Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 2: Thông hiểu

    Cho điểm M chia đoạn thẳng AB theo tỉ số k;(k eq 1) thì ta có: \overrightarrow{MA} =
k.\overrightarrow{MB}. Khi đó với một điểm O tùy ý ta có:

    Ta có:

    \overrightarrow{MA} =
k.\overrightarrow{MB} \Rightarrow \overrightarrow{MO} +
\overrightarrow{OA} = k.\left( \overrightarrow{MO} + \overrightarrow{OB}
ight)

    \Rightarrow (1 - k)\overrightarrow{MO} =
k.\overrightarrow{OB} - \overrightarrow{OA}

    \Rightarrow \overrightarrow{MO} =
\frac{k.\overrightarrow{OB} - \overrightarrow{OA}}{1 - k} \Rightarrow
\overrightarrow{OM} = \frac{\overrightarrow{OA} -
k.\overrightarrow{OB}}{1 - k}

  • Câu 3: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 4: Thông hiểu

    Cho hàm số F(x) = \left( ax^{2} + bx - c
ight).e^{2x} là một nguyên hàm của hàm số f(x) = \left( 2018x^{2} - 3x + 1
ight)e^{2x} trên khoảng ( -
\infty; + \infty). Giá trị biểu thức a + 2b + 4c bằng:

    Ta có: F'(x) = (2ax + b)e^{2x} +
2\left( ax^{2} + bx - c ight)e^{2x}

    = \left\lbrack 2ax^{2} + (2b + 2a)x + b
- 2c ightbrack e^{2x}

    Theo bài ra ta có:

    \Rightarrow \left\lbrack 2ax^{2} + (2b +
2a)x + b - 2c ightbrack e^{2x} = \left( 2018x^{2} - 3x + 1
ight)e^{2x}

    \Rightarrow \left\{ \begin{matrix}2a = 2018 \\2(a + b) = - 3 \\b - 2c = 1 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1009 \\b = \dfrac{- 2021}{2} \\c = \dfrac{- 2023}{4} \\\end{matrix} ight.\  \Rightarrow a + 2b + 4c = - 3035

  • Câu 5: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 6: Thông hiểu

    Cho hình hộp ABCD.EFGH\overrightarrow{AB} =\overrightarrow{a};\overrightarrow{AD} =\overrightarrow{b};\overrightarrow{AE} = \overrightarrow{c}. Gọi I là trung điểm của đoạn BG. Biểu thị \overrightarrow{AI} theo ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AI} =
\overrightarrow{AB} + \overrightarrow{BI} = \overrightarrow{a} +
\frac{1}{2}\overrightarrow{BG}

    = \overrightarrow{a} + \frac{1}{2}\left(
\overrightarrow{BF} + \overrightarrow{BC} ight) = \overrightarrow{a} +
\frac{1}{2}\left( \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 7: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 8: Nhận biết

    Tích vô hướng của 2 vectơ \overrightarrow{a},\overrightarrow{b}trong không gian được tính bằng:

    Theo định nghĩa tích vô hướng của hai vecto, ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight).

  • Câu 9: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(0;1;2),B(2; - 2;1),C( - 2;0;1). Phương trình mặt phẳng đi qua A và vuông góc với BC là:

    Ta có: \overrightarrow{n} =
\frac{1}{2}\overrightarrow{BC} = ( - 2;1;0)

    Vậy phương trình mặt phẳng đi qua A và vuông góc với BC là:

    - 2(x - 0) + 1(y - 1) = 0

    \Leftrightarrow - 2x + y - 1 =
0

    \Leftrightarrow 2x - y + 1 =
0

  • Câu 10: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 11: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2; - 1),B(1;4;3). Độ dài của đoạn AB

    Ta có:

    \overrightarrow{AB} = (0;6;4) khi đó độ dài đoạn AB bằng:

    \left| \overrightarrow{AB} ight| =
\sqrt{0^{2} + 6^{2} + 4^{2}} = \sqrt{56} = 2\sqrt{13}

  • Câu 12: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 13: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 14: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 15: Thông hiểu

    Tính thể tích V của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = x^{2} + 1;y = x^{3} + 1 quay quanh Ox.

    Xét phương trình hoành độ giao điểm:

    x^{2} + 1 = x^{3} + 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Thể tích khối tròn xoay cần tính là:

    V = \pi\int_{0}^{1}{\left| \left( x^{2}
+ 1 ight)^{2} - \left( x^{3} + 1 ight)^{2} ight|dx}

    = \pi\left| \int_{0}^{1}{\left\lbrack
\left( x^{2} + 1 ight)^{2} - \left( x^{3} + 1 ight)^{2}
ightbrack dx} ight|

    = \pi\left| \int_{0}^{1}{\left( - x^{6}
+ x^{4} - 2x^{3} + 2x^{2} ight)dx} ight|

    = \pi\left| \left. \ \left( -
\frac{1}{7}x^{7} + \frac{1}{5}x^{5} - \frac{1}{2}x^{4} +
\frac{2}{3}x^{3} ight) ight|_{0}^{1} ight| =
\frac{47\pi}{210}

  • Câu 16: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 17: Nhận biết

    Cho hình phẳng D giới hạn bới đường cong y = \sqrt {{x^2} + 1}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích cần tìm là: v = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } ight)}^2}dx}  = \frac{{4\pi }}{3}

  • Câu 18: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 19: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 20: Nhận biết

    Phương trình tổng quát của mặt phẳng (\alpha) qua điểm B (3, 4, -5) và có cặp vectơ chỉ phương \overrightarrow a  = \left( {3,1, - 1} ight),\,\,\,\overrightarrow b  = \left( {1, - 2,1} ight)  là:

    Vectơ pháp tuyến của (\alpha) là tích có hướng của 2 vecto chỉ phương \overrightarrow n  = \left[ {\overrightarrow a \overrightarrow {,b} } ight] = \left( { - 1, - 4, - 7} ight) có thể thay thế bởi \overrightarrow n  = \left( {1,4,7} ight)

    Phương trình  (\alpha) có dạng x + 4y + 7z + D = 0

    B \in \left( \alpha  ight) \Leftrightarrow 3 + 16 - 35 + D = 0 \Leftrightarrow D = 16

    Vậy (\alpha): x + 4y +7z +16 = 0

  • Câu 21: Thông hiểu

    Diện tích hình phẳng giới hạn bởi (C):y =
3x^{4} - 4x^{2} + 5, trục hoành, x
= 1x = 2 là:

    Ta có: 3x^{4} - 4x^{2} + 5 > 0;\forall
x\mathbb{\in R} nên ta có:

    S = \int_{1}^{2}{\left( 3x^{4} - 4x^{2}
+ 5 ight)dx} = \left. \ \left( \frac{3}{5}x^{5} - \frac{4}{3}x^{3} +
5x ight) ight|_{1}^{2} = \frac{214}{15}

  • Câu 22: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Tính thể tích khối tròn xoay sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi hai đồ thị y = x^{2} - 4x + 6;y = - x^{2} - 2x +
6?

    Phương trình hoành độ giao điểm

    x^{2} - 4x + 6 = - x^{2} - 2x + 6
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Gọi (H) là hình phẳng giới hạn bởi các đường y = x^{2} - 4x + 6;y = - x^{2}
- 2x + 6;x = 0;x = 1

    Thể tích khối tròn xoay tạo thành khi quay (H) quanh Ox l

    Diện tích hình phẳng là:

    V = \left| \pi\int_{0}^{1}{\left\lbrack
\left( x^{2} - 4x + 6 ight)^{2} - \left( - x^{2} - 2x + 6 ight)^{2}
ightbrack dx} ight|

    = \left| \pi\int_{0}^{1}{\left\lbrack
\left( 2x^{2} - 12 ight)(12 - 6x) ightbrack dx}
ight|

    = \left| \pi\int_{0}^{1}{\left( -
12x^{3} + 36x^{2} - 24x ight)dx} ight|

    = \left| \pi\left. \ \left( - 3x^{4} +
36x^{2} - 24x ight) ight|_{0}^{1} ight| = 3\pi

  • Câu 24: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 25: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 26: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 27: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 28: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho các hàm số f(x)F(x) liên tục trên \mathbb{R} thỏa mãn F'(x) = f(x) với \forall x\mathbb{\in R}. Tính I = \int_{0}^{1}{f(x)dx}, biết rằng F(0) = 2;F(1) = 5?

    Ta có: I = \int_{0}^{1}{f(x)dx} = F(1) -
F(0) = 3.

  • Câu 30: Thông hiểu

    Trong không gian Oxyz, cho ba điểm A(0;1; - 2),B(3;1;1);C( -
2;0;3). Mặt phẳng (ABC) đi qua điểm nào dưới đây?

    Ta có: \overrightarrow{AB} =
(3;0;3),\overrightarrow{AC} = ( - 2; - 1;5) suy ra \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3; - 21; -
3)

    Mặt phẳng (ABC) đi qua điểm B (3; 1; 1), có 1 vectơ pháp tuyến \overrightarrow{n} = \frac{1}{3}\left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (1; - 7; -
1) nên có phương trình là: x - 7y -
z + 5 = 0

    2 - 7.1 - 0 + 5 = 0 nên N(2;1;0) \in (ABC).

  • Câu 31: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 32: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 4x\left(
1 + \ln x ight) là:

    Ta có: \left\{ \begin{gathered}
  u = 1 + \ln x \hfill \\
  dv = 4xdx \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  du = \frac{1}{x}dx \hfill \\
  v = 2{x^2} \hfill \\ 
\end{gathered}  ight.

    Khi đó \int_{}^{}{f(x)dx} =
\int_{}^{}{4x\left( 1 + \ln x ight)dx} = \left( 1 + \ln x
ight)2x^{2} - \int_{}^{}{2xdx}

    = \left( 1 + \ln x ight)2x^{2} - x^{2}
+ C = x^{2}(1 + 2lnx) + C

  • Câu 33: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 34: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 35: Nhận biết

    Trong không gian hệ trục tọa độ Oxyzcho \overrightarrow{u} = 2\overrightarrow{i} +
\overrightarrow{k}. Khi đó tọa độ \overrightarrow{u} với hệ Oxyz là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}
+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (x;y;z)

    Lại có \overrightarrow{u} =
2\overrightarrow{i} + \overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (2;0;1)

  • Câu 36: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 37: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 38: Thông hiểu

    Biết rằng \int_{3}^{4}{\frac{5x -8}{x^{2} - 3x + 2}dx} = a\ln3 + b\ln2 + c\ln5 với a;b;c là các số hữu tủ. Giá trị của 2^{a - 3b + c} bằng:

    Ta có:

    \int_{3}^{4}{\frac{5x - 8}{x^{2} - 3x +2}dx} = \int_{3}^{4}{\left( \frac{3}{x - 1} + \frac{2}{x - 2}ight)dx}

    = \left. \ 3\ln|x - 1| ight|_{3}^{4} +2\left. \ \ln|x - 2| ight|_{3}^{4}

    = 3\ln2 - 3\ln2 + 2\ln2 = - \ln2 +3\ln3

    \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - 1 \\c = 0 \\\end{matrix} ight.\  \Rightarrow 2^{a - 3b + c} = 2^{6} =64

  • Câu 39: Vận dụng

    Trong không gian với hệ tọa đô Oxyz, cho điểm M(1;2;4). Gọi (P) là mặt phẳng đi qua M và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho thể tích tứ diện O.ABC nhỏ nhất. (P) đi qua điểm nào dưới đây?

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    M \in (P) \Rightarrow (P):\frac{1}{a}
+ \frac{2}{b} + \frac{4}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{2}{b} +
\frac{4}{c} \geq 3\sqrt[3]{\frac{1.2.4}{abc}} \Rightarrow abc \geq
8.27

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq 36

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{2}{b} = \frac{4}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = 12 \\
\end{matrix} ight.

    Phương trình mặt phẳng (P)\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1
\Rightarrow 4x + 2y + z - 12 = 0

    Mặt phẳng (P) đi qua điểm (2;2;0).

  • Câu 40: Vận dụng cao

    Cho hàm số y = f\left( x ight) liên tục và dương trên \mathbb{R}, hình phẳng giới hạn bởi các đường y = g\left( x ight) = \left( {x - 1} ight)f\left( {{x^2} - 2x + 1} ight), trục hoành và x = 1;x = 2 có diện tích bằng 5. Tính tích phân I = \int\limits_0^1 {f\left( x ight)dx}

    Ta có: J = \int\limits_1^1 {\left| {\left( {x - 1} ight)f{{\left( {x - 1} ight)}^2}} ight|dx}  = 5

    Đặt t = x - 1 ta được:

    J = \int\limits_0^1 {t.f\left( {{t^2}} ight)dt}  = 5 \Rightarrow \int\limits_0^1 {f\left( {{t^2}} ight)d\left( {{t^2}} ight)}  = 10

    => I = \int\limits_0^1 {f\left( x ight)dx}  = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo