Đề thi giữa học kì 2 Toán 10 Cánh Diều (Đề 4)

Mô tả thêm: Đề thi giữa HK2 Toán 10 được biên soạn gồm 40 câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Giả sử \alpha là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?

    Góc giữa hai đường thẳng (\Delta):a_{1}x
+ b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 xác định bởi công thức:

    \cos\alpha = \frac{\left| a_{1}a_{2} +
b_{1}b_{2} ight|}{\sqrt{{a_{1}}^{2} + {b_{1}}^{2}}.\sqrt{{a_{2}}^{2} +
{b_{2}}^{2}}}

  • Câu 2: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 3: Thông hiểu

    Cho bảng thống kê điểm kiểm tra môn Hóa học của học sinh lớp 10C như sau:

    Điểm

    4

    5

    6

    7

    8

    Số học sinh

    2

    8

    7

    10

    8

    Tính điểm kiểm tra trung bình của học sinh lớp 10C?

    Số học sinh lớp 10C bằng: 35 (học sinh)

    Điểm kiểm tra trung bình của học sinh lớp 10C là:

    \overline{x} = \frac{4.2 + 5.8 + 6.7 +
7.10 + 8.8}{35} = 6,4

    Vậy điểm kiểm tra trung bình của 35 học sinh lớp 10C bằng 6,4.

  • Câu 4: Nhận biết

    Cho tam giác đều ABC có đường cao AH. Tính (\overrightarrow{AH},\overrightarrow{BA}).

     Lấy D sao cho \overrightarrow {BD}=\overrightarrow {AH}.

    Ta có: (\overrightarrow{AH},\overrightarrow{BA}) =(\overrightarrow{BD},\overrightarrow{BA})=90^{\circ} +60^{\circ}= 150^{\circ}.

  • Câu 5: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a.b (cách).

  • Câu 6: Nhận biết

    Tìm tọa độ vecto \overrightarrow{AB} biết A(5;3),B(7;8)?

    Ta có:

    \overrightarrow{AB} = (7 - 5,8 - 3) =
(2;5)

  • Câu 7: Vận dụng

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

  • Câu 8: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 9: Thông hiểu

    Trong hệ tọa độ Oxy, cho các điểm A(0;1),B(1;3),C(2;7). Xác định tọa độ điểm N thỏa mãn biểu thức \overrightarrow{AB} = 2\overrightarrow{AN} +
3\overrightarrow{CN}?

    Theo bài ra ta có:

    \overrightarrow{AB} =
2\overrightarrow{AN} + 3\overrightarrow{CN}

    \Leftrightarrow \overrightarrow{AO} +
\overrightarrow{OB} = 2\overrightarrow{AO} + 2\overrightarrow{ON} +
3\overrightarrow{CO} + 3\overrightarrow{ON}

    \Leftrightarrow \overrightarrow{ON} =
\frac{1}{5}\left( \overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} ight)

    \Rightarrow N\left( \frac{1 +
6}{5};\frac{1 + 3 + 21}{5} ight) = \left( \frac{7}{5};5
ight)

  • Câu 10: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 11: Nhận biết

    Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?

    Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.

  • Câu 13: Thông hiểu

    Kết quả điều tra dân số của tỉnh A năm 2024 là 1279425 \pm 300 người. Số quy tròn dân số trên là:

    Hàng lớn nhất của độ chính xác d =
300 là hàng năm nên ta quy tròn 1279425 đến hàng nghìn.

    Vậy số quy tròn của 12794251279000.

  • Câu 14: Nhận biết

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 15: Thông hiểu

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 16: Nhận biết

    Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?

    +) Chọn 1 quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.

    Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.

  • Câu 17: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):3x + y - 6 = 0 và đường thẳng \Delta:\left\{ \begin{matrix}
x = - t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Xác định số đo góc giữa hai đường thẳng đã cho?

    Vectơ pháp tuyến của đường thẳng d và \Delta lần lượt là \overrightarrow{n_{d}} =
(3;1);\overrightarrow{n_{\Delta}} = (2; - 1).

    Khi đó góc giữa hai đường thẳng là:

    \cos(d;\Delta) = \frac{\left|
\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}} ight|}{\left|
\overrightarrow{n_{d}} ight|.\left| \overrightarrow{n_{\Delta}}
ight|} = \frac{|3.2 - 1.1|}{\sqrt{3^{2} + 1^{2}}.\sqrt{2^{2} + ( -
1)^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow (d;\Delta) =
45^{0}

    Vậy góc giữa hai đường thẳng là 45^{0}.

  • Câu 18: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 19: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Đáp án: Độ lệch chuẩn.

  • Câu 20: Vận dụng

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 21: Thông hiểu

    Cho tập hợp các chữ số tự nhiên A = \left\{ 0,1,2,3,4,5,6 ight\}. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5?

    Gọi số tự nhiên có 4 chữ số là: \overline{abcd};(a eq 0).

    Tổng quát:

    Số cách chọn d là 2 cách chọn.

    Số cách chọn a là 6 cách chọn.

    Số cách chọn b là 5 cách chọn.

    Số cách chọn c là 4 cách chọn.

    Áp dụng quy tắc nhân ta có: 2.6.5.4 =
240 số

    Vi phạm:

    a = 0 có 1 cách chọn.

    d = 5 có 1 cách chọn.

    b có 5 cách chọn.

    c có 4 cách chọn.

    Áp dụng quy tắc nhân: 1.1.5.4 =
20 số

    Số các số cần tìm là: 240 - 20 =
220 số.

  • Câu 22: Thông hiểu

    Cho hai đường thẳng (d) gồm 5 điểm phân biệt và (d') gồm 7 điểm phân biệt. Biết rằng (d)//(d'). Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?

    Một tam giác được hình thành bởi ba điểm không thẳng hàng.

    TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{1}.C_{7}^{2} (tam giác)

    TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{2}.C_{7}^{1} (tam giác)

    Vậy số tam giác được tạo thành là C_{5}^{1}.C_{7}^{2} + C_{5}^{2}.C_{7}^{1} =
175.

  • Câu 23: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 24: Vận dụng

    Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:

    5,5;\ 6;\ 6;\ x;\ 7;\ 7,5;\ 8;\
9

    Biết số trung vị của mẫu số liệu trên bằng 6,5. Kết quả nào dưới đây đúng?

    N = 8 là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.

    Suy ra 6,5 = \frac{x + 7}{2}
\Leftrightarrow x = 6

    Vậy x = 6.

  • Câu 25: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 26: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 27: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 28: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x - 3)^{4} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (x + 2)^{5}C_{5}^{2}.2^{2}.x^{3} = 40x^{3}

    Số hạng chứa x^{3} trong khai triển (x - 3)^{4}C_{4}^{1}.( - 3)^{1}.x^{3} = -
12x^{3}

    Do đó số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x -
3)^{4} đã cho là: 40x^{3} - ( -
12)x^{3} = 52x^{3}

    Vậy số hạng cần tìm là 52x^{3}.

  • Câu 29: Vận dụng

    Khai triển nhị thức newton của P(x) = (\sqrt[3]{2}x + 3)^{2018} thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?

    P(x) = (\sqrt[3]{2}x + 3)^{2018} =
\sum_{k = 0}^{2018}{\left( \sqrt[3]{2}x ight)^{2018 - k}3^{k}} =
\sum_{k = 0}^{2018}{2^{\frac{2018 - k}{3}}.3^{k}x^{2018 -
k}}

    Để hệ số nguyên dương thì (2018 - k)
\vdots 3 \Leftrightarrow 2018 - k = 3t \Leftrightarrow k = 2018 -
3t,do 0 \leq k \leq 2018 nên ta có 0 \leq 2018 - 3t \leq 2018
\Leftrightarrow 0 \leq t \leq \frac{2018}{3} \approx 672,6 vậy t=0,1,2….672 nên có 673 giá trị.

  • Câu 30: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 31: Vận dụng

    Trong mặt phẳng tọa độ Oxy, gọi H(m,n) là trực tâm tam tam giác ABC có tọa độ các đỉnh A( - 3;0),B(3;0),C(2;6). Tính giá trị biểu thức P = m + 6n?

    Ta có: H(m,n) là trực tâm tam giác ABC nên \left\{ \begin{matrix}
AH\bot BC \\
BH\bot AC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
\overrightarrow{AH} = (m + 3;n);\overrightarrow{BC} = ( - 1;6) \\
\overrightarrow{BH} = (m - 3;n);\overrightarrow{AC} = (5;6) \\
\end{matrix} ight.

    Ta có hệ phương trình \left\{
\begin{matrix}
- m + 6n = 3 \\
5m + 6n = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = \frac{5}{6} \\
\end{matrix} ight.

    Vậy biểu thức P = m + 6n = 7

  • Câu 32: Thông hiểu

    Phường A thống kê số con của mỗi hộ gia đình trong khu dân cư như sau:

    Số con

    0

    1

    2

    3

    4

    Số hộ gia đình

    2

    7

    5

    1

    1

    Phương sai của mẫu số liệu bằng:

    Số con trung bình là:

    \overline{x} = \frac{0.2 + 1.7 + 2.5 +
3.1 + 4.1}{16} = 1,5

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{16}\lbrack 2.\left( 0 -
\frac{3}{2} ight)^{2} + 7.\left( 1 - \frac{3}{2} ight)^{2} +
5.\left( 2 - \frac{3}{2} ight)^{2}+ 1.\left( 3 - \frac{3}{2} ight)^{2} +
1.\left( 4 - \frac{3}{2} ight)^{2}brack = 1

    Vậy phương sai cần tìm là s^{2} =
1.

  • Câu 33: Thông hiểu

    Cho mẫu số liệu: 27;15;18;30;19;40;100;9;46;10;200. Tứ phân vị thứ ba của mẫu số liệu là:

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:

    9;10;15;18;19;27;30;40;46;100;200

    Tứ phân vị thứ ba là trung vị của mẫu 30;40;46;100;200

    Do đó Q_{3} = 46.

  • Câu 34: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 35: Nhận biết

    Viết số quy tròn của số a = 80,3654 đến hàng phần trăm.

    Số quy tròn của số a = 80,3654 đến hàng phần trăm là 80,37.

  • Câu 36: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 37: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{a} = (5;m - 7)\overrightarrow{b} = (m + 1;3) với m\mathbb{\in R}. Tìm giá trị của tham số m để \overrightarrow{a}\bot\overrightarrow{b}?

    Ta có:

    \overrightarrow{a}\bot\overrightarrow{b}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{0}

    \Leftrightarrow 5(m - 1) + 3.(m - 7) = 0
\Leftrightarrow m = 2

    Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.

  • Câu 39: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có tọa độ A( - 4;5). Đường chéo BD nằm trên đường thẳng có phương trình 7x - y + 8 = 0. Viết phương trình đường thẳng chứa cạnh CD biết x_{B} < 0?

    Hình vẽ minh họa

    Ta có: AC\bot BD suy ra phương trình AC là: x + 7y + m = 0

    Lại có A \in AC \Leftrightarrow m = -31 suy ra phương trình AC là: x +7y + - 31 = 0

    Gọi I = AC \cap BD suy ra tọa độ I là nghiệm hệ phương trình

    \left\{ \begin{matrix}7x - y + 8 = 0 \\x + 7y - 31 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{1}{2} \\y = \dfrac{9}{2} \\\end{matrix} ight.

    \Rightarrow I\left( -\frac{1}{2};\frac{9}{2} ight) mà I là trung điểm của AC

    B \in BD \Rightarrow B(a;7a +8)

    \Rightarrow \left\{ \begin{matrix}\overrightarrow{BA}( - 4 - a; - 3 - 7a) \\\overrightarrow{BC}(3 - a; - 4 - 7a) \\\end{matrix} ight.

    BA\bot BC \Leftrightarrow\overrightarrow{BA}.\overrightarrow{BC} = 0

    \Leftrightarrow 50a^{2} + 50a =0

    \Leftrightarrow \left\lbrack\begin{matrix}a = - 1 \Rightarrow B(0;8)(L) \\a = 0 \Rightarrow B( - 1;1)(tm) \Rightarrow D(0;8) \\\end{matrix} ight.

    Vậy phương trình đường thẳng CD là 4x +3y - 24 = 0.

  • Câu 40: Nhận biết

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Cánh Diều (Đề 4) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo