Giải bất phương trình thu được tập nghiệm là:
Ta có:
Vậy bất phương trình đã cho có tập nghiệm là: .
Giải bất phương trình thu được tập nghiệm là:
Ta có:
Vậy bất phương trình đã cho có tập nghiệm là: .
Từ các chữ số có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn ?
Gọi là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.
Trường hợp 1: a = 1
Số cách chọn là số.
Trường hợp 2:
Số cách chọn là: số.
Trường hợp 3:
Số cách chọn là: số.
Vậy có 20 số thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số để hàm số đồng biến trên khoảng ?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng khi và chỉ khi hàm số đồng biến trên khoảng .
Hàm số đồng biến trên khoảng khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Cho x là số thực dương. Biểu thức được viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là:
Tìm số nghiệm phương trình ?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm.
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?
Nếu đi bằng ô tô có 10 cách
Nếu đi bằng tàu hỏa có 5 cách
Nếu đi bằng tàu thủy có 3 cách
Nếu đi bằng máy bay có 2 cách
Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn
Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.
Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:
Tìm tập xác định của hàm số ?
Tập xác định của hàm số là .
Cho hình chóp có đáy là hình thang vuông tại hai đỉnh . Biết rằng , . Chọn kết luận đúng dưới đây?
Hình vẽ minh họa
Ta có: vuông cân tại C nên mà
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của ?
Đáp án: 12
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của ?
Đáp án: 12
Gọi A là biến cố làm đúng x câu hỏi của bạn H
Ta có xác suất để làm đúng 1 câu là , xác suất làm sai 1 câu là
Theo quy tắc nhân xác suất ta có:
Xác suất của biến cố A là
Xét hệ bất phương trình sau:
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Số học sinh lớp 11A là:
Số học sinh lớp 11A là:
4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Giá trị đại diện của nhóm thứ tư là:
Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là .
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Nhóm chứa tứ phân vị thứ nhất và nhóm chứa tứ phân vị thứ ba lần lượt là:
Ta có:
Cân nặng (kg) | Số học sinh | Tần số tích lũy |
[45; 50) | 5 | 5 |
[50; 55) | 12 | 17 |
[55; 60) | 10 | 27 |
[60; 65) | 6 | 33 |
[65; 70) | 5 | 38 |
[70; 75) | 8 | 46 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
Cho hình chóp S.ABCD có SA ⊥ (ABCD) có đáy ABCD là hình thoi tâm O. Mệnh đề nào sai?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABCD) => SA vuông góc với BD.
Do tứ giác ABCD là hình thoi nên BD vuông góc với AC mà SA⊥BD => BD ⊥ (SAC)
=> BD ⊥ SC, BD ⊥ SO
Dễ thấy AD không vuông góc với SC vì nếu AD vuông góc với SC thì AD ⊥ AC vô lí
Cho hình chóp có , đáy là tam giác cân tại . Gọi là trung điểm của , là trung điểm của . Chọn khẳng định đúng?
Hình vẽ minh họa
Do tam giác ABC cân tại A, M là trung điểm của BC nên
Ta có:
Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?
Xác suất để học sinh thi được 9 điểm là: .
Xác suất để học sinh thi được 9,2 điểm là: .
Xác suất để học sinh thi được 9,4 điểm là: .
Xác suất để học sinh thi được 9,6 điểm là: .
Xác suất để học sinh thi được 9,8 điểm là: .
Xác suất để học sinh thi được 10 điểm là: .
Vậy xác suất để học sinh thi được không dưới 9 điểm là:
Trong không gian cho đường thẳng và điểm . Qua điểm có bao nhiêu đường thẳng vuông góc với ?
Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Cho đồ thị hàm số như hình vẽ:
Hàm số có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là .
Biết các số là các số thực dương và . Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có:
Vậy khẳng định sai là:
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác ABC vuông cân tại a, , AA’ = a, AA’ ⊥ (ABC). Mặt phẳng (β) qua trung điểm M của cạnh BC và vuông góc với AB’. Thiết diện tạo bởi (β) với hình lăng trụ đã cho là:
Hình vẽ minh họa:
Giả sử lấy điểm N là trung điểm của AB => MN ⊥ AB. Ta có:
Từ giả thiết => AB = a = AA’
=> ABA’B’ là hình vuông
=> BA’ ⊥ AB’
Trong mặt phẳng (ABB’A’) kẻ NQ // BA’ (Q thuộc AA’)
Trong mặt phẳng (ACC’A’) kẻ QR // AC (R thuộc CC’)
Do MN và QR cùng song song với AC và MN ⊥ NQ
Vậy thiết diện là hình thang MNQR vuông.
Biết . Chọn khẳng định đúng?
Ta có:
Trong các mệnh đề sau mệnh đề nào đúng?
Mệnh đề đúng là: Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c)
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Tìm điều kiện của tham số để phương trình có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Cho mẫu dữ liệu ghép nhóm như sau:
Nhóm | Tần số |
(0; 10] | x |
(10; 20] | 8 |
(20; 30] | 20 |
(30; 40] | 15 |
(40; 50] | 7 |
(50; 60] | y |
Tổng | N = 60 |
Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?
Bảng số liệu được ghi như sau:
Nhóm | Tần số | Tần số tích lũy |
(0; 10] | x | |
(10; 20] | 8 | x + 8 |
(20; 30] | 20 | x + 28 |
(30; 40] | 15 | x + 43 |
(40; 50] | 7 | x + 50 |
(50; 60] | x + y + 50 | |
Tổng | N = 60 |
|
Ta có:
Theo bài ra ta có:
=> Nhóm chứa trung vị là
Suy ra:
Khi đó ta có:
Gọi là các nghiệm của phương trình . Khi đó giá trị của biểu thức bằng bao nhiêu?
Ta có:
Khi đó:
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong thì chỉ đúng khi hai đường thẳng đó cắt nhau.
Kết luận nào đúng khi biểu diễn tập xác định của hàm số ?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Điểm cách đều 4 điểm A, B, C, D là:
Hình vẽ minh họa
Gọi O là trung điểm của AD.
Từ giả thiết ta có:
Vậy vuông tại C
Do đó (1)
Mặt khác
=> vuông tại B.
Do đó (2)
Từ (1) và (2) ta có
Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị trung vị của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó trung vị là:
Cho tứ diện có . Gọi trung điểm của các cạnh lần lượt là . Biết rằng . Tính ?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?
Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.
Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó mốt của dấu hiệu thuộc nhóm số liệu nào?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Quan sát bảng dữ liệu ghép nhóm ta thấy mốt của dấu hiệu thuộc nhóm số liệu .
Cho là hai số thực dương và là hai số thực tùy ý. Đẳng thức nào sau đây sai?
Biểu thức sai là:
Với các số thực dương x, y ta có: theo thứ tự lập thành một cấp số nhân và các số theo thứ tự lập thành một cấp số cộng. Khi đó y bằng:
Từ theo thứ tự lập thành một cấp số nhân nên công bội
Mặt khác theo thứ tự lập thành một cấp số cộng nên
Cho mẫu dữ liệu ghép nhóm sau đây:
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | x |
(30;40] | 9 |
(40;50] | 7 |
Biết . Tìm cỡ mẫu?
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | x | 25x |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 38 + x | 880 + 25x |
Theo bài ra ta có giá trị trung bình là:
Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50
Cho hàm số và hai số thỏa mãn . Khi đó bằng bao nhiêu?
Ta có:
Cho hình chóp tam giác có và . Tính cosin góc giữa hai đường thẳng và .
Hình vẽ minh họa
Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC
Mặt khác ta có:
Ta có:
Xét tam giác NAC có:
Xét tam giác MNQ ta có:
Tính tổng tất cả các nghiệm của phương trình ?
Ta có:
Vậy phương trình có tổng nghiệm bằng 4.