Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 3: Thông hiểu

    Tính tích phân A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \dfrac{\pi}{3}ight)}dx} bằng

    Ta có:

    A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \frac{\pi}{3}ight)}dx} = \left. \ \tan\left( x - \frac{\pi}{3} ight)ight|_{0}^{\frac{\pi}{2}}

    = \tan\frac{\pi}{6} - \tan\left( -
\frac{\pi}{3} ight) = \frac{4\sqrt{3}}{3}

  • Câu 4: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 5: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 6: Nhận biết

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?

    Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.

  • Câu 7: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 8: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 9: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 10: Vận dụng

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Cho hàm số F(x) = \left( ax^{2} + bx - c
ight).e^{2x} là một nguyên hàm của hàm số f(x) = \left( 2018x^{2} - 3x + 1
ight)e^{2x} trên khoảng ( -
\infty; + \infty). Giá trị biểu thức a + 2b + 4c bằng:

    Ta có: F'(x) = (2ax + b)e^{2x} +
2\left( ax^{2} + bx - c ight)e^{2x}

    = \left\lbrack 2ax^{2} + (2b + 2a)x + b
- 2c ightbrack e^{2x}

    Theo bài ra ta có:

    \Rightarrow \left\lbrack 2ax^{2} + (2b +
2a)x + b - 2c ightbrack e^{2x} = \left( 2018x^{2} - 3x + 1
ight)e^{2x}

    \Rightarrow \left\{ \begin{matrix}2a = 2018 \\2(a + b) = - 3 \\b - 2c = 1 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1009 \\b = \dfrac{- 2021}{2} \\c = \dfrac{- 2023}{4} \\\end{matrix} ight.\  \Rightarrow a + 2b + 4c = - 3035

  • Câu 12: Thông hiểu

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 13: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \left( x^{2} - 1 ight)e^{x^{3} -
3x}, biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành?

    Ta có:

    F(x) = \int_{}^{}{\left( x^{2} - 1
ight)e^{x^{3} - 3x}dx} = \frac{1}{3}\int_{}^{}{e^{x^{3} - 3x}d\left(
x^{3} - 3x ight)}

    = \frac{1}{3}e^{x^{3} - 3x} +
C

    F'(x) = f(x) = \left( x^{2} - 1
ight)e^{x^{3} - 3x} = 0 \Leftrightarrow x = \pm 1

    F''(x) = 2xe^{x^{3} - 3x} +
\left( x^{2} - 1 ight)e^{x^{3} - 3x};F''(1) >
0;F''(1) < 0

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(1;0)

    Suy ra F(1) = 0 \Leftrightarrow
\frac{1}{3}e^{- 2} + C = 0 \Rightarrow C = -
\frac{1}{3e^{2}}

    Do đó F(x) = \frac{e^{x^{3} - 3x + 2} -
1}{3e^{2}}

  • Câu 14: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 15: Thông hiểu

    Biết rằng hàm số y = f(x)f'(x) = 3x^{2} + 2x + m;f(2) =
1 và đồ thị hàm số y =
f(x) cắt trục tung tại điểm có tung độ bằng - 5. Hàm số f(x) là:

    Theo lí thuyết \int_{}^{}{f'(x)dx =
f(x) + C}

    Ta có: \int_{}^{}{f'(x)dx
=}\int_{}^{}{\left( 3x^{2} + 2x + m ight)dx} = x^{3} + x^{2} + mx +
C

    Khi đó f(x) có dạng f(x) = x^{3} + x^{2} + mx + C_{1}

    Theo đề ta có: \left\{ \begin{matrix}
f(2) = 1 \\
f(0) = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2^{3} + 2^{2} + 2m + C_{1} = 1 \\
C_{1} = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 3 \\
C_{1} = - 5 \\
\end{matrix} ight.

    Vậy hàm số là f(x) = x^{3} + x^{2} - 3x -
5.

  • Câu 16: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 17: Thông hiểu

    Cho hàm số f(x) liên tục trên \mathbb{R}\int_{0}^{2}{\left\lbrack f(x) + 3x^{2}
ightbrack dx} = 10. Xác định giá trị của \int_{0}^{2}{f(x)dx}?

    Ta có: \int_{0}^{2}{\left\lbrack f(x) +
3x^{2} ightbrack dx} = 10 \Leftrightarrow \int_{0}^{2}{f(x)dx} = 10
- \int_{0}^{2}{3x^{2}dx}

    \Leftrightarrow \int_{0}^{2}{f(x)dx} =
10 - \left. \ x^{3} ight|_{0}^{2} = 2

  • Câu 18: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 19: Nhận biết

    Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y =  - {x^2} + 2x - 2, trục hoành và các đường thẳng x = 0;x = 3

    Diện tích S của hình phẳng trên là: S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}

    Ta có: - {x^2} + 2x - 2 \leqslant 0;\forall x \in \left[ {0;3} ight]

    => S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}  = \int\limits_0^3 {\left( {{x^2} - 2x + 2} ight)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 2x} ight)} ight|_0^3 = 6\left( {dvdt} ight)}

  • Câu 20: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 21: Vận dụng cao

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Đáp án là:

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Gọi S là diện tích hình phẳng (H). Lúc dó S = 2S_{1} + 2S_{2}, trong đó S_{1} là diện tích phần gạch sọc ở bên phải OyS_{2} là diện tích phần gạch ca rô trong hình vẽ bên.

    GọiA,B là các giao diếm có hoành độ dương của đường thẳng y = k và đồ thị hàm sốy = \left| x^{2} - 1
ight|, trong đó A\left( \sqrt{1 -
k};k ight)B\left( \sqrt{1 +
k};k ight).

    Thco yêu cầu bài toán S = 2 \cdot 2S_{1}
\Leftrightarrow S_{1} = S_{2}.

    \Leftrightarrow \int_{0}^{\sqrt{1 -
k}}{\left( 1 - x^{2} - k ight)dx}\  = \int_{\sqrt{1 - k}}^{1}{\left( k
- 1 + x^{2} ight)dx} + \int_{1}^{\sqrt{1 + k}}{\left( k - x^{2} + 1
ight)dx}.

    \Leftrightarrow \ (1 - k)\sqrt{1 - k} -
\frac{1}{3}(1 - k)\sqrt{1 - k}

    = \frac{1}{3} - (1 - k) - \frac{1}{3}(1
- k)\sqrt{1 - k} + (1 - k)\sqrt{1 - k}

    \  + (1 + k)\sqrt{1 + k} - \frac{1}{3}(1
+ k)\sqrt{1 + k} - (1 + k) + \frac{1}{3}

    \Leftrightarrow \ \frac{2}{3}(1 +
k)\sqrt{1 + k} = \frac{4}{3}

    \Leftrightarrow \left( \sqrt{1 + k}
ight)^{3} = 2 \Leftrightarrow k = \sqrt[3]{4} - 1 \approx
0,59.

  • Câu 23: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 24: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 25: Thông hiểu

    Biết rằng \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx} = \frac{1}{a} + \frac{\pi}{b} với a;b là các số hữu tỉ. Giá trị của a.b là:

    Ta có: I = \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx}

    Đặt \left\{ \begin{matrix}u = x + 1 \\dv = \cos2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \dfrac{1}{2}\sin2x \\\end{matrix} ight.

    \Rightarrow I = \left. \ \frac{1}{2}(x +1)\sin2x ight|_{0}^{\frac{\pi}{4}} -\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{\sin2xdx}

    \Rightarrow I = \frac{1}{2}\left(\frac{\pi}{4} + 1 ight) + \left. \ \frac{1}{4}\cos2xight|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}

    \Rightarrow a.b = 8.4 = 32

  • Câu 26: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 27: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 28: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 29: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 30: Nhận biết

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 31: Nhận biết

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 32: Thông hiểu

    Một vật chuyển động với vận tốc ban đầu là 4m/s và gia tốc a\left( t ight) = 3{t^2} + t\left( {m/s} ight). Hỏi sau khi chuyển động với gia tốc đó được 2 giây thì vận tốc của vật là bao nhiêu?

    Ta có: v\left( t ight) = \int {a\left( t ight)dt}  = \int {\left( {3{t^2} + t} ight)dt}  = {t^3} + \frac{1}{2}{t^2} + C\left( {m/s} ight)

    Do khi bắt đầu tăng tốc {v_0} = 4m/s nên

    {v_{\left( {t = 0} ight)}} = 4 \Rightarrow C = 4 \Rightarrow v\left( t ight) = {t^3} + \frac{1}{2}{t^2} + 4

    Vận tốc của vật khi chuyển động với gia tốc đó được là

    v\left( 2 ight) = {2^3} + \frac{1}{2}{.2^2} + 4 = 14\left( {m/s} ight)

  • Câu 33: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 34: Nhận biết

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 35: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 36: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} với các trục tọa độ?

    Xét \left\{ \begin{matrix}
x = 0 \Rightarrow y = - 2 \\
y = 0 \Rightarrow x = - 1 \\
\end{matrix} ight..

    Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x -
2} với các trục tọa độ là: S =
\int_{- 1}^{0}{\left| \frac{x + 1}{x - 2} ight|dx}.

    Vì biểu thức \frac{x + 1}{x - 2} không đổi dấu trên miền \lbrack - 1;0brack nên:

    S = \left| \int_{- 1}^{0}{\frac{x + 1}{x
- 2}dx} ight| = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = \left| 1 + 3(\ln2 - \ln3) ight| =3\ln\frac{3}{2} - 1

  • Câu 37: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 38: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 39: Thông hiểu

    Cho \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = ae^{2} + be + c với a;b;c\mathbb{\in Z}. Tính S = a + b + c?

    Ta có:

    \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = 2\int_{0}^{3}{e^{\sqrt{x + 1}}d\left( \sqrt{x +
1} ight)} = \left. \ \left( 2e^{\sqrt{x + 1}} ight) ight|_{0}^{3}
= 2e^{2} - 2e

    Vậy a = 2;b = - 2;c = 0 \Rightarrow S =
0

  • Câu 40: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1; - 1;2),B( - 2;0;3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}. Sai||Đúng

    b) Tọa độ của vectơ \overrightarrow{AB} =
( - 3;1;1). Đúng||Sai

    c) Điểm A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) thì \overrightarrow{AA'} = (0;0;2). Sai||Đúng

    d) Tọa độ điểm C để tứ giác OABC là hình bình hành là C(1;1; - 3). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(1; - 1;2),B( - 2;0;3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}. Sai||Đúng

    b) Tọa độ của vectơ \overrightarrow{AB} =
( - 3;1;1). Đúng||Sai

    c) Điểm A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) thì \overrightarrow{AA'} = (0;0;2). Sai||Đúng

    d) Tọa độ điểm C để tứ giác OABC là hình bình hành là C(1;1; - 3). Sai||Đúng

    a) Điểm A(1; - 1;2) \Rightarrow
\overrightarrow{OA} = (1; - 1;2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} - \overrightarrow{j} +
2\overrightarrow{k}.

    b) \overrightarrow{AB} = ( - 2 - 1;0 +
1;3 - 2) = ( - 3;1;1).

    c) A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) nên A'(1; - 1;0).

    Suy ra \overrightarrow{AA'} = (0;0; -
2).

    d) Gọi C(x;y;z) \Rightarrow
\overrightarrow{OC} = (x;y;z).

    Ta có \overrightarrow{AB} = ( -
3;1;1).

    Tứ giác OABC là hình bình hành nên \overrightarrow{OC} =
\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 1 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow C( - 3;1;1).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo