Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Phương trình
có bao nhiêu nghiệm?
Gọi ta có:
Suy ra
Ta có bảng biến thiên
Mà từ bảng biến thiên ta thấy phương trình có ba nghiệm.
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Số giao điểm của hai đồ thị hàm số
và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:
Do nên hàm số
nghịch biến trên khoảng
.
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi:
Ta có:
Xét hàm số
=>
Ta có:
Cho hàm số
có đạo hàm
với mọi
.
a) Phương trình
có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Hàm số
có hai điểm cực trị. Đúng||Sai
d) Hàm số
có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Cho hàm số
liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?

Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Hàm số
đạt cực tiểu tại
khi:
Ta có: .
Hàm số đạt cực tiểu tại suy ra
Với
Với
Vậy với thì hàm số
đạt cực tiểu tại
.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tìm giá trị nhỏ nhất của hàm số
trên khoảng (0; 1)
Hàm số xác định và liên tục trên (0; 1) ta có:
Lập bảng biến thiên:

Từ bảng biến thiên ta có:
Điều kiện của tham số
để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
không có điểm cực trị?
Ta có:
Hàm số đã cho không có cực trị khi và chỉ khi vô nghiệm hoặc có nghiệm kép.
Vì
Vậy có bốn giá trị của tham số thỏa mãn yêu cầu bài toán.
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Cho hàm số
có đồ thị như sau:

Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:
Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là và đường tiệm cận ngang là
.
Biết đồ thị hàm số
nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:
Điều kiện
Phương trình đường tiệm cận ngang của đồ thị hàm số là
=>
Đặt
Nhận thấy với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0
=> n – 6 = 0 => n = 6
Kết hợp với (*) => m = 3
Vậy m + n = 9
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Cho x, y là các số thực dương thỏa mãn điều kiện
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức
bằng:
Ta có:
Lại có:
Từ đó
Xét hàm số
=> Hàm số đồng biến trên
=>
=>
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số
với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Cho hàm số
luôn nghịch biến trên
. Tập nghiệm của bất phương trình
là:
Vì hàm số luôn nghịch biến trên
nên ta có:
Vậy tập nghiệm của bất phương trình là
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là
trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Cho hàm số
xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Cho hàm số
có đồ thị như hình vẽ:

Đồ thị hàm số
có mấy điểm cực trị?
Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.
Cho hàm số
xác định và liên tục trên
có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số
trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số
có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:
Xét phương trình
Nếu thì hàm số
không có điểm cực đại.
Nếu thì phương trình (*) có hai nghiệm phân biệt là
Với thì
không có điểm cực đại.
Với thì
Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là
Vậy điều kiện để hàm số có cực đại là:
Do 10m là số nguyên nên có hai giá trị thỏa mãn là
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình là:
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tất cả các giá trị của tham số
để đồ thị hàm số
có duy nhất một đường tiệm cận là:
Ta có: nên đồ thị hàm số luôn có một đường tiệm cận ngang là
.
Vậy để đồ thị hàm số có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình
vô nghiệm
Cho hàm số
với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Cho hàm số
. Mệnh đề nào sau đây đúng?
Tập xác định của hàm số là:
Ta có:
Vậy hàm số đồng biến trên khoảng (5; +∞)
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Cho khối tứ diện
. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp
và
, ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.