Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Quan sát hình vẽ sau:

Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Định tất cả các giá trị thực của
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Số mặt phẳng đối xứng của hình tứ diện đều là:
Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Hàm số nào sau đây đồng biến trên
?
Hàm số có
Cho hàm số
có đạo hàm
. Số điểm cực trị của hàm số đã cho là:
Ta có:
Vì là nghiệm bội lẻ và
là nghiệm bội chẵn nên hàm số có hai điểm cực trị.
Giá trị nhỏ nhất của hàm số
trên đoạn
là:
Ta có:
Lại có:
Cho hàm số
có bảng biến thiên như sau:

Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.
Từ bảng biến thiên ta có: .
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Mỗi đợt xuất khẩu gạo của tỉnh
kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh
ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh
có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh
có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh
có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
Mỗi đợt xuất khẩu gạo của tỉnh kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
a) Đúng.
b) Sai.
Ta có
Bảng biến thiên:

Vậy ngày thứ 18 của tỉnh có lượng gạo xuất khẩu cao nhất là 265060.
c) Sai. Ta có ngày thứ 60 tinh có lượng gạo xuất khẩu thấp nhất là 143344.
d) Đúng. Ta có ngày thứ 60 tỉnh có lượng gạo xuất khẩu thấp nhất là 143344.
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số bậc ba có đồ thị như hình vẽ:

Số nghiệm thực của phương trình
là:
Ta có:
Quan sát đồ thị ta thấy cắt đồ thị hàm số
tại ba điểm phân biệt
=> Phương trình có ba nghiệm thực phân biệt.
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng nào sau đây?
Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng .
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Đường thẳng
là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
?
Ta có:
suy ra
là tiệm cận ngang của hàm số.
suy ra
là hai tiệm cận ngang của hàm số.
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Số các giá trị nguyên của tham số
để hàm số
có giá trị nhỏ nhất trên đoạn
thuộc khoảng
là:
Xét hàm số trên
ta có:
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Gọi
là ba điểm cực trị của đồ thị hàm số
. Tính diện tích tam giác
?
Ta có:
Ba điểm cực trị của hàm số là
Tam giác có điểm
, hai điểm
đối xứng nhau qua trục tung nên tam giác
cân tại
. Trung điểm
của
thuộc trục
và là chân đường cao hạ từ
của tam giác, suy ra:
Vậy diện tích tam giác ABC bằng .
Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Số tiệm cận của đồ thị hàm số
là:
Ta có:
Suy ra là tiệm cận ngang.
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Cho hàm số
với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
. Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho khối tứ diện
. Lấy điểm M nằm giữa A và B, điểm N nằm giữa C và D. Bằng hai mp
và
, ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?

Dựa vào hình vẽ, ta thấy hai mặt phẳng (CDM) và (ABN) chia khối tứ diện ABCD thành bốn khối tứ diện:
Bác H cần xây dựng một bể nước mưa có thể tích
dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Phương trình
có bao nhiêu nghiệm?
Gọi ta có:
Suy ra
Ta có bảng biến thiên
Mà từ bảng biến thiên ta thấy phương trình có ba nghiệm.
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Biết đường tiệm cận xiên của đồ thị hàm số
cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Biết đường tiệm cận xiên của đồ thị hàm số cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Ta có
.
Do đó tiện cận xiên của đồ thị hàm số đã cho là .
Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là .
Xét tam giác vuông tại
, có:
=> Diện tích của tam giác là
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có:
Hàm số đồng biến trên khoảng khi và chỉ khi
Vậy đáp án cần tìm là .