Đề thi giữa học kì 2 Toán 10 Cánh Diều (Đề 3)

Mô tả thêm: Đề thi giữa HK2 Toán 10 được biên soạn gồm 40 câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

     Vì \overrightarrow {MA} .\overrightarrow {BC}  = 0, mà A,B,C cố định nên suy ra tập hợp M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 2: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Khoảng biến thiên của mẫu A và mẫu B đều là R = 9 - 3 = 6.

    Vậy hai mẫu số liệu có khoảng biến thiên như nhau.

  • Câu 3: Thông hiểu

    Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 4 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.

    Trường hợp 1: 4 quả đỏ + 0 quả xanh

    Chọn 4 quả đỏ từ 5 quả đỏ có: C_5^4 = 5 (cách).

    Trường hợp 2: 3 quả đỏ + 1 quả xanh

    Chọn 3 quả đỏ từ 5 quả đỏ, 1 quả xanh từ 7 quả xanh có: C_5^3.C_7^1 = 70 (cách).

    Vậy có 5+70=75 (cách).

  • Câu 4: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 5: Thông hiểu

    Tìm giá trị bất thường của mẫu số liệu: 8 50 6 4 2

    Sắp xếp mẫu theo thứ tự không giảm: 2 4 6 8 50

    Số liệu chính giữa là 6 nên Q_{2} =
6.

    Trung vị của mẫu số liệu 2 4 là Q_{1} =
\frac{2 + 4}{2} = 3.

    Trung vị của mẫu số liệu 8 50 là Q_{3} =
\frac{8 + 50}{2} = 29.

    Khoảng tứ phân vị là \Delta_{Q} = 29 - 3
= 26.

    Ta có: Q_{1} - 1,5\Delta Q = 3 - 1,5.26 =
- 36.

    Ta có: Q_{3} + 1,5\Delta Q = 29 + 1,5.26
= 68.

    Không có giá trị nào trong mẫu nhỏ hơn -36 và lớn hơn 68. Vậy mẫu không có giá trị bất thường.

  • Câu 6: Thông hiểu

    Cho tập hợp N =
\left\{ 0;1;2;3;4;5 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có bốn chữ số là: \overline{abcd};(a eq 0)

    TH1: d = 0 => d có 1 cách.

    Số cách chọn a, b, c lần lượt là 5, 4, 3

    => Số các số tạo thành là: 1.5.4.3 = 60 (số)

    TH2: d \in \left\{ 2;4 ight\} => Chữ số d có 2 cách chọn.

    => Chữ số a có 4 cách.

    => Số cách chọn b, c lần lượt là 4, 3 cách.

    => Số các số tạo thành là: 2.4.4.3 = 96 (số)

    Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.

  • Câu 7: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 8: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?

    Phương trình tham số của đường thẳng là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 - 3t \\
\end{matrix} ight.

  • Câu 9: Nhận biết

    Tìm hệ số của x^{2}y^{2} trong khai triển nhị thức Newton của (x + 2y)^{4}?

    Số hạng tổng quát là: C_{n}^{k}a^{k}b^{n
- k} = C_{4}^{k}.x^{k}.(2y)^{2 - k} = C_{4}^{k}.2^{k}.x^{k}.y^{2 -
k}

    Hệ số của x^{2}y^{2} tìm được khi k = 2

    Vậy hệ số của x^{2}y^{2} trong khai triển là C_{4}^{2}.2^{2} =
12.

  • Câu 10: Thông hiểu

    Cho dãy số liệu 21;35;17;43;8;59;72;119. Kết luận nào dưới đây đúng?

    Sắp xếp dãy số liệu theo thứ tự không tăng như sau:

    8;17;21;35;43;59;72;119

    Khi đó:

    Q_{2} = \frac{x_{4} + x_{5}}{2} =
\frac{35 + 43}{2} = 39

    Q_{1} = \frac{x_{2} + x_{3}}{2} =
\frac{17 + 21}{2} = 19

    Q_{3} = \frac{x_{6} + x_{7}}{2} =
\frac{59 + 72}{2} = 65,5

    Vậy kết luận đúng là: Q_{1} = 19,Q_{3} =
65,5.

  • Câu 11: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 12: Thông hiểu

    Kết quả đi chiều dài của một cây thước là l = 50 \pm 0,2(cm) thì sai số tương đối của phép đo là:

    Ta có:

    \delta_{l} \leq \frac{d_{l}}{|l|} =
\frac{0,2}{50} = \frac{1}{250}

  • Câu 13: Nhận biết

    Cho số gần đúng của \pi3,142. Sai số tuyệt đối của số gần đúng này là:

    Sai số tuyệt đối là: |\pi - 3,142| =
0,0004

  • Câu 14: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 15: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7}0,429. Sai số tuyệt đối của số 0,429 không vượt quá giá trị nào sau đây?

    Sai số tuyệt đối của số 0,429 là: \left| \frac{3}{7} - 0,429 ight|
\approx 4,3.10^{- 4}

    Suy ra sai số tuyệt đối của số 0,429 không vượt quá 0,0005.

  • Câu 16: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 17: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

  • Câu 18: Thông hiểu

    Gọi S là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số 5,\ 6,\ 7,\ 8,9. Tính tổng tất cả các số thuộc tập S.

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ 5,6,7,8,9 là 5! = 120 số.

    Vì vai trò các chữ số như nhau nên mỗi chữ số 5,6,7,8,9 xuất hiện ở hàng đơn vị là 4! = 24 lần.

    Tổng các chữ số ở hàng đơn vị là 24(5 + 6+ 7 + 8 + 9) = 840.

    Tương tự thì mỗi lần xuất hiện ở các hàng chục, trăm, nghìn, chục nghìn của mỗi chữ số là 24 lần.

    Vậy tổng các số thuộc tập S là 840\left( 1 + 10 + 10^{2} + 10^{3} + 10^{4}ight) = 9333240.

  • Câu 19: Vận dụng

    Tìm hệ số của x^{4} trong khai triển nhị thức Newton \left( 2x + \frac{1}{\sqrt[5]{x}}
ight)^{n} với x > 0, biết n là số tự nhiên lớn nhất thỏa mãn A_{n}^{5} \leq 18A_{n -
2}^{4}.

    Điều kiện: \left\{ \begin{matrix}
n \geq 6 \\
n\mathbb{\in Z} \\
\end{matrix} ight.

    Khi đó A_{n}^{5} \leq 18A_{n - 2}^{4}
\Leftrightarrow \frac{n!}{(n - 5)!} \leq 18.\frac{(n - 2)!}{(n -
6)!}

    \Leftrightarrow n(n - 1)(n - 2)(n - 3)(n
- 4) \leq 18(n - 2)(n - 3)(n - 4)(n - 5)

    \Leftrightarrow n(n - 1) \leq 18(n -
5) \Leftrightarrow n^{2} - 19n + 90
\leq 0 \Leftrightarrow 9 \leq n
\leq 10\overset{n ightarrow \max}{ightarrow}n = 10.

    Số hạng tổng quát trong khai triển \left(
2x + \frac{1}{\sqrt[5]{x}} ight)^{10}T_{k + 1} = C_{10}^{k}.(2x)^{10 - k}.\left(
\frac{1}{\sqrt[5]{x}} ight)^{k}

    = C_{10}^{k}.2^{10 - k}.x^{10 - k}.x^{-
\frac{k}{5}} = C_{10}^{k}.2^{10 -
k}.x^{\frac{50 - 6k}{5}}.

    Tìm k sao cho \frac{50 - 6k}{5} = 4 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{4}C_{10}^{5}.2^{10 - 5} =
8064..

  • Câu 20: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 21: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 22: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 23: Vận dụng

    Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là 100
\pm 0,570 \pm 0,5 (đơn vị: cm). Tính diện tích của tấm thép.

    Gọi \overline{a}\overline{b} lần lượt là chiều dài và chiều rộng thực của tấm thép.

    Ta có: 99,5 \leq \overline{a} \leq
100,569,5 \leq \overline{b}
\leq 70,5.

    Suy ra: 99,5.69,5 = 6915,25 \leq
\overline{a}.\overline{b} \leq 100,5.70,5 = 7085,25.

    Do đó: 6915,25 - 7000 = - 84,75 \leq
\overline{a}.\overline{b} - 7000 \leq 7085,25 - 7000 =
85,25

    Vậy diện tích tấm thép là 7000 \pm
85,25.

  • Câu 24: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 25: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm C đối xứng với điểm B qua A?

    Gọi tọa độ điểm C là C(x;y)

    Vì điểm C đối xứng với điểm B qua A suy ra A là trung điểm của BC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{- 2 + x}{2} \\5 = \dfrac{6 + y}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\  \Leftrightarrow C(4;4)

    Vậy tọa độ điểm C cần tìm là C(4;4).

  • Câu 26: Vận dụng

    Cho tam giác ABC, AB =
5,AC = 1. Tính tọa độ điểm D là chân đường phân giác góc A. Biết B(7;
- 2);C(1;4).

    Theo tính chất đường phân giác: \frac{DB}{DC} = \frac{AB}{AC}. Suy ra \overrightarrow{DB} = -
5\overrightarrow{DC}.

    Gọi D(x;y). Suy ra \overrightarrow{DB}(7 - x; - 2 -
y);\overrightarrow{DC}(1 - x;4 - y).

    Ta có: \left\{ \begin{matrix}
7 - x = - 5(1 - x) \\
- 2 - y = - 5(4 - y) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm D(2;3).

  • Câu 27: Thông hiểu

    Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?

    Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9

    => Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn

    => Số mã xác thực có thể tạo thành là: 10^{6} = 1000000 mã.

  • Câu 28: Vận dụng cao

    Cho đa giác đều gồm n đỉnh với n\in \mathbb{N}^{*},n > 4. Số tam giác tạo thành từ 3 đỉnh của đa giác nhưng không có cạnh nào trùng với cạnh của đa giác gấp 5 lần số tam giác tạo thành từ 3 đỉnh của đa giác nhưng có đúng 1 cạnh trùng với 1 cạnh của đa giác. Hỏi đa giác có bao nhiêu đỉnh?

    Số tam giác tạo thành từ 3 đỉnh của đa giác là C_{n}^{3} (tam giác)

    Số tam giác tạo thành có đúng hai cạnh trùng với hai cạnh của đa giác là n (tam giác).

    Số tam giác tạo thành có đúng một cạnh là cạnh của đa giác là: n(n - 4)

    Số tam giác tạo thành không có cạnh nào là cạnh của đa giác là:

    C_{n}^{3} - n - n(n - 4) = C_{n}^{3} -n^{2} + 3n

    Theo giả thiết ta có:

    C_{n}^{3} - n^{2} + 3n = 5n(n -4)

    \Leftrightarrow \frac{n!}{3!(n - 3)!} -n^{2} + 3n = 5n(n - 4)

    \Leftrightarrow n^{2} - 39n + 140 = 0\Leftrightarrow \left\lbrack \begin{matrix}n = 35(tm) \\n = 4(ktm) \\\end{matrix} ight.

    Vậy đa giác có 35 đỉnh.

  • Câu 29: Thông hiểu

    Trong mặt phẳng hệ trục tọa độ Oxy cho các tọa độ các điểm A(3; - 5),B( - 1;2)G(2; - 2). Xác định tọa độ điểm D sao cho G là trọng tâm tam giác ABD?

    Xét tam giác ABD có G là trọng tâm khi đó ta có:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{D}}{3} \\y_{G} = \dfrac{y_{A} + y_{B} + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{3 - 1 + x_{D}}{3} \\- 2 = \dfrac{- 5 + 2 + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{D} = 4 \\y_{D} = - 3 \\\end{matrix} ight.

    Vậy tọa độ điểm D(4; - 3).

  • Câu 30: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 31: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 32: Nhận biết

    Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau: 350;300;650;300;450;500;300;250. Mốt của mẫu số liệu này là:

    Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra M_{0} = 300.

  • Câu 33: Nhận biết

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

  • Câu 34: Nhận biết

    Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:

    Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.

  • Câu 35: Thông hiểu

    Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton (x +
1)^{5}?

    Để có tổng các hệ số ta thay x =
1 ta được: (1 + 1)^{2} = 2^{5} =
32

  • Câu 36: Nhận biết

    Trong các vecto dưới đây, vecto nào cùng phương với vecto \overrightarrow{u} = (3; -
2)?

    Nhận thấy \frac{3}{- 9} = \frac{-
2}{6} nên \overrightarrow{d} = ( -
9;6) cùng phương với \overrightarrow{u} = (3; - 2).

  • Câu 37: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 38: Thông hiểu

    Trong mặt phẳng tọa độ Oxy,cho tam giác ABC có tọa độ các điểm A(2;0),B(0;3),C( - 3;1). Đường thẳng d đi qua B và song song với AC có phương trình tổng quát là:

    Ta có: \overrightarrow{AC} = ( - 5;1)
\Rightarrow \overrightarrow{n_{AC}} = (1;5)

    Phương trình tổng quát AC là: x + 5y - 2
= 0

    Đường thẳng d song song với AC nên d có dạng x + 5y + m = 0

    Do điểm B \in d \Rightarrow 0 + 15 + m =
0 \Rightarrow m = - 15

    Vậy d:x + 5y - 15 = 0.

  • Câu 39: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Gọi H là hình chiếu của điểm A trên cạnh BD, điểm I là trung điểm của BH. Viết phương trình tổng quát đường thẳng AD, biết rằng tọa độ điểm A(2;1), đường chéo BD có phương trình x + 5y - 19 = 0 và tọa độ điểm I\left( \frac{42}{13};\frac{41}{13}
ight)?

    Hình vẽ minh họa

    Ta có: BD:x + 5y - 19 = 0 có một vecto pháp tuyến \overrightarrow{n_{BD}} =
(1;5)

    AH\bot BD nên AH nhận \overrightarrow{n_{BD}} = (1;5) làm một vecto chỉ phương.

    Do đó đường thẳng AH có phương trình tham số là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    H là giao điểm của AH và BD nên tọa độ của H thỏa mãn hệ phương trình: \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 5t \\
x + 5y - 19 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 5t \\
t = \frac{6}{13} \\
\end{matrix} ight.\  \Rightarrow H\left( \frac{32}{13};\frac{43}{13}
ight)

    Ta có: H\left(
\frac{32}{13};\frac{43}{13} ight) mà I là trung điểm của BH nên suy ra B(4;3)

    Đường thẳng đi qua điểm A(2;1) nhận \overrightarrow{n} =
\frac{1}{2}\overrightarrow{AB} = (1;1) làm một vecto pháp tuyến có phương trình tổng quát là (x - 2) + (y -
1) = 0 \Leftrightarrow x + y - 3 = 0

  • Câu 40: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Cánh Diều (Đề 3) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo