Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 2: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 3: Nhận biết

    Giá trị của \int_{0}^{3}{dx} bằng

    Ta có: \int_{0}^{3}{dx} = \left. \ x
ight|_{0}^{3} = 3 - 0 = 3

  • Câu 4: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 5: Thông hiểu

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 6: Thông hiểu

    Trong không gian Oxyz khoảng cách giữa hai mặt phẳng (P):x + 2y + 2z - 10
= 0(Q):x + 2y + 2z - 3 =
0 bằng:

    Dựa vào phương trình (P);(Q) có vectơ pháp tuyến là \overrightarrow{n} =
(1;2;2) nên (P)//(Q)

    Ta có: \left\{ \begin{matrix}\left| \overrightarrow{n} ight| = \sqrt{1^{2} + 2^{2} + 2^{2}} = 3 \\d\left( O;(P) ight) = \dfrac{10}{3} \\d\left( O;(Q) ight) = \dfrac{3}{3} = 1 \\\end{matrix} ight. suy ra d\left( (P);(Q) ight) = d\left( O;(P) ight) -
d\left( O;(Q) ight) = \frac{7}{3}

  • Câu 7: Vận dụng cao

    Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox,y'Oy,z'Oz lần lượt tại các điểm A,B,C sao cho OA = OB = 2OC eq 0?

    Đặt A(a;0;0),B(0;b;0),C(0;0;c) với abc eq 0.

    Phương trình mặt phẳng (P) đi qua ba điểm A, B, C có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Do OA = OB = 2OC nên ta có |a| = |b| = 2|c|.

    Suy ra a = ±2c, b = ±2c.

    Nếu a = 2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{9}{2}.

    Ta có (P): x + y + 2z − 9 = 0.

    Nếu a = 2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} -
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{5}{2}

    Ta có (P): x − y + 2z − 5 = 0.

    Nếu a = −2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{7}{2}

    Ta có (P): − x + y + 2z − 7 = 0.

    Nếu a = −2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{- 2c} + \frac{3}{c} = 1 \Rightarrow c =
\frac{3}{2}

    Ta có (P): − x − y + 2z − 3 = 0.

    Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.

  • Câu 8: Thông hiểu

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 9: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 10: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 11: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 12: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 13: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 14: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi M,\ \ N lần lượt là trung điểm của A'D'C'D' Tích vô hướng \overrightarrow{MN}.\overrightarrow{C'B} =
na^{2} (n là số thập phân). Giá trị của n bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)

    Đáp án: -0,5||- 0,5

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi M,\ \ N lần lượt là trung điểm của A'D'C'D' Tích vô hướng \overrightarrow{MN}.\overrightarrow{C'B} =
na^{2} (n là số thập phân). Giá trị của n bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)

    Đáp án: -0,5||- 0,5

    Hình vẽ minh họa

    MN//A'C' nên \left( \overrightarrow{MN},\
\overrightarrow{C'B} ight) = \left(
\overrightarrow{A'C'},\ \overrightarrow{C'B} ight) =
180^{0} - \widehat{A'C'B} = 120^{0}

    Ta có: MN = \frac{a\sqrt{2}}{2},\ C'B
= a\sqrt{2}

    \Rightarrow
\overrightarrow{MN}.\overrightarrow{C'B} =
|\overrightarrow{MN}|.\left| \overrightarrow{C'B} ight|.cos\left(
\overrightarrow{MN},\ \overrightarrow{C'B} ight)

    =
\frac{a\sqrt{2}}{2}.a\sqrt{2}.cos120^{0} = - 0,5a^{2}

    Vậy n = - 0,5.

  • Câu 15: Nhận biết

    Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y =  - {x^2} + 2x - 2, trục hoành và các đường thẳng x = 0;x = 3

    Diện tích S của hình phẳng trên là: S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}

    Ta có: - {x^2} + 2x - 2 \leqslant 0;\forall x \in \left[ {0;3} ight]

    => S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}  = \int\limits_0^3 {\left( {{x^2} - 2x + 2} ight)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 2x} ight)} ight|_0^3 = 6\left( {dvdt} ight)}

  • Câu 16: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(3;0;1). Khẳng định nào sau đây đúng?

    Vì tọa độ điểm A(3;0;1)x = 3;y = 0;z = 1 nên A \in (Oxz).

  • Câu 17: Nhận biết

    Gọi (D) là hình phẳng giới hạn bởi các đường y = \frac{x}{4};y = 0;x = 1;x
= 4. Tính thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox?

    Thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox

    V = \pi\int_{1}^{4}{\left( \frac{x}{4}
ight)^{2}dx} = \left. \ \frac{\pi x^{3}}{48} ight|_{1}^{4} =
\frac{21\pi}{16}.

  • Câu 18: Thông hiểu

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 19: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{1}{2x - 1};y
= 1 và đường thẳng x = 2

    Phương trình hoành độ giao điểm:

    \frac{1}{2x - 1} = 1 \Leftrightarrow\left\{ \begin{matrix}x eq \dfrac{1}{2} \\2x - 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{1}{2} \\x = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 1

    Khi đó:

    S = \int_{1}^{2}{\left| \frac{1}{2x - 1}
- 1 ight|dx} = \left| \int_{1}^{2}{\left( \frac{1}{2x - 1} - 1
ight)dx} ight|

    = \left| \left. \ \left( \frac{\ln|2x -1|}{2} - x ight) ight|_{1}^{2} ight| = \left| \frac{1}{2}\ln3 - 1ight| = 1 - \frac{1}{2}\ln3.

  • Câu 20: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 21: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 22: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 23: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 24: Vận dụng cao

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 25: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = ax + \frac{b}{x^{2}};(x eq
0), biết rằng F( - 1) = 1;F(1) =
4;f(1) = 0?

    Ta có: F(x) = \int_{}^{}{\left( ax +
\frac{b}{x^{2}} ight)dx = \frac{ax^{2}}{2} - \frac{b}{x} +
c}

    Theo bài ra ta có:

    F( - 1) = 1;F(1) = 4;f(1) =
0

    \Rightarrow \left\{ \begin{matrix}\dfrac{a}{2} + b + c = 1 \\\dfrac{a}{2} - b + c = 4 \\a + b = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = - \dfrac{3}{2} \\c = \dfrac{7}{4} \\\end{matrix} ight.. Vậy F(x) =
\frac{3x^{2}}{4} + \frac{3}{2x} + \frac{7}{4}.

  • Câu 26: Vận dụng

    Tốc độ tăng trưởng bán kính của thân cây được tính bằng công thức f\left( t ight) = 1,5 + \sin \left( {\frac{{\pi t}}{5}} ight), trong đó t là thời gian khảo sát (tính theo năm), là thời điểm đầu khảo sát, F(t) là bán kính của thân cây tại thời điểm tF’(t) = f(t). Tính bán kính của thân cây sau 20 năm kể từ lúc bắt đầu khảo sát, biết rằng bán kính cây tại thời điểm bắt đầu khảo sát là 5cm.

     Ta có: F\left( t ight) = \int {\left( {1,5 + \sin \frac{{\pi t}}{5}} ight)} dt = \left( {1,5t - \frac{5}{\pi }\cos \frac{{\pi t}}{5}} ight) + C

    Từ giả thiết ta có: F\left( 0 ight) = 5 \Rightarrow C = 5 + \frac{5}{\pi }

    => F\left( t ight) = 1,5t - \frac{5}{\pi }\cos \frac{{\pi t}}{5} + 5 + \frac{5}{\pi }

    Sau 5 năm bán kính thân cây bằng F\left( {20} ight) = 1,5.20 - \frac{5}{\pi }\cos \frac{{\pi .20}}{5} + 5 + \frac{5}{\pi } = 40\left( {cm} ight)

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Gọi D là hình phẳng giới hạn bởi đồ thị (C):y = f(x), trục hoành, hai đường thẳng x = a;x = b (như hình vẽ bên).

    Giả sử S_{D} là diện tích của hình phẳng D. Chọn công thức đúng?

    Dựa vào đồ thị hình vẽ ta thấy:

    + Đồ thị cắt trục hoành tại điểm O(0;0)

    + Trên đoạn \lbrack a;0brack, đồ thị ở phía dưới trục hoành nên \left|
f(x) ight| = - f(x)

    + Trên đoạn \lbrack 0;bbrack, đồ thị ở phía trên trục hoành nên \left|
f(x) ight| = f(x)

    Do đó: S_{D} = \int_{a}^{b}{\left| f(x)
ight|dx} = - \int_{a}^{0}{f(x)dx} + \int_{0}^{b}{f(x)dx}

  • Câu 28: Nhận biết

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 29: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3;1),B(0;1;2). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:

    Ta có: \overrightarrow{AB} = ( - 2; -
2;1) là vectơ pháp tuyến của mặt phẳng (P)

    Phương trình mặt phẳng (P) là:

    - 2(x - 2) - 2(y - 3) + (z - 1) =
0

    \Leftrightarrow (P):2x + 2y - z - 9 =
0

  • Câu 30: Thông hiểu

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} và các trục tọa độ.

    Đồ thị hàm số đã cho cắt hai trục Ox tại điểm A(−1; 0) và cắt trục Oy tại điểm B\left( 0; - \frac{1}{2}
ight), do đó diện tích cần tìm là

    S = \int_{- 1}^{0}{\left| \frac{x + 1}{x
- 2} ight|dx} = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = 3\ln\frac{3}{2} - 1

  • Câu 31: Vận dụng cao

    Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1, a b là các số hữu tỉ. Giá trị của a + b + c là:

     Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1. Giá trị của a + b + c là:

    Ta có:

    {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = \int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \int\limits_0^1 {tdt}  = 1 , với t = \tan x

    {I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {\frac{1}{3}{x^3} + \frac{2}{3}{x^{\frac{1}{3}}}} ight)} ight|_0^1

    \Rightarrow a = 1,b = \frac{1}{3},c = \frac{2}{3} \Rightarrow a + b + c = 2

  • Câu 32: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

  • Câu 33: Vận dụng

    Cho hai điểm A\left( {2, - 3,4} ight);\,\,\,\,B\left( { - 1,4,3} ight). Viết phương trình tổng quát của mặt phẳng (P) vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp O.MNE  bằng \frac{3}{14} đvtt.

     Vecto pháp tuyến của \left( P ight):\overrightarrow {AB}  = \left( { - 3,7, - 1} ight)

    Phương trình \left( P ight):3x - 7y + z + D = 0

    (P) cắt 3 trục tọa độ tại M\left( { - \frac{D}{3},0,0} ight);\,\,N\left( {0,\frac{D}{7},0} ight);\,\,E\left( {0,0, - D} ight)

    Thể tích hình chóp O.MNE là:

    V_{O.MNE} = \frac{1}{6}OM.ON.OE = \frac{1}{6}\left| {\frac{D}{3}.\frac{D}{7}.D} ight|

    \begin{array}{l} \Leftrightarrow \dfrac{{{{\left| D ight|}^3}}}{{126}} = \dfrac{3}{{14}} \Leftrightarrow {\left| D ight|^3} = 27 \Leftrightarrow D =  \pm 3\\ \Rightarrow \left( P ight):3x - 7y + z \pm 3 = 0\end{array}

  • Câu 34: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;4;1),\ B( - 1;1;3) và mặt phẳng (P):x - 3y + 2z - 5 = 0. Một mặt phẳng (Q) đi qua hai điểm A;B và vuông góc với (P) có dạng ax + by + cz - 11 = 0. Khẳng định nào sau đây là đúng?

    Vì (Q) vuông góc với (P) nên (Q) nhận véc-tơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - 3;2) làm véc-tơ chỉ phương.

    Mặt khác do (Q) đi qua hai điểm A, B nên nhận \overrightarrow{n_{AB}} = ( - 3; - 3;2) làm véc-tơ chỉ phương.

    Vậy (Q) có véc-tơ pháp tuyến là \overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{AB}} ightbrack =
(0;8;12)

    Vậy phương trình mặt phẳng (Q) là:

    0(x - 2) + 8(y - 4) + 12(z - 1) =
0

    \Leftrightarrow 2y + 3z - 11 =
0

    Vậy a + b + c = 5.

  • Câu 35: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O'), bán kính bằng a. Một hình nón có đỉnh là O' và có đáy là hình tròn (O). Biết góc giữa đường sinh của hình nón với mặt đáy bằng 60^0, tỉ số diện tích xung quanh của hình trụ và hình nón bằng

     Tỉ số diện tích xung quanh

    Gọi A là điểm thuộc đường tròn (O).

    Góc giữa O'A và mặt phẳng đáy là góc \widehat{O^\prime A O}.. Theo giả thiết ta có \widehat{O^\prime A O}={60}^\circ.

    Xét tam giác O^\prime OA vuông tại , ta có:

    \tan\widehat{O^\prime A O}=\frac{O^\prime O}{OA}\Rightarrow O^\prime O=a\cdot\tan{60}^\circ=a\sqrt3

    \cos\widehat{O^\prime A O}=\frac{OA}{O^\prime A}\Rightarrow O^\prime A=\frac{a}{\cos{60}^\circ}=2a

    Diện tích xung quanh của hình trụ là:

    S_{xq(T)}=2\pi\cdot OA\cdot O^\prime O=2\pi\cdot a\cdot a\sqrt3=2\pi a^2\sqrt3.

    Diện tích xung quanh của hình nón là:

    S_{xq(N)}=\pi\cdot OA\cdot O^\prime A=\pi\cdot a\cdot2a=2\pi a^2.

    \Rightarrow\dfrac{S_{xq(T)}}{S_{xq(N)}}=\dfrac{2\pi a^2\sqrt3}{2\pi a^2}=\sqrt3

  • Câu 36: Thông hiểu

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 37: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 38: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (P):y = 0 \Leftrightarrow 0x + 1y
+ 0z = 0 có vectơ pháp tuyến \overrightarrow{n_{1}} = (0;1;0).

    b) \overrightarrow{n_{2}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (Q):\sqrt{3}x - y - 2024 = 0
\Leftrightarrow \sqrt{3}x - y + 0z - 2024 = 0 = 0 có vectơ pháp tuyến \overrightarrow{n_{2}} = \left(
\sqrt{3}; - 1;0 ight).

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} =
0.\sqrt{3} + 1.( - 1) + 0.0 = - 1.

    d) Gọi \varphi là góc giữa hai mặt phẳng (P)(Q)

    \cos\varphi = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|}

    = \frac{| - 1|}{\sqrt{0^{2} + 1^{2} +
0^{2}}.\sqrt{\left( \sqrt{3} ight)^{2} + ( - 1)^{2} + 0^{2}}} =
\frac{1}{2} \Rightarrow \varphi = 60{^\circ}.

  • Câu 39: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(1;2;3) và có véc-tơ chỉ phương là \overrightarrow{u} = (2;4;6). Phương trình nào sau đây không phải là của đường thẳng \Delta?

    Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình \left\{ \begin{matrix}
x = 3 + 2t \\
y = 6 + 4t \\
z = 12 + 6t \\
\end{matrix} ight..

  • Câu 40: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo