Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 2: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 3: Vận dụng cao

    Trong không gian Oxyz cho ba điểm A(1;1;0),B( - 2;0;1),C(0;0;2) và mặt phẳng (P):x + 2y + z + 4 =
0. Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho S = \overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Tính tổng Q = a + b + 6c.

    Gọi G là trọng tâm tam giác ABC ta có: G\left( - \frac{1}{3};\frac{1}{3};1
ight)

    Lại có

    S =
\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
\overrightarrow{MC}.\overrightarrow{MA}

    = 3MG^{2} + 2\overrightarrow{MG}.\left(
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} ight)
+ \overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA}

    = 3MG^{2} +
\overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA}

    \overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA} là một hằng số nên S nhỏ nhất khi MG nhỏ nhất, hay M là hình chiếu của G lên (P).

    Từ đó ta tìm được M\left( - \frac{11}{9};
- \frac{13}{9};\frac{1}{9} ight)Q = a + b + 6c = - 2

  • Câu 4: Thông hiểu

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 5: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 6: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm A(\,\, - 2,\,\,3,\,\,5);\,\,\,B\left( {\, - 4,\,\, - 2,\,\,3\,} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,2,\,\, - 3,\,\,4\,} ight) .

    Theo đề bài ta có: \overrightarrow {AB}  = \left( { - 2, - 5, - 2} ight)

    Như vậy, VTPT của (P) là tích có hướng của 2 vecto chỉ phương \Rightarrow \overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow {AB} } ight] = 2\left( {13, - 2, - 8} ight)

    Mp (P) đi qua A (-2,3,5) và nhận vecto \vec{n_P}(13, -2, -8) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x + 2} ight)13 + \left( {y - 3} ight)\left( { - 2} ight) + \left( {z - 5} ight)\left( { - 8} ight) = 0

    \Leftrightarrow 13x - 2y - 8z + 72 = 0

  • Câu 7: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 8: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 9: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

  • Câu 10: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 11: Vận dụng

    Tích phân I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx có giá trị là:

    Ta có:

    I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx = \frac{a}{{\sqrt 3 }}\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 4} }}} dx

    Đặt u = x + \sqrt {{x^2} + 4}  \Rightarrow du = \frac{{x + \sqrt {{x^2} + 4} }}{{\sqrt {{x^2} + 4} }}dx \Rightarrow \frac{{du}}{u} = \frac{{dx}}{{\sqrt {{x^2} + 4} }}

    I = \frac{a}{{\sqrt 3 }}\int\limits_2^{1 + \sqrt 5 } {\frac{1}{u}du}  = \left. {\frac{a}{{\sqrt 3 }}\left( {\ln u} ight)} ight|_2^{1 + \sqrt 5 } = \frac{a}{{\sqrt 3 }}\ln \left| {\frac{{1 + \sqrt 5 }}{2}} ight|

  • Câu 12: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 13: Vận dụng

    Với giá trị nào của thì hai mặt phẳng sau song song:

    \left( P ight):(m - 2)x - 3my + 6z - 6 = 0;\,\,\,\,\,\left( Q ight):(m - 1)x + 2y + (3 - m)z + 5 = 0

    Áp dụng điều kiện để 2 mp song song, ta xét:

    {A_1}{B_2} - {A_2}{B_1} = \left( {m - 2} ight)2 + \left( {m - 1} ight)3m = 3{m^2} - m - 4 = 0

    \Leftrightarrow m =  - 1,m = \frac{4}{3}

    {B_1}{C_2} - {B_2}{C_1} =  - 3m\left( {3 - m} ight) - 2.6 = 3{m^2} - 9m - 12 = 0

    \Leftrightarrow m =  - 1,m = 4

    {C_1}{A_2} - {C_1}{A_1} = 6\left( {m - 1} ight) - \left( {3 - m} ight)\left( {m - 2} ight) = {m^2} + m = 0

    \Leftrightarrow m =  - 1,m = 0

    Với m=-1 thoả mãn cả 3 điều kiện trên \Rightarrow \left( P ight)//\left( Q ight)

  • Câu 14: Nhận biết

    Trong không gian cho ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?

    Vì ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng nên

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v}; - 2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá của các vectơ 2\left(
\overrightarrow{u} + \overrightarrow{v} ight); - \overrightarrow{u}; -
\overrightarrow{v} cùng nằm trên một mặt phẳng

    Vậy mệnh đề đúng là: “Giá các vectơ \overrightarrow{u} + \overrightarrow{v}; -
2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.”

  • Câu 15: Vận dụng

    Cho tam giác ABC có A\left( { - 3,7,2} ight);\,\,B\left( {3, - 1,0} ight);\,\,\,C\left( {2,2, - 4} ight). Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ vectơ \overrightarrow {BE}

    Gọi tọa độ điểm E là E(x_E; y_E; z_E).

    Ta có \overrightarrow {EA}  = 2\overrightarrow {EC}  \Rightarrow C là trung điểm của AE nên ta tính được tọa độ điểm E lần lượt là: 

    \Rightarrow {x_E} = 2{x_C} - {x_A} = 4 + 3 = 7;\,

    \,{y_E} = 4 - 7 =  - 3;\,

    \,{z_E} =  - 8 - 2 =  - 10

    \Rightarrow \overrightarrow {BE}  = \left( {7 - 3, - 3 + 1, - 10 - 0} ight) = \left( {4, - 2, - 10} ight)

  • Câu 16: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 17: Thông hiểu

    Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x =
1x = 3. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 \leq x \leq 3) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x3x^{2}
- 2. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên

    Diện tích thiết diện là: S(x) = 3x.\left(
3x^{2} - 2 ight) = 9x^{3} - 6x

    \Rightarrow Thể tích vật thể là: V = \int_{1}^{3}{\left( 9x^{3} - 6x
ight)dx = 156}

  • Câu 18: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A(1; - 3;3),B(2; - 4;5),C(a; - 2;b) và tam giác đó nhận điểm G(1;c;3) làm trọng tâm. Xác định giá trị biểu thức P = a
+ b + c?

    Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{1 + 2 + a}{3} = 1 \\\dfrac{- 3 - 4 - 2}{3} = c \\\dfrac{3 + 5 + b}{3} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 0 \\b = 1 \\c = - 3 \\\end{matrix} ight.\  \Rightarrow P = a + b + c = - 2

  • Câu 19: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, điểm nào dưới đây thuộc trục Oy?

    Điểm A(x;y;z) \in Oy \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
z = 0 \\
\end{matrix} ight.. Suy ra trong bốn điểm đã cho điểm T(0; - 3;0) \in Oy.

  • Câu 20: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 21: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi Parabol y = \frac{x^{2}}{12} và đường cong có phương trình y = \sqrt{4 -
\frac{x^{2}}{4}} như hình vẽ:

    Diện tích của hình phẳng (H) bằng:

    Phương trình hoành độ giao điểm:

    \frac{x^{2}}{12} = \sqrt{4 -
\frac{x^{2}}{4}} \Leftrightarrow x = \pm 2\sqrt{3}

    Diện tích hình phẳng (H) bằng:

    S = 2\int_{0}^{2\sqrt{3}}{\left\lbrack
\sqrt{4 - \frac{x^{2}}{4}} - \frac{x^{2}}{12} ightbrack
dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} - \frac{1}{6}\int_{0}^{2\sqrt{3}}{x^{2}dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} + \frac{4\sqrt{3}}{3}

    Đặt x = 4\sin t

    \Rightarrow\int_{0}^{2\sqrt{3}}{\sqrt{16 - x^{2}}dx} =\int_{0}^{\frac{\pi}{3}}{16\cos^{2}tdt} = \frac{8\pi}{3} +2\sqrt{3}

    \Rightarrow S = \frac{8\pi +
2\sqrt{3}}{3}

  • Câu 22: Thông hiểu

    Cho biết I =
\int_{0}^{\sqrt{7}}{\frac{x^{3}}{\sqrt[3]{1 + x^{2}}}dx} =
\frac{m}{n} với \frac{m}{n} là phân số tối giản. Giá trị của biểu thức m - 7n bằng:

    Đặt u = \sqrt[3]{1 + x^{2}}. Khi đó x^{2} = u^{3} - 1 \Rightarrow 2xdx =
3u^{2}du

    Đổi cận

    I = \int_{1}^{2}{\frac{\left( u^{3} - 1
ight)}{u}.\frac{3}{2}u^{2}du} = \frac{3}{2}\int_{1}^{2}{\left( u^{4} -
u ight)du}= \left. \ \frac{3}{2}\left(
\frac{u^{5}}{5} - \frac{u^{2}}{2} ight) ight|_{1}^{2} =
\frac{141}{20}. Suy ra m = 141;n =
20. Do đó m - 7n = 1.

  • Câu 23: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 24: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} với các trục tọa độ?

    Xét \left\{ \begin{matrix}
x = 0 \Rightarrow y = - 2 \\
y = 0 \Rightarrow x = - 1 \\
\end{matrix} ight..

    Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x -
2} với các trục tọa độ là: S =
\int_{- 1}^{0}{\left| \frac{x + 1}{x - 2} ight|dx}.

    Vì biểu thức \frac{x + 1}{x - 2} không đổi dấu trên miền \lbrack - 1;0brack nên:

    S = \left| \int_{- 1}^{0}{\frac{x + 1}{x
- 2}dx} ight| = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = \left| 1 + 3(\ln2 - \ln3) ight| =3\ln\frac{3}{2} - 1

  • Câu 25: Nhận biết

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 26: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 27: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x - my - z + 7 = 0,(Q):6x + 5y - 2z - 4 =
0. Xác định m để hai mặt phẳng (P)(Q) song song với nhau?

    Hai mặt phẳng đã cho song song với nhau khi và chỉ khi

    Tập xác định \frac{3}{6} = \frac{- m}{5}
= \frac{- 1}{- 2} eq \frac{7}{- 4}

    Vậy m = - \frac{5}{2} thì hai mặt phẳng (P);(Q) song song với nhau.

  • Câu 28: Nhận biết

    Cho hình phẳng D giới hạn bới đường cong y = \sqrt {{x^2} + 1}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích cần tìm là: v = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } ight)}^2}dx}  = \frac{{4\pi }}{3}

  • Câu 29: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 30: Vận dụng cao

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Vận dụng

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

  • Câu 32: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2; - 2),B(3; - 1;0). Đường thẳng AB cắt mặt phẳng (P):x + y - z + 2 = 0 tại điểm I. Tỉ số \frac{IA}{IB} bằng

    Ta có: \frac{IA}{IB} = \frac{d\left(
A;(P) ight)}{d\left( B;(P) ight)} =
\frac{8}{\sqrt{3}}:\frac{4}{\sqrt{3}} = 2

  • Câu 33: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 34: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 35: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để tồn tại tích phân \int_{1}^{1 + m}\frac{dx}{x(x - 5)(x -
4)}?

    Tích phân \int_{1}^{1 + m}\frac{dx}{x(x -
5)(x - 4)} tồn tại khi và chỉ khi hàm số y = \frac{1}{x(x - 5)(x - 4)} liên tục trên \lbrack 1;1 + mbrack hoặc \lbrack 1 + m;1brack

    Mà hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên các khoảng ( -
\infty;0),(0;4),(4;5),(5; + \infty)

    Nên hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên \lbrack 1;1 +
mbrack hoặc \lbrack 1 +
m;1brack khi và chỉ khi

    0 < 1 + m < 4 \Leftrightarrow - 1
< m < 3 \Rightarrow m \in ( - 1;3).

  • Câu 36: Thông hiểu

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    a) Đúng: Ta có

    \overrightarrow{MA} = -
\overrightarrow{AM} = - \frac{1}{5}\overrightarrow{AD} = -
\frac{1}{5}\overrightarrow{b}

    b) Sai:

    \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC} = \frac{2}{5}(\overrightarrow{EF} +
\overrightarrow{EH} + \overrightarrow{EA}) =
\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -
\overrightarrow{c})

    c) Đúng:

    (m.\overrightarrow{a} +n.\overrightarrow{b} + p.\overrightarrow{c})^{2} =m^{2}.{\overrightarrow{a}}^{2} + n^{2}.{\overrightarrow{b}}^{2}+p^{2}.{\overrightarrow{c}}^{2} +2mn.\overrightarrow{a}.\overrightarrow{b}+2np\overrightarrow{b}.\overrightarrow{c} +2mp.\overrightarrow{a}.\overrightarrow{c}= m^{2}.{\overrightarrow{a}}^{2} +
n^{2}.{\overrightarrow{b}}^{2} + p^{2}.{\overrightarrow{c}}^{2}

    (vì \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đôi một vuông góc nên \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{b}.\overrightarrow{c} =
\overrightarrow{a}.\overrightarrow{c} = 0).

    Ta có

    \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AE} + \overrightarrow{EN}

    = -\frac{1}{5}\overrightarrow{b} + \overrightarrow{c} +\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -\overrightarrow{c})

    = \frac{2}{5}\overrightarrow{a} +\frac{1}{5}\overrightarrow{b} +\frac{3}{5}\overrightarrow{c}.

    d) Đúng:

    MN^{2} =
{\overrightarrow{MN}}^{2} = \left( \frac{2}{5}\overrightarrow{a} +
\frac{1}{5}\overrightarrow{b} + \frac{3}{5}\overrightarrow{c}
ight)^{2}

    = \frac{4}{25}{\overrightarrow{a}}^{2} +\frac{1}{25}{\overrightarrow{b}}^{2} +\frac{9}{25}{\overrightarrow{c}}^{2}= \frac{4}{25}.4 + \frac{1}{25}.9 +\frac{9}{25}.4 = \frac{61}{25}

    Suy ra MN =
\frac{\sqrt{61}}{5}.

  • Câu 37: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 38: Thông hiểu

    Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol (P):y = x^{2} và đường thẳng d:y = x xoay quanh trục Ox tính bởi công thức nào sau đây?

    Hình vẽ minh họa

    Ta có (P)d cắt nhau tại hai điểm (0;0),(1;1)x > x^{2};\forall x \in (0;1)

    Suy ra thể tích khối tròn xoay đã cho T bằng thể tích khối tròn xoay T_{1} trừ đi thể tích khối tròn xoay T_{2}. Trong đó:

    T_{1} được sinh ra khi quay hình phẳng giới hạn bởi các đường d, trục Ox, x = 0, x = 1.

    T_{2} được sinh ra khi quay hình phẳng giới hạn bởi các đường (P), trục Ox, x = 0, x = 1.

    Vậy thể tích khối tròn xoay đã cho bằng \pi\int_{0}^{1}{x^{2}dx} -
\pi\int_{0}^{1}{x^{4}dx}.

  • Câu 39: Nhận biết

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 40: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo