Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Ta có:

    f'(x) = 4x^{3} - 4x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0

    b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = −3

    c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là −4, −3

    d) Dựa vào bảng biến thiên ta thấy hàm số g(x) = f(x) + 3 có được bằng cách tịnh tiến đồ thị y = f(x) lên trên 3 đơn vị. Suy ra đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0).

  • Câu 2: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 3: Nhận biết

    Cho hàm số y = \frac{ax^{2} + bx + c}{mx
+ n},(am eq 0) có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

    Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm (1;1)( - 1; - 1) nên đường tiệm cận xiên của đồ thị hàm số có phương trình y =
x.

  • Câu 4: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 5: Nhận biết

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 6: Vận dụng

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 7: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 8: Vận dụng cao

    Đồ thị của hàm số y = x^{4} - 2(m +
1)x^{2} + 2m + 1 (với m là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?

    Phương trình hoành độ giao điểm y = x^{4}
- 2(m + 1)x^{2} + 2m + 1 = 0\ \ (1)

    Đặt t = x^{2};t \geq 0. Phương trình trở thành t^{2} - 2(m + 1)t + 2m + 1 =
0\ \ \ (2)

    Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - (2m + 1) > 0 \\
m + 1 > 0 \\
2m + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - 1 \\m > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - \dfrac{1}{2} \\\end{matrix} ight.

    Gọi x_{1};x_{2};x_{3};x_{4};\left( x_{1} < x_{2} < x_{3} < x_{4}
ight) là nghiệm cỉa phương trình (1) và t_{1};t_{2};\left( t_{1} < t_{2}
ight) là nghiệm của phương trình (2)

    Theo giả thiết ta có:

    x_{4} - x_{3} = x_{3} - x_{2} = x_{2} -
x_{1}

    \Leftrightarrow x_{4} - x_{3} = x_{3} -
x_{2}

    \Leftrightarrow \sqrt{t_{2}} -
\sqrt{t_{1}} = \sqrt{t_{1}} + \sqrt{t_{1}} \Leftrightarrow t_{2} =
9t_{1} > 0

    Ta có hệ:

    \left\{ \begin{matrix}t_{1} + t_{2} = 2(m + 1) \\t_{1}.t_{2} = 2m + 1 \\t_{1} = 9t_{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t_{1} = \dfrac{m}{5} + \dfrac{1}{5} \\t_{2} = \dfrac{9m}{5} + \dfrac{9}{5} \\t_{1}.t_{2} = 2m + 1 \\\end{matrix} ight.

    \Leftrightarrow \left( \dfrac{m}{5} +\dfrac{1}{5} ight)\left( \dfrac{9m}{5} + \dfrac{9}{5} ight) = 2m + 1\Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = - \dfrac{4}{9} \\\end{matrix} ight.

    Vậy m \in (2;6)

  • Câu 9: Vận dụng

    Có tất cả bao nhiêu mặt phẳng cách đều bốn đỉnh của một tứ diện?

    Có 2 loại mặt phẳng thỏa mãn đề bài là:

    a) Loại 1: Mặt phẳng qua trung điểm của 3 cạnh bên có chung đỉnh. Có 4 mặt phẳng thỏa mãn loại này (vì có 4 đỉnh)

    Mp cách đều 4 đỉnh

    Nhận xét. Loại này ta thấy có 1 điểm nằm khác phía với 3 điểm còn lại.

    b) Loại 2: Mặt phẳng qua trung điểm của cạnh ( cạnh này thuộc cặp cạnh, mỗi cặp cạnh là chéo nhau). Có mặt phẳng như thế.

    Mp cách đều 4 đỉnh

    Nhận xét. Loại này ta thấy có 2 điểm nằm khác phía với 2 điểm còn lại.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 11: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 12: Thông hiểu

    Số tiệm cận của hàm số y = \frac{{\sqrt {{x^2} + 1}  - x}}{{\sqrt {{x^2} - 9}  - 4}} là:

    Tập xác định: \left\{ {\begin{array}{*{20}{c}}  {{x^2} - 9 \geqslant 0} \\   {\sqrt {{x^2} - 9}  e 4} \end{array}} ight. \Rightarrow x \in \left( { - \infty ; - 3} ight] \cup \left[ {3; + \infty } ight)\backslash \left\{ { \pm 5} ight\}

    Khi đó \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = 0;\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 2

    => Đồ thị hàm số có hai tiệm cận ngang

    Mặt khác \mathop {\lim }\limits_{x \to  \pm {5^ + }} f\left( x ight) =  \mp \infty ;\mathop {\lim }\limits_{x \to  \pm {5^ - }} f\left( x ight) =  \pm \infty

    => Đồ thị hàm số có hai tiệm cận đứng

    Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.

  • Câu 13: Vận dụng

    Cho hàm số y = \frac{{ax + 2}}{{cx + b}} có đồ thị (C) như hình vẽ bên. Tính tổng T = a + 2b + 3c

    Tính giá trị biểu thức T

    Từ đồ thị hàm số ta có nhận xét như sau:

    Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)

    => x = \frac{{ - b}}{c} = 2 \Rightarrow b =  - 2c

    Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)

    => y = \frac{a}{c} = 1 \Rightarrow a = c

    Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)

    => y(0) = -1 => \frac{2}{b} =  - 1 \Rightarrow b =  - 2

    => \left\{ {\begin{array}{*{20}{c}}  {b =  - 2} \\   {b =  - 2c} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  a = 1 \hfill \\  b =  - 2 \hfill \\ \end{gathered}  \\   {c = 1} \end{array}} ight. \Rightarrow T = a + 2b + 3c = 0

  • Câu 14: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 15: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 16: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hàm số y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1

    y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} ight)^2} + \frac{{11}}{4} > 0,\forall x \in \mathbb{R}

  • Câu 17: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 18: Nhận biết

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 19: Thông hiểu

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 20: Nhận biết

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 21: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 22: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 24: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 25: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack -
1;1brack\backslash\left\{ 0 ight\}

    Vì tập xác định của hàm số không chứa -
\infty+ \infty nên đồ thị hàm số không có đường tiệm cận ngang.

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  + \infty  \hfill \\ 
\end{gathered}  ight.. Vậy đồ thị hàm số có 1 đường tiệm cận đứng x = 0.

  • Câu 26: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 27: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 28: Vận dụng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 29: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 30: Vận dụng

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Để hàm số y = f(3x - 1) + x^{3} -
3mx đồng biến trên khoảng ( -
2;1)

    \Leftrightarrow y' \geq 0,\forall x
\in ( - 2;1)

    \Leftrightarrow 3f'(3x - 1) + 3x^{2}
- 3m \geq 0,\forall x \in ( - 2;1)

    \Leftrightarrow m \leq f^{'}(3x - 1)
+ x^{2},\forall x \in ( - 2;1)(*)

    Đặt k(x) = f^{'}(3x - 1),h(x) =
x^{2}g(x) = f^{'}(3x - 1) +
x^{2} = k(x) + h(x).

    Ta có: \min_{( - 2;1)}k(x) = k(0) = -
4.

    Do đó, ta có: \min_{( - 2;1)}f^{'}(3x
- 1) = f^{'}( - 1) = - 4 khi 3x
- 1 = - 1 \Leftrightarrow x = 0.

    \Rightarrow \min_{( - 2;1)}k(x) = k(0) =
- 4.

    Do đó, \min_{( - 2;1)}g(x) = g(0) = k(0)
+ h(0) = 0 - 4 = - 4.

    Từ (*) ta có m \leq f^{'}(3x - 1) + x^{2},\forall x \in ( -
2;1)

    \Leftrightarrow m \leq \min_{( -
2;1)}g(x) \Leftrightarrow m \leq - 4.

    m \in ( - 10;10) \Rightarrow m \in \{- 9;\ldots; - 4\}.

    Vậy có tất cả 6 số nguyên thỏa mãn.

  • Câu 31: Thông hiểu

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - m + 1 ight)x + 1. Tìm m để hàm số đã cho đạt cực đại tại x = 1?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2mx + m^{2} - m +
1

    Để x = 1 là điểm cực đại của hàm số thì y'(1) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = 1 thì y' = x^{2} - 2x + 1 = (x - 1)^{2} \geq
0;\forall x\mathbb{\in R}. Vậy m =
1 không thỏa mãn.

    Với m = 2 thì y' = x^{2} - 4x + 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Xét dấu y' ta được y'  có điểm cực đại.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 32: Vận dụng cao

    Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?

     

    Gọi số cạnh đáy là n với  (n \in {\mathbb{N} ^*}) \Rightarrow Đáy của chóp là n – giác.

    Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.

    Suy ra hình chóp có tổng số cạnh là 2n.

    Theo đề bài, hình chóp có 22 cạnh nên ta được 2n =22 \Rightarrow n =11(TMĐK)

    Do đó, hình chóp có đáy là 11 – giác.

    Do đó chóp có 11 mặt bên cộng 1 đáy.

    Vậy hình chóp có tổng 12 mặt.

  • Câu 33: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \lbrack - 1;4brack và có đồ thị như hình vẽ

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack -
1;4brack

    Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.

  • Câu 34: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có tiệm cận đứng là:

    Từ bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là x = - 1.

  • Câu 35: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 36: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 37: Vận dụng cao

    Cho x, y, z là ba số thực thuộc đoạn [1; 9] và x \geqslant y,x \geqslant z. Giá trị nhỏ nhất của biểu thức P = \frac{y}{{10y - x}} + \frac{1}{2}\left( {\frac{y}{{y + z}} + \frac{x}{{z + x}}} ight) bằng:

    Ta có:

    \frac{1}{{1 + a}} + \frac{1}{{a + b}} \geqslant \frac{2}{{1 + \sqrt {ab} }} \Rightarrow {\left( {\sqrt a  - \sqrt b } ight)^2}\left( {\sqrt {ab}  - 1} ight) \geqslant 0(đúng do ab \geqslant 1)

    Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1

    Áp dụng bất đẳng thức trên ta có:

    P = \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{2}\left( {\dfrac{1}{{1 + \dfrac{z}{y}}} + \dfrac{1}{{1 + \dfrac{x}{z}}}} ight) \geqslant \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{{1 + \sqrt {\frac{x}{y}} }}

    Đặt \sqrt {\frac{x}{y}}  = t \in \left[ {1;3} ight]. Xét hàm số f\left( t ight) = \frac{1}{{10 - {t^2}}} + \frac{1}{{1 + t}} trên đoạn [1; 3]

    \begin{matrix}  f'\left( t ight) = \dfrac{{2t}}{{{{\left( {10 - {t^2}} ight)}^2}}} - \dfrac{1}{{{{\left( {1 + t} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \hfill \\   \Rightarrow {t^4} - 2{t^3} - 24{t^2} - 2t + 100 = 0 \hfill \\   \Rightarrow \left( {t - 2} ight)\left( {{t^3} - 24t - 50} ight) = 0 \Rightarrow t = 2 \hfill \\ \end{matrix}

    Do {t^3} - 24t - 50 < 0,\forall t \in \left[ {1;3} ight]

    Ta có bảng biến thiên

    Tính giá trị nhỏ nhất của biểu thức

    Suy ra {P_{\min }} = \frac{1}{2} khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {\left[ {\begin{array}{*{20}{c}}  {\dfrac{z}{y} = \dfrac{x}{z}} \\   {\dfrac{x}{y} = 1} \end{array}} ight.} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {z = 2y} \end{array}} ight.

  • Câu 38: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 39: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

    Tình tổng các giá trị nguyên của tham số m

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có 3 điểm cực trị. Tổng các phần tử của S là:

    Xét hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có đạo hàm

    \begin{matrix}  y' = 2\left( {x - 1} ight)f'\left( {{{\left( {x - 1} ight)}^2} + m} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} + m =  - 1} \\   {{{\left( {x - 1} ight)}^2} + m = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} =  - 1 - m} \\   {{{\left( {x - 1} ight)}^2} = 3 - m} \end{array}} ight. \hfill \\ \end{matrix}

    Để hàm số có 3 điểm cực trị thì

    \begin{matrix}   - 1 - m \leqslant 0 < 3 - m \hfill \\   \Leftrightarrow  - 1 \leqslant m < 3 \hfill \\   \Rightarrow m \in \left\{ { - 1;0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy tổng các phần tử của S là 2

  • Câu 40: Thông hiểu

    Cho hàm số y = 2x^{3} - 3x^{2} -
m. Trên đoạn \lbrack -
1;1brack hàm số có giá trị nhỏ nhất là - 1. Tìm giá trị của m?

    Ta có: y' = 6x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \min_{\lbrack -
1;1brack}y = - 5 - m \Leftrightarrow - 1 = - 5 - m \Leftrightarrow m =
- 4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 41: Nhận biết

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 42: Nhận biết

    Hàm số y = \frac{ 2x + 3 }{ x + 1 } có bao nhiêu điểm cực trị?

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 43: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 44: Thông hiểu

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

  • Câu 45: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo