Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó:
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang?
Ta có: nên tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình
.
Cho hàm số
có bảng xét dấu như sau:

Hỏi hàm số
nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Tâm đối xứng của đồ thị hàm số
là điểm nào sau đây?
Đồ thị hàm số có tiệm cận đứng
, tiệm cận ngang
Suy ra tâm đối xứng là .
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Hàm số đã cho nghịch biến trên khoảng khi
nằm trong khoảng hai nghiệm
Vậy đáp án cần tìm là .
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Do y’ không đổi dấu nên hàm số không có cực trị.
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Biết đường tiệm cận xiên của đồ thị hàm số
cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Biết đường tiệm cận xiên của đồ thị hàm số cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Ta có
.
Do đó tiện cận xiên của đồ thị hàm số đã cho là .
Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là .
Xét tam giác vuông tại
, có:
=> Diện tích của tam giác là
Hình lăng trụ có thể có số cạnh nào sau đây?
Giả sử hình lăng trụ có đáy là – giác.
Khi đó, số cạnh của hình lăng trụ là .
Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?
Ta có hàm số y = ax, y = logax đồng biến trên tập xác định nếu a > 0
Do đó hàm số y = log3x đồng biến trên (1; +∞)
Biết rằng đồ thị hàm số
có hai điểm cực trị là
và
. Khi đó giá trị của hàm số
tại
bằng:
Ta có:
Đồ thị hàm số có hai điểm cực trị là
và
nên ta có
Suy ra .
Cho hàm số ![]()
Ta có: có hai nghiệm phân biệt là -2 và 3
=> f’(x) < 0 =>
Vậy hàm số nghịch biến trên khoảng (-2; 3)
Biết rằng giá trị nhỏ nhất của hàm số
trên đoạn
bằng
. mệnh đề nào sau đây đúng?
Ta có:
Suy ra hàm số luôn nghịch biến trên các khoảng và
Vì hàm số có giá trị nhỏ nhất trên đoạn nên
Hàm số có giá trị nhỏ nhất trên đoạn bằng
nên suy ra
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập
có bao nhiêu phần tử?
Điều kiện để hàm số có duy nhất một cực tiểu là
và phương trình
có duy nhất một nghiệm.
Để phương trình có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.
Mặt khác
Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đồ thị hàm số
có điểm cực đại là
và một điểm cực tiểu là
. Tính giá trị biểu thức
?
Do đồ thị hàm số có một cực tiểu
nên
.
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Tập hợp tất cả các giá trị của tham số
để đồ thị hàm số
có đúng hai đường tiệm cận?
Ta có:
Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang . Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.
Tam thức có
Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:
Vậy .
Một chất điểm chuyển động theo phương trình
trong đó
tính bằng giây
và
tính bằng mét
. Xét tính đúng sai của các khẳng định sau.
a)
. Sai||Đúng
b) Vận tốc của chất điểm tại giây thứ 2 là
Đúng||Sai
c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là
Sai||Đúng
d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm
Đúng||Sai
Một chất điểm chuyển động theo phương trình trong đó
tính bằng giây
và
tính bằng mét
. Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) Vận tốc của chất điểm tại giây thứ 2 là Đúng||Sai
c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là Sai||Đúng
d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm Đúng||Sai
a) nên a sai.
b) Ta có: nên b) đúng
c) Ta có: nên c) sai
Vận tốc .
Vậy khi
.
Vận tốc chuyển động đạt giá trị lớn nhất khi nên d) đúng.
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

Số điểm cực trị của hàm số
là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao
m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

Đáp án: 4
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?
Đáp án: 4
Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.
Vì vậy chiều dài của ống thép phải thỏa mãn
,
Ta có
Trong đó
Xét hàm số
Vì vậy
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của biểu thức
là:
Điều kiện xác định:
Xét hàm số trên
ta có:
Phương trình
Ta lại có:
=>
Gọi giá trị nhỏ nhất của hàm số
trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Vì tập xác định của hàm số không chứa và
nên đồ thị hàm số không có đường tiệm cận ngang.
Lại có: . Vậy đồ thị hàm số có 1 đường tiệm cận đứng
.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số
trên đoạn [0; 4] bằng -1?
Ta có:
Với ta được hàm số f(x) đồng biến trên khoảng (0; 4)
=>
Theo bài ra ta có:
Kết hợp với điều kiện => m = -3 là giá trị cần tìm
Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.
Đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
Hàm số xác định
Tập xác định
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Suy ra là tiệm cận ngang của đồ thị hàm số
Vậy đồ thị hàm số có 2 đường tiệm cận.