Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 2: Nhận biết

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 3: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 4: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 5: Thông hiểu

    Hàm số F(x) là một nguyên hàm của hàm số y = \frac{1}{x} trên ( - \infty;0) thỏa mãn F( - 2) = 0. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\frac{1}{x}dx} =
\ln|x| + C = \ln( - x) + C;\forall x \in ( - \infty;0)

    Lại có F( - 2) = 0 \Leftrightarrow \ln(2)
+ C = 0 \Rightarrow C = - ln2

    Do đó F(x) = \ln( - x) - ln2 = \ln\left(
- \frac{x}{2} ight)

    Vậy F(x) = \ln\left( - \frac{x}{2}
ight);\forall x \in ( - \infty;0).

  • Câu 6: Thông hiểu

    Một ô tô đang chạy với vận tốc 10\
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 2t +
10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

    Khi xe dừng hẳn thì vận tốc bằng 0.

    Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là - 2t + 10 = 0 \Leftrightarrow t = 5(\
s)

    Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là

    S_{2} = \int_{0}^{5}{( - 2t + 10)}dt =
\left. \ \left( - t^{2} + 10t ight) ight|_{0}^{5} = 25m

    Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc 10\ m/s và 5 s ô tô chuyển động chậm dần đều.

    Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là S_{1} = 3.10 = 30\ m

    Vậy trong 8 giây cuối ô tô đi được quang đường S = S_{1} + S_{2} = 30 + 25 = 55m

  • Câu 7: Nhận biết

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 8: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 9: Vận dụng

    Tích phân I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3}. Giá trị của a là:

    Ta có:

    I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = a\int\limits_1^2 {\frac{x}{{{x^2} + 3x + 2}}} dx + \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx

    Xét

    \begin{matrix}  {I_1} = a\int\limits_1^2 {\dfrac{x}{{{x^2} + 3x + 2}}} dx \hfill \\ = a\int\limits_1^2 {\left( {\dfrac{2}{{x + 2}} - \dfrac{1}{{x + 1}}} ight)} dx \hfill \\ = a\left. {\left( {2\ln \left| {x + 2} ight| - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = a\left( {2\ln 4 - 3\ln 3 + \ln 2} ight) \hfill \\ = 2a\ln \dfrac{4}{3} + a\ln \dfrac{2}{3} \hfill \\ \end{matrix}

    Xét {I_2} = \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx = \left. {\left( {\ln \left| {x + 1} ight| - \ln \left| {x + 2} ight|} ight)} ight|_1^2 =  - \ln \frac{4}{3} - \ln \frac{2}{3}

    \Rightarrow I = {I_1} + I{}_2 = \left( {2a - 1} ight)\ln \frac{4}{3} + \left( {a - 1} ight)\ln \frac{2}{3}

    Theo đề bài: I = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3} \Rightarrow a = \frac{4}{5}

  • Câu 10: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 11: Vận dụng cao

    Biết rằng {I_1} = \int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{1 + \cos 2x}}dx}  = aI = \int\limits_{ - 1}^0 {\sqrt[3]{{x + 2}}} dx = b\sqrt[3]{2} - \frac{3}{4}, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:

     Ta có:

    {I_1} = \int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{1 + \cos 2x}}dx}  = \frac{1}{2}\int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \frac{1}{2}\int\limits_{ - 1}^0 {tdt}  = \frac{1}{2}, với t = \tan x

    I = \int\limits_{ - 1}^0 {\sqrt[3]{{x + 2}}} dx = \frac{3}{4}\left. {\left[ {\sqrt[3]{{{{\left( {x + 2} ight)}^4}}}} ight]} ight|_{ - 1}^0 = \frac{3}{2}\sqrt[3]{2} - \frac{3}{4}

    \Rightarrow a = \frac{1}{2},b = \frac{3}{2} \Rightarrow \frac{a}{b} = \frac{1}{3}

  • Câu 12: Thông hiểu

    Chọn mệnh đề sai. Trong không gian, cho hình hộp ABCD\ .A'B'C'D'.

    Hình vẽ minh họa

    Đáp án \overrightarrow{AC'}\  = \
\overrightarrow{AB}\ \  + \ \ \overrightarrow{AD}\  + \ \
\overrightarrow{AA'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{BD}\  = \
\overrightarrow{BA}\ \  + \ \ \overrightarrow{BC}\ \  + \
\overrightarrow{BB'} sai

    Đáp án \overrightarrow{CA'}\  = \
\overrightarrow{CB}\ \  + \ \ \overrightarrow{CD}\  + \ \
\overrightarrow{CC'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{C'A'}\  =
\ \overrightarrow{C'B'}\ \  + \ \ \overrightarrow{C'D'} đúng theo quy tắc hình bình hành

  • Câu 13: Thông hiểu

    Cho hàm y = f(x) có đạo hàm liên tục trên \lbrack 1;3brack. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và đường thẳng y = x (phần gạch chéo trong hình vẽ):

    Diện tích hình (H) bằng:

    Diện tích phần gạch chéo là:

    S = \int_{1}^{2}{\left\lbrack f'(x)
- x ightbrack dx} - \int_{2}^{3}{\left\lbrack f'(x) - x
ightbrack dx}

    = \left. \ \left\lbrack f(x) -
\frac{x^{2}}{2} ightbrack ight|_{1}^{2} - \left. \ \left\lbrack
f(x) - \frac{x^{2}}{2} ightbrack ight|_{2}^{3}

    = 2f(2) - f(1) - f(3) + 1.

  • Câu 14: Vận dụng

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 15: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 16: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \left( x^{2} - 1 ight)e^{x^{3} -
3x}, biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành?

    Ta có:

    F(x) = \int_{}^{}{\left( x^{2} - 1
ight)e^{x^{3} - 3x}dx} = \frac{1}{3}\int_{}^{}{e^{x^{3} - 3x}d\left(
x^{3} - 3x ight)}

    = \frac{1}{3}e^{x^{3} - 3x} +
C

    F'(x) = f(x) = \left( x^{2} - 1
ight)e^{x^{3} - 3x} = 0 \Leftrightarrow x = \pm 1

    F''(x) = 2xe^{x^{3} - 3x} +
\left( x^{2} - 1 ight)e^{x^{3} - 3x};F''(1) >
0;F''(1) < 0

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(1;0)

    Suy ra F(1) = 0 \Leftrightarrow
\frac{1}{3}e^{- 2} + C = 0 \Rightarrow C = -
\frac{1}{3e^{2}}

    Do đó F(x) = \frac{e^{x^{3} - 3x + 2} -
1}{3e^{2}}

  • Câu 17: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 18: Thông hiểu

    Biết rằng F(x) = \left( ax^{2} + bx + c
ight)e^{- x} là một nguyên hàm của hàm số f(x) = \left( 2x^{2} - 5x + 2 ight)e^{-
x} trên \mathbb{R}. Giá trị của biểu thức f\left( F(0)
ight) bằng:

    Ta có: \left( F(x) ight)' =
\left\lbrack \left( ax^{2} + bx + c ight)e^{- x}
ightbrack'

    = \left\lbrack - ax^{2} + (2a - b)x + b
- c ightbrack e^{- x}

    = \left( 2x^{2} - 5x + 2 ight)e^{-
x} suy ra \left\{ \begin{matrix}a = - 2 \\2a - b = - 5 \\b - c = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 2 \\b = 1 \\c = - 1 \\\end{matrix} ight.\Rightarrow F(x) = \left( 2x^{2} + x - 1ight)e^{- x}

    \Rightarrow F(0) = - 1 \Rightarrow
f\left( F(0) ight) = f( - 1) = 9e

  • Câu 19: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 20: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 21: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 22: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 23: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 24: Nhận biết

    Tích phân I = \int\limits_1^2 {\left( {{x^2} + \frac{x}{{x + 1}}} ight)dx} có giá trị là:

     Tích phân I = \int\limits_1^2 {\left( {{x^2} + \frac{x}{{x + 1}}} ight)dx} có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_1^2 {\left( {{x^2} + \dfrac{x}{{x + 1}}} ight)dx}  \hfill \\   = \int\limits_1^2 {\left( {{x^2} + 1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {\dfrac{{{x^3}}}{3} + x - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\   = \dfrac{8}{3} + 2 - \ln 3 - \left( {\dfrac{1}{3} + 1 - \ln 2} ight) \hfill \\   = \dfrac{{10}}{3} + \ln 2 - \ln 3 \hfill \\ \end{matrix}

    Nhận xét: Không thể dùng máy tính để tính ra kết quả trực tiếp như trên nhưng ta có thể dùng để kiểm tra kết quả bằng cách thử thay số trong các đáp án.

  • Câu 25: Thông hiểu

    Tính thể tích V của vật thể sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi đồ thị hàm số y =
e^{x}.\sqrt{x}, đường thẳng x =
1 và trục hoành?

    Thể tích V của vật thể là:

    V = \pi\int_{0}^{1}{\left( e^{x}\sqrt{x}
ight)^{2}dx} = \pi\int_{0}^{1}{\left( e^{2x}.x ight)dx}

    = \frac{\pi}{2}\int_{0}^{1}{xd\left(
e^{2x} ight)} = \frac{\pi}{2}\left\lbrack \left. \ \left( x.e^{2x}
ight) ight|_{0}^{1} - \int_{0}^{1}{e^{2x}dx}
ightbrack

    = \frac{\pi}{4}\left( e^{2} + 1
ight)

  • Câu 26: Vận dụng

    Xét tính đúng sai của mỗi khẳng định. Trong không gian Oxyz, cho ba điểm A( - 3;0;1),B(2; - 4;6),C(1;2; - 7) và hai vecto \overrightarrow{u} = (3;0; -
1),\overrightarrow{v} = (3;5; - 7).

    a) Tích vô hướng của hai vecto \overrightarrow{u},\overrightarrow{v}bằng 15. Đúng||Sai

    b) Trung điểm của đoạn AC có tọa độ là (1;1; - 4). Sai||Đúng

    c) Tọa độ của vecto \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v}(5; - 9; - 3). Sai||Đúng

    d) Hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz) O. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định. Trong không gian Oxyz, cho ba điểm A( - 3;0;1),B(2; - 4;6),C(1;2; - 7) và hai vecto \overrightarrow{u} = (3;0; -
1),\overrightarrow{v} = (3;5; - 7).

    a) Tích vô hướng của hai vecto \overrightarrow{u},\overrightarrow{v}bằng 15. Đúng||Sai

    b) Trung điểm của đoạn AC có tọa độ là (1;1; - 4). Sai||Đúng

    c) Tọa độ của vecto \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v}(5; - 9; - 3). Sai||Đúng

    d) Hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz) O. Đúng||Sai

    a) đúng, b) sai, c) sai, d) đúng.

    a) Ta có \overrightarrow{u}.\overrightarrow{v} = 3.3 + 0.5
+ ( - 1).( - 7) = 15.

    b) Ta có trung điểm của đoạnACcó tọa độ là \left( \frac{( - 3) +
1}{2};\frac{0 + 2}{2};\frac{1 + ( - 7)}{2} ight) = ( - 1;1; -
3).

    c) Ta có

    \begin{matrix}
\overrightarrow{AB} = (5; - 4;5). \\
\overrightarrow{u} = (3;0; - 1), \\
\overrightarrow{v} = (3;5; - 7). \\
\end{matrix}

    Suy ra \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v} = (5; - 9;11).

    d) Ta có G\left( 0;\frac{- 2}{3};0
ight) Suy ra hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz)O(0;0;0).

  • Câu 27: Nhận biết

    Trong không gian Oxyz, tìm phương trình mặt phẳng (\alpha) cắt ba trục Ox,Oy,Oz lần lượt tại ba điểm A( - 3;0;0),B(0;4;0),C(0;0; -
2)?

    Phương trình mặt phẳng (\alpha): \frac{x}{- 3} + \frac{y}{4} + \frac{z}{- 2}
= 1

    \Leftrightarrow 4x - 3y + 6z = -
12

    \Leftrightarrow 4x - 3y + 6z + 12 =
0

  • Câu 28: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 29: Thông hiểu

    Tính tích phân A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \dfrac{\pi}{3}ight)}dx} bằng

    Ta có:

    A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \frac{\pi}{3}ight)}dx} = \left. \ \tan\left( x - \frac{\pi}{3} ight)ight|_{0}^{\frac{\pi}{2}}

    = \tan\frac{\pi}{6} - \tan\left( -
\frac{\pi}{3} ight) = \frac{4\sqrt{3}}{3}

  • Câu 30: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 31: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} với các trục tọa độ?

    Xét \left\{ \begin{matrix}
x = 0 \Rightarrow y = - 2 \\
y = 0 \Rightarrow x = - 1 \\
\end{matrix} ight..

    Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x -
2} với các trục tọa độ là: S =
\int_{- 1}^{0}{\left| \frac{x + 1}{x - 2} ight|dx}.

    Vì biểu thức \frac{x + 1}{x - 2} không đổi dấu trên miền \lbrack - 1;0brack nên:

    S = \left| \int_{- 1}^{0}{\frac{x + 1}{x
- 2}dx} ight| = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = \left| 1 + 3(\ln2 - \ln3) ight| =3\ln\frac{3}{2} - 1

  • Câu 32: Thông hiểu

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi M là trung điểm của BC. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Vì M là trung điểm của BC nên suy ra \overrightarrow{BM} =
\frac{1}{2}\overrightarrow{BC}

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BM} =
\overrightarrow{AB} - \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight) = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight)

  • Câu 33: Vận dụng cao

    Trong không gian Oxyz cho mặt phẳng (P):2x + y + z - 3 = 0 và hai điểm A(m;1;0),B(1; - m;2). Gọi E;F lần lượt là hình chiếu của A;B lên mặt phẳng (P). Biết EF = \sqrt{5}. Tổng tất cả các giá trị của tham số m là

    Hình vẽ minh họa

    Xét trường hợp m = 1. Khi đó cả A;B đều thuộc (P). Trong trường hợp này EF = AB = 2\sqrt{2} (loại).

    Khi m eq 1. Ta tính toán các đại lượng:

    d\left( A;(P) ight) = \frac{|2m -
2|}{\sqrt{6}};d\left( B;(P) ight) = \frac{|1 -
m|}{\sqrt{6}}

    Từ đó suy ra A;B khác phía với (P) và d\left( A;(P) ight) = 2d\left(
B;(P) ight)

    Gọi H là giao điểm của AB với (P).

    Theo Thales ta có:

    EH = \frac{2\sqrt{5}}{3};AH =
\frac{2}{3}AB = \frac{2}{3}\sqrt{(1 - m)^{2} + (m + 1)^{2} +
2^{2}}

    Áp dụng định lý Pythagore cho tam giác AEH ta có:

    AE^{2} + EH^{2} = AH^{2}

    \Leftrightarrow \frac{(2m - 2)^{2}}{6} +
\left( \frac{2\sqrt{5}}{3} ight)^{2} = \frac{4}{9}\left\lbrack (1 -
m)^{2} + (m + 1)^{2} + 4 ightbrack

    \Leftrightarrow \frac{3\left( 4m^{2} -
8m + 4 ight)}{18} + \frac{40}{18} = \frac{8\left( 2m^{2} + 6
ight)}{18}

    \Leftrightarrow 4m^{2} + 24m - 4 =
0

    Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: - \frac{24}{4} = - 6.

  • Câu 34: Nhận biết

    Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy)(Oyz) bằng:

    Ta có: góc giữa hai mặt phẳng (Oxy)(Oyz) bằng: 90^{0}.

  • Câu 35: Thông hiểu

    Trong không gian Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = ax = b với a
< b. Gọi f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b. Biết hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack, khi đó thể tích V của vật thể (H) được cho bởi công thức:

    f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b ta có: V = \int_{a}^{b}{f(x)}dx không phải là V = \pi{\int_{a}^{b}\left\lbrack f(x)
ightbrack}^{2}dx.

  • Câu 36: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 37: Nhận biết

    Ba mặt phẳng 2x + y - z - 1 = 0,3x - y - z + 2 = 0,4x - 2y + z - 3 = 0 cắt nhau tại điểm A.Tọa độ của A là:

     Tọa độ của A là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}2x + y - z - 1 = 0\left( 1 ight)\\3x - y - z + 2 = 0\left( 2 ight)\\4x - 2y + z - 3 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x = \frac{{2z - 1}}{5};y = \frac{{z + 7}}{5}

    Thế vào phương trình (3) được z=3, từ đó có x=1,y=2.

    Vậy A(1, 2, 3).

  • Câu 38: Nhận biết

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 39: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A( -
3;1; - 1),B(1;2;m), C(0;2; -
1),D(4;3;0). Tìm tất cả các giá trị thực của m để thể tích khối tứ diện ABCD bằng 10.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (3;1;0) \\
\overrightarrow{AD} = (7;2;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = (1; - 3; -
1)

    Lại có: \overrightarrow{AB} = (4;1;m + 1)
\Rightarrow \overrightarrow{AB}.\left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = - m

    Khi đó ta có:

    V_{ABCD} = \frac{1}{6}\left|
\overrightarrow{AB}.\left\lbrack \overrightarrow{AC};\overrightarrow{AD}
ightbrack ight| = \frac{|m|}{6}

    Theo đề ta có: V_{ABCD} = 10
\Leftrightarrow \frac{|m|}{6} = 10 \Leftrightarrow m = \pm
60

  • Câu 40: Vận dụng cao

    Cho a, b là các số hữu tỉ thỏa mãn

    \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = a\left( {x + 2} ight)\sqrt {x + 2}  + b\left( {x + 1} ight)\sqrt {x + 1}  + C}

    Tính giá trị biểu thức M = a + b.

     I = \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = \int {\frac{{\sqrt {x + 2}  - \sqrt {x + 1} }}{{\left( {x + 2} ight) - \left( {x + 1} ight)}}dx}  = \int {\left( {\sqrt {x + 2}  - \sqrt {x + 1} } ight)dx} }

    => I = \frac{2}{3}.\left( {x + 2} ight)\sqrt {x + 2}  - \frac{2}{3}\left( {x + 1} ight)\sqrt {x + 1}  + C

    => \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{2}{3}} \\   {b = \dfrac{{ - 2}}{3}} \end{array}} ight. \Rightarrow M = a + b = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo