Đề thi giữa học kì 2 Toán 12 - Đề 3

Mô tả thêm: Đề kiểm tra giữa kì 2 Toán 12 được biên soạn gồm các câu hỏi trắc nghiệm được chia thành 4 mức độ bám sát chương trình Toán 12
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho giá trị của tích phân {I_1} = \int\limits_1^2 {\frac{{{x^2} + 2x}}{{x + 1}}dx}  = a, {I_2} = \int\limits_e^{{e^2}} {\frac{1}{x}dx = b}. Giá trị của biểu thức P = a - b là:

     Ta có:

    \begin{matrix}  {I_1} = \int\limits_1^2 {\dfrac{{{x^2} + 2x}}{{x + 1}}dx}  \hfill \\ = \int\limits_1^2 {\left( {x + 1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\ = \left. {\left( {\dfrac{{{x^2}}}{2} + x - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = \dfrac{5}{2} + \ln 2 - \ln 3 \hfill \\ \Rightarrow a = \dfrac{5}{2} + \ln 2 - \ln 3 \hfill \\ \end{matrix}

    {I_2} = \int\limits_e^{{e^2}} {\frac{1}{x}dx = \left. {\left( {\ln \left| x ight|} ight)} ight|} _e^{{e^2}} = 1 \Rightarrow b = 1

    P = a - b = \frac{3}{2} + \ln 2 - \ln 3

  • Câu 2: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 3: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 4: Vận dụng

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 5: Thông hiểu

    Biết rằng \int_{0}^{\pi^{2}}{\left(
\sin\sqrt{x} - \cos\sqrt{x} ight)dx = A + Bx} với A;B\mathbb{\in Z}. Chọn kết luận đúng?

    Đặt t = \sqrt{x} \Rightarrow t^{2} = x
\Rightarrow 2tdt = dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = \pi^{2} \Rightarrow t = \pi \\
\end{matrix} ight. khi đó ta được:

    \int_{0}^{\pi^{2}}{\left( \sin\sqrt{x} -\cos\sqrt{x} ight)dx =}\int_{0}^{\pi}{\left( \sin t - \cos tight)tdt} = I

    Đặt \left\{ \begin{matrix}
u = t \\
dv = \left( \sin t - \cos t ight)dt \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dt \\
v = - \cos t - \sin t \\
\end{matrix} ight.

    \Rightarrow I = 2\left\lbrack \left. \
t\left( - \cos t - \sin t ight) ight|_{0}^{\pi} +
\int_{0}^{\pi}{\left( \cos t + \sin t ight)dt}
ightbrack

    \Rightarrow I = 2\left\lbrack \left. \
\pi + \left( \sin t - \cos t ight) ight|_{0}^{\pi} ightbrack = 4
+ 2\pi

    \Rightarrow \left\{ \begin{matrix}
A = 4 \\
B = 2 \\
\end{matrix} ight.\  \Rightarrow A + B = 6

  • Câu 6: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 7: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 8: Thông hiểu

    Diện tích hình phẳng giới hạn bởi (C):y =
3x^{4} - 4x^{2} + 5, trục hoành, x
= 1x = 2 là:

    Ta có: 3x^{4} - 4x^{2} + 5 > 0;\forall
x\mathbb{\in R} nên ta có:

    S = \int_{1}^{2}{\left( 3x^{4} - 4x^{2}
+ 5 ight)dx} = \left. \ \left( \frac{3}{5}x^{5} - \frac{4}{3}x^{3} +
5x ight) ight|_{1}^{2} = \frac{214}{15}

  • Câu 9: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 10: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A( - 2;3;1),B(5;6;2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số \frac{AM}{BM}?

    Ta có: M \in (Oxz) \Rightarrow
M(x;0;z)

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (7;3;1) \Rightarrow AB = \sqrt{59} \\
\overrightarrow{AM} = (x + 2; - 3;z - 1) \\
\end{matrix} ight. và ba điểm A;B;M thẳng hàng

    \overrightarrow{AM} =
k.\overrightarrow{AB};\left( k\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x + 2 = 7k \\
- 3 = 3k \\
z - 1 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 9 \\
k = - 1 \\
z = 0 \\
\end{matrix} ight.

    \Rightarrow M( - 9;0;0) \Rightarrow
\left\{ \begin{matrix}
\overrightarrow{BM} = ( - 14; - 6; - 2) \\
\overrightarrow{AM} = ( - 7; - 3; - 1) \\
\end{matrix} ight.\  \Rightarrow BM = 2AB

    Vậy đáp án đúng là \frac{AM}{BM} =
\frac{1}{2}.

  • Câu 11: Nhận biết

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 12: Nhận biết

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 13: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 7t(m/s). Đi được 5s người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = - 70\left( m/s^{2} ight). Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.

    Vận tốc vật đạt được sau 5s là: v_{0} =
7.5 = 35(m/s)

    Ta có: v_{2}(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{- 70dt} = - 70t + C

    Do khi bắt đầu tăng tốc v_{0} = 35(m/s)
\Rightarrow v_{(t = 0)} = 35 \Rightarrow C = 35

    \Rightarrow v_{2}(t) = - 70t +
35

    Vật dừng hẳn khi v_{2}(t) = - 70t + 35 =
0 \Rightarrow t_{2} = \frac{1}{2}(s)

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{5}{v_{1}(t)dt} +
\int_{0}^{\frac{1}{2}}{v_{2}(t)dt}

    = \int_{0}^{5}{7tdt} +
\int_{0}^{\frac{1}{2}}{( - 70t + 35)dt} = 96,25(m)

  • Câu 14: Vận dụng

    Tính diện tích hình phẳng được giới hạn bởi đồ thị \left( P ight): y= {x^2} - 1 và hai tiếp tuyến của \left( P ight) tại A\left( { - 1;0} ight);B\left( {2;3} ight)

    Ta có hình vẽ minh họa như sau:

    Tính diện tích hình phẳng

    Phương trình tiếp tuyến của (P) tại A(-1;0) là: \left( {{d_2}} ight):y =  - 2x - 2

    Phương trình tiếp tuyến của (P) tại B(2;3) là: \left( {{d_1}} ight):y = 4x - 5

    Từ hình vẽ ta suy ra diện tích của hình phẳng cần tìm là:

    \begin{matrix}  S = \int_{ - 1}^{\frac{1}{2}} {\left( {{x^2} - 1 - ( - 2x - 2)} ight)} {\text{d}}x + \int_{\frac{1}{2}}^2 {\left( {{x^2} - 1 - (4x - 5)} ight)} {\text{d}}x \hfill \\   = \int_{ - 1}^{\frac{1}{2}} {\left( {{x^2} + 2x + 1} ight)} {\text{d}}x + \int_{\frac{1}{2}}^2 {\left( {{x^2} - 4x + 4} ight)} {\text{d}}x \hfill \\   = \left. {\left( {\frac{1}{3}{x^3} + {x^2} + x} ight)} ight|_{ - 1}^{\dfrac{1}{2}} + \left. {\left( {\dfrac{1}{3}{x^3} - 2{x^2} + 4x} ight)} ight|_{\frac{1}{2}}^2 = \frac{9}{4} \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA?

    Ta có: \overrightarrow{OA} = (2;2;1)
\Rightarrow OA = \sqrt{2^{2} + 2^{2} + 1^{2}} = 3

  • Câu 16: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 17: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 18: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}, f(0) = 0;f'(0) eq 0;f( - 2) > 2 và thỏa mãn hệ thức f(x)f'(x) + 18x^{2}
= \left( 3x^{2} + x ight)f'(x) + (6x + 1)f(x) với \forall x\mathbb{\in R}. Giá trị của f( - 2) là:

    Ta có:

    f(x)f'(x) + 18x^{2} = \left( 3x^{2}
+ x ight)f'(x) + (6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) + 36x^{2}
= 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) -
\left\lbrack 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)
ightbrack = - 36x^{2}

    \Rightarrow \left\lbrack f^{2}(x) -
2\left( 3x^{2} + x ight)f(x) ightbrack' = -
36x^{2}

    \Rightarrow \int_{}^{}{\left\lbrack
f^{2}(x) - 2\left( 3x^{2} + x ight)f(x) ightbrack'dx} =
\int_{}^{}{\left( - 36x^{2} ight)dx}

    \Rightarrow f^{2}(x) - 2\left( 3x^{2} +
x ight)f(x) = - 12x^{3} + C

    Mặt khác f(0) = 0 \Rightarrow C =
0

    Vậy f^{2}(x) - 2\left( 3x^{2} + x
ight)f(x) = - 12x^{3}

    \Rightarrow f^{2}( - 2) - 20f( - 2) = 96
\Leftrightarrow \left\lbrack \begin{matrix}
f( - 2) = 24 \\
f( - 2) = - 4 \\
\end{matrix} ight.

    f( - 2) > 2 \Rightarrow f( - 2) =
24.

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 20: Nhận biết

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 21: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho A(a;0;0),B(0;b;0),C(0;0;c). Gọi G là trọng tâm tam giác ABC. Tính độ dài đoạn thẳng OG?

    G là trọng tâm tam giác ABC nên tọa độ điểm G\left( \frac{a}{3};\frac{b}{3};\frac{c}{3}
ight) hay \overrightarrow{OG} =
\left( \frac{a}{3};\frac{b}{3};\frac{c}{3} ight)

    Vậy OG = \frac{1}{3}\sqrt{a^{2} + b^{2} +
c^{2}}.

  • Câu 22: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 23: Thông hiểu

    Diện tích hình phẳng được gạch chéo trong hình bên bằng

    Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:

    \int_{- 1}^{2}{\left\lbrack \left( -
x^{2} + 2 ight) - \left( x^{2} - 2x - 2 ight) ightbrack dx} =
\int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4 ight)dx}.

  • Câu 24: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 25: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - z + 3 = 0(Q):x - 4y + (m - 1)z + 1 = 0, với m là tham số. Tìm tất cả các giá trị của tham số thực m để mặt phẳng (P) vuông góc với mặt phẳng (Q).

    Gọi \overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (1;2; - 1) \\
\overrightarrow{n_{(Q)}} = (1; - 4;m - 1) \\
\end{matrix} ight. . Để (P) ⊥ (Q)

    \Leftrightarrow
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} = 0

    \Leftrightarrow 1 - 8 - (m - 1) = 0
\Leftrightarrow m = - 6

  • Câu 26: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 27: Thông hiểu

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

  • Câu 28: Nhận biết

    Cho \int_{- 1}^{2}{f(x)dx} = 2\int_{- 1}^{2}{g(x)dx} = - 1, khi đó \int_{- 1}^{2}{\left\lbrack x + 2f(x)
+ 3g(x) ightbrack dx} bằng:

    Ta có:

    \int_{- 1}^{2}{\left\lbrack x + 2f(x) +
3g(x) ightbrack dx} = \int_{- 1}^{2}{xdx} + 2\int_{- 1}^{2}{f(x)dx}
+ 3\int_{- 1}^{2}{g(x)dx}

    = \left. \ \frac{1}{2}x^{2} ight|_{-
1}^{2} + 2.2 + 3.( - 1) = \frac{5}{2}

  • Câu 29: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{2x}{x + \sqrt{x^{2} -
1}}?

    Ta có: F(x) = \int_{}^{}{\frac{2x}{x +
\sqrt{x^{2} - 1}}dx} = \int_{}^{}{\left\lbrack 2x\left( x - \sqrt{x^{2}
- 1} ight) ightbrack dx}

    = \int_{}^{}{2x^{2}dx} -
\int_{}^{}{\left\lbrack 2x\sqrt{x^{2} - 1} ightbrack dx} =
\frac{2}{3}x^{3} - \int_{}^{}{\left( x^{2} - 1
ight)^{\frac{1}{2}}d\left( x^{2} - 1 ight)}

    = \frac{2}{3}x^{3} - \frac{2}{3}\left(
x^{2} - 1 ight)\sqrt{x^{2} - 1} + C

    Vậy một nguyên hàm của hàm số là F(x) =
\frac{2}{3}x^{3} - \frac{2}{3}\left( x^{2} - 1 ight)\sqrt{x^{2} -
1}.

  • Câu 30: Thông hiểu

    Xét trong không gian Oxyz cho tam giác ABC.

    Biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight), hãy tìm tọa độ điểm D sao cho ABCD là hình bình hành?

     Gọi D\left( {x,y,z} ight) là tọa độ của điểm cần tìm.

    Để ABCD là hình bình hành \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB}

    \Leftrightarrow \left\{ \begin{array}{l}x - {x_A} = 2 + 3\\y - {y_A} =  - 6 + 1\\z - {z_A} = 6 - 1\end{array} ight. \Rightarrow D\left( {7; - 1;2} ight)

  • Câu 31: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 32: Nhận biết

    Cho hàm số y = f\left( x ight) liên tục trên đoạn \left[ {a;b} ight]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight), trục hoành và hai đường thẳng x = a;x = b;\left( {a < b} ight). Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:

    Thể tích của khối tròn xoay cần tính là: V = 2\pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 33: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 34: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 35: Thông hiểu

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 36: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 37: Vận dụng cao

    Cho hàm số y = f(x) là hàm số bậc ba có đồ thị như hình vẽ:

    Biết \int_{1}^{4}{x.f''(x - 1)dx}
= 7\int_{1}^{2}{2x.f'\left(
x^{2} - 1 ight)dx} = - 3. Phương trình tiếp tuyến với đồ thị hàm số y = f(x) tại điểm có hoành độ x = 3 là:

    Từ đồ thị hàm số ta suy ra f(0) =
2;f'(0) = 0

    Xét tích phân \int_{1}^{2}{2x.f'\left( x^{2} - 1
ight)dx}. Đặt u = x^{2} - 1
\Rightarrow du = 2xdx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 2 \Rightarrow u = 3 \\
\end{matrix} ight.

    Do đó \int_{1}^{2}{2x.f'\left( x^{2}
- 1 ight)dx} = \int_{1}^{3}{f'(u)du} = \left. \ f(u)
ight|_{0}^{3} = f(3) - f(0)

    \Rightarrow f(3) - f(0) = - 3
\Rightarrow f(3) = - 1

    Xét tích phân \int_{1}^{4}{x.f''(x - 1)dx}. Đặt u = x - 1 \Rightarrow du = dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 4 \Rightarrow u = 3 \\
\end{matrix} ight.

    \Rightarrow \int_{1}^{4}{x.f''(x
- 1)dx} = \int_{0}^{3}{(u + 1)f''(u)du} = \int_{0}^{3}{(u +
1)d\left\lbrack f'(u) ightbrack}

    = \left. \ (u + 1)f'(u)
ight|_{0}^{3} - \int_{0}^{3}{f'(u)du}

    = 4f'(3) - f'(0) - \left. \ f(u)
ight|_{0}^{3}

    = 4f'(3) - f'(0) - f(3) +
f(0)

    Theo bài ra suy ra

    4f'(3) - f'(0) - f(3) + f(0) =
7

    \Rightarrow 4f'(3) = 7 + f(3) - f(0)
= 4 \Rightarrow f'(3) = 1

    Như vậy f(3) = - 1;f'(3) =
1. Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 3 là: y = x - 4.

  • Câu 38: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 39: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 40: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo