Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y =
x^{3} - 3x?

    Thay (1; - 2) vào y = x^{3} - 3x ta được:

    - 2 = 1^{3} - 3.1

    Vậy (1; - 2) thuộc đồ thị hàm số y = x^{3} - 3x.

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 3: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 4: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{mx + 4}{x + m} nghịch biến trên khoảng ( - \infty;1)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m^{2} - 4}{(x +
m)^{2}}

    Theo yêu cầu bài toán: \Leftrightarrow
y' < 0;\forall x \in ( - \infty;1)

    \Leftrightarrow \left\{ \begin{matrix}
- m otin ( - \infty;1) \\
m^{2} - 4 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 1 \\
- 2 < m < 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq - 1

    Vậy đáp án cần tìm là m \in ( - 2; -
1brack.

  • Câu 5: Nhận biết

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 6: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đạt cực tiểu tại điểm

    Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm x = 0.

  • Câu 7: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 8: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} - 3x + 2}{4 - x^{2}} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên y = -
1 là tiện cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2}y = \lim_{x
ightarrow 2}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = \lim_{x
ightarrow 2}\frac{1 - x}{x + 2} = - \frac{1}{4}

    \lim_{x ightarrow ( - 2)^{+}}y =
\lim_{x ightarrow ( - 2)^{+}}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = -
\infty suy ra x = - 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

  • Câu 9: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

  • Câu 11: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 12: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = x^{2}(x
- 9)(x - 4)^{2}. Khi đó hàm số y =
f\left( x^{2} ight) nghịch biến trên khoảng nào?

    Ta có:

    y' = \left( f\left( x^{2} ight)
ight)' = 2x.f'\left( x^{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{4}\left( x^{2} - 9 ight)\left( x^{2} - 4 ight)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta có hàm số nghịch biến trên ( - \infty; - 3)(0;3).

  • Câu 13: Vận dụng cao

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 14: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 15: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 16: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 17: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 18: Nhận biết

    Tìm hàm số luôn đồng biến trên từng khoảng xác định?

    Xét hàm số y = \frac{- x - 8}{x +
3}

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}. Ta có: y' = \frac{5}{\left( x + 3^{2} ight)} >
0;\forall x eq 3

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 3),( - 3; + \infty).

  • Câu 19: Vận dụng

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Để hàm số y = f(3x - 1) + x^{3} -
3mx đồng biến trên khoảng ( -
2;1)

    \Leftrightarrow y' \geq 0,\forall x
\in ( - 2;1)

    \Leftrightarrow 3f'(3x - 1) + 3x^{2}
- 3m \geq 0,\forall x \in ( - 2;1)

    \Leftrightarrow m \leq f^{'}(3x - 1)
+ x^{2},\forall x \in ( - 2;1)(*)

    Đặt k(x) = f^{'}(3x - 1),h(x) =
x^{2}g(x) = f^{'}(3x - 1) +
x^{2} = k(x) + h(x).

    Ta có: \min_{( - 2;1)}k(x) = k(0) = -
4.

    Do đó, ta có: \min_{( - 2;1)}f^{'}(3x
- 1) = f^{'}( - 1) = - 4 khi 3x
- 1 = - 1 \Leftrightarrow x = 0.

    \Rightarrow \min_{( - 2;1)}k(x) = k(0) =
- 4.

    Do đó, \min_{( - 2;1)}g(x) = g(0) = k(0)
+ h(0) = 0 - 4 = - 4.

    Từ (*) ta có m \leq f^{'}(3x - 1) + x^{2},\forall x \in ( -
2;1)

    \Leftrightarrow m \leq \min_{( -
2;1)}g(x) \Leftrightarrow m \leq - 4.

    m \in ( - 10;10) \Rightarrow m \in \{- 9;\ldots; - 4\}.

    Vậy có tất cả 6 số nguyên thỏa mãn.

  • Câu 20: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 21: Thông hiểu

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

  • Câu 22: Nhận biết

    Giá trị trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack 0;4brack bằng

    Ta có f'(x) = 3x^{2} - 6x -
9.

    f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 3(tm) \\
\end{matrix} ight.

    Do đó f(0) = 10, f(3) = - 17, f(4) = - 10.

    Vậy \max_{\lbrack 0;4brack}f(x) = f(0)
= 10

  • Câu 23: Vận dụng cao

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Vận dụng

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?

    Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là: \frac{{{a^2}\sqrt 3 }}{4}

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng: 4.\frac{{{a^2}\sqrt 3 }}{4} ={a^2}\sqrt 3

  • Câu 25: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 26: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Chọn khẳng định đúng trong các khẳng định sau.

    \lim_{x ightarrow 0^{+}}y = -
\infty nên đồ thị hàm số có đúng một đường tiệm cận đứng.

    Vậy khẳng định đúng là “Đồ thị hàm số có đúng một đường tiệm cận đứng.”

  • Câu 27: Thông hiểu

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 29: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị cắt trục Ox tại ba điểm phân biệt. Hỏi số cực trị của hàm số y = \left| f(x) ight| bằng bao nhiêu?

    Vì đồ thị hàm số y = f(x) = ax^{3} +
bx^{2} + cx + d cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:

    Số điểm cực trị của hàm số là 2

    Số nghiệm bội lẻ của phương trình là 3

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là 2 + 3 = 5

  • Câu 30: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 31: Thông hiểu

    Hàm số y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1 nghịch biến trên khoảng (1;3) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có: y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1

    \Rightarrow y' = 6x^{2} - 6(m + 1)x
+ 6m

    Hàm số nghịch biến trên khoảng (1;3)

    \Leftrightarrow y' \leq 0;\forall x
\in (1;3)

    \Leftrightarrow 6x^{2} - 6(m + 1)x + 6m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow x^{2} - (m + 1)x + m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow m \geq x;\forall x \in
(1;3)

    Vậy m \geq 3 là giá trị cần tìm.

  • Câu 32: Vận dụng

    Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 3x + m} có đúng hai đường tiệm cận?

    Ta có: \lim_{x ightarrow +
\infty}\frac{x - 1}{x^{2} - 3x + m} = \lim_{x ightarrow -
\infty}\frac{x - 1}{x^{2} - 3x + m} = 0

    Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang y = 0. Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.

    Tam thức h(x) = x^{2} - 3x + m\Delta = 9 - 4m

    Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:

    \left[ \begin{gathered}
  \Delta  = 9 - 4m = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  = 9 - 4m > 0 \hfill \\
  h\left( 1 ight) = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy m \in \left\{ 2;\frac{9}{4}
ight\}.

  • Câu 33: Vận dụng cao

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 35: Thông hiểu

    Hàm số nào sau đây là hàm số đồng biến trên \mathbb{R}?

    Xét hàm số y = x^{3} - x^{2} + 3x +
11 ta có:

    y' = - 3x^{2} + 2x + 3 = \left(
\sqrt{3}x - \frac{1}{\sqrt{3}} ight)^{2} + \frac{8}{3} > 0;\forall
x\mathbb{\in R} suy ra hàm số liên tục trên \mathbb{R}.

  • Câu 36: Thông hiểu

    Hỏi đồ thị của hàm số y = \frac{|x +
1|}{\sqrt{x^{2} + 3} - 2} có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;1 ight\}

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{|x + 1|}{\sqrt{x^{2} + 3} - 2} = 1 nên đồ thị hàm số có tiệm cận ngang là y = 1

    y = \frac{{\left| {x + 1} ight|}}{{\sqrt {{x^2} + 3}  - 2}} = \frac{{\left| {x + 1} ight|.\left( {\sqrt {{x^2} + 3}  + 2} ight)}}{{{x^2} - 1}}= \left\{ \begin{gathered}
  \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x \geqslant  - 1 \hfill \\
   - \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x <  - 1 \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 1^{+}}y = +
\infty;\lim_{x ightarrow 1^{-}}y = + \infty nên đồ thị hàm số có tiệm cận đứng là x = 1

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 37: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Hỏi hàm số y = f\left( x^{2} - 2x
ight) có bao nhiêu điểm cực tiểu?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 2\  \\
x^{2} - 2x = 1\  \\
x^{2} - 2x = 3\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \pm \sqrt{2} \\
x = 3 \\
x = 1 \\
\end{matrix} ight.

    g'(x) \geq 0 \Leftrightarrow (2x -
2)f'\left( x^{2} - 2x ight) \geq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
2x - 2 \geq 0 \\
f'\left( x^{2} - 2x ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
2x - 2 \leq 0 \\
f'\left( x^{2} - 2x ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
- 2 \leq x^{2} - 2x \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x^{2} - 2x \geq 3 \\
x^{2} - 2x \leq - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 2x + 2 \geq 0 \\
x^{2} - 2x - 3 \leq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x^{2} - 2x - 3 \geq 0 \\
x^{2} - 2x + 2 \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
- 1 \leq x \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x \geq 3 \\
x \leq - 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 \leq x \leq 3 \\
x \leq - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng xét dấu ta suy ra hàm số y =
f\left( x^{2} - 2x ight) có 1 điểm cực tiểu.

  • Câu 38: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 39: Vận dụng cao

    Lắp ghép hai khối đa diện (H_1)(H_2) để tạo thành khối đa diện (H) , trong đó (H_1)  là khối chóp tứ giác đều có tất cả các cạnh bằng a , (H_2) là khối tứ diện đều cạnh a sao cho một mặt của (H_1) trùng với một mặt của (H_2) như hình vẽ. Hỏi khối da diện (H) có tất cả bao nhiêu mặt?

    Lắp ghép khối đa diện

    Khối đa diện có đúng 5 mặt.

    Sai lầm hay gặp: Khối chóp tứ giác đều có 5 mặt. Khối tứ diện đều có 4 mặt.

    Ghép hai hình lại như hình vẽ ta được khối đa diện có 8 mặt.

  • Câu 40: Thông hiểu

    Cho hàm số y = \frac{mx + n}{ax^{2} + bx
+ c} (với m,n,a,b,c\mathbb{\in
R}). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Ta có:

    Phương trình ax^{2} + bx + c = 0 có tối đa 2 nghiệm

    Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\ 
\end{gathered}  ight. nên y =
0 là đường tiệm cận ngang.

    Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.

  • Câu 41: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 42: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) là hàm đa thức có đạo hàm f'(x) = (x - 1)(x -
2)^{2}(x + 1)^{3}. Số điểm cực trị của hàm số là:

    Ta có:

    f'(x) = (x - 1)(x - 2)^{2}(x +
1)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 44: Nhận biết

    Cho hàm số y = \frac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}}. Khẳng định nào sau đây sai?

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}}{{1 - \dfrac{2}{x} - \dfrac{3}{{{x^2}}}}} = 2

    => y = 2 là tiệm cận ngang của đồ thị hàm số

    Ta cũng có: \mathop {\lim }\limits_{x \to \left( { - 1} ight)} y = \infty ;\mathop {\lim }\limits_{x \to 3} y = \infty => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số

  • Câu 45: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= mx^{3} - \left( m^{2} + 1 ight)x^{2} + 2x - 3 đạt cực tiểu tại điểm x = 1?

    Ta có: \left\{ \begin{matrix}
y' = 3mx^{2} - 2\left( m^{2} + 1 ight)x + 2 \\
y'' = 6mx - 2\left( m^{2} + 1 ight) \\
\end{matrix} ight.

    Điều kiện cần y'(1) = 0\Leftrightarrow - 2m^{2} + 3m = 0 \Leftrightarrow \left\lbrack\begin{matrix}m = 0 \\m = \dfrac{3}{2} \\\end{matrix} ight.

    Điều kiện đủ:

    Khi m = 0 \Rightarrow y''(1) = -
2 < 0 suy ra x = 1 là điểm cực đại của hàm số.

    Khi m = \frac{3}{2} \Rightarrow
y''(1) = \frac{5}{2} > 0 suy ra x = 1 là điểm cực tiểu của hàm số.

    Vậy giá trị m thỏa mãn yêu cầu bài toán là m = \frac{3}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo