Cho hàm số
có đồ thị
. Gọi
và đối xứng nhau qua gốc tọa độ
. Độ dài
bằng:
Gọi là hai điểm đối xứng nhau qua gốc tọa độ (
)
Vì A và B thuộc (C) nên
. Khi đó
Độ dài đoạn AB là: .
Cho hàm số
có đồ thị
. Gọi
và đối xứng nhau qua gốc tọa độ
. Độ dài
bằng:
Gọi là hai điểm đối xứng nhau qua gốc tọa độ (
)
Vì A và B thuộc (C) nên
. Khi đó
Độ dài đoạn AB là: .
ho hàm số
. Khẳng định nào sau đây là khẳng định đúng?
Đồ thị hàm số có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Xác định các giá trị của tham số
để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Cho hàm số
có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:

Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ .
Hàm số nào sau đây nghịch biến trên khoảng (1; 3)?
Xét hàm số có
=> y’ = 0 =>
Ta có bảng biến thiên như sau:

Do đó hàm số nghịch biến trên khoảng (1; 3)
Cho hàm bậc ba
có đồ thị như hình vẽ:

Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận?
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Hàm số
đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Cho hàm số
với
là tham số. Tìm các giá trị nguyên dương tham số
không vượt quá
để hàm số đã cho có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi
Mà không vượt quá
nên
suy ra có
giá trị thỏa mãn yêu cầu.
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Gọi A, B, C là các điểm cực trị của đồ thị hàm số
. Bán kính của đường tròn nội tiếp tam giác ABC bằng:
Ta có:
=> Đồ thị hàm số có ba điểm cực trị là A(0; 4), B(1; 3), C(-1;; 3)
Tính được
Áp dụng công thức tính bán kính đường tròn nội tiếp tam giác ABC ta có:
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Cho hàm số
. Trên đoạn
hàm số có giá trị nhỏ nhất là
. Tìm giá trị của
?
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra .
Vậy là giá trị cần tìm.
Cho hình lăng trụ đứng
có đáy là tam giác cân,
và
, góc giữa mặt phẳng
và mặt đáy
bằng
. Tính theo
thể tích khối lăng trụ.

Gọi là trung điểm của đoạn thẳng
. Tam giác
cân tại
nên ta suy ra tam giác
cân tại
Lại có . Từ đó suy ra
Do đó
Tam giác vuông , có
Tam giác vuông , có
Diện tích tam giác
Vậy .
Xác định giá trị nhỏ nhất của biểu thức
, biết
với
là tham số và hàm số đồng biến trên
.
Ta có:
Hàm số đã cho đồng biến trên
Ta lại có:
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Đồ thị hàm số
có bao nhiêu điểm có tọa độ nguyên?
Ta có:
Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số đã cho nghịch biến trên từng khoảng xác định?
Ta có:
Để hàm số nghịch biến trên từng khoảng xác định thì
Mà
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Do đó tiệm cận ngang của đồ thị hàm số là
.
Cho hàm số
có bảng biến thiên như sau.

Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên
. Sai|| Đúng
b) Hàm số nghịch biến trên
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại
. Đúng||Sai
Cho hàm số có bảng biến thiên như sau.
Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên . Sai|| Đúng
b) Hàm số nghịch biến trên . Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại . Đúng||Sai
Quan sát bảng biến thiên, ta có các kết quả sau:
a) Hàm số đồng biến trên nên khẳng định hàm số đồng biến trên
là sai.
b) Hàm số nghịch biến trên .
c) Hàm số có đúng 1 điểm cực trị là .
d) Hàm số có đạt cực đại tại .
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
. Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Cho hàm số
xác định trên
và có bảng xét dấu đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đạo hàm ta thấy hàm số có 1 điểm cực trị.
Cho hàm số
. Biết
. Mệnh đề nào dưới đây đúng?
Tập xác định
Ta có:
Từ
Từ (**) suy ra .
Vậy là đáp án cần tìm.
Cho hình vẽ là đồ thị hàm số
. Hỏi hàm số
đồng biến trên khoảng nào dưới đây?

Từ đồ thị ta có bảng xét dấu
như sau:
Vậy hàm số đồng biến trên khoảng
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Đồ thị hàm số nào sau đây nhận điểm
làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng 11 điểm cực trị?

Hàm số đạt cực trị tại
Xét hàm số
Bảng biến thiên của hàm số suy ra chỉ có phương trình
cho ta nghiệm bội lẻ.
Nếu
=> Số điểm cực trị u là 1
=> Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)
Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số

Áp dụng công thức:
Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u
=> . Kết hợp với điều kiện
=> Có 29 giá trị nguyên thỏa mãn yêu cầu.
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Cho hàm số
có đạo hàm
xác định và liên tục trên
. Hình vẽ sau đây là đồ thị của hàm số
:

Hàm số
nghịch biến trên khoảng:
Ta có:
Với ta có:
ta có bảng xét dấu của
như sau:
Suy ra hàm số nghịch biến trên khoảng
.
Tìm tất cả các giá trị của tham số m để hàm số
; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của
để hàm số
đạt cực đại tại
?
Hàm số đạt cực đại tại
Vậy đáp án cần tìm là .
Cho hàm số
có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là .
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi
(trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là
. Đúng||Sai
b) Giá một căn hộ sau khi tăng là
(trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là
(trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi (trăm nghìn) là số tiền tăng thêm.
a) Số căn hộ còn lại sau khi tăng giá là . Đúng||Sai
b) Giá một căn hộ sau khi tăng là (trăm nghìn). Sai||Đúng
c) Tổng số tiền công ty thu được là (trăm nghìn). Đúng||Sai
d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng
a) Đúng. Số căn hộ bị bỏ trống là . Suy ra Số căn hộ còn lại sau khi tăng giá là
.
b) Sai. Giá một căn hộ sau khi tăng là (trăm ngìn).
c) Đúng. Tổng số tiền công ty thu được là
.
d) Sai. Ta có .
Phương trình .
Bảng biến thiên
Từ bảng biến thiên suy ra, công ty sẽ thu được nhiều tiền nhất khi giá căn hộ là 3,5 (triệu đồng).
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.