Đề thi giữa học kì 2 Toán 12 - Đề 1

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giả sử f(x) là một hàm số bất kì và liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta). Mệnh đề nào sau đây sai?

    Dựa vào tính chất của tích phân với f(x) là một số bất kì liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta) ta có:

    \int_{a}^{b}{f(x)dx} =
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{b}^{c}{f(x)dx}

    = \int_{a}^{b + c}{f(x)dx} + \int_{b +
c}^{b}{f(x)dx}

  • Câu 2: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 3: Nhận biết

    Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a;x = b;\left( {a < b} ight) xung quanh trục Ox.

    Ta có : V =
\pi\int_{a}^{b}{f^{2}(x)}dx.

  • Câu 4: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 5: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 6: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 7: Vận dụng cao

    Trong không gian Oxyz, cho điểm P(1;1;2). Mặt phẳng (\alpha) đi qua P cắt các trục Ox,Oy, Oz lần lượt tại A,B,C khác gốc tọa độ sao cho T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} đạt giá trị nhỏ nhất, trong đó S_{1},S_{2},S_{3} lần lượt là diện tích các tam giác OAB,OBC,OCAR_{1},R_{2},R_{3} lần lượt là diện tích các tam giác PAB,PBC,PCA. Điểm M nào dưới đây thuộc (\alpha) ?

    Ta có \overrightarrow{OP} = (1;1;2)
\Rightarrow OP = \sqrt{6}. Lại có d(P,(Oxy)) = 2, d(P,(Oxz)) = 1d(P,(Oyz)) = 1.

    Đặt d = d(O,(ABC)), ta có

    V_{P.OAB} = V_{O.PAB}

    \Leftrightarrow d(P,(Oxy)) \cdot
S_{\bigtriangleup OAB} = d(O,(ABC)) \cdot S_{\bigtriangleup
PAB}

    \Leftrightarrow 2S_{1} =
dR_{1}

    \Leftrightarrow \frac{R_{1}}{S_{1}} =
\frac{2}{d}

    Tương tự, ta có \frac{R_{2}}{S_{2}} =
\frac{1}{d}\frac{R_{3}}{S_{3}}
= \frac{1}{d}.

    Khi đó T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} =
\frac{6}{d^{2}} \geq \frac{6}{OP^{2}} = 1.

    Dấu "=" xảy ra khi và chỉ khi d =
OP hay OP\bot(ABC).

    Từ đó suy ra (\alpha) nhận \overrightarrow{OP} = (1;1;2) làm vectơ pháp tuyến.

    Do đó (\alpha) có phương trình 1(x - 1) + 1(y - 1) + 2(z - 2) = 0
\Leftrightarrow x + y + 2z - 6 = 0.

    Vậy M(4;0;1) là điểm thuộc (\alpha).

  • Câu 8: Vận dụng cao

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 9: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 10: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 11: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = ax + \frac{b}{x^{2}};(x eq
0), biết rằng F( - 1) = 1;F(1) =
4;f(1) = 0?

    Ta có: F(x) = \int_{}^{}{\left( ax +
\frac{b}{x^{2}} ight)dx = \frac{ax^{2}}{2} - \frac{b}{x} +
c}

    Theo bài ra ta có:

    F( - 1) = 1;F(1) = 4;f(1) =
0

    \Rightarrow \left\{ \begin{matrix}\dfrac{a}{2} + b + c = 1 \\\dfrac{a}{2} - b + c = 4 \\a + b = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = - \dfrac{3}{2} \\c = \dfrac{7}{4} \\\end{matrix} ight.. Vậy F(x) =
\frac{3x^{2}}{4} + \frac{3}{2x} + \frac{7}{4}.

  • Câu 12: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 13: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight). Khi đó số điểm cực trị của hàm số F(x) là:

    Ta có: F(x) là một nguyên hàm của hàm số f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight)

    \Rightarrow F'(x) = 2019^{x}\left( 4
- x^{2} ight)\left( x^{2} - 3x + 2 ight) = 2019^{x}(x - 2)^{2}(x +
2)(1 - x)

    \Rightarrow F'(x) = 0
\Leftrightarrow 2019^{x}(x - 2)^{2}(x + 2)(1 - x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.. Do x = -
2;x = 1 là nghiệm bội 1 còn x =
2 là nghiệm bội 2 nên hàm số F(x) có hai điểm cực trị.

  • Câu 14: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 15: Thông hiểu

    Hàm số F(x) là nguyên hàm của f(x) = (1 - x)\ln\left( x^{2} + 1
ight). Hỏi hàm số F(x) có bao nhiêu điểm cực trị?

    TXĐ: D\mathbb{= R}

    Ta có: F'(x) = f(x) = (1 -
x)\ln\left( x^{2} + 1 ight)

    \Rightarrow F'(x) = 0
\Leftrightarrow (1 - x)\ln\left( x^{2} + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - x = 0 \\
\ln\left( x^{2} + 1 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Phương trình F'(x) = 0 có 1 nghiệm đơn x = 1 và một nghiệm kép x = 0 nên hàm số F(x) có 1 điểm cực trị.

  • Câu 16: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 17: Thông hiểu

    Giá trị của tích phân I = \int\limits_e^{{e^2}} {\left( {\frac{{1 + x + {x^2}}}{x}} ight)} dx = a. Biểu thức P = a - 1 có giá trị là:

     Giá trị của tích phân I = \int\limits_e^{{e^2}} {\left( {\frac{{1 + x + {x^2}}}{x}} ight)} dx = a. Biểu thức P = a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_e^{{e^2}} {\left( {\dfrac{{1 + x + {x^2}}}{x}} ight)} dx \hfill \\ = \int\limits_e^{{e^2}} {\left( {\frac{1}{x} + 1 + x} ight)} dx \hfill \\ = \left. {\left( {\ln \left| x ight| + x + \dfrac{{{x^2}}}{2}} ight)} ight|_e^{{e^2}} \hfill \\ = 1 - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow a = 1 - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\\Leftrightarrow a - 1 = - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\   \Leftrightarrow P =  - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho hai vecto \overrightarrow{a}, \overrightarrow{b}cùng có độ dài bằng 2. Biết rằng góc giữa hai vecto đó bằng 120^{0}, giá trị của biểu thức P = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2}

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
2.2.cos120^{0} = 2.2.\left( - \frac{1}{2} ight) = - 2

    Do đó:

    P = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{.a}.\overrightarrow{b} +
4{\overrightarrow{b}}^{2}

    = 4 - 4.( - 2) + 4.4 = 28.

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2; - 1),B(1;4;3). Độ dài của đoạn AB

    Ta có:

    \overrightarrow{AB} = (0;6;4) khi đó độ dài đoạn AB bằng:

    \left| \overrightarrow{AB} ight| =
\sqrt{0^{2} + 6^{2} + 4^{2}} = \sqrt{56} = 2\sqrt{13}

  • Câu 21: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 22: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 23: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 24: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

  • Câu 25: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
x^{2} + 3x + 2 ight)dx} = \frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x +
C

  • Câu 26: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 27: Thông hiểu

    Trong không gian Oxyz, cho điểm A(2; - 1; - 3) và mặt phẳng (P):3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là:

    Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là \overrightarrow{n} = (3; -
2;4)

    Phương trình mặt phẳng (Q) là:

    3(x - 2) - 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow 3x - 2y + 4z + 4 =
0

  • Câu 28: Thông hiểu

    Cho các mệnh đề sau:

    (I) Vectơ \overrightarrow{x} =\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} luôn đồng phẳng với hai vectơ \overrightarrow{a};\overrightarrow{b}.

    (II) Nếu có m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} và ít nhất một trong ba số m;n;p khác không thì ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng.

    (III) Nếu ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng và m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} thì m = n = p = 0.

    Hỏi có bao nhiêu mệnh đề đúng?

    Do \overrightarrow{x} được biểu thị qua hai vectơ \overrightarrow{a};\overrightarrow{b} nên (I) đúng.

    Xét mệnh đề (II): Giả sử m eq
0, khi đó:

    m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0}\Leftrightarrow \overrightarrow{a} = - \frac{n}{m}\overrightarrow{b} -\frac{p}{m}\overrightarrow{c}

    Suy ra ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng. Vậy mệnh đề (II) đúng.

    Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.

  • Câu 29: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(4;9;8),N(1; - 3;4),P(2;5; - 1). Mặt phẳng (\alpha) đi qua ba điểm M,N,P có phương trình tổng quát Ax + By + Cz + D = 0. Biết A = 92, tìm giá trị của D?

    Do A = 92 nên mặt phẳng (P) có phương trình 92x + By + Cz + D = 0

    Do (P) đi qua các điểm A;B;C nên ta có hệ:

    \left\{ \begin{matrix}
92.4 + B.9 + C.8 + D = 0 \\
92.1 + B.( - 3) + C.4 + D = 0 \\
92.2 + B.5 + C.( - 1) + D = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
B = - 19 \\
C = - 12 \\
D = - 101 \\
\end{matrix} ight.

    Vậy D = - 101.

  • Câu 30: Thông hiểu

    Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0;x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}?

    Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}

    Diện tích thiết diện được xác định theo hàm là: S(x) = 2x\sqrt{9 - x^{2}}

    ⇒ Thể tích vật thể tròn xoay: V =
\int_{0}^{3}{2x\sqrt{9 - x^{2}}}dx = 18

  • Câu 31: Vận dụng

    Biết rằng  F(x) nguyên hàm của hàm số f(x) = \frac{1}{x^{2}(x +1)} thỏa mãn F(1) + F( - 2) = \frac{1}{2}. Chọn mệnh đề đúng?

    Sử dụng phương pháp đồng nhất thức, ta có:

    f(x) = \frac{1}{x^{2}(x + 1)} =\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 1}= \frac{(A + C)x^{2} +(A + B)x + B}{x^{2}(x + 1)}

    Suy ra \left\{ \begin{matrix}A + C = 0 \\A + B = 0 \\B = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = 1 \\C = 1 \\\end{matrix} ight.

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\left( - \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x + 1}ight)dx}

    \Rightarrow F(x) = - \ln|x| -\frac{1}{x} + \ln|x + 1| + C = \ln\left| \frac{x + 1}{x} ight| -\frac{1}{x} + C

    Khi đó F(x) = \left\{ \begin{matrix}\ln\dfrac{x + 1}{x} - \dfrac{1}{x} + C_{1};x \in (0; + \infty) \\\ln\dfrac{- x - 1}{x} - \dfrac{1}{x} + C_{2};x \in ( - 1;0) \\\ln\frac{x + 1}{x} - \dfrac{1}{x} + C_{3};x \in ( - \infty; - 1) \\\end{matrix} ight.

    F(1) + F( - 2) =\frac{1}{2}

    \Leftrightarrow \ln2 - 1 + C_{1} +\ln\frac{1}{2} + \frac{1}{2} + C_{3} = \frac{1}{2}

    \Leftrightarrow C_{1} + C_{3} =1

    Vậy T = F(2) + F( - 3) = \ln\frac{3}{2} -\frac{1}{2} + C_{1} + \ln\frac{2}{3} + \frac{1}{3} + C_{3} =\frac{5}{6}

  • Câu 32: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Cho hai điểm A(5;1;3)H(3; - 3; - 1). Tọa độ điểm A' đối xứng với A qua H là:

    Vì điểm A' đối xứng với A qua H nên H là trung điểm của AA'

    \Rightarrow \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} = 1 \\
y_{A'} = 2y_{H} - y_{A} = - 7 \\
z_{A'} = 2z_{H} - z_{A} = 5 \\
\end{matrix} ight.\  \Rightarrow A'(1; - 7; - 5)

  • Câu 34: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn điều kiện f(0) = 2\sqrt{2};f(x) > 0 với \forall x\mathbb{\in R}f(x).f'(x) = (2x + 1)\sqrt{1 +f^{2}(x)} với \forall x\mathbb{\inR}. Tính giá trị f(1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 36: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn \int_{0}^{2}{f(x)dx}\  = 5,\int_{1}^{2}{f(x)dx\ }
= 3. Giá trị của biểu thức \int_{0}^{1}{f(x)dx} bằng

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{1}^{2}{f(x)dx} = 5 - 3 = 2

  • Câu 37: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 38: Thông hiểu

    Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng x = {y^2} + 5;x = 3 - y quay quanh Oy.

    Tung độ giao điểm 

    \begin{matrix}   - {y^2} + 5 = 3 - y \Rightarrow \left[ {\begin{array}{*{20}{c}}  {y =  - 1} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow V = \pi \int\limits_{ - 1}^2 {\left| {{{\left( { - {y^2} + 5} ight)}^2} - {{\left( {3 - y} ight)}^2}} ight|dy = \dfrac{{153}}{5}\pi }  \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 40: Nhận biết

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo