Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình
nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số
có một cực trị. Xác định số phần tử của tập
?
Để hàm số có một cực trị thì
Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.
Tâm đối xứng của đồ thị hàm số
là điểm nào trong các điểm cho sau đây?
Đồ thị hàm số nhận giao của hai tiệm cận làm tâm đối xứng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng là
Do đó tâm đối xứng của đồ thị hàm số là điểm .
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Cho hàm số f(x) có đạo hàm trên
. Đồ thị của hàm số
trên đoạn
là đường cong hình bên. Mệnh đề nào dưới đây đúng?

Dựa vào thị của hàm số trên đoạn
ta thấy
.
Ta có bảng BBT:
Do đó .
Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?
Ta có:
không có tiệm cận ngang vì
không có tiệm cận ngang vì
không có tiệm cận ngang vì
có tiệm cận ngang vì
Cho hàm số
xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Điều kiện của tham số
để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Cho hàm số
xác định trên tập số thực và có bảng xét dấu của đạo hàm như sau:

Hàm số có bao nhiêu điểm cực trị?
Ta có:
Hàm số xác định trên và bảng xét dấu đã cho ta suy ra bảng biến thiên:
Từ đó suy ra hàm số có bốn điểm cực trị.
Cho hàm số
có đạo hàm trên
và
biết
. Khẳng định nào sau đây có thể xảy ra.
Do nên hàm số
nghịch biến trên
.
Khi đó ta có:
sai
sai
sai
Do đó, đúng.
Hình vẽ nào sau đây là đồ thị của hàm số
với
?
Với thì đồ thị hàm số
theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ
và
Mặt khác với thì
nên khi
thì đồ thị hàm số nằm phía dưới trục hoành
Vậy đồ thị hàm số cần tìm là .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số
xác định trên
liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Từ bảng biến thiên ta thấy:
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận ngang
suy ra
là tiệm cận ngang
Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Có bao nhiêu giá trị nguyên dương của tham số
để hàm số
có
điểm cực trị?
Tập xác định
Ta có:
Xét phương trình
Xét hàm số trên
ta có:
và
Ta có bảng biến thiên của như sau:
Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của và số điểm tới hạn của
là 5 điểm. Do đó ta cần có các trường hợp sau:
TH1: Phương trình (*) có hai nghiệm phân biệt khác
trong trường hợp này có 26 số nguyên dương.
TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm
trường hợp này có một số nguyên dương.
Vậy có tất cả 27 số nguyên dương thỏa mãn yêu cầu bài toán.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hàm số
có đạo hàm trên
và hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
?
Từ đồ thị hàm số ta có đồ thị hàm số
cắt trục hoành tại 4 điểm phân biệt.
Do đó phương trình có bốn nghiệm phân biệt. Qua các nghiệm này
đều đổi dấu nên số cực trị của hàm số
là bốn cực trị.
Gọi
lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng?
Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).
Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).
Khối lập phương có 9 trục đối xứng
(Loại 1: đi qua tâm của các mặt đối diện ;
Loại 2: đi qua trung điểm các cặp cạnh đối diện).
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Hàm số
đồng biến trên nửa khoảng
khi:
Ta có:
Để hàm số đã cho đồng biến trên nửa khoảng khi đó:
Xét hàm số trên nửa khoảng
ta có:
Bảng biến thiên của hàm số trên nửa khoảng
là:
Từ bảng biến thiên suy ra
Vậy khi và chỉ khi
.
Một chất điểm chuyển động theo phương trình
trong đó
được tính bằng giây và
được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:
Ta có:
Khi đó
Hàm số nào sau đây đồng biến trên
?
Hàm số có
Cho hàm số
. Tọa độ điểm cực tiểu của đồ thị hàm số là:
Ta có:
Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)
Cho hàm số
có đồ thị
như hình vẽ:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên
. Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là
. Đúng||Sai
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
a) Sai. Hàm số đồng biến trên và nghịch biến trên
.
b) Sai. Hàm số đạt cực tiểu tại .
c) Đúng.
d) Đúng.
Cho hàm số y = f(x) xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Cho hàm số
. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Tập xác định
Ta có: suy ra đồ thị hàm số có hai tiệm cận ngang là
Lại có suy ra đồ thị hàm số có hai tiệm cận đứng là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Cho hàm số
có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là .
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Các khối lập phương đen và trắng xếp chồng lên nhau xen kẽ màu tạo thành một khối rubik
(như hình vẽ).

Gọi
là số khối lập phương nhỏ màu đen,
là số khối lập phương nhỏ màu trắng. Giá trị
là?
Có 7 lớp hình vuông xếp chồng lên nhau. Mỗi lớp có khối nhỏ.
Ta thấy hai lớp dưới đáy, một khối đen chồng lên một khối trắng (hay ngược lại) nên số lượng khối đen và trắng bằng nhau.
Tương tự 6 lớp bên dưới cũng có số lượng khối đen trắng bằng nhau.
Ta xét lớp trên cùng có khối màu đen và có
khối màu trắng
.
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Gọi K là tập hợp các giá trị nguyên của tham số
để bất phương trình
nghiệm đúng với mọi
. Số các phần tử của tập hợp K là:
Đặt
Bất phương trình đã cho trở thành
Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi
Xét hàm số
Vì
Do đó bất phương trình (*) nghiệm đúng với mọi khi và chỉ khi
Mặt khác m là số nguyên thuộc [0; 2019] nên
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số
lần lượt là
. Tính giá trị biểu thức
?
Tập xác định
Ta có:
Khi đó:
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .