Trong không gian với hệ tọa độ
, phương trình mặt phẳng trung trực
của đoạn thẳng
với
là
Gọi là trung điểm của
suy ra
Phương trình mặt phẳng đi qua
và nhận
làm vectơ pháp tuyến:
Trong không gian với hệ tọa độ
, phương trình mặt phẳng trung trực
của đoạn thẳng
với
là
Gọi là trung điểm của
suy ra
Phương trình mặt phẳng đi qua
và nhận
làm vectơ pháp tuyến:
Trong không gian hệ trục tọa độ
, cho các điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng
. Khi đó độ dài đoạn thẳng
bằng:
Vì lần lượt là hình chiếu của
lên mặt phẳng
nên
suy ra
.
Tính tích phân
?
Ta có:
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Mệnh đề nào sau đây sai?
Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.
Cho hình trụ có bán kính đáy bằng R và chiều cao bằng
. Mặt phẳng
song song với trục của hình trụ và cách trục một khoảng bằng
. Diện tích thiết diện của hình trụ cắt bởi mặt phẳng
là:

Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ.
Gọi H là trung điểm BC suy ra suy ra
Khi đó
Suy ra .
Họ nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, cho các vectơ
và
(với
là tham số thực). Có bao nhiêu giá trị của
để
?
Ta có:
Khi đó
Do đó
Vậy có 2 giá trị tham số m thỏa mãn yêu cầu bài toán.
bằng
Ta có .
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Dòng diện xoay chiều hình sin chạy qua mạch điện dao động
lí tưởng có phương trình
. Ngoài ra
với
là điện tích tức thời trong tụ. Tính từ lúc
, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian
là
Điện lượng cần tìm là:
Giá trị của tích phân
. Biểu thức có giá trị
là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Trong không gian với hệ trục tọa độ
, mặt phẳng
đi qua hai điểm
cắt các tia
lần lượt tại
sao cho
nhỏ nhất, với
là trọng tâm tam giác
. Biết
, hãy tính
.
Gọi với
.
Khi đó phương trình của .
Vì nên
. Kết hợp với điều kiện
suy ra
và
.
Cũng từ trên ta có .
Trọng tâm của tam giác
có tọa độ
.
Xét hàm số với
.
Ta có .
Bảng biến thiên
đạt giá trị nhỏ nhất khi và chỉ khi
đạt giá trị nhỏ nhất. Điều này xảy ra khi
; lúc đó
và
.
Vậy
Tìm một nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Cho hàm số
liên tục trên
và
,
là một nguyên hàm của
trên
. Chọn khẳng định sai trong các khẳng định sau?
Theo định nghĩa tích phân ta có: .
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Tìm nguyên hàm của hàm của hàm số ![]()
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Họ nguyên hàm của hàm số
là:
Ta có: .
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Cho hàm số
là hàm số bậc ba có đồ thị như hình vẽ:

Biết
và
. Phương trình tiếp tuyến với đồ thị hàm số
tại điểm có hoành độ
là:
Từ đồ thị hàm số ta suy ra
Xét tích phân . Đặt
Đổi cận
Do đó
Xét tích phân . Đặt
Đổi cận
Theo bài ra suy ra
Như vậy . Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ
là:
.
Trong hệ tọa độ
, cho hai đường thẳng chéo nhau
và
. Phương trình mặt phẳng
chứa
và song song với
là
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Vì mặt phẳng chứa
và song song với
, ta có:
Mặt phẳng đi qua
và vectơ pháp tuyến
nên phương trình mặt phẳng
hay
.
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Tính thể tích
của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Giá trị của tích phân
bằng:
Ta có: .
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên