Đồ thị hàm số
là hình nào trong 4 hình dưới đây?

Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Đồ thị hàm số
là hình nào trong 4 hình dưới đây?

Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Cho hàm số
có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Đợt xuất khẩu gạo của tính
kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ
được xác định bởi công thức
. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?
Xét hàm số với
.
Ta có:
Lại có: .
Do đó: .
Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.
Có thể chia một hình lập phương thành bao nhiêu khối tứ diện bằng nhau?

Lần lượt dùng mặt phẳng (BDD'B') ta chia khối lập phương thành hai khối lăng trụ ABD.A'B'D' và BCD,B'C'D'.
+) Với khối ABD.A'B'D' ta lần lượt dùng các mặt phẳng (AB'D') và (AB'D) chia thành ba khối tứ diện bằng nhau.
+) Tương tự với khối BCD.B'C'D'
Vậy có tất cả 6 khối tứ diện bằng nhau.
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]
Từ đồ thị ta có: f’(x) = 0 =>
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

Cho x, y là các số thực dương thỏa mãn điều kiện
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức
bằng:
Ta có:
Lại có:
Từ đó
Xét hàm số
=> Hàm số đồng biến trên
=>
=>
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Cho hàm số
với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Cho hàm số
có bảng biến thiên như sau:

Xác định hàm số
?
Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba
Vì nên đáp án là
.
Cho hàm số
với
là tham số. Tìm giá trị của
để đường tiệm cận ngang của đồ thị hàm số đi qua điểm
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
Do
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Cho hàm số f(x) có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có
=> Đồ thị hàm số đường tiệm cận ngang là y = 2
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số
. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số . Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số
có đồ thị như hình vẽ như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên .
Đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
Hàm số xác định
Tập xác định
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Suy ra là tiệm cận ngang của đồ thị hàm số
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị của tham số
để hàm số đạt cực đại tại
?
Ta có:
Điều kiện cần: Hàm số đã cho có đạo hàm tại
Do đó hàm số đạt cực đại tại
Điều kiện đủ:
Với hàm số trở thành
Ta có:
Do đó hàm số không có cực trị.
Với hàm số trở thành
Ta có:
Bảng biến thiên
Suy ra hàm số đạt cực đại tại suy ra
thỏa mãn.
Vậy có duy nhất một giá trị của m thỏa mãn yêu cầu.
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình
nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Cho hàm số
liên tục trên
và có bảng xét dấu
như sau:

Kết luận nào sau đây đúng?
Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại .
Tại ta thấy
đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại
.
Tại ta thấy
đổi dấu từ dương sang âm nên hàm số đạt cực đại tại
.
Đường cong ở hình dưới đây là đồ thị của hàm số nào?

Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng
Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I)
; (II)
; (III)
(I) Tập xác định
=> (I) không thỏa mãn
(II) Tập xác định
Bảng xét dấu

=> (II) thỏa mãn
(III) Tập xác định
=> Hàm số nghịch biến trên tập số thực
=> (III) không thỏa mãn
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tìm giá trị của tham số
?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có:
Cho hàm số
có bảng biến thiên như sau:

Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Cho hàm số
. Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.