Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} + \left( m^{2} - m + 2 ight)x^{2} + \left( 3m^{2} +
1 ight)x đạt cực tiểu tại x = -
2?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} + 2\left( m^{2} - m
+ 2 ight)x + \left( 3m^{2} + 1 ight)

    Hàm số đạt cực tiểu tại x = - 2
\Rightarrow y'( - 2) = 0

    \Leftrightarrow m^{2} - 4m + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 3 \\
\end{matrix} ight.

    Lại có: y'' = 2x + 2\left( m^{2}
- m + 2 ight)

    y''( - 2) = 2m^{2} -
2m

    y''( - 2) > 0 \Leftrightarrow
2m^{2} - 2m > 0 \Leftrightarrow \left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = -
2 thì m = 3 thỏa mãn.

    vậy giá trị m cần tìm là m =
3.

  • Câu 2: Vận dụng cao

    Lắp ghép hai khối đa diện (H_1)(H_2) để tạo thành khối đa diện (H) , trong đó (H_1)  là khối chóp tứ giác đều có tất cả các cạnh bằng a , (H_2) là khối tứ diện đều cạnh a sao cho một mặt của (H_1) trùng với một mặt của (H_2) như hình vẽ. Hỏi khối da diện (H) có tất cả bao nhiêu mặt?

    Lắp ghép khối đa diện

    Khối đa diện có đúng 5 mặt.

    Sai lầm hay gặp: Khối chóp tứ giác đều có 5 mặt. Khối tứ diện đều có 4 mặt.

    Ghép hai hình lại như hình vẽ ta được khối đa diện có 8 mặt.

  • Câu 3: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} và có đồ thị của hàm số f'(x) là đường cong như hình vẽ sau:

    Chọn khẳng định đúng?

    Từ đồ thị hàm số f'(x) ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số y = f(x) nghịch biến trên khoảng (0; + \infty)”.

  • Câu 4: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 5: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 6: Vận dụng

    Cho hàm số y = {x^3} + m{x^2} - \left( {{m^2} + m + 1} ight)x. Gọi S là tập hợp các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn \left[ { - 1;1} ight] bằng -6. Tính tổng các phần tử của S.

    Ta có: f'\left( x ight) =  - 3{x^2} + 2mx - {m^2} - m - 1;\forall x \in \mathbb{R}

    \Delta ' =  - 2{m^2} - 3m - 3 < 0,\forall m \in \mathbb{R}

    => y' < 0;\forall x \in \left[ { - 1;1} ight]

    Do đó hàm số f\left( x ight) nghịch biến trên \left( { - 1;1} ight)

    => \mathop {\min y}\limits_{\left[ { - 1;1} ight]}  = y\left( 1 ight) =  - 6

    Ta lại có:

    \begin{matrix}  y\left( 1 ight) =  - 2 - {m^2} \hfill \\   \Rightarrow  - 2 - {m^2} =  - 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 2} \end{array}} ight. \Rightarrow \sum m  = 0 \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 8: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 9: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 10: Thông hiểu

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 1
ight\} và có bảng biến thiên như sau:

    Số giá trị nguyên của tham số m để phương trình m - f(x) = 0 có ba nghiệm phân biệt là:

    Phương trình m - f(x) = 0 là phương trình hoành độ giao điểm của hai đồ thị (C):y = f(x) và đường thẳng (d):y = m

    Để phương trình m - f(x) = 0 có ba nghiệm phân biệt khi và chỉ khi (C);(d) có ba giao điểm \Leftrightarrow 1 < m < 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 12: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 13: Vận dụng cao

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
5;7brack như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên ta suy ra \min_{\lbrack - 5;7brack}y = 2

  • Câu 15: Nhận biết

    Cho hàm số f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 1} ight){\left( {x + 2} ight)^5},\forall x \in \mathbb{R}. Số cực trị của hàm số đã cho là

    Xét phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 2} \end{array}} ight.

    Ta có bảng xét dấu:

    Xác định số điểm cực trị của hàm số

    Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1

    => Hàm số có hai điểm cực trị

  • Câu 16: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 17: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 18: Nhận biết

    Cho hình vẽ:

    Đường trong trong hình vẽ là đồ thị của hàm số nào?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a > 0

    Vậy hàm số cần tìm là y = x^{3} - 3x +
1.

  • Câu 19: Vận dụng cao

    Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 21: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 22: Thông hiểu

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Vận dụng

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 24: Thông hiểu

    Một chất điểm chuyển động với quy luật S(t) = 6t^{2} - t^{3}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Vận tốc của chuyển động là:

    v(t) = S'(t) = 12t - 3t^{2} = 12 -
3(2 - t)^{2} \leq 12;\forall t

    Vậy vận tốc đạt giá trị lớn nhất bằng 12m/s khi t =
2.

  • Câu 25: Thông hiểu

    Giá trị nhỏ nhất của hàm số f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 là:

    Tập xác định D = \mathbb{R}

    Biến đổi f(x) như sau:

    \begin{matrix}  f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 \hfill \\  f\left( x ight) = \left( {{x^2} + 5x + 4} ight)\left( {{x^2} + 5x + 6} ight) + 2019 \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 4 \Rightarrow t = {\left( {x + \frac{5}{2}} ight)^2} - \frac{9}{4} \geqslant  - \frac{9}{4};\forall x \in \mathbb{R}

    Hàm số đã cho trở thành

    f\left( y ight) = {t^2} + 2t + 2019 = {\left( {t + 1} ight)^2} + 2018 \geqslant 2018,\forall t \geqslant  - \frac{9}{4}

    Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại t =  - 1

  • Câu 26: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Dựa vào bảng biến thiên ta thấy

    Tiệm cận ngang là y = 3

    Tiệm cận đứng là x = -1 và x = 1

    Vậy tổng các đường tiệm cận cần tìm bằng 3.

  • Câu 27: Vận dụng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 28: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 4)^{3};\forall
x\mathbb{\in R}. Số điểm cực đại của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 4)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Lập bảng biến thiên của hàm số

    Suy ra số điểm cực đại của hàm số là 1 điểm.

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 30: Nhận biết

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 31: Nhận biết

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x + 3}{x - 1} là đường thẳng có phương trình

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{2x + 3}{x - 1} = + \infty \Rightarrow x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}y = \lim_{xightarrow 1^{-}}\frac{2x + 3}{x - 1} = - \infty \Rightarrow x =1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 32: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Tìm m để bất phương trình nghiệm đúng

    Bất phương trình f\left( x ight) <  - \cos x + m nghiệm đúng với mọi x \in \left( {0;\pi } ight) khi và chỉ khi:

    Ta có: f\left( x ight) <  - \cos x + m \Rightarrow m > f\left( x ight) + \cos x\left( * ight)

    Xét hàm số  g\left( x ight) = f\left( x ight) + \cos x;x \in \left( {0;\pi } ight)

    => g'\left( x ight) = f'\left( x ight) - \sin x

    Ta có: \forall x \in \left( {0;\pi } ight):\left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) < 0} \\   {0 < \sin x \leqslant 1} \end{array}} ight.

    \begin{matrix}   \Rightarrow g'\left( x ight) = f'\left( x ight) - \sin x < 0;\forall x \in \left( {0;\pi } ight) \hfill \\   \Rightarrow f\left( x ight) - \cos x < g\left( 0 ight) = f\left( 0 ight) + 1 \hfill \\   \Rightarrow m \geqslant f\left( 0 ight) + 1 \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 34: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 35: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 36: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = f(x):

    Hàm số y = f(x) là hàm số:

    Đồ thị hàm số bậc ba có dạng y = ax^{3} +
bx^{2} + cx + d có hệ số a >
0 nên hàm số cần tìm là y = x^{3} -
3x + 2.

  • Câu 37: Thông hiểu

    Cho hàm số y = \frac{x}{\sqrt{x^{2} -
4}}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Tập xác định D = ( - \infty; - 2) \cup
(2; + \infty)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 1 \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận ngang là y = \pm 1

    Lại có \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} y =  + \infty  \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận đứng là x = \pm 2

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.

  • Câu 38: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 39: Vận dụng

    Có tất cả bao nhiêu mặt phẳng cách đều bốn đỉnh của một tứ diện?

    Có 2 loại mặt phẳng thỏa mãn đề bài là:

    a) Loại 1: Mặt phẳng qua trung điểm của 3 cạnh bên có chung đỉnh. Có 4 mặt phẳng thỏa mãn loại này (vì có 4 đỉnh)

    Mp cách đều 4 đỉnh

    Nhận xét. Loại này ta thấy có 1 điểm nằm khác phía với 3 điểm còn lại.

    b) Loại 2: Mặt phẳng qua trung điểm của cạnh ( cạnh này thuộc cặp cạnh, mỗi cặp cạnh là chéo nhau). Có mặt phẳng như thế.

    Mp cách đều 4 đỉnh

    Nhận xét. Loại này ta thấy có 2 điểm nằm khác phía với 2 điểm còn lại.

  • Câu 40: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 41: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 42: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} -
2} là:

    Điều kiện xác định \left\{ \begin{matrix}
2 - x \geq 0 \\
\sqrt{x^{2} + 3} - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\sqrt{x^{2} + 3} eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x eq \pm 1 \\
\end{matrix} ight.

    Ta có: \lim_{x ightarrow -\infty}\left( \dfrac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} ight) =\lim_{x ightarrow - \infty}\left( \dfrac{- \sqrt{\dfrac{2}{x^{2} -\dfrac{1}{x}}} - 1}{- \sqrt{1 + \dfrac{3}{x}} - \dfrac{2}{x}} ight) =1 nên y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\frac{\sqrt{2 - x}
- x}{\sqrt{x^{2} + 3} - 2} = \lim_{x ightarrow 1}\frac{\left( 2 - x -
x^{2} ight)\left( \sqrt{x^{2} + 3} + 2 ight)}{\left( x^{2} - 2
ight)\left( \sqrt{2 - x} + x ight)}

    = \lim_{x ightarrow 1}\frac{(2 -
x)\left( \sqrt{x^{2} + 3} + 2 ight)}{(x + 2)\left( \sqrt{2 - x} + x
ight)} = - 3 suy ra x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}\frac{\sqrt{2 -x} - x}{\sqrt{x^{2} + 3} - 2} = + \infty;\lim_{x ightarrow1^{+}}\frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} = - \infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 44: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 45: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo