Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

    Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số a > 0 nên hàm số cần tìm là y = x^{3} - 3x - 1.

  • Câu 2: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 3: Vận dụng

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 4: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 5: Thông hiểu

    Số các giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - x^{2} - 3x + 2m + 7 có giá trị nhỏ nhất trên đoạn \lbrack 2;4brack thuộc khoảng ( - 5;8) là:

    Xét hàm số y = \frac{1}{3}x^{3} - x^{2} -
3x + 2m + 7 trên \lbrack
2;4brack ta có:

    y' = x^{2} - 2x - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}y(2) = - \dfrac{1}{3} + 2m \\y(4) = \dfrac{1}{3} + 2m \\y(3) = - 2 + 2m \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}y = - 2 + 2m\in ( - 5;8)

    \Leftrightarrow - 5 < - 2 + 2m < 8
\Leftrightarrow - 3 < 2m < 10 \Leftrightarrow - \frac{3}{2} < m
< 5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 6: Thông hiểu

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    a) Ta có:

    f'(x) = \frac{\left( 2x^{2} + 2x + 5
ight)'.(2x + 1) - (2x + 1)'\left( 2x^{2} + 2x + 5 ight)}{(2x
+ 1)^{2}}

    = \frac{4\left( x^{2} + x - 2
ight)}{(2x + 1)^{2}}

    b) f'(x) = 0 \Leftrightarrow
\frac{4\left( x^{2} + x - 2 ight)}{(2x + 1)^{2}} = 0

    \Leftrightarrow x^{2} + x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Thay vào hàm số, ta tính được toạ độ các điểm cực trị là (−2; −3) và (1; 3)

    c) Điều kiện xác định: x eq -
\frac{1}{2}

    \lim_{x ightarrow \left( - \frac{1}{2}
ight)^{+}}f(x) = + \inftynên x =
- \frac{1}{2} là tiệm cận đứng.

    d) y = f(x) = \frac{2x^{2} + 2x + 5}{2x +
1} = x + \frac{1}{2} + \frac{9}{2(2x + 1)}

    Suy ra đồ thị có đường tiệm cận xiên là y
= x + \frac{1}{2}.

  • Câu 7: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 9: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 10: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 11: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 12: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 13: Vận dụng cao

    Một hình lăng trụ có 2024 mặt. Hỏi hình lăng trụ đó có tất cả bao nhiêu cạnh?

    Gọi số cạnh của 1 đáy hình lăng tụ là n cạnh, nên số cạnh đáy của hình lăng trụ (2 mặt đáy ) là 2n cạnh

    Số cạnh bên là n cạnh.

    => Tổng số cạnh của lăng trụ là 3n cạnh.

    Mặt khác, ta lại có Đ + M = C + 2 (Euler)

    Nên suy ra:  2n +2024=3n+2 \Leftrightarrow n=2022

    Vậy ta tính được số cạnh của hình lăng trụ là 3.2022= 6066 (cạnh)

  • Câu 14: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 15: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Số đường tiệm cận ngang: 1

    Số đường tiệm cận đứng: 1

    Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.

  • Câu 16: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 17: Vận dụng cao

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 18: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 20: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 21: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 22: Nhận biết

    Cho đồ thị hàm số như sau:

    Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:

    Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là x = -
1;y = 1.

  • Câu 23: Vận dụng

    Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?

     Có 9 mặt đối xứng (như hình vẽ sau):

    Hình lập phương

  • Câu 24: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 25: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm f'(x) như sau:

    Hàm số f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.

  • Câu 26: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +cx + d;(a eq 0) có đồ thị như sau:

    Hàm số y = \left| f(x) ight| có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +cx + d;(a eq 0) có đồ thị như sau:

    Hàm số y = \left| f(x) ight| có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Thông hiểu

    Cho hàm số y = {x^4} - 2{x^2} + 1 có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:

    Ta có: y' = 4{x^3} - 4x

    Tọa độ các điểm cực trị của đồ thị hàm số là A\left( {0;1} ight),B\left( { - 1;0} ight),C\left( {1;0} ight)

    \begin{matrix}  \overrightarrow {AB}  = \left( { - 1; - 1} ight),\overrightarrow {AC}  = \left( {1; - 1} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AB} .\overrightarrow {AC}  = 0} \\   {AB = AC = \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    => Tam giác ABC vuông cân tại A => S = \frac{1}{2}AB.AC = 1

  • Câu 28: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 29: Thông hiểu

    Cho hàm số y = - x^{3} - mx^{2} + (4m +
9)x + 5. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên \mathbb{R}?

    Ta có: y' = - 3x^{2} - 2mx + 4m +
9

    Hàm số đã cho nghịch biến trên \mathbb{R} khi và chỉ khi \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
m^{2} + 3(4m + 9) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow m^{2} + 12m + 27 \leq 0
\Leftrightarrow m \in \lbrack - 9; - 3brack

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 9; - 8;...; - 3 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 30: Thông hiểu

    Một chất điểm chuyển động với vận tốc được cho bởi công thức v(t) = - t^{2} + 4t + 2 với t (giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?

    Ta có: v(t) = - t^{2} + 4t + 2 với t > 0.

    v'(t) = - 2t + 4

    v'(t) = 0 \Leftrightarrow - 2t + 4 =
0 \Leftrightarrow t = 2 (thỏa mãn).

    Bảng biến thiên

    Dựa vào bảng biến thiên, tại thời điểm t
= 2 giây thì vận tốc của chất điểm là lớn nhất.

  • Câu 31: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 32: Nhận biết

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 33: Thông hiểu

    Cho hàm số y = \frac{2x + 1}{x -
2} có đồ thị là (C). Số điểm thuộc (C) có hoành độ và tung độ đều là các số nguyên là

    Ta có:

    y = \frac{2x + 1}{x - 2} = 2 +
\frac{5}{x - 2}(C)

    Gọi M\left( x_{0};y_{0} ight) \in
(C);\left( x_{0};y_{0}\mathbb{\in Z} ight)

    \Rightarrow \left\{ \begin{matrix}x_{0}\in\mathbb{ Z} \\y_{0} = 2 + \dfrac{5}{x_{0} - 2}\in\mathbb{ Z} \\\end{matrix} ight.\  \Rightarrow x_{0} - 2 \in \left\{ \pm 1; \pm 5ight\}

    \Rightarrow \left\lbrack \begin{matrix}
x_{0} - 2 = 1 \\
x_{0} - 2 = - 1 \\
x_{0} - 2 = 5 \\
x_{0} - 2 = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}
x_{0} = 3 \Rightarrow y_{0} = 7(tm) \\
x_{0} = 1 \Rightarrow y_{0} = - 3(tm) \\
x_{0} = 7 \Rightarrow y_{0} = 3(tm) \\
x_{0} = - 3 \Rightarrow y_{0} = 1(tm) \\
\end{matrix} ight.

    Vậy có 4 điểm thỏa mãn yêu cầu.

  • Câu 34: Nhận biết

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 35: Vận dụng

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 36: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 37: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 38: Nhận biết

    Cho hàm số f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 1} ight){\left( {x + 2} ight)^5},\forall x \in \mathbb{R}. Số cực trị của hàm số đã cho là

    Xét phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 2} \end{array}} ight.

    Ta có bảng xét dấu:

    Xác định số điểm cực trị của hàm số

    Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1

    => Hàm số có hai điểm cực trị

  • Câu 39: Vận dụng cao

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 41: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 42: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 43: Thông hiểu

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 44: Nhận biết

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 45: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x - 1}}{x^{2} - 2x} là:

    Điều kiện xác định x \geq 1;x eq
2

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x - 1}}{x^{2} - 2x} =
0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1}}{x^{2} - 2x} = + \infty nên đồ thị hàm số có 1 tiệm cận đứng x =
2.

    Vậy đồ thị hàm số có 2 đường tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo