Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao

    Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?

     

    Gọi số cạnh đáy là n với  (n \in {\mathbb{N} ^*}) \Rightarrow Đáy của chóp là n – giác.

    Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.

    Suy ra hình chóp có tổng số cạnh là 2n.

    Theo đề bài, hình chóp có 22 cạnh nên ta được 2n =22 \Rightarrow n =11(TMĐK)

    Do đó, hình chóp có đáy là 11 – giác.

    Do đó chóp có 11 mặt bên cộng 1 đáy.

    Vậy hình chóp có tổng 12 mặt.

  • Câu 3: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 4: Thông hiểu

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{4} - 5(m - 3)x^{2} + 3m^{2} - 4 đạt cực tiểu tại x = 0 là:

    Ta có: y' = 4x^{3} - 10(m -
3)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{10(m - 3)}{4} \\\end{matrix} ight.

    Trường hợp 1: m - 3 > 0
\Leftrightarrow m > 3. Khi đó ta có bảng xét dấu như sau:

    Dựa vào bảng biến thiên ta thấy x =
0 là điểm cực đại nên trường hợp này không thỏa mãn.

    Trường hợp 2: m - 3 \leq 0
\Leftrightarrow m \leq 3 ta có bảng xét dấu như sau:

    Dựa vào bảng biến thiên ta thấy x =
0 là điểm cực tiểu. Vậy m \leq
3 thỏa mãn yêu cầu bài toán.

  • Câu 5: Vận dụng

    Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?

    Hình hộp chữ nhật (không là hình lập phương) có các mặt phẳng đối xứng là các mặt các mặt phẳng trung trực của các cặp cạnh đối.

    Mp đối xứng của hình hộp chữ nhật

  • Câu 6: Thông hiểu

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 7: Thông hiểu

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= x^{4} + (m - 1)x^{2} + \left( m^{2} - 1 ight)x đạt cực tiểu tại điểm x = 0?

    Ta có: \left\{ \begin{matrix}
y' = 4x^{3} + 2(m - 1)x + \left( m^{2} - 1 ight) \\
y'' = 12x^{2} + 2(m - 1) \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 \Rightarrow
y'(0) = 0 \Leftrightarrow m^{2} - 1 = 0 \Leftrightarrow m = \pm
1

    Với m = 1 ta được y = x^{4} \Rightarrow y' = 4x^{3}

    y' = 0 \Leftrightarrow x =
0. Hàm số đạt cực tiểu tại x =
0 (thỏa mãn yêu cầu)

    Với m = - 1 ta được y = x^{4} - 2x^{2} \Rightarrow y' = 4x^{3} -
4x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = \pm 1 (không thỏa mãn)

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 8: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 9: Nhận biết

    Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm M( - 4;5)?

    Xét hàm số y = \frac{5x + 1}{x +
4}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ + }} \frac{{5x + 1}}{{x + 4}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ - }} \frac{{5x + 1}}{{x + 4}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x = -
4 là tiệm cận đứng của đồ thị hàm số.

    Tiệm cận đứng đi qua điểm M( -
4;5).

  • Câu 10: Vận dụng

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 11: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 13: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 14: Vận dụng

    Một khối gỗ có dạng hình khối nón có bán kính đáy bằng r = 2m, chiều cao h = 6m. Bác thợ mộc chế tác từ khúc gỗ thành một khúc gỗ có dạng hình khối trụ như hình vẽ:

    Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Xác định giá trị của V

    Gọi r_{t};h_{t} lần lượt là bán kính và chiều cao của khối trụ.

    Ta có: \frac{r_{t}}{2} = \frac{6 -
h_{t}}{6} \Rightarrow 2\left( 6 - h_{t} ight) = 6r_{t} \Leftrightarrow
h_{t} = 6 - 3r_{t}

    Ta lại có: V = \pi{r_{t}}^{2}.h_{t} =
\pi{r_{t}}^{2}.\left( 6 - 3r_{t} ight) = \pi.\left( 6{r_{t}}^{2} -
3{r_{t}}^{3} ight)

    Xét hàm số f\left( r_{t} ight) =
6{r_{t}}^{2} - 3{r_{t}}^{3} với r_{t} \in (0;2)có:

    f'\left( r_{t} ight) = 12r_{t} -
9{r_{t}}^{2}

    f'\left( r_{t} ight) = 0
\Leftrightarrow 12r_{t} - 9{r_{t}}^{2} = 0 \Leftrightarrow r_{t} =
\frac{4}{3}

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có \max
f\left( r_{t} ight) = \frac{32}{9} đạt tại r_{t} = \frac{4}{3}

    Vậy V = \frac{32\pi}{9}\left( m^{3}
ight) là giá trị cần tìm.

  • Câu 15: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

    Từ đồ thị của hàm số y = f(x) ta xác định được hàm số đồng biến trên các khoảng ( - 2; - 1).

  • Câu 16: Vận dụng

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 17: Thông hiểu

    Cho hàm số y = \frac{mx + 9}{4x +
m} với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (0;4)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{- m}{4} ight\}

    Ta có: y' = \frac{m^{2} - 36}{(4x +
m)^{2}}

    Hàm số nghịch biến trên (0;4) khi và chỉ khi

    \left\{ \begin{matrix}
m^{2} - 36 < 0 \\
- \frac{m}{4} otin (0;4) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 6 < m < 6 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 16 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;...;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 19: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 20: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 21: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 25: Vận dụng cao

    Tìm giá trị tham số m để đồ thị hàm số y = x^{4} - 2(m + 1)x^{2} + 2m +
3 có ba điểm cực trị A;B;C sao cho trục Ox chia tam giác ABC thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng \frac{4}{5}?

    Ta có: y' = 4x^{2} - 4(m +
1)x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi y' = 0 có ba nghiệm phân biệt \Leftrightarrow m > - 1

    Khi m > - 1 đồ thị hàm số có ba điểm cực trị là A(0;2m + 3), B\left( - \sqrt{m + 1}; - m^{2} + 2
ight), C\left( \sqrt{m + 1}; -
m^{2} + 2 ight)

    Ta có: A \in Oy, B và C đối xứng với nhau qua Oy suy ra tam giác ABC cân tại A

    Hình vẽ minh họa

    Trục hoành chia tam giác ABC thành một tam giác và một hình thang \Rightarrow \left\{ \begin{matrix}
2m + 3 > 0 \\
- m^{2} + 2 < 0 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{gathered}
  m >  - \dfrac{3}{2} \hfill \\
  \left[ \begin{gathered}
  m > \sqrt 2  \hfill \\
  m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  m > \sqrt 2  \hfill \\
   - \dfrac{3}{2} < m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight.

    Kết hợp với điều kiện m > - 1 ta được m > \sqrt{2}

    Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy

    Ta có:

    \frac{S_{ADE}}{S_{ABC}} = \left(
\frac{OA}{AK} ight)^{2} = \left( \frac{y_{A}}{y_{A} - y_{B}}
ight)^{2} = \left( \frac{2m + 3}{m^{2} + 2m + 1}
ight)^{2}

    \frac{S_{ADE}}{S_{ABC}} = \frac{4}{9}
\Leftrightarrow \left( \frac{2m + 3}{m^{2} + 2m + 1} ight)^{2} =
\frac{4}{9}

    m > \sqrt{2} \Leftrightarrow
\frac{2m + 3}{m^{2} + 2m + 1} = \frac{2}{3}

    \Leftrightarrow 2m^{2} - 2m - 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{1 + \sqrt{15}}{2} \\m = \dfrac{1 - \sqrt{15}}{2} \\\end{matrix} ight.\  \Rightarrow m = \dfrac{1 +\sqrt{15}}{2}.

  • Câu 26: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 27: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - \frac{1}{2}(3m + 2)x^{2} + \left( 2m^{2} + 3m + 1
ight)x - 2 có điểm cực đại x_{CÐ} và điểm cực tiểu x_{CT} thỏa mãn biểu thức 3{x_{CÐ}}^{2} - 4x_{CT} = 0?

    Ta có: y' = x^{2} - (3m + 2)x +
\left( 2m^{2} + 3m + 1 ight)\Delta = m^{2} \geq 0;\forall m\mathbb{\in
R} nên y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2m + 1 \\
x = m + 1 \\
\end{matrix} ight..

    Hàm số có cực đại và cực tiểu khi và chỉ khi m eq 0.

    Trường hợp 1: \left\{ \begin{matrix}
x_{CÐ} = 2m + 1 \\
x_{CT} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow 2m + 1 < m + 1 \Leftrightarrow m
< 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(2m + 1)^{2} - 4(m + 1) = 0

    \Leftrightarrow 12m^{2} + 8m - 1 = 0
\Leftrightarrow m = \frac{- 2 \pm \sqrt{7}}{6}

    Với điều kiện m < 0 \Rightarrow m =
\frac{- 2 - \sqrt{7}}{6} thỏa mãn.

    Trường hợp 2: \left\{ \begin{matrix}
x_{CT} = 2m + 1 \\
x_{CÐ} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow m + 1 < 2m + 1 \Leftrightarrow m
> 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(m + 1)^{2} - 4(2m + 1) = 0

    \Leftrightarrow 3m^{2} - 2m - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Với điều kiện m > 0 \Rightarrow m =
1 thỏa mãn.

    Vậy có 2 giá trị thực của tham số m thỏa mãn.

  • Câu 28: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 29: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 30: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 31: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 32: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 33: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 34: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 1
ight\} và có bảng biến thiên như sau:

    Số giá trị nguyên của tham số m để phương trình m - f(x) = 0 có ba nghiệm phân biệt là:

    Phương trình m - f(x) = 0 là phương trình hoành độ giao điểm của hai đồ thị (C):y = f(x) và đường thẳng (d):y = m

    Để phương trình m - f(x) = 0 có ba nghiệm phân biệt khi và chỉ khi (C);(d) có ba giao điểm \Leftrightarrow 1 < m < 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 35: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 36: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

  • Câu 37: Thông hiểu

    Tìm điểm M thuộc đồ thị hàm số y = \frac{{2x + 1}}{{x - 1}} sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:

    Do M thuộc đồ thị hàm số nên tọa độ điểm M\left( {{x_0};\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight);{x_0} e 1

    Phương trình tiệm cận đứng là x – 1 = 0 (d’)

    Giải phương trình d(M,d’) = d(M, Ox)

    => \left| {{x_0} - 1} ight| = \left| {\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight| \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_0} = 0} \\   {{x_0} = 4} \end{array}} ight.

  • Câu 38: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên:

    Số giá trị nguyên của m \in \lbrack -
4;4brack để đồ thị hàm số có 4 tiệm cận là:

    Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng x = - 2;x = 1 và các tiệm cận ngang y = 4;y = m^{2}. Suy ra đồ thị có bốn tiệm cận khi m^{2} eq 4 \Leftrightarrow m
eq \pm 2

    Do \left\{ \begin{matrix}
m \in \lbrack - 4;4brack \\
m\mathbb{\in Z} \\
\end{matrix} ight. nên m \in
\left\{ \pm 4; \pm 3; \pm 1;0 ight\}

    Vậy có 7 giá trị của tham số m thỏa mãn.

  • Câu 39: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 40: Nhận biết

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 41: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - mx^{2} - (2m - 3)x - m + 2. Có bao nhiêu giá trị nguyên dương của tham số m luôn đồng biến trên \mathbb{R}?

    Ta có: y' = x^{2} - 2mx - 2m +
3

    Khi đó: y' \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} - 2mx - 2m + 3
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' = m^{2} + 2m
- 3 \leq 0 \Leftrightarrow - 3 \leq m \leq 1

    Do m nguyên dương nên m = 1.

    Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 42: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 44: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 45: Thông hiểu

    Số tiệm cận của hàm số y = \frac{{\sqrt {{x^2} + 1}  - x}}{{\sqrt {{x^2} - 9}  - 4}} là:

    Tập xác định: \left\{ {\begin{array}{*{20}{c}}  {{x^2} - 9 \geqslant 0} \\   {\sqrt {{x^2} - 9}  e 4} \end{array}} ight. \Rightarrow x \in \left( { - \infty ; - 3} ight] \cup \left[ {3; + \infty } ight)\backslash \left\{ { \pm 5} ight\}

    Khi đó \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = 0;\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 2

    => Đồ thị hàm số có hai tiệm cận ngang

    Mặt khác \mathop {\lim }\limits_{x \to  \pm {5^ + }} f\left( x ight) =  \mp \infty ;\mathop {\lim }\limits_{x \to  \pm {5^ - }} f\left( x ight) =  \pm \infty

    => Đồ thị hàm số có hai tiệm cận đứng

    Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo