Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?

    Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng ( - 1;1).

  • Câu 2: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 3: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 4: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số g(x) = 2f(x) + 2021 đồng biến trên khoảng:

    Ta có: g'(x) = 2f'(x) > 0
\Leftrightarrow f'(x) > 0

    \Leftrightarrow x \in ( - \infty; - 4)
\cup (7; + \infty)

    Nên suy ra hàm số cũng đồng biến trên (8;
+ \infty).

  • Câu 5: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O, cạnh 2a. Mặt bên tạo với đáy góc 60^0. Gọi K là hình chiếu vuông góc của O trên SD. Tính theo a thể tích V của khối tứ diện DKAC.

     

    Gọi M là trung điểm CD, suy ra OM \bot CD nên

    {60^0} = \widehat {\left( {SCD} ight),\left( {ABCD} ight)} = \widehat {SM,OM} = \widehat {SMO}.

    Tam giác vuông SOM, có SO = OM.\tan \widehat {SMO} = a\sqrt 3.

    Kẻ KH \bot OD \Rightarrow KH\parallel SO nên KH \bot \left( {ABCD} ight)

    Tam giác vuông SOD, ta có \frac{{KH}}{{SO}} = \frac{{DK}}{{DS}} = \frac{{D{O^2}}}{{D{S^2}}}

    = \frac{{O{D^2}}}{{S{O^2} + O{D^2}}} = \frac{2}{5}\xrightarrow{{}}KH = \frac{2}{5}SO = \frac{{2a\sqrt 3 }}{5}

    Diện tích tam giác {S_{\Delta ADC}} = \frac{1}{2}AD.DC = 2{a^2}.

    Vậy {V_{DKAC}} = \frac{1}{3}{S_{\Delta ADC}}.KH = \frac{{4{a^3}\sqrt 3 }}{{15}}.

  • Câu 6: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 7: Vận dụng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 9: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

  • Câu 11: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 12: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 13: Vận dụng

    Cho hàm số y = {x^3} + m{x^2} - \left( {{m^2} + m + 1} ight)x. Gọi S là tập hợp các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn \left[ { - 1;1} ight] bằng -6. Tính tổng các phần tử của S.

    Ta có: f'\left( x ight) =  - 3{x^2} + 2mx - {m^2} - m - 1;\forall x \in \mathbb{R}

    \Delta ' =  - 2{m^2} - 3m - 3 < 0,\forall m \in \mathbb{R}

    => y' < 0;\forall x \in \left[ { - 1;1} ight]

    Do đó hàm số f\left( x ight) nghịch biến trên \left( { - 1;1} ight)

    => \mathop {\min y}\limits_{\left[ { - 1;1} ight]}  = y\left( 1 ight) =  - 6

    Ta lại có:

    \begin{matrix}  y\left( 1 ight) =  - 2 - {m^2} \hfill \\   \Rightarrow  - 2 - {m^2} =  - 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 2} \end{array}} ight. \Rightarrow \sum m  = 0 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá cho thuê mỗi căn là 3000000 đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?

    Đặt số tiền tăng thêm là 200000x (đồng)

    Giá tiền mỗi căn hộ một tháng là 3000000 + 200000x (đồng)

    Số căn hộ bị trống là 50 - 2x (phòng)

    Số tiền thu được mỗi tháng là: \left(
3.10^{6} + 2.10^{5}x ight)(50 - 2x) (đồng)

    Đặt f(x) = \left( 3.10^{6} + 2.10^{5}x
ight)(50 - 2x)

    Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số f(x), giá trị lớn nhất của hàm số f(x) tại đỉnh của parabol.

    Hay:

    f'(x) = 2.10^{5}(50 - 2x) - 2\left(
3.10^{6} + 2.10^{5}x ight) = 0 \Leftrightarrow x = 5

    Vậy công ty niêm yết giá tiền là: 3.10^{6} + 2.10^{5}.5 = 4.10^{6} đồng để được doanh thu là lớn nhất.

  • Câu 15: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 16: Nhận biết

    Đồ thị hàm số y = \frac{x - \sqrt{x +
2}}{(x - 2)^{2}(x - 1)} có tất cả bao nhiêu tiệm cận đứng?

    Tập xác định D = \lbrack - 2; +
\infty)\backslash\left\{ 1;2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left[ {\frac{{x - \sqrt {x + 2} }}{{{{\left( {x - 2} ight)}^2}\left( {x - 1} ight)}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left[ {\frac{{x - \sqrt {x + 2} }}{{{{\left( {x - 2} ight)}^2}\left( {x - 1} ight)}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight.

    Suy ra đường thẳng x = 1;x = 2 là hai đường tiệm cận đứng của đồ thị hàm số.

  • Câu 17: Vận dụng cao

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 18: Thông hiểu

    Cho đồ thị hàm số y = f(x) như sau:

    Hỏi phương trình 2f(x) = m có tối đa bao nhiêu nghiệm thực?

    Phương trình 2f(x) = m \Leftrightarrow
f(x) = \frac{m}{2} là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{m}{2}

    Số giao điểm của hai đường bằng số nghiệm của phương trình f(x) = \frac{m}{2}.

    Dựa vào đồ thị hàm số ta thấy đường thẳng y = \frac{m}{2} cắt đồ thị tại nhiều nhất 5 điểm.

    Vậy phương trình có tối đa 5 nghiệm.

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 20: Nhận biết

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 21: Thông hiểu

    Cho hàm số y = \frac{{{x^2} + 3}}{{x - 1}}. Khẳng định nào sau đây đúng?

    Tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\}

    \begin{matrix}  y' = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2x - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 3} \end{array}} ight. \hfill \\  y'' = \frac{8}{{{{\left( {x - 1} ight)}^3}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( { - 1} ight) =  - 1 < 0} \\   {y''\left( 3 ight) = 1 > 0} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( { - 1} ight) =  - 2} \\   {{y_{CT}} = y\left( 3 ight) = 3} \end{array}} ight. \Rightarrow {y_{CD}} < {y_{CT}} \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho hàm số y = \frac{{x + 2}}{{x - 3}}. Khẳng định nào sau đây sai?

    Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1

    Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị

    => A, C, D đúng và B sai

  • Câu 23: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 24: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Số điểm cực trị của hàm số y = f\left( |x
+ 2| ight) là:

    Tịnh tiến hàm số y = f(x) sang trái hai đơn vị ta được hàm số y = f(x +
2)

    Đồ thị hàm số y = f\left( |x + 2|
ight) có được gồm hai phần.

    Phần 1 là phần đồ thị y = f(x +
2) nằm phía bên phải Oy.

    Phần 2 là phần đồ thị đối xứng qua Oy.

    Khi đó đồ thị hàm số sẽ có một điểm cực trị.

  • Câu 25: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 2)(0; + \infty).

    Vậy đáp án cần tìm là (0; +
\infty).

  • Câu 26: Nhận biết

    Cho hàm số y = -
\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 6x - 1. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - x^{2} + x + 6
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu

    Suy ra hàm số đồng biến trên khoảng ( -
2,3).

  • Câu 27: Nhận biết

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên \lbrack 0;4brack tại điểm x_{0}. Khi đó giá trị biểu thức P = x_{0} + 2021 bằng:

    Ta có: y' = 3x^{2} - 6x -
9

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3

    Suy ra x_{0} = 3 \Rightarrow P = x_{0} +
2021 = 2024.

  • Câu 28: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - mx^{2} - (2m - 3)x - m + 2. Có bao nhiêu giá trị nguyên dương của tham số m luôn đồng biến trên \mathbb{R}?

    Ta có: y' = x^{2} - 2mx - 2m +
3

    Khi đó: y' \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} - 2mx - 2m + 3
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' = m^{2} + 2m
- 3 \leq 0 \Leftrightarrow - 3 \leq m \leq 1

    Do m nguyên dương nên m = 1.

    Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 30: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 31: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y
= \frac{x + m}{x + 2} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}.

    Để hàm số y = \frac{x +
m}{x + 2} đồng biến trên từng khoảng xác định

    \Leftrightarrow y' > 0;\forall x \in D
\Leftrightarrow \frac{2 - m}{(x + 2)^{2}} > 0

    \Leftrightarrow 2 - m > 0
\Leftrightarrow m < 2

    Vậy giá trị cần tìm là m <
2.

  • Câu 32: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 33: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 34: Thông hiểu

    Cho hàm số y = - x^{3} - 3x^{2} + mx +
2 với m là tham số. Với điều kiện nào của tham số m thì hàm số đã cho có cực đại và cực tiểu?

    Ta có: y' = - 3x^{2} - 6x +
m(*)

    Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9 + 3m > 0 \Leftrightarrow m > - 3.

    Vậy đáp án cần tìm là m > -
3.

  • Câu 35: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 36: Vận dụng

    Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi x (trăm nghìn) là số tiền tăng thêm.

    a) Số căn hộ còn lại sau khi tăng giá là 120 - 3x. Đúng||Sai

    b) Giá một căn hộ sau khi tăng là 30 -
x (trăm nghìn). Sai||Đúng

    c) Tổng số tiền công ty thu được là S(x)
= - 3x^{2} + 30x + 3600 (trăm nghìn). Đúng||Sai

    d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng

    Đáp án là:

    Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi x (trăm nghìn) là số tiền tăng thêm.

    a) Số căn hộ còn lại sau khi tăng giá là 120 - 3x. Đúng||Sai

    b) Giá một căn hộ sau khi tăng là 30 -
x (trăm nghìn). Sai||Đúng

    c) Tổng số tiền công ty thu được là S(x)
= - 3x^{2} + 30x + 3600 (trăm nghìn). Đúng||Sai

    d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng

    a) Đúng. Số căn hộ bị bỏ trống là 3x. Suy ra Số căn hộ còn lại sau khi tăng giá là 120 - 3x.

    b) Sai. Giá một căn hộ sau khi tăng là 30
+ x (trăm ngìn).

    c) Đúng. Tổng số tiền công ty thu được là

    S(x) = (120 - 3x)(30 + x) = - 3x^{2} + 30x +
3600.

    d) Sai. Ta có S'(x) = - 6x +
30.

    Phương trình S'(x) = 0
\Leftrightarrow - 6x + 30 = 0 \Leftrightarrow x = 5.

    Bảng biến thiên

    Từ bảng biến thiên suy ra, công ty sẽ thu được nhiều tiền nhất khi giá căn hộ là 3,5 (triệu đồng).

  • Câu 37: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 38: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= mx^{4} + (m - 3)x^{2} + 2021 có hai cực tiểu và một cực đại?

    Hàm số y = ax^{4} + bx^{2} + c;(a eq
0) có ba điểm cực trị khi và chỉ khi a.b < 0.

    Để hàm số y = f(x) có hai cực tiểu và một cực đại thì đồ thị hàm số y =
f(x) có dạng

    Ta có: \lim_{x ightarrow + \infty}f(x)
= + \infty. Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số a > 0

    Khi đó để thỏa mãn yêu cầu bài toán ta có:

    \left\{ \begin{matrix}
a > 0 \\
ab < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m(m - 3) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 3

    Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 39: Thông hiểu

    Độ giảm huyết áp của một bệnh nhân G(x) =
0,025x^{2}(30 - x) trong đó x là số miligam thuộc được tiêm cho bệnh nhân (0 < x < 30). Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:

    Ta có: G(x) = 0,025x^{2}(30 - x)
\Rightarrow G'(x) = 1,5x - 0,075x^{2}

    \Rightarrow G'(x) = 0
\Leftrightarrow 1,5x - 0,075x^{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là x = 20(mg).

  • Câu 40: Thông hiểu

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 41: Vận dụng cao

    Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

    Tìm m để hàm số có 4 tiệm cận

    Đồ thị hàm số g\left( x ight) = \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} (m là tham số thực) có bốn tiệm cận khi và chỉ khi:

     Điều kiện f\left( x ight) e m

    Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

    Tìm m để hàm số có 4 tiệm cận

    Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận

    Nếu m e 20 thì \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} = 1 => y = 1 là tiệm cận ngang của đồ thị hàm số

    Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20

    => Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a

    => f(3) < m < f(-1)

  • Câu 42: Vận dụng

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 43: Thông hiểu

    Cho hình vẽ:

    Biết rằng đường trong trong hình vẽ trên là đồ thị của một trong các hàm số nào dưới đây, đó là hàm số nào?

    Đây là đồ thị hàm số bậc ba có dạng y =
ax^{3} + bx^{2} + cx + d với hệ số a > 0

    Đồ thị hàm số cắt trục hoành tại điểm (3;0) nên hàm số thích hợp là y = x^{3} - 5x^{2} + 6x.

  • Câu 44: Nhận biết

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 45: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có đạo hàm f'(x) = x(x - 1)^{3}(x + 2)^{2}. Tìm số điểm cực trị của hàm số đó?

    Ta có: f'(x) = x(x - 1)^{3}(x +
2)^{2} nên f'(x) = 0 có các nghiệm là x = 0;x = 1;x = -
2f'(x) chỉ đổi dấu khi x qua các nghiệm x = 0;x =
1

    Vậy hàm số đã cho có hai điểm cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo