Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
?
Theo yêu cầu bài toán
Mà
Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Hàm số
có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Cho hàm số bậc ba
có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Hàm số nào sau đây đồng biến trên
?
Ta có hàm số có cơ số
nên đồng biến trên
.
Ngoài ra các hàm số ;
;
không thể đồng biến hoặc nghịch biến trên
.
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Cho các hàm số sau:
![]()
![]()
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số
. Đồ thị hàm số có mấy đường tiệm cận?
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Hàm số nào sau đây có cực trị?
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
và
đổi dấu đi qua
suy ra hàm số có cực trị tại điểm
.
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
với
suy ra hàm số không có cực trị.
Cho hàm số
với
là tham số. Tìm các giá trị nguyên dương tham số
không vượt quá
để hàm số đã cho có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi
Mà không vượt quá
nên
suy ra có
giá trị thỏa mãn yêu cầu.
Cho hàm số
xác định và liên tục trên khoảng
, có bảng biến thiên như hình sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy:
Hàm số nghịch biến trên khoảng
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ”.
Hàm số
đạt cực đại tại điểm
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Lắp ghép hai khối đa diện
và
để tạo thành khối đa diện (H) , trong đó
là khối chóp tứ giác đều có tất cả các cạnh bằng a ,
là khối tứ diện đều cạnh a sao cho một mặt của
trùng với một mặt của
như hình vẽ. Hỏi khối da diện (H) có tất cả bao nhiêu mặt?

Khối đa diện có đúng 5 mặt.
Sai lầm hay gặp: Khối chóp tứ giác đều có 5 mặt. Khối tứ diện đều có 4 mặt.
Ghép hai hình lại như hình vẽ ta được khối đa diện có 8 mặt.
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Một đường tiệm cận đứng của đồ thị hàm số
là:
Ta có:
Vậy một đường tiệm cận đứng của đồ thị hàm số là .
Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là
. Tính thể tích
của hình hộp chữ nhật đã cho.

Xét hình hộp chữ nhật có đáy
là hình chữ nhật.
Theo bài ra, ta có
Nhân vế theo vế, ta được
Vậy .
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số
có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:
Xét phương trình
Nếu thì hàm số
không có điểm cực đại.
Nếu thì phương trình (*) có hai nghiệm phân biệt là
Với thì
không có điểm cực đại.
Với thì
Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là
Vậy điều kiện để hàm số có cực đại là:
Do 10m là số nguyên nên có hai giá trị thỏa mãn là
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Cho hàm số
. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.
Đặt
Khi đó
Vậy M = 1; m = 0 => M = m + 1
Tất cả các giá trị của tham số
để đồ thị hàm số
có duy nhất một đường tiệm cận là:
Ta có: nên đồ thị hàm số luôn có một đường tiệm cận ngang là
.
Vậy để đồ thị hàm số có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình
vô nghiệm
Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Sai||Đúng
b) Đạo hàm của hàm số là
. Đúng||Sai
c) Giá trị lớn nhất của hàm số trên
là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Cho hai số thực a, b dương thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
Đặt
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Cho hình vẽ:

Biết rằng đường trong trong hình vẽ trên là đồ thị của một trong các hàm số nào dưới đây, đó là hàm số nào?
Đây là đồ thị hàm số bậc ba có dạng với hệ số
Đồ thị hàm số cắt trục hoành tại điểm nên hàm số thích hợp là
.
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Cho hàm số
có bảng biến thiên trên đoạn
như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã cho đồng biến trên
?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Hay
Vậy giá trị tham số m thỏa mãn yêu cầu bài toán là .
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Cho hàm số
có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?

Đáp án: 6
Cho hàm số có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đáp án: 6
Để hàm số đồng biến trên khoảng
Đặt và
.
Ta có: .
Do đó, ta có: khi
.
Do đó, .
Từ ta có
.
Mà .
Vậy có tất cả 6 số nguyên thỏa mãn.
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:
Tập xác định
Ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.