Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Tìm nguyên hàm của hàm số
?
Ta có:
Cho hàm số
có đạo hàm
với
. Chọn kết luận đúng?
Ta có:
Ta có:
Vậy .
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Tính tích phân
bằng
Ta có:
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Tính diện tích hình phẳng giới hạn bởi ![]()
Xét phương trình hoành độ giao điểm ta có:
Diện tích hình phẳng cần tính là:
Cho hình phẳng
giới hạn bởi đường parabol
và tiếp tuyến của đồ thị hàm số
tại điểm có tọa độ
. Diện tích của hình (H) là:
Xét hàm số trên
. Ta có:
Khi đó phương trình tiếp tuyến tại điểm của đồ thị hàm số
là
Gọi ∆ là đường thẳng có phương trình . Xét phương trình tương giao của (P) và ∆
Gọi là diện tích hình phẳng
khi đó
Vì nên
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Có bao nhiêu số thực
sao cho
?
Ta có:
Do nên có đúng 4 giá trị của
thỏa mãn.
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Trong không gian với hệ trục tọa độ
, mặt phẳng
đi qua hai điểm
cắt các tia
lần lượt tại
sao cho
nhỏ nhất, với
là trọng tâm tam giác
. Biết
, hãy tính
.
Gọi với
.
Khi đó phương trình của .
Vì nên
. Kết hợp với điều kiện
suy ra
và
.
Cũng từ trên ta có .
Trọng tâm của tam giác
có tọa độ
.
Xét hàm số với
.
Ta có .
Bảng biến thiên
đạt giá trị nhỏ nhất khi và chỉ khi
đạt giá trị nhỏ nhất. Điều này xảy ra khi
; lúc đó
và
.
Vậy
Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và
. Độ dài đường sinh
của hình nón bằng:

Gọi I là trung điểm AB, suy ra và
.
Trong tam giác vuông SOA, ta có
Trong tam giác vuông SIA, ta có
Trong tam giác vuông OIA, ta có:
Phân tích vectơ
theo ba vectơ không đồng phẳng
![]()
Ta có 3 vecto không đồng phẳng. Khi đó luôn có :
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Phương trình tổng quát của mặt phẳng
qua điểm
và có cặp vectơ chỉ phương
là:
Vectơ pháp tuyến của là tích có hướng của 2 vecto chỉ phương
có thể thay thế bởi
Phương trình có dạng
Vậy
Trong không gian hệ trục tọa độ
, cho hai vectơ
cùng phương. Tìm cặp số thực
?
Ta có hai vectơ cùng phương
Vậy .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
. Xác định
để hai mặt phẳng
và
song song với nhau?
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi
Tập xác định
Vậy thì hai mặt phẳng
song song với nhau.
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Diện tích S của hình phẳng trên là:
Ta có:
=>
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Trong không gian
. Cho
với
. Biết mặt phẳng
qua điểm
và thể tích tứ diện
đạt giá trị nhỏ nhất. Khi đó phương trình
:
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Trong không gian với hệ tọa độ
, cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Tứ giác
là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm khi đó
ta có là hình bình hành nên
. Vậy tọa độ điểm
.
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Tích phân
bằng:
Ta có:
.
Trong không gian
cho mặt phẳng
. Một vectơ pháp tuyến của mặt phẳng
là:
Một vectơ pháp tuyến của mặt phẳng là:
.
Tìm nguyên hàm của hàm số
bằng:
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Đặt S là diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và các đường thẳng
. Giá trị của
sao cho
là
Diện tích cần tìm chính là tích phân:
Ta có:
Do đó
Vậy là giá trị cần tìm.
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Tìm
?
Ta có:
Lại có
Vậy .