Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Cho lăng trụ đứng
có đáy
là hình thoi cạnh bằng 1,
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích
của khối lăng trụ.

Hình thoi có
, suy ra
. Do đó tam giác
và
là các tam giác đều. Gọi N là trung điểm A'B' nên
Suy ra .
Tam giác vuông , có
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số nghịch biến trên
Suy ra hàm số nghịch biến trên .
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
bằng:
Ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn bằng
.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tìm giá trị lớn nhất của hàm số
trên khoảng
bằng:
Đặt
Khi đó:
So sánh và
ta thấy GTLN là
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hàm số
với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Cho hàm số
có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?

Đường tiệm cận đứng của hàm số là:
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Cho hàm số
có đạo hàm
. Tìm số điểm cực trị của hàm số
?
Ta có:
Ta có bảng biến thiên
Vậy hàm số có hai điểm cực trị.
Cho hàm số
có đồ thị
và đường thẳng
. Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị
cắt đường thẳng
tại ba điểm phân biệt?
Phương trình hoành độ giao điểm
Đặt
Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình phải có 3 nghiệm phân biệt, khi đó
phải có hai nghiệm phân biệt khác
.
Do đó
Do nguyên dương nên
.
Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Hàm số
có đạo hàm và liên tục trên
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Hàm số nghịch biến
với
Vậy hàm số nghịch biến trên khoảng
.
Tìm điều kiện của tham số
để hàm số
có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Cho hàm số
. Xác định tất cả giá trị của tham số m để đồ thị hàm số có đúng 4 đường tiệm cận.
Ta có: => Đồ thị hàm số có 2 đường tiệm cận ngang là y = 1 và
Đồ thị có đúng 4 đường tiệm cận thì phương trình có hai nghiệm phân biệt khác 1
Ta có:
Theo yêu cầu bài toán tương đương phương trình (*) có hai nghiệm phân biệt
Xét hàm số
Bảng biến thiên

Dựa vào bảng biến thiên phương trình có hai nghiệm thì
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định
Ta có: nên
là tiệm cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có hai đường tiệm cận.
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?
Hình hộp đứng có đáy là hình thoi (không phải là hình chữ nhật) có 3 mặt phẳng đối xứng bao gồm:

- Hai mặt phẳng chứa đường chéo của đáy và vuông góc với đáy.
- Một mặt phẳng là mặt phẳng trung trực của cạnh bên.
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Đường tiệm cận ngang của đồ thị hàm số
cắt đường thẳng
tại điểm có tung độ bằng:
Do và
nên đồ thị hàm số có đường tiệm cận ngang là
.
Xét phương trình có hoành độ giao điểm
Vậy tung độ giao điểm là .
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Tìm giá trị nhỏ nhất của hàm số
trên khoảng (0; 1)
Hàm số xác định và liên tục trên (0; 1) ta có:
Lập bảng biến thiên:

Từ bảng biến thiên ta có:
Gọi
là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có đúng một cực trị.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
khi và chỉ khi
Vì nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Kết luận nào sau đây về tính đơn điệu của hàm số
là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho hàm số
. Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:

Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Cho hàm số
có đồ thị như hình vẽ như sau:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng
. Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
.Sai|| Đúng
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng
là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng
.
d) Hàm số đạt cực tiểu tại (chú ý:
gọi là giá trị cực tiểu).
Cho hàm số
.
a) Đạo hàm của hàm số đã cho là
. Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Cho hàm số .
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi . Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Ta có: ,
nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi
.
Bảng biến thiên:
Hàm số đã cho nghịch biến trên các khoảng và
.
Đồ thị của hàm số có tiệm cận đứng , tiệm cận ngang
, nhận điểm
là giao điểm của hai đường tiệm cận làm tâm đối xứng.
Đồ thị hàm số cắt trục tại điểm
và đi qua điểm có tọa độ
.
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Số các giá trị nguyên của tham số
để đồ thị hàm số
có ba đường tiệm cận bằng:
Ta có:
nên
là tiệm cận ngang của đồ thị hàm số
Theo yêu cầu bài toán ta suy ra có hai nghiệm phân biệt
Mà
Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Số giá trị nguyên của tham số m để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Gọi
là tập hợp tất cả các giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên
bằng
. Số phần tử của tập hợp
:
Ta có:
Đặt
Hàm số đã cho trở thành:
Ta có:
Vậy số phần tử của tập hợp S là 1.