Cho hàm số
có đồ thị như hình vẽ:

Tổng các giá trị nguyên của tham số
để hàm số
có
điểm cực trị bằng:
Cho hàm số có đồ thị như hình vẽ:
Tổng các giá trị nguyên của tham số để hàm số
có
điểm cực trị bằng:
Cho hàm số
có đồ thị như hình vẽ:

Tổng các giá trị nguyên của tham số
để hàm số
có
điểm cực trị bằng:
Cho hàm số có đồ thị như hình vẽ:
Tổng các giá trị nguyên của tham số để hàm số
có
điểm cực trị bằng:
Cho hàm số
có đạo hàm trên khoảng
và có bảng biến thiên như sau:

Hàm số
là hàm số nào dưới đây?
Nhận diện đồ thị hàm số bậc 4 trùng phương nên loại hàm số
Hàm số có 3 cực trị nên nên loại hàm số
.
Vì nên hàm số cần tìm là
.
Cho hàm số
. Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Theo yêu cầu bài toán:
Vậy đáp án cần tìm là .
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Hàm số nào sau đây là hàm số đồng biến trên
?
Xét hàm số ta có:
suy ra hàm số liên tục trên
.
Đồ thị hàm số
có bao nhiêu tiệm cận đứng?
Ta có:
Lại có: suy ra
là tiệm cận đứng của đồ thị hàm số
Vậy hàm số đã cho có 1 tiệm cận đứng.
Cho hàm số
liên tục trên đoạn
có đồ thị như hình vẽ:

Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Trên đoạn ta có:
và
Vậy .
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số
lần lượt là
. Tính giá trị biểu thức
?
Tập xác định
Ta có:
Khi đó:
Có tất cả bao nhiêu mặt phẳng cách đều bốn đỉnh của một tứ diện?
Có 2 loại mặt phẳng thỏa mãn đề bài là:
a) Loại 1: Mặt phẳng qua trung điểm của 3 cạnh bên có chung đỉnh. Có 4 mặt phẳng thỏa mãn loại này (vì có 4 đỉnh)

Nhận xét. Loại này ta thấy có 1 điểm nằm khác phía với 3 điểm còn lại.
b) Loại 2: Mặt phẳng qua trung điểm của cạnh ( cạnh này thuộc cặp cạnh, mỗi cặp cạnh là chéo nhau). Có mặt phẳng như thế.

Nhận xét. Loại này ta thấy có 2 điểm nằm khác phía với 2 điểm còn lại.
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Gọi A, B, C là các điểm cực trị của đồ thị hàm số
. Bán kính của đường tròn nội tiếp tam giác ABC bằng:
Ta có:
=> Đồ thị hàm số có ba điểm cực trị là A(0; 4), B(1; 3), C(-1;; 3)
Tính được
Áp dụng công thức tính bán kính đường tròn nội tiếp tam giác ABC ta có:
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Chọn hàm số có nhiều điểm cực trị nhất trong các hàm số sau?
Ta có:
Hàm số và
không có điểm cực trị (đạo hàm không đổi dấu).
Hàm số có
. Đạo hàm đổi dấu qua 1 điểm
nên hàm số
chỉ có một điểm cực trị.
Hàm số có
. Đạo hàm đổi dấu qua hai điểm
và
nên hàm số
có hai điểm cực trị.
Vậy hàm số có nhiều điểm cực trị nhất là: .
Cho hàm số
với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có: suy ra hàm số nghịch biến trên mỗi khoảng
và
Do đó hàm số không có điểm cực trị.
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Cho hàm số có đạo hàm trên
và có đồ thị như hình vẽ:
Xét hàm số . Tìm
để
.
Cho hàm số
có đồ thị là đường cong như hình vẽ:

Tìm số nghiệm của phương trình
?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Do đó hàm số nghịch biến trên từng khoảng xác định.
Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng và
”.
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số
trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta được:
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Để xét xem các lăng trụ có nội tiếp mặt cầu được hay không, ta sẽ xét các mặt đáy của lăng trụ đó xem có phải là hình nội tiếp được đường tròn không.
Nếu lăng trụ có đáy là tứ giác nội tiếp được đường tròn thì lăng trụ đó sẽ nội tiếp được mặt cầu.
Từ đây, ta sẽ xét 1 số tứ giác nội tiếp được đường tròn là: hình vuông, hình chữ nhật, hình thang cân,…
Hàm số
có bao nhiêu điểm cực trị?
Ta có: suy ra hàm số luôn nghịch biến trên
.
Vậy hàm số đã cho không có điểm cực trị.
Tìm hàm số luôn đồng biến trên từng khoảng xác định?
Xét hàm số
Tập xác định . Ta có:
Vậy hàm số đồng biến trên các khoảng .
Cho hàm số
(với
là tham số) có đồ thị
. Giả sử các điểm
là các điểm cực trị của
. Để tam giác
đều thì giá trị của tham số
nằm trong khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi phương trình có ba nghiệm phân biệt hay
có hai nghiệm khác 0
Khi đó
Đồ thị có ba điểm cực trị là
;
;
.
Ta có:
Do đó tam giác đều
Kết hợp với điều kiện .
Vậy đáp án cần tìm là .
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Biết rằng hàm số
đạt giá trị nhỏ nhất trên
tại điểm
. Khi đó giá trị biểu thức
bằng:
Ta có:
Mà khi
Suy ra .
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta có:
=> y = 0 là một tiệm cận ngang
=> y = 5 là một tiệm cận ngang
=> x = 1 là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là 3 đường