Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

Đáp án: 2400 m2
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?
Đáp án: 2400 m2
Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)
Khi đó BC = 240 – 3x > 0 ⇒ x < 80.
Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2
Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.
Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.
Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)
Do đó
Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .
Cho hàm số
. Tìm
để hàm số đã cho đạt cực đại tại
?
Tập xác định
Ta có:
Để là điểm cực đại của hàm số thì
Với thì
. Vậy
không thỏa mãn.
Với thì
Xét dấu ta được
có điểm cực đại.
Vậy là giá trị cần tìm.
Hàm số
nghịch biến trên khoảng nào?
Tập xác định
suy ra hàm số nghịch biến trên
và
.
Tìm giá trị của tham số m để hàm số
đồng biến trên ![]()
Ta có:
Hàm số đồng biến trên
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tìm giá trị nhỏ nhất của hàm số
trên khoảng (0; 1)
Hàm số xác định và liên tục trên (0; 1) ta có:
Lập bảng biến thiên:

Từ bảng biến thiên ta có:
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số f(x) có đạo hàm
. Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Tìm tập hợp tất cả các giá trị của tham số
để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Đồ thị hàm số
có hai điểm cực trị
. Khi đó
có giá trị là:
Gọi đồ thị hàm số là
Ta có: .
Vì là hai điểm cực trị của đồ thị hàm số
nên ta có:
Vậy do đó
.
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].
Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:
f’(x) = 4x3 – 4x
f’(x) = 0 =>
Tính f(0) = 1; f(1) = 0; f(2) = 9
Vậy
Cho hàm số y = f(x) có
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: => Đồ thị hàm số đã cho có TCĐ là x = 0
=> Đồ thị hàm số đã cho có TCĐ là x = 2
Hàm số nào sau đây là hàm số đồng biến trên
?
Xét hàm số ta có:
suy ra hàm số liên tục trên
.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?
Xét hàm số có tập xác định
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy hàm số có duy nhất một tiệm cận ngang là .
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Cho hàm số
liên tục trên
và có đạo hàm
. Khẳng định nào sau đây đúng?
Ta có: do đó hàm số
nghịch biến trên
Do
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Hàm số đã cho nghịch biến trên khoảng khi
nằm trong khoảng hai nghiệm
Vậy đáp án cần tìm là .
Cho hàm số có đồ thị hàm số như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây?
Dựa vào đồ thị hàm số ta thấy:
=> Hệ số a < 0 => Loại đáp án C và D
Đồ thị hàm số đi qua điểm =>
Hàm số có ba cực trị => ab < 0
Do a < 0 => b > 0
Đồ thị hàm số đi qua điểm có tọa độ =>
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Giả sử m là giá trị nhỏ nhất của hàm số
trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?
Hàm trùng phương không nghịch biến trên tập xác định của nó
Với
Hàm số đã cho đồng biến trên từng khoảng xác định
Với
=> Hàm số nghịch biến trên
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
?
Ta có:
suy ra
là tiệm cận ngang của hàm số.
suy ra
là hai tiệm cận ngang của hàm số.
Cho hàm số
xác định trên
và có bảng xét dấu đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đạo hàm ta thấy hàm số có 1 điểm cực trị.
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng nào sau đây?
Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng .
Hàm số nào sau đây đồng biến trên
?
Hàm số có
Cho hình chóp
có đáy
là hình vuông cạnh
,
và
. Tổng diện tích hai tam giác
và
bằng
. Tính thể tích
của khối chóp
?

Gọi lần lượt là trung điểm của
và
.
Tam giác cân tại
suy ra
với
.
Vì suy ra
và
Kẻ
Ta có
Tam giác vuông tại
nên
Giải hệ:
hoặc
Vậy thể tích khối chóp
Hai điểm cực trị của đồ thị hàm số
là
Ta có:
Vậy hai điểm cực trị cần tìm là:
Cho hàm số
có đồ thị là
. Số điểm thuộc
có hoành độ và tung độ đều là các số nguyên là
Ta có:
Gọi
Vậy có 4 điểm thỏa mãn yêu cầu.
Cho hàm số
. Số điểm cực trị của hàm số đã cho là:
Áp dụng công thức khai triển nhị thức Newton ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1
Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
. Khi đó m + n bằng:
Điều kiện
Tiệm cận ngang:
=> Đồ thị hàm số có 1 tiệm cận ngang là y = 1
Tiệm cận đứng:
Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2
Điều kiện đủ
Đặt
Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)
=> x = 2 không phải là tiệm cận đứng
Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.
Vậy M = 1, N = 0 => M + N = 1