Đề thi giữa kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Theo hình vẽ, hàm số đồng biến trên khoảng ( - 1;\ 1) và đạt cực tiểu tại điểm x_{o} = - 1. giá trị không âm trên khoảng đó.

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\ 0brack bằng - 1.

  • Câu 4: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 5: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 9} ight){\left( {x - 4} ight)^2}. Khi đó hàm số y = f\left( {{x^2}} ight) nghịch biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  y' = \left[ {f\left( {{x^2}} ight)} ight]\prime  \hfill \\   = \left( {{x^2}} ight)'{x^4}\left( {x - 9} ight)\left( {{x^2} - 4} ight) \hfill \\   = 2{x^5}\left( {x - 3} ight)\left( {x - 3} ight){\left( {x - 2} ight)^2}.{\left( {x + 2} ight)^2} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x =  \pm 2} \\   {x =  \pm 3} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tìm khoảng nghịch biến của hàm số

    Dựa vào bảng xét dấu, hàm số y = f\left( {{x^2}} ight) nghịch biến trên các khoảng (-∞; -3) và (-0; 3)

  • Câu 6: Thông hiểu

    Cho đồ thị hàm số như hình vẽ dưới đây:

    Xác định hàm số tương ứng

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1

    => Loại A và B

    Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C

  • Câu 7: Thông hiểu

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{4} - 5(m - 3)x^{2} + 3m^{2} - 4 đạt cực tiểu tại x = 0 là:

    Ta có: y' = 4x^{3} - 10(m -
3)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{10(m - 3)}{4} \\\end{matrix} ight.

    Trường hợp 1: m - 3 > 0
\Leftrightarrow m > 3. Khi đó ta có bảng xét dấu như sau:

    Dựa vào bảng biến thiên ta thấy x =
0 là điểm cực đại nên trường hợp này không thỏa mãn.

    Trường hợp 2: m - 3 \leq 0
\Leftrightarrow m \leq 3 ta có bảng xét dấu như sau:

    Dựa vào bảng biến thiên ta thấy x =
0 là điểm cực tiểu. Vậy m \leq
3 thỏa mãn yêu cầu bài toán.

  • Câu 8: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} và có đồ thị của hàm số f'(x) là đường cong như hình vẽ sau:

    Chọn khẳng định đúng?

    Từ đồ thị hàm số f'(x) ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số y = f(x) nghịch biến trên khoảng (0; + \infty)”.

  • Câu 9: Nhận biết

    Cho hàm số f(x) xác định, liên tục trên tập số thực và đồ thị của hàm số f'(x) là đường cong như hình vẽ bên dưới.

    Khẳng định nào sau đây là khẳng định đúng?

    Từ đồ thị của hàm số f'(x) ta có:

    f'(x) \leq 0;\forall x \in ( -
\infty; - 3) \cup ( - 2; + \infty)

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0; + \infty).

  • Câu 10: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 11: Nhận biết

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 12: Nhận biết

    Các đường tiệm cận của đồ thị hàm số y =
\frac{2x + 1}{x - 3} tạo với hai trục tọa độ diện tích bằng bao nhiêu?

    Ta có: Đồ thị hàm số y = \frac{2x + 1}{x
- 3} có đường tiệm cận đứng là x =
3 và đường tiệm cận ngang là y =
2

    Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là 3;2 nên diện tích của hình chữ nhật là S = 2.3 =
6.

  • Câu 13: Vận dụng

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 14: Vận dụng cao

    Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số g\left( x ight) = f\left[ {{e^{ - x}}.f\left( x ight)} ight] trên khoảng \left( { - \infty ;3} ight) là:

    Số điểm cực trị của hàm số thuộc khoảng cho trước

    Ta có: g'\left( x ight) = {e^{ - x}}.\left[ {f'\left( x ight) - f\left( x ight)} ight].f'\left[ {{e^{ - x}}.f\left( x ight)} ight]

    Số điểm cực trị của hàm số thuộc khoảng cho trước

    Xét g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f'\left( x ight) - f\left( x ight) = 0} \\   {f\left( {{e^{ - x}}.f\left( x ight)} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f'\left( x ight) = f\left( x ight)} \\   {f\left( {{e^{ - x}}.f\left( x ight)} ight) = 0} \end{array}} ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = 0} \\   {x = b} \\   \begin{gathered}  {e^{ - x}}.f\left( x ight) =  - 2 \hfill \\  {e^{ - x}}.f\left( x ight) = 0 \hfill \\  {e^{ - x}}.f\left( x ight) = 2 \hfill \\ \end{gathered}  \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = 0} \\   {x = b} \\   \begin{gathered}  f\left( x ight) =  - 2.{e^x} \hfill \\  f\left( x ight) = 0 \hfill \\  f\left( x ight) = 2.{e^x} \hfill \\ \end{gathered}  \end{array}} ight.

    Từ đồ thị ta được:

    Phương trình f\left( x ight) =  - 2.{e^x} có nghiệm đơn

    Phương trình f\left( x ight) = 0 có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)

    Phương trình f\left( x ight) = 2.{e^x} có 1 nghiệm đơn.

    Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định hàm số y = f(x)?

    Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên đáp án là y = x^{3} -
3x^{2} + 1.

  • Câu 16: Nhận biết

    Giá trị lớn nhất của hàm số y = x^{2} +
\frac{2}{x} trên đoạn \left\lbrack
\frac{1}{2};2 ightbrack là:

    Ta có: y' = 2x -
\frac{2}{x^{2}}

    y' = 0 \Leftrightarrow 2x -
\frac{2}{x^{2}} = 0 \Leftrightarrow x = 1

    \Rightarrow \left\{ \begin{matrix}f\left( \dfrac{1}{2} ight) = \dfrac{17}{4} \\f(1) = 3;f(2) = 5 \\\end{matrix} ight.\  \Rightarrow \max_{\left\lbrack \frac{1}{2};2ightbrack}f(x) = f(2) = 5

  • Câu 17: Thông hiểu

    Cho hàm số y = \frac{x - 1}{x^{2} + 2mx +
3m^{2} - m - 1} với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để đồ thị hàm số đã cho có ba đường tiệm cận?

    Ta có: \lim_{x ightarrow \pm \infty}y =
0 suy ra y = 0 là một tiệm cận ngang của đồ thị hàm số.

    Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.

    \Leftrightarrow x^{2} + 2mx + 3m^{2} - m
- 1 = 0 có hai nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
   - 2{m^2} + m + 1 > 0 \hfill \\
  3{m^2} + m e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
   - \frac{1}{2} < m < 1 \hfill \\
  m e 0 \hfill \\
  m e  - \frac{1}{3} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 18: Vận dụng

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 19: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 20: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 21: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 22: Nhận biết

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x + 3}{x - 1} là đường thẳng có phương trình

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{2x + 3}{x - 1} = + \infty \Rightarrow x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}y = \lim_{xightarrow 1^{-}}\frac{2x + 3}{x - 1} = - \infty \Rightarrow x =1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 23: Thông hiểu

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Từ đồ thị hàm số y = f'(x), ta có bảng biến thiên

    a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).

    b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).

    c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.

    d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.

  • Câu 24: Vận dụng

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 26: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 27: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 29: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 30: Vận dụng cao

    Hình lăng trụ có thể có số cạnh nào sau đây?

    Giả sử hình lăng trụ có đáy là n – giác.

    Khi đó, số cạnh của hình lăng trụ là 3n.

    Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.

  • Câu 31: Thông hiểu

    Cho hàm số y = \frac{{\sqrt {{x^2} - x + 3}  - \sqrt {2x + 1} }}{{{x^3} - 2{x^2} - x + 2}}. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

     

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - x + 3 \geqslant 0} \\   {2x + 1 \geqslant 0} \\   {{x^3} - 2{x^2} - x + 2 e 0} \end{array} \Rightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e  \pm 1} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e 1} \end{array}} ight.

    Từ điều kiện ta có:

    \begin{matrix}  y = \dfrac{{\left( {{x^2} - x + 3} ight) - \left( {2x + 1} ight)}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x - 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{{{x^2} - 3x + 2}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{1}{{\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\ \end{matrix}

    Đồ thị hàm số không có tiệm cận đứng

    Mặt khác

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{{x^2}.\left( {1 + \dfrac{1}{x}} ight)\left( {\sqrt {1 - \dfrac{1}{x} + \dfrac{3}{{{x^2}}}}  + \sqrt {\dfrac{2}{x} + \dfrac{1}{{{x^2}}}} } ight)}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số

    Không tồn tại \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight)

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang

  • Câu 32: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 33: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=SB, SC=SD\left( {SAB} ight) \bot \left( {SCD} ight). Tổng diện tích hai tam giác SABSCD bằng \frac{{7{a^2}}}{{10}}. Tính thể tích V của khối chóp  S.ABCD?

     

    Gọi M, N lần lượt là trung điểm của ABCD.

    Tam giác SAB cân tại S suy ra SM \bot AB \Rightarrow SM \bot d với d = \left( {SAB} ight) \cap \left( {SCD} ight).

    \left( {SAB} ight) \bot \left( {SCD} ight) suy ra SM \bot \left( {SCD} ight) \Rightarrow SM \bot SN\left( {SMN} ight) \bot \left( {ABCD} ight)

    Kẻ SH \bot MN\xrightarrow{{}}SH \bot \left( {ABCD} ight).

    Ta có {S_{\Delta SAB}} + {S_{\Delta SCD}} = \frac{{7{a^2}}}{{10}}

    \Leftrightarrow \frac{1}{2}AB.SM + \frac{1}{2}CD.SN = \frac{{7{a^2}}}{{10}}\xrightarrow{{}}SM + SN = \frac{{7a}}{5}.

    Tam giác SMN vuông tại S nên S{M^2} + S{N^2} = M{N^2} = {a^2}

    Giải hệ:

    \left\{ \begin{gathered}  SM + SN = \frac{{7a}}{5} \hfill \\  S{M^2} + S{N^2} = {a^2} \hfill \\ \end{gathered}  ight.  \Leftrightarrow SM = \frac{{3a}}{5}{\text{ }} hoặc  SN = \frac{{4a}}{5}

    \xrightarrow{{}}SH = \frac{{SM.SN}}{{MN}} = \frac{{12a}}{{25}}

    Vậy thể tích khối chóp V_{S.ABCD} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{{4{a^3}}}{{25}}.

  • Câu 34: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 35: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 36: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +cx + d;(a eq 0) có đồ thị như sau:

    Hàm số y = \left| f(x) ight| có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +cx + d;(a eq 0) có đồ thị như sau:

    Hàm số y = \left| f(x) ight| có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 38: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có đạo hàm f'(x) = x(x - 1)^{3}(x + 2)^{2}. Tìm số điểm cực trị của hàm số đó?

    Ta có: f'(x) = x(x - 1)^{3}(x +
2)^{2} nên f'(x) = 0 có các nghiệm là x = 0;x = 1;x = -
2f'(x) chỉ đổi dấu khi x qua các nghiệm x = 0;x =
1

    Vậy hàm số đã cho có hai điểm cực trị.

  • Câu 39: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 40: Nhận biết

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 41: Thông hiểu

    Tìm giá trị của m để bất phương trình x + \frac{4}{x - 1} \geq m có nghiệm trên khoảng ( -
\infty;1)?

    Bất phương trình x + \frac{4}{x - 1} \geq
m có nghiệm trên khoảng ( -
\infty;1)

    \Leftrightarrow m \leq \max_{( -
\infty;1brack}g(x)

    Với g(x) = x + \frac{4}{x - 1}
\Rightarrow g'(x) = 1 - \frac{4}{(x - 1)^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 otin ( - \infty;1) \\
x = - 1 \in ( - \infty;1) \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta suy ra m \leq
- 3.

  • Câu 42: Vận dụng

    Cho hàm số y = f(x) có đạo hàm. Biết f(x) có đạo hàm f’(x) và hàm số y = f’(x) có đồ thị như hình vẽ:

    Điểm cực đại của hàm số

    Hàm số g(x) = f(x - 1) đạt cực đại tại điểm nào dưới đây?

    Cách 1: Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( {x - 1} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x - 1 = 1} \\   {x - 1 = 3} \\   {x - 1 = 5} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x = 4} \\   {x = 6} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  g'\left( x ight) = f'\left( {x - 1} ight) > 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {1 < x - 1 < 3} \\   {x - 1 > 5} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2 < x < 4} \\   {x > 6} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy chọn đáp án B

    Cách 2: Đồ thị hàm số g’(x) = f’(x – 1) là phép tịnh tiến đồ thị hàm số y = f’(x) theo phương trục hoành sang bên phải 1 đơn vị. Ta có hình vẽ minh họa:

    Điểm cực đại của hàm số

    Đồ thị hàm số g’(x) = f’(x – 1) cắt trục hoành tạo các điểm có hoành độ x = 2, x = 4, x = 6 và giá trị hàm số g’(x) đổi dấu từ dương sang âm khi qua điểm x = 4

    Chọn B

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 44: Vận dụng cao

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Đáp án là:

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.

    Vì vậy chiều dài l của ống thép phải thỏa mãn l \leq AN, \forall a \in \left( 0;\frac{\pi}{2} ight)
\Leftrightarrow l \leq \min_{\left( 0;\frac{\pi}{2}
ight)}AN(*)

    Ta có AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{AB^{2} + 4}

    Trong đó AB = AM + MB =
\frac{AH}{\sin\alpha} + \frac{BK}{\cos\alpha} = \frac{1}{\sin\alpha} +
\frac{1,2}{\cos\alpha}

    Xét hàm số g(\alpha) =
\frac{1}{\sin\alpha} + \frac{1,2}{\cos\alpha}

    \Rightarrow g'(\alpha) = -
\frac{\cos\alpha}{sin^{2}\alpha} + \frac{1,2sina}{cos^{2}a} =
0

    \Leftrightarrow 1,2sin^{3}\alpha =
cos^{3}\alpha

    \Leftrightarrow \tan\alpha =
\frac{1}{\sqrt[3]{1,2}} \Leftrightarrow \alpha =
\arctan\frac{1}{\sqrt[3]{1,2}}

    Vì vậy \min_{\left( 0;\frac{\pi}{2}
ight)}g(\alpha) = g\left( \arctan\frac{1}{\sqrt[3]{1,2}}
ight)

    \Rightarrow (*) \Leftrightarrow l \leq
\sqrt{\left\lbrack g\left( \arctan\frac{1}{\sqrt[3]{1,2}} ight)
ightbrack^{2} + 4} \approx 3,69504

  • Câu 45: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

    Điểm cực tiểu của hàm số là 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo