Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
và
. Tính giá trị của biểu thức
?
Ta có:
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
và
. Tính giá trị của biểu thức
?
Ta có:
Tìm số mặt của hình đa diện dưới đây là?
Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Cho hàm số . Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số . Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Tính thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng
Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Cho hàm số xác định trên
và có đồ thị của hàm số
như hình vẽ:
Hàm số đạt cực tiểu tại:
Đặt
Ta có bảng biến thiên
Ta xét bằng cách thay số
Với
Với
Với
Với
Vậy hàm số đạt cực tiểu tại
Cho hàm số . Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Xét hàm số xác định trên tập số thực có:
Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.
Gọi là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
a) Từ đồ thị ta có hàm số nghịch biến trên khoảng suy ra mệnh đề đúng.
b) Từ đồ thị ta thấy hàm số đồng biến trên và
suy ra hàm số có
. Vậy mệnh đề đúng.
c) Ta có
Hàm số nghịch biến khi
suy ra mệnh đề sai.
d) Từ đồ thị hàm số ta có đồ thị của hàm số
như hình vẽ.
Từ đồ thị ta có hàm số đồng biến trên
và
suy ra mệnh đề đúng.
Cho hàm số y = f(x) có . Số điểm cực trị của hàm số đã cho là
Ta có:
Nhận thấy
=> f’(x) không đổi dấu khi qua nghiệm x = -2 nên x = -2 không là điểm cực trị của hàm số
Ngoài ra f’(x) cùng dấu với tam thức bậc hai x2(x - 1) = x2 – x nên suy ra x = 0, x = 1 là hai điểm cực trị của hàm số.
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Cho các hình sau:
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Cho hàm số với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:
- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Tập hợp tất cả các giá trị của tham số để đồ thị hàm số
có đúng hai đường tiệm cận?
Ta có:
Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang . Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.
Tam thức có
Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:
Vậy .
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi:
Ta có:
Xét hàm số
=>
Ta có:
Trong các hình dưới đây hình nào không phải khối đa diện lồi?
Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số . Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Tập xác định
Ta có: suy ra đồ thị hàm số có hai tiệm cận ngang là
Lại có suy ra đồ thị hàm số có hai tiệm cận đứng là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.
Cho hình chóp có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?
Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?
Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho hàm số . Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại là:
Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Cho hàm số có đạo hàm
. Số điểm cực tiểu của hàm số là:
Ta có:
Bảng xét dấu:
Suy ra số điểm cực tiểu của hàm số là 2 điểm.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số ?
Xét phương trình x + 1 = 0 => x = -1
Và => x = -1 là tiệm cận đứng của đồ thị hàm số.
Cho hàm số (với
là tham số). Tìm tất cả các giá trị của tham số
để hàm số đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên khoảng xác định thì
Vậy đáp án cần tìm là: .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và . Tính theo a thể tích V khối chóp S.ABCD.
Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Giá trị nhỏ nhất của hàm số là:
Tập xác định
Biến đổi f(x) như sau:
Đặt
Hàm số đã cho trở thành
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại
Cho hàm số f(x) liên tục trên và có bảng biến thiên của đạo hàm như sau:
Hàm số có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|
Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số f(x) có bảng biến thiên như sau:
Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có
=> Đồ thị hàm số đường tiệm cận ngang là y = 2
Có thể chia một hình lập phương thành bao nhiêu khối tứ diện bằng nhau?
Lần lượt dùng mặt phẳng (BDD'B') ta chia khối lập phương thành hai khối lăng trụ ABD.A'B'D' và BCD,B'C'D'.
+) Với khối ABD.A'B'D' ta lần lượt dùng các mặt phẳng (AB'D') và (AB'D) chia thành ba khối tứ diện bằng nhau.
+) Tương tự với khối BCD.B'C'D'
Vậy có tất cả 6 khối tứ diện bằng nhau.
Hàm số nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Trong các hàm số sau đây, hàm số nào không nghịch biến trên ?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Hỏi đồ thị của hàm số có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho các hình khối sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Hàm số có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số liên tục trên
và có đạo hàm
. Khẳng định nào sau đây đúng?
Ta có: do đó hàm số
nghịch biến trên
Do
Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là . Tính thể tích
của hình hộp chữ nhật đã cho.
Xét hình hộp chữ nhật có đáy
là hình chữ nhật.
Theo bài ra, ta có
Nhân vế theo vế, ta được
Vậy .
Số giao điểm của hai đồ thị hàm số và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.