Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

    Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1

  • Câu 2: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 3: Thông hiểu

    Biết giá trị lớn nhất của hàm số y =
\frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack bằng - 1. Khẳng định nào dưới đây đúng?

    Ta có: y' = \frac{- 2 - m^{2}}{(x -
2)^{2}} < 0 nên giá trị lớn nhất của hàm số y = \frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack là: f( - 1) = - 1 \Leftrightarrow \frac{m^{2} - 1}{-
3} = - 1 \Leftrightarrow m = \pm 2 \in ( - 4;3)

    Vậy đáp án cần tìm là m \in ( -
4;3).

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 5: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
- 3x^{2} - 9x + 5 trên đoạn \lbrack
- 2;2brack

    Tập xác định D\mathbb{= R}

    Với x \in \lbrack - 2;2brack ta có: y' = 3x^{2} - 6x - 9 \Rightarrow
y' = 0 \Leftrightarrow x = - 1

    Ta có: \left\{ \begin{matrix}
y( - 2) = 3 \\
y( - 1) = 10 \\
y(2) = - 17 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;2brack}y = -
17 khi x = 2.

  • Câu 6: Thông hiểu

    Hàm số y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1 nghịch biến trên khoảng (1;3) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có: y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1

    \Rightarrow y' = 6x^{2} - 6(m + 1)x
+ 6m

    Hàm số nghịch biến trên khoảng (1;3)

    \Leftrightarrow y' \leq 0;\forall x
\in (1;3)

    \Leftrightarrow 6x^{2} - 6(m + 1)x + 6m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow x^{2} - (m + 1)x + m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow m \geq x;\forall x \in
(1;3)

    Vậy m \geq 3 là giá trị cần tìm.

  • Câu 7: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 8: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 9: Nhận biết

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Kết luận nào sau đây đúng?

    Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại x = 1;x = 3;x = 4.

    Tại x = 1;x = 4 ta thấy f'(x) đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại x = 1;x =
4.

    Tại x = 3 ta thấy f'(x) đổi dấu từ dương sang âm nên hàm số đạt cực đại tại x = 3.

  • Câu 10: Vận dụng

    Số mặt phẳng đối xứng của hình tứ diện đều là:

    Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

    Mp đối xứng trong tứ diện đều

    Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.

  • Câu 11: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 12: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 13: Thông hiểu

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:

    Tập xác định D = \left[ {1;9} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{2\sqrt {9 - x} }} \hfill \\  y' = 0 \Rightarrow \sqrt {x - 1}  = \sqrt {9 - x}  \Rightarrow x = 5\left( {tm} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = y\left( 9 ight) = 2\sqrt 2 } \\   {y\left( 5 ight) = 4} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\min y = 2\sqrt 2 } \\   {\max y = 4} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 15: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 16: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 17: Nhận biết

    Hàm số y = x^{4}
+ 2x^{2} - 3 đồng biến trên khoảng nào dưới dây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} + 4x = 4x\left(
x^{2} + 1 ight);\forall x\mathbb{\in R}

    y' = 0 \Leftrightarrow x =
0

    Ta có bảng xét dấu

    Vậy hàm số đồng biến trên khoảng (0; +
\infty)

  • Câu 18: Thông hiểu

    Cho hàm số y = \frac{ax + b}{cx -
1} có đồ thị như hình vẽ bên dưới. Trong các hệ số a, b, c có bao nhiêu số dương?

    Tiệm cận đứng: x = \frac{1}{c} = 1
\Leftrightarrow c = 1

    Tiệm cận ngang: y = \frac{a}{c} = - 1\Leftrightarrow a = - c \Rightarrow a = - 1

    Đồ thị cắt trục hoành tại x = 2 nên 2a + b = 0 hay b = - 2a = 2.

    Vậy trong các hệ số a, b, c có có hai số dương là b,c.

  • Câu 19: Nhận biết

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 20: Thông hiểu

    Cho hàm số y = \frac{{{x^2} + 3}}{{x - 1}}. Khẳng định nào sau đây đúng?

    Tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\}

    \begin{matrix}  y' = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2x - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 3} \end{array}} ight. \hfill \\  y'' = \frac{8}{{{{\left( {x - 1} ight)}^3}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( { - 1} ight) =  - 1 < 0} \\   {y''\left( 3 ight) = 1 > 0} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( { - 1} ight) =  - 2} \\   {{y_{CT}} = y\left( 3 ight) = 3} \end{array}} ight. \Rightarrow {y_{CD}} < {y_{CT}} \hfill \\ \end{matrix}

  • Câu 21: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 22: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 23: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 24: Thông hiểu

    Hệ thức liên hệ giữa giá trị cực đại y_{CÐ} và giá trị cực tiểu y_{CT} của hàm số y = x^{3} - 3x là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Lại có y'' = 6x \Rightarrow
y''(1) = 6 > 0 nên x =
1 là điểm cực tiểu của hàm số.

    y''( - 1) = - 6 < 0 nên x = - 1 là điểm cực đại của hàm số.

    Do đó \left\{ \begin{matrix}
y_{CÐ} = y( - 1) = 2 \\
y_{CT} = y(1) = - 2 \\
\end{matrix} ight.\  \Rightarrow y_{CT} + y_{CÐ} = 0.

  • Câu 25: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 26: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} là bao nhiêu?

    Đáp án: 6

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} là bao nhiêu?

    Đáp án: 6

    Ta có: f^{2}(x) - 2f(x) = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = 0\ \ \ (1) \\f(x) = 2\ \ \ (2) \\\end{matrix} ight.

    Dựa vào đồ thị hàm số, ta thấy:

    (1) có nghiệm x_{1} = a < - 1 (nghiệm đơn) và x_{2} = 1 (nghiệm kép)

    \Rightarrow f(x) = k(x - a)(x - 1)^{2}(k
> 0)

    (2) có nghiệm ba nghiệm đơn x_{1},x_{2},x_{3} với x_{1} = b < - 1 < x_{2} = 0 < 1 <
x_{3} = c\ \ \ (b > a)

    \Rightarrow f(x) - 2 = k(x - b)x(x -
c)(k > 0).

    \Rightarrow Hàm số y = g(x) có tập xác định D\mathbb{= R}\backslash\left\{ a;b;0;1;c
ight\}

    +) Tìm tiệm cận ngang:

    g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} = \frac{(x + 1)\left( x^{2} - 1
ight)}{f(x)\left\lbrack f(x) - 2 ightbrack} = \frac{(x + 1)^{2}}{k^{2}(x - 1)(x - b)x(x - c)(x
- a)}

    Nên \lim_{x ightarrow + \infty}g(x) =
0,\lim_{x ightarrow - \infty}g(x) = 0 \Rightarrow Đồ thị hàm số y = g(x) nhận đường thẳng y = 0 làm TCN.

    +) Tìm tiệm cận đứng:

    Tại các điểm x = a,x = b,x = 0,x = 1,x =
c mẫu của g(x) nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.

    Và do hàm số xác định trên D\mathbb{=R}\backslash\left\{ a; b ; 0; 1; c ight\} nên giới hạn một bên của hàm số y = g(x) tại các điểm x = a,x = b,x = 0,x = 1,x = c là các giới hạn vô cực.

    Do đó, đồ thị hàm số y = g(x) có 5 TCĐ: x = a,x = b,x = 0,x = 1x = c.

    Vậy ĐTHS y = g(x) có 6 đường tiệm cận: 1 TCN: y = 0 và 5 TCĐx = a,x
= b,x = 0,x = 1,x = c.

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

    a) Phương trình f(x) = 0 có 3 nghiệm. Đúng||Sai

    b) Phương trình f(x) = 2 có 1 nghiệm. Đúng||Sai

    c) Phương trình f(x) − 4 = 0 vô nghiệm. Sai||Đúng

    d) Phương trình f(x) + 3 = 0 có 2 nghiệm. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

    a) Phương trình f(x) = 0 có 3 nghiệm. Đúng||Sai

    b) Phương trình f(x) = 2 có 1 nghiệm. Đúng||Sai

    c) Phương trình f(x) − 4 = 0 vô nghiệm. Sai||Đúng

    d) Phương trình f(x) + 3 = 0 có 2 nghiệm. Đúng||Sai

    a) Ta có f(x) = 0.

    Dựa vào bảng biến thiên, ta có phương trình f(x) = 0 có 3 nghiệm.

    b) Ta có f(x) = 2

    Dựa vào bảng biến thiên, ta có phương trình f(x) = 2 có 1 nghiệm.

    c) Ta có f(x) + 4 = 0 ⇔ f(x) = −4.

    Dựa vào bảng biến thiên, ta có phương trình f(x) = −4 có 1 nghiệm.

    d) Ta cóf(x) + 3 = 0 ⇔ f(x) = −3.

    Dựa vào bảng biến thiên, ta có phương trình f(x) = −3 có 2 nghiệm.

  • Câu 28: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 29: Vận dụng

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \left| { - {x^2} - 4x + 5} ight| trên đoạn [-6; 6] 

    Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]

    Ta có: g’(x) = -2x – 4

    => g’(x) = 0 => x = -2 thuộc [-6; 6]

    Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)

    Ta tính được: \left\{ {\begin{array}{*{20}{c}}  {g\left( { - 6} ight) =  - 7} \\   {g\left( { - 2} ight) = 9} \\   {g\left( 6 ight) =  - 55} \\   {g\left( 1 ight) = g\left( { - 5} ight) = 0} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ { - 6;6} ight]} f\left( x ight) = 55

  • Câu 30: Nhận biết

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 31: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm f'(x) xác định và liên tục trên \mathbb{R}. Hình vẽ sau đây là đồ thị của hàm số y = f'(x):

    Hàm số g(x) = f\left( x - x^{2}
ight) nghịch biến trên khoảng:

    Ta có:

    g'(x) = f'\left( x - x^{2}
ight).(1 - 2x)

    g'(x) = 0 \Leftrightarrow
f'\left( x - x^{2} ight).(1 - 2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f'\left( x - x^{2} ight) = 0 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x - x^{2} = 1 \\
x - x^{2} = 2 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{1}{2}

    Với x = 0 ta có: g'(0) = f'\left( 0 - 0^{2} ight).(1 -
2.0) = 2 > 0 ta có bảng xét dấu của g'(x) như sau:

    Suy ra hàm số g(x) nghịch biến trên khoảng \left( \frac{1}{2}; + \infty
ight).

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y= \frac{x - 1}{x + m - 2} nghịch biến trên khoảng (6; + \infty)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y= \frac{x - 1}{x + m - 2} nghịch biến trên khoảng (6; + \infty)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Vận dụng

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Đáp án là:

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.

    Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng 180\ cm, chiều dài 350\ cm; tam giác cân có cạnh đáy dài 350\ cm, chiều cao 40\ cm như hình dưới đây.

    Diện tích mặt đáy của lăng trụ đó là:

    S_{1} = 180 \cdot 350 + \frac{1}{2} \cdot
40 \cdot 350 = 70000\left( \ cm^{2} ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{1} = S_{1} \cdot h_{1} = 70000.460 =
32200000\left( \ cm^{3} ight).

    Xét khối lăng trụ ở hình b. Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài 370\ cm, đáy nhỏ dài 260\ cm , chiều cao 210\ cm; tam giác cân có cạnh đáy dài 260\ cm, chiều cao 50\ cm như hình vẽ .

    Diện tích mặt đáy của lăng trụ đó là:

    S_{2} = \frac{1}{2}(370 + 260) \cdot 210
+ \frac{1}{2} \cdot 260 \cdot 50 = 72650\left( \ cm^{2}
ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{2} = S_{2} \cdot h_{2} = 72650.430 =
31239500\left( \ cm^{3} ight)

    Do đó V_{1} - V_{2} = 960500\left( \
cm^{3} ight) \approx 961\left( dm^{3} ight).

  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 37: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 5m ight\}

    Ta có: y' = \frac{5m - 6}{(x +
5m)^{2}}

    Hàm số y = \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
5m - 6 < 0 \\
- 5m \leq 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < \frac{6}{5} \\
m \geq - 3 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m <
\frac{6}{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 38: Vận dụng

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ sau:

    Hàm số đồng biến trên khoảng nào dưới đây

    Hỏi hàm số y = f\left( {2x - 1} ight) đồng biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  f'\left( x ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  { - 1 < x < 0} \\   {x > 1} \end{array}} ight. \hfill \\   \Rightarrow y' = 2f'\left( {2x - 1} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  { - 1 < 2x - 1 < 0} \\   {2x - 1 > 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {0 < x < \dfrac{1}{2}} \\   {x > 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ đó hàm số y = f\left( {2x - 1} ight) đồng biến trên khoảng \left( {\frac{1}{4};\frac{1}{3}} ight)

  • Câu 39: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 40: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 41: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 42: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 43: Thông hiểu

    Số các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{1}{x^{2} - 2mx + 2m^{2} - 4m -
12} có ba đường tiệm cận bằng:

    Ta có:

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{1}{x^{2} - 2mx + 2m^{2} - 4m - 12}
= 0 nên y = 0 là tiệm cận ngang của đồ thị hàm số

    Theo yêu cầu bài toán ta suy ra x^{2} -
2mx + 2m^{2} - 4m - 12 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - \left( 2m^{2} - m - 12 ight) >
0

    \Leftrightarrow - m^{2} + 4m + 12 > 0
\Leftrightarrow - 2 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4;5 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 44: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 45: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo