Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức
=> Loại đáp án B và D
Ta có: => Loại đáp án B
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức
=> Loại đáp án B và D
Ta có: => Loại đáp án B
Hàm số
có bảng biến thiên như sau:

Phương trình
có ba nghiệm thực phân biệt khi và chỉ khi:
Số nghiệm của phương trình bằng số giao điểm của hai đồ thị hàm số
.
Dựa vào bảng biến thiên ta có phương trình có ba nghiệm thực phân biệt khi và chỉ khi
.
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hàm số
có đồ thị như hình vẽ sau:

Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Cho hàm số có đồ thị như hình vẽ sau:
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Cho hàm số y = f(x) có đạo hàm
. Hàm số y = -2f(x) đồng biến trên khoảng
Ta có:
=> Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)
Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số
là:

Ta có:
Do

Vậy hàm số có ba điểm cực trị.
Tìm điều kiện của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên từng khoảng xác định
Vậy giá trị cần tìm là .
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Tìm giá trị của tham số
để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Cho hàm số
. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Ta có:
suy ra đồ thị hàm số có tiệm cận đứng là
suy ra đồ thị hàm số có tiệm cận ngang là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Cho hàm số
xác định và liên tục trên khoảng
, có bảng biến thiên như hình sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy:
Hàm số nghịch biến trên khoảng
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ”.
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Số điểm cực trị của hàm số
là:
Ta có:
Khi đó
Phương trình (*) có ba nghiệm bội lẻ
Vậy hàm số ban đầu có ba điểm cực trị.
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Giá trị nhỏ nhất của hàm số
trên đoạn
là:
Ta có:
Lại có:
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta thấy:
+ Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)
+ Hàm số nghịch biến trên các khoảng (0; 2)
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Đường thẳng
cắt đồ thị hàm số
tại hai điểm phân biệt sao cho tam giác
vuông (với
là gốc tọa độ). Mệnh đề nào sau đây đúng?
Xét hàm số ta có
Ta có bảng biến thiên như sau:
Vì nên từ bảng biến thiên ta thấy đường thẳng
luôn cắt đồ thị hàm số
tại những cặp điểm đối xứng nhau qua trục tung.
Giả sử . Tam giác OAB vuông
Suy ra vì
thuộc đồ thị hàm số nên
Đồ thị hàm số
có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Tính thể tích
của khối lăng trụ
có đáy
là tam giác vuông tại A,
. Biết rằng
.

Gọi I là trung điểm BC. Từ , suy ra hình chiếu vuông góc của A' trên mặt đáy
là tâm đường tròn ngoại tiếp tam giác
Suy ra .
Tam giác , có
Tam giác vuông , có
.
Diện tích tam giác là
.
Vậy .
Cho hàm số
xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

Khẳng định nào dưới đây đúng?
Hàm số không có giá trị lớn nhất vì nên khẳng định “Giá trị lớn nhất của hàm số là
” sai.
Phương trình có 3 nghiệm thực phân biệt khi và chỉ khi
nên khẳng định “Phương trình
có
nghiệm thực phân biệt khi và chỉ khi
” đúng.
Hàm số đồng biến trên các khoảng và
nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là
” sai.
Đồ thị hàm số có hai đường tiệm cận là vì
nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.
Vậy khẳng định đúng cần tìm là “Phương trình có
nghiệm thực phân biệt khi và chỉ khi
.”
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Cho hàm số
có đạo hàm trên
và có bảng xét dấu
như sau:

Hỏi hàm số
có bao nhiêu điểm cực tiểu?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng xét dấu ta suy ra hàm số có 1 điểm cực tiểu.
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm
?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .
Tìm giá trị của tham số m để đồ thị hàm số
có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.
Tập xác định
Ta có:
=> Để đồ thị hàm số có 2 đường tiệm cận ngang thì
Vậy khi thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1
Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên dễ dàng ta thấy
là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7
là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)
Vậy chọn đáp án A.
Hàm số
đạt cực tiểu tại
khi:
Hàm số xác định với mọi
Ta có:
Hàm số đạt cực tiểu tại khi
Vậy thỏa mãn yêu cầu bài toán.
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Tính tổng
tất cả các giá trị nguyên của tham số
để hàm số
đồng biến trên tập xác định?
Tập xác định
Ta có:
Để hàm số đồng biến trên tập xác định thì
Vì nên
Vậy .
Tìm giá trị của tham số
để hàm số
nghịch biến trên khoảng ![]()
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.
+) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Giả sử m là giá trị nhỏ nhất của hàm số
trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Cho hàm số
. Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Tìm GTLN, GTNN của hàm số lượng giác
trên đoạn
![]()
Đặt
Vì
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Cho hàm số
có
. Hàm số đã cho có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có hàm số có hai điểm cực trị.
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.