Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}?

    Theo yêu cầu bài toán \Leftrightarrow
y' = x^{2} - 4mx + 4 \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 4 \leq 0 \Leftrightarrow
- 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số f(x) = - x^{3} - 3x^{2} + m trên \lbrack - 1;1brack bằng 0?

    Ta có: f'(x) = - 3x^{2} -
6x

    Xét f'(x) = 0 \Leftrightarrow -
3x^{2} - 6x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f( - 1) = m - 2 \\
f(0) = m \\
f(1) = m - 4 \\
\end{matrix} ight.m - 4
< m - 2 < m

    Khi đó \min_{\lbrack - 1;1brack}f(x) =
f(1) = m - 4

    Theo đề bài ra ta có:

    \min_{\lbrack - 1;1brack}f(x) = 0
\Leftrightarrow m - 4 = 0 \Leftrightarrow m = 4

    Vậy đáp án cần tìm là m = 4.

  • Câu 3: Nhận biết

    Hàm số y = \frac{1}{3}{x^3} + {x^2} - 3x + 1 đạt cực tiểu tại điểm 

     Ta có: y = \frac{1}{3}{x^3} + {x^2} - 3x + 1 có tập xác định D = \mathbb{R}

    \begin{matrix}  y' = {x^2} + 2x - 3 \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 3} \end{array}} ight. \hfill \\  y'' = 2x + 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( { - 3} ight) =  - 4 < 0} \\   {y''\left( 1 ight) = 4 > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số đạt cực tiểu tại điểm x = 1

  • Câu 4: Nhận biết

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 5: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 6: Thông hiểu

    Biết rằng có hai giá trị t_{1};t_{2} của tham số t để đường thẳng y = t - x và đồ thị hàm số y = \frac{x}{x - 1} có đúng một điểm chung. Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm t - x =
\frac{x}{x - 1} \Leftrightarrow (t - x)(x - 1) = x

    \Leftrightarrow x^{2} - tx + t =
0(*)

    Đường thẳng y = t - x và đồ thị hàm số y = \frac{x}{x - 1} có một điểm chung khi phương trình (*) có 1 nghiệm duy nhất

    \Leftrightarrow \Delta = 0
\Leftrightarrow t^{2} - 4t = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight.

    Vậy t_{1} + t_{2} = 4 \in \left( -
1;\frac{9}{2} ight).

  • Câu 7: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 8: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 9: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x,\forall x \in \mathbb{R}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x \hfill \\   \Rightarrow y' = f''\left( x ight) - 2x =  - 3{x^2} + 4x + 3 \hfill \\  y' = 0 \Leftrightarrow x = \dfrac{{2 \pm \sqrt {13} }}{3} \hfill \\  y'' =  - 6x + 4 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( {\dfrac{{2 + \sqrt {13} }}{3}} ight) =  - 2\sqrt {13}  < 0} \\   {y''\left( {\dfrac{{2 - \sqrt {13} }}{3}} ight) = 2\sqrt {13}  > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị

  • Câu 10: Thông hiểu

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 11: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 12: Vận dụng

    Cho tứ diện ABCD có thể tích V. Gọi V' là thể tích của khối tứ diện có các đỉnh là trọng tâm của các mặt của khối tứ diện ABCD. Tính tỉ số \frac{{V'}}{V}.

     

    Gọi M là trung điểm AC; E và F lần lượt là trọng tâm của tam giác ABC, ACD.

    Trong tam giác MBD có EF = \frac{1}{3}BD.

    Tương tự ta có các cạnh còn lại của tứ diện mới sinh ra bằng \frac{1}{3} cạnh của tứ diện ban đầu.

    Do đó \frac{{V'}}{V} = {\left( {\frac{1}{3}} ight)^3} = \frac{1}{{27}}.

  • Câu 13: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 14: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 15: Vận dụng cao

    Cho hàm số y = \left\lbrack f\left( x^{2}+ 2x ight) ightbrack' có đồ thị như hình vẽ:

    Tổng các giá trị nguyên của tham số m \in\lbrack - 10;10brack để hàm số y= g(x) = f\left( |x - 2| + m ight)5 điểm cực trị bằng:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left\lbrack f\left( x^{2}+ 2x ight) ightbrack' có đồ thị như hình vẽ:

    Tổng các giá trị nguyên của tham số m \in\lbrack - 10;10brack để hàm số y= g(x) = f\left( |x - 2| + m ight)5 điểm cực trị bằng:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Hàm số y =
f(x) có đạo hàm và liên tục trên \mathbb{R}. Hàm số y = f'(1 - x) có đồ thị như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Hàm số y = f(x) nghịch biến

    \Leftrightarrow f'(x) < 0
\Leftrightarrow f'(1 - t) < 0 với x = 1 - t

    \Leftrightarrow \left\lbrack
\begin{matrix}
t < 0 \\
1 < t < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 - x < 0 \\
1 < 1 - x < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 1 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng ( - 1;0).

  • Câu 17: Nhận biết

    Trong các hàm số sau đây, hàm số nào không nghịch biến trên \mathbb{R}?

    Với y =  - \frac{1}{{{x^2} + 1}} \Rightarrow y' = \frac{{2x}}{{{{\left( {{x^2} + 1} ight)}^2}}}

    y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên \mathbb{R}

  • Câu 18: Thông hiểu

    Gọi m,n lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x}}{(x - 1)\sqrt{x}}. Khẳng định nào sau đây đúng?

    Tập xác định D =
(0;2brack\backslash\left\{ 1 ight\}

    Đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 1^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = + \infty;\lim_{x ightarrow 1^{-}}\frac{\sqrt{2
- x}}{(x - 1)\sqrt{x}} = - \infty ta có x = 1 là tiệm cận đứng.

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = - \infty ta có: x = 0 là tiệm cận đứng.

    Vậy m = 0;n = 2.

  • Câu 19: Vận dụng

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Đáp án là:

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Gọi x,h (m) lần lượt là chiều rộng và chiều cao của bể cá.

    Ta có thể tích bể cá V =
2x^{2}h.

    Theo đề bài ta có:

    2xh + 2.2xh + 2x^{2} = 8

    \Leftrightarrow 6xh + 2x^{2} =
8

    \Leftrightarrow h = \frac{8 -
2x^{2}}{6x}

    V = 2x^{2}\frac{8 - 2x^{2}}{6x} =
\frac{8x - 2x^{3}}{3}

    \Rightarrow V' = \frac{8 -
6x^{2}}{3}

    \Rightarrow V' = 0

    \Leftrightarrow 8 - 6x^{2} = 0
\Leftrightarrow x^{2} = \frac{4}{3} \Leftrightarrow x =
\frac{2\sqrt{3}}{3}

    Ta có bảng biển thiên

    \Rightarrow V_{\max} =
\frac{32\sqrt{3}}{27} \approx 2,1\ \ m^{3}

  • Câu 20: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 21: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

  • Câu 22: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 23: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 24: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 25: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 1} ight)\left( {x - 2} ight)\left( {{3^x} - 1} ight),\forall x \in \mathbb{R}. Số điểm cực trị của hàm số đã cho bằng

     Ta có:

    f'\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight)\left( {x - 2} ight)\left( {{3^x} - 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    => Hàm số có 3 điểm cực trị

  • Câu 26: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m - 1 có ba nghiệm thực phân biệt?

    Dựa vào bảng biến thiên ta thấy phương trình f(x) = m - 1 có ba nghiệm thực phân biệt khi và chỉ khi 1 < m - 1 < 3
\Leftrightarrow 2 < m < 4 \Rightarrow m \in (2;4)

  • Câu 28: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số y = \left|
f(x) ight| là:

    Khi đó bảng biến thiên của hàm số y =
\left| f(x) ight| là:

    Dựa vào bảng biến thiên ta thấy hàm số y
= \left| f(x) ight| có 5 điểm cực trị.

  • Câu 29: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 30: Vận dụng

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= - x^{3} - 6x^{2} + (4m - 9)x + 4 nghịch biến trên khoảng ( - \infty; - 3) là:

    Ta có: y' = - 3x^{2} - 12x + 4m -
9

    Hàm số nghịch biến trên khoảng ( -
\infty; - 3) khi y' \leq
0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow - 3x^{2} - 12x + 4m - 9
\leq 0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow 4m \leq 3x^{2} + 12x +
9;\forall x \in ( - \infty; - 3)

    Đặt f(x) = 3x^{2} + 12x + 9 ta có: f'(x) = 6x + 12. Ta có bảng biến thiên của f(x) như sau:

    Dựa vào bảng biến thiên ta thấy

    4m \leq 3x^{2} + 12x + 9;\forall x \in (
- \infty; - 3)

    \Leftrightarrow 4m \leq 0
\Leftrightarrow m \leq 0

    Vậy ( - \infty;0brack là giá trị của tham số m cần tìm.

  • Câu 32: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Nhận biết

    Đồ thị hàm số y = \frac{\sqrt{10000 -
x^{2}}}{x - 2} có bao nhiêu đường tiệm cận ngang?

    Điều kiện xác định \left\{ \begin{matrix}
10000 - x^{2} \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 100 \leq x \leq 100 \\
x eq 2 \\
\end{matrix} ight.

    Tập xác định \lbrack -
100;100brack\backslash\left\{ 2 ight\}

    Vì hàm số không tồn tại khi x ightarrow
- \inftyx ightarrow +
\infty nên đồ thị hàm số không có tiệm cận ngang.

  • Câu 34: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 35: Thông hiểu

    Cho hàm số y = \frac{1}{3}x^{2} + x^{2} +
(m - 2)x + 2 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho có hai điểm cực trị nằm bên trái trục Oy?

    Ta có: y' = x^{2} + 2x + m -
1

    Đồ thị của hàm số đã cho có hai điểm cực trị nằm bên trái trục tung khi và chỉ khi phương trình y' =
0 có hai nghiệm âm phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S < 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - m + 1 > 0 \\
- 2 < 0 \\
m - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < m < 2

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 36: Vận dụng

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 37: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
+ 3x^{2} trên \lbrack - 5; -
1brack?

    Ta có: y' = 3x^{2} + 6x

    y' = 0 \Rightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.. Khi đó: y(
- 5) = - 50;y( - 2) = 4;y( - 1) = 2

    Vậy \min_{\lbrack - 5; - 1brack}y = f(
- 5) = - 50.

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 39: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 40: Thông hiểu

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= x^{4} + (m - 1)x^{2} + \left( m^{2} - 1 ight)x đạt cực tiểu tại điểm x = 0?

    Ta có: \left\{ \begin{matrix}
y' = 4x^{3} + 2(m - 1)x + \left( m^{2} - 1 ight) \\
y'' = 12x^{2} + 2(m - 1) \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 \Rightarrow
y'(0) = 0 \Leftrightarrow m^{2} - 1 = 0 \Leftrightarrow m = \pm
1

    Với m = 1 ta được y = x^{4} \Rightarrow y' = 4x^{3}

    y' = 0 \Leftrightarrow x =
0. Hàm số đạt cực tiểu tại x =
0 (thỏa mãn yêu cầu)

    Với m = - 1 ta được y = x^{4} - 2x^{2} \Rightarrow y' = 4x^{3} -
4x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = \pm 1 (không thỏa mãn)

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 41: Thông hiểu

    Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?

     Ta có bảng biến thiên như sau:

    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)

  • Câu 42: Thông hiểu

    Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x = 3x\left( {x - 2} ight) \hfill \\   \Rightarrow y' < 0 \Rightarrow 0 < x < 2 \hfill \\ \end{matrix}

    Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)

  • Câu 43: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 44: Nhận biết

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 45: Vận dụng cao

    Cho hàm số y = \frac{{x - 1}}{{\sqrt {4{x^2} - 2x - m}  - x - 1}}. Xác định tất cả giá trị của tham số m để đồ thị hàm số có đúng 4 đường tiệm cận.

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 1;\mathop {\lim }\limits_{x \to  - \infty } y =  - \frac{1}{3}=> Đồ thị hàm số có 2 đường tiệm cận ngang là y = 1 và y =  - \frac{1}{3}

    Đồ thị có đúng 4 đường tiệm cận thì phương trình \sqrt {4{x^2} - 2x - m}  - x - 1 = 0 có hai nghiệm phân biệt khác 1

    Ta có:

    \begin{matrix}  \sqrt {4{x^2} - 2x - m}  - x - 1 = 0 \hfill \\   \Leftrightarrow \sqrt {4{x^2} - 2x - m}  = x + 1 \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant  - 1} \\   {3{x^2} - 4x - 1 = m\left( * ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Theo yêu cầu bài toán tương đương phương trình (*) có hai nghiệm phân biệt x \geqslant  - 1,x e 1

    Xét hàm số y = 3{x^2} - 4x - 1;\left( {x \geqslant  - 1;x e 1} ight)

    Bảng biến thiên

    Tìm m để đồ thị hàm số có đúng 4 đường tiệm cận

    Dựa vào bảng biến thiên phương trình 3{x^2} - 4x - 1 = m;\left( {x \geqslant  - 1;x e 1} ight) có hai nghiệm thì m \in \left( {\frac{{ - 7}}{3};6} ight]\backslash \left\{ { - 2} ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo