Đồ thị của hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Đồ thị của hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Cho hàm số bậc ba
có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Có bao nhiêu giá trị tham số
để hàm số
có điểm cực đại là
?
Tập xác định
Ta có: . Để hàm số đạt cực đại tại
thì
Lúc này nên hàm số đạt cực đại tại
Vậy có hai giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Cho hàm số
xác định trên tập số thực và có bảng xét dấu của đạo hàm như sau:

Hàm số có bao nhiêu điểm cực trị?
Ta có:
Hàm số xác định trên và bảng xét dấu đã cho ta suy ra bảng biến thiên:
Từ đó suy ra hàm số có bốn điểm cực trị.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Cho hàm số
đạt cực đại tại
thỏa mãn
. Khi đó:
Tập xác định
Ta có: hàm số có hai cực trị
khi và chỉ khi
Khi đó .
Mặt khác
Vậy đáp án cần tìm là .
Số nào sau đây là điểm cực đại của hàm số
?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có điểm cực đại của hàm số đã cho là
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Hình lăng trụ có thể có số cạnh nào sau đây?
Giả sử hình lăng trụ có đáy là – giác.
Khi đó, số cạnh của hình lăng trụ là .
Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.
Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho hàm số
với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hàm số
có đồ thị như hình vẽ.

Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:
Dựa vào đồ thị hàm số ta có: .
Do đó, đồ thị hàm số có đường tiệm cận ngang là
.
Cho hình vẽ:

Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số
có đạo hàm trên
và
biết
. Khẳng định nào sau đây có thể xảy ra.
Do nên hàm số
nghịch biến trên
.
Khi đó ta có:
sai
sai
sai
Do đó, đúng.
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Biết rằng hàm số
đạt giá trị nhỏ nhất trên
tại điểm
. Khi đó giá trị biểu thức
bằng:
Ta có:
Mà khi
Suy ra .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Ta có:
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra đồ thị hàm số có tiệm cận ngang là
.
Vậy đồ thị hàm số có hai đường tiệm cận.
Cho hàm số
với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm giá trị của tham số
để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

Số điểm cực trị của hàm số
là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Cho hình vẽ sau:

Đường cong trong hình vẽ là đồ thị của hàm số có dạng
. Mệnh đề nào dưới đây đúng?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng và
suy ra
.
Cho hàm số
có bảng xét dấu đạo hàm như hình vẽ:

Hàm số
nghịch biến trên khoảng:
Ta có:
. Khi đó ta có bảng biến thiên:
Hàm số nghịch biến trên khoảng
.
Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.
Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:
f’(x) = -3x2 – 6x
f’(x) = 0 =>
Ta tính được
Cho hàm số
có đồ thị như hình vẽ bên dưới. Trong các hệ số
,
,
có bao nhiêu số dương?

Tiệm cận đứng:
Tiệm cận ngang:
Đồ thị cắt trục hoành tại nên
hay
Vậy trong các hệ số ,
,
có có hai số dương là