Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một vận động viên đua xe đang chạy với vận tốc 10m/s thì anh ta tăng tốc với vận tốc a(t) = 6t\left( m/s^{2} ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian 10s kể từ lúc bắt đầu tăng tốc là bao nhiêu?

    Ta có: v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{6tdt} = 3t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
ightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = 3t^{2} +
10

    Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( 3t^{2} + 10 ight)dt} = 1100(m)

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 3: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 4: Thông hiểu

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 5: Vận dụng

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 7: Thông hiểu

    Cho a là số thực dương. Biết rằng F(x) là một nguyên hàm của hàm số f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{x} ightbrack thỏa mãn F\left( \frac{1}{a} ight) = 0F(2018) = e^{2018}. Mệnh đề nào sau đây đúng?

    Ta có:

    f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{2} ightbrack= \left( e^{x} ight)'\ln(ax) +e^{x}\left\lbrack \ln(ax) ightbrack'= \left\{ e^{x}\left\lbrack \ln(ax)
ightbrack ight\}'

    \Rightarrow
\int_{\frac{1}{a}}^{2018}{f(x)}dx = F(2018) - F\left( \frac{1}{a}
ight)\Leftrightarrow \left. \ \left(
e^{x}\left\lbrack \ln(ax) ightbrack ight)
ight|_{\frac{1}{a}}^{2018} = e^{2018}

    \Leftrightarrow \ln(2018a) = 1
\Leftrightarrow a = \frac{e}{2018}

    Vậy a \in \left( \frac{1}{2018};1
ight).

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 2y + z + 2017 = 0, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của (P)?

    Ta có phương trình mặt phẳng (P):2x - 2y
+ z + 2017 = 0 nên có một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n_{(P)}} = (2; - 2;1)

    Mặt khác \overrightarrow{n} = (4; -
4;2) cùng phương với \overrightarrow{n_{(P)}} = (2; - 2;1)

    Do đó \overrightarrow{n} = (4; -
4;2) là một vectơ pháp tuyến của (P):2x - 2y + z + 2017 = 0.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 11: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 12: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 13: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 14: Nhận biết

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 15: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 16: Vận dụng

    Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và \widehat {SAO} = {30^0},\widehat {SAB} = {60^0}. Độ dài đường sinh \ell của hình nón bằng:

     Độ dài đường sinh

    Gọi I là trung điểm AB, suy ra OI \bot AB,{m{ }}SI \bot ABOI = a.

    Trong tam giác vuông SOA, ta có OA = SA.\cos \widehat {SAO} = \frac{{SA\sqrt 3 }}{2}

    Trong tam giác vuông SIA, ta có IA = SA.\cos \widehat {SAB} = \frac{{SA}}{2}

    Trong tam giác vuông OIA, ta có:

    O{A^2} = O{I^2} + I{A^2} \Leftrightarrow \frac{3}{4}S{A^2} = {a^2} + \frac{1}{4}S{A^2} \Rightarrow SA = a\sqrt 2 .

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho tọa độ ba điểm A(1; - 2;3),B( -
1;2;5),C(0;0;1). Tọa độ trọng tâm G của tam giác ABC là:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 - 1 + 0}{3} = 0 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 2 + 0}{3} = 0 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{3 + 5 + 1}{3} = 3 \\\end{matrix} ight.\  \Rightarrow G(0;0;3)

    Vậy trọng tâm G tìm được là G(0;0;3).

  • Câu 18: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;2; - 3). Gọi M,N,P là hình chiếu vuông góc của điểm A trên ba trục tọa độ Ox,Oy,Oz. Viết phương trình mặt phẳng (MNP)?

    M(1;0;0),N(0;2;0),P(0;0; - 3) là hình chiếu của A lên các trục tọa độ nên mặt phẳng cần tìm là (MNP):\frac{x}{1} + \frac{y}{2} + \frac{z}{- 3} =
1

    \Rightarrow (MNP):6x + 3y - 2z - 6 =
0

  • Câu 20: Nhận biết

    Trong không gian cho tứ diện đều ABCD. Khẳng định nào sau đây sai?

    Tứ diện ABCD đều nên \overrightarrow{AD} không thể vuông góc với \overrightarrow{DC}.

    Vậy khẳng định sai là: “\overrightarrow{AD}\bot\overrightarrow{DC}”.

  • Câu 21: Thông hiểu

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 22: Thông hiểu

    Trong không gian, cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai vectơ \overrightarrow{BD}\ \overrightarrow{B'C} bằng

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD}\  = \ \
\overrightarrow{B'D'}. Do đó,

    \left( \overrightarrow{BD}\ ,\
\overrightarrow{B'C} ight)\  = \ \left(
\overrightarrow{B'D'}\ ,\ \overrightarrow{B'C} ight)\  =
\widehat{\ D'B'C}

    B'C\  = \ CD'\  = \
D'B'nên tam giác B'CD'là tam giác đều.

    Suy ra \widehat{\ D'B'C}\  = \
60{^\circ}

    Vậy \left( \overrightarrow{BD}\ ,\
\overrightarrow{B'C} ight)\  = \ 60{^\circ}

  • Câu 23: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn \int_{0}^{1}{f(x)dx} = 3\int_{0}^{5}{f(x)dx} = 6. Tính tích phân C = \int_{- 1}^{1}{\left| f(3x - 2)
ight|dx}?

    Ta có: C = \int_{- 1}^{1}{\left| f(3x -
2) ight|dx} = \int_{- 1}^{\frac{2}{3}}{f( - 3x + 2)dx} +
\int_{\frac{2}{3}}^{1}{f(3x - 2)dx} = C_{1} + C_{2}.

    Ta có:

    C_{1} = \int_{- 1}^{\frac{2}{3}}{f( - 3x
+ 2)dx} = - \frac{1}{3}\int_{- 1}^{\frac{2}{3}}{f( - 3x + 2)d( - 3x +
2)}

    Đặt t = - 3x + 2 \Rightarrow dt = -
3dx. Đổi cận \left\{ \begin{matrix}x = - 1 \Rightarrow t = 5 \\x = \dfrac{2}{3} \Rightarrow t = 0 \\\end{matrix} ight. do đó:

    C_{1} = \frac{1}{3}\int_{0}^{5}{f(t)dt}
= 2

    Ta có:

    C_{2} = \int_{\frac{2}{3}}^{1}{f(3x -
2)dx} = \frac{1}{3}\int_{\frac{2}{3}}^{1}{f(3x + 2)d(3x +
2)}

    Đặt t = 3x - 2 \Rightarrow dt =
3dx. Đổi cận \left\{ \begin{matrix}x = 1 \Rightarrow t = 1 \\x = \dfrac{2}{3} \Rightarrow t = 0 \\\end{matrix} ight. do đó:

    C_{2} = \frac{1}{3}\int_{0}^{1}{f(t)dt} =
1.

    Vậy C = C_{1} + C_{2} = 3

  • Câu 24: Nhận biết

    Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số y = f\left( x ight), trục Ox và hai đường thẳng x = a;x = b,\left( {a < b} ight) xung quanh trục Ox.

    Thể tích của khối tròn xoay cần tính là: V = \pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 25: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 26: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 27: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A( - 1;2; - 3),B(1;0;2),C(x;y; - 2) thẳng hàng. Khi đó giá trị của biểu thức x +y là:

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (2; - 2;5) \\\overrightarrow{AC} = (x + 1;y - 2;1) \\\end{matrix} ight.. Vì A; B; C thẳng hàng nên \overrightarrow{AB};\overrightarrow{AC} cùng phương

    \Leftrightarrow \dfrac{x + 1}{2} =\dfrac{y - 2}{- 2} = \dfrac{1}{5} \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{3}{5} \\y = \dfrac{8}{5} \\\end{matrix} ight.\  \Rightarrow x + y = 1

  • Câu 28: Thông hiểu

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 29: Nhận biết

    Tính tích phân \int_{1}^{2}{\frac{x -
1}{x}dx}?

    Ta có: \int_{1}^{2}{\frac{x - 1}{x}dx} =
\int_{1}^{2}{\left( 1 - \frac{1}{x} ight)dx} = \left. \ \left( x -
\ln|x| ight) ight|_{1}^{2}

    = (2 - \ln2) - (1 - \ln1) = 1 -\ln2

  • Câu 30: Thông hiểu

    Diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x - 1y = 2x - 1 được tính theo công thức

    Phương trình hoành độ giao điểm của y =
x^{3} - 2x - 1y = 2x -
1 là:

    x^{3} - 2x - 1 = 2x - 1 \Leftrightarrow
x^{3} - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Vậy diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x -
1y = 2x - 1 được tính theo công thức S = \int_{- 2}^{2}{\left|
x^{3} - 4x ight|dx}.

  • Câu 31: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 32: Nhận biết

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

  • Câu 33: Nhận biết

    Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = {x^2} - x + 1;y = x + 1 là:

    Phương trình hoành độ giao điểm 2 đồ thị là:

    {x^2} - x +  = x + 1 \Leftrightarrow {x^2} - 2x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {z = 2} \end{array}} ight.

    Diện tích cần tìm là:

    \begin{matrix}  S = \int\limits_0^2 {\left| {{x^2} - x + 1 - x - 1} ight|dx}  = \int\limits_0^2 {\left| {{x^2} - 2x} ight|dx}  \hfill \\   = \int\limits_0^2 {\left( {2x - {x^2}} ight)dx}  = \left. {\left( {{x^2} - \dfrac{{{x^3}}}{3}} ight)} ight|_0^2 = \dfrac{4}{3} \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 35: Vận dụng

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 36: Vận dụng cao

    Trong không gian Oxyz cho ba điểm A(1;1;0),B( - 2;0;1),C(0;0;2) và mặt phẳng (P):x + 2y + z + 4 =
0. Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho S = \overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Tính tổng Q = a + b + 6c.

    Gọi G là trọng tâm tam giác ABC ta có: G\left( - \frac{1}{3};\frac{1}{3};1
ight)

    Lại có

    S =
\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
\overrightarrow{MC}.\overrightarrow{MA}

    = 3MG^{2} + 2\overrightarrow{MG}.\left(
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} ight)
+ \overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA}

    = 3MG^{2} +
\overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA}

    \overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA} là một hằng số nên S nhỏ nhất khi MG nhỏ nhất, hay M là hình chiếu của G lên (P).

    Từ đó ta tìm được M\left( - \frac{11}{9};
- \frac{13}{9};\frac{1}{9} ight)Q = a + b + 6c = - 2

  • Câu 37: Thông hiểu

    Cho hình vẽ:

    Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y =
f(x), trục hoành và hai đường thẳng x = a,x = b,(a < b) (phần tô đậm trong hình vẽ) tính theo công thức:

    Áp dụng công thức tính diện tích hình phẳng ta có:

    S = \int_{a}^{b}{\left| f(x) ight|dx}
= \int_{a}^{c}{\left\lbrack 0 - f(x) ightbrack dx} +
\int_{c}^{b}{\left\lbrack f(x) - 0 ightbrack dx}

    = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}

    Vậy đáp án cần tìm là: S = -
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}.

  • Câu 38: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 39: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, thỏa mãn F(0) = \frac{1}{\ln2}. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{2^{x}dx} = \frac{2^{x}}{\ln2} + C

    F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, ta có: F(x) = \frac{2^{x}}{\ln2} + CF(0) = \frac{1}{\ln2}

    \Rightarrow C = 0 \Rightarrow F(x) =\frac{2^{x}}{\ln2}

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = \frac{1}{\ln2}\left( 1 + 2 + 2^{2} +.... + 2^{2018} + 2^{2019} ight)

    T = \frac{1}{\ln2}.\frac{2^{2020} - 1}{2- 1} = \frac{2^{2020} - 1}{ln2}

  • Câu 40: Vận dụng cao

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo