Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 2: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 3: Vận dụng

    Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?

    Hình hộp chữ nhật (không là hình lập phương) có các mặt phẳng đối xứng là các mặt các mặt phẳng trung trực của các cặp cạnh đối.

    Mp đối xứng của hình hộp chữ nhật

  • Câu 4: Thông hiểu

    Cho hàm số y = - x^{3} - 3(m + 1)x^{2} +
3(2m - 1)x + 2020. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ( - \infty; +
\infty)?

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Để hàm số đã cho nghịch biến trên ( -
\infty; + \infty)

    \Leftrightarrow y' \leq 0
\Leftrightarrow \Delta' \leq 0

    \Leftrightarrow 9\left( m^{2} + 2m + 1
ight) + 18m - 9 \leq 0

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    Do m\mathbb{\in Z} nên có tất cả 5 giá trị của m thỏa mãn điều kiện.

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 1
ight\} và có bảng biến thiên như sau:

    Số giá trị nguyên của tham số m để phương trình m - f(x) = 0 có ba nghiệm phân biệt là:

    Phương trình m - f(x) = 0 là phương trình hoành độ giao điểm của hai đồ thị (C):y = f(x) và đường thẳng (d):y = m

    Để phương trình m - f(x) = 0 có ba nghiệm phân biệt khi và chỉ khi (C);(d) có ba giao điểm \Leftrightarrow 1 < m < 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 6: Thông hiểu

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Đáp án là:

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Ta có: y = \frac{3x^{2} + 2x}{4x + 4} =
\frac{3}{4}x - \frac{1}{4} + \frac{1}{4x + 4}.

    Xét \lim_{x ightarrow \pm \infty}\left(
y - \left( \frac{3}{4}x - \frac{1}{4} ight) ight) = \lim_{x
ightarrow \pm \infty}\frac{1}{4x + 4} = 0.

    Vậy đường tiệm cận xiên có phương trình y
= \frac{3}{4}x - \frac{1}{4} \Leftrightarrow 3x - 4y - 1 =
0.

    Khoảng cách từ điểm M đến đường tiệm cận xiên là:

    d = \frac{\left| 3.3 - 4.( - 2) - 1
ight|}{\sqrt{3^{2} + ( - 4)^{2}}} = \frac{16}{5} = 3,2

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 2.

  • Câu 8: Thông hiểu

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 1)(x - 2)....(x - 2019), với \forall x\mathbb{\in R}. Hỏi hàm số y = f(x) có bao nhiêu điểm cực tiểu?

    Ta có: f'(x) = 0 \Leftrightarrow (x -
1)(x - 2)....(x - 2019) = 0\Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2 \\
.... \\
x = 2019 \\
\end{matrix} ight.

    Suy ra f'(x) = 02019 nghiệm bội lẻ và hệ số a > 0 nên có 1010 cực tiểu.

  • Câu 9: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 10: Vận dụng

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 11: Thông hiểu

    Cho hàm số y = \frac{2mx + m}{x -
1}. Tìm tất cả các giá trị thực của tham số m để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8.

    Điều kiện để đồ thị hàm số có tiệm cận là - 2m - m eq 0 \Leftrightarrow m eq
0

    Khi đó đồ thị hàm số có:

    Tiệm cận đúng: x = 1, song song với Oy và cắt Ox tại điểm A(1;0)

    Tiệm cận ngang: y = 2m song song với Ox và cắt Oy tại điểm B(2m;0)

    Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là S = OA.OB = 1.|2m| = 8
\Leftrightarrow m = \pm 4

  • Câu 12: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 13: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 14: Thông hiểu

    Xác định số giá trị nguyên của tham số m để hàm số y = \frac{mx - 2}{- 2x +m} nghịch biến trên khoảng \left(\frac{1}{2}; + \infty ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số giá trị nguyên của tham số m để hàm số y = \frac{mx - 2}{- 2x +m} nghịch biến trên khoảng \left(\frac{1}{2}; + \infty ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

  • Câu 16: Thông hiểu

    Cho hàm số y = \frac{{{x^2} + 3}}{{x - 1}}. Khẳng định nào sau đây đúng?

    Tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\}

    \begin{matrix}  y' = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2x - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 3} \end{array}} ight. \hfill \\  y'' = \frac{8}{{{{\left( {x - 1} ight)}^3}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( { - 1} ight) =  - 1 < 0} \\   {y''\left( 3 ight) = 1 > 0} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( { - 1} ight) =  - 2} \\   {{y_{CT}} = y\left( 3 ight) = 3} \end{array}} ight. \Rightarrow {y_{CD}} < {y_{CT}} \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 18: Nhận biết

    Hàm số f(x) =
\frac{2x + 3}{x - 1} nghịch biến trên khoảng nào?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    f'(x) = \frac{- 5}{(x - 1)^{2}} <
0;\forall x \in D suy ra hàm số nghịch biến trên ( - \infty;1)(1; + \infty).

  • Câu 19: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 20: Thông hiểu

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}. Hàm số f(x) đồng biến trên khoảng nào dưới đây?

    Ta có:

    f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}

    \Rightarrow f'(x) = 0
\Leftrightarrow (x - 1)^{3}(2 - x)(x - 3)^{3} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Từ bảng xét dấu của f'(x) suy ra hàm số đồng biến trên khoảng (1;2).

  • Câu 21: Nhận biết

    Cho hàm số y = {x^3} - 3x + 2. Tọa độ điểm cực tiểu của đồ thị hàm số là:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3 \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\  y'' = 6x \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( 1 ight) = 6 > 0} \\   {y''\left( { - 1} ight) =  - 6 < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)

  • Câu 22: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} có tiệm cận đứng x = -
2, tiệm cận ngang y =
3

    Suy ra tâm đối xứng là ( -
2;3).

  • Câu 23: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 24: Thông hiểu

    Gọi P là tập tất cả các số nguyên dương của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 đồng biến trên khoảng (3; + \infty). Tính tổng tất cả các phần tử của tập P?

    Theo yêu cầu bài toán \Leftrightarrow
y' = 4x^{3} - 4mx \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow 4x\left( x^{2} - m
ight) \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow m \leq x^{2};\forall x
\in (3; + \infty)

    Do đó m \leq 9 \Rightarrow P = \left\{
1;2;3;...;9 ight\}

    Vậy tổng tất cả các phần tử của tập P bằng 45.

  • Câu 25: Vận dụng

    Cho hàm số y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.

    Ta có: y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}} = \frac{{\left( {x - 1} ight)\left( {x + 2} ight)}}{{{x^2} - 2x + m}}

    Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình f\left( x ight) = {x^3} - 2x + m = 0 có hai nghiệm phân biệt thỏa mãn

    \left\{ {\begin{array}{*{20}{c}}  {x e 1} \\   {x e  - 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \Delta ' > 0 \hfill \\  f\left( 1 ight) e 0 \hfill \\ \end{gathered}  \\   {f\left( { - 2} ight) e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  1 - m > 0 \hfill \\  m - 1 e 0 \hfill \\ \end{gathered}  \\   {m + 8 e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 1} \\   {m e  - 8} \end{array}} ight.

  • Câu 26: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Hỏi số nghiệm của phương trình 2f(x) - 1
= 0 bằng bao nhiêu?

    Ta có: 2f(x) - 1 = 0 \Leftrightarrow f(x)
= \frac{1}{2}

    Lại có đường thẳng y =
\frac{1}{2} nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số y = f(x) tại 4 điểm nên phương trình 2f(x) - 1 = 0 có hai nghiệm.

  • Câu 27: Nhận biết

    Cho hàm số y = \frac{{2x + 1}}{{ - x + 1}}. Mệnh đề nào dưới dây là đúng?

    Tập xác định của hàm số D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có: y' = \frac{3}{{{{\left( { - x + 1} ight)}^2}}} > 0,\forall x e 1

    Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)

  • Câu 28: Nhận biết

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x^{3} - 3x trên \lbrack 1;2brack bằng:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y(1) = - 2 \\
y(2) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack 1;2brack}y = 2 \\
\min_{\lbrack 1;2brack}y = - 2 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2brack bằng 0.

  • Câu 29: Vận dụng cao

    Một hình lăng trụ có 2024 mặt. Hỏi hình lăng trụ đó có tất cả bao nhiêu cạnh?

    Gọi số cạnh của 1 đáy hình lăng tụ là n cạnh, nên số cạnh đáy của hình lăng trụ (2 mặt đáy ) là 2n cạnh

    Số cạnh bên là n cạnh.

    => Tổng số cạnh của lăng trụ là 3n cạnh.

    Mặt khác, ta lại có Đ + M = C + 2 (Euler)

    Nên suy ra:  2n +2024=3n+2 \Leftrightarrow n=2022

    Vậy ta tính được số cạnh của hình lăng trụ là 3.2022= 6066 (cạnh)

  • Câu 30: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 31: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 32: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 33: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 34: Vận dụng

    Cho hàm số y = \frac{{x + m}}{{x + 1}} với m là tham số thực thỏa mãn 3.\left( {\mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]} } ight) = 16. Mệnh đề nào dưới đây là đúng?

    Xét hàm số y = \frac{{x + m}}{{x + 1}} trên [1; 2] ta có:

    f'\left( x ight) = \frac{{1 - m}}{{{{\left( {x + 1} ight)}^2}}};\forall x \in \left[ {1;2} ight]

    Khi đó:

    \begin{matrix}  \mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]}  = \dfrac{{16}}{3} \hfill \\   \Rightarrow f\left( 1 ight) + f\left( 3 ight) = \dfrac{{16}}{3} \hfill \\   \Rightarrow \dfrac{{1 + m}}{2} + \dfrac{{2 + m}}{3} = \dfrac{{16}}{3} \hfill \\   \Rightarrow m = 5 \hfill \\ \end{matrix}

  • Câu 35: Nhận biết

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 36: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 37: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 38: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 39: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 40: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 41: Vận dụng

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 42: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 43: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 44: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 45: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo