Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số nào dưới dây nghịch biến trên \mathbb{R}?

    Xét hàm số y = x^{3} + 2x - 2020y' = 3x^{2} + 2 > 0;\forall
x\mathbb{\in R} suy ra hàm số y =
x^{3} + 2x - 2020 đồng biến trên \mathbb{R}.

  • Câu 2: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 3: Nhận biết

    Cho hình vẽ:

    Đồ thị hàm số tương ứng với hàm số nào

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số y = \frac{1}{2}{x^3} - 3{x^2} + \frac{9}{2}x + 1 thỏa mãn.

  • Câu 4: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 5: Nhận biết

    Giá trị trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack 0;4brack bằng

    Ta có f'(x) = 3x^{2} - 6x -
9.

    f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 3(tm) \\
\end{matrix} ight.

    Do đó f(0) = 10, f(3) = - 17, f(4) = - 10.

    Vậy \max_{\lbrack 0;4brack}f(x) = f(0)
= 10

  • Câu 6: Thông hiểu

    Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

    Giá trị nhỏ nhất của hàm số

    Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:

    Từ bảng biến thiên ta có:

    \begin{matrix}  f\left( x ight) \geqslant f\left( { - 4} ight),\forall x \in \left( { - \infty ;0} ight] \hfill \\  f\left( x ight) \geqslant f\left( 8 ight),\forall x \in \left( { - \infty ;0} ight) \hfill \\ \end{matrix}

    Mặt khác f(-4) > f(8) => \forall x \in \left( { - \infty ; + \infty } ight) thì f\left( x ight) \geqslant f\left( 8 ight)

    Vậy \mathop {\min }\limits_\mathbb{R} f\left( x ight) = f\left( 8 ight)

  • Câu 7: Vận dụng cao

    Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?

     

    Gọi số cạnh đáy là n với  (n \in {\mathbb{N} ^*}) \Rightarrow Đáy của chóp là n – giác.

    Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.

    Suy ra hình chóp có tổng số cạnh là 2n.

    Theo đề bài, hình chóp có 22 cạnh nên ta được 2n =22 \Rightarrow n =11(TMĐK)

    Do đó, hình chóp có đáy là 11 – giác.

    Do đó chóp có 11 mặt bên cộng 1 đáy.

    Vậy hình chóp có tổng 12 mặt.

  • Câu 8: Vận dụng

    Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là 5000000 đồng một khách cho 30 khách. Từ khách thứ 31, cứ thêm một khách, giá của tour lại được giảm a nghìn (a là số nguyên dương). Số khách thêm của tour không quá 15 người. Biết rằng nếu nhận thêm từ 1 đến 8 khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của a.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là 5000000 đồng một khách cho 30 khách. Từ khách thứ 31, cứ thêm một khách, giá của tour lại được giảm a nghìn (a là số nguyên dương). Số khách thêm của tour không quá 15 người. Biết rằng nếu nhận thêm từ 1 đến 8 khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của a.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 10: Vận dụng cao

    Cho x, y, z là ba số thực thuộc đoạn [1; 9] và x \geqslant y,x \geqslant z. Giá trị nhỏ nhất của biểu thức P = \frac{y}{{10y - x}} + \frac{1}{2}\left( {\frac{y}{{y + z}} + \frac{x}{{z + x}}} ight) bằng:

    Ta có:

    \frac{1}{{1 + a}} + \frac{1}{{a + b}} \geqslant \frac{2}{{1 + \sqrt {ab} }} \Rightarrow {\left( {\sqrt a  - \sqrt b } ight)^2}\left( {\sqrt {ab}  - 1} ight) \geqslant 0(đúng do ab \geqslant 1)

    Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1

    Áp dụng bất đẳng thức trên ta có:

    P = \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{2}\left( {\dfrac{1}{{1 + \dfrac{z}{y}}} + \dfrac{1}{{1 + \dfrac{x}{z}}}} ight) \geqslant \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{{1 + \sqrt {\frac{x}{y}} }}

    Đặt \sqrt {\frac{x}{y}}  = t \in \left[ {1;3} ight]. Xét hàm số f\left( t ight) = \frac{1}{{10 - {t^2}}} + \frac{1}{{1 + t}} trên đoạn [1; 3]

    \begin{matrix}  f'\left( t ight) = \dfrac{{2t}}{{{{\left( {10 - {t^2}} ight)}^2}}} - \dfrac{1}{{{{\left( {1 + t} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \hfill \\   \Rightarrow {t^4} - 2{t^3} - 24{t^2} - 2t + 100 = 0 \hfill \\   \Rightarrow \left( {t - 2} ight)\left( {{t^3} - 24t - 50} ight) = 0 \Rightarrow t = 2 \hfill \\ \end{matrix}

    Do {t^3} - 24t - 50 < 0,\forall t \in \left[ {1;3} ight]

    Ta có bảng biến thiên

    Tính giá trị nhỏ nhất của biểu thức

    Suy ra {P_{\min }} = \frac{1}{2} khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {\left[ {\begin{array}{*{20}{c}}  {\dfrac{z}{y} = \dfrac{x}{z}} \\   {\dfrac{x}{y} = 1} \end{array}} ight.} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {z = 2y} \end{array}} ight.

  • Câu 11: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 12: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên đoạn \lbrack - 3;3brack và có đạo hàm f'(x) trên khoảng ( - 3;3). Đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào đồ thị ta thấy f'(x) \geq0;\forall x \in ( - 2;3) và dấu “=” chỉ xảy ra tại x = 1 nên hàm số đồng biến trên khoảng ( - 2;3).

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 14: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 15: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 16: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 17: Vận dụng cao

    Cho hàm số y = f\left( x ight) có bảng biến như sau:

    Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm

    Tìm tất cả các giá trị của tham số m để bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có một nghiệm?

    Đặt t = \sqrt {x + 1}  + 1 \Rightarrow t \geqslant 1

    Khi đó bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m trở thành f\left( t ight) \leqslant m{\text{ }}\left( * ight)

    Bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có nghiệm khi bất phương trình f\left( t ight) \leqslant m có nghiệm t \geqslant 1

    \Leftrightarrow m \geqslant \mathop {\min \left( t ight)}\limits_{t \geqslant 1}  \Leftrightarrow m \geqslant  - 4

  • Câu 18: Thông hiểu

    Cho đồ thị của hàm số y = ax^{4} + bx^{2}
+ c;(a eq 0) có điểm cực đại A(0;
- 3) và điểm cực tiểu B( - 1; -
5). Tính giá trị biểu thức T = a +
2b + 3c?

    Đồ thị hàm số đi qua điểm A(0; -
3)B( - 1; - 5) nên \left\{ \begin{matrix}
c = - 3 \\
a + b + c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = - 3 \\
a + b = - 2 \\
\end{matrix} ight.\ (*)

    y = ax^{4} + bx^{2} + c \Rightarrow
y' = 4ax^{3} + 2bx

    Đồ thị hàm số có điểm cực tiểu B( - 1; -
5) nên - 4a - 2b =
0(**)

    Từ (*) và (**) ta có hệ phương trình \left\{ \begin{matrix}
a + b = - 2 \\
- 4a - 2b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = - 3 \\
\end{matrix} ight.\  \Rightarrow y = 2x^{4} - 4x^{2} - 3 \Rightarrow
\left\{ \begin{matrix}
y' = 8x^{3} - 8x \\
y'' = 24x^{2} - 8 \\
\end{matrix} ight.

    y''(0) = - 8 < 0 suy ra A(0; - 3) là điểm cực đại.

    y''( - 1) = 16 > 0 suy ra B( - 1; - 5) là điểm cực tiểu

    Vậy T = a + 2b + 3c = - 15

  • Câu 19: Nhận biết

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Kết luận nào sau đây đúng?

    Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại x = 1;x = 3;x = 4.

    Tại x = 1;x = 4 ta thấy f'(x) đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại x = 1;x =
4.

    Tại x = 3 ta thấy f'(x) đổi dấu từ dương sang âm nên hàm số đạt cực đại tại x = 3.

  • Câu 20: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 21: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

    Tình tổng các giá trị nguyên của tham số m

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có 3 điểm cực trị. Tổng các phần tử của S là:

    Xét hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có đạo hàm

    \begin{matrix}  y' = 2\left( {x - 1} ight)f'\left( {{{\left( {x - 1} ight)}^2} + m} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} + m =  - 1} \\   {{{\left( {x - 1} ight)}^2} + m = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} =  - 1 - m} \\   {{{\left( {x - 1} ight)}^2} = 3 - m} \end{array}} ight. \hfill \\ \end{matrix}

    Để hàm số có 3 điểm cực trị thì

    \begin{matrix}   - 1 - m \leqslant 0 < 3 - m \hfill \\   \Leftrightarrow  - 1 \leqslant m < 3 \hfill \\   \Rightarrow m \in \left\{ { - 1;0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy tổng các phần tử của S là 2

  • Câu 22: Nhận biết

    Tiệm cận ngang của đồ thị hàm số y =
\frac{2020}{x - 1} là đường thẳng có phương trình?

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2020}{x - 1} = 0 nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình y = 0.

  • Câu 23: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của đồ thị hàm số là:

    Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.

  • Câu 25: Thông hiểu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 26: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{3x^{2} - 4x + 1}{x^{2} - 1} là:

    Điều kiện xác định của hàm số x^{2} - 1
eq 0 \Leftrightarrow x eq \pm 1

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 1 ight\}

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{3x^{2} - 4x + 1}{x^{2} - 1} =
3 suy ra đồ thị hàm số có tiệm cận ngang là y = 3.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{3x^{2} - 4x + 1}{x^{2} - 1} = \mp
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)(3x + 1)}{(x - 1)(x + 1)} = \lim_{x
ightarrow 1}\frac{3x + 1}{x + 1} = 1 suy ra x = 1 không là tiệm cận đứng.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là 2.

  • Câu 27: Nhận biết

    Hàm số y =
\frac{x - 2}{x - 1} đồng biến trên khoảng nào dưới đây?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}. Ta có: y' = \frac{1}{(x - 1)^{2}} > 0;\forall
x\mathbb{\in R}\backslash\left\{ 1 ight\}

    Suy ra hàm số đồng biến trên khoảng ( -
\infty;1)(1; +
\infty).

  • Câu 28: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 29: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 30: Vận dụng

    Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?

     Có 9 mặt đối xứng (như hình vẽ sau):

    Hình lập phương

  • Câu 31: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 32: Thông hiểu

    Biết giá trị lớn nhất của hàm số y =
\frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack bằng - 1. Khẳng định nào dưới đây đúng?

    Ta có: y' = \frac{- 2 - m^{2}}{(x -
2)^{2}} < 0 nên giá trị lớn nhất của hàm số y = \frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack là: f( - 1) = - 1 \Leftrightarrow \frac{m^{2} - 1}{-
3} = - 1 \Leftrightarrow m = \pm 2 \in ( - 4;3)

    Vậy đáp án cần tìm là m \in ( -
4;3).

  • Câu 33: Thông hiểu

    Hàm số y = -
x^{4} + 8x^{2} - 1 nghịch biến trên khoảng nào dưới đây?

    Ta có:

    y' = - 4x^{2} + 16x \Rightarrow
y' = 0 \Leftrightarrow - 4x^{2} + 16x = 0

    \Leftrightarrow 4x\left( - x^{2} + 4
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra hàm số nghịch biến trên khoảng ( -
2;0)(2; + \infty).

  • Câu 34: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 35: Nhận biết

    Xác định tâm đối xứng của đồ thị hàm số y
= \frac{2x + 1}{x - 3}?

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{2x + 1}{x - 3} = \lim_{x ightarrow +\infty}\dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{3}{x}} = 2 suy ra tiệm cận ngang là y = 2

    \lim_{x ightarrow 3^{+}}y = \lim_{x
ightarrow 3^{+}}\frac{2x + 1}{x - 3} = + \infty suy ra tiệm cận đứng là x = 3

    Tâm đối xứng của đồ thị hàm số là A(3;2).

  • Câu 36: Thông hiểu

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 37: Thông hiểu

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 38: Thông hiểu

    Kết luận nào sau đây về tính đơn điệu của hàm số y = \frac{{3x - 1}}{{x - 2}} là đúng?

    Ta có: y' = \frac{{ - 5}}{{{{\left( {x - 2} ight)}^2}}} < 0,\forall x e 2

    Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 39: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 40: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 41: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 42: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 43: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 44: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số g(x) =
\frac{2020}{2f(x) + 1} có bao nhiêu đường tiệm cận đứng?

    Số đường tiệm cận đứng là số nghiệm của phương trình f(x) = - \frac{1}{2}

    Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.

  • Câu 45: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo