Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 5;5brack để đồ thị hàm số y = \frac{x + 1}{x^{3} - 3x^{2} - m} có đúng một tiệm cận đứng?

    Đồ thị hàm số y = \frac{x + 1}{x^{3} -
3x^{2} - m} có đúng một tiệm cận đứng khi và chỉ khi phương trình x^{3} - 3x^{2} - m = 0 có đúng một nghiệm x eq - 1

    Ta có: x^{3} - 3x^{2} - m = 0
\Leftrightarrow x^{3} - 3x^{2} = m

    Xét hàm số x^{3} - 3x^{2} = g(x) ta có: g'(x) = 3x^{2} - 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \left\lbrack
\begin{matrix}
m > 0 \\
m < - 4 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 5;5brack \\
\end{matrix} ight. nên m \in
\left\{ - 5;1;2;3;4;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 3: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 4: Thông hiểu

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 7: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack và có đồ thị là đường cong trong hình bên dưới.

    Hàm số y = f(x) đạt cực tiểu tại điểm

    Theo hình vẽ thì hàm số y = f(x) đạt cực tiểu tại điểm x = 1.

  • Câu 9: Vận dụng

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 10: Vận dụng cao

    Tính tổng số đo các góc ở tất cả các mặt của hình chóp ngũ giác?

    Hình chóp ngũ giác có mặt đáy là hình ngũ giác, có tổng số đo các góc là:

    (5-2)\pi=3\pi

    và 5 mặt bên, mỗi mặt bên là một tam giác có số đo các góc là \pi.

    Do đó tổng số đo tất cả các góc của hình chóp ngũ giác là:

    3\pi+5\pi=8\pi

  • Câu 11: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 13: Vận dụng

    Số mặt phẳng đối xứng của hình tứ diện đều là:

    Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

    Mp đối xứng trong tứ diện đều

    Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.

  • Câu 14: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 15: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 16: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 17: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= x^{3} - 3x^{2} + (m + 1)x + 2 có hai cực trị?

    Ta có: y' = 3x^{2} - 6x + m +
1

    Để hàm số đã cho có hai cực trị thì y' = 0 có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9 - 3(m + 1) > 0 \Leftrightarrow m <
2

    Vậy với m < 2 thì hàm số y = x^{3} - 3x^{2} + (m + 1)x + 2 có hai cực trị.

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 19: Vận dụng

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 21: Thông hiểu

    Hàm số y = -
x^{4} + 8x^{2} - 1 nghịch biến trên khoảng nào dưới đây?

    Ta có:

    y' = - 4x^{2} + 16x \Rightarrow
y' = 0 \Leftrightarrow - 4x^{2} + 16x = 0

    \Leftrightarrow 4x\left( - x^{2} + 4
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra hàm số nghịch biến trên khoảng ( -
2;0)(2; + \infty).

  • Câu 22: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} -
2} là:

    Điều kiện xác định \left\{ \begin{matrix}
2 - x \geq 0 \\
\sqrt{x^{2} + 3} - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\sqrt{x^{2} + 3} eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x eq \pm 1 \\
\end{matrix} ight.

    Ta có: \lim_{x ightarrow -\infty}\left( \dfrac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} ight) =\lim_{x ightarrow - \infty}\left( \dfrac{- \sqrt{\dfrac{2}{x^{2} -\dfrac{1}{x}}} - 1}{- \sqrt{1 + \dfrac{3}{x}} - \dfrac{2}{x}} ight) =1 nên y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\frac{\sqrt{2 - x}
- x}{\sqrt{x^{2} + 3} - 2} = \lim_{x ightarrow 1}\frac{\left( 2 - x -
x^{2} ight)\left( \sqrt{x^{2} + 3} + 2 ight)}{\left( x^{2} - 2
ight)\left( \sqrt{2 - x} + x ight)}

    = \lim_{x ightarrow 1}\frac{(2 -
x)\left( \sqrt{x^{2} + 3} + 2 ight)}{(x + 2)\left( \sqrt{2 - x} + x
ight)} = - 3 suy ra x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}\frac{\sqrt{2 -x} - x}{\sqrt{x^{2} + 3} - 2} = + \infty;\lim_{x ightarrow1^{+}}\frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} = - \infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

  • Câu 23: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 24: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 25: Nhận biết

    Hàm số f(x) =
\frac{2x + 3}{x - 1} nghịch biến trên khoảng nào?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    f'(x) = \frac{- 5}{(x - 1)^{2}} <
0;\forall x \in D suy ra hàm số nghịch biến trên ( - \infty;1)(1; + \infty).

  • Câu 26: Nhận biết

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 27: Thông hiểu

    Cho hàm số y = \frac{2x - 1}{x -
1}.

    a) Đạo hàm của hàm số đã cho là y' =
- \frac{1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho như sau:

    Sai||Đúng

    d) Đồ thị của hàm số đã cho là đường cong trong hình sau:

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2x - 1}{x -
1}.

    a) Đạo hàm của hàm số đã cho là y' =
- \frac{1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho như sau:

    Sai||Đúng

    d) Đồ thị của hàm số đã cho là đường cong trong hình sau:

    Đúng||Sai

    Ta có: y' = - \frac{1}{(x -
1)^{2}}, \forall x eq 1 nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1.

    Bảng biến thiên:

    Hàm số đã cho nghịch biến trên các khoảng ( - \infty;1)(1; + \infty).

    Đồ thị của hàm số có tiệm cận đứng x =
1, tiệm cận ngang y = 2, nhận điểm I(1;2) là giao điểm của hai đường tiệm cận làm tâm đối xứng.

    Đồ thị hàm số cắt trục Oy tại điểm (0;1) và đi qua điểm có tọa độ (2;3).

  • Câu 28: Nhận biết

    Đồ thị hàm số y = ax^{4} + bx^{2} +
c có điểm cực đại là A(0; -
3) và một điểm cực tiểu là B( - 1;
- 5). Tính giá trị biểu thức T = a
+ b + c?

    Do đồ thị hàm số y = ax^{4} + bx^{2} +
c có một cực tiểu B( - 1; -
5) nên y( - 1) = - 5 \Rightarrow a
+ b + c = - 5.

  • Câu 29: Thông hiểu

    Tìm GTLN, GTNN của hàm số lượng giác y = f\left( x ight) = \sin x + \cos x + \sin x.\cos x trên đoạn

    \left[ {0,\pi } ight]

    Đặt t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} ight)

    x \in \left[ {0,\pi } ight] \Rightarrow t \in \left[ { - 1,\sqrt 2 } ight]

    Ta có:

    \begin{matrix}  {t^2} = {\left( {\sin x + \cos x} ight)^2} \hfill \\   = {\sin ^2}x + co{x^2}x + 2\sin x.\cos x \hfill \\   = 1 + 2\sin x.\cos x \hfill \\   \Rightarrow \sin x.\cos x = \dfrac{{{t^2} - 1}}{2} \hfill \\ \end{matrix}

    \begin{matrix}  f\left( x ight) = g\left( t ight) = t + \dfrac{{{t^2} - 1}}{2} = \dfrac{{{t^2}}}{2} + t - \dfrac{1}{2} \hfill \\  g'\left( t ight) = t + 1,g'\left( t ight) = 0 \Leftrightarrow t =  - 1 \hfill \\  g\left( { - 1} ight) =  - 1,g\left( {\sqrt 2 } ight) = \sqrt 2  + \dfrac{1}{2} \hfill \\ \end{matrix}

    \mathop { \Rightarrow \max f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  = \sqrt 2  + \frac{1}{2},\mathop {\min f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  =  - 1

     

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 31: Nhận biết

    Tiệm cận ngang của đồ thị hàm số y =
\frac{5}{x - 1} là đường thẳng có phương trình là:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{5}{x - 1} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{5}{x - 1} là đường thẳng có phương trình y = 0.

  • Câu 32: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 33: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 34: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 35: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 36: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 37: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 38: Thông hiểu

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 39: Nhận biết

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 40: Thông hiểu

    Cho hàm số f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số. Xác định điều kiện của tham số m để hàm số đã cho đạt cực đại tại x = 3?

    Ta có: \left\{ \begin{matrix}
y' = x^{2} - 2mx + \left( x^{2} - 4 ight) \\
y'' = 2x - 2m \\
\end{matrix} ight.

    Hàm số đạt cực đại tại x = 3 suy ra y'(3) = 0 \Leftrightarrow m^{2} - 6m
+ 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 5 ta có: y''(3) = 6 - 10 = - 4 < 0 suy ra hàm số đạt cực đại tại x =
3.

    Với m = 1 ta có: y''(3) = 6 - 2 = 4 > 0 suy ra hàm số đạt cực tiểu tại x = 3.

    Vậy giá trị của tham số m thỏa mãn yêu cầu là m = 5

  • Câu 41: Thông hiểu

    Vận tốc của một chất điểm được xác định bởi công thức v(t) = t^{3} - 10t^{2} + 29t - 20 (với v được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:

    Gia tốc của chất điểm a(t) = v'(t) =
3t^{2} - 20t + 29 gia tốc là hàm số bậc hai ẩn t đạt giá trị nhỏ nhất tại t = \frac{10}{3}

    Tại đó, vận tốc của chất điểm bằng v\left( \frac{10}{3} ight) = \frac{70}{27}
\approx 2,59.

  • Câu 42: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 43: Vận dụng cao

    Gọi K là tập hợp các giá trị nguyên của tham số m \in \left[ {0;2019} ight] để bất phương trình {x^2} - m + \sqrt {{{\left( {1 - {x^2}} ight)}^3}}  \leqslant 0 nghiệm đúng với mọi x \in \left[ { - 1;1} ight] . Số các phần tử của tập hợp K là:

    Đặt t = \sqrt {1 - {x^2}} ;x \in \left[ { - 1;1} ight] \Rightarrow t \in \left[ {0;1} ight]

    Bất phương trình đã cho trở thành {t^3} - {t^2} + 1 - m \leqslant 0 \Leftrightarrow m \geqslant {t^3} - {t^2} + 1\left( * ight)

    Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight]

    Xét hàm số f\left( t ight) = {t^3} - {t^2} + 1 \Rightarrow f'\left( t ight) = 3{t^3} - 2t

    f'\left( t ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( L ight)} \\   {t = \dfrac{2}{3}\left( {tm} ight)} \end{array}} ight.

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = f\left( 1 ight) = 1} \\   {f\left( {\dfrac{2}{3}} ight) = \dfrac{{23}}{{27}}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} f\left( t ight) = 1

    Do đó bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight] khi và chỉ khi m \geqslant 1

    Mặt khác m là số nguyên thuộc [0; 2019] nên m \in \left\{ {1;2;3;...;2019} ight\}

  • Câu 44: Thông hiểu

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 45: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo