Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng
. Gọi M là điểm thuộc (P) sao cho
vuông tại M . Khoảng cách từ M đến (Oxy) bằng:
Ta có: suy ra M thuộc mặt cầu (S) đường kính AB.
Gọi I là trung điểm AB , khi đó và
.
Ta tính được suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .
Phương trình đường thẳng qua I và vuông góc với (P) là:
Tọa độ của M là nghiệm của hệ phương trình:
suy ra .
Suy ra .
Nguyên hàm của hàm số
là:
Ta có:
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Tích phân
bằng:
Ta có:
.
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng
. Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Cho giá trị của tích phân
,
. Giá trị a.b gần nhất với giá trị nào sau đây?
Ta có:
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Cho hàm số
liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Trong không gian
khoảng cách giữa hai mặt phẳng
và
bằng:
Dựa vào phương trình có vectơ pháp tuyến là
nên
Ta có: suy ra
Họ nguyên hàm của hàm số
là:
Ta có:
.
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Tìm nguyên hàm của hàm của hàm số ![]()
Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Trong không gian Oxyz cho vectơ
và
. Gọi
lần lượt là ba góc tạo bởi
với ba trục
. Ta có:
Áp dụng công thức hình chiếu vecto trên trục, ta có ngay được:
Trong không gian
, cho điểm
. Phương trình mặt phẳng
đi qua
và chứa trục
là:
Mặt phẳng có VTPT
và đi qua điểm
.
Suy ra phương trình .
Tính thể tích
của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Tìm họ nguyên hàm của hàm số
?
Ta có:
Cho hàm số
là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho hàm số
là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Theo bài ra ta có:
Tích phân
bằng:
Ta có:
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Một mặt phẳng
đi qua hai điểm
và vuông góc với
có dạng
. Khẳng định nào sau đây là đúng?
Vì (Q) vuông góc với (P) nên (Q) nhận véc-tơ pháp tuyến làm véc-tơ chỉ phương.
Mặt khác do (Q) đi qua hai điểm A, B nên nhận làm véc-tơ chỉ phương.
Vậy (Q) có véc-tơ pháp tuyến là
Vậy phương trình mặt phẳng (Q) là:
Vậy .
Hàm số
có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:
Hàm số đi qua B(2; 10) =>
=>
=>
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Trong không gian với hệ tọa độ
, cho hai vectơ
. Gọi
là vectơ cùng hướng với vectơ
(tích có hướng của hai vectơ
và
. Biết
, tìm tọa độ vectơ
.
Ta thấy
Vì là vectơ cùng hướng với vectơ
nên
.
Mặt khác
Vậy .
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Cho giá trị của tích phân
,
. Giá trị của biểu thức
là:
Ta có:
Cho điểm
chia đoạn thẳng
theo tỉ số
thì ta có:
. Khi đó với một điểm
tùy ý ta có:
Ta có:
Trong không gian
, cho hai điểm
. Biết mặt phẳng
đi qua điểm
và cách
một khoảng lớn nhất. Phương trình mặt phẳng
là
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.
Ta có BH ≤ AB.
Dấu “=” xảy ra ⇔ H ≡ A
⇒ BHmax = AB khi AB ⊥ (P).
Ta có: