Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 2: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x - 1)(x - 2);\forall
x\mathbb{\in R}. Tìm số điểm cực đại của hàm số đã cho.

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Suy ra hàm số có một điểm cực đại.

  • Câu 3: Nhận biết

    Hàm số y = - x^{3} + 1 có bao nhiêu điểm cực trị?

    Ta có: y' = - 3x^{2} \leq 0;\forall
x\mathbb{\in R} suy ra hàm số luôn nghịch biến trên \mathbb{R}.

    Vậy hàm số đã cho không có điểm cực trị.

  • Câu 4: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 5: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 6: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 7: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 9: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 10: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - (m - 1)x^{2} - 4mx đồng biến trên đoạn \lbrack 1;4brack?

    Theo yêu cầu bài toán ta có:

    y' = x^{2} - 2(m - 1)x - 4m \geq
0;\forall x \in \lbrack 1;4brack(*)

    Để hàm số đồng biến trên đoạn \lbrack
1;4brack

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1;4brack

    \Leftrightarrow x^{2} - 2(m - 1)x - 4m
\geq 0

    \Leftrightarrow m \leq \frac{x^{2} +
2x}{4 + 2x}

    Đặt g(x) = \frac{x^{2} + 2x}{4 + 2x}
\Rightarrow g'(x) = \frac{8x}{(4 + 2x)^{2}} > 0;\forall x \in
\lbrack 1;4brack

    \Rightarrow \min_{\lbrack
1;4brack}g(x) = g(1) = \frac{1}{2} \Rightarrow m \leq
\frac{1}{2}

    Vậy m \leq \frac{1}{2} là đáp án cần tìm.

  • Câu 11: Thông hiểu

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 12: Vận dụng

    Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 3x + m} có đúng hai đường tiệm cận?

    Ta có: \lim_{x ightarrow +
\infty}\frac{x - 1}{x^{2} - 3x + m} = \lim_{x ightarrow -
\infty}\frac{x - 1}{x^{2} - 3x + m} = 0

    Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang y = 0. Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.

    Tam thức h(x) = x^{2} - 3x + m\Delta = 9 - 4m

    Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:

    \left[ \begin{gathered}
  \Delta  = 9 - 4m = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  = 9 - 4m > 0 \hfill \\
  h\left( 1 ight) = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy m \in \left\{ 2;\frac{9}{4}
ight\}.

  • Câu 13: Nhận biết

    Tiệm cận ngang của đồ thị hàm số y =
\frac{5}{x - 1} là đường thẳng có phương trình là:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{5}{x - 1} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{5}{x - 1} là đường thẳng có phương trình y = 0.

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) có \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty\mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 0

    \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 2

  • Câu 15: Nhận biết

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 16: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} + m -
1 với m là tham số. Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} - 3x^{2} + m - 1 = 0
\Leftrightarrow x^{3} - 3x^{2} + 1 = m

    Xét hàm số f(x) = - x^{3} + 3x^{2} +
1;\forall x\mathbb{\in R}

    Ta có: f'(x) = - 3x^{2} + 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi 1 < m <
5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng 9.

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 18: Thông hiểu

    Số tiệm cận của đồ thị hàm số y =
\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} là:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{\left( 2x^{2} - x ight)\sqrt{1 +\dfrac{1}{x^{2}}}}{x^{2} - 1}= \lim_{x ightarrow + \infty}\dfrac{\left(2 - \dfrac{1}{x} ight)\sqrt{1 + \dfrac{1}{x^{2}}}}{1 - \dfrac{1}{x^{2}}}= 2

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\left( - 2x^{2} + x ight)\sqrt{1 +
\frac{1}{x^{2}}}}{x^{2} - 1} = \lim_{x ightarrow - \infty}\frac{\left(
- 2 + \frac{1}{x} ight)\sqrt{1 + \frac{1}{x^{2}}}}{1 -
\frac{1}{x^{2}}} = - 2

    Suy ra y = \pm 2 là tiệm cận ngang.

    \lim_{x ightarrow 1^{\pm}}y = \lim_{x
ightarrow 1^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} = \pm
\infty suy ra x = 1 là tiệm cận đứng.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} -
1} = \pm \infty suy ra x = -
1 là tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

  • Câu 19: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 20: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 21: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].

    Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:

    f’(x) = 4x3 – 4x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}{x \in \left[ {0;2} ight]} \\   {4{x^3} - 4x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Tính f(0) = 1; f(1) = 0; f(2) = 9

    Vậy \mathop {\max }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 2 ight) = 9

  • Câu 22: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 23: Vận dụng

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 24: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 25: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 26: Thông hiểu

    Đồ thị hàm số nào sau đây có ba đường tiệm cận?

    Ta có: Đồ thị hàm số y = \frac{1}{{4 - {x^2}}} có 3 đường tiệm cận trong đó

    Tiệm cận đứng là x = 2 và x = -2

    Tiệm cận ngang là y = 0

  • Câu 27: Vận dụng cao

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Thông hiểu

    Cho hàm số y = {x^4} - 2{x^2} + 1 có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:

    Ta có: y' = 4{x^3} - 4x

    Tọa độ các điểm cực trị của đồ thị hàm số là A\left( {0;1} ight),B\left( { - 1;0} ight),C\left( {1;0} ight)

    \begin{matrix}  \overrightarrow {AB}  = \left( { - 1; - 1} ight),\overrightarrow {AC}  = \left( {1; - 1} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AB} .\overrightarrow {AC}  = 0} \\   {AB = AC = \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    => Tam giác ABC vuông cân tại A => S = \frac{1}{2}AB.AC = 1

  • Câu 29: Vận dụng cao

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Đáp án là:

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.

    Vì vậy chiều dài l của ống thép phải thỏa mãn l \leq AN, \forall a \in \left( 0;\frac{\pi}{2} ight)
\Leftrightarrow l \leq \min_{\left( 0;\frac{\pi}{2}
ight)}AN(*)

    Ta có AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{AB^{2} + 4}

    Trong đó AB = AM + MB =
\frac{AH}{\sin\alpha} + \frac{BK}{\cos\alpha} = \frac{1}{\sin\alpha} +
\frac{1,2}{\cos\alpha}

    Xét hàm số g(\alpha) =
\frac{1}{\sin\alpha} + \frac{1,2}{\cos\alpha}

    \Rightarrow g'(\alpha) = -
\frac{\cos\alpha}{sin^{2}\alpha} + \frac{1,2sina}{cos^{2}a} =
0

    \Leftrightarrow 1,2sin^{3}\alpha =
cos^{3}\alpha

    \Leftrightarrow \tan\alpha =
\frac{1}{\sqrt[3]{1,2}} \Leftrightarrow \alpha =
\arctan\frac{1}{\sqrt[3]{1,2}}

    Vì vậy \min_{\left( 0;\frac{\pi}{2}
ight)}g(\alpha) = g\left( \arctan\frac{1}{\sqrt[3]{1,2}}
ight)

    \Rightarrow (*) \Leftrightarrow l \leq
\sqrt{\left\lbrack g\left( \arctan\frac{1}{\sqrt[3]{1,2}} ight)
ightbrack^{2} + 4} \approx 3,69504

  • Câu 30: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 31: Thông hiểu

    Một chất điểm chuyển động với quy luật S(t) = 6t^{2} - t^{3}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Vận tốc của chuyển động là:

    v(t) = S'(t) = 12t - 3t^{2} = 12 -
3(2 - t)^{2} \leq 12;\forall t

    Vậy vận tốc đạt giá trị lớn nhất bằng 12m/s khi t =
2.

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 33: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 34: Nhận biết

    Hàm số nào dưới dây nghịch biến trên khoảng ( - \infty; + \infty)?

    Xét hàm số y = - 2x + 1y' = - 2 < 0;\forall x\mathbb{\in
R} nên hàm số y = - 2x + 1 nghịch biến trên khoảng ( - \infty; +
\infty).

  • Câu 35: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 36: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 37: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 38: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 39: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 40: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 41: Vận dụng cao

    Cho khối tứ diện ABCD. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp (CDM)(ABN), ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

    Chia khối tứu diện

    Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:  MBND, MBNC, AMDN, AMNC

  • Câu 42: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 43: Nhận biết

    Cho hàm số y =
f(x) có đồ thị f'(x) là parabol như hình vẽ:

    Khẳng định nào sau đây là đúng?

    Từ đồ thị hàm số ta có bảng biến thiên như sau:

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 1)(3; +
\infty).

  • Câu 44: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hàm số y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1

    y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} ight)^2} + \frac{{11}}{4} > 0,\forall x \in \mathbb{R}

  • Câu 45: Thông hiểu

    Biết \frac{a}{b} là giá trị của tham số m để hàm số y = 2x^{3} - 3mx^{2} - 6\left( 3m^{2} - 1 ight)x
+ 2020 có hai điểm cực trị x_{1};x_{2} thỏa mãn x_{1}x_{2} + 2\left( x_{1} + x_{2} ight) =
1. Tính giá trị biểu thức Q = a +
2b?

    Xét hàm số y = 2x^{3} - 3mx^{2} - 6\left(
3m^{2} - 1 ight)x + 2020

    Ta có: y' = 6x^{2} - 6mx - 6\left(
3m^{2} - 1 ight)

    y' = 0 \Leftrightarrow x^{2} - mx -
3m^{2} + 1 = 0(*)

    Hàm số có hai điểm cực trị x_{1};x_{2} khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:

    \Leftrightarrow 13{m^2} - 4 > 0 \Leftrightarrow \left[ \begin{gathered}
  m <  - \frac{2}{{\sqrt {13} }} \hfill \\
  m > \frac{2}{{\sqrt {13} }} \hfill \\ 
\end{gathered}  ight.

    Khi đó theo định lí Vi – et ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 3m^{2} + 1 \\
\end{matrix} ight.

    Theo giả thiết:

    x_{1}.x_{2} + 2\left( x_{1} + x_{2}
ight) = 1

    \Leftrightarrow - 3m^{2} + 1 + 2m = 1
\Leftrightarrow - 3m^{2} + 2m = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 0 \\m = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow a = 2;b = 3 \Rightarrow Q = a + 2b =8

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo