Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz cho A(1;
- 1;2),B(2;1;1) và mặt phẳng (P):x
+ y + z + 1 = 0. Mặt phẳng (Q) chứa A;B và vuông góc với mặt phẳng (P). Tìm phương trình mặt phẳng (Q).

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{P}} = (1;1;1) \\
\overrightarrow{AB} = (1;2; - 1) \\
\end{matrix} ight.

    Do mặt phẳng Q chứa A, B và vuông góc với mặt phẳng (P) \Rightarrow \overrightarrow{n_{q}} = \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{AB} ightbrack = ( -
3;2;1)

    Do đó (Q):3x - 2y - x - 3 =
0.

  • Câu 2: Nhận biết

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c đều khác \vec{0}. Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi:

     Áp dụng Điều kiện để 3 vecto đồng phẳng là:

    • \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d} eq\vec{0}\vec{d} có giá vuông góc với mp(P)
  • Câu 3: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Trong không gian cho hai đường thẳng a;b lần lượt có vectơ chỉ phương \overrightarrow{u};\overrightarrow{v}. Gọi \alpha là góc giữa hai đường thẳng a;b. Khẳng định nào sau đây đúng?

    Khẳng định đúng: “Nếu a\bot b thì \overrightarrow{u}.\overrightarrow{v} =
\overrightarrow{0}”.

  • Câu 5: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 6: Vận dụng cao

    Cho điểm M\left( { - 3,2, - 1} ight) và hai mặt phẳng \left( \alpha  ight):x + 3y - 5z + 3 = 0,\left( \beta  ight):2x - y - 2z - 5 = 0.

    Gọi (P) là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng (\alpha)(\beta) . Phương trình mặt phẳng (P):

     Theo đề bài, ta có:

    \left( \alpha  ight):x + 3y - 5z + 3 = 0 có vectơ pháp tuyến \overrightarrow a  = \left( {1,3, - 5} ight)

    \left( \beta  ight):2x - y - 2z - 5 = 0 có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1, - 2} ight)

    Suy ra tích có hướng giữa 2 vecto là \left[ {\overrightarrow a ,\overrightarrow b } ight] = \overrightarrow n  = \left( {1, - 8, - 7} ight)

    Ta chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng (P)

    Phương trình (P) có dạng x - 8y - 7z + D = 0

    Mặt khác, ta có M \in \left( \alpha  ight) \Leftrightarrow  - 3 - 16 + 7 + D = 0 \Leftrightarrow D = 12

    Vậy phương trình cần tìm là: (P): x - 8y - 7z + 12 = 0

  • Câu 7: Thông hiểu

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Đáp án là:

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: Các vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}.

    Do đó có 12 vectơ thỏa mãn yêu cầu.

    b) Sai:  (\overrightarrow{AB},\overrightarrow{BC})
= 180^{\circ} - (\overrightarrow{BA},\overrightarrow{BC}) = 180^{\circ}
- ABC = 120^{\circ} 

    c) Sai: \overrightarrow{BE} =\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} +\frac{1}{3}\overrightarrow{CD}= \overrightarrow{BC} +\frac{1}{3}(\overrightarrow{BD} - \overrightarrow{BC}) =\frac{2}{3}\overrightarrow{BC} +\frac{1}{3}\overrightarrow{BD}.

    Do đó m = 0,n = \frac{2}{3},p =
\frac{1}{3} suy ra m + n + p =
1.

    d) Đúng: Ta có:

    \overrightarrow{BE} =
\overrightarrow{AE} - \overrightarrow{AB} = (\overrightarrow{AC} +
\overrightarrow{CE}) - \overrightarrow{AB} = \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{CD} - \overrightarrow{AB}

    = \overrightarrow{AC} +
\frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AC}) -
\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC} +
\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB}

    Suy ra

    \overrightarrow{AD}.\overrightarrow{BE} =\overrightarrow{AD}.\left( \frac{2}{3}\overrightarrow{AC} +\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB} ight)=\frac{2}{3}.\overrightarrow{AD}.\overrightarrow{AC} +\frac{1}{3}.{\overrightarrow{AD}}^{2} -\overrightarrow{AD}.\overrightarrow{AB}

    = \frac{2}{3}.a.a.\cos 60^{\circ} +\frac{1}{3}a^{2} - a.a.\cos60^{\circ} = \frac{a^{2}}{6}.

  • Câu 8: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 9: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 10: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Gọi D là hình phẳng giới hạn bởi đồ thị (C):y = f(x), trục hoành, hai đường thẳng x = a;x = b (như hình vẽ bên).

    Giả sử S_{D} là diện tích của hình phẳng D. Chọn công thức đúng?

    Dựa vào đồ thị hình vẽ ta thấy:

    + Đồ thị cắt trục hoành tại điểm O(0;0)

    + Trên đoạn \lbrack a;0brack, đồ thị ở phía dưới trục hoành nên \left|
f(x) ight| = - f(x)

    + Trên đoạn \lbrack 0;bbrack, đồ thị ở phía trên trục hoành nên \left|
f(x) ight| = f(x)

    Do đó: S_{D} = \int_{a}^{b}{\left| f(x)
ight|dx} = - \int_{a}^{0}{f(x)dx} + \int_{0}^{b}{f(x)dx}

  • Câu 12: Nhận biết

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 13: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 14: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 15: Thông hiểu

    Biết \int_{- 1}^{0}{\frac{3x^{2} + 5x -
1}{x - 2}dx} = a\ln\frac{2}{3} + b. Khi đó P = a + 2b có giá trị bằng:

    Ta có:

    I = \int_{- 1}^{0}{\frac{3x^{2} + 5x -
1}{x - 2}dx} = \int_{- 1}^{0}{(3x + 11)dx} + \int_{- 1}^{0}{\frac{21}{x
- 2}dx}

    = \left. \ \left( 3.\frac{x^{2}}{2} +11x ight) ight|_{- 1}^{0} + \left. \ \left( 21\ln|x - 2| ight)ight|_{- 1}^{0}= \frac{19}{2} + 21\ln\frac{2}{3}\Rightarrow \left\{ \begin{matrix}a = 21 \\b = \dfrac{19}{2} \\\end{matrix} ight.\  \Rightarrow P = a + 2b = 40

  • Câu 16: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 17: Thông hiểu

    Tính tích phân I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{3}x}dx}?

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó:

    I = \int_{1}^{\frac{1}{2}}{\frac{-
1}{t^{3}}dt} = \int_{\frac{1}{2}}^{1}{\frac{1}{t^{3}}dt} = \left. \  -
\frac{1}{2t^{2}} ight|_{\frac{1}{2}}^{1} = - \frac{1}{2} + 2 =
\frac{3}{2}.

  • Câu 18: Vận dụng

    Cho mặt phẳng (P) qua điểm M\left( {2, - 4,1} ight) và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của (P) khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.

    Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2

    \Rightarrow a,\,b = 2a;c = 4a;\,a e 0

    Phương trình của \left( P ight):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    \Leftrightarrow \frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{4a}} = 1 \Leftrightarrow 4x + 2y + z - 4a = 0

    (P) qua M\left( {2, - 4,1} ight) \Rightarrow 8 - 8 + 1 - 4a = 0 \Leftrightarrow a = \frac{1}{4}

    \Rightarrow \left( P ight):4x + 2y + z - 1 = 0

     

  • Câu 19: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 20: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 21: Thông hiểu

    Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x =
1x = 3. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 \leq x \leq 3) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x3x^{2}
- 2. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên

    Diện tích thiết diện là: S(x) = 3x.\left(
3x^{2} - 2 ight) = 9x^{3} - 6x

    \Rightarrow Thể tích vật thể là: V = \int_{1}^{3}{\left( 9x^{3} - 6x
ight)dx = 156}

  • Câu 22: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 23: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2; −1; 3), B(4; 0; 1), C(−10; 5; 3). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng (ABC)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1; - 2) \\
\overrightarrow{AC} = ( - 12;6;0) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (12;24;24) =
12(1;2;2)

    Vậy \overrightarrow{n_{(ABC)}} =
(1;2;2) là đáp án cần tìm.

  • Câu 24: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 26: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{u};\overrightarrow{AB} =
\overrightarrow{v};\overrightarrow{AC} = \overrightarrow{w}. Biểu diễn vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w}. Chọn đáp án đúng?

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BC} + \overrightarrow{CC'} = \overrightarrow{BA} +
\overrightarrow{AC} + \overrightarrow{CC'}

    = - \overrightarrow{v} +
\overrightarrow{w} + \overrightarrow{u} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}

    Vậy đáp án đúng là: \overrightarrow{BC'} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}.

  • Câu 27: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

  • Câu 28: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây không thuộc mặt phẳng (P):x + y + z - 1 = 0?

    Dễ thấy điểm O(0;0;0) không thuộc mặt phẳng (P).

  • Câu 29: Thông hiểu

    Cho biết I =
\int_{0}^{\sqrt{7}}{\frac{x^{3}}{\sqrt[3]{1 + x^{2}}}dx} =
\frac{m}{n} với \frac{m}{n} là phân số tối giản. Giá trị của biểu thức m - 7n bằng:

    Đặt u = \sqrt[3]{1 + x^{2}}. Khi đó x^{2} = u^{3} - 1 \Rightarrow 2xdx =
3u^{2}du

    Đổi cận

    I = \int_{1}^{2}{\frac{\left( u^{3} - 1
ight)}{u}.\frac{3}{2}u^{2}du} = \frac{3}{2}\int_{1}^{2}{\left( u^{4} -
u ight)du}= \left. \ \frac{3}{2}\left(
\frac{u^{5}}{5} - \frac{u^{2}}{2} ight) ight|_{1}^{2} =
\frac{141}{20}. Suy ra m = 141;n =
20. Do đó m - 7n = 1.

  • Câu 30: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 31: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 32: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 33: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 34: Thông hiểu

    Một ô tô đang chạy với vận tốc 10\
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 2t +
10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

    Khi xe dừng hẳn thì vận tốc bằng 0.

    Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là - 2t + 10 = 0 \Leftrightarrow t = 5(\
s)

    Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là

    S_{2} = \int_{0}^{5}{( - 2t + 10)}dt =
\left. \ \left( - t^{2} + 10t ight) ight|_{0}^{5} = 25m

    Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc 10\ m/s và 5 s ô tô chuyển động chậm dần đều.

    Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là S_{1} = 3.10 = 30\ m

    Vậy trong 8 giây cuối ô tô đi được quang đường S = S_{1} + S_{2} = 30 + 25 = 55m

  • Câu 35: Thông hiểu

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 36: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 37: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 38: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 39: Nhận biết

    Đặt I = \int_{1}^{2}{(2mx +
1)dx} với m là tham số thực. Tìm giá trị của tham số m để I = 4?

    Ta có: I = \int_{1}^{2}{(2mx + 1)dx} =
\left. \ \left( mx^{2} + x ight) ight|_{1}^{2} = 3m + 1

    Do I = 4 \Leftrightarrow 3m + 1 = 4
\Leftrightarrow m = 1.

  • Câu 40: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho M(1; - 1;2),N(3;1; - 4). Viết phương trình mặt phẳng trung trực của MN.

    Mặt phẳng trung trực MN nhận \frac{1}{2}\overrightarrow{MN} = (1;1; -
3) làm vectơ pháp tuyến và đi qua trung điểm I(2;0; - 1) của MN nên ta có phương trình mặt phẳng MN là: x + y
- 3z - 5 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo