Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Tìm điều kiện của tham số
để đồ thị hàm số
chỉ có một điểm cực đại mà không có điểm cực tiểu?
Xét khi đó
là hàm số bậc hai có a = -1 < 0 nên đồ thị của hàm số là parabol có bề lõm hướng xuống nên có 1 cực đại mà không có cực tiểu. Suy ra
thỏa mãn.
Xét khi đó
là hàm số bậc 4 dạng trùng phươn
Để đồ thị hàm số có một cực đại mà không có cực tiểu thì
Vậy đáp án cần tìm là .
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Tất cả các giá trị của tham số
để hàm số
có hai điểm cực trị?
Ta có:
Để hàm số có hai điểm cực trị thì có hai nghiệm phân biệt khi đó
Tất cả các giá trị của tham số
để đồ thị hàm số
có duy nhất một đường tiệm cận là:
Ta có: nên đồ thị hàm số luôn có một đường tiệm cận ngang là
.
Vậy để đồ thị hàm số có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình
vô nghiệm
Cho đồ thị hàm số
như hình vẽ:

Hỏi hàm số
nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Xác định số giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Xác định số giá trị nguyên của tham số để hàm số
nghịch biến trên khoảng
?
Trong các hàm số sau đây, hàm số nào không nghịch biến trên
?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Xác định giá trị nhỏ nhất của biểu thức
, biết
với
là tham số và hàm số đồng biến trên
.
Ta có:
Hàm số đã cho đồng biến trên
Ta lại có:
Gọi
là tập hợp tất cả các giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên
bằng
. Số phần tử của tập hợp
:
Ta có:
Đặt
Hàm số đã cho trở thành:
Ta có:
Vậy số phần tử của tập hợp S là 1.
Cho hàm số
. Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Biết rằng giá trị nhỏ nhất của hàm số
trên đoạn
bằng
. mệnh đề nào sau đây đúng?
Ta có:
Suy ra hàm số luôn nghịch biến trên các khoảng và
Vì hàm số có giá trị nhỏ nhất trên đoạn nên
Hàm số có giá trị nhỏ nhất trên đoạn bằng
nên suy ra
Cho hàm số
có bảng biến như sau:

Tìm tất cả các giá trị của tham số m để bất phương trình
có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Từ biểu thức của ta có bảng xét dấu như sau:
Dễ thấy hàm số đạt cực tiểu tại nên mệnh đề “
đạt cực tiểu tại
” đúng và mệnh đề “
đạt cực tiểu tại
” sai.
Hàm số có đúng một điểm cực trị nên mệnh đề “ không có cực trị” sai và “
có hai điểm cực trị” sai.
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Gọi
lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?
Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là:
Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?
Gọi số cạnh đáy là với
Đáy của chóp là
– giác.
Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.
Suy ra hình chóp có tổng số cạnh là .
Theo đề bài, hình chóp có 22 cạnh nên ta được (TMĐK)
Do đó, hình chóp có đáy là 11 – giác.
Do đó chóp có 11 mặt bên cộng 1 đáy.
Vậy hình chóp có tổng 12 mặt.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tìm giá trị của tham số
để đồ thị hàm số
đi qua điểm
?
Đồ thị hàm số đi qua điểm nên ta có:
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

Số điểm cực trị của hàm số
là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hàm số
. Xét các mệnh đề sau, những những mệnh đề nào đúng?
Ta có:
Ta có bảng xét dấu như sau:

Quan sát bảng xét dấu ta thấy:
- Hàm số có 3 điểm cực trị
- Hàm số đồng biến trên khoảng (-1; 0), (1; +∞) và nghịch biến trên khoảng (-∞; -1), (0; 1)
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận đứng là:
Từ bảng biến thiên ta có:
Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng
Cho hàm số
với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d)
. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).
Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình . Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Cho hàm số
có bảng biến thiên như sau:

Hàm số
đồng biến trên khoảng nào sau đây?
Ta có:
Vậy hàm số đồng biến trên các khoảng
Suy ra hàm số đồng biến trên khoảng
.