Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 2: Vận dụng cao

    Cho tích phân I = \int\limits_1^e {\left( {x + \frac{1}{x}} ight)\ln xdx}  = a{e^2} + b, a và b là các số hữu tỉ. Giá trị của 2a - 3b là:

     Ta có:

    \begin{matrix}  I = \int\limits_1^e {\left( {x + \dfrac{1}{x}} ight)\ln xdx}  \hfill \\ = \int\limits_1^e {x\ln xdx}  + \int\limits_1^e {\dfrac{1}{x}\ln xdx}  \hfill \\ \end{matrix}

    = \left. {\left( {\frac{{{x^2}}}{2}\ln x} ight)} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx}  + \int\limits_0^1 {dt}  = \frac{{{e^2}}}{4} + \frac{5}{4}, với t = \ln x

    \begin{matrix}   \Rightarrow a = \dfrac{1}{4},b = \dfrac{5}{4} \hfill \\   \Rightarrow 2a - 3b =  - \dfrac{{13}}{4} \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Cho hai điểm A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) và mặt phẳng \left( \beta  ight):3x - 2y + z + 9 = 0. Mặt phẳng (\alpha) chứa hai điểm A,B và vuông góc với mặt phẳng (\beta) có phương trình:

    Theo đề bài, ta có: A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) ; \left( \beta  ight):3x - 2y + z + 9 = 0.

    Suy ra \overrightarrow {AB}  = \left( {3, - 5, - 2} ight); (\beta) có vectơ pháp tuyến \overrightarrow n  = \left( {3, - 2,1} ight)

    Ta có \left[ {\overrightarrow {AB} ,\overrightarrow n } ight] = \left( { - 9, - 9,9} ight) cùng phương với vectơ \overrightarrow p  = \left( {1,1, - 1} ight)

    Chọn \vec{p} làm 1 vectơ pháp tuyến cho mặt phẳng (\alpha) .

    Phương trình mặt phẳng (\alpha) có dạng: x + y - z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 2 + 3 + 1 + D = 0 \Leftrightarrow D =  - 2

    Mặt phẳng :(\alpha): x + y - z - 2 = 0

  • Câu 4: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 5: Nhận biết

    Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

    Mặt phẳng (Oxz) đi qua điểm O(0;0;0) và nhận \overrightarrow{j} = (0;1;0) là một véc-tơ pháp tuyến nên phương trình của mặt phẳng (Oxz)(Oxz).

  • Câu 6: Thông hiểu

    Cho hình vẽ:

    Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số f(x);g(x);h(x) như hình bên, bằng kết quả nào sau đây?

    Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:

    S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx} + \int_{b}^{c}{\left| g(x) - h(x) ight|dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{b}^{c}{\left\lbrack h(x) - g(x) ightbrack
dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} - \int_{b}^{c}{\left\lbrack g(x) - h(x) ightbrack
dx}.

  • Câu 7: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 8: Nhận biết

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1; - 1; - 3)B( - 2;2;1). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = ( - 2 - 1;2 + 1;1
+ 3) = ( - 3;3;4)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 3;3;4).

  • Câu 10: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 11: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = \frac{\sqrt{1 + \ln x}}{x};y = 0;x = 1;x =
eS = a\sqrt{2} + b. Tính giá trị a^{2} + b^{2}?

    Diện tích hình phẳng cần tìm là:

    S = \int_{1}^{e}{\left| \frac{\sqrt{1 +
\ln x}}{x} ight|dx} = \int_{1}^{e}{\frac{\sqrt{1 + \ln
x}}{x}dx}

    Đặt \sqrt{1 + \ln x} = t \Rightarrow 1 +
\ln x = t^{2} \Rightarrow \frac{dx}{x} = 2tdt

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = \sqrt{2} \\
\end{matrix} ight.. Khi đó:

    S = \int_{1}^{\sqrt{2}}{2t^{2}dt} =
\frac{4}{3}.\sqrt{2} - \frac{2}{3} hay a = \frac{4}{3};b = \frac{2}{3}

    \Rightarrow a^{2} + b^{2} =
\frac{20}{9}

  • Câu 12: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 13: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 14: Nhận biết

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức có giá trị P = 2a - 1 là:

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức P = 2a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_0^1 {\dfrac{x}{{x + 1}}} dx \hfill \\   = \int\limits_0^1 {\left( {1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 \hfill \\ = 1 - \ln 2 \hfill \\   \Rightarrow a = 1 - \ln 2 \hfill \\   \Rightarrow P = 2a - 1 = 1 - 2\ln 2 \hfill \\ \end{matrix}

     

  • Câu 15: Thông hiểu

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 16: Thông hiểu

    Tìm a + b biết rằng \int_{0}^{1}{x\sqrt[3]{1 - x}dx} =
\frac{a}{b} là phân số tối giản?

    Ta có: t = \sqrt[3]{1 - x} \Rightarrow
t^{3} = 1 - x \Rightarrow 3t^{2}dt = - dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight. khi đó suy ra

    \Rightarrow \int_{0}^{1}{x\sqrt[3]{1 -
x}dx} = 3\int_{0}^{1}{\left( 1 - t^{3} ight)t^{3}dt}

    = \left. \ 3\left( \frac{t^{4}}{4} -
\frac{t^{7}}{7} ight) ight|_{0}^{1} = \frac{9}{28}

  • Câu 17: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 18: Nhận biết

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 19: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 20: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 21: Nhận biết

    Tích phân I = \int\limits_0^1 {\frac{1}{{x + 1}}dx} có giá trị là:

     Tích phân I = \int\limits_0^1 {\frac{1}{{x + 1}}dx} có giá trị là:

    I = \int\limits_0^1 {\frac{1}{{x + 1}}dx}  = \left. {\left( {\ln \left| {x + 1} ight|} ight)} ight|_0^1 = \ln 2

    Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên

  • Câu 22: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng song song với mặt phẳng (\beta):2x - 4y + 4z + 3 = 0 và cách điểm A(2; - 3;4) một khoảng k = 3. Phương trình mặt phẳng (\alpha) là:

    (\alpha)//(\beta) suy ra (\alpha):2x - 4y + 4z + m = 0;(m eq
3)

    Theo giả thiết ta có: d\left( A;(\alpha)
ight) = k = 3

    \Leftrightarrow \frac{|32 + m|}{6} = 3
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 14 \\
m = - 50 \\
\end{matrix} ight.

    Vậy x - 2y + 2z - 25 = 0 hoặc x - 2y + 2z - 7 = 0.

  • Câu 23: Thông hiểu

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Ta có: F(x) là một nguyên hàm của hàm số f(x)e^{2x} nên

    F'(x) = f(x)e^{2x} \Leftrightarrow
\left\lbrack (x - 1)e^{x} ightbrack' = f(x)e^{2x}

    Hay f(x)e^{2x} = e^{x} + (x - 1)e^{x} =
xe^{x}

    Xét I =
\int_{}^{}{f'(x)e^{2x}}dx, đặt \left\{ \begin{matrix}
u = e^{2x} \\
dv = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2e^{2x}dx \\
v = f(x) \\
\end{matrix} ight.

    Khi đó

    I = f(x)e^{2x} -
\int_{}^{}{2f(x)e^{2x}}dx

    = xe^{x} - 2(x - 1)e^{x} + C = (2 -
x)e^{x} + C

  • Câu 24: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 25: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A( - 2;3;1),B(5;6;2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số \frac{AM}{BM}?

    Ta có: M \in (Oxz) \Rightarrow
M(x;0;z)

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (7;3;1) \Rightarrow AB = \sqrt{59} \\
\overrightarrow{AM} = (x + 2; - 3;z - 1) \\
\end{matrix} ight. và ba điểm A;B;M thẳng hàng

    \overrightarrow{AM} =
k.\overrightarrow{AB};\left( k\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x + 2 = 7k \\
- 3 = 3k \\
z - 1 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 9 \\
k = - 1 \\
z = 0 \\
\end{matrix} ight.

    \Rightarrow M( - 9;0;0) \Rightarrow
\left\{ \begin{matrix}
\overrightarrow{BM} = ( - 14; - 6; - 2) \\
\overrightarrow{AM} = ( - 7; - 3; - 1) \\
\end{matrix} ight.\  \Rightarrow BM = 2AB

    Vậy đáp án đúng là \frac{AM}{BM} =
\frac{1}{2}.

  • Câu 26: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho  A(1;2; - 1);\overrightarrow{AB} =(1;3;1), khi đó tọa độ điểm B là:

    Gọi B(x;y;z) ta có:

    A(1;2; - 1);\overrightarrow{AB} =(1;3;1) khi đó \left\{\begin{matrix}x - 1 = 1 \\y - 2 = 3 \\z + 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = 5 \\z = 0 \\\end{matrix} ight. nên tọa độ điểm cần tìm là B(2;5;0).

  • Câu 27: Nhận biết

    Trong không gian, cho hai vectơ \overrightarrow{AB}\overrightarrow{BC}. Vectơ \overrightarrow{AC} bằng

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 28: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Nhận biết

    Cho (H) là miền hình phẳng giới hạn bởi các đường x = a;x = b;\left( {a < b} ight) và đồ thị của hai hàm số y = f\left( x ight);y = g\left( x ight). Gọi V là thể tích của vật thể tròn xoay khi quay (H) quanh Ox. Mệnh đề nào dưới đây đúng?

    Thể tích của khối tròn xoay cần tính là: V = \pi \int\limits_a^b {\left| {{f^2}\left( x ight) - {g^2}\left( x ight)} ight|dx}

  • Câu 30: Thông hiểu

    Cho tích phân I = \int_{0}^{4}{f(x)dx} =
32. Tính tích phân H =
\int_{0}^{2}{f(2x)dx}?

    Đặt t = 2x \Rightarrow dt = 2dx
\Rightarrow dx = \frac{dt}{2}

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = 2 \Rightarrow t = 4 \\
\end{matrix} ight.

    Khi đó H =
\frac{1}{2}\int_{0}^{4}{f(t)dt} = \frac{1}{2}.32 = 16

  • Câu 31: Thông hiểu

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 32: Vận dụng

    Tích phân I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3}. Giá trị của a là:

    Ta có:

    I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = a\int\limits_1^2 {\frac{x}{{{x^2} + 3x + 2}}} dx + \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx

    Xét

    \begin{matrix}  {I_1} = a\int\limits_1^2 {\dfrac{x}{{{x^2} + 3x + 2}}} dx \hfill \\ = a\int\limits_1^2 {\left( {\dfrac{2}{{x + 2}} - \dfrac{1}{{x + 1}}} ight)} dx \hfill \\ = a\left. {\left( {2\ln \left| {x + 2} ight| - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = a\left( {2\ln 4 - 3\ln 3 + \ln 2} ight) \hfill \\ = 2a\ln \dfrac{4}{3} + a\ln \dfrac{2}{3} \hfill \\ \end{matrix}

    Xét {I_2} = \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx = \left. {\left( {\ln \left| {x + 1} ight| - \ln \left| {x + 2} ight|} ight)} ight|_1^2 =  - \ln \frac{4}{3} - \ln \frac{2}{3}

    \Rightarrow I = {I_1} + I{}_2 = \left( {2a - 1} ight)\ln \frac{4}{3} + \left( {a - 1} ight)\ln \frac{2}{3}

    Theo đề bài: I = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3} \Rightarrow a = \frac{4}{5}

  • Câu 33: Thông hiểu

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} và các trục tọa độ.

    Đồ thị hàm số đã cho cắt hai trục Ox tại điểm A(−1; 0) và cắt trục Oy tại điểm B\left( 0; - \frac{1}{2}
ight), do đó diện tích cần tìm là

    S = \int_{- 1}^{0}{\left| \frac{x + 1}{x
- 2} ight|dx} = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = 3\ln\frac{3}{2} - 1

  • Câu 34: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 35: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 36: Thông hiểu

    Biết rằng f'(x) = x\sqrt{1 +
x^{2}}3f(0) = 4. Tìm hàm số f(x)?

    Ta có: f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{x\sqrt{1 + x^{2}}dx}

    = \frac{1}{2}\int_{}^{}{\left( 1 + x^{2}
ight)^{\frac{1}{2}}d\left( 1 + x^{2} ight)} = \frac{\left( \sqrt{1 +
x^{2}} ight)^{3}}{3} + C

    3f(0) = 4 \Leftrightarrow
3\frac{\left( \sqrt{1 + 0^{2}} ight)^{3}}{3} + 3C = 4 \Leftrightarrow
C = 1

    Vậy f(x) = \frac{\left( \sqrt{1 + x^{2}}
ight)^{3}}{3} + 1

  • Câu 37: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + x(m/s). Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được 50m. Tìm x?

    Khi dừng hẳn v(t) = - 4t + x = 0
\Rightarrow t = \frac{x}{4}(s)

    Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:S = \int_{0}^{\frac{x}{4}}{v(t)dt} =
\int_{0}^{\frac{x}{4}}{( - 4t + x)dt}

    = \left. \ \left( - 2t^{2} + xt ight)
ight|_{0}^{\frac{x}{4}} = \frac{- x^{2}}{8} + \frac{x^{2}}{4} =
50

    \Leftrightarrow x^{2} = 400
\Leftrightarrow x = 20(m/s)

  • Câu 38: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 40: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AM\bot BC \\
OA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot OM

    Ta có: \left\{ \begin{matrix}
BM\bot AC \\
OB\bot AC \\
\end{matrix} ight.\  \Rightarrow AC\bot OM

    Vậy OM\bot(ABC) nên (P) nhận \overrightarrow{OM} = (1;2;3) làm vectơ pháp tuyến.

    Do (P) đi qua M(1;2;3) nên (P):x - 1 + 2(y - 2) + 3(z - 3) = 0

    \Leftrightarrow x + 2y + 3z - 14 =
0

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo