Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Số đường tiệm cận của đồ thị hàm số là:
Điều kiện xác định
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
nên đồ thị hàm số có 1 tiệm cận đứng
.
Vậy đồ thị hàm số có 2 đường tiệm cận.
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Đặt
Để có ba nghiệm thực phân biệt thì
có ba nghiệm thực phân biệt
thỏa mãn
Ta có:
Ta có: .
Khi đó
Vậy không có giá trị nguyên của tham số m thỏa mãn.
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Cho hàm số . Khẳng định nào sau đây đúng?
Tập xác định
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.
Cho hàm số có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số
trên
bằng:
Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số trên
bằng
.
Đường tiệm cận ngang của đồ thị hàm số có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Cho hình chóp có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp
Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:
+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.
+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.
Cho hàm số có bảng biến thiên như sau:
Hỏi hàm số đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Có bao nhiêu giá trị thực của tham số để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Hàm số đạt cực tiểu tại
Với ta được
. Hàm số đạt cực tiểu tại
(thỏa mãn yêu cầu)
Với ta được
. Hàm số đạt cực đại tại
và đạt cực tiểu tại
(không thỏa mãn)
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Hàm số nào sau đây đồng biến trên các khoảng (-∞; 2) và (2; +∞)?
Ta có:
Vậy hàm số đồng biến trên các khoảng (-∞; 2) và (2; +∞)
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Xác định giá trị lớn nhất của hàm số
Điều kiện xác định:
Đặt ta có:
Ta có:
Khi đó:
Do đó:
Xét hàm số
Ta xác được
Cho hàm số có bảng biến thiên như hình vẽ dưới đây.
Số đường tiệm cận của đồ thị hàm số là:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Tìm giá trị lớn nhất của hàm số trên khoảng
bằng:
Đặt
Khi đó:
So sánh và
ta thấy GTLN là
Tổng độ dài của tất cả các cạnh của một tứ diện đều cạnh
.
Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Cho hình chóp tam giác đều . Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
và
. Tính giá trị của biểu thức
?
Ta có:
Cho hàm số liên tục trên
và có đạo hàm
. Khẳng định nào sau đây đúng?
Ta có: do đó hàm số
nghịch biến trên
Do
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?
Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
;
Cho hình lăng trụ đứng có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.
Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Cho hình chóp đều có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.
Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Cho hàm số có bảng biến như sau:
Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:
Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
a) Do nên
là đường tiệm cận ngang của đồ thị hàm số. (*)
b) Do nên
là đường tiệm cận đứng của đồ thị hàm số. (**)
c) Từ (*) suy ra khẳng định này sai.
d) Từ (**) suy ra khẳng định này sai.
Cho hàm số . Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Cho hàm số có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:
Xét hàm . Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ là một phần của đồ thị hàm số bậc ba
.
Vị trí điểm cực đại là với đơn vị của hệ trục là
và vị trí điểm cực tiểu là
. Mặt đường chạy trên một đường thẳng có phương trình
. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 88,3 m
Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ là một phần của đồ thị hàm số bậc ba
.
Vị trí điểm cực đại là với đơn vị của hệ trục là
và vị trí điểm cực tiểu là
. Mặt đường chạy trên một đường thẳng có phương trình
. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 88,3 m
Gọi hàm số bậc ba
.
Vì đồ thị hàm số đi qua hai điểm .
Vì đồ thị hàm số đi qua hai điểm .
Vì hàm số có hai điểm cực trị
.
và
.
Gọi là điểm nằm trên hòn đảo và nối với mặt đường và
là tiếp tuyến của đồ thị hàm số song song với mặt đường.
Suy ra là tiếp điểm của
với
.
Đường thẳng có hệ số góc
.
Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm đến đường thẳng
.
.
Vì đơn vị của hệ trục là nên độ dài ngắn nhất của cây cầu là
.
Cho hàm số bậc bốn có đồ thị như hình vẽ dưới đây:
Số điểm cực trị của hàm số là:
Ta có:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:
Đồ thị của hàm số thỏa mãn bài toán.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho là:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho các hình khối sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Điểm nào sau đây thuộc đồ thị hàm số ?
Thay vào
ta được:
Vậy thuộc đồ thị hàm số
.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Tập xác định:
Ta có: => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
=> Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2
Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2
Cho khối tứ diện . Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp
và
, ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?
Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:
Đồ thị hàm số có điểm cực đại là
và một điểm cực tiểu là
. Tính giá trị biểu thức
?
Do đồ thị hàm số có một cực tiểu
nên
.
Cho hình chóp có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.
Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .