Cho hàm số có đồ thị là đường cong trong hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên .
Cho hàm số có đồ thị là đường cong trong hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên .
Xác định hàm số nghịch biến trên ?
Xét hàm số ta có:
Nên hàm số nghịch biến trên .
Hàm số nghịch biến trên khoảng khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng khi
Vậy đáp án cần tìm là .
Cho hàm số có . Số điểm cực tiểu của hàm số đã cho là:
Ta có:
Ta có bảng xét dấu:
Dựa vào bảng xét dấu suy ra hàm số có 1 điểm cực tiểu.
Cho hàm số xác định, liên tục trên và có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại .
Tìm giá trị thực của tham số để hàm số có giá trị lớn nhất trên đoạn bằng ?
Xét hàm số trên đoạn ta có:
Phương trình
Tìm GTLN, GTNN của hàm số lượng giác trên đoạn
Đặt
Vì
Ta có:
Đường tiệm cận ngang của đồ thị hàm số có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Cho hàm số có bảng biến thiên như sau:
Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số đã cho có hai tiệm cận đứng là và .
nên đồ thị hàm số đã cho có một tiệm cận ngang là
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Điểm nào sau đây thuộc đồ thị hàm số ?
Thay vào ta được:
Vậy thuộc đồ thị hàm số .
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:
Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn nên hàm số cần tìm là .
Cho ba vectơ . Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng .
d) Hàm số đạt cực tiểu tại (chú ý: gọi là giá trị cực tiểu).
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là . Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là . Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Cho hình hộp chữ nhật có và đặt . Lấy điểm thỏa và điểm thỏa . (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với là các số thực. Đúng||Sai
d) . Đúng||Sai
Cho hình hộp chữ nhật có và đặt . Lấy điểm thỏa và điểm thỏa . (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với là các số thực. Đúng||Sai
d) . Đúng||Sai
a) Đúng: Ta có
b) Sai:
c) Đúng:
(vì đôi một vuông góc nên .
Ta có
.
d) Đúng:
Suy ra .
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi (trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là . Đúng||Sai
b) Giá một căn hộ sau khi tăng là (trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là (trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi (trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là . Đúng||Sai
b) Giá một căn hộ sau khi tăng là (trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là (trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
a) Đúng. Số căn hộ bị bỏ trống là . Suy ra Số căn hộ còn lại sau khi tăng giá là .
b) Sai. Giá một căn hộ sau khi tăng là (trăm ngìn).
c) Đúng. Tổng số tiền công ty thu được là
.
d) Sai. Ta có .
Phương trình .
Bảng biến thiên
Từ bảng biến thiên suy ra, công ty sẽ thu được nhiều tiền nhất khi giá căn hộ là 3,5 (triệu đồng).
Cho hàm số . Tập hợp các giá trị của tham số để hàm số nghịch biến trên là . Tính giá trị biểu thức ?
Cho hàm số . Tập hợp các giá trị của tham số để hàm số nghịch biến trên là . Tính giá trị biểu thức ?
Cho hàm số . Tập hợp các giá trị của tham số để hàm số nghịch biến trên là . Tính giá trị biểu thức ?
Cho hàm số . Tập hợp các giá trị của tham số để hàm số nghịch biến trên là . Tính giá trị biểu thức ?
Một sợi dây kim loại dài được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Một sợi dây kim loại dài được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Cho hàm số . Tìm để khoảng cách từ gốc đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm để khoảng cách từ gốc đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hình lập phương có đường chéo . Gọi là tâm hình vuông và điểm S thỏa mãn: . Khi đó độ dài của đoạn bằng với và là phân số tối giản. Tính giá trị của biểu thức .
Cho hình lập phương có đường chéo . Gọi là tâm hình vuông và điểm S thỏa mãn: . Khi đó độ dài của đoạn bằng với và là phân số tối giản. Tính giá trị của biểu thức .
Cho hàm số liên tục trên và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình có nghiệm thuộc khoảng ?
Cho hàm số liên tục trên và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình có nghiệm thuộc khoảng ?