Tìm giá trị lớn nhất của hàm số
trên
?
Ta có:
Tìm giá trị lớn nhất của hàm số
trên
?
Ta có:
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Cho hàm số
. Xác định số điểm cực trị của hàm số?
Ta có:
Vì nên hàm số đã cho có 3 cực trị.
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Giá trị nhỏ nhất của hàm số
trên đoạn
bằng
Ta có:
;
.
.
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Vậy khoảng nghịch biến của hàm số là:
Cho hàm số
có bảng biến thiên:

Số đường tiệm cận ngang của đồ thị hàm số
là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Tập hợp tất cả các giá trị thực của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có:
Hàm số nghịch biến trên khoảng khi
Đặt ta có:
. Ta có bảng biến thiên của
như sau:
Dựa vào bảng biến thiên ta thấy
Vậy là giá trị của tham số m cần tìm.
Cho các hàm số sau:
![]()
![]()
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hàm số sau, hàm số nào đồng biến trên
?
Xét hàm số ta có:
đồng biến trên
.
Hình lăng trụ có thể có số cạnh nào sau đây?
Giả sử hình lăng trụ có đáy là – giác.
Khi đó, số cạnh của hình lăng trụ là .
Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Ta có:
sai vì
nhưng
sai vì
nhưng
sai vì
nhưng
đúng vì
nên hàm số
đồng biến trên khoảng
.
Cho hàm số
có đồ thị như hình vẽ.

Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:
Dựa vào đồ thị hàm số ta có: .
Do đó, đồ thị hàm số có đường tiệm cận ngang là
.
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Cho hàm số
. Số điểm cực trị của hàm số đã cho là:
Áp dụng công thức khai triển nhị thức Newton ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1
Cho hàm số
. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Ta có:
suy ra đồ thị hàm số có tiệm cận đứng là
suy ra đồ thị hàm số có tiệm cận ngang là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức
trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Ta có .
Bảng biến thiên
Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.
Cho đồ thị hàm số có đồ thị như hình vẽ:

Chọn khẳng định đúng?
Đồ thị hàm số có tiệm cận đứng là: và tiệm cận ngang là
ta có:
=>
Đồ thị hàm số cắt Ox tại , cắt Oy tại
=>
Với
Với
Một khối gỗ có dạng hình khối nón có bán kính đáy bằng
, chiều cao
. Bác thợ mộc chế tác từ khúc gỗ thành một khúc gỗ có dạng hình khối trụ như hình vẽ:

Gọi
là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Xác định giá trị của ![]()
Gọi lần lượt là bán kính và chiều cao của khối trụ.
Ta có:
Ta lại có:
Xét hàm số với
có:
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có đạt tại
Vậy là giá trị cần tìm.
Cho hàm số
có đồ thị như hình vẽ:

Đồ thị hàm số
có mấy điểm cực trị?
Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Đồ thị hàm số nào sau đây không có tiệm cận đứng?
Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để
=> Hàm số không có tiệm cận đứng.
Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
nên hàm số tương ứng là
.
Cho hàm số | ![]() |
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số
liên tục và có đạo hàm trên
, biết
có đồ thị như hình vẽ:

Điểm cực đại của hàm số
đã cho là:
Dựa vào đồ thị hàm số ta có:
Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số là
.
Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?
Hình hộp chữ nhật (không là hình lập phương) có các mặt phẳng đối xứng là các mặt các mặt phẳng trung trực của các cặp cạnh đối.

Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Từ biểu thức của ta có bảng xét dấu như sau:
Dễ thấy hàm số đạt cực tiểu tại nên mệnh đề “
đạt cực tiểu tại
” đúng và mệnh đề “
đạt cực tiểu tại
” sai.
Hàm số có đúng một điểm cực trị nên mệnh đề “ không có cực trị” sai và “
có hai điểm cực trị” sai.
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
có đạo hàm
liên tục trên
và có bảng biến thiên như sau:

Bất phương trình
(m là tham số thực) nghiệm đúng với
khi và chỉ khi
Ta có:
Xét hàm số với
Ta có:
=> Hàm số g(x) luôn đồng biến trên
Ta có bảng biến thiên như sau:

=> (*) nghiệm đúng khi
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh