Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
:

Hàm số
là hàm số:
Đồ thị hàm số bậc ba có dạng có hệ số
nên hàm số cần tìm là
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
:

Hàm số
là hàm số:
Đồ thị hàm số bậc ba có dạng có hệ số
nên hàm số cần tìm là
.
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của hàm số
là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để đồ thị hàm số đã cho có ba đường tiệm cận?
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.
có hai nghiệm phân biệt khác
Mà nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Xác định hàm số đồng biến trên
?
Xét hàm số ta có:
Suy ra hàm số đồng biến trên
.
Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Hàm số đã cho nghịch biến trên khoảng
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Đồ thị hàm số
có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

Đồ thị của hàm số thỏa mãn bài toán.
Cho hàm số
có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Điểm cực tiểu của hàm số là
Điểm cực tiểu của đồ thị hàm số là
Điểm cực đại của hàm số là .
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Cho hàm số
. Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
khi và chỉ khi
Vì nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?
Gọi số cạnh đáy là với
Đáy của chóp là
– giác.
Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.
Suy ra hình chóp có tổng số cạnh là .
Theo đề bài, hình chóp có 22 cạnh nên ta được (TMĐK)
Do đó, hình chóp có đáy là 11 – giác.
Do đó chóp có 11 mặt bên cộng 1 đáy.
Vậy hình chóp có tổng 12 mặt.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.
Cho hàm số
có đạo hàm trên
và hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
?
Từ đồ thị hàm số ta có đồ thị hàm số
cắt trục hoành tại 4 điểm phân biệt.
Do đó phương trình có bốn nghiệm phân biệt. Qua các nghiệm này
đều đổi dấu nên số cực trị của hàm số
là bốn cực trị.
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
lần lượt là
và
. Tính giá trị của biểu thức
?
Ta có:
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Cho hàm số
. Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số y = f(x) có đạo hàm. Biết f(x) có đạo hàm f’(x) và hàm số y = f’(x) có đồ thị như hình vẽ:

Hàm số g(x) = f(x - 1) đạt cực đại tại điểm nào dưới đây?
Cách 1: Ta có:
Vậy chọn đáp án B
Cách 2: Đồ thị hàm số g’(x) = f’(x – 1) là phép tịnh tiến đồ thị hàm số y = f’(x) theo phương trục hoành sang bên phải 1 đơn vị. Ta có hình vẽ minh họa:

Đồ thị hàm số g’(x) = f’(x – 1) cắt trục hoành tạo các điểm có hoành độ x = 2, x = 4, x = 6 và giá trị hàm số g’(x) đổi dấu từ dương sang âm khi qua điểm x = 4
Chọn B
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Cho hàm số
có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.

Đặt
. Tìm số điểm cực trị của hàm số ![]()
Đáp án: 6
Cho hàm số có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.
Đặt . Tìm số điểm cực trị của hàm số
Đáp án: 6
Đặt
Xét hàm số
Bảng biến thiên của hàm số
Dựa vào bảng biến thiến trên ta thấy phương trình .
Mỗi phương trình có hai nghiệm phân biệt khác , mà
có 4 nghiệm đơn phân biệt
khác
và phương trình
vô nghiệm.
Do đó phương trình có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là
.
Vậy hàm số có 6 cực trị.
Hàm số nào dưới đây nghịch biến trên
?
Xét hàm số ta có:
Do đó hàm số nghịch biến trên
.
Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình?
Ta có: nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
liên tục trên đoạn
có đồ thị như hình vẽ:

Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Trên đoạn ta có:
và
Vậy .
Cho hàm số
. Xác định số điểm cực trị của hàm số?
Ta có:
Vì nên hàm số đã cho có 3 cực trị.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho hàm số
xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

Khẳng định nào dưới đây đúng?
Hàm số không có giá trị lớn nhất vì nên khẳng định “Giá trị lớn nhất của hàm số là
” sai.
Phương trình có 3 nghiệm thực phân biệt khi và chỉ khi
nên khẳng định “Phương trình
có
nghiệm thực phân biệt khi và chỉ khi
” đúng.
Hàm số đồng biến trên các khoảng và
nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là
” sai.
Đồ thị hàm số có hai đường tiệm cận là vì
nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.
Vậy khẳng định đúng cần tìm là “Phương trình có
nghiệm thực phân biệt khi và chỉ khi
.”
Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tìm giá trị của tham số
?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có: