Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

  • Câu 2: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 3: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 4: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 5: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y
= \frac{x + m}{x + 2} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}.

    Để hàm số y = \frac{x +
m}{x + 2} đồng biến trên từng khoảng xác định

    \Leftrightarrow y' > 0;\forall x \in D
\Leftrightarrow \frac{2 - m}{(x + 2)^{2}} > 0

    \Leftrightarrow 2 - m > 0
\Leftrightarrow m < 2

    Vậy giá trị cần tìm là m <
2.

  • Câu 6: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = (x + 1)^{2}(x - 2)^{3}(2x +
3). Tìm số điểm cực trị của hàm số f(x)?

    Ta có: f'(x) = (x + 1)^{2}(x -
2)^{3}(2x + 3)

    (x + 1)^{2}(x - 2)^{3}(2x + 3) =
0

    \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 \\x = 2 \\x = - \dfrac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy hàm số có hai điểm cực trị.

  • Câu 7: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 8: Thông hiểu

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng cao

    Cho hàm số y = f(x) là một hàm đa thức có bảng xét dấu f^{'}(x) như sau:

    Số điểm cực trị của hàm số g(x) = f\left(
- 2x^{2} + |x| ight).

    Ta có g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight).

    Số điểm cực trị của hàm số h(|x|) bằng hai lần số điểm cực trị dương của hàm số h(x) cộng thêm 1.

    Xét hàm số h(x) = f\left( - 2x^{2} + x
ight)

    \Rightarrow h'(x) = ( - 4x +1)f^{'}\left( - 2x^{2} + x ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{1}{4} \\- 2x^{2} + x = - 1 \\- 2x^{2} + x = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{1}{4} \\x = 1 \\x = \dfrac{- 1}{2} \\\end{matrix} ight.

    Bảng xét dấu hàm số h(x) = f\left( -
2x^{2} + x ight):

    Hàm số h(x) = f\left( - 2x^{2} + x
ight) có 2 điểm cực trị dương.

    Vậy hàm số g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight) có 5 điểm cực trị.

  • Câu 10: Nhận biết

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 11: Nhận biết

    Hàm số y = f(x) = x^{3} - 7x^{2} + 11x -
2 trên đoạn \lbrack
0;2brack có giá trị nhỏ nhất bằng:

    Ta có: y' = 3x^{2} - 14x +
11

    \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = \frac{11}{3} \\
\end{matrix} ight.. Khi đó f(0)
= - 2;f(1) = 3;f(2) = 0 suy ra \min_{\lbrack 0;2brack}f(x) = - 2.

  • Câu 12: Vận dụng

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 13: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 14: Thông hiểu

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 15: Thông hiểu

    Xác định số đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x^{2} + 1}}{x + 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    \lim_{x ightarrow - 1^{+}}f(x) = +
\infty nên đồ thị hàm số nhận đường thẳng x = - 1 làm đường tiệm cận đứng.

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow - \infty}\dfrac{- \sqrt{1 + \dfrac{1}{x^{2}}}}{1 +\dfrac{1}{x}} = - 1 nên đồ thị hàm số nhận đường thẳng y = - 1 làm đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =\lim_{x ightarrow + \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow + \infty}\dfrac{\sqrt{1 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}}= 1 nên đồ thị hàm số nhận đường thẳng y = 1 làm đường tiệm cận ngang.

    vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.

  • Câu 16: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 17: Thông hiểu

    Cho hàm số y = \frac{x + m}{x^{2} +
1}. Biết \min_{\mathbb{R}}y = -
2. Mệnh đề nào dưới đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: \min_{\mathbb{R}}y = - 2\Leftrightarrow \left\{ \begin{matrix}\forall x\mathbb{\in R}:\dfrac{x + m}{x^{2} + 1} \geq - 2(*) \\\exists x_{0}:\dfrac{x_{0} + m}{{x_{0}}^{2} + 1} = - 2(**) \\\end{matrix} ight.

    Từ (*) \Leftrightarrow \frac{x + m}{x^{2}
+ 1} \geq - 2 \Leftrightarrow 2x^{2} + x + m + 2 \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow 1 - 4.2.(m + 2) \leq 0
\Leftrightarrow m \geq \frac{- 15}{8}

    Từ (**) suy ra m = \frac{- 15}{8} \in ( -
2;0).

    Vậy - 2 < m < 0 là đáp án cần tìm.

  • Câu 18: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 2)\left( x^{2} - 3 ight)\left(
x^{4} - 9 ight), với \forall
x\mathbb{\in R}. Hỏi hàm số y =
f(x) có bao nhiêu điểm cực trị?

    Ta có: f'(x) = 0 \Leftrightarrow (x -
2)\left( x^{2} - 3 ight)\left( x^{4} - 9 ight) = 0

    \Leftrightarrow (x - 2)\left( x +
\sqrt{3} ight)^{2}\left( x - \sqrt{3} ight)^{2}\left( x^{2} + 3
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = - \sqrt{3} \\
x = \sqrt{3} \\
\end{matrix} ight.

    Bảng biến thiên

    Từ bảng biến thiên của hàm số y =
f(x) ta thấy hàm số y =
f(x) có đúng một cực trị.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 21: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 22: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 23: Thông hiểu

    Cho hàm số y = \frac{x - m^{2}}{x +
2} với m là tham số. Tích tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack - 1;1brack bằng \frac{1}{4} bằng:

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x \in \lbrack - 1;1brack

    \Rightarrow \max_{\lbrack - 1;1brack}y
= y(1) = \frac{1 - m^{2}}{3} = \frac{1}{4} \Leftrightarrow m = \pm
\frac{1}{2}

    Vậy tích tất cả các giá trị của tham số m bằng -
\frac{1}{4}.

  • Câu 24: Vận dụng

    Số mặt phẳng đối xứng của hình tứ diện đều là:

    Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

    Mp đối xứng trong tứ diện đều

    Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.

  • Câu 25: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 26: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2},\forall x \in \mathbb{R}. Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?

    Ta có: 

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2} = 0 \hfill \\   \Leftrightarrow {x^2}{\left( {x - 3} ight)^3}\left( {x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn khẳng định đúng

    Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)

  • Câu 27: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 28: Thông hiểu

    Cho hàm số y = f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{\sqrt {{x^2} + 1} }}{x}{\text{   khi x }} \geqslant {\text{ 1}}} \\   {\dfrac{{2x}}{{x - 1}}{\text{   khi x  <  1}}} \end{array}} ight.. Số đường tiệm cận của đồ thị hàm số y = f(x) là:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x}}{{x - 1}} =  - \infty

     => Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 - \frac{1}{x}}} = 2 => y = 2 là tiệm cận ngang của đồ thị hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {2 + \frac{1}{{{x^2}}}}  = 1 => đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

  • Câu 29: Thông hiểu

    Hàm số y = \left| x^{3} + 3x^{2}
ight| đạt cực đại tại

    Tập xác định: D\mathbb{= R}

    Ta có: y = \left| x^{3} + 3x^{2} ight|
= \left\{ \begin{matrix}
x^{3} + 3x^{2}\ \ khi\ x \geq - 3 \\
- x^{3} - 3x^{2}\ \ khi\ x < - 3 \\
\end{matrix} ight.

    \Rightarrow y' = \left\{
\begin{matrix}
3x^{2} + 6x\ \ khi\ x \geq - 3 \\
- 3x^{2} - 6x\ khi\ x < - 3 \\
\end{matrix} ight.

    \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy hàm số đạt cực tiểu tại x = -
3x = 0.

  • Câu 30: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 31: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 32: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 33: Nhận biết

    Xác định tâm đối xứng của đồ thị hàm số y
= \frac{2x + 1}{x - 3}?

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{2x + 1}{x - 3} = \lim_{x ightarrow +\infty}\dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{3}{x}} = 2 suy ra tiệm cận ngang là y = 2

    \lim_{x ightarrow 3^{+}}y = \lim_{x
ightarrow 3^{+}}\frac{2x + 1}{x - 3} = + \infty suy ra tiệm cận đứng là x = 3

    Tâm đối xứng của đồ thị hàm số là A(3;2).

  • Câu 34: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 35: Thông hiểu

    Cho hàm trùng phương y = f(x) có đồ thị như hình vẽ dưới đây:

    Tìm các giá trị của tham số m để phương trình f(x) - m = 0 có 4 nghiệm phân biệt?

    Hình vẽ minh họa

    Để phương trình f(x) - m = 0 có 4 nghiệm phân biệt thì - 3 < m <
1.

  • Câu 36: Nhận biết

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 37: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 38: Vận dụng

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 39: Vận dụng cao

    Hình lăng trụ có thể có số cạnh nào sau đây?

    Giả sử hình lăng trụ có đáy là n – giác.

    Khi đó, số cạnh của hình lăng trụ là 3n.

    Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.

  • Câu 40: Thông hiểu

    Cho hàm số y = \sqrt{2x -x^2}. Biết hàm số nghịch biến trên đoạn (a;b). Tính a
+ 2b.

    Đáp án: 5

    Đáp án là:

    Cho hàm số y = \sqrt{2x -x^2}. Biết hàm số nghịch biến trên đoạn (a;b). Tính a
+ 2b.

    Đáp án: 5

    Tập xác định: D = \lbrack
0;2brack.

    Ta có: y^{'} = \frac{1 - x}{\sqrt{2x
- x^{2}}} = 0 \Leftrightarrow x = 1.

    Bảng xét dấu:

    Từ bảng xét dấu, ta thấy hàm số nghịch biến trên (1;2).

    Khi đó: a = 1;b = 2 \Rightarrow a + 2b =
1 + 2.2 = 5.

  • Câu 41: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 42: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - (m - 1)x^{2} - 4mx đồng biến trên đoạn \lbrack 1;4brack?

    Theo yêu cầu bài toán ta có:

    y' = x^{2} - 2(m - 1)x - 4m \geq
0;\forall x \in \lbrack 1;4brack(*)

    Để hàm số đồng biến trên đoạn \lbrack
1;4brack

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1;4brack

    \Leftrightarrow x^{2} - 2(m - 1)x - 4m
\geq 0

    \Leftrightarrow m \leq \frac{x^{2} +
2x}{4 + 2x}

    Đặt g(x) = \frac{x^{2} + 2x}{4 + 2x}
\Rightarrow g'(x) = \frac{8x}{(4 + 2x)^{2}} > 0;\forall x \in
\lbrack 1;4brack

    \Rightarrow \min_{\lbrack
1;4brack}g(x) = g(1) = \frac{1}{2} \Rightarrow m \leq
\frac{1}{2}

    Vậy m \leq \frac{1}{2} là đáp án cần tìm.

  • Câu 43: Vận dụng cao

    Gọi K là tập hợp các giá trị nguyên của tham số m \in \left[ {0;2019} ight] để bất phương trình {x^2} - m + \sqrt {{{\left( {1 - {x^2}} ight)}^3}}  \leqslant 0 nghiệm đúng với mọi x \in \left[ { - 1;1} ight] . Số các phần tử của tập hợp K là:

    Đặt t = \sqrt {1 - {x^2}} ;x \in \left[ { - 1;1} ight] \Rightarrow t \in \left[ {0;1} ight]

    Bất phương trình đã cho trở thành {t^3} - {t^2} + 1 - m \leqslant 0 \Leftrightarrow m \geqslant {t^3} - {t^2} + 1\left( * ight)

    Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight]

    Xét hàm số f\left( t ight) = {t^3} - {t^2} + 1 \Rightarrow f'\left( t ight) = 3{t^3} - 2t

    f'\left( t ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( L ight)} \\   {t = \dfrac{2}{3}\left( {tm} ight)} \end{array}} ight.

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = f\left( 1 ight) = 1} \\   {f\left( {\dfrac{2}{3}} ight) = \dfrac{{23}}{{27}}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} f\left( t ight) = 1

    Do đó bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight] khi và chỉ khi m \geqslant 1

    Mặt khác m là số nguyên thuộc [0; 2019] nên m \in \left\{ {1;2;3;...;2019} ight\}

  • Câu 44: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 45: Nhận biết

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo