Đề thi giữa kì 1 Toán 12 Đề 2

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đồ thị hàm số y = x^{3} - 3x + 2 là hình nào trong 4 hình dưới đây?

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
y' = 3x^{2} - 3

    Khi đó \mathbf{y'
=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack \begin{matrix}
\mathbf{x = -}\mathbf{1} \\
\mathbf{x =}\mathbf{1} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}\left\lbrack \begin{matrix}
\mathbf{y}\mathbf{(}\mathbf{-}\mathbf{1)}\mathbf{=}\mathbf{4} \\
\mathbf{y}\mathbf{(1)}\mathbf{=}\mathbf{0} \\
\end{matrix} ight..

    Do đó, chọn đáp án là: Hình 2

  • Câu 2: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2}(x - 1).x^{3};\forall
x\mathbb{\in R}. Hỏi hàm số có bao nhiêu điểm cực tiểu?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.

  • Câu 3: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 4: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 5: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 6: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 7: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 8: Thông hiểu

    Đợt xuất khẩu gạo của tính B kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^{3} - 24t^{2} + 144t +
2500. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?

    Xét hàm số S(t) = t^{3} - 24t^{2} + 144t
+ 2500 với 1 \leq t \leq
20.

    Ta có: S^{'}(t) = 3t^{2} - 48t +
144

    S^{'}(t) = 0 \Rightarrow 3t^{2} -
48t + 144 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 4 \in \lbrack 1;20brack \\
t = 12 \in \lbrack 1;20brack \\
\end{matrix} ight.

    Lại có: S(1) = 2621;S(4) = 2756;S(12) =
2500;S(20) = 3780.

    Do đó: \max_{\lbrack 1;20brack}S(t) =
S(20) = 3780.

    Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.

  • Câu 9: Vận dụng cao

    Có thể chia một hình lập phương thành bao nhiêu khối tứ diện bằng nhau?

    Chia hình lập phương

    Lần lượt dùng mặt phẳng (BDD'B') ta chia khối lập phương thành hai khối lăng trụ ABD.A'B'D' và BCD,B'C'D'.

    +) Với khối ABD.A'B'D' ta lần lượt dùng các mặt phẳng (AB'D') và (AB'D) chia thành ba khối tứ diện bằng nhau.

    +) Tương tự với khối BCD.B'C'D'

    Vậy có tất cả 6 khối tứ diện bằng nhau.

  • Câu 10: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 11: Vận dụng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 12: Vận dụng

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 13: Vận dụng cao

    Cho x, y là các số thực dương thỏa mãn điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - xy + 3 = 0} \\   {2x + 3y - 14 \leqslant 0} \end{array}} ight.. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3{x^2}y - x{y^2} - 2{x^3} + 2x bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {x > 0,y > 0} \\   {{x^2} - xy + 3 = 0} \end{array}} ight. \Rightarrow y = \frac{{{x^2} + 3}}{x} = x + \frac{3}{x}

    Lại có: 2x + 3y - 14 \leqslant 0

    \begin{matrix}   \Leftrightarrow 2x + 3\left( {x + \dfrac{3}{x} - 14} ight) \leqslant 0 \hfill \\   \Leftrightarrow 5{x^2} - 14x + 9 \leqslant 0 \Leftrightarrow x \in \left[ {1;\dfrac{9}{5}} ight] \hfill \\ \end{matrix}

    Từ đó P = 3{x^2}\left( {x + \frac{3}{x}} ight) - x\left( {x + \frac{3}{x}} ight) - 2{x^3} + 2x = 5x - \frac{9}{x}

    Xét hàm số f\left( x ight) = 5x - \frac{9}{x};\forall x \in \left[ {1;\frac{9}{5}} ight]

    f'\left( x ight) = 5 + \frac{9}{{{x^2}}} > 0;\forall x \in \left[ {1;\frac{9}{5}} ight]

    => Hàm số đồng biến trên \left[ {1;\frac{9}{5}} ight]

    => f\left( 1 ight) \leqslant f\left( x ight) \leqslant f\left( {\frac{9}{5}} ight) \Rightarrow  - 4 \leqslant f\left( x ight) \leqslant 4

    => \max P + \min P = 4 + \left( { - 4} ight) = 0

  • Câu 14: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 15: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 16: Thông hiểu

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 17: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định hàm số y = f(x)?

    Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên đáp án là y = x^{3} -
3x^{2} + 1.

  • Câu 19: Thông hiểu

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 20: Vận dụng

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 22: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có \mathop {\lim }\limits_{x \to \infty } f\left( x ight) = 2

    => Đồ thị hàm số đường tiệm cận ngang là y = 2

  • Câu 23: Vận dụng

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 24: Thông hiểu

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 26: Thông hiểu

    Đồ thị hàm số f(x) = \frac{x + 1}{\sqrt{2
- x}.\sqrt{3 - x}} có tất cả bao nhiêu đường tiệm cận?

    Hàm số xác định \left\{ \begin{matrix}
2 - x > 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 2 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow x < 2

    Tập xác định D = ( -
\infty;2)

    Ta có: \lim_{x ightarrow 2^{-}}f(x) = +
\infty suy ra x = 2 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{x + 1}{\sqrt{2 - x}.\sqrt{3 - x}} =
\lim_{x ightarrow - \infty}\frac{x + 1}{\sqrt{x^{2} - 5x +
6}}

    = \lim_{x ightarrow -\infty}\dfrac{x\left( 1 + \dfrac{1}{x} ight)}{- x\sqrt{1 - \dfrac{5}{x} +\dfrac{6}{x^{2}}}} = \lim_{x ightarrow - \infty}\dfrac{1 +\dfrac{1}{x}}{- \sqrt{1 - \dfrac{5}{x} + \dfrac{6}{x^{2}}}} = -1

    Suy ra y = - 1 là tiệm cận ngang của đồ thị hàm số

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 27: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 28: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 29: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng bao nhiêu?

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng - 3.

  • Câu 31: Nhận biết

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{x + 1}{x^{2} - 4} có phương trình là:

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x + 1}{x^{2} - 4} = 0

    Vậy đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 32: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 33: Thông hiểu

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
\frac{1}{2}(m + 3)x^{2} + m^{2}x + 1 với m là tham số. Hỏi có bao nhiêu giá trị của tham số m để hàm số đạt cực đại tại x = 1?

    Ta có: y' = f'(x) = x^{2} - (m +
3)x + m^{2}

    Điều kiện cần: Hàm số y = f(x) đã cho có đạo hàm tại \forall x\mathbb{\in
R}

    Do đó hàm số y = f(x) đạt cực đại tại x = 1 \Leftrightarrow f'(1) =
0

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight.

    Điều kiện đủ:

    Với m = - 1 hàm số trở thành y = \frac{1}{3}x^{3} - x^{2} + x +
1

    Ta có: y' = x^{2} - 2x + 1 = (x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    Do đó hàm số không có cực trị.

    Với m = 2 hàm số trở thành y = \frac{1}{3}x^{3} - \frac{5}{2}x^{2} + 4x +
1

    Ta có: y' = x^{2} - 5x + 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng biến thiên

    Suy ra hàm số đạt cực đại tại x =
1 suy ra m = 2 thỏa mãn.

    Vậy có duy nhất một giá trị của m thỏa mãn yêu cầu.

  • Câu 34: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 35: Vận dụng cao

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 37: Nhận biết

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Kết luận nào sau đây đúng?

    Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại x = 1;x = 3;x = 4.

    Tại x = 1;x = 4 ta thấy f'(x) đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại x = 1;x =
4.

    Tại x = 3 ta thấy f'(x) đổi dấu từ dương sang âm nên hàm số đạt cực đại tại x = 3.

  • Câu 38: Nhận biết

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 39: Thông hiểu

    Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I) y = \frac{{2x + 1}}{{x + 1}}; (II) y =  - {x^4} + {x^2} - 2; (III)

     (I) Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    y' = \frac{1}{{{{\left( {x + 1} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} ight\}

    => (I) không thỏa mãn 

    (II) Tập xác định D = \mathbb{R}

    y' =  - 4{x^3} + 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{{\sqrt 2 }}{2}} \\   {x =  - \dfrac{{\sqrt 2 }}{2}} \end{array}} ight.

    Bảng xét dấu

    Chọn các khẳng định đúng

    => (II) thỏa mãn

    (III) Tập xác định D = \mathbb{R}

    y' = 3{x^2} + 3 > 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên tập số thực

    => (III) không thỏa mãn

  • Câu 40: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 41: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 42: Thông hiểu

    Biết giá trị lớn nhất của hàm số y = -
2x^{3} + 3x^{2} + m trên đoạn \lbrack 0;2brack bằng 5. Tìm giá trị của tham số m?

    Ta có: y' = - 6x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta có:

    \max_{\lbrack 0;2brack}f(x) = 5
\Leftrightarrow f(1) = 5 \Leftrightarrow m + 1 = 5 \Leftrightarrow m =
4

  • Câu 43: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đạt cực tiểu tại điểm

    Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm x = 0.

  • Câu 44: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 45: Vận dụng

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo