Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 3: Vận dụng

    Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?

     Có 9 mặt đối xứng (như hình vẽ sau):

    Hình lập phương

  • Câu 4: Vận dụng cao

    Có thể chia một hình lập phương thành bao nhiêu khối tứ diện bằng nhau?

    Chia hình lập phương

    Lần lượt dùng mặt phẳng (BDD'B') ta chia khối lập phương thành hai khối lăng trụ ABD.A'B'D' và BCD,B'C'D'.

    +) Với khối ABD.A'B'D' ta lần lượt dùng các mặt phẳng (AB'D') và (AB'D) chia thành ba khối tứ diện bằng nhau.

    +) Tương tự với khối BCD.B'C'D'

    Vậy có tất cả 6 khối tứ diện bằng nhau.

  • Câu 5: Vận dụng cao

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Nhận biết

    Cho hàm số y = f(x) là hàm đa thức có đạo hàm f'(x) = (x - 1)(x -
2)^{2}(x + 1)^{3}. Số điểm cực trị của hàm số là:

    Ta có:

    f'(x) = (x - 1)(x - 2)^{2}(x +
1)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 7: Thông hiểu

    Hỏi đồ thị hàm số y = \frac{x^{2} -
\sqrt{2 - x}}{x - 1} - x có tất cả bao nhiêu đường tiệm cận?

    Tập xác định D = ( -
\infty;2)\backslash\left\{ 1 ight\}

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\frac{x^{2} - \sqrt{2 - x}}{x - 1} - x ight) = \lim_{x ightarrow -
\infty}\frac{x^{2} - \sqrt{2 - x}}{x - 1}

    = \lim_{x ightarrow -\infty}\dfrac{x\left( 1 + \sqrt{\dfrac{2}{x^{2}} - \dfrac{1}{x}}ight)}{x\left( 1 - \dfrac{1}{x} ight)} = \lim_{x ightarrow -\infty}\dfrac{1 + \sqrt{\dfrac{2}{x^{2}} - \dfrac{1}{x}}}{1 - \dfrac{1}{x}}= 1

    Suy ra y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\left( \frac{x^{2}
- \sqrt{2 - x}}{x - 1} - x ight) = \lim_{x ightarrow 1}\frac{x^{2} -
\sqrt{2 - x}}{x - 1}

    = \lim_{x ightarrow 1}\frac{x^{2} - 2
+ x}{(x - 1)\left( x + \sqrt{2 - x} ight)} = \lim_{x ightarrow
1}\frac{x + 2}{x + \sqrt{2 - x}} = \frac{3}{2}

    Suy ra hàm số không có tiệm cận đứng

    Vậy hàm số có 1 đường tiệm cận.

  • Câu 8: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 9: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 10: Thông hiểu

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Đồ thị hàm số y = \frac{x - 3}{x^{2} + x
- 2} có bao nhiêu đường tiệm cận đứng?

    Ta có: y = \frac{x - 3}{x^{2} + x - 2} =
\frac{x - 3}{(x - 1)(x + 2)}

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{x - 3}{(x - 1)(x + 2)} = - \infty suy ra x = 1 là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{x - 3}{(x - 1)(x + 2)} = + \infty suy ra x = - 2 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.

  • Câu 12: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{3x^{2} - 4x + 1}{x^{2} - 1} là:

    Điều kiện xác định của hàm số x^{2} - 1
eq 0 \Leftrightarrow x eq \pm 1

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 1 ight\}

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{3x^{2} - 4x + 1}{x^{2} - 1} =
3 suy ra đồ thị hàm số có tiệm cận ngang là y = 3.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{3x^{2} - 4x + 1}{x^{2} - 1} = \mp
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)(3x + 1)}{(x - 1)(x + 1)} = \lim_{x
ightarrow 1}\frac{3x + 1}{x + 1} = 1 suy ra x = 1 không là tiệm cận đứng.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là 2.

  • Câu 13: Vận dụng

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 15: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 16: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 17: Nhận biết

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x^{3} - 3x trên \lbrack 1;2brack bằng:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y(1) = - 2 \\
y(2) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack 1;2brack}y = 2 \\
\min_{\lbrack 1;2brack}y = - 2 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2brack bằng 0.

  • Câu 18: Thông hiểu

    Để hàm số y = x^{3} - 3x^{2} +
mx đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 6x + m \\
y'' = 6x - 6 \\
\end{matrix} ight.. Để hàm số y
= x^{3} - 3x^{2} + mx đạt cực tiểu tại x = 2 thì

    \left\{ \begin{matrix}
y' = 0 \\
y'' > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y'(2) = 0 \\
y''(2) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 0 \\
6.2 - 6 > 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m \in ( -
1;1).

  • Câu 19: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 20: Thông hiểu

    Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm trùng phương không nghịch biến trên tập xác định của nó

    Với y = \frac{{x + 1}}{{ - x + 3}} \Rightarrow y' = \frac{4}{{{{\left( { - x + 3} ight)}^2}}} > 0,\forall x e 3

    Hàm số đã cho đồng biến trên từng khoảng xác định

    Với y =  - 2{x^3} - 3x + 5 \Rightarrow y' =  - 6{x^2} - 3 < 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên \mathbb{R}

  • Câu 21: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 22: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 23: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 24: Nhận biết

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 25: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 26: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} có tiệm cận đứng x = -
2, tiệm cận ngang y =
3

    Suy ra tâm đối xứng là ( -
2;3).

  • Câu 27: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 28: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 30: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số nghịch biến trên (3; + \infty)

    Suy ra hàm số nghịch biến trên (4;10).

  • Câu 31: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) = x^{3} -3x.

    a) Tập xác định của hàm số là \mathbb{R}. Đúng||Sai

    b) f'(x) = 3x^{2} + 3. Sai||Đúng

    c) f'(x) < 0 khi x \in ( - \infty; - 1) \cup (1; +\infty), f'(x) > 0 khi x \in ( - 1;1). Sai||Đúng

    d) Hàm số đã cho có đồ thị như hình vẽ.

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} -3x.

    a) Tập xác định của hàm số là \mathbb{R}. Đúng||Sai

    b) f'(x) = 3x^{2} + 3. Sai||Đúng

    c) f'(x) < 0 khi x \in ( - \infty; - 1) \cup (1; +\infty), f'(x) > 0 khi x \in ( - 1;1). Sai||Đúng

    d) Hàm số đã cho có đồ thị như hình vẽ.

    Đúng||Sai

    Tập xác định: \mathbb{R}.

    Sự biến thiên

    Giới hạn tại vô cực: lim_{x ightarrow +\infty}y = + \infty,lim_{x ightarrow - \infty}y = -\infty.

    y' = 3x^{2} - 3y' = 0 \Leftrightarrow x = - 1 hoặc x = 1

    Hàm số đồng biến trên mỗi khoảng ( -\infty; - 1)(1; +\infty), nghịch biến trên khoảng (- 1;1).

    Hàm số đạt cực đại tại x = - 1,y_{CD} =2; hàm số đạt cực tiểu tại x =1,y_{CT} = - 2.

    Đồ thị:

    Giao điểm của đồ thị với trục tung: (0;0).

    Giao điểm của đồ thị với trục hoành tại x= 0 hoặc x = \pm \sqrt{3}. Vậy đồ thị hàm số giao với trục hoành tại ba điểm (0;0),\left( - \sqrt{3};0 ight)\left( \sqrt{3};0 ight).

    Vậy đồ thị hàm số y = f(x) = x^{3} -3x được cho ở hình vẽ.

  • Câu 33: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 34: Thông hiểu

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 35: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 36: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 37: Thông hiểu

    Biết \frac{a}{b} là giá trị của tham số m để hàm số y = 2x^{3} - 3mx^{2} - 6\left( 3m^{2} - 1 ight)x
+ 2020 có hai điểm cực trị x_{1};x_{2} thỏa mãn x_{1}x_{2} + 2\left( x_{1} + x_{2} ight) =
1. Tính giá trị biểu thức Q = a +
2b?

    Xét hàm số y = 2x^{3} - 3mx^{2} - 6\left(
3m^{2} - 1 ight)x + 2020

    Ta có: y' = 6x^{2} - 6mx - 6\left(
3m^{2} - 1 ight)

    y' = 0 \Leftrightarrow x^{2} - mx -
3m^{2} + 1 = 0(*)

    Hàm số có hai điểm cực trị x_{1};x_{2} khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:

    \Leftrightarrow 13{m^2} - 4 > 0 \Leftrightarrow \left[ \begin{gathered}
  m <  - \frac{2}{{\sqrt {13} }} \hfill \\
  m > \frac{2}{{\sqrt {13} }} \hfill \\ 
\end{gathered}  ight.

    Khi đó theo định lí Vi – et ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 3m^{2} + 1 \\
\end{matrix} ight.

    Theo giả thiết:

    x_{1}.x_{2} + 2\left( x_{1} + x_{2}
ight) = 1

    \Leftrightarrow - 3m^{2} + 1 + 2m = 1
\Leftrightarrow - 3m^{2} + 2m = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 0 \\m = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow a = 2;b = 3 \Rightarrow Q = a + 2b =8

  • Câu 38: Nhận biết

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 39: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 40: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 41: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 42: Thông hiểu

    Cho hàm số y = f(x) = x^{2} - 4\ln(1 -x) . Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là D = (1; +
\infty) . Sai||Đúng

    b) Đạo hàm của hàm số là y' = \frac{-
2x^{2} + 2x + 4}{1 - x} . Đúng||Sai

    c) Giá trị lớn nhất của hàm số trên \lbrack - 2;0brack là 2. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên \lbrack - 2;0brack1 - 4\ln2 . Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 4\ln(1 -x) . Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là D = (1; +
\infty) . Sai||Đúng

    b) Đạo hàm của hàm số là y' = \frac{-
2x^{2} + 2x + 4}{1 - x} . Đúng||Sai

    c) Giá trị lớn nhất của hàm số trên \lbrack - 2;0brack là 2. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên \lbrack - 2;0brack1 - 4\ln2 . Đúng||Sai

    Tập xác định của hàm số là D = (1; +
\infty).

    Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

    Ta có: y' = 2x + \frac{4}{1 - x} =
\frac{- 2x^{2} + 2x + 4}{1 - x}

    Khi đó y' = 0 \Leftrightarrow \frac{-
2x^{2} + 2x + 4}{1 - x} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(TM) \\
x = 2(L) \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}f( - 2) = 4 - 4\ln3 \\f( - 1) = 1 - 4\ln2 \\f(0) = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}M = 0 \\m = 1 - 4\ln2 \\\end{matrix} ight.

  • Câu 43: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 44: Thông hiểu

    Cho hàm số y = - x^{3} - 3(m + 1)x^{2} +
3(2m - 1)x + 2020. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ( - \infty; +
\infty)?

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Để hàm số đã cho nghịch biến trên ( -
\infty; + \infty)

    \Leftrightarrow y' \leq 0
\Leftrightarrow \Delta' \leq 0

    \Leftrightarrow 9\left( m^{2} + 2m + 1
ight) + 18m - 9 \leq 0

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    Do m\mathbb{\in Z} nên có tất cả 5 giá trị của m thỏa mãn điều kiện.

  • Câu 45: Nhận biết

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo