Có bao nhiêu số nguyên
thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Có bao nhiêu số nguyên
thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hàm số
có hai điểm cực trị
. Tính độ dài đoạn thẳng
?
Ta có:
Nhận thấy phương trình có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là
Cho hàm số
có bảng xét dấu của đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số trên có tiệm cận ngang là:
Dựa vào bảng biến thiên ta có:
Suy ra tiệm cận ngang của đồ thị hàm số là .
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Giá trị trị lớn nhất của hàm số
trên đoạn
bằng
Ta có .
Do đó ,
,
.
Vậy
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu như sau:
Suy ra hàm số nghịch biến trên khoảng và
.
Đồ thị hàm số
cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Cho hàm số
có bảng biến thiên như sau:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta thấy
Tiệm cận ngang là y = 3
Tiệm cận đứng là x = -1 và x = 1
Vậy tổng các đường tiệm cận cần tìm bằng 3.
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?
Hàm trùng phương không nghịch biến trên tập xác định của nó
Với
Hàm số đã cho đồng biến trên từng khoảng xác định
Với
=> Hàm số nghịch biến trên
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số
trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta được:
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Cho hàm số
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Điểm cực đại của đồ thị hàm số là:
Điểm cực đại của đồ thị hàm số đã cho là .
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Tập xác định
Hàm số đơn điệu trên đoạn nên
Vậy đáp án cần tìm là .
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Có bao nhiêu giá trị nguyên của tham số
để phương trình
có nghiệm thuộc
?
Ta có:
Xét hàm số có
Ta có bảng biến thiên
Theo yêu cầu bài toán ta có:
Vì
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tìm giá trị của tham số
?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có:
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Cho hàm số
(với
). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Ta có:
Phương trình có tối đa 2 nghiệm
Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.
nên
là đường tiệm cận ngang.
Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định của hàm số là
Từ bảng biến thiên ta có:
Tập xác định
Ta có:
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận đứng
.
suy ra đồ thị hàm số có tiệm cận đứng
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
.
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức
. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức . Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Ta có:
Bảng biến thiên:
Mực nước lên cao nhất thì phải mất giờ.
Hay mực nước lên cao nhất là lúc 20 giờ.
Vậy phải thông báo cho dân di dời vào giờ chiều cùng ngày.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Cho khối tứ diện
. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp
và
, ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Số đường tiệm cận của đồ thị hàm số
là:
Điều kiện xác định
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
nên đồ thị hàm số có 1 tiệm cận đứng
.
Vậy đồ thị hàm số có 2 đường tiệm cận.