + y = 10

    Theo bài ra ta có: M_{e} =28,5

    => Nhóm chứa trung vị là (20; 30]

    Suy ra: \left\{ \begin{matrix}l = 20,\dfrac{N}{2} = 30 \\m = x + 8,f = 20,d = 10 \\\end{matrix} ight.

    Khi đó ta có:

    M_{e} = l + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Leftrightarrow 28,5 = 20 +\dfrac{\dfrac{60}{2} - (x + 8)}{20}.10

    \Leftrightarrow x = 5

    \Rightarrow y = 10 - 5 = 5

  • Câu 27: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

  • Câu 28: Nhận biết

    Khẳng định nào sau đây sai?

    Đường thẳng d vuông góc với hai đường thẳng nằm trong (\alpha) thì d\bot(\alpha) chỉ đúng khi hai đường thẳng đó cắt nhau.

  • Câu 29: Nhận biết

    Kết luận nào đúng khi biểu diễn tập xác định của hàm số y = \log\left( x^{4}
ight)?

    Điều kiện xác định của hàm số y =
\log\left( x^{4} ight) là:

    x^{4} > 0 \Rightarrow x eq
0

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 0 ight\}

  • Câu 30: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Điểm cách đều 4 điểm A, B, C, D là:

    Hình vẽ minh họa

    Tìm điểm cách đều 4 điểm A, B, C, D

    Gọi O là trung điểm của AD.

    Từ giả thiết ta có:

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {BC \bot CD} \end{array}} ight. \Rightarrow CD \bot \left( {ABC} ight) \Rightarrow CD \bot AC

    Vậy ΔACD vuông tại C

    Do đó OA=OC=OD (1)

    Mặt khác 

    \left\{ {\begin{array}{*{20}{l}}  {AB \bot CD} \\   {AB \bot BC} \end{array}} ight. \Rightarrow AB \bot \left( {BCD} ight) \Rightarrow AB \bot BD

    => ΔABD vuông tại B.

    Do đó OA=OB=OD (2)

    Từ (1) và (2) ta có OA=OB=OC=OD

    Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.

  • Câu 31: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị trung vị của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;\frac{N}{2} = 10;m = 9;f =7,c = 11 - 9 = 2

    Khi đó trung vị là:

    {M_e} = l + \frac{{\left( {\frac{N}{2} - m} ight)}}{f}.c = 9 + \frac{{10 - 9}}{7}.2 = \frac{{65}}{7}

  • Câu 32: Thông hiểu

    Cho tứ diện ABCD3CD =
4AB. Gọi trung điểm của các cạnh BC,AC,DB lần lượt là G,E,F. Biết rằng 6EF = 5AB. Tính (CD;AB)?

    Hình vẽ minh họa

    Đặt AB = a

    Vì trung điểm của các cạnh BC,AC,DB lần lượt là G,E,F

    Suy ra \left\{ \begin{matrix}GE = \dfrac{1}{2}AB = \dfrac{a}{2} \\GF = \dfrac{1}{2}CD = \dfrac{2}{3}AB = \dfrac{2a}{3} \\EF = \dfrac{5}{6}AB = \dfrac{5a}{6} \\\end{matrix} ight.

    Từ đó GE^{2} + GF^{2} = \frac{a^{2}}{4} +
\frac{4a^{2}}{9} = \frac{25a^{2}}{36} = EF^{2}

    Suy ra tam giác GEF vuông tại G.

    GE//AB;GF//CD nên (AB,CD) = (GE,GF) = \widehat{EGF} =
90^{}

  • Câu 33: Thông hiểu

    Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?

    Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.

    Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!

  • Câu 34: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó mốt của dấu hiệu thuộc nhóm số liệu nào?

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Quan sát bảng dữ liệu ghép nhóm ta thấy mốt của dấu hiệu thuộc nhóm số liệu \lbrack 164;168).

  • Câu 35: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 36: Vận dụng

    Với các số thực dương x, y ta có: 8^{x};a^{4};2 theo thứ tự lập thành một cấp số nhân và các số \log_{2}45;\log_{2}y;\log_{2}x theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:

    Từ 8^{x};a^{4};2 theo thứ tự lập thành một cấp số nhân nên công bội q =
\frac{2}{4^{4}} = \frac{1}{2^{7}}

    \Rightarrow 4^{4} =
8^{x}.\frac{1}{2^{7}} \Rightarrow x = 5

    Mặt khác \log_{2}45;\log_{2}y;\log_{2}x theo thứ tự lập thành một cấp số cộng nên

    \log_{2}y = \frac{\log_{2}45 +\log_{2}x}{2}

    \Leftrightarrow \log_{2}y =\frac{\log_{2}45 + \log_{2}5}{2}

    \Leftrightarrow \log_{2}y =\log_{2}\sqrt{255} \Rightarrow y = 15

  • Câu 37: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau đây:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    x

    (30;40]

    9

    (40;50]

    7

    Biết \overline{x} = 23,6. Tìm cỡ mẫu?

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    x

    25x

    35

    9

    315

    45

    7

    315

    Tổng

    N = 38 + x

    880 + 25x

    Theo bài ra ta có giá trị trung bình là:

    \overline{x} = 23,6

    \Leftrightarrow \frac{880 + 25x}{38 + x}= 23,6

    \Leftrightarrow x = 12

    Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50

  • Câu 38: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 39: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = aBC =
a\sqrt{2}. Tính cosin góc giữa hai đường thẳng ABSC.

    Hình vẽ minh họa

    Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC

    Mặt khác ta có: \left\{ \begin{matrix}
MN//AB \\
MQ//SC \\
\end{matrix} ight.\  \Rightarrow (AB;SC) = (MN;MQ)

    Ta có: AN =
\frac{a\sqrt{3}}{2}

    NC = \sqrt{\frac{SC^{2} + BC^{2}}{2} -\frac{SB^{2}}{4}}= \sqrt{\dfrac{a^{2} + 2a^{2}}{2} - \dfrac{a^{2}}{4}} =\dfrac{a\sqrt{5}}{2}

    Xét tam giác NAC có:

    NQ = \sqrt{\frac{NA^{2} + CN^{2}}{2} -\frac{AC^{2}}{4}}= \sqrt{\dfrac{\dfrac{3a^{2}}{4} + \dfrac{5a^{2}}{4}}{2}- \dfrac{a^{2}}{4}} = \dfrac{a\sqrt{3}}{2}

    Xét tam giác MNQ ta có:

    \cos\widehat{NMQ} = \frac{MN^{2} +MQ^{2} - NQ^{2}}{2MN.MQ}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMQ} = 120^{0}
\Rightarrow (MN,MQ) = 180^{0} - 120^{0} = 60^{0}

    \Rightarrow \cos(AB,SC) =
\frac{1}{2}

  • Câu 40: Nhận biết

    Tính tổng tất cả các nghiệm của phương trình 2^{x^{2}} = 4^{2x}?

    Ta có:

    2^{x^{2}} = 4^{2x} \Leftrightarrow
2^{x^{2}} = \left( 2^{2} ight)^{2x}

    \Leftrightarrow 2^{x^{2}} = 2^{4x}
\Leftrightarrow x^{2} = 4x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    \Rightarrow S = 0 + 4 = 4

    Vậy phương trình có tổng nghiệm bằng 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa HK2 Toán 11 Cánh Diều năm học 2023 – 2024 (Đề 4) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo