Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo Đề 4

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn bám sát chương trình sách chân trời sáng tạo giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức
  • Thời gian làm: 90 phút
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Cho hàm số y =
f(x) có đồ thị f'(x) là parabol như hình vẽ:

    Khẳng định nào sau đây là đúng?

    Từ đồ thị hàm số ta có bảng biến thiên như sau:

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 1)(3; +
\infty).

  • Câu 2: Nhận biết

    Tìm các khoảng nghịch biến của hàm số y = \frac{1 - x}{x + 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y = \frac{1 - x}{x + 1}
\Rightarrow y' = \frac{- 2}{(x + 1)^{2}} < 0;\forall x \in
D

    Do đó hàm số luôn nghịch biến trên từng khoảng xác định.

  • Câu 3: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 4: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 5: Nhận biết

    Cho hàm số y = {x^3} - 3x + 2. Tọa độ điểm cực tiểu của đồ thị hàm số là:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3 \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\  y'' = 6x \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( 1 ight) = 6 > 0} \\   {y''\left( { - 1} ight) =  - 6 < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)

  • Câu 6: Thông hiểu

    Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = \frac{1}{3}x^{3} - 3x^{2} + 5x -
1

    Ta có: y' = x^{2} - 6x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 5 \\
\end{matrix} ight.

    y'' = 2x - 6 \Rightarrow \left\{
\begin{matrix}
y''(1) = - 4 < 0 \\
y''(5) = 4 > 0 \\
\end{matrix} ight. nên hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại x = 5;y_{CT} = - \frac{28}{3}
    y'(5) = 0 suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = -
\frac{28}{3}

    Vậy tiếp tuyến song song với trục hoành.

  • Câu 7: Nhận biết

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)
= \frac{2x - 1}{x + 2} trên đoạn \lbrack 0;2brack. Giá trị biểu thức T = 2m + 4M là:

    Ta có: y' = \frac{5}{(x + 2)^{2}}
> 0;\forall x eq - 2 nên hàm số đồng biến trên \lbrack 0;2brack

    \Rightarrow \left\{ \begin{matrix}\max_{\lbrack 0;2brack}y = f(2) = \dfrac{3}{4} \\\min_{\lbrack 0;2brack}y = f(0) = - \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow T = 2m + 4M = 2.

  • Câu 8: Nhận biết

    Giá trị lớn nhất của hàm số y = x^{2} +
\frac{2}{x} trên đoạn \left\lbrack
\frac{1}{2};2 ightbrack là:

    Ta có: y' = 2x -
\frac{2}{x^{2}}

    y' = 0 \Leftrightarrow 2x -
\frac{2}{x^{2}} = 0 \Leftrightarrow x = 1

    \Rightarrow \left\{ \begin{matrix}f\left( \dfrac{1}{2} ight) = \dfrac{17}{4} \\f(1) = 3;f(2) = 5 \\\end{matrix} ight.\  \Rightarrow \max_{\left\lbrack \frac{1}{2};2ightbrack}f(x) = f(2) = 5

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số trên có tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow + \infty}f(x) = 1;\lim_{x ightarrow - \infty}f(x) =
1

    Suy ra tiệm cận ngang của đồ thị hàm số là y = 1.

  • Câu 10: Thông hiểu

    Cho hàm số y = \frac{2mx + m}{x -
1}. Tìm tất cả các giá trị thực của tham số m để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8.

    Điều kiện để đồ thị hàm số có tiệm cận là - 2m - m eq 0 \Leftrightarrow m eq
0

    Khi đó đồ thị hàm số có:

    Tiệm cận đúng: x = 1, song song với Oy và cắt Ox tại điểm A(1;0)

    Tiệm cận ngang: y = 2m song song với Ox và cắt Oy tại điểm B(2m;0)

    Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là S = OA.OB = 1.|2m| = 8
\Leftrightarrow m = \pm 4

  • Câu 11: Nhận biết

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD. Gọi E;F lần lượt là trung điểm của AD;BC, các điểm M;N lần lượt nằm trên AB;DC sao cho AM = MB;DN = 2NC. Biết biểu diễn \overrightarrow{EF} = m.\overrightarrow{EM} +
n.\overrightarrow{EN}. Tính tổng giá trị m;n?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{EF} =
\frac{\overrightarrow{AB} + \overrightarrow{DC}}{2}

    = \frac{\overrightarrow{AE} +
\overrightarrow{EM} + \overrightarrow{MB} + \overrightarrow{DE} +
\overrightarrow{EN} + \overrightarrow{NC}}{2}

    = \frac{\overrightarrow{EM} +
\overrightarrow{MB} + \overrightarrow{EN} +
\overrightarrow{NC}}{2}

    = \dfrac{\overrightarrow{EM} +\dfrac{1}{3}\overrightarrow{AB} + \overrightarrow{EN} +\dfrac{1}{3}\overrightarrow{DC}}{2}

    = \dfrac{\overrightarrow{EM} +\dfrac{1}{2}\overrightarrow{AN} + \overrightarrow{EN} +\dfrac{1}{2}\overrightarrow{DN}}{2}

    = \dfrac{\overrightarrow{EM} +\dfrac{1}{2}\left( \overrightarrow{AE} + \overrightarrow{EM} ight) +\overrightarrow{EN} + \dfrac{1}{2}\left( \overrightarrow{DE} +\overrightarrow{EN} ight)}{2}

    = \dfrac{\dfrac{3}{2}\overrightarrow{EM} +\dfrac{3}{2}\overrightarrow{EN}}{2} = \dfrac{3}{4}\overrightarrow{EM} +\frac{3}{4}\overrightarrow{EN}

    Suy ra m = n = \frac{3}{4} \Rightarrow m
+ n = \frac{3}{2}

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 14: Thông hiểu

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    a) Ta có:

    f'(x) = \frac{\left( 2x^{2} + 2x + 5
ight)'.(2x + 1) - (2x + 1)'\left( 2x^{2} + 2x + 5 ight)}{(2x
+ 1)^{2}}

    = \frac{4\left( x^{2} + x - 2
ight)}{(2x + 1)^{2}}

    b) f'(x) = 0 \Leftrightarrow
\frac{4\left( x^{2} + x - 2 ight)}{(2x + 1)^{2}} = 0

    \Leftrightarrow x^{2} + x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Thay vào hàm số, ta tính được toạ độ các điểm cực trị là (−2; −3) và (1; 3)

    c) Điều kiện xác định: x eq -
\frac{1}{2}

    \lim_{x ightarrow \left( - \frac{1}{2}
ight)^{+}}f(x) = + \inftynên x =
- \frac{1}{2} là tiệm cận đứng.

    d) y = f(x) = \frac{2x^{2} + 2x + 5}{2x +
1} = x + \frac{1}{2} + \frac{9}{2(2x + 1)}

    Suy ra đồ thị có đường tiệm cận xiên là y
= x + \frac{1}{2}.

  • Câu 15: Vận dụng

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    Đáp án là:

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:

    S = 2a^{2} + 2ah + 4ah = 2a^{2} +
6ah

    b) Sai. Theo đề bài ta có: 2a^{2} + 6ah =
5,5 \Rightarrow h = \frac{5,5 - 2a^{2}}{6a};\left( 0 < a <
\frac{5\sqrt{5}}{2} ight).

    c) Sai. Gọi V là thể tích của bể cá, ta có:

    V = 2a^{2}h = \frac{2a^{2}\left( 5,5 -
2a^{2} ight)}{6a} = \frac{5,5a}{3} - \frac{2a^{3}}{3}

    d) Đúng. Ta có: V' = \frac{5,5}{3} -
\frac{6a^{2}}{3}

    V' = 0 \Leftrightarrow \dfrac{5,5}{3}- \dfrac{6a^{2}}{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{\sqrt{33}}{6}(tm) \\a = - \dfrac{\sqrt{33}}{6}(ktm) \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy dung tích lớn nhất của bể cá bằng \frac{11\sqrt{33}}{54}.

  • Câu 16: Thông hiểu

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Đáp án là:

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: Các vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}.

    Do đó có 12 vectơ thỏa mãn yêu cầu.

    b) Sai:  (\overrightarrow{AB},\overrightarrow{BC})
= 180^{\circ} - (\overrightarrow{BA},\overrightarrow{BC}) = 180^{\circ}
- ABC = 120^{\circ} 

    c) Sai: \overrightarrow{BE} =\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} +\frac{1}{3}\overrightarrow{CD}= \overrightarrow{BC} +\frac{1}{3}(\overrightarrow{BD} - \overrightarrow{BC}) =\frac{2}{3}\overrightarrow{BC} +\frac{1}{3}\overrightarrow{BD}.

    Do đó m = 0,n = \frac{2}{3},p =
\frac{1}{3} suy ra m + n + p =
1.

    d) Đúng: Ta có:

    \overrightarrow{BE} =
\overrightarrow{AE} - \overrightarrow{AB} = (\overrightarrow{AC} +
\overrightarrow{CE}) - \overrightarrow{AB} = \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{CD} - \overrightarrow{AB}

    = \overrightarrow{AC} +
\frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AC}) -
\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC} +
\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB}

    Suy ra

    \overrightarrow{AD}.\overrightarrow{BE} =\overrightarrow{AD}.\left( \frac{2}{3}\overrightarrow{AC} +\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB} ight)=\frac{2}{3}.\overrightarrow{AD}.\overrightarrow{AC} +\frac{1}{3}.{\overrightarrow{AD}}^{2} -\overrightarrow{AD}.\overrightarrow{AB}

    = \frac{2}{3}.a.a.\cos 60^{\circ} +\frac{1}{3}a^{2} - a.a.\cos60^{\circ} = \frac{a^{2}}{6}.

  • Câu 17: Thông hiểu

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Thông hiểu

    Trong không gian, cho hai vectơ \overrightarrow{a}\overrightarrow{b} có cùng độ dài bằng 6. Biết độ dài của vectơ \overrightarrow{a} + 2\overrightarrow{b} bằng 6\sqrt{3}. Biết số đo góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}x độ. Giá trị của x là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian, cho hai vectơ \overrightarrow{a}\overrightarrow{b} có cùng độ dài bằng 6. Biết độ dài của vectơ \overrightarrow{a} + 2\overrightarrow{b} bằng 6\sqrt{3}. Biết số đo góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}x độ. Giá trị của x là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo Đề 4 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo