Cho đồ thị hàm số sau:

Xác định hàm số tương ứng với đồ thị đã cho?
Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc có hệ số
nên hàm số tương ứng là
.
Cho đồ thị hàm số sau:

Xác định hàm số tương ứng với đồ thị đã cho?
Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc có hệ số
nên hàm số tương ứng là
.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Hàm số
có bao nhiêu điểm cực trị?
Có nên hàm số không có cực trị.
Hàm số
đồng biến trên khoảng nào dưới đây?
Tập xác định . Ta có:
Suy ra hàm số đồng biến trên khoảng và
.
Tìm giá trị của
để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Cho hàm số
. Tìm tất cả các giá trị thực của tham số
để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng
.
Điều kiện để đồ thị hàm số có tiệm cận là
Khi đó đồ thị hàm số có:
Tiệm cận đúng: , song song với
và cắt
tại điểm
Tiệm cận ngang: song song với
và cắt
tại điểm
Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu như sau:
Suy ra hàm số nghịch biến trên khoảng và
.
Cho hàm số
đạt cực đại tại
thỏa mãn
. Khi đó:
Tập xác định
Ta có: hàm số có hai cực trị
khi và chỉ khi
Khi đó .
Mặt khác
Vậy đáp án cần tìm là .
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Hàm số có đồ thị như sau:
a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.
b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.
c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.
d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
Gọi
lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng?
Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).
Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).
Khối lập phương có 9 trục đối xứng
(Loại 1: đi qua tâm của các mặt đối diện ;
Loại 2: đi qua trung điểm các cặp cạnh đối diện).
Cho hình chóp có 20 cạnh. Tính số mặt của hình chóp là:
Giả sử hình chóp có đa giác đáy n cạnh
=> Hình chóp có (n+1) đỉnh, (n+1) mặt và 2n cạnh
Theo hệ thức Euler ta có : Số đỉnh + Số mặt = Số cạnh +2
Hàm số
đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Cho hàm số
. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số . Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Cho hình vẽ:

Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Hàm số nào sau đây không có điểm cực trị?
Các hàm số ;
;
đều có một điểm cực trị.
Xét hàm số ta có:
nên hàm số không có cực trị.
Cho hàm số y = f(x) có đạo hàm liên tục trên
. Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Đồ thị hàm số
có tiệm cận ngang là:
Tập xác định
Ta có:
Vì nên đồ thị hàm số có đường tiệm cận ngang là y = 2.
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Số đường tiệm cận ngang của đồ thị hàm số
bằng:
Ta có:
suy ra
là một tiệm cận ngang của đồ thị hàm số.
suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.
Cho hàm số
có đồ thị cắt trục
tại ba điểm phân biệt. Hỏi số cực trị của hàm số
bằng bao nhiêu?
Vì đồ thị hàm số cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:
Số điểm cực trị của hàm số là
Số nghiệm bội lẻ của phương trình là
Khi đó số điểm cực trị của hàm số là 2 + 3 = 5
Cho hàm số
có bảng biến thiên như sau:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta thấy
Tiệm cận ngang là y = 3
Tiệm cận đứng là x = -1 và x = 1
Vậy tổng các đường tiệm cận cần tìm bằng 3.
Cho hàm số
Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu![]()
Đáp án: 3,2
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Ta có:
Xét
Vậy đường tiệm cận xiên có phương trình
Khoảng cách từ điểm đến đường tiệm cận xiên là:
Hàm số
đồng biến trên nửa khoảng
khi:
Ta có:
Để hàm số đã cho đồng biến trên nửa khoảng khi đó:
Xét hàm số trên nửa khoảng
ta có:
Bảng biến thiên của hàm số trên nửa khoảng
là:
Từ bảng biến thiên suy ra
Vậy khi và chỉ khi
.
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Tìm tất cả các giá trị của tham số m để hàm số
; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.