Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 2: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 3: Vận dụng cao

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 4: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 5: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3} - x và đồ thị hàm số y = x - x^{2}?

    Phương trình hoành độ giao điểm x^{3} - x
= x - x^{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó ta có:

    S = \int_{- 2}^{1}{\left| x^{3} + x^{2}
- 2x ight|dx}

    = \int_{- 2}^{0}{\left| x^{3} + x^{2} -
2x ight|dx} + \int_{0}^{1}{\left| x^{3} + x^{2} - 2x
ight|dx}

    = \left| \int_{- 2}^{0}{\left( x^{3} +
x^{2} - 2x ight)dx} ight| + \left| \int_{0}^{1}{\left( x^{3} + x^{2}
- 2x ight)dx} ight|

    = \left| \left. \ \left( \frac{x^{4}}{4}
+ \frac{x^{3}}{3} - x^{2} ight) ight|_{- 2}^{0} ight| + \left|
\left. \ \left( \frac{x^{4}}{4} + \frac{x^{3}}{3} - x^{2} ight)
ight|_{0}^{1} ight|

    = \frac{8}{3} + \frac{5}{12} =
\frac{37}{12}

  • Câu 6: Thông hiểu

    Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162m so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t) = 10t - t^{2}, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là:

    Khi bắt đầu tiếp đất vật chuyển động được quãng đường làs = 162m

    Ta có: S = \int_{0}^{t_{0}}{\left( 10t -
t^{2} ight)dt} = \left. \ \left( 5t - \frac{t^{3}}{3} ight)
ight|_{0}^{t_{0}} = 5{t_{0}}^{2} - \frac{{t_{0}}^{3}}{3} (với t_{0} là thời điểm vật tiếp đất)

    Cho 5{t_{0}}^{2} - \frac{{t_{0}}^{3}}{3}
= 162 \Leftrightarrow t_{0} = 9 (Do v(t) = 10t - t^{2} \Rightarrow 0 \leq t \leq
10)

    Khi đó vận tốc của vật là: v(9) = 10.9 -
9^{2} = 9(m/p).

  • Câu 7: Nhận biết

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x - 6y - 4z + 36 = 0. Gọi A,B,C lần lượt là giao điểm của mặt phẳng (P) với các trục tọa độ Ox,Oy,Oz. Tính thể tích V của khối chóp O.ABC.

    Ta có: (P):3x - 6y - 4z + 36 = 0
\Leftrightarrow \frac{x}{- 12} + \frac{y}{6} + \frac{z}{9} =
1

    (P) cắt các trục tọa độ tại A( - 12;0;0),B(0;6;0),C(0;0;9)

    Do OA,OB,OC đôi một vuông góc nên V = \frac{1}{6}.OA\ .OB\ OC =
\frac{1}{6}.12.6.9 = 108

  • Câu 9: Nhận biết

    Cho hàm số y = f\left( x ight) liên tục trên đoạn \left[ {a;b} ight]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight), trục hoành và hai đường thẳng x = a;x = b;\left( {a < b} ight). Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:

    Thể tích của khối tròn xoay cần tính là: V = 2\pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 10: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 11: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 12: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 13: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 14: Vận dụng cao

    Cho hàm số y = f(x) là hàm số bậc ba có đồ thị như hình vẽ:

    Biết \int_{1}^{4}{x.f''(x - 1)dx}
= 7\int_{1}^{2}{2x.f'\left(
x^{2} - 1 ight)dx} = - 3. Phương trình tiếp tuyến với đồ thị hàm số y = f(x) tại điểm có hoành độ x = 3 là:

    Từ đồ thị hàm số ta suy ra f(0) =
2;f'(0) = 0

    Xét tích phân \int_{1}^{2}{2x.f'\left( x^{2} - 1
ight)dx}. Đặt u = x^{2} - 1
\Rightarrow du = 2xdx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 2 \Rightarrow u = 3 \\
\end{matrix} ight.

    Do đó \int_{1}^{2}{2x.f'\left( x^{2}
- 1 ight)dx} = \int_{1}^{3}{f'(u)du} = \left. \ f(u)
ight|_{0}^{3} = f(3) - f(0)

    \Rightarrow f(3) - f(0) = - 3
\Rightarrow f(3) = - 1

    Xét tích phân \int_{1}^{4}{x.f''(x - 1)dx}. Đặt u = x - 1 \Rightarrow du = dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 4 \Rightarrow u = 3 \\
\end{matrix} ight.

    \Rightarrow \int_{1}^{4}{x.f''(x
- 1)dx} = \int_{0}^{3}{(u + 1)f''(u)du} = \int_{0}^{3}{(u +
1)d\left\lbrack f'(u) ightbrack}

    = \left. \ (u + 1)f'(u)
ight|_{0}^{3} - \int_{0}^{3}{f'(u)du}

    = 4f'(3) - f'(0) - \left. \ f(u)
ight|_{0}^{3}

    = 4f'(3) - f'(0) - f(3) +
f(0)

    Theo bài ra suy ra

    4f'(3) - f'(0) - f(3) + f(0) =
7

    \Rightarrow 4f'(3) = 7 + f(3) - f(0)
= 4 \Rightarrow f'(3) = 1

    Như vậy f(3) = - 1;f'(3) =
1. Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 3 là: y = x - 4.

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3),B( - 2;4;4),C(4;0;5). Gọi G là trọng tâm của tam giác ABC. Gọi M là điểm nằm trên mặt phẳng (Oxy) sao cho độ dài đoạn thẳng GM ngắn nhất. Tính độ dài đoạn thẳng GM.

    Ta có: G là trọng tâm tam giác ABC nên G = (1;2;4)

    Mặt phẳng (Oxy) có phương trình z = 0.

    GM ngắn nhất khi và chỉ khi M là hình chiếu vuông góc của G lên mặt phẳng (Oxy). Khi đó, ta có:

    GM = d\left( G,(Oxy) ight) =
\frac{4}{\sqrt{1}} = 4.

  • Câu 16: Thông hiểu

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Ta có: S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)}dt =
\int_{}^{}{1,2698.e^{0,014t}}dt = 90,7.e^{0,014t} + C

    Do S(0) = 90,7 \Rightarrow C = 0
\Rightarrow S(t) = 90,7.e^{0,014t}

    Tốc độ tăng dân số của nước ta vào năm 2034 là

    S'(20) = 1,2698.e^{0,014.20} \approx
1,7( triệu người/năm)

    Dân số của nước ta vào năm 2034 là

    S(20)
= 90,7.e^{0,014.20} \approx 120( triệu người)

  • Câu 17: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{OM}.\overrightarrow{BC}
= \frac{1}{2}\left( \overrightarrow{OA} + \overrightarrow{OB}
ight)\left( \overrightarrow{OC} - \overrightarrow{OB}
ight)

    =
\overrightarrow{OM}.\overrightarrow{BC} = - \frac{BC^{2}}{2} = -
\frac{1}{2}

    Như vậy:

    \cos\left(
\overrightarrow{OM};\overrightarrow{BC} ight) =
\frac{\overrightarrow{OM}.\overrightarrow{BC}}{\left|
\overrightarrow{OM} ight|.\left| \overrightarrow{BC} ight|} =
\frac{1}{2}:\frac{\sqrt{2}.\sqrt{2}}{2} = - \frac{1}{2}

    \Rightarrow \left(
\overrightarrow{OM};\overrightarrow{BC} ight) = 120^{0}

  • Câu 18: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

  • Câu 19: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 20: Nhận biết

    Phương trình tổng quát của mặt phẳng (\alpha) qua điểm B (3, 4, -5) và có cặp vectơ chỉ phương \overrightarrow a  = \left( {3,1, - 1} ight),\,\,\,\overrightarrow b  = \left( {1, - 2,1} ight)  là:

    Vectơ pháp tuyến của (\alpha) là tích có hướng của 2 vecto chỉ phương \overrightarrow n  = \left[ {\overrightarrow a \overrightarrow {,b} } ight] = \left( { - 1, - 4, - 7} ight) có thể thay thế bởi \overrightarrow n  = \left( {1,4,7} ight)

    Phương trình  (\alpha) có dạng x + 4y + 7z + D = 0

    B \in \left( \alpha  ight) \Leftrightarrow 3 + 16 - 35 + D = 0 \Leftrightarrow D = 16

    Vậy (\alpha): x + 4y +7z +16 = 0

  • Câu 21: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1; - 1;1),B(0;1; - 2) và điểm M thay đổi trên mặt phẳng tọa độ Oxy. Tìm giá trị lớn nhất của |MA - MB|?

    Thay tọa độ của A, B vào phương trình mặt phẳng (Oxy): z = 0, ta có 1.( - 2) = - 2 < 0

    ⇒ A, B nằm về hai phía của (Oxy).

    Gọi A’ là điểm đối xứng của A qua (Oxy).

    Khi đó ta có: |MA - MB| = |MA' - MB|
\leq A'B

    Suy ra |MA - MB| lớn nhất bằng A’B khi và chỉ khi M là giao điểm của A’B và (Oxy).

    Ta có A'(1; - 1; - 1) \Rightarrow
A'B = \sqrt{( - 1)^{2} + 2^{2} + ( - 1)^{2}} =
\sqrt{6}.

  • Câu 22: Thông hiểu

    Cho \left| \overrightarrow{a} ight| =
3;\left| \overrightarrow{b} ight| = 5, góc giữa \overrightarrow{a};\overrightarrow{b} bằng 120^{0}. Chọn khẳng định sai trong các khẳng định sau?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = 3.5.cos120^{0} = -
\frac{15}{2}

    Khi đó:

    \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 -
15 + 25 = 19

    \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 +
15 + 25 = 49

    \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 +
30 + 100 = 139

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 -
30 + 100 = 79

    Vậy khẳng định sai là \left| \overrightarrow{a} +
2\overrightarrow{b} ight| = 9.

  • Câu 23: Vận dụng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 24: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, thỏa mãn F(0) = \frac{1}{\ln2}. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{2^{x}dx} = \frac{2^{x}}{\ln2} + C

    F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, ta có: F(x) = \frac{2^{x}}{\ln2} + CF(0) = \frac{1}{\ln2}

    \Rightarrow C = 0 \Rightarrow F(x) =\frac{2^{x}}{\ln2}

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = \frac{1}{\ln2}\left( 1 + 2 + 2^{2} +.... + 2^{2018} + 2^{2019} ight)

    T = \frac{1}{\ln2}.\frac{2^{2020} - 1}{2- 1} = \frac{2^{2020} - 1}{ln2}

  • Câu 25: Vận dụng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 26: Nhận biết

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

  • Câu 27: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 28: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 29: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 30: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 31: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = \frac{x - 1}{x + 2} và các đường thẳng y = 2;y = - 2x - 4 như hình vẽ:

    Phương trình hoành độ giao điểm

    \frac{x - 1}{x + 2} = - 2x - 4\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét - 2x - 4 = 0 \Leftrightarrow x = -
3

    Xét \frac{x - 1}{x + 2} = 2
\Leftrightarrow x = - 5

    Diện tích hình phẳng là:

    S = \int_{- 5}^{\frac{- 7}{2}}{\left(
\frac{x - 1}{x + 2} - 2 ight)dx} + \int_{- \frac{7}{2}}^{- 3}{( - 2x -
4 - 2)dx}

    = - \frac{5}{4} + 3\ln2

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 33: Nhận biết

    Trong không gian Oxyz cho ba vectơ \vec a,\,\,\vec b\vec c  khác \vec 0 . Câu nào sai?

     Theo điều kiện để hai vecto cùng phương, ta có:

    \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]=\vec 0  Suy ra 

    • \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]= 0

    sai vì thiếu dấu vecto.

  • Câu 34: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 35: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 36: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 37: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\sqrt[3]{x} là:

    Ta có:

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
\sqrt[3]{x} ight)dx} = \int_{}^{}{x^{\frac{2}{3}}dx} =
\frac{3}{4}x^{\frac{4}{3}} + C = \frac{3x\sqrt[3]{x}}{4} +
C.

  • Câu 38: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 39: Thông hiểu

    Cho \int_{0}^{1}{\frac{x}{(x + 2)^{2}}dx}
= a + ln2 + cln3 với a;b;c là các số hữu tỉ. Giá trị của biểu thức K =
3a + b + c bằng:

    Ta có: \int_{0}^{1}{\frac{x}{(x +
2)^{2}}dx} = \int_{0}^{1}{\frac{x + 2 - 2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{x + 2}{(x +
2)^{2}}dx} - \int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{1}{x + 2}dx} -
\int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \left. \ \ln|x + 2| ight|_{0}^{1} -\left. \ \frac{2}{x + 2} ight|_{0}^{1} = \ln3 - \ln2 -\frac{1}{3}

    Suy ra a = - \frac{1}{3};b = - 1;c = 1
\Rightarrow K = - 1

  • Câu 40: Thông hiểu

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack 0;10brack\int_{0}^{10}{f(x)dx} = 7\int_{2}^{6}{f(x)dx} = 3. Tính F = \int_{0}^{2}{f(x)dx} +
\int_{6}^{10}{f(x)dx}?

    Ta có: \int_{0}^{10}{f(x)dx} =
\int_{0}^{2}{f(x)dx} + \int_{2}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx}

    \Rightarrow F = \int_{0}^{2}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = \int_{0}^{10}{f(x)dx} - \int_{2}^{6}{f(x)dx} = 7
- 3 = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo