Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 2: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 3: Vận dụng

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Tìm điều kiện của tham số m để đồ thị hàm số y = mx^{4} + (2m - 1)x^{2} + m
- 2 chỉ có một điểm cực đại mà không có điểm cực tiểu?

    Xét m = 0 khi đó y = - x^{2} - 2 là hàm số bậc hai có a = -1 < 0 nên đồ thị của hàm số là parabol có bề lõm hướng xuống nên có 1 cực đại mà không có cực tiểu. Suy ra m =
0 thỏa mãn.

    Xét m eq 0 khi đó y = mx^{4} + (2m - 1)x^{2} + m - 2 là hàm số bậc 4 dạng trùng phươn

    Để đồ thị hàm số có một cực đại mà không có cực tiểu thì

    \left\{ \begin{gathered}
  m < 0 \hfill \\
  m\left( {2m - 1} ight) \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m < 0 \hfill \\
  \left[ \begin{gathered}
  m \leqslant 0 \hfill \\
  m \geqslant \frac{1}{2} \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m < 0

    Vậy đáp án cần tìm là m \leq
0.

  • Câu 5: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 6: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 7: Nhận biết

    Tất cả các giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx +
5 có hai điểm cực trị?

    Ta có: y' = 3x^{2} - 6x +
m

    Để hàm số có hai điểm cực trị thì y'
= 0 có hai nghiệm phân biệt khi đó

    \Delta'_{y'} = 9 - 3m > 0
\Leftrightarrow m < 3

  • Câu 8: Thông hiểu

    Tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 1}{x^{2} + 4x
+ m} có duy nhất một đường tiệm cận là:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 0 nên đồ thị hàm số luôn có một đường tiệm cận ngang là y =
0.

    Vậy để đồ thị hàm số y = \frac{x +
1}{x^{2} + 4x + m} có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình x^{2} + 4x + m vô nghiệm

    \Leftrightarrow \Delta' < 0 \Leftrightarrow
4 - m < 0 \Leftrightarrow m > 4

  • Câu 9: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hỏi hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào dưới đây?

    Theo đồ thị hàm số ta có hàm số y =
f(x) đồng biến trên khoảng ( -
\infty;0)(2; + \infty) khi đó:

    \Leftrightarrow f'(x) \geq 0;\forall
x \in ( - \infty;0) \cup (2; + \infty)

    Mặt khác y = - 3f(x - 2) \Leftrightarrow
y' = - 3f'(x - 2)

    Do hàm số y = - 3f(x - 2) nghịch biến nên

    \Leftrightarrow y' \leq 0
\Leftrightarrow - 3f'(x - 2) \leq 0

    \Leftrightarrow f'(x - 2) \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x - 2 \leq 0 \\
x - 2 \geq 2 \\
\end{matrix} ight.

    \Leftrightarrow x \in ( -
\infty;2brack \cup \lbrack 4; + \infty)

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 10: Nhận biết

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{x + 1}{x^{2} - 4} có phương trình là:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x + 1}{x^{2} - 4} = 0

    Vậy đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 11: Thông hiểu

    Xác định số giá trị nguyên của tham số m để hàm số y = \frac{mx - 2}{- 2x +m} nghịch biến trên khoảng \left(\frac{1}{2}; + \infty ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số giá trị nguyên của tham số m để hàm số y = \frac{mx - 2}{- 2x +m} nghịch biến trên khoảng \left(\frac{1}{2}; + \infty ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết

    Trong các hàm số sau đây, hàm số nào không nghịch biến trên \mathbb{R}?

    Với y =  - \frac{1}{{{x^2} + 1}} \Rightarrow y' = \frac{{2x}}{{{{\left( {{x^2} + 1} ight)}^2}}}

    y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên \mathbb{R}

  • Câu 13: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 15: Nhận biết

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 16: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 17: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 18: Vận dụng cao

    Cho hàm số y = f\left( x ight) có bảng biến như sau:

    Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm

    Tìm tất cả các giá trị của tham số m để bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có một nghiệm?

    Đặt t = \sqrt {x + 1}  + 1 \Rightarrow t \geqslant 1

    Khi đó bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m trở thành f\left( t ight) \leqslant m{\text{ }}\left( * ight)

    Bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có nghiệm khi bất phương trình f\left( t ight) \leqslant m có nghiệm t \geqslant 1

    \Leftrightarrow m \geqslant \mathop {\min \left( t ight)}\limits_{t \geqslant 1}  \Leftrightarrow m \geqslant  - 4

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) thỏa mãn f'(x) = x^{2}(x - 1);\forall
x\mathbb{\in R}. Mệnh đề nào sau đây đúng?

    Từ biểu thức của f'(x) ta có bảng xét dấu như sau:

    Dễ thấy hàm số đạt cực tiểu tại x =
1 nên mệnh đề “y = f(x) đạt cực tiểu tại x = 1” đúng và mệnh đề “y = f(x) đạt cực tiểu tại x = 0” sai.

    Hàm số có đúng một điểm cực trị nên mệnh đề “y = f(x) không có cực trị” sai và “y = f(x) có hai điểm cực trị” sai.

  • Câu 20: Nhận biết

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 21: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 22: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 23: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 5;5brack để đồ thị hàm số y = \frac{x + 1}{x^{3} - 3x^{2} - m} có đúng một tiệm cận đứng?

    Đồ thị hàm số y = \frac{x + 1}{x^{3} -
3x^{2} - m} có đúng một tiệm cận đứng khi và chỉ khi phương trình x^{3} - 3x^{2} - m = 0 có đúng một nghiệm x eq - 1

    Ta có: x^{3} - 3x^{2} - m = 0
\Leftrightarrow x^{3} - 3x^{2} = m

    Xét hàm số x^{3} - 3x^{2} = g(x) ta có: g'(x) = 3x^{2} - 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \left\lbrack
\begin{matrix}
m > 0 \\
m < - 4 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 5;5brack \\
\end{matrix} ight. nên m \in
\left\{ - 5;1;2;3;4;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 24: Thông hiểu

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 26: Vận dụng

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?

    Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là: \frac{{{a^2}\sqrt 3 }}{4}

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng: 4.\frac{{{a^2}\sqrt 3 }}{4} ={a^2}\sqrt 3

  • Câu 27: Thông hiểu

    Cho hàm số y = \frac{{x + 2}}{{x - 3}}. Khẳng định nào sau đây sai?

    Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1

    Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị

    => A, C, D đúng và B sai

  • Câu 28: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 29: Vận dụng cao

    Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?

     

    Gọi số cạnh đáy là n với  (n \in {\mathbb{N} ^*}) \Rightarrow Đáy của chóp là n – giác.

    Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.

    Suy ra hình chóp có tổng số cạnh là 2n.

    Theo đề bài, hình chóp có 22 cạnh nên ta được 2n =22 \Rightarrow n =11(TMĐK)

    Do đó, hình chóp có đáy là 11 – giác.

    Do đó chóp có 11 mặt bên cộng 1 đáy.

    Vậy hình chóp có tổng 12 mặt.

  • Câu 30: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 31: Nhận biết

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 32: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 33: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 34: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 35: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 36: Nhận biết

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 37: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 38: Vận dụng

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 39: Vận dụng cao

    Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

    Tìm các điểm cực trị của hàm số

    Số điểm cực trị của hàm số h\left( x ight) = {f^2}\left( x ight) + {g^2}\left( x ight) - 2f\left( x ight).g\left( x ight) là:

    Ta có:

    \begin{matrix}  h\left( x ight) = {\left[ {f\left( x ight) - g\left( x ight)} ight]^2} \hfill \\   \Rightarrow h'\left( x ight) = 2.\left[ {f\left( x ight) - g\left( x ight)} ight]\left[ {f'\left( x ight) - g'\left( x ight)} ight] \hfill \\  h'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) - g\left( x ight) = 0\left( * ight)} \\   {f'\left( x ight) - g'\left( x ight) = 0\left( {**} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này

    => Các nghiệm trên là nghiệm bội lẻ của (*)

    Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4

    => Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)

    => h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.

  • Câu 40: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 41: Nhận biết

    Cho hàm số y = {x^4} - 2{x^2} + 1. Xét các mệnh đề sau, những những mệnh đề nào đúng?

    Ta có: y' = 4{x^3} - 4x

    \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0 \Rightarrow y = 1} \\   {x = 1 \Rightarrow y = 0} \\   {x =  - 1 \Rightarrow y = 0} \end{array}} ight.

    Ta có bảng xét dấu như sau:

    Chọn mệnh đề đúng

    Quan sát bảng xét dấu ta thấy:

    - Hàm số có 3 điểm cực trị

    - Hàm số đồng biến trên khoảng (-1; 0), (1; +∞) và nghịch biến trên khoảng (-∞; -1), (0; 1)

  • Câu 42: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận đứng là:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow - 1^{-}}f(x) = +
\infty;\lim_{x ightarrow - 1^{+}}f(x) = - \infty

    Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng x = - 1

  • Câu 43: Thông hiểu

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Ta có:

    y' = x^{2} - 2mx + m^{2} - 4;\forall
x\mathbb{\in R}

    Do hàm số đạt cực đại tại x = 3 nên y'(3) = 0 \Leftrightarrow m^{2} - 6m + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 1;y' = x^{2} - 2x - 3;y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng xét dấu y’ như sau:

    Với m = 5;y' = x^{2} - 10x +
21;y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 7 \\
\end{matrix} ight.

    Bảng xét dấu y’ như sau:

    Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3

    Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.

  • Câu 44: Vận dụng cao

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 45: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo