Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Xác định các giá trị của tham số
để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Gọi
lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng?
Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).
Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).
Khối lập phương có 9 trục đối xứng
(Loại 1: đi qua tâm của các mặt đối diện ;
Loại 2: đi qua trung điểm các cặp cạnh đối diện).
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Đạo hàm của hàm số đã cho là
. Đúng||Sai
b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai
c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là:
. Đúng||Sai
d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai
c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: . Đúng||Sai
d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là . Đúng||Sai
a) Ta có:
b)
Thay vào hàm số, ta tính được toạ độ các điểm cực trị là (−2; −3) và (1; 3)
c) Điều kiện xác định:
nên
là tiệm cận đứng.
d)
Suy ra đồ thị có đường tiệm cận xiên là .
Để uốn
thanh kim loại thành hình như sau:

Gọi
bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Để uốn thanh kim loại thành hình như sau:
Gọi bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Tìm giá trị lớn nhất của hàm số
trên khoảng
bằng:
Đặt
Khi đó:
So sánh và
ta thấy GTLN là
Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I)
; (II)
; (III)
(I) Tập xác định
=> (I) không thỏa mãn
(II) Tập xác định
Bảng xét dấu

=> (II) thỏa mãn
(III) Tập xác định
=> Hàm số nghịch biến trên tập số thực
=> (III) không thỏa mãn
Số các giá trị nguyên của tham số
để hàm số
có giá trị nhỏ nhất trên đoạn
thuộc khoảng
là:
Xét hàm số trên
ta có:
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Vì tập xác định của hàm số không chứa và
nên đồ thị hàm số không có đường tiệm cận ngang.
Lại có: . Vậy đồ thị hàm số có 1 đường tiệm cận đứng
.
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Từ biểu thức của ta có bảng xét dấu như sau:
Dễ thấy hàm số đạt cực tiểu tại nên mệnh đề “
đạt cực tiểu tại
” đúng và mệnh đề “
đạt cực tiểu tại
” sai.
Hàm số có đúng một điểm cực trị nên mệnh đề “ không có cực trị” sai và “
có hai điểm cực trị” sai.
Cho hàm số
liên tục trên và có đồ thị như

Xét tính đúng sai của các khẳng định sau:
a) Hàm số
không có đạo hàm tại x = −2 và x = 2. Đúng||Sai
b) Hàm số
có ba điểm cực trị. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số
bằng −2 đạt được tại x = 0. Đúng||Sai
d) Hàm số
không có giá trị lớn nhất. Sai||Đúng
Cho hàm số liên tục trên và có đồ thị như
Xét tính đúng sai của các khẳng định sau:
a) Hàm số không có đạo hàm tại x = −2 và x = 2. Đúng||Sai
b) Hàm số có ba điểm cực trị. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số bằng −2 đạt được tại x = 0. Đúng||Sai
d) Hàm số không có giá trị lớn nhất. Sai||Đúng
a) Đúng: Hàm số không có đạo hàm tại x = −2 và x = 2.
b) Sai: Hàm số chỉ có một điểm cực trị là x = 0.
c) Đúng: Giá trị nhỏ nhất của hàm số bằng −2 đạt được tại x = 0.
d) Sai: Ta thấy , và có xảy ra dấu bằng nên hàm số
có giá trị lớn nhất.
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Hai điểm cực trị của đồ thị hàm số
là
Ta có:
Vậy hai điểm cực trị cần tìm là:
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Cho hàm số bậc ba
có đồ thị là đường cong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng .
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Biết rằng
. Định giá trị tham số
?
Xét hàm số trên
Hàm số liên tục trên
Ta có:
Do đó hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Cho hàm số
có bảng xét dấu của
như sau:

Hỏi hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đã cho ta thấy đổi dấu 4 lần nên hàm số
có bốn điểm cực trị.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].
Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:
f’(x) = 4x3 – 4x
f’(x) = 0 =>
Tính f(0) = 1; f(1) = 0; f(2) = 9
Vậy
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số đã cho có hai tiệm cận đứng là
và
.
nên đồ thị hàm số đã cho có một tiệm cận ngang là
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Cho hàm số bậc ba
có đồ thị là đường cong như hình vẽ:

Có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có đúng ba điểm cực trị?
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Tính tổng số đo các góc ở tất cả các mặt của hình chóp ngũ giác?
Hình chóp ngũ giác có mặt đáy là hình ngũ giác, có tổng số đo các góc là:
và 5 mặt bên, mỗi mặt bên là một tam giác có số đo các góc là .
Do đó tổng số đo tất cả các góc của hình chóp ngũ giác là:
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Cho hàm số
. Khẳng định nào dưới đây là khẳng định đúng?
Hàm số có tập xác định
và có đạo hàm
=> A là khẳng định đúng
Tọa độ tâm đối xứng của đồ thị hàm số
là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Cho hàm số
có bảng biến như sau:

Tìm tất cả các giá trị của tham số m để bất phương trình
có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm