Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị hàm số y = \frac{x - \sqrt{x +
2}}{(x - 2)^{2}(x - 1)} có tất cả bao nhiêu tiệm cận đứng?

    Tập xác định D = \lbrack - 2; +
\infty)\backslash\left\{ 1;2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left[ {\frac{{x - \sqrt {x + 2} }}{{{{\left( {x - 2} ight)}^2}\left( {x - 1} ight)}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left[ {\frac{{x - \sqrt {x + 2} }}{{{{\left( {x - 2} ight)}^2}\left( {x - 1} ight)}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight.

    Suy ra đường thẳng x = 1;x = 2 là hai đường tiệm cận đứng của đồ thị hàm số.

  • Câu 2: Thông hiểu

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 1)(x - 2)....(x - 2019), với \forall x\mathbb{\in R}. Hỏi hàm số y = f(x) có bao nhiêu điểm cực tiểu?

    Ta có: f'(x) = 0 \Leftrightarrow (x -
1)(x - 2)....(x - 2019) = 0\Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2 \\
.... \\
x = 2019 \\
\end{matrix} ight.

    Suy ra f'(x) = 02019 nghiệm bội lẻ và hệ số a > 0 nên có 1010 cực tiểu.

  • Câu 3: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm y = f'(x) =
x^{2}\left( x^{2} - 1 ight);\forall x\mathbb{\in R}. Hàm số y = f( - x) đồng biến trên khoảng:

    Ta có:

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    y = f( - x) \Rightarrow y' = -
f'( - x)

    Hàm số y = f( - x) đồng biến khi và chỉ khi

    - f'( - x) < 0 \Leftrightarrow
f'( - x) > 0

    \Leftrightarrow - 1 < - x < 1
\Leftrightarrow 1 > x > - 1

    Vậy đáp án cần tìm là ( -
1;1).

  • Câu 4: Nhận biết

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 5: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 6: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 7: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 8: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 9: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 10: Thông hiểu

    Số giá trị nguyên của tham số m để hàm số y = 2x^{3} - 5x^{2} - 4x + 2 -
m có giá trị cực đại và giá trị cực tiểu trái dấu nhau là:

    Ta có: y' = 6x^{2} - 10x -
4

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 2 \Rightarrow y' = - 10 - m \\x = - \dfrac{1}{3} \Rightarrow y' = \dfrac{73}{27} - m \\\end{matrix} ight.

    Giá trị cực đại và giá trị cực tiểu trái dấu

    \Leftrightarrow ( - 10 - m)\left(
\frac{73}{27} - m ight) < 0

    \Leftrightarrow - 10 < m <
\frac{73}{27}

    m\mathbb{\in Z} nên có 12 giá trị thỏa mãn.

    Vậy có tất cả 12 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 11: Thông hiểu

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= x^{3} - 3mx^{2} + 3\left( m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)?

    Ta có: y' = 3x^{2} - 6mx + 3\left(
m^{2} - 2 ight)

    Hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)

    \Leftrightarrow y' \geq 0
\Leftrightarrow 3x^{2} - 6mx + 3\left( m^{2} - 2 ight) \geq
0

    \Leftrightarrow x^{2} - 2mx + m^{2} - 2
\geq 0

    \Leftrightarrow (x - m)^{2} \geq 2
\Leftrightarrow \left\lbrack \begin{matrix}
x - m \geq \sqrt{2} \\
x - m \leq - \sqrt{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \geq m + \sqrt{2} \\
x \leq m - \sqrt{2} \\
\end{matrix} ight.

    Theo yêu cầu bài toán ta có: \sqrt{2} + m
\leq 12 \Leftrightarrow m \leq 12 - \sqrt{2}

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;...;9;10 ight\}

    Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 12: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 13: Vận dụng

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Hàm số y = \frac{1}{3}{x^3} - \frac{5}{2}{x^2} + 6x nghịch biến trên khoảng nào?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {y' = {x^2} - 2x + 6} \\   {y' < 0} \end{array} \Rightarrow } ight.{x^2} - 2x + 6 < 0 \Rightarrow 2 < x < 3

    => Hàm số nghịch biến trên khoảng (2; 3)

  • Câu 15: Nhận biết

    Tìm giá trị lớn nhất của hàm số f(x) = -
x^{3} + 48x trên \lbrack -
7;5brack?

    Ta có: f'(x) = - 3x^{2} +
48

    \Rightarrow f'(x) = 0
\Leftrightarrow - x^{3} + 48x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
x = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(0) = 0;f( - 7) = 7 \\
f( - 4) = - 128 \\
f(4) = 128;f(5) = 115 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 7;5brack}f(x) =
128

  • Câu 16: Thông hiểu

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:

    Tập xác định D = \left[ {1;9} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{2\sqrt {9 - x} }} \hfill \\  y' = 0 \Rightarrow \sqrt {x - 1}  = \sqrt {9 - x}  \Rightarrow x = 5\left( {tm} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = y\left( 9 ight) = 2\sqrt 2 } \\   {y\left( 5 ight) = 4} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\min y = 2\sqrt 2 } \\   {\max y = 4} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 18: Vận dụng

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Một chất điểm chuyển động với quy luật s(t) = - t^{3} + 6t^{2}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Ta có: s(t) = - t^{3} + 6t^{2}
\Rightarrow v(t) = s'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = 12 - 6t = 0
\Leftrightarrow t = 2

    Ta có bảng biến thiên như sau:

    Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng 12 khi t =
2.

  • Câu 21: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx - 8}{2x - m} (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên từng khoảng xác định?

    Tập xác định x eq
\frac{m}{2}

    Ta có: y' = \frac{- m^{2} + 16}{(2x -
m)^{2}}.

    Để hàm số đồng biến trên khoảng xác định thì y' > 0 \Leftrightarrow \frac{- m^{2} +
16}{(2x - m)^{2}} > 0

    \Leftrightarrow - m^{2} + 16 > 0
\Leftrightarrow - 4 < m < 4

    Vậy đáp án cần tìm là: - 4 < m <
4.

  • Câu 22: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 23: Thông hiểu

    Cho đồ thị hàm số y = f(x) như sau:

    Hỏi phương trình 2f(x) = m có tối đa bao nhiêu nghiệm thực?

    Phương trình 2f(x) = m \Leftrightarrow
f(x) = \frac{m}{2} là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{m}{2}

    Số giao điểm của hai đường bằng số nghiệm của phương trình f(x) = \frac{m}{2}.

    Dựa vào đồ thị hàm số ta thấy đường thẳng y = \frac{m}{2} cắt đồ thị tại nhiều nhất 5 điểm.

    Vậy phương trình có tối đa 5 nghiệm.

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định giá trị cực tiểu của hàm số đã cho.

    Dựa vào bảng biến thiên ta thấy:

    Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu là y = 1.

  • Câu 25: Thông hiểu

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 26: Vận dụng cao

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 28: Thông hiểu

    Cho các hàm số sau:

    y = \frac{\sin x}{x};y =\frac{\sqrt{x^{2} + x + 1}}{x};y = \frac{\sqrt{1 - x}}{x + 1};y = x + 1+ \sqrt{x^{2} - 1}

    Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?

    Ta có:

    y = \frac{\sin x}{x}\lim_{x ightarrow \infty}\frac{\sin x}{x} =
0 nên có 1 tiệm cận ngang là y =
0.

    y = \frac{\sqrt{x^{2} + x +
1}}{x}\lim_{x ightarrow +
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = 1;\lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = - 1 nên có 2 tiệm cận ngang là y = 1;y = - 1.

    y = \frac{\sqrt{1 - x}}{x + 1}\lim_{x ightarrow -
\infty}\frac{\sqrt{1 - x}}{x + 1} = 0 nên có 1 tiệm cận ngang là y = 0.

    y = x + 1 + \sqrt{x^{2} - 1}\lim_{x ightarrow - \infty}\left( x + 1 +
\sqrt{x^{2} - 1} ight) = 1 nên có 1 tiệm cận ngang là y = 1.

    Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.

  • Câu 29: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\ \bot\ (ABCD), biết SC = a\sqrt{3}. Gọi M,N,P,Q lần lượt là trung điểm của SB, SD, CD, BC. Các mệnh đề sau đúng hay sai?

    a) Thể tích của khối chóp S.ABCD bằng \frac{1}{3}SA.S_{ABCD}. Đúng||Sai

    b) Thể tích của khối chóp S.ABC bằng thể tích của khối chóp S.ACD. Đúng||Sai

    c) Thể tích của khối chóp S.ABCD bằng a^{3}. Sai||Đúng

    d) Thể tích của khối chóp A.MNPQ bằng \frac{a^{3}}{8}. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\ \bot\ (ABCD), biết SC = a\sqrt{3}. Gọi M,N,P,Q lần lượt là trung điểm của SB, SD, CD, BC. Các mệnh đề sau đúng hay sai?

    a) Thể tích của khối chóp S.ABCD bằng \frac{1}{3}SA.S_{ABCD}. Đúng||Sai

    b) Thể tích của khối chóp S.ABC bằng thể tích của khối chóp S.ACD. Đúng||Sai

    c) Thể tích của khối chóp S.ABCD bằng a^{3}. Sai||Đúng

    d) Thể tích của khối chóp A.MNPQ bằng \frac{a^{3}}{8}. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có: SA\ \bot\ (ABCD) \Rightarrow
V_{S.ABCD} = \frac{1}{3}SA.S_{ABCD}. Suy ra mệnh đề đúng.

    b) Từ giả thiết có S_{ABC} = S_{ACD} =
\frac{a^{2}}{2}; SA\bot(ABCD).

    V_{S.ABC} = \frac{1}{3}SA.S_{\Delta
ABC};\ \ \ V_{S.ACD} = \frac{1}{3}SA.S_{\Delta ACD}

    \Rightarrow V_{S.ABC} =
V_{S.ACD}. Suy ra mệnh đề đúng.

    c) Ta có SA = \sqrt{SC^{2} - AC^{2}} =
a.

    Suy ra V_{S.ABCD} =
\frac{1}{3}SA.S_{ABCD} = \frac{a^{3}}{3}. Vậy mệnh đề sai.

    d) Ta có \left\{ \begin{matrix}
MN//PQ \\
MN = PQ \\
\end{matrix} ight. .

    Suy ra MNPQ là hình bình hành; mặt khác, ta có: \left\{ \begin{matrix}
BD\bot SA \\
BD\bot AC \\
\end{matrix} ight.\  \Rightarrow BD\bot SC

    \left\{ \begin{matrix}
PQ//BD \\
PN//SC \\
\end{matrix} ight.\  \Rightarrow PN\bot PQ nên tứ giác MNPQ là hình chữ nhật.

    SA = \sqrt{SC^{2} - AC^{2}} =
a

    Do SM \cap (APQ) = B nên ta có:

    \frac{d\left( M;(AQP) ight)}{d\left(
S;(AQP) ight)} = \frac{MB}{AB} = \frac{1}{2} \Rightarrow d\left( M;(AQP) ight) =
\frac{1}{2}d\left( S;(AQP) ight) = \frac{1}{2}SA =
\frac{a}{2}.

    S_{\Delta AQP} = \frac{1}{2}AH.QP =
\frac{1}{2}.\frac{3}{4}AC.\frac{1}{2}BD = \frac{3}{16}AC.BD = \frac{3}{16}\left(
a\sqrt{2} ight)^{2} = \frac{3}{8}a^{2}.

    Với H = AC \cap PQ.

    Ta có V_{A.MNPQ} = 2V_{A.MQP} =
2V_{M.AQP}

    V_{M.AQP} =
\frac{1}{3}d\left( M;(AQP) ight).S_{\Delta AQP} =
\frac{1}{3}.\frac{a}{2}.\frac{3}{8}a^{2} =
\frac{a^{3}}{16}.

    Vậy V_{A.MNPQ} = 2V_{M.AQP} =
2.\frac{a^{3}}{16} = \frac{a^{3}}{8}. Suy ra mệnh đề đúng.

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 32: Vận dụng

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 33: Vận dụng

    Cho hàm số đa thức bậc bốn f(x). Đồ thị hàm số y = f'(3 - 2x) được biểu thị trong hình vẽ sau:

    Hàm số y = f(x) nghịch biến trong khoảng nào?

    Đặt t = 3 - 2x. Ta có bảng xét dấu của f'(3 - 2x) được mô tả lại như sau:

    Từ đó suy ra bảng xét dấu của f'(t)

    Vậy hàm số y = f(x) nghịch biến trên các khoảng ( - \infty; -
1),(3;5).

  • Câu 34: Thông hiểu

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 2.

  • Câu 36: Thông hiểu

    Cho hàm số bậc ba có bảng biến thiên như sau:

    Chọn đáp án đúng

    Chọn khẳng định đúng?

    Quan sát bảng biến thiên ta suy ra a < 0

    Ta có: có hai nghiệm dương nên \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - 2b}}{{3a}} > 0} \\   {{x_1}.{x_2} = \dfrac{c}{{3a}} > 0} \end{array}} ight. \Rightarrow b > 0;c < 0

  • Câu 37: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y
= \frac{x + m}{x + 2} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}.

    Để hàm số y = \frac{x +
m}{x + 2} đồng biến trên từng khoảng xác định

    \Leftrightarrow y' > 0;\forall x \in D
\Leftrightarrow \frac{2 - m}{(x + 2)^{2}} > 0

    \Leftrightarrow 2 - m > 0
\Leftrightarrow m < 2

    Vậy giá trị cần tìm là m <
2.

  • Câu 38: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 39: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 40: Thông hiểu

    Hàm số y =
f(x) có đạo hàm và liên tục trên \mathbb{R}. Hàm số y = f'(1 - x) có đồ thị như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Hàm số y = f(x) nghịch biến

    \Leftrightarrow f'(x) < 0
\Leftrightarrow f'(1 - t) < 0 với x = 1 - t

    \Leftrightarrow \left\lbrack
\begin{matrix}
t < 0 \\
1 < t < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 - x < 0 \\
1 < 1 - x < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 1 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng ( - 1;0).

  • Câu 41: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 42: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?

    Xét hàm số y = \frac{2x + 1}{x -
3} ta có:

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ 3 ight\}

    Lại có: y' = \frac{- 7}{(x - 3)^{2}}
< 0;\forall x \in D nên hàm số y
= \frac{2x + 1}{x - 3} nghịch biến trên từng khoảng xác định của nó.

  • Câu 43: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 44: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 45: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo