Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 2: Vận dụng

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 3: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 4: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3} + 12x và đường thẳng y = - x^{2}?

    Xét các phương trình hoành độ giao điểm:

    - x^{3} + 12x = - x^{2} \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
x = - 3 \\
\end{matrix} ight.

    Diện tích S của hình phẳng (H) là:

    S = \int_{- 3}^{4}{\left| - x^{3} + 12x
- \left( - x^{2} ight) ight|dx} = \int_{- 3}^{4}{\left| - x^{3} +
12x + x^{2} ight|dx}

    = \int_{- 3}^{0}{\left| - x^{3} + 12x +
x^{2} ight|dx} + \int_{0}^{4}{\left| - x^{3} + 12x + x^{2}
ight|dx}

    = \int_{- 3}^{0}{\left( - x^{3} + 12x +
x^{2} ight)dx} + \int_{0}^{4}{\left( - x^{3} + 12x + x^{2}
ight)dx}

    = \left. \ \left( \frac{1}{4}x^{4} -
6x^{2} - \frac{1}{3}x^{3} ight) ight|_{- 3}^{0} + \left. \ \left(
\frac{1}{4}x^{4} - 6x^{2} - \frac{1}{3}x^{3} ight)
ight|_{0}^{4}

    = 0 - \left( \frac{1}{4}.3^{4} - 6.3^{2}
+ \frac{1}{3}.3^{3} ight) + \left( - \frac{1}{4}.4^{4} + 6.4^{2} +
\frac{1}{3}.4^{3} ight) - 0 = \frac{937}{12}

  • Câu 5: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 6: Nhận biết

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho M(1; - 1;2),N(3;1; - 4). Viết phương trình mặt phẳng trung trực của MN.

    Mặt phẳng trung trực MN nhận \frac{1}{2}\overrightarrow{MN} = (1;1; -
3) làm vectơ pháp tuyến và đi qua trung điểm I(2;0; - 1) của MN nên ta có phương trình mặt phẳng MN là: x + y
- 3z - 5 = 0.

  • Câu 9: Nhận biết

    Trong không gian Oxyz, tìm phương trình mặt phẳng (\alpha) cắt ba trục Ox,Oy,Oz lần lượt tại ba điểm A( - 3;0;0),B(0;4;0),C(0;0; -
2)?

    Phương trình mặt phẳng (\alpha): \frac{x}{- 3} + \frac{y}{4} + \frac{z}{- 2}
= 1

    \Leftrightarrow 4x - 3y + 6z = -
12

    \Leftrightarrow 4x - 3y + 6z + 12 =
0

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 3z - 7 = 0 và điểm A( - 1;2;5). Viết phương trình mặt phẳng (Q) đi qua A và song song với (P)?

    Mặt phẳng (Q) và song song với (P) nên (Q) có dạng 2x − y + 3z + D = 0, với D eq - 7

    A ∈ (Q) nên 2 .(−1) − 2 + 3 . 5 + D = 0 ⇔ D = −11.

    Vậy (Q): 2x − y + 3z − 11 = 0.

  • Câu 11: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 12: Nhận biết

    Cho (H) là miền hình phẳng giới hạn bởi các đường x = a;x = b;\left( {a < b} ight) và đồ thị của hai hàm số y = f\left( x ight);y = g\left( x ight). Gọi V là thể tích của vật thể tròn xoay khi quay (H) quanh Ox. Mệnh đề nào dưới đây đúng?

    Thể tích của khối tròn xoay cần tính là: V = \pi \int\limits_a^b {\left| {{f^2}\left( x ight) - {g^2}\left( x ight)} ight|dx}

  • Câu 13: Thông hiểu

    Cho hàm số y = f(x) liên tục, luôn dương trên \lbrack 0;3brack và thỏa mãn I = \int_{0}^{3}{f(x)dx} =
4. Khi đó giá trị của tích phân K =
\int_{0}^{3}{\left( e^{1 + \ln f(x)} + 4 ight)dx} là:

    Ta có:

    K = \int_{0}^{3}{\left( e^{1 + \ln f(x)}
+ 4 ight)dx} = \int_{0}^{3}{\left\lbrack e.e^{\ln f(x)} ightbrack
dx} + \int_{0}^{3}{4dx}

    = e\int_{0}^{3}{f(x)dx} +
\int_{0}^{3}{4dx} = 4e + 12

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(1;0;1),B(0;2;3),C(2;1;0). Độ dài đường cao của tam giác ABC kẻ từ C là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2;2) \Rightarrow \left| \overrightarrow{AB}
ight| = 3 \\
\overrightarrow{AC} = (1;1; - 1) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
4;1;3)

    S_{ABC} = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight| =
\frac{\sqrt{26}}{2}

    S_{ABC} =
\frac{1}{2}d(C;AB).AB

    \Rightarrow d(C;AB) =
\frac{2S_{ABC}}{AB} = \frac{\sqrt{26}}{3}

  • Câu 15: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;4;3) và mặt phẳng (P):2y - z = 0. Tìm điểm C thuộc (P), điểm B thuộc mặt phẳng (Oxy) sao cho chu vi tam giác ABC bé nhất. Giá trị chu vi tam giác ABC bé nhất là:

    Hình vẽ minh họa:

    Gọi H;K lần lượt là hình chiếu của A lên các mặt phẳng (P) và (Oxy) ta được H(1;2;4),K(1;4;0).

    Gọi M, N lần lượt là các điểm đối xứng với A qua các mặt phẳng (P) và (Oxy).

    Khi đó ta có AB = NB,CA = CM nên AB + BC + CA = NB + BC + CM \geq MN = 2KH =
4\sqrt{5}

    Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).

  • Câu 16: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 17: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 19: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 20: Thông hiểu

    Tìm một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1}?

    Ta có: F(x) = \int_{}^{}{\frac{\ln x}{x}\sqrt{\ln^{2}x + 1}dx}

    Đặt \sqrt{ln^{2}x + 1} \Rightarrow t^{2}= \ln^{2}x + 1 \Rightarrow tdt = \frac{\ln x}{x}dx

    Khi đó F(x) = \int_{}^{}{t^{2}dt} =\frac{t^{3}}{3} + C = \frac{\sqrt{\left( \ln^{2}x + 1 ight)^{3}}}{3} +C.

  • Câu 21: Vận dụng

    Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \frac{3R}{2}. Mặt phẳng (\alpha) song song với trục của hình trụ và cách trục một khoảng bằng \frac{R}{2}. Diện tích thiết diện của hình trụ cắt bởi mặt phẳng (\alpha) là:

     Diện tích thiết diện

    Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ.

    Gọi H là trung điểm BC suy ra OH\bot BC suy ra d(O;BC)=\frac{R}{2}

    Khi đó BC=2HB=2\sqrt{OB^2-OH^2}=2\sqrt{R^2-\left(\frac{R}{2}ight)^2}=R\sqrt3

    Suy ra S_{ABCD}=BC\cdot AB=R\sqrt3\cdot\frac{3R}{2}=\frac{3\sqrt3R^2}{2} .

  • Câu 22: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m thỏa mãn \int_{0}^{m}{(2x + 1)dx} < 2?

    Ta có: \int_{0}^{m}{(2x + 1)dx} < 2
\Leftrightarrow \left. \ \left( x^{2} + x ight) ight|_{0}^{m} <
2

    \Leftrightarrow m^{2} + m - 2 < 0
\Leftrightarrow - 2 < m < 1

  • Câu 23: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 24: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 25: Thông hiểu

    Biết rằng f'(x) = x\sqrt{1 +
x^{2}}3f(0) = 4. Tìm hàm số f(x)?

    Ta có: f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{x\sqrt{1 + x^{2}}dx}

    = \frac{1}{2}\int_{}^{}{\left( 1 + x^{2}
ight)^{\frac{1}{2}}d\left( 1 + x^{2} ight)} = \frac{\left( \sqrt{1 +
x^{2}} ight)^{3}}{3} + C

    3f(0) = 4 \Leftrightarrow
3\frac{\left( \sqrt{1 + 0^{2}} ight)^{3}}{3} + 3C = 4 \Leftrightarrow
C = 1

    Vậy f(x) = \frac{\left( \sqrt{1 + x^{2}}
ight)^{3}}{3} + 1

  • Câu 26: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 27: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 28: Vận dụng cao

    Cho hai quả bóng A, B đều chuyển động thẳng, di chuyển ngược chiều và va chạm với nhau. Sau mỗi va chạm, hai quả bóng nảy ngược lại một đoạn thì dừng hẳn. Tính khoảng cách giữa hai quả bóng sau khi dừng hẳn. Biết sau khi va chạm, quả bóng A này ngược lại với vận tốc {v_A}\left( t ight) = 8 - 2t\left( {m/s} ight) và quả bóng B nảy ngược lại với vận tốc {v_b}\left( t ight) = 12 - 4t\left( {m/s} ight).

    Thời gian quả bóng A chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_A}\left( t ight) = 0 \Rightarrow 8 - 2t = 0 \Rightarrow t = 4\left( s ight)

    Quãng đường quả bóng A di chuyển được là: 

    {S_A} = \int\limits_0^4 {\left( {8 - 2t} ight)dt}  = 16\left( m ight)

    Thời gian quả bóng B chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_B}\left( t ight) = 0 \Rightarrow 12 - 4t = 0 \Rightarrow t = 3\left( s ight)

    Quãng đường quả bóng B di chuyển được là:

    {S_B} = \int\limits_0^3 {\left( {12 - 4t} ight)dt}  = 18\left( m ight)

    Vậy khoảng cách hai quả bóng sau khi dừng hẳn là 

    S = {S_A} + {S_B} = 16 + 18 = 34\left( m ight)

  • Câu 29: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 30: Thông hiểu

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 31: Vận dụng

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 33: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 34: Thông hiểu

    Cho tích phân \int_{0}^{4}\frac{dx}{3 +\sqrt{2x + 1}} = a + b.\ln\frac{2}{3} với a;b\mathbb{\in Z}. Mệnh đề nào sau đây đúng?

    Ta có: \int_{0}^{4}\frac{dx}{3 + \sqrt{2x
+ 1}} = \int_{0}^{4}{\left( 1 - \frac{3}{3 + \sqrt{2x + 1}}
ight)d\left( \sqrt{2x + 1} ight)}

    = \left. \ \left\lbrack \sqrt{2x + 1} -3\ln\left( \sqrt{2x + 1} + 3 ight) ightbrack ight|_{0}^{4} = 2 +3\ln\frac{2}{3}

    Suy ra a = 2;b = 3 \Rightarrow a + b =
5.

  • Câu 35: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 36: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 37: Nhận biết

    Trong không gian Oxyz cho ba vectơ \vec a,\,\,\vec b\vec c  khác \vec 0 . Câu nào sai?

     Theo điều kiện để hai vecto cùng phương, ta có:

    \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]=\vec 0  Suy ra 

    • \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]= 0

    sai vì thiếu dấu vecto.

  • Câu 38: Nhận biết

    Tích phân I = \int\limits_1^2 {\left( {{x^2} + \frac{x}{{x + 1}}} ight)dx} có giá trị là:

     Tích phân I = \int\limits_1^2 {\left( {{x^2} + \frac{x}{{x + 1}}} ight)dx} có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_1^2 {\left( {{x^2} + \dfrac{x}{{x + 1}}} ight)dx}  \hfill \\   = \int\limits_1^2 {\left( {{x^2} + 1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {\dfrac{{{x^3}}}{3} + x - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\   = \dfrac{8}{3} + 2 - \ln 3 - \left( {\dfrac{1}{3} + 1 - \ln 2} ight) \hfill \\   = \dfrac{{10}}{3} + \ln 2 - \ln 3 \hfill \\ \end{matrix}

    Nhận xét: Không thể dùng máy tính để tính ra kết quả trực tiếp như trên nhưng ta có thể dùng để kiểm tra kết quả bằng cách thử thay số trong các đáp án.

  • Câu 39: Thông hiểu

    Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng x = {y^2} + 5;x = 3 - y quay quanh Oy.

    Tung độ giao điểm 

    \begin{matrix}   - {y^2} + 5 = 3 - y \Rightarrow \left[ {\begin{array}{*{20}{c}}  {y =  - 1} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow V = \pi \int\limits_{ - 1}^2 {\left| {{{\left( { - {y^2} + 5} ight)}^2} - {{\left( {3 - y} ight)}^2}} ight|dy = \dfrac{{153}}{5}\pi }  \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Tích phân I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx có giá trị là:

     \begin{matrix}  I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx \hfill \\   = \left. {\left( {\dfrac{1}{4}{x^4} + \dfrac{a}{2}{x^2} + 2x} ight)} ight|_{ - 1}^0 \hfill \\   = \dfrac{7}{4} - \dfrac{a}{2} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo