Họ các nguyên hàm của hàm số
trên khoảng
là:
Ta có:
Họ các nguyên hàm của hàm số
trên khoảng
là:
Ta có:
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Tìm nguyên hàm của hàm số
.
Ta có
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường
, khi xoay quanh trục
.
Phương trình hoành độ giao điểm là:
Gọi là thể tích khối tròn xoay cần tìm ta có:
Đặt
Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng
. Bán kính đáy bằng:

Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có
Suy ra
Gọi bán kính đáy của hình trụ là R.
Vì thiết diện qua trục của hình trụ là hình vuông nên
Trong tam giác vuông A B’B, ta có .
Trong tam giác vuông OIB’, ta có N .
Suy ra .
Từ đó ta có .
Trong không gian với hệ trục tọa độ
, cho hình bình hành
. Biết
và
. Diện tích hình bình hành
là:
Ta có:
Suy ra diện tích ABCD là:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Trong không gian
, tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Diện tích hình phẳng giới hạn bởi các đường
là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất
, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

Đáp án: 667m
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Giả sử hàm số biểu thị cho vận tốc có dạng
Do đi qua gốc
nên
có đỉnh là
Do đó
Xe dừng lại khi
Quảng đường xe ô tô di chuyển trong 20 giây là
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Trong không gian Oxyz cho tam giác ABC, biết:
. Tìm tọa độ vectơ trung tuyến ![]()
Ta có nên suy ra được tọa độ 2 điểm tương ứng là:
Vậy ta được: .
Vì là vecto trung tuyến của tam giác ABC nên M là trung điểm của BC. Suy ra M có tọa độ là:
.
Suy ra ta có
Vậy .
Xác định nguyên hàm
của hàm số
?
Ta có:
Cho hàm số
liên tục trên
và có đồ thị
cắt trục
tại ba điểm có hoành độ
với
như hình bên. Đặt
. Diện tích của hình phẳng giới hạn bởi đồ thị
và trục hoành (phần tô đậm) bằng bao nhiêu?

Diện tích hình phẳng phần tô đậm được tính như sau:
Xe đạp A xuất phát từ C, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật
trong đó
(giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một xe đạp B cũng xuất phát từ C, chuyển động thẳng cùng hướng với A nhưng chậm hơn
giây so với A và có gia tốc bằng
(
là hằng số). Sau khi B xuất phát được
giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu?
Quãng đường xe đạp A đi được cho đến khi hai xe gặp nhau là:
Vận tốc của xe đạp B tại thời điểm tính từ lúc B xuất phát là:
Quãng đường xe đạp B đi được cho đến khi hai xe gặp nhau là:
Vậy vận tốc của B tại thời điểm đuổi kịp A là:
Xác định nguyên hàm
của hàm số
?
Ta có:
Trong không gian
, cho mặt phẳng
, mặt phẳng
chứa trục
và đi qua điểm
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có
Mặt phẳng chứa trục
và đi qua điểm
⇒ (Q) có vectơ pháp tuyến
Mặt phẳng (P) có véc-tơ pháp tuyến
Để hai mặt phẳng và
vuông góc với nhau thì
Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Tìm họ nguyên hàm của hàm số ![]()
Phương trình tổng quát của mặt phẳng
chứa giao tuyến của hai mặt phẳng
và
, chứa điểm
là:
Vì mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên thuộc chùm mặt phẳng
Mặt khác, ta có
Thế vào .
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Chọn khẳng định đúng trong các khẳng định sau?
Đặt . Đổi cận
Ta có: .
Vậy khẳng định đúng .
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Nguyên hàm của hàm số
là
Ta có: .
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Tìm nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Vậy .
Trong không gian
, cho hai điểm
và mặt phẳng
. Xét
là điểm thay đổi thuộc
, tính giá trị nhỏ nhất của
?
Trong không gian , cho hai điểm
và mặt phẳng
. Xét
là điểm thay đổi thuộc
, tính giá trị nhỏ nhất của
?
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Cho hình phẳng
giới hạn bới đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
bằng bao nhiêu?
Thể tích cần tìm là:
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Cho tứ diện
, có
đôi một vuông góc,
là điểm thuộc miền trong của tam giác
. Gọi khoảng cách từ
đến các mặt phẳng
lần lượt là
. Tính độ dài đoạn
sao cho tứ diện
có thể tích nhỏ nhất.
Xét hệ trục tọa độ Oxyz sao cho A thuộc tia Ox; B thuộc tia Oy và C thuộc tia Oz.
Ta có
Ta có:
Đẳng thức xảy ra khi chỉ khi
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?

Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Trong không gian
có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).