Cho đồ thị hàm số
như hình vẽ:

Diện tích
của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Cho đồ thị hàm số
như hình vẽ:

Diện tích
của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Tìm nguyên hàm
.
Ta có:
Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi
và
như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

Đáp án: 3,3 m2
Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi và
như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).
Đáp án: 3,3 m2
Phương trình hoành độ giao điểm của các đồ thị hàm số
Diện tích của hình phẳng cần tìm là
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Trong không gian với hệ tọa độ
, phương trình mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại các điểm
sao cho
đạt giá trị nhỏ nhất là:
Giả sử với
là các số thực dương do
khác 0.
Khi đó phương trình mặt phẳng qua
có phương trình là
Mà nên
, do đó theo bất đẳng thức Bunhiacopski ta có:
T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là:
Vậy phương trình mặt phẳng (P) là .
Cho đồ thị của hàm số
như sau:

Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Cho hình chóp
có
và
. Góc giữa hai đường thẳng
và
là:
Ta có:
(vì
và
).
Suy ra góc giữa hai đường thẳng SA và BC bằng .
Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Cho hàm số
liên tục trên
và
. Xác định giá trị của
?
Ta có:
Trong hệ trục tọa độ Oxy, cho parabol
và hai đường thẳng
(mô tả như hình vẽ). Gọi
là diện tích hình phẳng giới hạn bới và đường thẳng
(phần tô màu đen);
là diện tích hình phẳng giới hạn bới parabol
và đường thẳng
(phần gạch chéo). Với điều kiện nào sau đây của
thì
?

Phương trình hoành độ giao điểm của và đường thẳng
là:
Phương trình hoành độ giao điểm của và đường thẳng
là:
Diện tích hình phẳng giới hạn bởi và
là:
Diện tích hình phẳng giới hạn bởi và
là:
Khi đó:
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Trong không gian, với hệ tọa độ
, cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là
Ta có:
Gọi tọa độ trực tâm khi đó
Theo đề bài ta có
Gọi là VTPT của mặt phẳng
ta có:
Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là là
Vậy .
Trong không gian với hệ trục tọa độ
, cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Một chất điểm A từ trạng thái nghỉ chuyển động với vận tốc nhanh dần đều, 8 giây sau nó đạt đến vận tốc 6m/s. Từ thời điểm đó nó chuyển động đều. Một chất điểm B khác xuất phát từ cùng vị trí A nhưng chậm hơn nó 12 giây với vận tốc nhanh dần đều và đuổi kịp A sau 8 giây (kể từ lúc B xuất phát). Tìm vận tốc B tại thời điểm đó.
Phương trình vận tốc của vật A là
Ta có:
Quãng đường vật A đi được sau đầu là:
Phương trình vận tốc của vật B là
=> Vận tốc của vật B khi hai vật gặp nhau là:
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
Một ô tô đang chạy đều với vận tốc thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng . Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
a) Khi xe dừng hẳn thì vận tốc bằng . Mệnh đề đúng
b) Cho . Mệnh đề sai
c) . Mệnh đề đúng
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Mệnh đề sai
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Trong không gian với hệ trục tọa độ
, cho hai điểm
và
. Xác định tọa độ trung điểm
của
?
Ta có: I là trung điểm của AB nên tọa độ điểm I là:
Vậy đáp án đúng là: .
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Trong không gian với hệ tọa độ
, tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Trong không gian
, cho ba điểm
. Mặt phẳng
đi qua điểm nào dưới đây?
Ta có: suy ra
Mặt phẳng đi qua điểm
, có 1 vectơ pháp tuyến
nên có phương trình là:
Vì nên
.
Tìm nguyên hàm của hàm số ![]()
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Biết
. Khi đó
bằng:
Ta có:
Diện tích S của hình phẳng giới hạn bởi đường cong
, trục hoành và hai đường thẳng
là
Phương trình hoành độ giao điểm
Khi đó:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Trong không gian
, cho hình bình hành
với
. Diện tích hình bình hành
bằng:
Gọi là diện tích hình bình hành
khi đó
Mà
Vậy diện tích hình bình hành bằng 2.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Một hình nón có bán kính đáy R, góc ở đỉnh là
. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:

Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Họ nguyên hàm của hàm số
là:
Ta có:
.
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .