Trong không gian
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn
?
Ta có:
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn
?
Ta có:
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường
đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?
Quãng đường xe đi được trong 12s đầu là
Sau khi đi được 12s vật đạt vận tốc , sau đó vận tốc của vật có phương trình
Vật dừng hẳn sau 2s kể từ khi phanh.
Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là
Vậy tổng quãng đường ô tô đi được là
Diện tích hình phẳng được gạch chéo trong hình bên bằng

Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số ![]()
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Tìm nguyên hàm của hàm số
?
Ta có:
Trong mặt phẳng tọa độ
, cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a) là một nguyên hàm của
. Đúng||Sai
b) . Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Cho hình phẳng
giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Cho hình chóp
có đáy là hình vuông
cạnh bằng
và các cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
và
. Số đo của góc
bằng bao nhiêu?
Hình vẽ minh họa
Do ABCD là hình vuông cạnh a suy ra
suy ra tam giác SAC vuông tại S.
Từ giả thiết ta có MN là đường trung bình của tam giác
Khi đó suy ra
Trong không gian hệ trục tọa độ
, cho các điểm
và mặt phẳng
. Tìm hoành độ
của điểm
thuộc mặt phẳng (P) sao cho
đạt giá trị nhỏ nhất.
Trong không gian hệ trục tọa độ , cho các điểm
và mặt phẳng
. Tìm hoành độ
của điểm
thuộc mặt phẳng (P) sao cho
đạt giá trị nhỏ nhất.
Trong không gian
, cho điểm
thuộc mặt phẳng
. Mệnh đề nào dưới đây đúng?
Ta có điểm thuộc mặt phẳng
nên:
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?
Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì
Do đó (R) có dạng .
Gọi .
Khi đó trung điểm M của đoạn AB nằm trên (R), tức .
Suy ra .
Vậy hay
.
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Trong không gian cho hai đường thẳng
lần lượt có vectơ chỉ phương
. Gọi
là góc giữa hai đường thẳng
. Khẳng định nào sau đây đúng?
Khẳng định đúng: “Nếu thì
”.
Một hình nón có bán kính đáy R, góc ở đỉnh là
. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:

Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Cho biết
với
là phân số tối giản. Giá trị của biểu thức
bằng:
Đặt . Khi đó
Đổi cận
. Suy ra
. Do đó
.
Câu nào sau đây đúng? Trong không gian Oxyz:
A sai và có thể (P) và (Q) trùng nhau
B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.
C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Tìm nguyên hàm của hàm số
?
Ta có:
Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật
trong đó
(giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn
giây so với anh A và có gia tốc bằng
(
là hằng số). Sau khi anh B xuất phát được
giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?
Quãng đường anh A đi được cho đến khi hai người gặp nhau là:
Vận tốc của anh B tại thời điểm tính từ lúc anh B xuất phát là:
Quãng đường anh B đi được cho đến khi hai người gặp nhau là:
Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là:
Giá trị của tích phân
. Biểu thức
có giá trị là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Trong không gian cho tam giác
. Tìm
sao cho giá trị của biểu thức
đạt giá trị nhỏ nhất?
Gọi G là trọng tâm tam giác ABC
Suy ra G cố định và
Dấu “=” xảy ra khi
Vậy với
là trọng tâm tam giác
.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Một mặt phẳng
đi qua hai điểm
và vuông góc với
có dạng
. Khẳng định nào sau đây là đúng?
Vì (Q) vuông góc với (P) nên (Q) nhận véc-tơ pháp tuyến làm véc-tơ chỉ phương.
Mặt khác do (Q) đi qua hai điểm A, B nên nhận làm véc-tơ chỉ phương.
Vậy (Q) có véc-tơ pháp tuyến là
Vậy phương trình mặt phẳng (Q) là:
Vậy .
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Trong không gian với hệ trục tọa độ
, cho hình bình hành
. Biết
và
. Diện tích hình bình hành
là:
Ta có:
Suy ra diện tích ABCD là:
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3
Cho hình phẳng
giới hạn bởi Parabol
và đường cong có phương trình
như hình vẽ:

Diện tích của hình phẳng
bằng:
Phương trình hoành độ giao điểm:
Diện tích hình phẳng bằng:
Đặt
Trong không gian tọa độ
cho các điểm
. Hỏi có bao nhiêu mặt phẳng cách đều 5 điểm trên?
Hình vẽ minh họa
Ta có: . Suy ra
là hình bình hành.
nên
là hình chóp đỉnh E có đáy ABCD là hình bình hành.
Gọi lần lượt là trung điểm các cạnh
.
Do đó có 5 mặt phẳng cách đều 5 điểm là:
Mặt phẳng qua 4 trung điểm của 4 cạnh bên: (GHIK)
Mặt phẳng qua 4 trung điểm lần lượt của EC, ED, AD, BC: (IKQN)
Mặt phẳng qua 4 trung điểm của EB, EA, AD, BC: (HGQN)
Mặt phẳng qua 4 trung điểm của EA, ED, CD, AB: (GKPM)
Mặt phẳng qua 4 trung điểm của EB, EC, CD, AB: (HIPM)