Đề thi giữa học kì 2 Toán 12 - Đề 2

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 2: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 3: Thông hiểu

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Điểm đối xứng với A qua mặt phẳng (Oyz) có tọa độ là:

    Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua (Oyz) có tọa độ là ( - 3; - 1;1).

  • Câu 4: Vận dụng

    Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \frac{3R}{2}. Mặt phẳng (\alpha) song song với trục của hình trụ và cách trục một khoảng bằng \frac{R}{2}. Diện tích thiết diện của hình trụ cắt bởi mặt phẳng (\alpha) là:

     Diện tích thiết diện

    Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ.

    Gọi H là trung điểm BC suy ra OH\bot BC suy ra d(O;BC)=\frac{R}{2}

    Khi đó BC=2HB=2\sqrt{OB^2-OH^2}=2\sqrt{R^2-\left(\frac{R}{2}ight)^2}=R\sqrt3

    Suy ra S_{ABCD}=BC\cdot AB=R\sqrt3\cdot\frac{3R}{2}=\frac{3\sqrt3R^2}{2} .

  • Câu 5: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;2;0), B(1;0;-2) và mặt

    phẳng(P): x+2y-z-1=0. Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho MA=MB

    và góc \widehat{ABM} có số đo lớn nhất. Khi đó giá trị a+4b+c bằng ?

    MA=MB nên M thuộc mặt phẳng mặt phẳng trung trực của đoạn thẳng AB. Ta có phương trình trung trực của AB là (Q); y+z=0

     M thuộc giao tuyến của hai mặt phẳng (P) và (Q) nên M thuộc đường thẳng

    (d): \left\{\begin{matrix} x=1+3t \\ y=-t \\ z=t \end{matrix}ight..

    Gọi M( 1+3t;-t;t) , ta có \cos\widehat{AMB}=\dfrac{\left | \vec{MA}.\vec{MB} ight | }{MA.MB}=\dfrac{11t^2-2t+1}{11t^2-2t+5}.

    Khảo sát hàm số f(t)=\dfrac{11t^2-2t+1}{11t^2-2t+5} , ta được f(t)=\frac{5}{27} khi t=\frac{1}{11} .

    Suy ra \widehat{AMB}  có số đo lớn nhất khi t=\frac{1}{11} , ta có M(\frac{14}{11}; \frac{-1}{11};\frac{1}{11}).

    Khi đó giá trị a+4b+c=1.

  • Câu 6: Nhận biết

    Tích phân I = \int\limits_1^2 {\left( {{x^2} + \frac{x}{{x + 1}}} ight)dx} có giá trị là:

     Tích phân I = \int\limits_1^2 {\left( {{x^2} + \frac{x}{{x + 1}}} ight)dx} có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_1^2 {\left( {{x^2} + \dfrac{x}{{x + 1}}} ight)dx}  \hfill \\   = \int\limits_1^2 {\left( {{x^2} + 1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {\dfrac{{{x^3}}}{3} + x - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\   = \dfrac{8}{3} + 2 - \ln 3 - \left( {\dfrac{1}{3} + 1 - \ln 2} ight) \hfill \\   = \dfrac{{10}}{3} + \ln 2 - \ln 3 \hfill \\ \end{matrix}

    Nhận xét: Không thể dùng máy tính để tính ra kết quả trực tiếp như trên nhưng ta có thể dùng để kiểm tra kết quả bằng cách thử thay số trong các đáp án.

  • Câu 7: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 8: Vận dụng

    Tính diện tích hình phẳng được giới hạn bởi đồ thị \left( P ight): y= {x^2} - 1 và hai tiếp tuyến của \left( P ight) tại A\left( { - 1;0} ight);B\left( {2;3} ight)

    Ta có hình vẽ minh họa như sau:

    Tính diện tích hình phẳng

    Phương trình tiếp tuyến của (P) tại A(-1;0) là: \left( {{d_2}} ight):y =  - 2x - 2

    Phương trình tiếp tuyến của (P) tại B(2;3) là: \left( {{d_1}} ight):y = 4x - 5

    Từ hình vẽ ta suy ra diện tích của hình phẳng cần tìm là:

    \begin{matrix}  S = \int_{ - 1}^{\frac{1}{2}} {\left( {{x^2} - 1 - ( - 2x - 2)} ight)} {\text{d}}x + \int_{\frac{1}{2}}^2 {\left( {{x^2} - 1 - (4x - 5)} ight)} {\text{d}}x \hfill \\   = \int_{ - 1}^{\frac{1}{2}} {\left( {{x^2} + 2x + 1} ight)} {\text{d}}x + \int_{\frac{1}{2}}^2 {\left( {{x^2} - 4x + 4} ight)} {\text{d}}x \hfill \\   = \left. {\left( {\frac{1}{3}{x^3} + {x^2} + x} ight)} ight|_{ - 1}^{\dfrac{1}{2}} + \left. {\left( {\dfrac{1}{3}{x^3} - 2{x^2} + 4x} ight)} ight|_{\frac{1}{2}}^2 = \frac{9}{4} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Cho hình vẽ:

    Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số f(x);g(x);h(x) như hình bên, bằng kết quả nào sau đây?

    Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:

    S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx} + \int_{b}^{c}{\left| g(x) - h(x) ight|dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{b}^{c}{\left\lbrack h(x) - g(x) ightbrack
dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} - \int_{b}^{c}{\left\lbrack g(x) - h(x) ightbrack
dx}.

  • Câu 10: Thông hiểu

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa Oz và đi qua điểm P(3; - 4;7)?

    Mặt phẳng (P) có cặp véc-tơ chỉ phương là \overrightarrow{k} =
(0;0;1),\overrightarrow{OP} = (3; - 4;7)

    Suy ra mặt phẳng có (P) một véc-tơ pháp tuyến là \overrightarrow{n} =
\overrightarrow{k} \land \overrightarrow{OP} = ( - 4; - 3;0) = -
1(4;3;0).

    Mặt phẳng (P) đi qua O(0;0;0) có vectơ pháp tuyến (4; 3; 0).

    Vậy mặt phẳng (P) có phương trình tổng quát là 4x + 3y = 0.

  • Câu 11: Thông hiểu

    Biết \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1. Khi đó \int_{1}^{2}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1 \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\int_{1}^{2}{xdx} = 1

    \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\left. \ .x^{2} ight|_{1}^{2} = 1 \Leftrightarrow
4\int_{1}^{2}{f(x)dx} = 4 \Leftrightarrow \int_{1}^{2}{f(x)dx} =
1

  • Câu 12: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 14: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 15: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 16: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 17: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 18: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 19: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 20: Nhận biết

    Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight).

    Tìm tọa độ trọng tâm G của tam giác ABC đã cho?

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:

    \Rightarrow G\left\{ \begin{array}{l}x = \frac{1}{3}\left( {2 - 1 + 4} ight) = \dfrac{5}{3}\\y = \frac{1}{3}\left( {4 + 3 - 2} ight) = \dfrac{5}{3}\\z = \frac{1}{3}\left( { - 3 - 2 + 3} ight) = \dfrac{{ - 2}}{3}\end{array} ight.

  • Câu 21: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 22: Thông hiểu

    Tính tích phân A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \dfrac{\pi}{3}ight)}dx} bằng

    Ta có:

    A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \frac{\pi}{3}ight)}dx} = \left. \ \tan\left( x - \frac{\pi}{3} ight)ight|_{0}^{\frac{\pi}{2}}

    = \tan\frac{\pi}{6} - \tan\left( -
\frac{\pi}{3} ight) = \frac{4\sqrt{3}}{3}

  • Câu 23: Vận dụng cao

    Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).

    Tính thể tích V của nước có trong bể

    Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:

    Tính thể tích V của nước có trong bể

    Phương trình đường elip đáy khi đó có phương trình \frac{{{x^2}}}{{0,{5^2}}} + \frac{{{y^2}}}{{0,{4^2}}} = 1

    Khi đó chiều cao của mép nước trong bể với đường thẳng y=2

    Xét phương trình 0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}}  = 0,2 \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{4}

    Diện tích phần mặt chứa nước là:

    S = 0,5.0,4.\pi  - \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}} } ight)} dx \approx 0,506

    Do đó thể tích nước trong thùng là: V = 3S \approx 1,52{m^3}

  • Câu 24: Thông hiểu

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}, với a e 0 có giá trị là:

     Ta có:

    \begin{matrix}  I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}  \hfill \\ = \left. {\left( { - \dfrac{1}{a}\cos ax + \dfrac{1}{a}\sin ax} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\ \end{matrix}

    \begin{matrix}= \left. {\left( {\dfrac{{\sqrt 2 }}{a}\sin \left( {ax - \dfrac{\pi }{4}} ight)} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\= \dfrac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\dfrac{\pi }{2} - \dfrac{\pi }{4}} ight) + \sin \left( {a\dfrac{\pi }{2} + \dfrac{\pi }{4}} ight)} ight] \hfill \\ \end{matrix}

     

  • Câu 25: Vận dụng

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

  • Câu 27: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 28: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 29: Thông hiểu

    Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi y = f(x) = \sqrt{x}y = g(x) = x - 2 như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

    Đáp án: 3,3 m2

    Đáp án là:

    Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi y = f(x) = \sqrt{x}y = g(x) = x - 2 như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

    Đáp án: 3,3 m2

    Phương trình hoành độ giao điểm của các đồ thị hàm số y = \sqrt{x},y = x - 2.

    \sqrt{x} = x - 2 \Leftrightarrow \left\{
\begin{matrix}
x \geq 2 \\
x = (x - 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 5x + 4 = 0 \\
\end{matrix} \Leftrightarrow x = 4. ight.

    Diện tích của hình phẳng cần tìm là

    S = \int_{0}^{4}\sqrt{x}dx -
\int_{0}^{4}(x - 2)dx = \frac{10}{3} \approx 3,3(m^{2}).

  • Câu 30: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1; - 1)B(1;0;1) và mặt phẳng (P):x + 2y - z = 0. Viết phương trình mặt phẳng (Q) qua A;B và vuông góc với (P)?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n_{1}} = (1;2; -
1);\overrightarrow{AB} = ( - 1; - 1;2)

    Mặt phẳng (Q) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{AB} ightbrack = (3; -
1;1)

    Từ đó, phương trình mặt phẳng (Q)(Q):3x
- y + z - 4 = 0.

  • Câu 31: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x - 8\sin x\cos x thỏa mãn F(\pi) = 2?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(2x - 8\sin x\cos x ight)dx}

    = \int_{}^{}{(2x - 4\sin2x)dx} = x^{2} +2\cos2x + C

    Theo bài ra ta có: F(\pi) =
2

    \Rightarrow \pi^{2} + 2 + C = 2
\Leftrightarrow C = - \pi^{2}

    Vậy F(x) = x^{2} + 2\cos2x -\pi^{2}

  • Câu 32: Vận dụng cao

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 33: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 34: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 35: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 36: Thông hiểu

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 37: Nhận biết

    Cho hình phẳng \left( H ight) giới hạn với các đường y = {x^2};y = 0;x = 2. Tính thể tích V của khối tròn xoay thu được khi \left( H ight) quay quanh trục Ox?

    Thể tích cần tìm là:

    V = \pi \int\limits_0^2 {{x^4}dx}  = \left. {\pi .\frac{{{x^5}}}{5}} ight|_0^2 = \frac{{32\pi }}{5}

  • Câu 38: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 39: Thông hiểu

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 40: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc trục tung Oy?

    Điểm thuộc trục tung Oy là M(0; -
10;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo