Đề thi giữa học kì 2 Toán 12 - Đề 3

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi y = \ln x,y = 0,x = eV = \pi(a + be). Tính a + b?

    Phương trình hoành độ giao điểm \ln x = 0
\Leftrightarrow x = 1

    Ta có:

    V =\pi\int_{1}^{e}{\ln^{2}xdx}

    = \pi\left\lbrack \left. \ \left(x\ln^{2}x ight) ight|_{1}^{e} - \int_{1}^{e}{x.\frac{2}{x}.\ln xdx}ightbrack

    = \pi\left\lbrack e - 2\int_{1}^{e}{\ln
xdx} ightbrack

    = \pi\left\{ e - 2.\left\lbrack \left. \
\left( x\ln x ight) ight|_{1}^{e} - \int_{1}^{e}{dx} ightbrack
ight\}

    = \pi\left\{ e - 2.\lbrack e - e +
1brack ight\} = \pi(e - 2)

    Vậy a = - 2;b = 1 \Rightarrow a + b = -
1

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho tọa độ các vectơ \overrightarrow{a} = ( -
1;1;0); \overrightarrow{b} =
(1;1;0)\overrightarrow{c} =
(1;1;1). Mệnh đề nào sau đây sai?

    Ta có: \overrightarrow{c}.\overrightarrow{b} = 1.1 + 1.1
+ 1.0 = 2 eq 0 suy ra “\overrightarrow{c}\bot\overrightarrow{b}” là mệnh đề sai.

  • Câu 4: Nhận biết

    Cho đồ thị của hàm số y = f(x) như sau:

    Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:

    Dựa vào hình vẽ ta được: S = \int_{-
3}^{0}{f(x)dx} - \int_{0}^{4}{f(x)dx}.

  • Câu 5: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 6: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 7: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn \int_{0}^{2}{f(x)dx}\  = 5,\int_{1}^{2}{f(x)dx\ }
= 3. Giá trị của biểu thức \int_{0}^{1}{f(x)dx} bằng

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{1}^{2}{f(x)dx} = 5 - 3 = 2

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 10: Nhận biết

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 11: Thông hiểu

    Tích phân I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx có giá trị là:

     \begin{matrix}  I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx \hfill \\   = \left. {\left( {\dfrac{1}{4}{x^4} + \dfrac{a}{2}{x^2} + 2x} ight)} ight|_{ - 1}^0 \hfill \\   = \dfrac{7}{4} - \dfrac{a}{2} \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} - 2x - 2y = \frac{x - 4}{2 - x}?

    Phương trình hoành độ giao điểm x^{2} -
2x - 2 = \frac{x - 4}{2 - x}

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
\left( x^{2} - 2x - 2 ight)(2 - x) = x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
x\left( x^{2} - 4x + 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Diện tích hình giới hạn là

    S = \int_{0}^{1}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx}

    = \int_{0}^{1}{\left| x^{2} - 2x - 1 -
\frac{2}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 1 -
\frac{2}{x - 2} ight|dx}

    = \left| \left. \ \left( \frac{x^{3}}{3}- x^{2} - x - 2\ln|x - 2| ight) ight|_{0}^{1} ight| + \left| \left.\ \left( \frac{x^{3}}{3} - x^{2} - x - 2\ln|x - 2| ight)ight|_{1}^{3} ight|

    = \frac{5}{3} - 2\ln2 + \frac{4}{3} = 3 -\ln4

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Điểm đối xứng với A qua mặt phẳng (Oyz) có tọa độ là:

    Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua (Oyz) có tọa độ là ( - 3; - 1;1).

  • Câu 14: Vận dụng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 15: Thông hiểu

    Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng x = {y^2} + 5;x = 3 - y quay quanh Oy.

    Tung độ giao điểm 

    \begin{matrix}   - {y^2} + 5 = 3 - y \Rightarrow \left[ {\begin{array}{*{20}{c}}  {y =  - 1} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow V = \pi \int\limits_{ - 1}^2 {\left| {{{\left( { - {y^2} + 5} ight)}^2} - {{\left( {3 - y} ight)}^2}} ight|dy = \dfrac{{153}}{5}\pi }  \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Cho hai vectơ \overrightarrow a  = \,\,\left( {2, - 1,1} ight);\,\,\overrightarrow b  = \,\,\left( { - 2,3,1} ight). Xác định vectơ \vec c, biết \vec c cùng phương với \vec a và \vec a .\vec c=-4

    Gọi tọa độ của \vec c  là \overrightarrow c  = \left( {{c_1};{c_2};{c_3}} ight)

    Theo đề bài, ta có \vec c cùng phương \overrightarrow a  \Leftrightarrow \frac{{{c_1}}}{2} = \frac{{{c_2}}}{{ - 1}} = \frac{{{c_3}}}{1}

    \Rightarrow {c_1} = 2{c_3};\,{c_2} =  - {c_3}

    Mặt khác, \vec a .\vec c=-4, thay vào ta được:

    \begin{array}{l}\overrightarrow a .\overrightarrow c  =  - 4\\ \Leftrightarrow 2{c_1} - {c_2} + {c_3} =  - 4\\ \Leftrightarrow 4{c_3} + {c_3} + {c_3} =  - 4\\ \Leftrightarrow {c_3} =  - \dfrac{2}{3}\end{array}

    \begin{array}{l} \Rightarrow {c_1} = 2{c_3} =  - \dfrac{4}{3};\,{c_2} = \dfrac{2}{3}\\ \Rightarrow \overrightarrow c  = \left( { - \dfrac{4}{3};\dfrac{2}{3}; - \dfrac{2}{3}} ight)\end{array}

  • Câu 17: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A( - 1; - 2;4),B( - 4; - 2;0),C(3; -
2;1). Tính số đo góc B?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = (3;0;4) \\
\overrightarrow{BC} = (7;0;1) \\
\end{matrix} ight.

    \Rightarrow \cos\widehat{B} = \cos\left(
\overrightarrow{BA};\overrightarrow{BC} ight) =
\frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left|
\overrightarrow{BA} ight|.\left| \overrightarrow{BC}
ight|}

    = \frac{3.7 + 0.0 + 4.1}{\sqrt{3^{2} +
0^{2} + 4^{2}}.\sqrt{7^{2} + 0^{2} + 1^{2}}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \widehat{B} =
45^{0}

  • Câu 18: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 19: Thông hiểu

    Tìm một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1}?

    Ta có: F(x) = \int_{}^{}{\frac{\ln x}{x}\sqrt{\ln^{2}x + 1}dx}

    Đặt \sqrt{ln^{2}x + 1} \Rightarrow t^{2}= \ln^{2}x + 1 \Rightarrow tdt = \frac{\ln x}{x}dx

    Khi đó F(x) = \int_{}^{}{t^{2}dt} =\frac{t^{3}}{3} + C = \frac{\sqrt{\left( \ln^{2}x + 1 ight)^{3}}}{3} +C.

  • Câu 20: Nhận biết

    Trong không gian Oxyz, cho hai vecto \overrightarrow{a}, \overrightarrow{b}cùng có độ dài bằng 2. Biết rằng góc giữa hai vecto đó bằng 120^{0}, giá trị của biểu thức P = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2}

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
2.2.cos120^{0} = 2.2.\left( - \frac{1}{2} ight) = - 2

    Do đó:

    P = \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{.a}.\overrightarrow{b} +
4{\overrightarrow{b}}^{2}

    = 4 - 4.( - 2) + 4.4 = 28.

  • Câu 21: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 22: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A( - 1; - 2;1),B( - 4;2; - 2), C( - 1; - 1; - 2),D( - 5; - 5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

    Ta có \overrightarrow{\ AB} = ( - 3;4; -
3),\overrightarrow{AC} = (0;1; - 3)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = ( - 9; - 9; -
3)

    Mặt phẳng (ABC) đi qua A( - 1; - 2;1) và nhận \overrightarrow{n} = (3;3;1) là vectơ pháp tuyến có phương trình tổng quát là 3x +
3y + z + 8 = 0.

    Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

    d = d\left( D;(ABC) ight) = \frac{| -
15 - 15 + 2 + 8|}{\sqrt{3^{2} + 3^{2} + 1^{2}}} =
\frac{20}{\sqrt{19}}.

  • Câu 23: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 24: Thông hiểu

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 25: Vận dụng cao

    Cho tích phân I = \int\limits_1^e {\left( {x + \frac{1}{x}} ight)\ln xdx}  = a{e^2} + b, a và b là các số hữu tỉ. Giá trị của 2a - 3b là:

     Ta có:

    \begin{matrix}  I = \int\limits_1^e {\left( {x + \dfrac{1}{x}} ight)\ln xdx}  \hfill \\ = \int\limits_1^e {x\ln xdx}  + \int\limits_1^e {\dfrac{1}{x}\ln xdx}  \hfill \\ \end{matrix}

    = \left. {\left( {\frac{{{x^2}}}{2}\ln x} ight)} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx}  + \int\limits_0^1 {dt}  = \frac{{{e^2}}}{4} + \frac{5}{4}, với t = \ln x

    \begin{matrix}   \Rightarrow a = \dfrac{1}{4},b = \dfrac{5}{4} \hfill \\   \Rightarrow 2a - 3b =  - \dfrac{{13}}{4} \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 27: Nhận biết

    Trong không gian Oxyz cho hai vectơ\vec a = \left( {{a_1},{a_2},{a_3}} ight),\,\,\,\vec b = \left( {{b_1},{b_2},{b_3}} ight)  khác \vec 0cùng phương. Câu nào sau đây sai? (có thể chọn 2 đáp án)

     Ta xét đáp án \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}}:  sai vì thiếu điều kiện {b_1},{b_2},{b_3} e 0.

    Xét đáp án \left\{ \begin{array}{l}{a_1}{b_2} - {a_2}{b_1} = 0\\{a_2}{b_3} - {a_3}{b_2} = 0\\{a_3}{b_1} - {a_1}{b_3} = 0\end{array} ight.: luôn đúng vì 2 vecto cùng phương với nhau.

    Ta xét tiếp: \left\{ \begin{array}{l}{a_1} = k{b_1}\\{a_2} = k{b_2}\\{a_3} = k{b_3}\end{array} ight.,\,\,\,k \in \mathbb{R}: cũng sai, vì thiếu điều kiện k \in \mathbb{R} \backslash \left\{ 0 ight\}. 

    Như vậy ta sẽ chọn 2 đáp án có 2 ý  sai.

  • Câu 28: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 29: Nhận biết

    Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 30: Thông hiểu

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Ta có: S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)}dt =
\int_{}^{}{1,2698.e^{0,014t}}dt = 90,7.e^{0,014t} + C

    Do S(0) = 90,7 \Rightarrow C = 0
\Rightarrow S(t) = 90,7.e^{0,014t}

    Tốc độ tăng dân số của nước ta vào năm 2034 là

    S'(20) = 1,2698.e^{0,014.20} \approx
1,7( triệu người/năm)

    Dân số của nước ta vào năm 2034 là

    S(20)
= 90,7.e^{0,014.20} \approx 120( triệu người)

  • Câu 31: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 32: Nhận biết

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức có giá trị P = 2a - 1 là:

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức P = 2a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_0^1 {\dfrac{x}{{x + 1}}} dx \hfill \\   = \int\limits_0^1 {\left( {1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 \hfill \\ = 1 - \ln 2 \hfill \\   \Rightarrow a = 1 - \ln 2 \hfill \\   \Rightarrow P = 2a - 1 = 1 - 2\ln 2 \hfill \\ \end{matrix}

     

  • Câu 33: Vận dụng

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian t\left( s ight) là a\left( t ight) = 2t - 7\left( {m/{s^2}} ight). Biết vận tốc ban đầu bằng 10m/s, hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?

    Vận tốc của vật được tính theo công thức v\left( t ight) = 10 + {t^2} - 7t\left( {m/s} ight)

    => Quãng đường vật di chuyển được tính theo công thức:

    S\left( t ight) = \int {v\left( t ight)dt}  = \frac{{{t^3}}}{3} - \frac{{7t}}{2} + 10t\left( m ight)

    Ta có:

    \begin{matrix}  S'\left( t ight) = {t^2} - 7t + 10 \hfill \\   \Rightarrow S'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0} \\   {t = 5} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {S\left( 0 ight) = 0} \\   {S\left( 2 ight) = \dfrac{{26}}{6}} \\   {S\left( 5 ight) = \dfrac{{25}}{6}} \\   {S\left( 6 ight) = 6} \end{array}} ight. \Rightarrow \mathop {MaxS\left( t ight)}\limits_{\left[ {0;6} ight]}  = S\left( 2 ight) = \dfrac{{26}}{3} \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 35: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 36: Thông hiểu

    Một học sinh đi học từ nhà đến trường bằng xe đạp với vận tốc thay đổi theo thời gian được tính bởi công thức v(t) = 40t + 100(m/p). Biết rằng sau khi đi được 1 phút thì quãng đường học sinh đó đi được là 120m. Biết quãng đường từ nhà đến trường là 3km. Hỏi thời gian học sinh đó đi đến trường là bao nhiêu phút?

    Ta có: S(t) = \int_{}^{}{v(t)dt} =
20t^{2} + 100t + C

    S(1) = 120 + C = 120 \Rightarrow C =
0

    Để học sinh đó đến trường thì S(t) =
20t^{2} + 100t = 3000 \Leftrightarrow t = 10

    Vậy đáp án cần tìm là 10 phút.

  • Câu 37: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 38: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 39: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 40: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {\cos ^2}x

     f\left( x ight) = {\cos ^2}x = \frac{{\cos 2x + 1}}{2} = \frac{{\cos 2x}}{2} + \frac{1}{2}

    \int {f\left( x ight)dx}  = \int {\left( {\frac{{\cos 2x}}{2} + \frac{1}{2}} ight)dx = } \frac{x}{2} + \frac{1}{4}\sin 2x + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo