Nếu
. Khi đó
bằng:
Ta có: .
Nếu
. Khi đó
bằng:
Ta có: .
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Tìm họ nguyên hàm của hàm số ![]()
Trong không gian tọa độ
, cho hai điểm
. Tìm tọa độ điểm
sao cho
là trung điểm của
?
Gọi tọa độ điểm . Vì M là trung điểm của AB nên ta có:
Vậy tọa độ điểm B cần tìm là .
Một vật chuyển động với vận tốc
có gia tốc
. Vận tốc ban đầu của vật là
. Tính vận tốc của vật sau
giây, (làm tròn kết quả đến hàng đơn vị).
Vận tốc của vật là:
Do vận tốc ban đầu của vật là
Vận tốc của vật sau 10s là
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao
so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật
, trong đó
(phút) là thời gian tính từ lúc bắt đầu chuyển động,
được tính theo đơn vị mét/phút
. Nếu như vậy thì khi bắt đầu tiếp đất vận tốc
của khí cầu là:
Khi bắt đầu tiếp đất vật chuyển động được quãng đường là
Ta có: (với
là thời điểm vật tiếp đất)
Cho (Do
)
Khi đó vận tốc của vật là: .
Trong không gian tọa độ Oxyz, cho hình hộp
với các điểm
,
,
và
. Tìm tọa độ đỉnh
.
Hình vẽ minh họa
.
Theo quy tắc hình hộp ta có: .
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Trong không gian , cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Trong mặt phẳng tọa độ
, cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Cho hình lập phương
. Tính
.
Hình vẽ minh họa
Ta có:
Trong không gian
cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình dạng
,
và có
. Để mặt phẳng
đi qua điểm
và cách gốc tọa độ
một khoảng lớn nhất thì đẳng thức nào sau đây đúng?
Mặt phẳng (P) đi qua điểm suy ra
.
Khi đó:
Đẳng thức xảy ra khi và chỉ khi:
Từ đó tìm được hoặc
.
Vậy .
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Biết
. Khi đó
có giá trị bằng:
Ta có:
Tích phân
với
. Giá trị của
bằng:
Ta có:
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Tìm nguyên hàm của hàm số
??
Đặt
Cho hàm số
liên tục, luôn dương trên
và thỏa mãn
. Khi đó giá trị của tích phân
là:
Ta có:
Trong không gian với hệ trục toạ độ
, cho mặt phẳng
. Hỏi có bao nhiêu điểm
thuộc mặt phẳng
với
là các số nguyên không âm.
Ta có nên mặt phẳng
đi qua các điểm
Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.
Tam giác ABC đều có các cạnh bằng , chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.
Mà số điểm có toạ độ nguyên của tam giác OAB bằng
Trong không gian
, phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Cho các hàm số
và
liên tục trên
thỏa mãn
với
. Tính
, biết rằng
?
Ta có: .
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Cho 3 vectơ
đều khác
. Ba vectơ
đồng phẳng khi và chỉ khi:
Áp dụng Điều kiện để 3 vecto đồng phẳng là:
Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng
. Diện tích của thiết diện đó bằng?
Xét hình nón đỉnh S có chiều cao , bán kính đáy
.
Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ
Ta có:
Xét tam giác SOI vuông tại O, ta có
.
Xét tam giác AOI vuông tại I, có:
Vậy diện tích của thiết diện là:
.
Giá trị tích phân
bằng:
Ta có:
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
Trong không gian với hệ tọa độ
cho hai mặt phẳng
và
. Có bao nhiêu điểm
trên trục
thỏa mãn
cách đều hai mặt phẳng
và
?
Vì nên
Ta có: .
Theo giả thiết:
Vậy có 1 điểm thỏa mãn bài.
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3