Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 2: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 3: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 4: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có \mathop {\lim }\limits_{x \to \infty } f\left( x ight) = 2

    => Đồ thị hàm số đường tiệm cận ngang là y = 2

  • Câu 5: Nhận biết

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 6: Vận dụng cao

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng cao

    Cho x, y là các số thực thỏa mãn {\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} = 5. Giá trị nhỏ nhất của biểu thức P = \frac{{3{y^2} + 4xy + 7x + 4y - 1}}{{x + 2y + 1}} bằng:

    \begin{matrix}  {\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} = 5 \hfill \\   \Rightarrow {x^2} + {y^2} - 6x - 2y + 5 = 0 \hfill \\  P = \dfrac{{\left( {3{y^2} + 4xy + 7x - 4y - 1} ight) + \left( {{x^2} + {y^2} - 6x - 2y + 5} ight)}}{{x + 2y + 1}} \hfill \\  P = \dfrac{{4{y^2} + 4xy + {x^2} + x + 2y + 4}}{{x + 2y + 1}} \hfill \\  P = \dfrac{{{{\left( {2y + x} ight)}^2} + \left( {x + 2y} ight) + 4}}{{x + 2y + 1}} \hfill \\ \end{matrix}

    Đặt t = x + 2y

    \begin{matrix}  \left( {{1^2} + {2^2}} ight)\left[ {{{\left( {x - 3} ight)}^2} + {{\left( {y - 1} ight)}^2}} ight] \geqslant {\left[ {\left( {x - 3} ight) + \left( {2y - 2} ight)} ight]^2} \hfill \\   \Rightarrow {\left( {x + 2y - 5} ight)^2} \leqslant 25 \hfill \\   \Leftrightarrow 0 \leqslant x + 2y \leqslant 10 \hfill \\ \end{matrix}

    Ta được P = f\left( t ight) = \frac{{{t^2} + t + 4}}{{1 + 4}} = t + \frac{4}{{t + 1}};0 \leqslant t \leqslant 10

    Xét f'\left( t ight) = 1 - \frac{4}{{{{\left( {t + 1} ight)}^2}}} = 0 \Rightarrow {\left( {t + 1} ight)^2} = 4 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 1\left( {tm} ight)} \\   {t =  - 3\left( L ight)} \end{array}} ight.

    f\left( 0 ight) = 4;f\left( {10} ight) = \frac{{114}}{{11}};f\left( 1 ight) = 3 \Rightarrow \min P = 3{\text{  khi t  =  1}}

  • Câu 8: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 9: Vận dụng cao

    Lắp ghép hai khối đa diện (H_1)(H_2) để tạo thành khối đa diện (H) , trong đó (H_1)  là khối chóp tứ giác đều có tất cả các cạnh bằng a , (H_2) là khối tứ diện đều cạnh a sao cho một mặt của (H_1) trùng với một mặt của (H_2) như hình vẽ. Hỏi khối da diện (H) có tất cả bao nhiêu mặt?

    Lắp ghép khối đa diện

    Khối đa diện có đúng 5 mặt.

    Sai lầm hay gặp: Khối chóp tứ giác đều có 5 mặt. Khối tứ diện đều có 4 mặt.

    Ghép hai hình lại như hình vẽ ta được khối đa diện có 8 mặt.

  • Câu 10: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 11: Nhận biết

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 12: Vận dụng

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 13: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x^{3} - 12x + 1 - m cắt trục hoành tại ba điểm phân biệt?

    Phương trình hoành độ giao điểm của đồ thị hàm số x^{3} - 12x + 1 - m = 0

    Ta cps: x^{3} - 12x + 1 - m = 0
\Leftrightarrow x^{3} - 12x + 1 = m(*)

    Đặt \left\{ \begin{matrix}
y = x^{3} - 12x + 1 \\
y = m \\
\end{matrix} ight.. Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số y =
x^{3} - 12x + 1 và đường thẳng y =
m.

    Khảo sát sự biến thiên của hàm số y =
x^{3} - 12x + 1 ta có:

    y' = 3x^{2} - 12 \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Với - 15 < m < 17 thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên m \in \left\{ - 14;...;16 ight\}.

    Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 14: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 15: Vận dụng

    Số mặt phẳng đối xứng của hình bát diện đều là:

    Gọi bát diện đều là ABCDEF

    Hình bát diện đều

    Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).

  • Câu 16: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 17: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 18: Nhận biết

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 19: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y = \frac{m\sin x + 1}{\cos x + 2} nhỏ hơn 2?

    Ta có: y = \frac{m\sin x + 1}{\cos x + 2}\Leftrightarrow m\sin x + 1 = y\cos x + 2y

    \Leftrightarrow m\sin x - y\cos x = 2y -
1

    Phương trình có nghiệm khi

    m^{2} + y^{2} \geq (2y - 1)^{2}
\Leftrightarrow m^{2} + y^{2} \geq 4y^{2} - 4y + 1

    \Leftrightarrow 3y^{2} - 4y + 1 - m^{2}
\leq 0

    Xét phương trình 3y^{2} - 4y + 1 - m^{2}
= 0\Delta' = ( - 2)^{2} -
3\left( 1 - m^{2} ight) = 3m^{2} + 1 > 0;\forall m

    Suy ra phương trình 3y^{2} - 4y + 1 -
m^{2} = 0 luôn có hai nghiệm phân biệt. Do đó:

    \Leftrightarrow \frac{2 - \sqrt{3m^{2} +
1}}{3} \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    Suy ra \max y = \frac{2 + \sqrt{3m^{2} +
1}}{3}. Theo yêu cầu bài toán ta có:

    \max y < 2 \Leftrightarrow \frac{2 +
\sqrt{3m^{2} + 1}}{3} < 2

    \Leftrightarrow \sqrt{3m^{2} + 1} < 4
\Leftrightarrow 3m^{2} + 1 < 16 \Leftrightarrow - \sqrt{5} < m
< \sqrt{5}

    m\mathbb{\in Z} suy ra m \in \left\{ - 2; - 1;0;1;2 ight\}

    Vậy có tất cả 5 giá trị nguyên của tham số m thỏa mãn.

  • Câu 20: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 21: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 23: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 24: Thông hiểu

    Cho hàm số y = \frac{1}{3}{x^3} - \frac{3}{2}{x^2} + 2x + 1. Giả sử hàm số đạt cứ đại tại x = a và đạt cực tiểu tại x = b thì giá trị biểu thức 2a – 5b là

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  y' = {x^2} - 3x + 2 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tính giá trị biểu thức

    Do y’ thay đổi dấu từ dương sang âm khi đi qua điểm x = 1

    => x = 1 là điểm cực đại của hàm số

    y’ đổi dấu từ âm sang dương khi đi qua điểm x = 2

    => x = 2 là điểm cực tiểu của hàm số

    => 2a – 5b = -8

  • Câu 25: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 26: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 27: Vận dụng

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 28: Nhận biết

    Hàm số y = \frac{{2x + 5}}{{x + 1}} có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    Ta có:

    y' = \frac{{ - 3}}{{{{\left( {x + 1} ight)}^2}}} < 0,\forall x \in D

    Do y’ không đổi dấu nên hàm số không có cực trị.

  • Câu 29: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 30: Thông hiểu

    Có bao nhiêu số nguyên m để hàm số y = \frac{x + 3}{x - m} nghịch biến trên khoảng (1; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Hàm số đã cho nghịch biến trên khoảng (1;
+ \infty) \Leftrightarrow y'
< 0;\forall x \in (1; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
- m - 3 < 0 \\
m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m \leq 1

    Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 31: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

    Giá trị nhỏ nhất của hàm số

    Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:

    Từ bảng biến thiên ta có:

    \begin{matrix}  f\left( x ight) \geqslant f\left( { - 4} ight),\forall x \in \left( { - \infty ;0} ight] \hfill \\  f\left( x ight) \geqslant f\left( 8 ight),\forall x \in \left( { - \infty ;0} ight) \hfill \\ \end{matrix}

    Mặt khác f(-4) > f(8) => \forall x \in \left( { - \infty ; + \infty } ight) thì f\left( x ight) \geqslant f\left( 8 ight)

    Vậy \mathop {\min }\limits_\mathbb{R} f\left( x ight) = f\left( 8 ight)

  • Câu 33: Thông hiểu

    Hàm số nào sau đây nghịch biến trên khoảng (1; 3)?

    Xét hàm số y = \frac{1}{3}{x^3} - 2{x^2} + 3x + 1y' = {x^2} - 4x + 3

    => y’ = 0 => \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 3} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Chọn đáp án đúng

    Do đó hàm số nghịch biến trên khoảng (1; 3)

  • Câu 34: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 35: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 36: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 37: Thông hiểu

    Đồ thị hàm số nào sau đây không có tiệm cận đứng?

    Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty

    => Hàm số không có tiệm cận đứng.

    Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1

  • Câu 38: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Tìm m để bất phương trình nghiệm đúng

    Bất phương trình f\left( x ight) <  - \cos x + m nghiệm đúng với mọi x \in \left( {0;\pi } ight) khi và chỉ khi:

    Ta có: f\left( x ight) <  - \cos x + m \Rightarrow m > f\left( x ight) + \cos x\left( * ight)

    Xét hàm số  g\left( x ight) = f\left( x ight) + \cos x;x \in \left( {0;\pi } ight)

    => g'\left( x ight) = f'\left( x ight) - \sin x

    Ta có: \forall x \in \left( {0;\pi } ight):\left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) < 0} \\   {0 < \sin x \leqslant 1} \end{array}} ight.

    \begin{matrix}   \Rightarrow g'\left( x ight) = f'\left( x ight) - \sin x < 0;\forall x \in \left( {0;\pi } ight) \hfill \\   \Rightarrow f\left( x ight) - \cos x < g\left( 0 ight) = f\left( 0 ight) + 1 \hfill \\   \Rightarrow m \geqslant f\left( 0 ight) + 1 \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 40: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 41: Thông hiểu

    Cho hàm số y = \frac{1}{3}x^{2} + x^{2} +
(m - 2)x + 2 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho có hai điểm cực trị nằm bên trái trục Oy?

    Ta có: y' = x^{2} + 2x + m -
1

    Đồ thị của hàm số đã cho có hai điểm cực trị nằm bên trái trục tung khi và chỉ khi phương trình y' =
0 có hai nghiệm âm phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S < 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - m + 1 > 0 \\
- 2 < 0 \\
m - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < m < 2

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 42: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 44: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 45: Thông hiểu

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo