Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Giá trị nhỏ nhất của hàm số
trên đoạn
là:
Ta có:
Lại có:
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Hàm số
có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho hàm số
có đồ thị như sau:

Hỏi số nghiệm của phương trình
bằng bao nhiêu?
Ta có:
Lại có đường thẳng nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số
tại 4 điểm nên phương trình
có hai nghiệm.
Cho hàm số
có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.

Đặt
. Tìm số điểm cực trị của hàm số ![]()
Đáp án: 6
Cho hàm số có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.
Đặt . Tìm số điểm cực trị của hàm số
Đáp án: 6
Đặt
Xét hàm số
Bảng biến thiên của hàm số
Dựa vào bảng biến thiến trên ta thấy phương trình .
Mỗi phương trình có hai nghiệm phân biệt khác , mà
có 4 nghiệm đơn phân biệt
khác
và phương trình
vô nghiệm.
Do đó phương trình có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là
.
Vậy hàm số có 6 cực trị.
Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ
là một phần của đồ thị hàm số bậc ba
.

Vị trí điểm cực đại là
với đơn vị của hệ trục là
và vị trí điểm cực tiểu là
. Mặt đường chạy trên một đường thẳng có phương trình
. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 88,3 m
Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ là một phần của đồ thị hàm số bậc ba
.
Vị trí điểm cực đại là với đơn vị của hệ trục là
và vị trí điểm cực tiểu là
. Mặt đường chạy trên một đường thẳng có phương trình
. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 88,3 m
Gọi hàm số bậc ba
.
Vì đồ thị hàm số đi qua hai điểm .
Vì đồ thị hàm số đi qua hai điểm .
Vì hàm số có hai điểm cực trị
.
và
.
Gọi là điểm nằm trên hòn đảo và nối với mặt đường và
là tiếp tuyến của đồ thị hàm số song song với mặt đường.
Suy ra là tiếp điểm của
với
.
Đường thẳng có hệ số góc
.
Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm đến đường thẳng
.
.
Vì đơn vị của hệ trục là nên độ dài ngắn nhất của cây cầu là
.
Hàm số
đồng biến trên khoảng nào dưới đây?
Tập xác định . Ta có:
Suy ra hàm số đồng biến trên khoảng và
.
Định tất cả các giá trị thực của
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Điều kiện xác định của hàm số
Tập xác định
suy ra đồ thị hàm số có tiệm cận ngang là
.
suy ra
là tiệm cận đứng của đồ thị hàm số
suy ra
không là tiệm cận đứng.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là .
Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].
Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:
f’(x) = 4x3 – 4x
f’(x) = 0 =>
Tính f(0) = 1; f(1) = 0; f(2) = 9
Vậy
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của biểu thức
là:
Điều kiện xác định:
Xét hàm số trên
ta có:
Phương trình
Ta lại có:
=>
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Hàm số nào sau đây có cực trị?
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
và
đổi dấu đi qua
suy ra hàm số có cực trị tại điểm
.
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
với
suy ra hàm số không có cực trị.
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Các đường tiệm cận của đồ thị hàm số
tạo với hai trục tọa độ diện tích bằng bao nhiêu?
Ta có: Đồ thị hàm số có đường tiệm cận đứng là
và đường tiệm cận ngang là
Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là nên diện tích của hình chữ nhật là
.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Cho hàm số
. Biết hàm số nghịch biến trên đoạn
. Tính
.
Đáp án: 5
Cho hàm số . Biết hàm số nghịch biến trên đoạn
. Tính
.
Đáp án: 5
Tập xác định: .
Ta có: .
Bảng xét dấu:
Từ bảng xét dấu, ta thấy hàm số nghịch biến trên .
Khi đó: .
Cho hàm số
với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Số đường tiệm cận của đồ thị hàm số ![]()
Quy đồng biến đổi hàm số đã cho trở thành
Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang
=> Số tiệm cận là 2 đường
Một hình lăng trụ có 2024 mặt. Hỏi hình lăng trụ đó có tất cả bao nhiêu cạnh?
Gọi số cạnh của 1 đáy hình lăng tụ là cạnh, nên số cạnh đáy của hình lăng trụ (2 mặt đáy ) là
cạnh
Số cạnh bên là cạnh.
=> Tổng số cạnh của lăng trụ là cạnh.
Mặt khác, ta lại có Đ + M = C + 2 (Euler)
Nên suy ra:
Vậy ta tính được số cạnh của hình lăng trụ là (cạnh)
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:

Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Cho hàm số
có đạo hàm trên
và thỏa mãn
. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Ta có:
.
Xét hàm số có
Bảng biến thiên
Vậy bất phương trình nghiệm đúng với mọi
khi và chỉ khi
.
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.
+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.
Cho hàm số
có đạo hàm
. Tìm số điểm cực trị của hàm số
?
Ta có:
Ta có bảng biến thiên
Vậy hàm số có hai điểm cực trị.
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Cho hàm số
liên tục trên
và có bảng xét dấu
như sau:

Kết luận nào sau đây đúng?
Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại .
Tại ta thấy
đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại
.
Tại ta thấy
đổi dấu từ dương sang âm nên hàm số đạt cực đại tại
.
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Cho đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Do đó hàm số nghịch biến trên từng khoảng xác định.
Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng và
”.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Số đường tiệm cận ngang: 1
Số đường tiệm cận đứng: 1
Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
:

Hàm số
là hàm số:
Đồ thị hàm số bậc ba có dạng có hệ số
nên hàm số cần tìm là
.
Cho hàm số
có đồ thị
. Có tất cả bao nhiêu đường thẳng cắt
tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?
Ta có:. Vì
có tọa độ nguyên khi
Các điểm thuộc có tọa độ nguyên thuộc tập
Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là
(đường thẳng)
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hàm số
có đồ thị như hình vẽ như sau:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng
. Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
.Sai|| Đúng
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng
là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng
.
d) Hàm số đạt cực tiểu tại (chú ý:
gọi là giá trị cực tiểu).