Đề thi giữa học kì 2 Toán 10 Cánh Diều (Đề 5)

Mô tả thêm: Đề thi giữa HK2 Toán 10 được biên soạn gồm 40 câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Cho mẫu số liệu: 43;45;46;41;40. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:

    Trung bình cộng của mẫu số liệu là:

    \overline{x} = \frac{43 + 45 + 46 + 41 +
40}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{43^{2} + 45^{2} + 46^{2} +
41^{2} + 40^{2}}{5} - 43^{2} = 5,2

    Độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} \approx
2,28.

  • Câu 2: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho hai vecto \overrightarrow{u} = ( - 2; -
4),\overrightarrow{v} = (2x - y;y). Khi nào hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau?

    Ta có:

    \overrightarrow{u} = \overrightarrow{v}
\Leftrightarrow \left\{ \begin{matrix}
2x - y = - 2 \\
y = - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x + 4 = - 2 \\
y = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = - 4 \\
\end{matrix} ight.

    Vậy hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau khi x = - 3;y = - 4.

  • Câu 3: Nhận biết

    Xác định mốt của mẫu số liệu: 11;17;13;14;15;14;15;16;17;17

    Ta có: số 17 có tần số xuất hiện nhiều nhất

    Suy ra mốt của mẫu số liệu là 17.

  • Câu 4: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(1; - 1),B(3;2). Gọi D \in Oy sao cho DA^{2} + DB^{2} đạt giá trị nhỏ nhất. Tung độ của điểm D là:

    Ta có: D \in Oy \Rightarrow
D(0;m)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{DA} = (1; - 1 - m) \\
\overrightarrow{DB} = (3;2 - m) \\
\end{matrix} ight.

    \Rightarrow DA^{2} + DB^{2} = \left|
\overrightarrow{DA^{2}} ight| + \left| \overrightarrow{DB^{2}}
ight|

    = 1^{2} + (1 - m)^{2} + 3^{2} + (2 -
m)^{2}

    = 2\left( m - \frac{1}{2} ight)^{2} +
\frac{29}{2} \geq \frac{29}{2};\forall m\mathbb{\in R}

    Suy ra giá trị nhỏ nhất của biểu thức DA^{2} + DB^{2} bằng \frac{29}{2} khi và chỉ khi m = \frac{1}{2}

    Suy ra D\left( 0;\frac{1}{2}
ight)

    Vậy tung độ của điểm D thỏa mãn yêu cầu là y_{D} = \frac{1}{2}.

  • Câu 5: Nhận biết

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 6: Thông hiểu

    Cho dãy số liệu: 5;1;3;8;6;9;10;20;18. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    1;3;5;6;8;9;10;18;20

    Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là Q_{2} = 8

    Tứ phân vị thứ nhất là trung vị của dãy số liệu: 1;3;5;6. Khi đó Q_{1} = \frac{3 + 5}{2} = 4.

    Tứ phân vị thứ ba là trung vị của dãy số liệu: 9;10;18;20. Khi đó Q_{3} = \frac{10 + 18}{2} = 14

    Vậy khoảng tứ phân vị của mẫu số liệu là

    \Delta Q = Q_{3} - Q_{1} = 14 - 4 =
10

  • Câu 7: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho đường thẳng \Delta có phương trình tổng quát x - 2y - 5 = 0. Hãy xác định phương trình tham số của \Delta?

    Đường thẳng x - 2y - 5 = 0 đi qua điểm (5;0) và có vectơ pháp tuyến \overrightarrow{n} = (1; -
2)

    Suy ra một vectơ chỉ phương của đường thẳng là \overrightarrow{u} = (2;1)

    Vậy phương trình tham số là: \left\{
\begin{matrix}
x = 5 + 2t \\
y = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 8: Thông hiểu

    Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC biết rằng A(6;3),B( - 3;6),C(1; - 2)?

    Gọi M, N lần lượt là trung điểm của AB và BC.

    I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:

    \left\{ \begin{matrix}
\overrightarrow{MI}.\overrightarrow{AB} = 0 \\
\overrightarrow{MI}.\overrightarrow{BC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3x + y = 0 \\
x - 2y + 5 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
\end{matrix} ight.\  \Leftrightarrow I(1;3)

  • Câu 9: Nhận biết

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?

    Tổng số quả cầu trong hộp là 5 + 6 = 11

    Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử

    Vậy số cách thỏa mãn yêu cầu bài toán là C_{11}^{3} = 165 (cách).

  • Câu 10: Thông hiểu

    Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau: 4,5;\
5,0;\ 7,5;\ 8,5;\ 5,5;\ 6,0;\ 6,5;\ 9,0;\ 4,5;\ 10;\ 9,0. Số trung vị của mẫu số liệu đã cho là:

    Sắp xếp dãy số liệu theo thứ tự không giảm như sau:

    4,5;\ 4,5;\ 5,0;\ 5,5;\ 6,0;6,5;\ 7,5;\
8,5;\ 9,0;\ 9,0;\ 10

    Ta có: N = 11 là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số \frac{11 + 1}{2} = 6

    Hay trung vị của mẫu số liệu là 6,5.

  • Câu 11: Vận dụng

    Cho khai triển (1
+ 3x)^{n} = a_{0} + a_{1}x^{1} + ... + a_{n}x^{n} trong đó n\mathbb{\in N}* và các hệ số thỏa mãn hệ thức a_{0} + \frac{a_{1}}{3} + ... +
\frac{a_{n}}{3^{n}} = 4096. Hệ số lớn nhất là:

    Xét khai triển (1 + 3x)^{n} = a_{0} +
a_{1}x^{1} + ... + a_{n}x^{n}.

    Cho x = \frac{1}{3} ta được \left( 1 + 3.\frac{1}{3} ight)^{n} = a_{0}
+ \frac{a_{1}}{3^{1}} + ... + \frac{a_{n}}{3^{n}} \Rightarrow 2^{n} =
4096 \Leftrightarrow n = 12.

    Khi đó (1 + 3x)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}.3^{k}.x^{k}}.

    Ta có hệ số a_{k} = 3^{k}C_{12}^{k} =
3^{k}.\frac{12!}{k!.(12 - k)!}

    Hệ số a_{k} lớn nhất nên \left\{ \begin{matrix}
a_{k} \geq a_{k - 1} \\
a_{k} \geq a_{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k - 1}.\frac{12!}{(k - 1)!.(12 -
k + 1)!} \\
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k + 1}.\frac{12!}{(k + 1)!.(12 -
k - 1)!} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{3}{k} \geq \frac{1}{13 - k} \\
\frac{1}{12 - k} \geq \frac{3}{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
39 - 3k \geq k \\
k + 1 \geq 36 - 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k \leq \frac{39}{4} \\
k \geq \frac{35}{4} \\
\end{matrix} ight.

    k\mathbb{\in N} nên nhận k = 9.

    Vậy hệ số lớn nhất a_{9} =
3^{9}.C_{12}^{9} = 4330260..

  • Câu 12: Nhận biết

    Thực hiện khai triển nhị thức Newton (x + 2y)^{5} ta được kết quả là:

    Ta có:

    (x + 2y)^{5} = x^{5} + 10x^{4}y +
40x^{3}y^{2} + 80x^{2}y^{3} + 80xy^{4} + 32y^{5}

  • Câu 13: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ trung điểm M của đoạn thẳng AB với A(3; -
4),B(7;2) là:

    Tọa độ trung điểm M của AB là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{3 + 7}{2} = 5 \\y_{M} = \dfrac{- 4 + 2}{2} = - 1 \\\end{matrix} ight.

    \Rightarrow M(5; - 1)

    Vậy tọa độ trung điểm M của AB là M(5; -
1).

  • Câu 14: Nhận biết

    Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.

    Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.

    Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.

  • Câu 15: Thông hiểu

    Cho số gần đúng \overline{a} = 37464689 \pm 350. Hãy viết số quy tròn của 37464689?

    Với \overline{a} = 37464689 \pm
350. Số quy tròn của số 37464689 là: 37464700.

  • Câu 16: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 17: Nhận biết

    Cho \overrightarrow{u} = (3; - 2) và tọa độ hai điểm A(0; - 3),B(1;5). Biết 2\overrightarrow{x} + 2\overrightarrow{u} -
\overrightarrow{AB} = \overrightarrow{0}, tọa độ vecto \overrightarrow{x} là:

    Tọa độ vecto \overrightarrow{x} = \left(
- \frac{5}{2};6 ight).

  • Câu 18: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 19: Nhận biết

    Số quy tròn của a = 15,31828 \pm 0,001 với độ chính xác đã cho là:

    Số quy tròn của số a = 15,31828 \pm
0,001 là: 15,32.

  • Câu 20: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 21: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 22: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 23: Vận dụng

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 24: Nhận biết

    Giả sử Q_{1},Q_{2},Q_{3} là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 25: Thông hiểu

    Cho 2,56 gam naphtalen tác dụng hết với axit nitric tạo thành 1-nitronaptalen. Khối lượng sản phẩm tạo thành là:

    nnaphtalen = 0,02 mol

    C10H8 + HNO3 → C10H7NO2 + H2O

    0,02          →             0,02

    mC10H7NO2 = 0,02.173 = 3,46 gam

  • Câu 26: Nhận biết

    Tính số cách sắp xếp 8 học sinh thành 1 hàng dọc?

    Số cách sắp xếp 8 học sinh thành 1 hàng dọc là 8! = 40320 cách.

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 28: Thông hiểu

    Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:

    Chiều cao (cm)

    150

    155

    160

    165

    170

    175

    Số học sinh

    4

    6

    7

    6

    5

    3

    Chiều cao trung bình của các học sinh là:

    \overline{x} = \frac{150.4 + 155.6 +
160.7 + 165.6 + 170.5 + 175.3}{4 + 6 + 7 + 6 + 5 + 3}

    \Rightarrow \overline{x} \approx
161,8(cm)

  • Câu 29: Vận dụng

    Tốc độ di chuyển của 25 xe qua một điểm kiểm tra được liệt kê trong bảng dưới đây:

    20

    41

    41

    80

    40

    52

    52

    52

    60

    55

    60

    60

    62

    60

    55

    60

    55

    90

    70

    35

    40

    30

    30

    80

    25

    Có bao nhiêu số liệu bất thường có trong mẫu số liệu đã cho?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    20

    25

    30

    30

    35

    40

    40

    41

    41

    52

    52

    52

    55

    55

    55

    60

    60

    60

    60

    60

    62

    70

    80

    80

    90

    Mẫu số liệu có cỡ mẫu bằng 25 suy ra trung vị là số liệu thứ 13 trong dãy số liệu

    Suy ra Q_{2} = 55

    Tứ phân vị thứ nhất của mẫu số liệu gồm 12 số liệu sau:

    20

    25

    30

    30

    35

    40

    40

    41

    41

    52

    52

    52

     

    Suy ra Q_{1} = \frac{40 + 40}{2} =
40

    Tứ phân vị thứ ba của mẫu số liệu gồm 12 số liệu sau:

    55

    55

     

    60

    60

    60

    60

    60

    62

    70

    80

    80

    90

    Suy ra Q_{3} = \frac{60 + 60}{2} =
60

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 10 \\Q_{3} + \dfrac{1}{2}\Delta Q = 90 \\\end{matrix} ight.

    Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 10 và lớn hơn 90.

    Vậy không có giá trị nào bất thường trong mẫu số liệu.

  • Câu 30: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

  • Câu 31: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Có thể lập được bao nhiêu chữ số có hai chữ số trong đó cả hai chữ số trong số đó đều là số lẻ?

    Gọi số có hai chữ số là: \overline{ab};(a
eq 0)

    Vì hai chữ số đều là chữ số lẻ nên a,b
\in \left\{ 1;3;5;7;9 ight\}.

    Áp dụng quy tắc nhân ta có: 5.5 =
25 cách.

  • Câu 33: Thông hiểu

    Tìm hệ số của x^{3} trong khai triển f(x) = (1 + x)^{3} + (1 + x)^{4} + (1 +
x)^{5} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (1 + x)^{3}x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{4}C_{4}^{3}x^{3} = 4x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{5}C_{5}^{3}x^{3} = 10x^{3}

    Do đó tổng các số hạng chứa x^{3} trong khai triển đã cho là: x^{3} + 4x^{3} + 10x^{3} = 15x^{3}

    Vậy hệ số cần tìm là 15.

  • Câu 34: Thông hiểu

    Một tổ gồm 7 học sinh trong đó có 4 nam, 3 nữ cùng với 2 cô giáo xếp thành một hàng dọc để tham gia trò chơi đồng đội. Hỏi có bao nhiêu cách xếp hàng cho nhóm 3 học sinh nữ luôn đứng cạnh nhau và nhóm hai cô giáo cũng đứng cạnh nhau?

    Xếp nhóm A gồm 3 học sinh nữ đứng cạnh nhau có: 3! = 6 cách.

    Xếp nhóm B gồm 2 cô giáo đứng cạnh nhau có: 2! = 2 cách.

    Xếp nhóm A và nhóm B với 4 học sinh nam còn lại có 6! = 720 cách.

    Theo quy tắc nhân ta có: 6.2.720 =
8640 cách.

  • Câu 35: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 36: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm B( - 3;6),\ C(1; - 3). Xác định điểm E trên trục hoành sao cho ba điểm B,\ \ C,\ \ E thẳng hàng.

    Gọi E(x;0) khi đó \overrightarrow{BE}(x + 3; - 6),\ \
\overrightarrow{EC}(1 - x; - 3)

    Ba điểm B,C,E thẳng hàng khi và chỉ khi \overrightarrow{BE} cùng phương với \overrightarrow{EC}

    \Leftrightarrow \frac{x + 3}{1 - x} =
\frac{- 6}{- 3} \Leftrightarrow x = - \frac{1}{3}.

  • Câu 37: Thông hiểu

    Cho số đúng \overline{a} = 1,12512 và số gần đúng của \overline{a} của 1,125. Xác định sai số tuyệt đối \Delta_{a}.

    Ta có: a = 1,125

    Suy ra sai số tuyệt đối là:

    \Delta_{a} = \left| \overline{a} - a
ight| = |1,12512 - 1,125| = 0,00012

  • Câu 38: Nhận biết

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 39: Vận dụng

    Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau: 9,592 \pm 0,004, 9,593 \pm 0,005, 9,589 \pm 0,006 (đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?

    Sai số tương đối của thiết bị 1: \delta_{1} \leq \frac{0,004}{9,592} \approx
0,04\%.

    Sai số tương đối của thiết bị 2: \delta_{2} \leq \frac{0,005}{9,593} \approx
0,05\%.

    Sai số tương đối của thiết bị 3: \delta_{3} \leq \frac{0,006}{9,589} \approx
0,06\%.

    Vậy thiết bị 1 đo chính xác nhất.

  • Câu 40: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.|\overrightarrow{b}|.

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|\overrightarrow{a} ight|.\left| \overrightarrow{b}ight|.\cos(\overrightarrow{a},\overrightarrow{b}).

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|\overrightarrow{a} ight|.|\overrightarrow{b}|

    Suy ra \cos(\overrightarrow{a},\overrightarrow{b}) = - 1\longrightarrow (\overrightarrow{a},\overrightarrow{b}) =180^{\circ}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Cánh Diều (Đề 5) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo