Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 2: Thông hiểu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 3: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

  • Câu 4: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 5: Vận dụng

    Tìm giá trị của tham số m để hàm số y
= \frac{\cot x - 2}{\cot x - m} nghịch biến trên \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Đặt t = \cot x \Rightarrow t' =
\frac{- 1}{sin^{2}x} < 0;\forall x \in \left(
\frac{\pi}{4};\frac{\pi}{2} ight)

    \Rightarrow \cot\frac{\pi}{2} < t <
\cot\frac{\pi}{4} hay 0 < t <
1

    Bài toán trở thành tìm m để hàm số y =
\frac{t - 2}{t - m} đồng biến trên (0;1)

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{2 - m}{(t -
m)^{2}}. Hàm số y = \frac{t - 2}{t
- m} đồng biến trên (0;1)

    \Leftrightarrow y' > 0;\forall t
\in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m \leq 0 \\
1 \leq m < 2 \\
\end{matrix} ight..

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 7: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của đồ thị hàm số là:

    Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.

  • Câu 9: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 11: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 12: Thông hiểu

    Để hàm số y = x^{3} - 3x^{2} +
mx đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 6x + m \\
y'' = 6x - 6 \\
\end{matrix} ight.. Để hàm số y
= x^{3} - 3x^{2} + mx đạt cực tiểu tại x = 2 thì

    \left\{ \begin{matrix}
y' = 0 \\
y'' > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y'(2) = 0 \\
y''(2) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 0 \\
6.2 - 6 > 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m \in ( -
1;1).

  • Câu 13: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 14: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 15: Vận dụng

    Có tất cả bao nhiêu mặt phẳng cách đều bốn đỉnh của một tứ diện?

    Có 2 loại mặt phẳng thỏa mãn đề bài là:

    a) Loại 1: Mặt phẳng qua trung điểm của 3 cạnh bên có chung đỉnh. Có 4 mặt phẳng thỏa mãn loại này (vì có 4 đỉnh)

    Mp cách đều 4 đỉnh

    Nhận xét. Loại này ta thấy có 1 điểm nằm khác phía với 3 điểm còn lại.

    b) Loại 2: Mặt phẳng qua trung điểm của cạnh ( cạnh này thuộc cặp cạnh, mỗi cặp cạnh là chéo nhau). Có mặt phẳng như thế.

    Mp cách đều 4 đỉnh

    Nhận xét. Loại này ta thấy có 2 điểm nằm khác phía với 2 điểm còn lại.

  • Câu 16: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 17: Thông hiểu

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 18: Thông hiểu

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Đáp án là:

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Ta có P'(x) = - 3x^{2} + 48x + 780;\
\ P'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 10 \\
x = 26\ \ \  \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.

  • Câu 19: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 21: Nhận biết

    Cho hàm số f(x) có f'\left( x ight) = {\left( {x - 1} ight)^2}{\left( {x - 3} ight)^3}\left( {2x + 3} ight),\forall x \in \mathbb{R}. Số cực trị của hàm số đã cho là:

     Ta có: f’(x) đổi dấu khi qua các giá trị x = 3 và x = -3/2 nên hàm số có hai cực trị.

  • Câu 22: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 23: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 24: Nhận biết

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 25: Thông hiểu

    Cho hàm số y = - x^{3} - mx^{2} + (4m +
9)x + 5. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên \mathbb{R}?

    Ta có: y' = - 3x^{2} - 2mx + 4m +
9

    Hàm số đã cho nghịch biến trên \mathbb{R} khi và chỉ khi \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
m^{2} + 3(4m + 9) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow m^{2} + 12m + 27 \leq 0
\Leftrightarrow m \in \lbrack - 9; - 3brack

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 9; - 8;...; - 3 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 26: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 27: Vận dụng cao

    Cho hàm số y = f(x) = (m - 1)x^{3} -5x^{2} + (3 + m)x + 3 với m là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f\left( |x| ight) có đúng ba cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = (m - 1)x^{3} -5x^{2} + (3 + m)x + 3 với m là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f\left( |x| ight) có đúng ba cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Nhận biết

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong hình bên.

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng (0;2).

  • Câu 29: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 30: Nhận biết

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
4} có đường tiệm cận ngang là

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\dfrac{x - 2}{x^{2} - 4} = \lim_{xightarrow \pm \infty}\dfrac{\dfrac{x}{x^{2}} -\dfrac{2}{x^{2}}}{\dfrac{x^{2}}{x^{2}} - \dfrac{4}{x^{2}}} = 0

    Suy ra tiệm cận ngang là y =
0.

  • Câu 31: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 32: Vận dụng

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Vận dụng cao

    Các khối lập phương đen và trắng xếp chồng lên nhau xen kẽ màu tạo thành một khối rubik 7\times 5 \times7 (như hình vẽ).

    Tính gia tri

    Gọi x là số khối lập phương nhỏ màu đen, y là số khối lập phương nhỏ màu trắng. Giá trị x-y là?

    Có 7 lớp hình vuông xếp chồng lên nhau. Mỗi lớp có 7 \times 5=35 khối nhỏ.

    Ta thấy hai lớp dưới đáy, một khối đen chồng lên một khối trắng (hay ngược lại) nên số lượng khối đen và trắng bằng nhau.

    Tương tự 6 lớp bên dưới cũng có số lượng khối đen trắng bằng nhau.

    Ta xét lớp trên cùng có 4+3+4+3+4=18 khối màu đen và có 3+4+3+4+3=17  khối màu trắng

     \Rightarrow x-y=18-17=1.

  • Câu 34: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 35: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 36: Thông hiểu

    Một chất điểm chuyển động với quy luật S(t) = 6t^{2} - t^{3}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Vận tốc của chuyển động là:

    v(t) = S'(t) = 12t - 3t^{2} = 12 -
3(2 - t)^{2} \leq 12;\forall t

    Vậy vận tốc đạt giá trị lớn nhất bằng 12m/s khi t =
2.

  • Câu 37: Thông hiểu

    Cho hàm số y = f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{\sqrt {{x^2} + 1} }}{x}{\text{   khi x }} \geqslant {\text{ 1}}} \\   {\dfrac{{2x}}{{x - 1}}{\text{   khi x  <  1}}} \end{array}} ight.. Số đường tiệm cận của đồ thị hàm số y = f(x) là:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x}}{{x - 1}} =  - \infty

     => Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 - \frac{1}{x}}} = 2 => y = 2 là tiệm cận ngang của đồ thị hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {2 + \frac{1}{{{x^2}}}}  = 1 => đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

  • Câu 38: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 39: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2},\forall x \in \mathbb{R}. Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?

    Ta có: 

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2} = 0 \hfill \\   \Leftrightarrow {x^2}{\left( {x - 3} ight)^3}\left( {x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn khẳng định đúng

    Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)

  • Câu 40: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 41: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 42: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 43: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 44: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 45: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
2;\lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có tiệm cận ngang là y = 2 và tiệm cận đứng là x = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo