Hàm số
đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Hàm số
đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Sai||Đúng
b) Đạo hàm của hàm số là
. Đúng||Sai
c) Giá trị lớn nhất của hàm số trên
là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:
Tập xác định
Ta có:
Cho hàm số
xác định, liên tục trên
và có đồ thị như hình vẽ

Giá trị lớn nhất của hàm số
trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Cho hàm số có bảng biến thiên như hình vẽ:

Khẳng định nào sau đây là sai?
Dựa vào bảng biến thiên suy ra hàm số đã cho có hai điểm cực đại và một điểm cực tiểu
Giá trị lớn nhất của hàm số trên tập số thực bằng 4
Hàm số có ba cực trị nên ab < 0 mà c = 0 =>
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Hàm số
có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho hàm số
có đạo hàm trên
và hàm số
là hàm số bậc ba có đồ thị là đường cong trong hình vẽ. Xét tính đúng sai của các khẳng định sau:

a) Hàm số
đồng biến trên khoảng (−∞; -2). Sai||Đúng
b) Hàm số
có hai điểm cực trị. Sai||Đúng
c)
. Sai||Đúng
d) Hàm số
đồng biến trên khoảng
. Đúng||Sai
Cho hàm số có đạo hàm trên
và hàm số
là hàm số bậc ba có đồ thị là đường cong trong hình vẽ. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng (−∞; -2). Sai||Đúng
b) Hàm số có hai điểm cực trị. Sai||Đúng
c) . Sai||Đúng
d) Hàm số đồng biến trên khoảng
. Đúng||Sai
a) Sai: Vì từ đồ thị của hàm số ta thấy
nên hàm số đồng biến trên khoảng (1; +∞).
b) Sai: Vì từ đồ thị của hàm số ta thấy
chỉ đổi dấu một lần qua x = 1 nên hàm số có một điểm cực trị.
c) Sai: Từ đồ thị ta có hàm số có dạng
Đồ thị hàm số đi qua
nên
Vậy
d) Đúng: Ta có:
Vẽ đường thẳng y = x − 1 trên cùng hệ trục tọa độ với đồ thị hàm số
Khi đó
Bảng biến thiên của hàm số g(x) như sau:
Hàm số g(x) đồng biến trên khoảng (−3; -1) nên g(x) đồng biến trên khoảng
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Đồ thị hàm số
được biểu diễn bởi hình vẽ:

Điểm cực tiểu của hàm số đã cho là:
Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là .
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Cho hình vẽ:

Hàm số nào sau đây có đồ thị như hình vẽ bên?
Nhận thấy dạng đồ thị của hàm số bậc ba
Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là .
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hình chóp đều
có tất cả các cạnh bằng
. Mặt phẳng
song song với mặt đáy
và cắt các cạnh bên
lần lượt tại
. Tính diện tích tam giác
biết mặt phẳng
chia khối chóp đã cho thành hai phần có thể tích bằng nhau.

Mặt phẳng và cắt các cạnh
lần lượt tại
.
Theo Talet, ta có .
Do đó .
Theo giả thiết .
Suy ra tam giác MNP là tam giác đều cạnh .
Vậy diện tích .
ho hàm số
. Khẳng định nào sau đây là khẳng định đúng?
Đồ thị hàm số có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1
Gọi
lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số
. Chọn biểu thức đúng?
Ta có:
Vậy
Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Hàm số
nghịch biến trên khoảng
khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng khi
Vậy đáp án cần tìm là .
Điều kiện của tham số
để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm số bậc ba
có đồ thị là đường cong như hình vẽ:

Có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có đúng ba điểm cực trị?
Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:
Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]
Ta có: f(x) ∈ [-2; 3] với =>
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm thực của phương trình
là
Kí hiệu bảng biến thiên như sau:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đường thẳng
.
Dựa vào bảng biến thiên, ta thấy đồ thị hàm số cắt đường thẳng
tại 2 điểm phân biệt.
Vậy phương trình có 2 nghiệm phân biệt.
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Cho hàm số
có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Cho hàm số có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Ta có:
nên hàm số có tiệm cận ngang là
và tiệm cận đứng là
.
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Cho hàm số bậc ba
có bảng biến thiên như hình dưới đây.

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng?
Ta có:
Đồng nhất hai vế ta có:
Mặt khác
Giải phương trình
Hàm số có tập xác định là
Khi đó
=> Đồ thị hàm số có 2 đường tiệm cận đứng là
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Đồ thị hàm số
có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có: . Để hàm số đã cho đồng biến trên khoảng
ta có;
Mặt khác nên
Vậy có hai giá trị của tham số m cần tìm.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Hàm số nào dưới dây nghịch biến trên
?
Xét hàm số có
suy ra hàm số
đồng biến trên
.
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.