Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?
Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?
Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Cho hình chóp tứ giác đều
có đáy
là hình vuông tâm
, cạnh
. Mặt bên tạo với đáy góc
. Gọi
là hình chiếu vuông góc của
trên
. Tính theo
thể tích
của khối tứ diện
.

Gọi là trung điểm
, suy ra
nên
.
Tam giác vuông , có
.
Kẻ nên
.
Tam giác vuông , ta có
Diện tích tam giác .
Vậy .
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Cho hàm số f(x) có đạo hàm trên
. Đồ thị của hàm số
trên đoạn
là đường cong hình bên. Mệnh đề nào dưới đây đúng?

Dựa vào thị của hàm số trên đoạn
ta thấy
.
Ta có bảng BBT:
Do đó .
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho hàm số
xác định trên
và có bảng xét dấu đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đạo hàm ta thấy hàm số có 1 điểm cực trị.
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho hàm số
. Gọi
là tập hợp các giá trị thực của tham số
sao cho giá trị nhỏ nhất của hàm số trên đoạn
bằng
. Tính tổng các phần tử của
.
Ta có:
Mà
=>
Do đó hàm số nghịch biến trên
=>
Ta lại có:
Một công ty bất động sản có
căn hộ cho thuê. Nếu giá cho thuê mỗi căn là
đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm
đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?
Đặt số tiền tăng thêm là (đồng)
Giá tiền mỗi căn hộ một tháng là (đồng)
Số căn hộ bị trống là (phòng)
Số tiền thu được mỗi tháng là: (đồng)
Đặt
Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số , giá trị lớn nhất của hàm số
tại đỉnh của parabol.
Hay:
Vậy công ty niêm yết giá tiền là: đồng để được doanh thu là lớn nhất.
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Đồ thị hàm số
có tất cả bao nhiêu tiệm cận đứng?
Tập xác định
Ta có:
Suy ra đường thẳng là hai đường tiệm cận đứng của đồ thị hàm số.
Cho tập hợp
và
là tập hợp các hàm số
có
. Chọn ngẫu nhiên một hàm số
. Tính xác suất để đồ thị hàm số
có hai điểm cực trị nằm khác phía đối với trục
?
Không gian mẫu
Ta có:
Đồ thị của hàm số có hai điểm cực trị nằm khác phía đối với trục
suy ra phương trình (*) có hai nghiệm phân biệt khác
.
Mà
Vậy xác suất cần tìm là .
Cho đồ thị hàm số
như sau:

Hỏi phương trình
có tối đa bao nhiêu nghiệm thực?
Phương trình là phương trình hoành độ giao điểm của đồ thị hàm số
và đường thẳng
Số giao điểm của hai đường bằng số nghiệm của phương trình .
Dựa vào đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại nhiều nhất 5 điểm.
Vậy phương trình có tối đa 5 nghiệm.
Cho hàm số
có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số
trên
bằng:

Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số trên
bằng
.
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Cho hàm số
có đồ thị như hình vẽ:

Số điểm cực trị của hàm số
là:
Tịnh tiến hàm số sang trái hai đơn vị ta được hàm số
Đồ thị hàm số có được gồm hai phần.
Phần 1 là phần đồ thị nằm phía bên phải
.
Phần 2 là phần đồ thị đối xứng qua .
Khi đó đồ thị hàm số sẽ có một điểm cực trị.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đồng biến trên các khoảng và
.
Vậy đáp án cần tìm là .
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Ta có bảng xét dấu
Suy ra hàm số đồng biến trên khoảng .
Biết rằng hàm số
đạt giá trị nhỏ nhất trên
tại điểm
. Khi đó giá trị biểu thức
bằng:
Ta có:
Mà khi
Suy ra .
Cho hàm số
. Có bao nhiêu giá trị nguyên dương của tham số
luôn đồng biến trên
?
Ta có:
Khi đó:
Do nguyên dương nên
.
Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Tìm điều kiện của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên từng khoảng xác định
Vậy giá trị cần tìm là .
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hàm số
với
là tham số. Với điều kiện nào của tham số
thì hàm số đã cho có cực đại và cực tiểu?
Ta có:
Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt
.
Vậy đáp án cần tìm là .
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi
(trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là
. Đúng||Sai
b) Giá một căn hộ sau khi tăng là
(trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là
(trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi (trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là . Đúng||Sai
b) Giá một căn hộ sau khi tăng là (trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là (trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
a) Đúng. Số căn hộ bị bỏ trống là . Suy ra Số căn hộ còn lại sau khi tăng giá là
.
b) Sai. Giá một căn hộ sau khi tăng là (trăm ngìn).
c) Đúng. Tổng số tiền công ty thu được là
.
d) Sai. Ta có .
Phương trình .
Bảng biến thiên
Từ bảng biến thiên suy ra, công ty sẽ thu được nhiều tiền nhất khi giá căn hộ là 3,5 (triệu đồng).
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?
Ta có hàm số y = ax, y = logax đồng biến trên tập xác định nếu a > 0
Do đó hàm số y = log3x đồng biến trên (1; +∞)
Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

Đồ thị hàm số
(m là tham số thực) có bốn tiệm cận khi và chỉ khi:
Điều kiện
Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận
Nếu thì
=> y = 1 là tiệm cận ngang của đồ thị hàm số
Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20
=> Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a
=> f(3) < m < f(-1)
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

Cho hình vẽ:

Biết rằng đường trong trong hình vẽ trên là đồ thị của một trong các hàm số nào dưới đây, đó là hàm số nào?
Đây là đồ thị hàm số bậc ba có dạng với hệ số
Đồ thị hàm số cắt trục hoành tại điểm nên hàm số thích hợp là
.
Cho hàm số
có đồ thị kí hiệu là
. Tìm điểm thuộc
?
Ta thấy
Cho hàm số
xác định trên
và có đạo hàm
. Tìm số điểm cực trị của hàm số đó?
Ta có: nên
có các nghiệm là
và
chỉ đổi dấu khi x qua các nghiệm
Vậy hàm số đã cho có hai điểm cực trị.