Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 2: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 3: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 4: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 5: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} + mx^{2} + (2m - 1)x -
1 đồng biến trên tập số thực?

    Ta có: y' = x^{2} + 2mx + 2m -
1

    Hàm số đồng biến trên \mathbb{R} khi

    y' \geq 0 \Leftrightarrow x^{2} +
2mx + 2m - 1

    \Leftrightarrow \Delta' \leq 0
\Leftrightarrow m^{2} - 2m + 1 \leq 0 \Leftrightarrow m = 1

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 7: Thông hiểu

    Đồ thị hàm số y = f(x) được biểu diễn trong hình vẽ như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình \left| f(x) ight| = m có đúng hai nghiệm phân biệt?

    Số nghiệm của phương trình \left| f(x)
ight| = m chính là giao điểm của hai đồ thị \left\{ \begin{matrix}
y = \left| f(x) ight| \\
y = m \\
\end{matrix} ight.

    Minh họa trực quan:

    Vậy để hàm số \left| f(x) ight| =
m có đúng hai nghiệm thì \left\lbrack \begin{matrix}
m > 5 \\
0 < m < 1 \\
\end{matrix} ight..

  • Câu 8: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 9: Thông hiểu

    Hỏi đồ thị của hàm số y = \frac{|x +
1|}{\sqrt{x^{2} + 3} - 2} có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;1 ight\}

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{|x + 1|}{\sqrt{x^{2} + 3} - 2} = 1 nên đồ thị hàm số có tiệm cận ngang là y = 1

    y = \frac{{\left| {x + 1} ight|}}{{\sqrt {{x^2} + 3}  - 2}} = \frac{{\left| {x + 1} ight|.\left( {\sqrt {{x^2} + 3}  + 2} ight)}}{{{x^2} - 1}}= \left\{ \begin{gathered}
  \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x \geqslant  - 1 \hfill \\
   - \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x <  - 1 \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 1^{+}}y = +
\infty;\lim_{x ightarrow 1^{-}}y = + \infty nên đồ thị hàm số có tiệm cận đứng là x = 1

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 10: Vận dụng

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 11: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 12: Thông hiểu

    Độ giảm huyết áp của một bệnh nhân G(x) =
0,025x^{2}(30 - x) trong đó x là số miligam thuộc được tiêm cho bệnh nhân (0 < x < 30). Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:

    Ta có: G(x) = 0,025x^{2}(30 - x)
\Rightarrow G'(x) = 1,5x - 0,075x^{2}

    \Rightarrow G'(x) = 0
\Leftrightarrow 1,5x - 0,075x^{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là x = 20(mg).

  • Câu 13: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 14: Nhận biết

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 15: Vận dụng

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 16: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 17: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Cho hàm số y = x^{4} + 2(m - 2)x +
1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m \in \lbrack -
20;20brack để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập S có bao nhiêu phần tử?

    Điều kiện để hàm số y = x^{4} + 2(m - 2)x
+ 1 có duy nhất một cực tiểu là a =
1 > 0 và phương trình y' =
0 có duy nhất một nghiệm.

    y' = 4x^{3} + 4(m - 2)x

    y' = 0 \Leftrightarrow 4x^{3} + 4(m
- 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 2 - m(*) \\
\end{matrix} ight.

    Để phương trình y' = 0 có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.

    \Leftrightarrow 2 - m \leq 0
\Leftrightarrow m \geq 2

    Mặt khác \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 2;3;....20
ight\}

    Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 19: Thông hiểu

    Xác định tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{mx + 4m - 3}{x + m} nghịch biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{mx + 4m - 3}{x + m} nghịch biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 21: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 22: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} có bảng xét dấu như sau:

    Số điểm cực trị của hàm số đã cho là:

    Dựa vào bảng xét dấu của f'(x) ta thấy f'(x) đổi dấu 4 lần và hàm số y = f(x) xác định và liên tục trên \mathbb{R}

    Suy ra hàm số có 4 điểm cực trị.

  • Câu 23: Nhận biết

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 24: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:

    a) Hàm số nghịch biến trên khoảng (−2, 0).

    b) Hàm số đồng biến trên khoảng (0; +∞) nên khẳng định đồng biến trên khoảng (−1; +∞) là sai.

    c) Hàm số đồng biến trên khoảng (0; +∞) nên nên hàm số đồng biến trên khoảng (2; +∞).

    d) Hàm số đạt cực tiểu tại x = 0 (chú ý: y = −1 gọi là giá trị cực tiểu).

  • Câu 25: Nhận biết

    Cho hình vẽ là đồ thị hàm số y = f'(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Từ đồ thị y = f'(x) ta có bảng xét dấu y = f'(x) như sau:

    Vậy hàm số đồng biến trên khoảng (0;1)

  • Câu 26: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?

    (i) Đồ thị hàm số có ba đường tiệm cận.

    (ii) Hàm số có cực tiểu tại x =
2.

    (iii) Hàm số nghịch biến trên mỗi khoảng ( - \infty; - 1);(1; + \infty).

    (iv) Hàm số xác định trên \mathbb{R}.

    Do \lim_{x ightarrow - \infty}f(x) = -
1;\lim_{x ightarrow + \infty}f(x) = 2 nên đồ thị hàm số có hai đường tiệm cận ngang; \lim_{x
ightarrow 1^{\pm}}f(x) = \pm \infty nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.

    Hàm số có cực tiểu tại x = 2 đúng nên (ii) đúng.

    Hàm số nghịch biến trên ( - \infty; -
1);(1;2) nên (iii) sai.

    Hàm số không xác định tại x = 1 nên (iv) sai.

    Vậy có 2 khẳng định sai.

  • Câu 27: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
- 3x^{2} - 9x + 5 trên đoạn \lbrack
- 2;2brack

    Tập xác định D\mathbb{= R}

    Với x \in \lbrack - 2;2brack ta có: y' = 3x^{2} - 6x - 9 \Rightarrow
y' = 0 \Leftrightarrow x = - 1

    Ta có: \left\{ \begin{matrix}
y( - 2) = 3 \\
y( - 1) = 10 \\
y(2) = - 17 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;2brack}y = -
17 khi x = 2.

  • Câu 28: Vận dụng cao

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 29: Vận dụng cao

    Cho khối tứ diện ABCD. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp (CDM)(ABN), ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

    Chia khối tứu diện

    Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:  MBND, MBNC, AMDN, AMNC

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 4)^{3};\forall
x\mathbb{\in R}. Số điểm cực đại của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 4)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Lập bảng biến thiên của hàm số

    Suy ra số điểm cực đại của hàm số là 1 điểm.

  • Câu 31: Thông hiểu

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 32: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 33: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x,\forall x \in \mathbb{R}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x \hfill \\   \Rightarrow y' = f''\left( x ight) - 2x =  - 3{x^2} + 4x + 3 \hfill \\  y' = 0 \Leftrightarrow x = \dfrac{{2 \pm \sqrt {13} }}{3} \hfill \\  y'' =  - 6x + 4 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( {\dfrac{{2 + \sqrt {13} }}{3}} ight) =  - 2\sqrt {13}  < 0} \\   {y''\left( {\dfrac{{2 - \sqrt {13} }}{3}} ight) = 2\sqrt {13}  > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị

  • Câu 34: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 35: Thông hiểu

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Đáp án là:

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Ta có

    y = \frac{2x^{2} + x}{x + 1} =
\frac{2x^{2} + 2x - x - 1 + 1}{x + 1}

    = \frac{2x(x + 1) - (x + 1) + 1}{x + 1} =
2x - 1 + \frac{1}{x + 1}.

    Do đó tiện cận xiên của đồ thị hàm số đã cho là y = 2x - 1.

    Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là A\left( \frac{1}{2};0 ight)\ ,B(0; -
1).

    Xét tam giác OAB vuông tại O, có:

    OA = \frac{1}{2};\ OB = 1

    => Diện tích của tam giác OAB

    S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}.\frac{1}{2}.1 = \frac{1}{4} = 0,25

  • Câu 36: Nhận biết

    Tìm hàm số luôn đồng biến trên từng khoảng xác định?

    Xét hàm số y = \frac{- x - 8}{x +
3}

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}. Ta có: y' = \frac{5}{\left( x + 3^{2} ight)} >
0;\forall x eq 3

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 3),( - 3; + \infty).

  • Câu 37: Thông hiểu

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 38: Vận dụng cao

    Cho hàm số f(x) = x^{3} - 3x^{2} + m^{2}
- 2m với m là tham số. Gọi S tập hợp tất cả các giá trị nguyên của tham số m thỏa mãn 3\max_{\lbrack - 3;1brack}f\left( |x| ight) +
2\min_{\lbrack - 3;1brack}f\left( |x| ight) \leq 112. Số phần tử của tập hợp S bằng:

    Ta có: f\left( |x| ight) = f\left( | -
x| ight);\forall x\mathbb{\in R}

    \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 3;1brack}f\left( |x| ight) = \max_{0;3}f(x) \\
\min_{\lbrack - 3;1brack}f\left( |x| ight) = \min_{\lbrack
0;3brack}f(x) \\
\end{matrix} ight.

    Đạo hàm f'(x) = 3x^{2} - 6x =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow f(0) = m^{2} - 2m \\
x = 2 \Rightarrow f(2) = m^{2} - 2m - 4 \\
\end{matrix} ight.f(3) =
m^{2} - 2m

    Suy ra 3\max_{\lbrack -
3;1brack}f\left( |x| ight) + 2\min_{\lbrack - 3;1brack}f\left( |x|
ight) \leq 112

    \Leftrightarrow 3\left( m^{2} - 2m
ight) + 2\left( m^{2} - 2m - 4 ight) \leq 112

    \Leftrightarrow m^{2} - 2m - 24 \leq 0
\Leftrightarrow - 4 \leq m \leq 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3;...;5;6 ight\}

    Vậy có tất cả 11 giá trị nguyên của tham số m.

  • Câu 39: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 40: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} + mx -
1 đạt cực đại tại x_{1};x_{2} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} = 3. Khi đó:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + m hàm số có hai cực trị x_{1};x_{2} khi và chỉ khi \Delta > 0 \Leftrightarrow
9 - 3m > 0 \Leftrightarrow m < 3

    Khi đó \left\{ \begin{matrix}x_{1} + x_{2} = 2 \\x_{1}.x_{2} = \dfrac{m}{3} \\\end{matrix} ight..

    Mặt khác {x_{1}}^{2} + {x_{2}}^{2} = 3
\Leftrightarrow \left( x_{1} + x_{2} ight)^{2} - 2x_{1}.x_{2} =
3

    \Leftrightarrow 2^{2} - 2.\frac{m}{3} =
3 \Leftrightarrow m = \frac{3}{2}(tm)

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 41: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 42: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 43: Thông hiểu

    Hỏi đồ thị hàm số y = \frac{x^{2} -
\sqrt{2 - x}}{x - 1} - x có tất cả bao nhiêu đường tiệm cận?

    Tập xác định D = ( -
\infty;2)\backslash\left\{ 1 ight\}

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\frac{x^{2} - \sqrt{2 - x}}{x - 1} - x ight) = \lim_{x ightarrow -
\infty}\frac{x^{2} - \sqrt{2 - x}}{x - 1}

    = \lim_{x ightarrow -\infty}\dfrac{x\left( 1 + \sqrt{\dfrac{2}{x^{2}} - \dfrac{1}{x}}ight)}{x\left( 1 - \dfrac{1}{x} ight)} = \lim_{x ightarrow -\infty}\dfrac{1 + \sqrt{\dfrac{2}{x^{2}} - \dfrac{1}{x}}}{1 - \dfrac{1}{x}}= 1

    Suy ra y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\left( \frac{x^{2}
- \sqrt{2 - x}}{x - 1} - x ight) = \lim_{x ightarrow 1}\frac{x^{2} -
\sqrt{2 - x}}{x - 1}

    = \lim_{x ightarrow 1}\frac{x^{2} - 2
+ x}{(x - 1)\left( x + \sqrt{2 - x} ight)} = \lim_{x ightarrow
1}\frac{x + 2}{x + \sqrt{2 - x}} = \frac{3}{2}

    Suy ra hàm số không có tiệm cận đứng

    Vậy hàm số có 1 đường tiệm cận.

  • Câu 44: Vận dụng

    Cho hàm số y = \frac{{x + m}}{{x + 1}} với m là tham số thực thỏa mãn 3.\left( {\mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]} } ight) = 16. Mệnh đề nào dưới đây là đúng?

    Xét hàm số y = \frac{{x + m}}{{x + 1}} trên [1; 2] ta có:

    f'\left( x ight) = \frac{{1 - m}}{{{{\left( {x + 1} ight)}^2}}};\forall x \in \left[ {1;2} ight]

    Khi đó:

    \begin{matrix}  \mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]}  = \dfrac{{16}}{3} \hfill \\   \Rightarrow f\left( 1 ight) + f\left( 3 ight) = \dfrac{{16}}{3} \hfill \\   \Rightarrow \dfrac{{1 + m}}{2} + \dfrac{{2 + m}}{3} = \dfrac{{16}}{3} \hfill \\   \Rightarrow m = 5 \hfill \\ \end{matrix}

  • Câu 45: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 38 lượt xem
Sắp xếp theo