Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 2: Vận dụng cao

    Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox,y'Oy,z'Oz lần lượt tại các điểm A,B,C sao cho OA = OB = 2OC eq 0?

    Đặt A(a;0;0),B(0;b;0),C(0;0;c) với abc eq 0.

    Phương trình mặt phẳng (P) đi qua ba điểm A, B, C có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Do OA = OB = 2OC nên ta có |a| = |b| = 2|c|.

    Suy ra a = ±2c, b = ±2c.

    Nếu a = 2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{9}{2}.

    Ta có (P): x + y + 2z − 9 = 0.

    Nếu a = 2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} -
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{5}{2}

    Ta có (P): x − y + 2z − 5 = 0.

    Nếu a = −2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{7}{2}

    Ta có (P): − x + y + 2z − 7 = 0.

    Nếu a = −2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{- 2c} + \frac{3}{c} = 1 \Rightarrow c =
\frac{3}{2}

    Ta có (P): − x − y + 2z − 3 = 0.

    Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.

  • Câu 3: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 4: Nhận biết

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 5: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 6: Vận dụng

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Cho tứ diện đều ABCD với I;J lần lượt là trung điểm của AB;CD. Tính cosin của góc giữa hai đường thẳng CI;AJ?

    Hình vẽ minh họa

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \overrightarrow{AB}.\overrightarrow{AC}
= \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AD}.\overrightarrow{AB} = \frac{a^{2}}{2}

    Ta có: \overrightarrow{AJ} =
\frac{1}{2}\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CI} =
\overrightarrow{AI} - \overrightarrow{AC} =
\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}

    Do đó: \overrightarrow{CI}.\overrightarrow{AJ} =
\frac{1}{4}\left( \overrightarrow{AB} - 2\overrightarrow{AC}
ight)\left( \overrightarrow{AC} + \overrightarrow{AD} ight) = -
\frac{1}{2}a^{2}

    Ta lại có AJ = CI =
\frac{a\sqrt{3}}{2} suy ra \cos\left( \overrightarrow{CI};\overrightarrow{AJ}
ight) = - \frac{2}{3}

    Vậy đáp án cần tìm là \frac{2}{3}.

  • Câu 8: Thông hiểu

    Cho hàm số y = \cos4x có một nguyên hàm là F(x); F\left( \frac{\pi}{4} ight) = 2. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\cos4x}dx =\frac{1}{4}\sin4x + C

    F\left( \frac{\pi}{4} ight) = 2
\Rightarrow C = 2

    Ta được F(x) = \frac{1}{4}\sin4x +2

    \Rightarrow \int_{}^{}{F(x)dx} =\int_{}^{}{\left( \frac{1}{4}\sin4x + 2 ight)dx}

    = - \frac{\cos4x}{16} + 2x +C

  • Câu 9: Thông hiểu

    Một ô tô đang chạy với vận tốc 10\
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 2t +
10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

    Khi xe dừng hẳn thì vận tốc bằng 0.

    Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là - 2t + 10 = 0 \Leftrightarrow t = 5(\
s)

    Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là

    S_{2} = \int_{0}^{5}{( - 2t + 10)}dt =
\left. \ \left( - t^{2} + 10t ight) ight|_{0}^{5} = 25m

    Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc 10\ m/s và 5 s ô tô chuyển động chậm dần đều.

    Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là S_{1} = 3.10 = 30\ m

    Vậy trong 8 giây cuối ô tô đi được quang đường S = S_{1} + S_{2} = 30 + 25 = 55m

  • Câu 10: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 11: Thông hiểu

    Một ô tô đang chạy với vận tốc 20m/s thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + 20(m/s) trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

    Khi vật dừng hẳn thì v = 0 \Rightarrow -
4t + 20 = 0 \Rightarrow t = 5(s)

    Quãng đường vật đi được trong khoảng thời gian trên là:

    S(t) = \int_{0}^{5}{v(t)dt} =
\int_{0}^{5}{( - 4t + 20)dt} = 50m

  • Câu 12: Thông hiểu

    Cho \int {f\left( x ight)dx}  = F\left( x ight) + C. Với a e 0, khẳng định nào sau đây đúng?

     Xét \int {f\left( {ax + b} ight)dx}, đặt t = ax + b

    => I = \int {f\left( t ight)d\left( {\frac{{t - b}}{a}} ight) = \frac{1}{a}} \int {f\left( t ight)dt = \frac{1}{a}} \int {f\left( x ight)d} x

    => \int {f\left( {ax + b} ight)d\left( {ax + b} ight) = \frac{1}{a}\left[ {F\left( {ax + b} ight) + C'} ight] = \frac{1}{a}F\left( {ax + b} ight) + C}

  • Câu 13: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u};\overrightarrow{CA'} =
\overrightarrow{v};\overrightarrow{BD'} =
\overrightarrow{x};\overrightarrow{DB'} =
\overrightarrow{y}. Chọn khẳng định đúng?

    I là tâm hình bình hành ABCD nên

    4\overrightarrow{OI} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}

    \Leftrightarrow 4\overrightarrow{OI} =
\frac{1}{2}\left( \overrightarrow{C'A} + \overrightarrow{D'B} +
\overrightarrow{A'C} + \overrightarrow{B'D} ight)

    \Leftrightarrow 4\overrightarrow{OI} = -
\frac{1}{2}\left( \overrightarrow{AC'} + \overrightarrow{BD'} +
\overrightarrow{CA'} + \overrightarrow{DB'} ight)

    \Leftrightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} ight)

  • Câu 14: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 15: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 16: Nhận biết

    Trong không gian Oxyz, hãy viết phương trình của mặt phẳng (P) đi qua điểm M(0; - 1;0) và vuông góc với đường thẳng OM.

    Mặt phẳng (P) đi qua điểm M(0; -
1;0) và có một véc-tơ pháp tuyến là \overrightarrow{OM} = (0; - 1;0) nên có phương là:

    0(y - 0) + ( - 1)(y + 1) + 0(z - 0) = 0
\Leftrightarrow y + 1 = 0.

  • Câu 17: Vận dụng

    Tích phân I = \int\limits_{ - 1}^{\frac{1}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx} có giá trị là:

    Ta có: \left( {5 + 4x - {x^2}} ight)' = 4 - 2x và  4x - 3 = 5 - 2\left( {4 - 2x} ight)

    I = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  - \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Xét {I_1} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {9 - {{\left( {x - 2} ight)}^2}} }}dx}

    Đặt x - 2 = 3\sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = 3\cos tdt

    Đổi cận \left\{ \begin{gathered}  x = \frac{7}{2} \Rightarrow t = \frac{\pi }{6} \hfill \\  x = \frac{1}{2} \Rightarrow t =  - \frac{\pi }{6} \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{5.3\cos t}}{{\sqrt {9 - 9{{\sin }^2}t} }}dt}  = \frac{{5\pi }}{3}

    Xét {I_2} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Đặt t = 5 + 4x - {x^2} \Rightarrow dt = 4 - 2x

    Đổi cận \left\{ \begin{gathered}  x = \frac{1}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\  x = \frac{7}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\ \end{gathered}  ight. \Rightarrow {I_2} = 0

    \Rightarrow I = \frac{{5\pi }}{3}

  • Câu 18: Thông hiểu

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a;x = b như hình vẽ sau:

    Hỏi khẳng định nào dưới đây là khẳng định đúng?

    Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành, đường thẳng x = a;x = b ta có: S = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}.

  • Câu 20: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

  • Câu 21: Vận dụng cao

    Tích phân I = \int\limits_0^{\frac{\pi }{4}} {\frac{{2x - \sin x}}{{2 - 2\cos x}}dx} có giá trị là:

    Ta biến đổi: I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{4}} {\frac{{2x - \sin x}}{{2 - 2\cos x}}dx}  = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{x}{{1 - \cos x}}dx}  - \frac{1}{2}\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\sin x}}{{1 - \cos x}}dx}

    Xét  {I_1} = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{x}{{1 - \cos x}}dx}  = \frac{1}{2}\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{x}{{{{\sin }^2}\frac{x}{2}}}dx}

    Đặt \left\{ \begin{gathered}  u = x \hfill \\  dv = \frac{1}{{{{\sin }^2}\frac{x}{2}}}dx \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  du = dx \hfill \\  v =  - 2\cot \frac{x}{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \frac{1}{2}\left[ {\left. {\left( { - 2x.\cot \frac{x}{2}} ight)} ight|_{\frac{\pi }{3}}^{\frac{\pi }{2}} + 2\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\cot \frac{x}{2}dx} } ight] = \frac{1}{2}\left[ { - \pi  + \frac{{2\pi \sqrt 3 }}{3} + 4\ln \sqrt 2 } ight]

    Xét {I_2} = \frac{1}{2}\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\sin x}}{{1 - \cos x}}dx}

    Đặt t = 1 - \cos x \Rightarrow dt = \sin xdx

    Đổi cận \left\{ \begin{gathered}  x = \frac{\pi }{3} \Rightarrow t = \frac{1}{2} \hfill \\  x = \frac{\pi }{2} \Rightarrow t = 1 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_2} = \frac{1}{2}\int\limits_{\frac{1}{2}}^1 {\frac{1}{t}dt = \frac{1}{2}\left. {\left( {\ln \left| t ight|} ight)} ight|} _{\frac{1}{2}}^1 = \frac{1}{2}\ln 2

    I = {I_1} - {I_2} = \frac{1}{2}\left( { - \pi  + \frac{{2\pi \sqrt 3 }}{3} + 4\ln \sqrt 2  - \ln 2} ight)

  • Câu 22: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 23: Nhận biết

    Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight).

    Tìm tọa độ trọng tâm G của tam giác ABC đã cho?

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:

    \Rightarrow G\left\{ \begin{array}{l}x = \frac{1}{3}\left( {2 - 1 + 4} ight) = \dfrac{5}{3}\\y = \frac{1}{3}\left( {4 + 3 - 2} ight) = \dfrac{5}{3}\\z = \frac{1}{3}\left( { - 3 - 2 + 3} ight) = \dfrac{{ - 2}}{3}\end{array} ight.

  • Câu 24: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 26: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 27: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 28: Thông hiểu

    Cho hình vẽ:

    Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y =
f(x), trục hoành và hai đường thẳng x = a,x = b,(a < b) (phần tô đậm trong hình vẽ) tính theo công thức:

    Áp dụng công thức tính diện tích hình phẳng ta có:

    S = \int_{a}^{b}{\left| f(x) ight|dx}
= \int_{a}^{c}{\left\lbrack 0 - f(x) ightbrack dx} +
\int_{c}^{b}{\left\lbrack f(x) - 0 ightbrack dx}

    = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}

    Vậy đáp án cần tìm là: S = -
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}.

  • Câu 29: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = \frac{x - 1}{x + 2} và các đường thẳng y = 2;y = - 2x - 4 như hình vẽ:

    Phương trình hoành độ giao điểm

    \frac{x - 1}{x + 2} = - 2x - 4\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét - 2x - 4 = 0 \Leftrightarrow x = -
3

    Xét \frac{x - 1}{x + 2} = 2
\Leftrightarrow x = - 5

    Diện tích hình phẳng là:

    S = \int_{- 5}^{\frac{- 7}{2}}{\left(
\frac{x - 1}{x + 2} - 2 ight)dx} + \int_{- \frac{7}{2}}^{- 3}{( - 2x -
4 - 2)dx}

    = - \frac{5}{4} + 3\ln2

  • Câu 30: Nhận biết

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 31: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 32: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 33: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P) đi qua điểm M(3; - 1;4), đồng thời vuông góc với giá của vectơ \overrightarrow{a} =
(1;1;2) có phương trình là:

    Mặt phẳng (P) nhận vectơ \overrightarrow{a} = (1;1;2) làm vectơ pháp tuyến và đi qua điểm M(3; -
1;4) nên có phương trình là1(x - 3)
- 1(y + 1) + 2(z - 4) = 0

    \Leftrightarrow x - y + 2z - 12 =
0.

  • Câu 34: Nhận biết

    Cho hình phẳng D giới hạn bới đường cong y = \sqrt {{x^2} + 1}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích cần tìm là: v = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } ight)}^2}dx}  = \frac{{4\pi }}{3}

  • Câu 35: Thông hiểu

    Thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường y = x\sqrt {\ln \left( {1 + {x^3}} ight)} ;y = 0;x = 1, khi xoay quanh trục Ox.

     Phương trình hoành độ giao điểm là: x\sqrt {\ln \left( {1 + {x^3}} ight)}  = 0 \Leftrightarrow x = 0

    Gọi là thể tích khối tròn xoay cần tìm ta có: V= \pi \int\limits_0^1 {{x^2}\ln \left( {1 + {x^3}} ight)dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = \ln \left( {1 + {x^3}} ight)} \\   {dv = {x^2}dx} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {du = \dfrac{{3{x^2}}}{{1 + {x^3}}}dx} \\   {v = \dfrac{{{x^3} + 1}}{3}} \end{array}} ight.

    \begin{matrix}   \Rightarrow V = \pi \left\{ {\left[ {\dfrac{{{x^3} + 1}}{3}\ln \left( {1 + {x^3}} ight)} ight]_0^1 - \int\limits_0^1 {{x^2}dx} } ight\} \hfill \\   \Rightarrow V = \pi \left( {\dfrac{{2\ln 2}}{3} - \dfrac{1}{3}} ight) \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 37: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 38: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 39: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

  • Câu 40: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng song song với mặt phẳng (\beta):2x - 4y + 4z + 3 = 0 và cách điểm A(2; - 3;4) một khoảng k = 3. Phương trình mặt phẳng (\alpha) là:

    (\alpha)//(\beta) suy ra (\alpha):2x - 4y + 4z + m = 0;(m eq
3)

    Theo giả thiết ta có: d\left( A;(\alpha)
ight) = k = 3

    \Leftrightarrow \frac{|32 + m|}{6} = 3
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 14 \\
m = - 50 \\
\end{matrix} ight.

    Vậy x - 2y + 2z - 25 = 0 hoặc x - 2y + 2z - 7 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo