Đề thi giữa HK2 Toán 11 Chân trời sáng tạo năm học 2023 – 2024 (Đề 4)

Mô tả thêm: Đề thi giữa học kì 2 Toán 11 được biên soạn chuẩn ma trận đề thi gồm 40 các câu hỏi trắc nghiệm bám sát chương trình sách Chân trời sáng tạo, giúp bạn học củng cố kiến thức chuẩn bị cho kì thi sắp tới
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:

    Hình vẽ minh họa

    Xác định góc giữa hai mặt phẳng (ACD) và (BCD)

    Các tam giác ABC và ABD là tam giác đều

    => Tam giác ACD cân

    => BN ⊥ CD và AN ⊥ CD

    => \widehat {ANB} là góc của hai mặt phẳng (ACD) và (BCD)

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa:

    Ta có: O và I lần lượt là trung điểm của AC và SC

    => OI là đường trung bình của tam giác SAC

    => OI // SA

    Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)

    Ta có: ABCD là hình chữ nhật => BC ⊥ AB

    Mà SA ⊥ BC => BC ⊥ SB

    Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD

    Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.

    Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”

  • Câu 3: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\frac{x - 3}{2x}là:

    Hàm số đã cho xác định khi \frac{x -
3}{2x} > 0 \Rightarrow x \in (3; + \infty)

    Vậy tập xác định của hàm số là D = (3; +
\infty).

  • Câu 4: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thoi tâm OSO vuông góc với mặt đáy. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SO\bot(ABCD) \Rightarrow SO\bot
AC;SO \subset (SBD)

    ABCD là hình thoi \Rightarrow AC\bot BD;BD \subset
(SBD)

    SO \cap BD = \left\{ O
ight\}

    \Rightarrow AC\bot(SBD)

  • Câu 5: Thông hiểu

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{3 - \sqrt {4 - x} }}{4}}&{{\text{ khi }}x e 0} \\   {\dfrac{1}{4}}&{{\text{ khi }}x = 0} \end{array}} ight.. Tính f'(0)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x ight) - f\left( 0 ight)}}{{x - 0}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{3 - \sqrt {4 - x} }}{4} - \dfrac{1}{4}}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2 - \sqrt {4 - x} }}{{4x}} \hfill \\ \end{matrix}

    \begin{matrix}   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2 - \sqrt {4 - x} } ight)\left( {2 + \sqrt {4 - x} } ight)}}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{4x\left( {2 + \sqrt {4 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{4\left( {2 + \sqrt {4 - x} } ight)}} = \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Phương trình 5^{x^{2} - 1} = 25^{x + 1} có tập nghiệm là:

    Ta có:

    5^{x^{2} - 1} = 25^{x + 1}
\Leftrightarrow 5^{x^{2} - 1} = \left( 5^{2} ight)^{x +
1}

    \Leftrightarrow 5^{x^{2} - 1} = 5^{2x +
2} \Leftrightarrow x^{2} - 1 = 2x + 2

    \Leftrightarrow x^{2} - 2x - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = - 1 \\
\end{matrix} ight.\ (tm)

    Vậy phương trình có tập nghiệm là: S =
\left\{ - 1;3 ight\}.

  • Câu 7: Nhận biết

    Tính đạo hàm hàm số y = x^{2} - \frac{1}{x}?

    Ta có:

    y = x^{2} - \frac{1}{x} \Rightarrow
y' = \left( x^{2} - \frac{1}{x} ight)'

    \Rightarrow y' = \left( x^{2}
ight)' - \left( \frac{1}{x} ight)'

    \Rightarrow y' = 2x - \left( -
\frac{1}{x^{2}} ight) = 2x + \frac{1}{x^{2}}

  • Câu 8: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 9: Nhận biết

    Chọn mệnh đề sai trong các mệnh đều dưới đây.

    Mệnh đề sai là: 3^{\frac{x}{y}} =
\frac{3^{x}}{3^{y}}

    \frac{3^{x}}{3^{y}} = 3^{x -
y}

  • Câu 10: Nhận biết

    Đặt a =\log_{7}11;b = \log_{2}7. Hãy biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a và b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 11: Thông hiểu

    Cho các số thực dương a, b với a eq 1;\log_{a}b > 0. Khẳng định nào sau đây đúng?

    Trường hợp 1:

    0 < a < 1 \Rightarrow
log_{a}b > 0 = log_{a}1 \Rightarrow 0 < b < 1

    Trường hợp 2:

    a > 1 \Rightarrow
log_{a}b > 0 = log_{a}1 \Rightarrow b > 1

    Vậy \left\lbrack \begin{matrix}
0 < a,b < 1 \\
1 < a;b \\
\end{matrix} ight. là khẳng định đúng.

  • Câu 12: Thông hiểu

    Cho hai số thực dương a và b. Đơn giản biểu thức K = \frac{a^{\frac{1}{4}}\sqrt[3]{b} +
b^{\frac{1}{4}}.\sqrt[3]{a}}{\sqrt[12]{a} + \sqrt[12]{b}} ta được K = a^{x}.b^{y}. Tích x.y là:

    Ta có:

    K = \frac{a^{\frac{1}{4}}\sqrt[3]{b} +
b^{\frac{1}{4}}.\sqrt[3]{a}}{\sqrt[12]{a} + \sqrt[12]{b}} =
\frac{a^{\frac{1}{4}}.b^{\frac{1}{4}}.\left( b^{\frac{1}{12}} +
a^{\frac{1}{12}} ight)}{b^{\frac{1}{12}} + a^{\frac{1}{12}}} =
a^{\frac{1}{4}}.b^{\frac{1}{4}}

    \Rightarrow \left\{ \begin{matrix}
x = \frac{1}{4} \\
y = \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow xy = \frac{1}{16}

  • Câu 13: Thông hiểu

    Chọn mệnh đề đúng trong các khẳng định dưới đây.

    Xét hàm số y = a^{x} y = \left( \frac{1}{a} ight)^{x}

    Với \forall x\in\mathbb{ R} ta có: f( - x) = a^{- x} = \left( \frac{1}{a}
ight)^{x} = g(x)

    Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.

  • Câu 14: Vận dụng cao

    Cho phương trình: (m + 3).16^{x} + (2m - 1).4^{x} + m + 1 =
0. Tìm tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm trái dấu?

    Đặt t = 4^{x};t > 0 thì phương trình trở thành (m + 3)t^{2} + (2m -
1)t + m + 1 = 0(*)

    Phương trình ban đầu có hai nghiệm trái dấu tương đương với (*) có hai nghiệm 0 < t_{1} < 1 <
t_{2}

    Đặt P(t) = (m + 3)t^{2} + (2m - 1)t + m +
1 khi đó:

    \left\{ {\begin{array}{*{20}{c}}
  {m + 3 e 0} \\ 
  {\left( {m + 3} ight).P\left( 1 ight) < 0} \\ 
  {\left( {m + 3} ight).P\left( 0 ight) > 1} \\ 
  {\dfrac{{{t_1} + {t_2}}}{2} > 0} 
\end{array}} ight.\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\left( {m + 3} ight)\left( {4m + 3} ight) < 0} \\ 
  {\left( {m + 3} ight)\left( {m + 1} ight) > 0} \\ 
  {\dfrac{{ - \left( {2m - 1} ight)}}{{2\left( {m + 3} ight)}} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 3 < m <  - \dfrac{4}{3}} \\ 
  {\left[ {\begin{array}{*{20}{c}}
  {m <  - 3} \\ 
  {m >  - 1} 
\end{array}} ight.} \\ 
  { - 3 < m < \dfrac{1}{2}} 
\end{array}} ight.\Leftrightarrow - 1 < m < -
\frac{3}{4}

  • Câu 15: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 16: Vận dụng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = m^{x} là hàm số đồng biến nên m > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = \log_{t}x là hàm nghịch biến nên 0 < t < 1

    Vậy ta có: \left\{ \begin{matrix}
0 < t < m \\
0 < t < n \\
\end{matrix} ight.

    Khi thay x = 1 vào hai hàm số y = m^{x};y
= n^{x} ta thu được m > n

    Vậy t < n < m.

  • Câu 17: Nhận biết

    Xác định nghiệm của bất phương trình (0,7)^{x} < 3?

    Ta có:

    (0,7)^{x} < 3 \Leftrightarrow x >
log_{0,7}3 hay x \in \left(\log_{0,7}3; + \infty ight)

  • Câu 18: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 19: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi. Gọi O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A' (như hình vẽ).

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hình vẽ minh họa

    Ta có: O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A'

    => O;O' lần lượt là trung điểm của các cạnh A'D;A'B

    \Rightarrow OO' là đường trung bình tam giác A'BD \Rightarrow OO'//BD

    Vì đáy ABCD là hình thoi \Rightarrow
AC\bot BD

    Ta có: \left\{ \begin{matrix}
OO'//BD \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow AC\bot OO'

  • Câu 20: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 21: Thông hiểu

    Cho phương trình phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2} . Số nghiệm của phương trình là:

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} + \frac{x}{3} - \frac{1}{{2x}} = \frac{7}{3}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x = 3\left( {tm} ight)} \\ 
  {x =  - \dfrac{1}{5}\left( {ktm} ight)} 
\end{array}} ight.

    Vậy phương trình có duy nhất 1 nghiệm x = 3.

  • Câu 22: Vận dụng cao

    Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

    Hình vẽ minh họa:

    Gọi H là trung điểm của CD.

    Do tam giác ACD cân tại A và tam giác BCD cân tại B.

    \Rightarrow \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} \Rightarrow CD\bot(ABH) \Rightarrow CD\bot AB. ight.

    Gọi E là trung điểm của AB, do tam giác ABC cân tại C

    \Rightarrow \left\{ \begin{matrix}
CD\bot AB \\
AB\bot AE \\
\end{matrix} \Rightarrow AB\bot(CDE) \Rightarrow AB\bot DE. ight.

    \Rightarrow \left\{ \begin{matrix}
(ABC) \cap (ABD) = AB \\
(ABC) \supset CE\bot AB \\
(ABC) \supset DE\bot AB \\
\end{matrix} ight.

    \Rightarrow \widehat{\left( (ABC);(ABD)
ight)} = \widehat{(CE;DE)} = 90^{0}

    Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.

    CD = CE\sqrt{2} \Rightarrow 2x =
CE\sqrt{2} \Rightarrow CE = x\sqrt{2}(*)

    Xét tam giác vuông CBH có BH^{2} = BC^{2}
- BH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ACH có AH^{2} = AC^{2}
- CH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ABH có:

    \begin{matrix}AB^{2} = AH^{2} + BH^{2} = 2a^{2} - 2x^{2}\hfill \\\Rightarrow AE = \dfrac{\sqrt{2a^{2} - 2x^{2}}}{2}\hfill \\\end{matrix}

    Xét tam giác vuông ACE có:

    CE^{2} = AC^{2} - AE^{2}

    = a^{2} - \frac{a^{2} - x^{2}}{2} =
\frac{a^{2} + x^{2}}{2}

    \Rightarrow CE = \sqrt{\frac{a^{2} +
x^{2}}{2}}

    Thay CE vào (*) ta được

    \sqrt{\frac{a^{2} + x^{2}}{2}} =
x\sqrt{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 23: Thông hiểu

    Tính giá trị biểu thức: W = x^{2} - y^{2}. Biết x,y là các số thực dương khác 1 và thỏa mãn \log_{\sqrt[3]{x}}y =\dfrac{3y}{8};\log_{\sqrt{2}}x = \dfrac{32}{y}?

    Ta có:

    \log_{\sqrt{2}}x = \dfrac{32}{y}\Leftrightarrow 2\log_{2}x = \dfrac{32}{y}

    \Leftrightarrow y = \dfrac{16}{\log_{2}x}= 16\log_{x}2(*)

    Lại có \log_{\sqrt[3]{x}}y = \dfrac{3y}{8}\Leftrightarrow 3\log_{x}y = \dfrac{3y}{8}

    \Leftrightarrow \log_{x}y = \frac{y}{8}\Leftrightarrow \log_{x}\left( 16\log_{x}2 ight) =2\log_{x}2

    \Leftrightarrow \log_{x}\left( 16\log_{x}2ight) = \log_{x}2^{2}

    \Leftrightarrow 16\log_{x}2 = 4\Leftrightarrow \log_{x}2 = \frac{1}{4}

    \Leftrightarrow \log_{2}x = 4\Leftrightarrow x = 16 \Rightarrow y = 4

    \Rightarrow W = x^{2} - y^{2} =
240

  • Câu 24: Nhận biết

    Cho hai số thực a và b với a > 0;a eq 1;b eq 0. Chọn khẳng định sai?

    Ta có: \dfrac{1}{2}\log_{a}b^{2} =\log_{a}b sai vì chưa biết b > 0 hay b < 0.

  • Câu 25: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = \frac{2x + 1}{x + 2} song song với đường thẳng 3x - y + 2 =
0?

    Ta có: y' = \frac{3}{(x +
2)^{2}}

    Vì tiếp tuyến song song với 3x - y + 2 =
0 nên hệ số góc bằng 3 nên gọi tọa độ tiếp điểm là M\left( x_{0};y_{0} ight)

    Khi đó y'\left( x_{0} ight) = 3
\Leftrightarrow \frac{3}{\left( x_{0} + 2 ight)^{2}} = 3

    \Leftrightarrow \left( x_{0} + 2
ight)^{2} = 1 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = - 1 \\
x_{0} = - 3 \\
\end{matrix} ight.

    Với x_{0} = - 1 \Rightarrow (d):y = 3(x +
1) - 1 = 3x + 2

    Với x_{0} = - 3 \Rightarrow (d):y = 3(x +
3) + 5 = 3x + 14

  • Câu 26: Nhận biết

    Tính đạo hàm của hàm số f(x) = 9^{2x + 2}

    Ta có: f(x) = 9^{2x + 2}

    \Rightarrow f'(x) = \left( 9^{2x +
1} ight)'

    \Rightarrow f'(x) = (2x +1)'.9^{2x + 1}.\ln9 = 2.9^{2x + 1}.\ln9

  • Câu 27: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 28: Thông hiểu

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 29: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m \in \lbrack - 2019;2019brack để hàm số y = \frac{\ln x - 6}{\ln x -
3m} đồng biến trên khoảng \left(
1;e^{6} ight)?

    Đặt t = \ln x. Khi đó hàm số đã cho đồng biến trên khoảng \left( 1;e^{6}
ight) khi và chỉ khi hàm số y =
\frac{t - 6}{t - 3m} đồng biến trên khoảng (0;6).

    Hàm số f(t) đồng biến trên khoảng (0;6) khi và chỉ khi:

    \left\{ \begin{matrix}
- 3m + 6 > 0 \\
3m otin (0;6) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \leq 0 \\
m \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2019; - 2018;...;0 ight\}

    Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.

  • Câu 30: Thông hiểu

    Một chất điểm chuyển động có phương trình chuyển động là S(t) = \frac{t^{3}}{3} -
2t^{2} + 3t - 5; trong đó t tính bằng giây và S được tính bằng mét. Tại thời điểm t = 4(s) thì vận tốc tức thời của chuyển động bằng bao nhiêu?

    Ta có:

    v(t) = S'(t) = t^{2} - 4t +
3

    Vận tốc tức thời của chuyển động khi t =
4(s) là:

    v(4) = 4^{2} - 4.4 + 3 =
3(m/s)

  • Câu 31: Vận dụng

    Phương trình chuyển động của một chất điểm được biểu diễn là S(t) = - t^{3} +
6t^{2}. Tại thời điểm nào vận tốc của chuyển động đạt giá trị lớn nhất?

    Ta có:

    S(t) = - t^{3} + 6t^{2}

    Suy ra vận tốc của chuyển động là v(t) =
S'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = - 6t +
12

    v'(t) = 0 \Leftrightarrow 12 - 6t =
0 \Leftrightarrow t = 2

    v(t) = 0 \Leftrightarrow 12t - 3t^{2} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy vận tốc của chất điểm đạt giá trị lớn nhất tại thời điểm t = 2(s).

  • Câu 32: Nhận biết

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{\sqrt{2} + \sqrt{3}}{2} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{2} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 33: Nhận biết

    Tìm khẳng định đúng dưới đây?

    Ta có

    \left( \sqrt{x} ight)' =
\frac{1}{2\sqrt{x}}

    (x)' = 1

    \left( \frac{1}{x} ight)' = -
\frac{1}{x^{2}}

  • Câu 34: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 35: Nhận biết

    Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    Hình vẽ minh họa:

    Tính góc giữa hai vecto

    Ta có tam giác ACF là tam giác đều

    \overrightarrow {EG}  = \overrightarrow {AC}

    => Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    \left( {\overrightarrow {AF} ;\overrightarrow {EG} } ight) = \left( {\overrightarrow {AF} ;\overrightarrow {AC} } ight) = \widehat {CAF} = {60^0}

  • Câu 36: Vận dụng

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 37: Thông hiểu

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 38: Thông hiểu

    Xác định số nghiệm của phương trình \ln\left( x^{2} - 6x + 7 ight) - \ln(x - 3) =
0?

    Điều kiện xác định: \left\{
\begin{matrix}
x^{2} - 6x + 7 > 0 \\
x - 3 > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \ln\left( x^{2} - 6x + 7
ight) = \ln(x - 3)

    \Leftrightarrow x^{2} - 6x + 7 = x -
3

    \Leftrightarrow x^{2} - 7x + 10 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 2 \\
\end{matrix} ight.

    Kết hợp với điều kiện thấy rằng x =
5 thỏa mãn điều kiện.

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3} chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và SH = \frac{a}{2}. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: MN // SB

    => \left( MN,(ABCD)
ight) = \left( SB;(ABCD) ight)

    Do SH ⊥ (ABCD)

    \begin{matrix}
\Rightarrow \left( MN,(ABCD) ight) = \left( SB;(ABCD) ight) \\
= (SB;HB) = \widehat{SBH} \\
\end{matrix}

    Ta có: \left\{ \begin{matrix}BD = \sqrt{AB^{2} + AD^{2}} = 2a \\BH = \dfrac{BD}{3} = \dfrac{2a}{3} \\\end{matrix} ight.

    => \tan\widehat{SBH} = \frac{SH}{BH} =
\frac{3}{4}

  • Câu 40: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa HK2 Toán 11 Chân trời sáng tạo năm học 2023 – 2024 (Đề 4) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo