Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 2: Nhận biết

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c  đều khác \vec{0} . Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi:

    Ta có: m, n, p eq 0 theo điều kiện để 3 vectơ nên suy ra này sai.

    Theo điều kiện đồng phẳng, nếu \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d}\vec{d} vuông góc với thì giá của \vec a,\,\,\vec b,\,\,\,\vec c cùng song song với (P) . Suy ra đáp án này đúng.

    Từ đây ta loại tiếp được đáp án: Cả 3 điều kiện trên thỏa mãn

    Nếu xét tiếp đáp án:

    • \vec{a}\vec{b} cùng nằm trong mặt phẳng (Q) và \vec c có giá vuông góc (Q)

    thì khi có và cùng nằm trong mặt phẳng (Q) và có giá vuông góc (Q) nên sẽ nằm trong mặt phẳng vuông góc với mặt phẳng chứa và là mặt phẳng (Q).

    Suy ra chúng không đồng phẳng.

  • Câu 3: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 4: Thông hiểu

    Cho I =\int_{0}^{\frac{\pi}{4}}{\frac{\ln\left( \sin x + 2\cos xight)}{\cos^{2}x}dx} = a\ln3 + b\ln2 + c\pi với a;b;c là các số hữu tỉ. Giá trị của biểu thức S = a.b.c bằng

    Đặt \left\{ \begin{matrix}u = \ln\left( \sin x + 2\cos x ight) \\dv = \dfrac{dx}{\cos x} \\\end{matrix} ight.\Rightarrow \left\{ \begin{matrix}du = \dfrac{\cos x - 2\sin x}{\sin x + 2\cos x} \\v = \tan x + 2 = \dfrac{\sin x + 2\cos x}{\cos x} \\\end{matrix} ight. khi đó:

    I = \left. \ \left( \tan x + 2ight)\ln\left( \sin x + 2\cos x ight) ight|_{0}^{\frac{\pi}{4}} -\int_{0}^{\frac{\pi}{4}}{\left( 1 - 2\frac{\sin x}{\cos x}ight)dx}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\left. \ \left\lbrack x + 2\ln\left( \cos x ight) ightbrackight|_{0}^{\frac{\pi}{4}}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\frac{\pi}{4} - 2\ln\frac{\sqrt{2}}{2}

    I = 3\ln3 - \dfrac{5}{2}\ln2 -\dfrac{1}{4}\pi \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - \frac{5}{2} \\c = - \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{15}{8}

  • Câu 5: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = {\left( {2x - 3} ight)^2} thỏa mãn F\left( 0 ight) = \frac{1}{3}. Tính giá trị của biểu thức A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight]

     F\left( x ight) = \int {{{\left( {2x - 3} ight)}^2}dx = \frac{1}{2}\int {{{\left( {2x - 3} ight)}^2}d\left( {2x - 3} ight) = } \frac{1}{2}.\frac{{{{\left( {2x - 3} ight)}^2}}}{3} + C}

    Ta có: F\left( 0 ight) = \frac{1}{3} \Rightarrow C = \frac{{29}}{6}

    F\left( 1 ight) = \frac{1}{2}.\left( {\frac{{ - 1}}{3}} ight) + \frac{{29}}{6} = \frac{{14}}{3};F\left( 2 ight) = \frac{1}{2}.\left( {\frac{1}{3}} ight) + \frac{{29}}{6} = 5

    => A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight] = A = {\log _2}\left[ {3\frac{{14}}{3} - 2.5} ight] = {\log _2}4 = 2

  • Câu 6: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 7: Nhận biết

    Đặt I = \int_{1}^{2}{(2mx +
1)dx} với m là tham số thực. Tìm giá trị của tham số m để I = 4?

    Ta có: I = \int_{1}^{2}{(2mx + 1)dx} =
\left. \ \left( mx^{2} + x ight) ight|_{1}^{2} = 3m + 1

    Do I = 4 \Leftrightarrow 3m + 1 = 4
\Leftrightarrow m = 1.

  • Câu 8: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {\cos ^2}x

     f\left( x ight) = {\cos ^2}x = \frac{{\cos 2x + 1}}{2} = \frac{{\cos 2x}}{2} + \frac{1}{2}

    \int {f\left( x ight)dx}  = \int {\left( {\frac{{\cos 2x}}{2} + \frac{1}{2}} ight)dx = } \frac{x}{2} + \frac{1}{4}\sin 2x + C

  • Câu 9: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 10: Vận dụng

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 11: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 12: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Biểu diễn vectơ \overrightarrow{B'C} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Chọn đáp án đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{B'C} =
\overrightarrow{B'C'} + \overrightarrow{BB'} =
\overrightarrow{BC} - \overrightarrow{AA'}

    = - \overrightarrow{AA'} +
\overrightarrow{BA} + \overrightarrow{AC} = - \overrightarrow{AA'} -
\overrightarrow{AB} + \overrightarrow{AC} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    Vậy đáp án đúng là: \overrightarrow{B'C} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}.

  • Câu 13: Thông hiểu

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 14: Vận dụng cao

    Trong không gian Oxyz, cho ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c là những số thực dương sao cho a^{2} + 4b^{2} + 16c^{2} = 49. Tính T = a^{2} + b^{2} + c^{2} sao cho khoảng cách từ O đến mặt phẳng (ABC) là lớn nhất

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    d\left\lbrack O;(ABC) ightbrack =\dfrac{1}{\sqrt{\left( \dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} +\dfrac{1}{c^{2}} ight)}} = d

    Xét \overrightarrow{u} =
(a;2b;4c),\overrightarrow{v} = \left(
\frac{1}{a};\frac{1}{b};\frac{1}{c} ight) ta có:

    \left(
\overrightarrow{u}.\overrightarrow{v} ight)^{2} \leq
{\overrightarrow{u}}^{2}.{\overrightarrow{v}}^{2}

    \Rightarrow \left( a.\frac{1}{a} +
2b.\frac{1}{b} + 4c.\frac{1}{c} ight)^{2} \leq \left( a^{2} + 4b^{2} +
16c^{2} ight).\left( \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} ight)

    \Rightarrow 49 \leq 49.\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} \geq 1 \Rightarrow d\left\lbrack
O;(ABC) ightbrack \leq 1

    Dấu "=" xảy ra khi và chỉ khi

    \left\{ \begin{matrix}\dfrac{a}{\dfrac{1}{a}} = \dfrac{2b}{\dfrac{1}{b}} = \dfrac{4c}{\dfrac{1}{c}}\\a^{2} + 4b^{2} + 16c^{2} = 49 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 2b^{2} = 4c^{2} \\a^{2} + 4b^{2} + 16c^{2} = 49 \\\end{matrix} ight.

    \Leftrightarrow 28c^{2} = 49
\Leftrightarrow c^{2} = \frac{7}{4} \Rightarrow F = 7c^{2} =
\frac{49}{4}

    \max d\left\lbrack O;(ABC)
ightbrack = 1, khi đó F =
\frac{49}{4}.

  • Câu 15: Vận dụng

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 17: Thông hiểu

    Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng \frac{x}{- 2} +
\frac{y}{- 1} + \frac{z}{3} = 1 là:

    Mặt phẳng trên đi qua các điểm A( -
2;0;0),B(0; - 1;0),C(0;0;3)

    Do đó vectơ pháp tuyến của mặt phẳng cùng phương với \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 1;0) \\
\overrightarrow{AC} = (2;0;3) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 3; -
6;2)

    Vậy chọn một vectơ pháp tuyến của mặt phẳng đó là \overrightarrow{n} = (3;6; - 2).

  • Câu 18: Nhận biết

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 20: Vận dụng cao

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 21: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 22: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 23: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 24: Nhận biết

    Tích phân I = \int\limits_1^2 {2x.dx} có giá trị là:

     Tích phân I = \int\limits_1^2 {2x.dx} có giá trị là:

    I = \int\limits_1^2 {2x.dx}  = 2.\int\limits_1^2 {x.dx}  = \left. {\left( {2.\frac{{{x^2}}}{2}} ight)} ight|_1^2 = 3

    Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên.

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 26: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 27: Thông hiểu

    Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức v(t) = 3t + 2, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm t = 2s thì vật đi được quãng đường là 10m. Hỏi tại thời điểm t = 30s thì vật đi được quãng đường là bao nhiêu?

    Quãng đường vật đi được từ thời điểm t =
2s đến t = 30s

    S = \int_{2}^{30}{v(t)dt} =
\int_{2}^{30}{(3t + 2)dt} = 1400m = S(30) - S(2)

    \Rightarrow S(30) = 1400m + S(2) =
1410m

  • Câu 28: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 29: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = 2\cos 3x - {3^{x - 1}} thỏa mãn F\left( 0 ight) = 0. Tìm F(x)

     F\left( x ight) = \int {f\left( x ight)dx }

    = \int {2\cos 3xdx - \int {{3^{x - 1}}dx - \frac{1}{3}\int {{3^x}dx}  = \frac{{2\sin 3x}}{3} - \frac{{{3^x}}}{{3\ln 3}} + C} }

    Mặt khác F\left( 0 ight) = 0 \Rightarrow \frac{{2\sin 3x}}{3} - \frac{{{3^x}}}{{3\ln 3}} + C = 0 \Rightarrow C = \frac{1}{{3\ln 3}}

    => F\left( x ight) = \frac{{2\sin 3x}}{3} - \frac{{{3^{x - 1}}}}{{\ln 3}} + \frac{1}{{3\ln 3}}

  • Câu 30: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để tồn tại tích phân \int_{1}^{1 + m}\frac{dx}{x(x - 5)(x -
4)}?

    Tích phân \int_{1}^{1 + m}\frac{dx}{x(x -
5)(x - 4)} tồn tại khi và chỉ khi hàm số y = \frac{1}{x(x - 5)(x - 4)} liên tục trên \lbrack 1;1 + mbrack hoặc \lbrack 1 + m;1brack

    Mà hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên các khoảng ( -
\infty;0),(0;4),(4;5),(5; + \infty)

    Nên hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên \lbrack 1;1 +
mbrack hoặc \lbrack 1 +
m;1brack khi và chỉ khi

    0 < 1 + m < 4 \Leftrightarrow - 1
< m < 3 \Rightarrow m \in ( - 1;3).

  • Câu 31: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 32: Vận dụng cao

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 33: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

  • Câu 34: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;0;0),B(0;2;0),C(0;0;3). Thể tích tứ diện OABC bằng:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (1;0;0) \Rightarrow OA = 1 \\
\overrightarrow{OB} = (0;2;0) \Rightarrow OB = 2 \\
\overrightarrow{OC} = (0;0;3) \Rightarrow OC = 3 \\
\end{matrix} ight.. Dễ thấy tứ diện OABC vuông tại O nên

    V_{OABC} = \frac{1}{6}.OA.OB.OC =
\frac{1}{6}.1.2.3 = 1

    Vậy đáp án đúng là: V = 1.

  • Câu 35: Nhận biết

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 36: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 37: Thông hiểu

    Tích phân I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx} có giá trị là:

     Tích phân I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx} có giá trị là:

    I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx}  = a\int\limits_0^1 {\frac{x}{{x + 1}}dx - 2a\int\limits_0^1 {xdx} }

    = a\left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 - a\left. {\left( {{x^2}} ight)} ight|_0^1 = a\left( {1 - \ln 2} ight) - a =  - a\ln 2

  • Câu 38: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 39: Thông hiểu

    Diện tích hình phẳng giới hạn bởi (C):y =
3x^{4} - 4x^{2} + 5, trục hoành, x
= 1x = 2 là:

    Ta có: 3x^{4} - 4x^{2} + 5 > 0;\forall
x\mathbb{\in R} nên ta có:

    S = \int_{1}^{2}{\left( 3x^{4} - 4x^{2}
+ 5 ight)dx} = \left. \ \left( \frac{3}{5}x^{5} - \frac{4}{3}x^{3} +
5x ight) ight|_{1}^{2} = \frac{214}{15}

  • Câu 40: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo