Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 2: Thông hiểu

    Hàm số y = f(x) có bảng biến thiên như sau:

    Phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi:

    Số nghiệm của phương trình f(x) =
m bằng số giao điểm của hai đồ thị hàm số \left\{ \begin{matrix}
y = f(x) \\
y = m \\
\end{matrix} ight..

    Dựa vào bảng biến thiên ta có phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi - 2 < m < 2.

  • Câu 3: Vận dụng

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 4: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số y = -2f(x) đồng biến trên khoảng

    Ta có:

    \begin{matrix}  y' =  - 2f'\left( x ight) =  - 2{x^2} + 4x \hfill \\  y' > 0 \Rightarrow x \in \left( {0;2} ight) \hfill \\ \end{matrix}

    => Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)

  • Câu 6: Vận dụng cao

    Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} là:

    Tính số điểm cực trị của hàm số

    Ta có:

    \begin{matrix}  y' = f'\left( x ight){.2021^{f\left( x ight)}}.\ln 2021 + f'\left( x ight){.2020^{f\left( x ight)}}.\ln 2020 \hfill \\   = f'\left( x ight)\left[ {{{2021}^{f\left( x ight)}}.\ln 2021 + {{2020}^{f\left( x ight)}}.\ln 2020} ight] \hfill \\ \end{matrix}

    Do {2021^{f\left( x ight)}}.\ln 2021 + {2020^{f\left( x ight)}}.\ln 2020 > 0,\forall x \in \mathbb{R}

     y' = 0 \Leftrightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_1} = a} \\   {{x_2} = b} \\   {{x_3} = c} \end{array}} ight.

    Tính số điểm cực trị của hàm số

    Vậy hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} có ba điểm cực trị.

  • Câu 7: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y
= \frac{x + m}{x + 2} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}.

    Để hàm số y = \frac{x +
m}{x + 2} đồng biến trên từng khoảng xác định

    \Leftrightarrow y' > 0;\forall x \in D
\Leftrightarrow \frac{2 - m}{(x + 2)^{2}} > 0

    \Leftrightarrow 2 - m > 0
\Leftrightarrow m < 2

    Vậy giá trị cần tìm là m <
2.

  • Câu 8: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 9: Thông hiểu

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 10: Thông hiểu

    Cho hàm số y = \frac{x + 1}{x^{2} - 2x -
3}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Ta có:

    \lim_{x ightarrow 3^{+}}y = \lim_{xightarrow 3^{+}}\dfrac{x + 1}{x^{2} - 2x - 3} = \lim_{x ightarrow3^{+}}\dfrac{\dfrac{1}{x} + \dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = + \infty suy ra đồ thị hàm số có tiệm cận đứng là x = 3

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x + 1}{x^{2} - 2x - 3} = \lim_{x
ightarrow ( - 1)^{+}}\frac{x + 1}{(x + 1)(x - 3)} = -
\frac{1}{4}

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 2x - 3}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}} ight) = 0 suy ra đồ thị hàm số có tiệm cận ngang là y
= 0

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.

  • Câu 11: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 12: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x - 1)^{3}(2 - x). Hàm số y
= f(x) đồng biến trên khoảng nào sau đây?

    Ta có bảng xét dấu:

    Từ bảng xét dấu trên ta có hàm số y =
f(x) đồng biến trên (1;2).

  • Câu 13: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 14: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 15: Nhận biết

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực tiểu của hàm số đã cho là

    Đạo hàm f'(x) đổi dấu từ âm sang dương hai lần qua các điểm x = -
2x = 2 nên hàm số đã cho có hai điểm cực tiểu.

  • Câu 17: Thông hiểu

    Số điểm cực trị của hàm số f(x) = (x +
2)^{3}(x - 3)^{2}(x - 2)^{5} là:

    Ta có:

    f'(x) = 3(x + 2)^{2}(x - 3)^{2}(x -2)^{5}+ 2(x + 2)^{3}(x - 3)(x - 2)^{5}+ 5(x + 2)^{3}(x - 3)^{2}(x -2)^{4}

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ight brack\left\lbrack 3(x - 3) + 2(x +2)(x - 2) + 5(x + 2)(x - 3) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left\lbrack 3\left( x^{2} -5x + 6 ight) + 2\left( x^{2} - 4 ight) + 5\left( x^{2} - x - 6ight) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 3x^{2} - 15x + 18 +2x^{2} - 8 + 5x^{2} - 5x - 30 ight)

    \Leftrightarrow f'(x) = \left\lbrack
(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20
ight)

    Khi đó

    f'(x) = 0

    \Leftrightarrow \left\lbrack (x +
2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20 ight)
= 0(*)

    Phương trình (*) có ba nghiệm bội lẻ x =
3;x = 1 \pm \sqrt{3}

    Vậy hàm số ban đầu có ba điểm cực trị.

  • Câu 18: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 19: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 20: Nhận biết

    Cho hàm số y = {x^3} - 3{x^2} + 2. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x \hfill \\   \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu:

    Chọn mệnh đề đúng trong các mệnh đề dưới đây

    Quan sát bảng xét dấu ta thấy:

    + Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)

    + Hàm số nghịch biến trên các khoảng (0; 2)

  • Câu 21: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 22: Vận dụng

    Đường thẳng y = m^{2} cắt đồ thị hàm số y = x^{4} - x^{2} - 10 tại hai điểm phân biệt sao cho tam giác OAB vuông (với O là gốc tọa độ). Mệnh đề nào sau đây đúng?

    Xét hàm số y = x^{4} - x^{2} -
10 ta có y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{\sqrt{2}}{2} \\x = - \dfrac{\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    m^{2} \geq 0;\forall m nên từ bảng biến thiên ta thấy đường thẳng y =
m^{2} luôn cắt đồ thị hàm số y =
x^{4} - x^{2} - 10 tại những cặp điểm đối xứng nhau qua trục tung.

    Giả sử A\left( x_{1};m^{2}
ight);B\left( - x_{1};m^{2} ight). Tam giác OAB vuông

    \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{0}
\Leftrightarrow - {x_{1}}^{2} + m^{4} = 0 \Leftrightarrow x_{1} =
m^{2}

    Suy ra A\left( m^{2};m^{2}
ight)A\left( m^{2};m^{2}
ight) thuộc đồ thị hàm số nên

    m^{8} - m^{4} - 10 = m^{2}
\Leftrightarrow m^{2} = 2 \in (1;3)

  • Câu 23: Nhận biết

    Đồ thị hàm số y = \frac{\sqrt{10000 -
x^{2}}}{x - 2} có bao nhiêu đường tiệm cận ngang?

    Điều kiện xác định \left\{ \begin{matrix}
10000 - x^{2} \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 100 \leq x \leq 100 \\
x eq 2 \\
\end{matrix} ight.

    Tập xác định \lbrack -
100;100brack\backslash\left\{ 2 ight\}

    Vì hàm số không tồn tại khi x ightarrow
- \inftyx ightarrow +
\infty nên đồ thị hàm số không có tiệm cận ngang.

  • Câu 24: Vận dụng

    Tính thể tích V của khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = {\text{ }}AC = a. Biết rằng A'A = A'B = A'C = a.

     

    Gọi I là trung điểm BC. Từ A'A = A'B = A'C = a, suy ra hình chiếu vuông góc của A' trên mặt đáy (ABC) là tâm đường tròn ngoại tiếp tam giác ABC

    Suy ra A'I \bot \left( {ABC} ight).

    Tam giác ABC, có BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2

    Tam giác vuông A'IB, có A'I = \sqrt {A'{B^2} - B{I^2}}  = \frac{{a\sqrt 2 }}{2}.

    Diện tích tam giác ABC là  {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}}}{2}.

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.A'I = \frac{{{a^3}\sqrt 2 }}{4}.

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Khẳng định nào dưới đây đúng?

    Hàm số không có giá trị lớn nhất vì \lim_{x ightarrow - 1^{-}}y = + \infty nên khẳng định “Giá trị lớn nhất của hàm số là 2” sai.

    Phương trình f(x) = m có 3 nghiệm thực phân biệt khi và chỉ khi 1 <
m < 2 nên khẳng định “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2)” đúng.

    Hàm số đồng biến trên các khoảng ( -
\infty;1)( - 1;1) nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là ( - \infty;1)” sai.

    Đồ thị hàm số có hai đường tiệm cận là x
= - 1;y = 1\lim_{x ightarrow
\pm \infty}y = 1;\lim_{x ightarrow - 1^{- 1}}y = + \infty nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.

    Vậy khẳng định đúng cần tìm là “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2).”

  • Câu 26: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 27: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Hỏi hàm số y = f\left( x^{2} - 2x
ight) có bao nhiêu điểm cực tiểu?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 2\  \\
x^{2} - 2x = 1\  \\
x^{2} - 2x = 3\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \pm \sqrt{2} \\
x = 3 \\
x = 1 \\
\end{matrix} ight.

    g'(x) \geq 0 \Leftrightarrow (2x -
2)f'\left( x^{2} - 2x ight) \geq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
2x - 2 \geq 0 \\
f'\left( x^{2} - 2x ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
2x - 2 \leq 0 \\
f'\left( x^{2} - 2x ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
- 2 \leq x^{2} - 2x \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x^{2} - 2x \geq 3 \\
x^{2} - 2x \leq - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 2x + 2 \geq 0 \\
x^{2} - 2x - 3 \leq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x^{2} - 2x - 3 \geq 0 \\
x^{2} - 2x + 2 \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
- 1 \leq x \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \leq 1 \\
\left\lbrack \begin{matrix}
x \geq 3 \\
x \leq - 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 \leq x \leq 3 \\
x \leq - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng xét dấu ta suy ra hàm số y =
f\left( x^{2} - 2x ight) có 1 điểm cực tiểu.

  • Câu 28: Nhận biết

    Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm M( - 4;5)?

    Xét hàm số y = \frac{5x + 1}{x +
4}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ + }} \frac{{5x + 1}}{{x + 4}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ - }} \frac{{5x + 1}}{{x + 4}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x = -
4 là tiệm cận đứng của đồ thị hàm số.

    Tiệm cận đứng đi qua điểm M( -
4;5).

  • Câu 29: Vận dụng cao

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 30: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 32: Thông hiểu

    Hàm số y = - x^{4} + 2mx^{2} + 1 đạt cực tiểu tại x = 0 khi:

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: \left\{ \begin{matrix}
y' = - 4x^{3} + 4mx \\
y'' = - 12x^{2} + 4m \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 khi

    \left\{ \begin{matrix}
y'(0) = 0 \\
y''(0) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4.0^{3} + 4m.0 = 0(TM) \\
- 12.^{2} + 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m > 0

    Vậy m > 0 thỏa mãn yêu cầu bài toán.

  • Câu 33: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 34: Thông hiểu

    Tính tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - (m - 1)x^{2} + x -
m đồng biến trên tập xác định?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2(m - 1)x +
1

    Để hàm số đồng biến trên tập xác định thì y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' \geq 0
\Leftrightarrow m^{2} - 2m \geq 0 \Leftrightarrow 0 \leq m \leq
2

    m\mathbb{\in Z} nên m \in \left\{ 0;1;2 ight\}

    Vậy S = 0 + 1 + 2 = 3.

  • Câu 35: Thông hiểu

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Vận dụng

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 37: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 38: Thông hiểu

    Giả sử m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng \left( {0; + \infty } ight). Tính giá trị của m.

    Ta có:

    \begin{matrix}  y' = 1 - \dfrac{4}{{{x^2}}} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tính GTNN của hàm số trên khoảng

    => Giá trị nhỏ nhất của hàm số bằng 4

    => y(2) = 4

    => m = 4

  • Câu 39: Thông hiểu

    Cho hàm số y = f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{\sqrt {{x^2} + 1} }}{x}{\text{   khi x }} \geqslant {\text{ 1}}} \\   {\dfrac{{2x}}{{x - 1}}{\text{   khi x  <  1}}} \end{array}} ight.. Số đường tiệm cận của đồ thị hàm số y = f(x) là:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x}}{{x - 1}} =  - \infty

     => Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 - \frac{1}{x}}} = 2 => y = 2 là tiệm cận ngang của đồ thị hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {2 + \frac{1}{{{x^2}}}}  = 1 => đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

  • Câu 40: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 41: Thông hiểu

    Tìm GTLN, GTNN của hàm số lượng giác y = f\left( x ight) = \sin x + \cos x + \sin x.\cos x trên đoạn

    \left[ {0,\pi } ight]

    Đặt t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} ight)

    x \in \left[ {0,\pi } ight] \Rightarrow t \in \left[ { - 1,\sqrt 2 } ight]

    Ta có:

    \begin{matrix}  {t^2} = {\left( {\sin x + \cos x} ight)^2} \hfill \\   = {\sin ^2}x + co{x^2}x + 2\sin x.\cos x \hfill \\   = 1 + 2\sin x.\cos x \hfill \\   \Rightarrow \sin x.\cos x = \dfrac{{{t^2} - 1}}{2} \hfill \\ \end{matrix}

    \begin{matrix}  f\left( x ight) = g\left( t ight) = t + \dfrac{{{t^2} - 1}}{2} = \dfrac{{{t^2}}}{2} + t - \dfrac{1}{2} \hfill \\  g'\left( t ight) = t + 1,g'\left( t ight) = 0 \Leftrightarrow t =  - 1 \hfill \\  g\left( { - 1} ight) =  - 1,g\left( {\sqrt 2 } ight) = \sqrt 2  + \dfrac{1}{2} \hfill \\ \end{matrix}

    \mathop { \Rightarrow \max f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  = \sqrt 2  + \frac{1}{2},\mathop {\min f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  =  - 1

     

  • Câu 42: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 43: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số g(x) = 2f(x) + 2021 đồng biến trên khoảng:

    Ta có: g'(x) = 2f'(x) > 0
\Leftrightarrow f'(x) > 0

    \Leftrightarrow x \in ( - \infty; - 4)
\cup (7; + \infty)

    Nên suy ra hàm số cũng đồng biến trên (8;
+ \infty).

  • Câu 44: Thông hiểu

    Cho hàm số y = f(x)f'(x) = x^{2021}.(x - 1)^{2020}(x + 1);\forall
x\mathbb{\in R}. Hàm số đã cho có bao nhiêu điểm cực trị?

    Ta có: f'(x) = 0 \Rightarrow
x^{2021}.(x - 1)^{2020}(x + 1) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số y =
f(x) có hai điểm cực trị.

  • Câu 45: Nhận biết

    Cho hàm số y = x^{4} - 2x^{2} +
3. Khẳng định nào sau đây đúng?

    Ta thấy hàm số đã cho là hàm trùng phương y = ax^{4} + bx^{2} + c;(a eq 0) với ab < 0 nên đây là trường hợp hàm số có ba điểm cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo