Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = 2x^{3} - 5x^{2} + 4x -
2021. Gọi x_{1};x_{2} lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 6x^{2} - 10x + 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{2}{3} \\\end{matrix} ight.

    y'' = 12x - 10

    \Rightarrow y''(1) = 1 >
0 nên x_{2} = 1 là điểm cực tiểu của hàm số.

    y''\left( \frac{2}{3} ight) = -
2 < 0 nên x_{1} =
\frac{2}{3} là điểm cực đại của hàm số.

    Vậy kết luận đúng là: 2x_{1} - x_{2} =
\frac{1}{3}.

  • Câu 2: Vận dụng

    Cho hàm số y = f(x) = x^{4} - 2(m +
1)x^{2} + m^{2} - 8 (với mlà tham số) có đồ thị (C). Giả sử các điểm A;B;C là các điểm cực trị của (C). Để tam giác ABC đều thì giá trị của tham số m nằm trong khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
1)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 1)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi phương trình y' = 0 có ba nghiệm phân biệt hay x^{2} = m + 1 có hai nghiệm khác 0

    \Leftrightarrow m + 1 > 0
\Leftrightarrow m > - 1

    Khi đó y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{m + 1} \\
x = - \sqrt{m + 1} \\
\end{matrix} ight.

    Đồ thị (C) có ba điểm cực trị là A\left( 0;m^{2} + 8 ight);B\left( \sqrt{m + 1}; - (m + 1)^{2} + m^{2} + 8
ight);C\left( - \sqrt{m + 1}; -
(m + 1)^{2} + m^{2} + 8 ight).

    Ta có: AB = AC = \sqrt{m + 1 + (m +
1)^{4}}

    Do đó tam giác ABC đều \Leftrightarrow AB = BC

    \Leftrightarrow \sqrt{m + 1 + (m +
1)^{4}} = \sqrt{4(m + 1)}

    \Leftrightarrow m + 1 + (m + 1)^{4} =
4(m + 1)

    \Leftrightarrow (m + 1)^{4} - 3(m + 1) =
0

    \Leftrightarrow (m + 1)\left\lbrack (m +
1)^{3} - 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m + 1 = 0 \\
(m + 1)^{3} - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 1 + \sqrt[3]{3} \\
\end{matrix} ight.

    Kết hợp với điều kiện m > - 1
\Rightarrow m = - 1 + \sqrt[3]{3}.

    Vậy đáp án cần tìm là m \in \left(
\frac{1}{4};\frac{1}{2} ight).

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Từ bảng biến thiên ta thấy:

    \lim_{x ightarrow - 1^{+}}y = -
\infty suy ra x = - 1 là tiệm cận đứng.

    \lim_{x ightarrow - \infty}y =
2 suy ra y = 2 là tiệm cận ngang

    \lim_{x ightarrow - \infty}y = -
1 suy ra y = - 1 là tiệm cận ngang

    Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.

  • Câu 4: Thông hiểu

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

  • Câu 5: Nhận biết

    Cho hàm số y = 2x^{3} - x^{2} - 4x +
2. Hàm số có bao nhiêu điểm cực trị?

    Ta có: y' = 6x^{2} - 2x - 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - \dfrac{2}{3} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 6: Vận dụng

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 7: Thông hiểu

    Cho hàm số y = x^{4} - 4x^{2} -
2 có đồ thị (C) và đường thẳng d:y = m. Tất cả các giá trị của tham số m để d cắt (C) tại bốn điểm phân biệt?

    Ta có: y' = 4x^{3} - 8x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy đồ thị hàm số y = x^{4} - 4x^{2} - 2 cắt đường thẳng d:y = m tại 4 điểm phân biệt \Leftrightarrow - 6 < m < - 2.

  • Câu 8: Nhận biết

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y =  2.

  • Câu 10: Vận dụng

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 11: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 12: Thông hiểu

    Cho đồ thị hàm số như hình vẽ dưới đây:

    Xác định hàm số tương ứng

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1

    => Loại A và B

    Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 15: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hàm số đã cho đồng biến trên ( -
1;2).

  • Câu 16: Vận dụng

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Đáp án là:

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Gọi x,h (m) lần lượt là chiều rộng và chiều cao của bể cá.

    Ta có thể tích bể cá V =
2x^{2}h.

    Theo đề bài ta có:

    2xh + 2.2xh + 2x^{2} = 8

    \Leftrightarrow 6xh + 2x^{2} =
8

    \Leftrightarrow h = \frac{8 -
2x^{2}}{6x}

    V = 2x^{2}\frac{8 - 2x^{2}}{6x} =
\frac{8x - 2x^{3}}{3}

    \Rightarrow V' = \frac{8 -
6x^{2}}{3}

    \Rightarrow V' = 0

    \Leftrightarrow 8 - 6x^{2} = 0
\Leftrightarrow x^{2} = \frac{4}{3} \Leftrightarrow x =
\frac{2\sqrt{3}}{3}

    Ta có bảng biển thiên

    \Rightarrow V_{\max} =
\frac{32\sqrt{3}}{27} \approx 2,1\ \ m^{3}

  • Câu 17: Vận dụng cao

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 18: Nhận biết

    Giá trị nhỏ nhất của hàm số f(x) = x^{3}
- 3x + 2 trên đoạn \lbrack -
3;2brack bằng

    Ta có:

    f'(x) = 3x^{2} - 3; f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
f( - 3) = - 16 \\
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 3;3brack}f(x) = -
16.

  • Câu 19: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 20: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 21: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 22: Thông hiểu

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    Đáp án là:

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    a) Thể tích của bể là V = B.h = xy.\
h.

    b) Với V = xy.h \Rightarrow 1800 = xy.2
\Rightarrow xy = \frac{1800}{2} = 900.

    c) Tổng diện tích mặt bên gồm 4 hình chữ nhật (trước, sau, trái, phải) là:

    \ S = 2x + 2x + 2y + 2y = 4x + 4y = 4(x
+ y)

    d) Tổng diện tích của bể là: 4x + 4y + xy
= 4x + 4.\frac{900}{x} + 900

    Vì chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể nên chi phí cần có là 4x +
4.\frac{900}{x} + 2.900

    Đặt f(x) = 4x + 4.\frac{900}{x} +
1800 ta có: f'(x) = 4 -
\frac{3600}{x^{2}} \Rightarrow f'(x) = 0 \Leftrightarrow x =
30 ta có bảng biến thiên như sau:

    Với x = 30m;y = 30 m và thì chi phí xây dựng bể là thấp nhất.

  • Câu 23: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 24: Thông hiểu

    Cho hàm số y = \frac{x + m}{x +
1} (với m là tham số thực) thỏa mãn \max_{\lbrack 1;2brack}y +
\min_{\lbrack 1;2brack}y = \frac{16}{3}. Mệnh đề nào sau đây đúng?

    Ta có: y' = \frac{1 - m}{(x +
1)^{2}}

    TH1: m = 1 \Rightarrow y = 1 loại

    TH2: m > 1 khi đó \max_{\lbrack 1;2brack}y = \frac{1 +
m}{2};\min_{\lbrack 1;2brack}y = \frac{2 + m}{3}

    \max_{\lbrack 1;2brack}y +
\min_{\lbrack 1;2brack}y = \frac{1 + m}{2} + \frac{2 + m}{3} =
\frac{16}{3} \Leftrightarrow m = 5

    Suy ra đáp án cần tìm là m >
4.

  • Câu 25: Nhận biết

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 26: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= - \frac{1}{3}x^{3} - 2x^{2} + mx - 1 nghịch biến trên \mathbb{R}?

    Ta có:

    y' = - x^{2} - 4x + m

    Hàm số nghịch biến trên \mathbb{R} \Leftrightarrow - x^{2} - 4x + m \leq 0;\forall
x

    \Rightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\leq - 4

    Vậy đáp án cần tìm là m \leq -
4

  • Câu 27: Vận dụng cao

    Cho khối tứ diện ABCD. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp (CDM)(ABN), ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

    Chia khối tứu diện

    Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:  MBND, MBNC, AMDN, AMNC

  • Câu 28: Nhận biết

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 29: Thông hiểu

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu như sau:

    Hỏi hàm số y = f(x) nghịch biến trên các khoảng nào dưới đây?

    Ta có:

    y' = f'(3 - 2x) = - 2f'(3 -
2x)

    f'( - 1) = f'(3) = f'(5) =
0

    f'(x) = k(x - 5)(x - 3)(x -
1)

    Xét x = 3 \Rightarrow y' = - 2f'(
- 3) > 0

    \Rightarrow f'( - 3) <
0

    Bảng xét dấu y = f'(x) là:

    Căn cứ vào bảng xét dấu ta thấy

    Hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 30: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 31: Thông hiểu

    Số điểm cực trị của hàm số f(x) = (x +
2)^{3}(x - 3)^{2}(x - 2)^{5} là:

    Ta có:

    f'(x) = 3(x + 2)^{2}(x - 3)^{2}(x -2)^{5}+ 2(x + 2)^{3}(x - 3)(x - 2)^{5}+ 5(x + 2)^{3}(x - 3)^{2}(x -2)^{4}

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ight brack\left\lbrack 3(x - 3) + 2(x +2)(x - 2) + 5(x + 2)(x - 3) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left\lbrack 3\left( x^{2} -5x + 6 ight) + 2\left( x^{2} - 4 ight) + 5\left( x^{2} - x - 6ight) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 3x^{2} - 15x + 18 +2x^{2} - 8 + 5x^{2} - 5x - 30 ight)

    \Leftrightarrow f'(x) = \left\lbrack
(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20
ight)

    Khi đó

    f'(x) = 0

    \Leftrightarrow \left\lbrack (x +
2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20 ight)
= 0(*)

    Phương trình (*) có ba nghiệm bội lẻ x =
3;x = 1 \pm \sqrt{3}

    Vậy hàm số ban đầu có ba điểm cực trị.

  • Câu 32: Thông hiểu

    Cho hàm số y = \frac{mx + n}{ax^{2} + bx
+ c} (với m,n,a,b,c\mathbb{\in
R}). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Ta có:

    Phương trình ax^{2} + bx + c = 0 có tối đa 2 nghiệm

    Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\ 
\end{gathered}  ight. nên y =
0 là đường tiệm cận ngang.

    Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.

  • Câu 33: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 34: Vận dụng cao

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 35: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 36: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 37: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 38: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 39: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 40: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 41: Vận dụng cao

    Gọi S là tập tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C với B nằm giữa A;C sao cho AB = 2BC. Tính tổng các phần tử thuộc tập S?

    Ta có bảng biến thiên

    Suy ra đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C \Leftrightarrow - 4 < m < 0

    Khi đó \[\left\{ \begin{gathered}
  {x_A} + {x_B} + {x_C} = 3 \hfill \\
  {x_A}.{x_B} + {x_B}.{x_C} + {x_C}.{x_A} = 0 \hfill \\
  {x_A}.{x_B}.{x_C} = m \hfill \\ 
\end{gathered}  ight.

    Để B nằm giữa A và C và AB = 2BC thì \begin{matrix}
\left\{ \begin{matrix}
x_{A} < x_{B} < x_{C} \\
x_{B} - x_{A} = 2\left( x_{C} - x_{B} ight) \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x_{C} < x_{B} < x_{A} \\
x_{A} - x_{B} = 2\left( x_{B} - x_{C} ight) \\
\end{matrix} ight.\  \\
\end{matrix}

    \Leftrightarrow 3x_{B} = x_{A} + 2x_{C}
\Leftrightarrow 4x_{B} - 3 = x_{C} \Rightarrow x_{A} = 6 -
5x_{B}

    \Rightarrow \left\{ \begin{gathered}
  \left( {6 - 5{x_B}} ight) + {x_B}.\left( {4{x_B} - 3} ight) + \left( {4{x_B} - 3} ight)\left( {6 - 5{x_B}} ight) = 0\left( * ight) \hfill \\
  \left( {4{x_B} - 3} ight).{x_B}.\left( {6 - 5{x_B}} ight) = m \hfill \\ 
\end{gathered}  ight.

    Từ (*) ta được x_{B} = \frac{7 \pm
\sqrt{7}}{7}. Thay (**) được \left\lbrack \begin{matrix}m = \dfrac{- 98 - 20\sqrt{7}}{49} \\m = \dfrac{- 98 + 20\sqrt{7}}{49} \\\end{matrix} ight.

    Suy ra S = \left\{ \frac{- 98 -
20\sqrt{7}}{49};\frac{- 98 + 20\sqrt{7}}{49} ight\}. Vậy tổng các phần tử của S bằng - 4.

  • Câu 42: Thông hiểu

    Giá trị lớn nhất của hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0; 3)

    Tập xác định D = \left[ {0;4} ight]

    Xét hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0;3)

    Ta có:

    \begin{matrix}  y' = \frac{{ - x + 2}}{{\sqrt { - {x^2} + 4x} }} \hfill \\  y' = 0 \Leftrightarrow x = 2 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm GTLN của hàm số

    Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2

  • Câu 43: Vận dụng

    Gọi {n_1},{m{ }}{n_2},{m{ }}{n_3} lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng? 

    Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).

    Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).

    Khối lập phương có 9 trục đối xứng

    (Loại 1: đi qua tâm của các mặt đối diện ;

    Loại 2: đi qua trung điểm các cặp cạnh đối diện).

  • Câu 44: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 45: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực đại tại điểm nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo