Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 2: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 3: Vận dụng

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng: \left. \ \begin{matrix}\overrightarrow{MR} = \dfrac{1}{2}\overrightarrow{BD} \\\overrightarrow{SN} = \dfrac{1}{2}\overrightarrow{BD} \\\end{matrix} ight\} \Rightarrow \overrightarrow{MR} =\overrightarrow{SN}.

    b) Đúng: Vi M là trung điểm của AB nên \overrightarrow{GA} + \overrightarrow{GB} =
2\overrightarrow{GM}

    N là trung điểm của CD nên \overrightarrow{GC} + \overrightarrow{GD} =
2\overrightarrow{GN}

    G là trung điểm của MN nên \overrightarrow{GM} + \overrightarrow{GN} =
\overrightarrow{0}

    Do đó: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
2(\overrightarrow{GM} + \overrightarrow{GN}) = 2.\overrightarrow{0} =
\overrightarrow{0}

    c) Sai: \overrightarrow{PQ} =\overrightarrow{AQ} - \overrightarrow{AP} =\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}) -\frac{1}{2}\overrightarrow{AC}\Leftrightarrow 2\overrightarrow{PQ} =\overrightarrow{AB} - \overrightarrow{AC} +\overrightarrow{AD}

    d) Đúng

    Ta có: \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
4\overrightarrow{IG} + (\overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD}) =
4\overrightarrow{IG}.

    \Rightarrow |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}| =
|4\overrightarrow{IG}| = 4IG.

    Do đó: |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID}| nhỏ nhất khi IG = 0 \Leftrightarrow I \equiv G 

  • Câu 4: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 5: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 7t(m/s). Đi được 5s người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = - 70\left( m/s^{2} ight). Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.

    Vận tốc vật đạt được sau 5s là: v_{0} =
7.5 = 35(m/s)

    Ta có: v_{2}(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{- 70dt} = - 70t + C

    Do khi bắt đầu tăng tốc v_{0} = 35(m/s)
\Rightarrow v_{(t = 0)} = 35 \Rightarrow C = 35

    \Rightarrow v_{2}(t) = - 70t +
35

    Vật dừng hẳn khi v_{2}(t) = - 70t + 35 =
0 \Rightarrow t_{2} = \frac{1}{2}(s)

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{5}{v_{1}(t)dt} +
\int_{0}^{\frac{1}{2}}{v_{2}(t)dt}

    = \int_{0}^{5}{7tdt} +
\int_{0}^{\frac{1}{2}}{( - 70t + 35)dt} = 96,25(m)

  • Câu 6: Thông hiểu

    Cho a là số thực dương. Biết rằng F(x) là một nguyên hàm của hàm số f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{x} ightbrack thỏa mãn F\left( \frac{1}{a} ight) = 0F(2018) = e^{2018}. Mệnh đề nào sau đây đúng?

    Ta có:

    f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{2} ightbrack= \left( e^{x} ight)'\ln(ax) +e^{x}\left\lbrack \ln(ax) ightbrack'= \left\{ e^{x}\left\lbrack \ln(ax)
ightbrack ight\}'

    \Rightarrow
\int_{\frac{1}{a}}^{2018}{f(x)}dx = F(2018) - F\left( \frac{1}{a}
ight)\Leftrightarrow \left. \ \left(
e^{x}\left\lbrack \ln(ax) ightbrack ight)
ight|_{\frac{1}{a}}^{2018} = e^{2018}

    \Leftrightarrow \ln(2018a) = 1
\Leftrightarrow a = \frac{e}{2018}

    Vậy a \in \left( \frac{1}{2018};1
ight).

  • Câu 7: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 8: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1; - 1;0),B(0;2;0),C(2;1;3). Xác định tọa độ điểm M thỏa mãn \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}?

    Ta có: \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
(1 - x) - (0 - x) + (2 - x) = 0 \\
( - 1 - y) - (2 - y) + (1 - y) = 0 \\
(0 - z) - (0 - z) + (3 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - 2 \\
z = 3 \\
\end{matrix} ight.

    \Rightarrow M(3; - 2;3)

  • Câu 10: Nhận biết

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 11: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tọa độ điểm B là:

    Hình vẽ minh họa

    Gọi B1 là điểm đối xứng với B qua (P).

    P_{ABC} = AB + BC + CA = AB + B_{1}C +
CA \geq AB + AB_{1}

    Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)

    AB + AB_{1} \geq AM + AB_{1} \geq AM +
AM_{1} (hằng số).

    Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).

    Từ đó suy ra tọa độ của điểm B là (0; 0; 1).

  • Câu 12: Vận dụng

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

  • Câu 13: Nhận biết

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 14: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 15: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 2y + z + 2017 = 0, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của (P)?

    Ta có phương trình mặt phẳng (P):2x - 2y
+ z + 2017 = 0 nên có một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n_{(P)}} = (2; - 2;1)

    Mặt khác \overrightarrow{n} = (4; -
4;2) cùng phương với \overrightarrow{n_{(P)}} = (2; - 2;1)

    Do đó \overrightarrow{n} = (4; -
4;2) là một vectơ pháp tuyến của (P):2x - 2y + z + 2017 = 0.

  • Câu 17: Nhận biết

    Cho (H) là miền hình phẳng giới hạn bởi các đường x = a;x = b;\left( {a < b} ight) và đồ thị của hai hàm số y = f\left( x ight);y = g\left( x ight). Gọi V là thể tích của vật thể tròn xoay khi quay (H) quanh Ox. Mệnh đề nào dưới đây đúng?

    Thể tích của khối tròn xoay cần tính là: V = \pi \int\limits_a^b {\left| {{f^2}\left( x ight) - {g^2}\left( x ight)} ight|dx}

  • Câu 18: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 19: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

  • Câu 20: Thông hiểu

    Tính tích phân I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{3}x}dx}?

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó:

    I = \int_{1}^{\frac{1}{2}}{\frac{-
1}{t^{3}}dt} = \int_{\frac{1}{2}}^{1}{\frac{1}{t^{3}}dt} = \left. \  -
\frac{1}{2t^{2}} ight|_{\frac{1}{2}}^{1} = - \frac{1}{2} + 2 =
\frac{3}{2}.

  • Câu 21: Nhận biết

    Trong không gian Oxyz cho ba vectơ \vec a,\,\,\vec b\vec c  khác \vec 0 . Câu nào sai?

     Theo điều kiện để hai vecto cùng phương, ta có:

    \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]=\vec 0  Suy ra 

    • \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]= 0

    sai vì thiếu dấu vecto.

  • Câu 22: Thông hiểu

    Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0;x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}?

    Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}

    Diện tích thiết diện được xác định theo hàm là: S(x) = 2x\sqrt{9 - x^{2}}

    ⇒ Thể tích vật thể tròn xoay: V =
\int_{0}^{3}{2x\sqrt{9 - x^{2}}}dx = 18

  • Câu 23: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 24: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 25: Thông hiểu

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 26: Thông hiểu

    Cho hàm số F(x) = \left( ax^{2} + bx - c
ight).e^{2x} là một nguyên hàm của hàm số f(x) = \left( 2018x^{2} - 3x + 1
ight)e^{2x} trên khoảng ( -
\infty; + \infty). Giá trị biểu thức a + 2b + 4c bằng:

    Ta có: F'(x) = (2ax + b)e^{2x} +
2\left( ax^{2} + bx - c ight)e^{2x}

    = \left\lbrack 2ax^{2} + (2b + 2a)x + b
- 2c ightbrack e^{2x}

    Theo bài ra ta có:

    \Rightarrow \left\lbrack 2ax^{2} + (2b +
2a)x + b - 2c ightbrack e^{2x} = \left( 2018x^{2} - 3x + 1
ight)e^{2x}

    \Rightarrow \left\{ \begin{matrix}2a = 2018 \\2(a + b) = - 3 \\b - 2c = 1 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1009 \\b = \dfrac{- 2021}{2} \\c = \dfrac{- 2023}{4} \\\end{matrix} ight.\  \Rightarrow a + 2b + 4c = - 3035

  • Câu 27: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 28: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 29: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x + 2y + 4z - 1 = 0;(\beta):2x + 3y - 2z+ 5 = 0. Chọn khẳng định đúng.

    Hai mặt phẳng (\alpha);(\beta) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(\alpha)}} =
(1;2;4),\overrightarrow{n_{(\beta)}} = (2;3; - 2)

    Ta có \overrightarrow{n_{(\alpha)}}.\overrightarrow{n_{(\beta)}}
= 1.2 + 2.3 + 4.( - 2) = 0

    (\alpha)\bot(\beta).

  • Câu 30: Vận dụng

    Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0),B(0;b;0),C(0;0;c), biết b,c > 0, phương trình mặt phẳng (P):y - z + 1 = 0. Tính M = b + c biết (ABC)\bot(P),d\left( O;(ABC) ight) =
\frac{1}{3}?

    Ta có (ABC):\frac{x}{1} + \frac{y}{b} +
\frac{z}{c} = 1

    \Rightarrow (ABC):bcx + cy + bz - bc =
0

    Hai mặt phẳng(ABC);(P) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{1}} =
(bc;c;b),\overrightarrow{n_{2}} = (0;1; - 1)

    (P)\bot(ABC) nên c - b = 0 \Leftrightarrow b = c.

    Theo giả thiết

    d\left( O;(ABC) ight) = \frac{1}{3}
\Leftrightarrow \frac{| - bc|}{\sqrt{bc^{2} + c^{2} + b^{2}}} =
\frac{1}{3}

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 3b^{2} = b\sqrt{b^{2} + 2}

    \Leftrightarrow 3b = \sqrt{b^{2} + 2}
\Leftrightarrow 9b^{2} = b^{2} + 2 \Leftrightarrow b =
\frac{1}{2} (vì b >
0).

    Suy ra c = 2. Vậy M = b + c = 1.

  • Câu 31: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 32: Thông hiểu

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi G là trọng tâm tam giác BCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Gọi M là trung điểm của CD suy ra \overrightarrow{BG} =
\frac{2}{3}\overrightarrow{BM}

    Ta có: \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG} = \overrightarrow{AB} +
\frac{2}{3}\overrightarrow{BM}

    = \overrightarrow{AB} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight) = \overrightarrow{AB} + \frac{1}{3}\left( \overrightarrow{BC} +
\overrightarrow{BD} ight)

    = \overrightarrow{AB} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \frac{1}{3}\left( \overrightarrow{AB}
+ \overrightarrow{AB} + \overrightarrow{AD} ight) = \frac{1}{3}\left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 33: Thông hiểu

    Một vật chuyển động chậm dần đều với vận tốc v\left( t ight) = 150 - 15t\left( {m/s} ight). Hỏi rằng trong 4s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

     Khi dừng hẳn: 150 - 15t = 0 \Rightarrow t = 10\left( s ight)

    Khi đó trong trước khi dừng hẳn vật di chuyển được:

    S = \int\limits_6^{10} {v\left( t ight)dt}  = \int\limits_6^{10} {\left( {150 - 5t} ight)dt}  = 120\left( m ight)

  • Câu 34: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 35: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 36: Thông hiểu

    Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 có tọa độ là?

    Ta có M \in Oy suy ra M(0;m;0).

    Theo đề bài ra ta có:

    d\left( M,(P) ight) = d\left( M,(Q)
ight)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0).

  • Câu 37: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 38: Thông hiểu

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa Oz và đi qua điểm P(3; - 4;7)?

    Mặt phẳng (P) có cặp véc-tơ chỉ phương là \overrightarrow{k} =
(0;0;1),\overrightarrow{OP} = (3; - 4;7)

    Suy ra mặt phẳng có (P) một véc-tơ pháp tuyến là \overrightarrow{n} =
\overrightarrow{k} \land \overrightarrow{OP} = ( - 4; - 3;0) = -
1(4;3;0).

    Mặt phẳng (P) đi qua O(0;0;0) có vectơ pháp tuyến (4; 3; 0).

    Vậy mặt phẳng (P) có phương trình tổng quát là 4x + 3y = 0.

  • Câu 39: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 40: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo