Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Ta có:
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra đồ thị hàm số có tiệm cận ngang là
.
Vậy đồ thị hàm số có hai đường tiệm cận.
Hàm số
có đạo hàm và liên tục trên
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Hàm số nghịch biến
với
Vậy hàm số nghịch biến trên khoảng
.
Gọi M là giá trị lớn nhất của hàm số
. Tính tích các nghiệm của phương trình f(x) = M.
Đặt
Xét hàm số ta có:
Số giá trị nguyên của tham số
để hàm số
có cực đại và cực tiểu?
Đáp án: 28
Số giá trị nguyên của tham số để hàm số
có cực đại và cực tiểu?
Đáp án: 28
Ta có:
Hàm số có cực đại và cực tiểu có hai nghiệm phân biệt
Mà .
Vậy có 28 giá trị nguyên của thoả mãn yêu cầu bài toán.
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Cho hàm số
có đạo hàm trên
và đồ thị như hình vẽ bên dưới:

a) Hàm số đồng biến trên khoảng
. Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm
. Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số đồng biến trên khoảng và đạt cực tiểu tại điểm
. giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Hàm số
có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực tiểu?
Ta có:
Suy ra có
nghiệm bội lẻ và hệ số
nên có
cực tiểu.
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có 7 điểm cực trị?
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
có 7 điểm cực trị?
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
. Khi đó m + n bằng:
Điều kiện
Tiệm cận ngang:
=> Đồ thị hàm số có 1 tiệm cận ngang là y = 1
Tiệm cận đứng:
Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2
Điều kiện đủ
Đặt
Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)
=> x = 2 không phải là tiệm cận đứng
Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.
Vậy M = 1, N = 0 => M + N = 1
Cho hàm số
xác định và liên tục trên
có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là
. Đúng||Sai
b) Ta có
. Sai|| Đúng
c) Thể tích của bể là
. Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng
. Đúng||Sai
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).
Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là . Đúng||Sai
b) Ta có . Sai|| Đúng
c) Thể tích của bể là . Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng . Đúng||Sai
a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:
b) Sai. Theo đề bài ta có: .
c) Sai. Gọi V là thể tích của bể cá, ta có:
d) Đúng. Ta có:
Bảng biến thiên:
Vậy dung tích lớn nhất của bể cá bằng .
Xác định hàm số nghịch biến trên
?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Số đường tiệm cận của đồ thị hàm số ![]()
Quy đồng biến đổi hàm số đã cho trở thành
Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang
=> Số tiệm cận là 2 đường
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Tìm GTLN, GTNN của hàm số lượng giác
trên đoạn
![]()
Đặt
Vì
Ta có:
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hàm số
xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại .
Cho hàm số
có bảng biến thiên trên đoạn
như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Mệnh đề nào dưới đây đúng?
Hàm số có
đổi dấu từ + sang – khi
đi qua điểm
Vậy hàm số đạt cực đại tại
.
Cho hàm số
với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên dễ dàng ta thấy
là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7
là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)
Vậy chọn đáp án A.
Tìm giá trị thực của tham số
để hàm số
đạt cực tiểu tại
?
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy giá trị tham số m cần tìm là .
Hàm số nào dưới dây nghịch biến trên
?
Xét hàm số có
suy ra hàm số
đồng biến trên
.
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho lăng trụ
có đáy
là hình chữ nhật tâm
và
;
vuông góc với đáy
. Cạnh bên
hợp với mặt đáy
một góc
. Tính theo
thể tích
của khối lăng trụ đã cho.

Vì nên
.
Đường chéo hình chữ nhật:
Suy ra tam giác vuông cân tại
nên
Diện tích hình chữ nhật .
Vậy .
Quan sát hình vẽ sau:

Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Tìm hàm số tương ứng với đồ thị hàm số sau đây?

Đồ thị hàm số có hệ số và có hai điểm cực trị là
nên chỉ có hàm số
thỏa mãn vì
Khi đó .
Vậy hàm số xác định được là .
Một chất điểm chuyển động với quy luật
. Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Vận tốc của chuyển động là:
Vậy vận tốc đạt giá trị lớn nhất bằng khi
.
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Hàm số nào sau đây đồng biến trên
?
Ta có hàm số có cơ số
nên đồng biến trên
.
Ngoài ra các hàm số ;
;
không thể đồng biến hoặc nghịch biến trên
.