Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Cho đường tròn
và parabol
.
cắt
thành hai phần. Tìm tỉ số diện tích của hai phần đó.
Hoành độ giao điểm của (P) và (C) là:
Xét giao điểm thuộc góc phần tư thứ nhất, với
Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại
Ta có:
Đặt
Khi đó
Diện tích hình tròn
Giả sử
là các hàm số bất kì liên tục trên
và
là các số thực. Mệnh đề nào sau đây sai?
Theo tính chất tích phân ta có:
Vậy mệnh đề sai:
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Trong không gian với hệ tọa độ
, cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Mặt phẳng có một vectơ pháp tuyến là
Từ đó phương trình mặt phẳng là
.
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Cho giá trị của tích phân
,
. Giá trị a.b gần nhất với giá trị nào sau đây?
Ta có:
Tìm nguyên hàm của hàm số ![]()
Đặt
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Cho
là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Đặt . Theo giả thiết ta có:
Ta có:
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Trong không gian
, cho các điểm
. Số điểm cách đều bốn mặt phẳng
là
Gọi là điểm cách đều bốn mặt phẳng đã cho.
Dễ thấy các mặt phẳng lần lượt là các mặt phẳng
.
Mặt phẳng (ABC) có phương trình tổng quát là .
Do I cách đều các mặt phẳng này nên ta có:
Ta có các trường hợp
Trường hợp 1. . Khi đó (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Trường hợp 2. Trong ba số có hai số bằng nhau và bằng số đối của số còn lại.
Khi đó, không mất tính tổng quát ta có thể giả sử (các trường hợp còn lại tương tự) và (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Vậy số điểm cách đều bốn mặt phẳng đã cho là .
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Gọi
là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Cho a, b là các số hữu tỉ thỏa mãn
![]()
Tính giá trị biểu thức M = a + b.
=>
=>
Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho đồ thị hàm số có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Trong không gian
, tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian
là
. Biết vận tốc đầu bằng
. Hỏi trong
giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Ta có:
Vận tốc của vật được tính theo công thức:
Suy ra quãng đường vật đi được tính theo công thức:
Ta có:
Suy ra
Vậy thời điểm chất điểm ở xa nhất về phía bên phải là 2s.
Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng
. Diện tích của thiết diện đó bằng?
Xét hình nón đỉnh S có chiều cao , bán kính đáy
.
Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ
Ta có:
Xét tam giác SOI vuông tại O, ta có
.
Xét tam giác AOI vuông tại I, có:
Vậy diện tích của thiết diện là:
.
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hình hộp chữ nhật
có
và đặt
. Lấy điểm
thỏa
và điểm
thỏa
. (Quan sát hình vẽ).

Xác định tính đúng sai của các khẳng định sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
, với
là các số thực. Đúng||Sai
d)
. Đúng||Sai
Cho hình hộp chữ nhật có
và đặt
. Lấy điểm
thỏa
và điểm
thỏa
. (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với
là các số thực. Đúng||Sai
d) . Đúng||Sai
a) Đúng: Ta có
b) Sai:
c) Đúng:
(vì đôi một vuông góc nên
.
Ta có
.
d) Đúng:
Suy ra .
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Nguyên hàm của hàm số
là:
Ta có:
Biết
với
. Xác định giá trị biểu thức
?
Đặt khi đó ta có:
Vậy .
Ba mặt phẳng
cắt nhau tại điểm A. Tọa độ của điểm A đó là:
Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :
Giải (1),(2) tính theo
được
.
Thế vào phương trình (3) được , từ đó có
Vậy .
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Xác định tích phân
?
Ta có:
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?