Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Cho một tấm nhôm hình vuông cạnh
, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Ta có:
tại
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hàm số
có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

Điểm cực tiểu của hàm số là 2.
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình
nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại và
; giá trị cực tiểu bằng
.
Hệ thức liên hệ giữa giá trị cực đại
và giá trị cực tiểu
của hàm số
là:
Tập xác định
Ta có:
Lại có nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Do đó .
Các khối lập phương đen và trắng xếp chồng lên nhau xen kẽ màu tạo thành một khối rubik
(như hình vẽ).

Gọi
là số khối lập phương nhỏ màu đen,
là số khối lập phương nhỏ màu trắng. Giá trị
là?
Có 7 lớp hình vuông xếp chồng lên nhau. Mỗi lớp có khối nhỏ.
Ta thấy hai lớp dưới đáy, một khối đen chồng lên một khối trắng (hay ngược lại) nên số lượng khối đen và trắng bằng nhau.
Tương tự 6 lớp bên dưới cũng có số lượng khối đen trắng bằng nhau.
Ta xét lớp trên cùng có khối màu đen và có
khối màu trắng
.
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:

Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Gọi giá trị nhỏ nhất của hàm số
trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hàm số
. Gọi M là giá trị lớn nhất của hàm số trên khoảng
. Tìm M.
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên ta có M = 1
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Tập xác định
Ta có: nên
là tiện cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là .
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Cho hàm số
có đồ thị là đường cong như hình vẽ:

Tìm số nghiệm của phương trình
?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định:
Ta có: => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
=> Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2
Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2
Cho hàm số
với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d)
. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Số giá trị nguyên của tham số
để hàm số
có cực đại và cực tiểu?
Đáp án: 28
Số giá trị nguyên của tham số để hàm số
có cực đại và cực tiểu?
Đáp án: 28
Ta có:
Hàm số có cực đại và cực tiểu có hai nghiệm phân biệt
Mà .
Vậy có 28 giá trị nguyên của thoả mãn yêu cầu bài toán.
Cho hàm số đa thức bậc bốn
. Đồ thị hàm số
được biểu thị trong hình vẽ sau:

Hàm số
nghịch biến trong khoảng nào?
Đặt . Ta có bảng xét dấu của
được mô tả lại như sau:
Từ đó suy ra bảng xét dấu của
Vậy hàm số nghịch biến trên các khoảng
.
Số tiệm cận của hàm số
là:
Tập xác định:
Khi đó
=> Đồ thị hàm số có hai tiệm cận ngang
Mặt khác
=> Đồ thị hàm số có hai tiệm cận đứng
Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
xác định và liên tục trên
và có đồ thị của hàm số
là đường cong như hình vẽ sau:

Chọn khẳng định đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số nghịch biến trên khoảng
”.
Cho hàm số
xác định, liên tục trên
và có đồ thị như hình vẽ

Giá trị lớn nhất của hàm số
trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Cho hàm số
với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Cho hàm số với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Xác định hàm số nghịch biến trên
?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đồng biến trên các khoảng và
.
Vậy đáp án cần tìm là .
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của biểu thức
là:
Điều kiện xác định:
Xét hàm số trên
ta có:
Phương trình
Ta lại có:
=>
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời