Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xác định tích phân I =
\int_{1}^{5}{\frac{1}{1 - 2x}dx}?

    Ta có:

    I = \int_{1}^{5}{\frac{1}{1 - 2x}dx} = -
\frac{1}{2}\int_{1}^{5}\frac{d(1 - 2x)}{1 - 2x}

    = - \frac{1}{2}.\left. \ \ln|1 - 2x|ight|_{1}^{5} = - \ln3

  • Câu 2: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;2;3);\overrightarrow{b} =
(2;2; - 1);\overrightarrow{c} = (4;0; - 4). Tọa độ vectơ \overrightarrow{d} = \overrightarrow{a} -
\overrightarrow{b} + 2\overrightarrow{c} là:

    Ta có:

    \overrightarrow{d} = \overrightarrow{a}
- \overrightarrow{b} + 2\overrightarrow{c} = \left( 1 - 2 + 2.4;2 - 2 +
2.0;3 + 1 + 2.( - 4) ight) = (7;0; - 4)

    Vậy \overrightarrow{d}(7;0; -
4)

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2; - 2),B(3; - 1;0). Đường thẳng AB cắt mặt phẳng (P):x + y - z + 2 = 0 tại điểm I. Tỉ số \frac{IA}{IB} bằng

    Ta có: \frac{IA}{IB} = \frac{d\left(
A;(P) ight)}{d\left( B;(P) ight)} =
\frac{8}{\sqrt{3}}:\frac{4}{\sqrt{3}} = 2

  • Câu 4: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 5: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),B( - 2;0;3),M(0;0;1)N(0;3;1). Mặt phẳng (P) đi qua các điểm M;N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Hỏi có bao nhiêu mặt phẳng (P) thỏa mãn đề bài?

    Gọi \overrightarrow{n} = (a;b;c) là vectơ pháp tuyến của (P). Khi đó (P): ax + by + cz + d = 0.

    M(0; 0; 1) ∈ (P) ⇔ c + d = 0 ⇔ c = −d.

    N(0; 3; 1) ∈ (P) ⇔ 3b + c + d = 0 ⇔ 3b = 0 ⇔ b = 0.

    Do đó (P): ax − dz + d = 0

    Khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P)

    \frac{| - 2a - 3d + d|}{\sqrt{a^{2} +
d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} + d^{2}}}

    \Leftrightarrow \frac{\left| - 2(a + d)
ight|}{\sqrt{a^{2} + d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} +
d^{2}}} (luôn đúng)

    Vậy có vô số mặt phẳng (P).

  • Câu 7: Thông hiểu

    Biết rằng \int_{3}^{4}{\frac{5x -8}{x^{2} - 3x + 2}dx} = a\ln3 + b\ln2 + c\ln5 với a;b;c là các số hữu tủ. Giá trị của 2^{a - 3b + c} bằng:

    Ta có:

    \int_{3}^{4}{\frac{5x - 8}{x^{2} - 3x +2}dx} = \int_{3}^{4}{\left( \frac{3}{x - 1} + \frac{2}{x - 2}ight)dx}

    = \left. \ 3\ln|x - 1| ight|_{3}^{4} +2\left. \ \ln|x - 2| ight|_{3}^{4}

    = 3\ln2 - 3\ln2 + 2\ln2 = - \ln2 +3\ln3

    \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - 1 \\c = 0 \\\end{matrix} ight.\  \Rightarrow 2^{a - 3b + c} = 2^{6} =64

  • Câu 8: Vận dụng

    Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và \widehat {SAO} = {30^0},\widehat {SAB} = {60^0}. Độ dài đường sinh \ell của hình nón bằng:

     Độ dài đường sinh

    Gọi I là trung điểm AB, suy ra OI \bot AB,{m{ }}SI \bot ABOI = a.

    Trong tam giác vuông SOA, ta có OA = SA.\cos \widehat {SAO} = \frac{{SA\sqrt 3 }}{2}

    Trong tam giác vuông SIA, ta có IA = SA.\cos \widehat {SAB} = \frac{{SA}}{2}

    Trong tam giác vuông OIA, ta có:

    O{A^2} = O{I^2} + I{A^2} \Leftrightarrow \frac{3}{4}S{A^2} = {a^2} + \frac{1}{4}S{A^2} \Rightarrow SA = a\sqrt 2 .

  • Câu 9: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 10: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 11: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 12: Vận dụng

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 13: Vận dụng

    Tốc độ tăng trưởng bán kính của thân cây được tính bằng công thức f\left( t ight) = 1,5 + \sin \left( {\frac{{\pi t}}{5}} ight), trong đó t là thời gian khảo sát (tính theo năm), là thời điểm đầu khảo sát, F(t) là bán kính của thân cây tại thời điểm tF’(t) = f(t). Tính bán kính của thân cây sau 20 năm kể từ lúc bắt đầu khảo sát, biết rằng bán kính cây tại thời điểm bắt đầu khảo sát là 5cm.

     Ta có: F\left( t ight) = \int {\left( {1,5 + \sin \frac{{\pi t}}{5}} ight)} dt = \left( {1,5t - \frac{5}{\pi }\cos \frac{{\pi t}}{5}} ight) + C

    Từ giả thiết ta có: F\left( 0 ight) = 5 \Rightarrow C = 5 + \frac{5}{\pi }

    => F\left( t ight) = 1,5t - \frac{5}{\pi }\cos \frac{{\pi t}}{5} + 5 + \frac{5}{\pi }

    Sau 5 năm bán kính thân cây bằng F\left( {20} ight) = 1,5.20 - \frac{5}{\pi }\cos \frac{{\pi .20}}{5} + 5 + \frac{5}{\pi } = 40\left( {cm} ight)

  • Câu 14: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

  • Câu 15: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 16: Nhận biết

    Trong không gian Oxyz cho vectơ \vec a e \vec 0\left| {\vec a} ight| = a. Gọi \alpha ,\,\beta ,\,\gamma lần lượt là ba góc tạo bởi \vec a với ba trục \overrightarrow {Ox} ,\,\,\overrightarrow {Oy} ,\,\,\overrightarrow {Oz}. Ta có:

     Áp dụng công thức hình chiếu vecto trên trục, ta có ngay được:

    \overrightarrow a  = \left( {{a_1},\,{a_2},\,{a_3}} ight) = \left( {a\cos \alpha ,b\cos \beta ,c\cos \gamma } ight)

  • Câu 17: Thông hiểu

    Một chất điểm chuyển động với gia tốc a(t) = 6t^{2} + 2t\left( m/s^{2} ight). Vận tốc ban đầu của chất điểm là 2(m/s). Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được 2 giây bằng bao nhiêu?

    Ta có: v(2) - v(0) =
\int_{0}^{2}{a(t)dt}

    \Rightarrow v(2) = \int_{0}^{2}{\left(
6t^{2} + 2t ight)dt} + v(0)

    \Rightarrow v(2) = \left. \ \left(
2t^{3} + t^{2} ight) ight|_{0}^{2} + 2 = 22

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 19: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M;N lần lượt là trung điểm của ADSD. Số đo của góc (MN;SC) bằng bao nhiêu?

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh a suy ra AC =
a\sqrt{2}

    \Rightarrow AC^{2} = 2a^{2} = SA^{2} +
SC^{2} suy ra tam giác SAC vuông tại S.

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA \Rightarrow \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}

    Khi đó \overrightarrow{MN}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0 suy ra MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 21: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 22: Vận dụng

    Cho hai điểm A\left( {2, - 3,4} ight);\,\,\,\,B\left( { - 1,4,3} ight). Viết phương trình tổng quát của mặt phẳng (P) vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp O.MNE  bằng \frac{3}{14} đvtt.

     Vecto pháp tuyến của \left( P ight):\overrightarrow {AB}  = \left( { - 3,7, - 1} ight)

    Phương trình \left( P ight):3x - 7y + z + D = 0

    (P) cắt 3 trục tọa độ tại M\left( { - \frac{D}{3},0,0} ight);\,\,N\left( {0,\frac{D}{7},0} ight);\,\,E\left( {0,0, - D} ight)

    Thể tích hình chóp O.MNE là:

    V_{O.MNE} = \frac{1}{6}OM.ON.OE = \frac{1}{6}\left| {\frac{D}{3}.\frac{D}{7}.D} ight|

    \begin{array}{l} \Leftrightarrow \dfrac{{{{\left| D ight|}^3}}}{{126}} = \dfrac{3}{{14}} \Leftrightarrow {\left| D ight|^3} = 27 \Leftrightarrow D =  \pm 3\\ \Rightarrow \left( P ight):3x - 7y + z \pm 3 = 0\end{array}

  • Câu 23: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 24: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 25: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 26: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 27: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 28: Thông hiểu

    Cho hàm số f(x) = x^{4} - 4x^{3} + 2x^{2}
- x + 1;\forall x\mathbb{\in R}. Tính I =
\int_{0}^{1}{f^{2}(x).f'(x)dx}

    Ta có:

    I = \int_{0}^{1}{f^{2}(x).f'(x)dx} =
\int_{0}^{1}{f^{2}(x)d\left( f(x) ight)} = \left. \ \frac{f^{3}(x)}{3}
ight|_{0}^{1} = - \frac{2}{3}.

  • Câu 29: Thông hiểu

    Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bời các đường thẳng y = 0;y = x\sqrt {\ln \left( {x + 1} ight)} ;x = 1 xung quanh trục Ox là:

    Phương trình hoành độ giao điểm của (C)Oxx\sqrt {\ln \left( {x + 1} ight)}  = 0 \Rightarrow x = 0

    Thể tích khối tròn xoay cần tính là V = \pi \int\limits_0^1 {{x^2}\ln \left( {x + 1} ight)dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = \ln \left( {1 + x} ight)} \\   {dv = {x^2}dx} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {du = \dfrac{{dx}}{{x + 1}}} \\   {v = \dfrac{{{x^3} + 1}}{3}} \end{array}} ight.

    Ta có:

    \begin{matrix}  V = \pi \int\limits_0^1 {{x^2}\ln \left( {x + 1} ight)dx}  \hfill \\   = \pi \left\{ {\left. {\dfrac{{{x^3} + 1}}{3}\ln \left( {x + 1} ight)} ight|_0^1 - \int\limits_0^1 {\left( {{x^2} - x + 1} ight)dx} } ight\} \hfill \\   = \dfrac{{\pi \left( {12\ln 2 - 5} ight)}}{{18}} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 31: Vận dụng cao

    Cho hàm số y = f\left( x ight) có đạo hàm liên tục trên đoạn \left[ { - 3;3} ight] và đồ thị hàm số y = f'\left( x ight) (như hình vẽ). biết f\left( 1 ight) = 6g\left( x ight) = f\left( x ight) - \frac{{{{\left( {x + 1} ight)}^2}}}{2}. Kết luận nào sau đây là đúng?

    Kết luận nào sau đây là đúng

    Hình vẽ minh họa:

    Kết luận nào sau đây là đúng

    Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( x ight) - \left( {x + 1} ight) \hfill \\  g'\left( x ight) = 0 \Rightarrow f'\left( x ight) = x + 1 \hfill \\ \end{matrix}

    Từ đồ thị ta thấy g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {x = 1} \\   {x = 3} \end{array}} ight.

    Từ đồ thị ta thấy

    \begin{matrix}  \int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{ABCD}}}  \hfill \\   \Leftrightarrow f\left( 1 ight) - f\left( { - 3} ight) > 6 \hfill \\   \Leftrightarrow f\left( { - 3} ight) < 0 \hfill \\ \end{matrix}

    => g\left( { - 3} ight) = f\left( { - 3} ight) - 2 < 0

    Mặt khác

    \begin{matrix}\int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{OEFG}}}  \hfill \\   \Leftrightarrow f\left( 3 ight) - f\left( 1 ight) > 2 \hfill \\   \Leftrightarrow f\left( 3 ight) > 8 \Rightarrow G\left( 3 ight) > 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Kết luận nào sau đây là đúng

    => g\left( x ight) = 0 có duy nhất nghiệm trên \left[ { - 3;3} ight]

  • Câu 32: Nhận biết

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 33: Nhận biết

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 34: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;4;3) và mặt phẳng (P):2y - z = 0. Tìm điểm C thuộc (P), điểm B thuộc mặt phẳng (Oxy) sao cho chu vi tam giác ABC bé nhất. Giá trị chu vi tam giác ABC bé nhất là:

    Hình vẽ minh họa:

    Gọi H;K lần lượt là hình chiếu của A lên các mặt phẳng (P) và (Oxy) ta được H(1;2;4),K(1;4;0).

    Gọi M, N lần lượt là các điểm đối xứng với A qua các mặt phẳng (P) và (Oxy).

    Khi đó ta có AB = NB,CA = CM nên AB + BC + CA = NB + BC + CM \geq MN = 2KH =
4\sqrt{5}

    Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).

  • Câu 35: Thông hiểu

    Cho hình phẳng (H) như hình vẽ (phần tô đậm):

    Diện tích hình phẳng (H) là:

    Gọi S là diện tích hình phẳng (H) theo hình vẽ suy ra S = \int_{1}^{3}{x\ln xdx}

    Theo công thức tích phân từng phần:

    S = \left. \ \frac{x^{2}}{2}.\ln2ight|_{2}^{3} + \int_{1}^{3}{\frac{x}{2}dx} = \left. \frac{x^{2}}{2}.\ln2 ight|_{2}^{3} - \left. \ \frac{x^{2}}{4}ight|_{2}^{3} = \frac{9}{4}\ln3 - 2.

  • Câu 36: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 37: Nhận biết

    Cho tứ diện ABCDA(3, -2,1), B\left( { - 4,0,3} ight),C\left( {1,4, - 3} ight),D\left( {2,3,5} ight). Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:

    Theo đề bài, ta có các vecto là

    \begin{array}{l}\overrightarrow {AC}  = \left( { - 2,6, - 4} ight);\overrightarrow {BD}  = \left( {6,3,2} ight)\\ \Rightarrow \left[ {\overrightarrow {AC} ,\overrightarrow {BD} } ight] = \left( {24, - 20, - 42} ight).\end{array}

    Có thể chọn \overrightarrow n  = \left( {12, - 10, - 21} ight) làm một vectơ pháp tuyến cho mặt phẳng.

    Phương trình mặt phẳng này có dạng 12x - 10y - 21z + D = 0.

    Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên: 12.3 - 10( - 2) - 21.1 + D = 0 \Leftrightarrow D =  - 35

    Vậy phương trình cần tìm 12x - 10y - 21z - 35 = 0.

  • Câu 38: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 39: Vận dụng cao

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 40: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, thỏa mãn F(0) = \frac{1}{\ln2}. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{2^{x}dx} = \frac{2^{x}}{\ln2} + C

    F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, ta có: F(x) = \frac{2^{x}}{\ln2} + CF(0) = \frac{1}{\ln2}

    \Rightarrow C = 0 \Rightarrow F(x) =\frac{2^{x}}{\ln2}

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = \frac{1}{\ln2}\left( 1 + 2 + 2^{2} +.... + 2^{2018} + 2^{2019} ight)

    T = \frac{1}{\ln2}.\frac{2^{2020} - 1}{2- 1} = \frac{2^{2020} - 1}{ln2}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo