Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho \int_{0}^{1}\frac{dx}{x^{2} + 3x + 2}
= aln2 + bln3 với a;b là các số hữu tỉ. Tính giá trị biểu thức T = a
+ b?

    Ta có:

    \int_{0}^{1}\frac{dx}{x^{2} + 3x + 2} =
\int_{0}^{1}\frac{dx}{(x + 1)(x + 2)} = \int_{0}^{1}{\left( \frac{1}{x +
1} - \frac{1}{x + 2} ight)dx}

    = \left. \ \ln\left( \frac{x + 1}{x + 2}ight) ight|_{0}^{1} = 2\ln2 - \ln3

    Suy ra a = 2;b = - 1 \Rightarrow a + b =
1.

  • Câu 2: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 4: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 5: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 6: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 7: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 8: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

  • Câu 9: Nhận biết

    Cho hàm số f(x) biết f(0) = 1, f'(x) liên tục trên \lbrack 0;3brack\int_{0}^{3}{f'(x)dx} = 9. Tính f(3)?

    Ta có:

    \int_{0}^{3}{f'(x)dx} = 9
\Leftrightarrow \left. \ f(x) ight|_{0}^{3} = 9 \Rightarrow f(3) -
f(0) = 9

    \Rightarrow f(3) = 9 + f(0) = 9 + 1 =
10

  • Câu 10: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 11: Nhận biết

    Đặt I = \int_{1}^{2}{(2mx +
1)dx} với m là tham số thực. Tìm giá trị của tham số m để I = 4?

    Ta có: I = \int_{1}^{2}{(2mx + 1)dx} =
\left. \ \left( mx^{2} + x ight) ight|_{1}^{2} = 3m + 1

    Do I = 4 \Leftrightarrow 3m + 1 = 4
\Leftrightarrow m = 1.

  • Câu 12: Vận dụng cao

    Cho hàm số y = f(x) dương và liên tục trên \lbrack 1;3brack thỏa mãn \max_{\lbrack 1;3brack}f(x) =
2;\min_{\lbrack 1;3brack}f(x) = \frac{1}{2} và biểu thức S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} đạt giá trị lớn nhất, khi đó \int_{1}^{3}{f(x)dx} bằng:

    Do \frac{1}{2} \leq f(x) \leq 2
\Rightarrow f(x) + \frac{1}{f(x)} \leq \frac{5}{2}

    \Rightarrow \int_{1}^{3}{\left\lbrack
f(x) + \frac{1}{f(x)} ightbrack dx} \leq 5

    \Rightarrow \int_{1}^{3}{f(x)dx} +
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5

    \Rightarrow
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5 -
\int_{1}^{3}{f(x)dx}

    \Rightarrow S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} \leq
5\int_{1}^{3}{f(x)dx} - \left\lbrack \int_{1}^{3}{f(x)dx}
ightbrack^{2}

    \leq \frac{25}{4} - \left\lbrack
\int_{1}^{3}{f(x)dx - \frac{5}{2}} ightbrack^{2} \leq
\frac{25}{4}

    Dấu bằng xảy ra khi và chỉ khi \int_{1}^{3}{f(x)dx} = \frac{5}{2}.

  • Câu 13: Vận dụng

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 14: Thông hiểu

    Cho A(1;2;3) và mặt phẳng (P):x + y + z - 2 = 0. Mặt phẳng (Q) song song với mặt phẳng (P)(Q)cách điểm A một khoảng bằng 3\sqrt{3}. Phương trình mặt phẳng (Q) là:

    (P)//(Q) \Rightarrow (Q):x + y + z + d
= 0;(d eq - 2)

    d\left( A;(Q) ight) = 3\sqrt{3}
\Leftrightarrow |6 + d| = 9 \Leftrightarrow \left\lbrack \begin{matrix}
d = 3 \\
d = - 15 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
\left( Q_{1} ight):x + y + z + 3 = 0\  \\
\left( Q_{2} ight):x + y + z - 15 = 0 \\
\end{matrix} ight..

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x + 2y + 4z - 1 = 0;(\beta):2x + 3y - 2z+ 5 = 0. Chọn khẳng định đúng.

    Hai mặt phẳng (\alpha);(\beta) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(\alpha)}} =
(1;2;4),\overrightarrow{n_{(\beta)}} = (2;3; - 2)

    Ta có \overrightarrow{n_{(\alpha)}}.\overrightarrow{n_{(\beta)}}
= 1.2 + 2.3 + 4.( - 2) = 0

    (\alpha)\bot(\beta).

  • Câu 16: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi Parabol y = \frac{x^{2}}{12} và đường cong có phương trình y = \sqrt{4 -
\frac{x^{2}}{4}} như hình vẽ:

    Diện tích của hình phẳng (H) bằng:

    Phương trình hoành độ giao điểm:

    \frac{x^{2}}{12} = \sqrt{4 -
\frac{x^{2}}{4}} \Leftrightarrow x = \pm 2\sqrt{3}

    Diện tích hình phẳng (H) bằng:

    S = 2\int_{0}^{2\sqrt{3}}{\left\lbrack
\sqrt{4 - \frac{x^{2}}{4}} - \frac{x^{2}}{12} ightbrack
dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} - \frac{1}{6}\int_{0}^{2\sqrt{3}}{x^{2}dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} + \frac{4\sqrt{3}}{3}

    Đặt x = 4\sin t

    \Rightarrow\int_{0}^{2\sqrt{3}}{\sqrt{16 - x^{2}}dx} =\int_{0}^{\frac{\pi}{3}}{16\cos^{2}tdt} = \frac{8\pi}{3} +2\sqrt{3}

    \Rightarrow S = \frac{8\pi +
2\sqrt{3}}{3}

  • Câu 17: Thông hiểu

    Cho I =\int_{0}^{\frac{\pi}{4}}{\frac{\ln\left( \sin x + 2\cos xight)}{\cos^{2}x}dx} = a\ln3 + b\ln2 + c\pi với a;b;c là các số hữu tỉ. Giá trị của biểu thức S = a.b.c bằng

    Đặt \left\{ \begin{matrix}u = \ln\left( \sin x + 2\cos x ight) \\dv = \dfrac{dx}{\cos x} \\\end{matrix} ight.\Rightarrow \left\{ \begin{matrix}du = \dfrac{\cos x - 2\sin x}{\sin x + 2\cos x} \\v = \tan x + 2 = \dfrac{\sin x + 2\cos x}{\cos x} \\\end{matrix} ight. khi đó:

    I = \left. \ \left( \tan x + 2ight)\ln\left( \sin x + 2\cos x ight) ight|_{0}^{\frac{\pi}{4}} -\int_{0}^{\frac{\pi}{4}}{\left( 1 - 2\frac{\sin x}{\cos x}ight)dx}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\left. \ \left\lbrack x + 2\ln\left( \cos x ight) ightbrackight|_{0}^{\frac{\pi}{4}}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\frac{\pi}{4} - 2\ln\frac{\sqrt{2}}{2}

    I = 3\ln3 - \dfrac{5}{2}\ln2 -\dfrac{1}{4}\pi \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - \frac{5}{2} \\c = - \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{15}{8}

  • Câu 18: Thông hiểu

    Một vật chuyển động chậm dần đều với vận tốc v\left( t ight) = 150 - 15t\left( {m/s} ight). Hỏi rằng trong 4s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

     Khi dừng hẳn: 150 - 15t = 0 \Rightarrow t = 10\left( s ight)

    Khi đó trong trước khi dừng hẳn vật di chuyển được:

    S = \int\limits_6^{10} {v\left( t ight)dt}  = \int\limits_6^{10} {\left( {150 - 5t} ight)dt}  = 120\left( m ight)

  • Câu 19: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 20: Thông hiểu

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng

    Trong không gian Oxyz, cho vectơ \vec a hợp với \overrightarrow {Ox} góc 60^0, hợp với \overrightarrow {Oz} góc 60^0 . Tính góc hợp bởi \vec a\overrightarrow {Oy}.

    Gọi \alpha  = {60^0},\beta  và  \gamma  = {60^0} lần lượt là các góc hợp bởi \vec a với ba trục \overrightarrow {Ox} ,\overrightarrow {Oy} ,\overrightarrow {Oz}. Đặt \left| {\overrightarrow a } ight| = a

    Ta có:

    \overrightarrow a  = \left( {a\cos {{60}^0};a\cos \beta ;a\cos {{60}^0}} ight)

    \Rightarrow {\left| {\overrightarrow a } ight|^2} = {a^2} = {a^2}\left( {{{\cos }^2}{{60}^0} + {{\cos }^2}\beta  + {{\cos }^2}{{60}^0}} ight)

       \Leftrightarrow \dfrac{1}{4} + {\cos ^2}\beta  + \dfrac{1}{4} = 1

       \Leftrightarrow {\cos ^2}\beta  = \dfrac{1}{2}

       \Rightarrow \cos \beta  =  \pm \frac{{\sqrt 2 }}{2} \Rightarrow \beta  = {45^0} \vee \beta  = {135^0}

  • Câu 22: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 23: Nhận biết

    Trong không gian Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA?

    Ta có: \overrightarrow{OA} = (2;2;1)
\Rightarrow OA = \sqrt{2^{2} + 2^{2} + 1^{2}} = 3

  • Câu 24: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 25: Thông hiểu

    Cho hàm số y = \cos4x có một nguyên hàm là F(x); F\left( \frac{\pi}{4} ight) = 2. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\cos4x}dx =\frac{1}{4}\sin4x + C

    F\left( \frac{\pi}{4} ight) = 2
\Rightarrow C = 2

    Ta được F(x) = \frac{1}{4}\sin4x +2

    \Rightarrow \int_{}^{}{F(x)dx} =\int_{}^{}{\left( \frac{1}{4}\sin4x + 2 ight)dx}

    = - \frac{\cos4x}{16} + 2x +C

  • Câu 26: Vận dụng cao

    Cho ba mặt phẳng \left( P ight):2x + 2y - 6z + 5 = 0;\,\,\,\,\left( Q ight):3x + 4y + 2z - 6 = 0(R) qua hai điểm A\left( {1,3, - 1} ight);\,\,\,\,B\left( { - 2,4, - 1} ight) và vuông góc với (R)  . Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)

    Theo đề bài ta có \left( R ight) \bot \left( P ight) \Rightarrow Một vecto chỉ phương của (R) là: \overrightarrow {{n_P}}  = \left( {2,2, - 6} ight) \Rightarrow \overrightarrow a  = \left( { - 1, - 1,3} ight)

    => A đúng

    Vecto chỉ phương thứ hai của (R) là: \overrightarrow b  = \overrightarrow {AB}  = \left( { - 3,1,1} ight)

    Một vecto pháp tuyến của (R) là: \overrightarrow {{n_R}}  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - 4\left( {1,2,1} ight)

    \Rightarrow \overrightarrow n  = 4\left( {1,2,1} ight)

    => B đúng.

    Vecto chỉ phương của (D) là: \overrightarrow d  = 2\left( {14, - 11,1} ight)

    Ta có: \frac{1}{{14}} e  - \frac{2}{{11}} e \frac{1}{1},nên (R) không vuông góc với (D).

  • Câu 27: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

  • Câu 28: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 29: Nhận biết

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 30: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O'), bán kính bằng a. Một hình nón có đỉnh là O' và có đáy là hình tròn (O). Biết góc giữa đường sinh của hình nón với mặt đáy bằng 60^0, tỉ số diện tích xung quanh của hình trụ và hình nón bằng

     Tỉ số diện tích xung quanh

    Gọi A là điểm thuộc đường tròn (O).

    Góc giữa O'A và mặt phẳng đáy là góc \widehat{O^\prime A O}.. Theo giả thiết ta có \widehat{O^\prime A O}={60}^\circ.

    Xét tam giác O^\prime OA vuông tại , ta có:

    \tan\widehat{O^\prime A O}=\frac{O^\prime O}{OA}\Rightarrow O^\prime O=a\cdot\tan{60}^\circ=a\sqrt3

    \cos\widehat{O^\prime A O}=\frac{OA}{O^\prime A}\Rightarrow O^\prime A=\frac{a}{\cos{60}^\circ}=2a

    Diện tích xung quanh của hình trụ là:

    S_{xq(T)}=2\pi\cdot OA\cdot O^\prime O=2\pi\cdot a\cdot a\sqrt3=2\pi a^2\sqrt3.

    Diện tích xung quanh của hình nón là:

    S_{xq(N)}=\pi\cdot OA\cdot O^\prime A=\pi\cdot a\cdot2a=2\pi a^2.

    \Rightarrow\dfrac{S_{xq(T)}}{S_{xq(N)}}=\dfrac{2\pi a^2\sqrt3}{2\pi a^2}=\sqrt3

  • Câu 31: Thông hiểu

    Trong hệ tọa độ Oxyz, cho hai điểm A(2; - 3; - 1),B(4; - 1;2). Phương trình mặt phẳng trung trực của đoạn thẳng AB

    Gọi (\alpha) là mặt phẳng trung trực của AB.

    Tọa độ trung điểm của ABI\left( 3; - 2;\frac{1}{2}
ight)

    Vectơ pháp tuyến của (\alpha)\overrightarrow{n} = \overrightarrow{AB} =
(2;2;3)

    Phương trình mặt phẳng

    \begin{matrix}(\alpha):2(x - 3) + 2(y + 2) + 3\left( z - \dfrac{1}{2} ight) = 0 \hfill \\\Leftrightarrow 4x + 4y + 6z - 7 = 0 \hfill\\\end{matrix}

  • Câu 32: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm của AD. Tính tích vô hướng \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD_{1}} =
\overrightarrow{BA} + \overrightarrow{AD_{1}} = - \overrightarrow{AB} +
\overrightarrow{AA_{1}} + \overrightarrow{AD}

    Ta có: \overrightarrow{B_{1}M} =
\overrightarrow{B_{1}A} + \overrightarrow{AM} hay \overrightarrow{B_{1}M} = - \overrightarrow{AB} -
\overrightarrow{AA_{1}} + \frac{1}{2}\overrightarrow{AD}

    Do đó \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
AB^{2} - A_{1}A^{2} + \frac{1}{2}AD^{2} = \frac{a^{2}}{2}

  • Câu 33: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 34: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 35: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;1;0), \overrightarrow{b} = (2; - 1; - 2)\overrightarrow{c} = ( - 3;0;2). Chọn mệnh đề đúng?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} là mệnh đề đúng.

  • Câu 36: Vận dụng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 37: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):2x - y + 2z - 3 = 0(Q):x + my + z - 1 = 0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2; - 1;2) \\
\overrightarrow{n_{(Q)}} = (1;m;1) \\
\end{matrix} ight.

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 2 - m + 2 = 0 \Leftrightarrow m = 4

  • Câu 38: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 39: Vận dụng cao

    Cho a, b là các số hữu tỉ thỏa mãn

    \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = a\left( {x + 2} ight)\sqrt {x + 2}  + b\left( {x + 1} ight)\sqrt {x + 1}  + C}

    Tính giá trị biểu thức M = a + b.

     I = \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = \int {\frac{{\sqrt {x + 2}  - \sqrt {x + 1} }}{{\left( {x + 2} ight) - \left( {x + 1} ight)}}dx}  = \int {\left( {\sqrt {x + 2}  - \sqrt {x + 1} } ight)dx} }

    => I = \frac{2}{3}.\left( {x + 2} ight)\sqrt {x + 2}  - \frac{2}{3}\left( {x + 1} ight)\sqrt {x + 1}  + C

    => \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{2}{3}} \\   {b = \dfrac{{ - 2}}{3}} \end{array}} ight. \Rightarrow M = a + b = 0

  • Câu 40: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1};x = 1 và trục hoành?

    Phương trình hoành độ giao điểm

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó diện tích hình phẳng theo yêu cầu bài toán là:

    S = \int_{0}^{1}{x\sqrt{x^{2} + 1}dx} =
\frac{1}{2}\int_{0}^{1}{\sqrt{x^{2} + 1}d\left( x^{2} + 1
ight)}

    = \frac{1}{2}\left. \ \left( x^{2} + 1
ight)^{\frac{3}{2}} ight|_{0}^{1} = \frac{2\sqrt{2} -
1}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo