Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = f(x)f'(x) > 0;\forall x\mathbb{\in R}. Có bao nhiêu giá trị nguyên của x để f(22x) > f\left( x^{2}
ight)?

    Ta có: f'(x) > 0;\forall
x\mathbb{\in R} suy ra hàm số f(x) đồng biến trên \mathbb{R}

    Suy ra f(22x) > f\left( x^{2} ight)
\Leftrightarrow 22x > x^{2} \Leftrightarrow 0 < x <
22

    Vậy có tất cả 21 giá trị nguyên của x.

  • Câu 2: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 3: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 4: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 5: Vận dụng

    Cho hình chóp đều S.ABC có tất cả các cạnh bằng a. Mặt phẳng (P) song song với mặt đáy (ABC) và cắt các cạnh bên SA, SB, SC lần lượt tại M, N, P. Tính diện tích tam giác MNP biết mặt phẳng (P) chia khối chóp đã cho thành hai phần có thể tích bằng nhau. 

     

    Mặt phẳng \left( P ight)\parallel \left( {ABC} ight) và cắt các cạnh SA,\,\,SB,\,\,SC lần lượt tại M,\,\,N,\,\,P.

    Theo Talet, ta có \frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = x.

    Do đó \frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SP}}{{SC}} = {x^3}.

    Theo giả thiết \frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{1}{2} \to {x^3} = \frac{1}{2} \to x = \frac{1}{{\sqrt[3]{2}}}.

    Suy ra tam giác MNP là tam giác đều cạnh \frac{a}{{\sqrt[3]{2}}}

    Vậy diện tích {S_{\Delta MNP}} = {\left( {\frac{a}{{\sqrt[3]{2}}}} ight)^2}.\frac{{\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{{4\sqrt[3]{4}}}.

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận đứng là:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow - 1^{-}}f(x) = +
\infty;\lim_{x ightarrow - 1^{+}}f(x) = - \infty

    Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng x = - 1

  • Câu 7: Vận dụng cao

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có bảng biến thiên như hình dưới đây.

    Số tiệm cận đứng của đồ thị hàm số

    Hỏi đồ thị hàm số g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}} có bao nhiêu tiệm cận đứng?

    Ta có: f'\left( x ight) = 3a{x^2} + 2bx + c = 3a\left( {x - 1} ight)\left( {x - 2} ight) = 3x\left( {{x^2} - 3x + 2} ight)

    Đồng nhất hai vế ta có: \left\{ {\begin{array}{*{20}{c}}  {2b =  - 9a} \\   {c = 6a} \end{array}} ight. \Rightarrow f\left( x ight) = a{x^3} - \frac{{9a}}{2}{x^2} + 6ax + d

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {f\left( 1 ight) = 5} \\   {f\left( 2 ight) = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a + \dfrac{9}{2}a + 6a + d = 5} \\   {8a - 18a + 12a + d = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{10}}{{49}}} \\   {d = \dfrac{{ - 20}}{{19}}} \end{array}} ight.

    Giải phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{2}} \\   {x = 2} \end{array}} ight.

    Hàm số có tập xác định là D = \left[ { - \frac{1}{2}; + \infty } ight)\backslash \left\{ {\frac{1}{2};1;2} ight\}

    Khi đó

    g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}}

    = \frac{{\left( {x - 1} ight)\left( {x - 2} ight)\sqrt {2x + 1} }}{{\left( {{x^2} - 1} ight)\left( {{x^2} - 4} ight).f\left( x ight)}}

    = \frac{{\sqrt {2x + 1} }}{{\left( {x + 1} ight)\left( {x + 2} ight)f\left( x ight)}}

    => Đồ thị hàm số có 2 đường tiệm cận đứng là x = \frac{1}{2};x = 2

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack và có đồ thị là đường cong trong hình bên dưới.

    Hàm số y = f(x) đạt cực tiểu tại điểm

    Theo hình vẽ thì hàm số y = f(x) đạt cực tiểu tại điểm x = 1.

  • Câu 9: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) < 0,\forall x \in (0; +
\infty) biết f(0) = 3. Khẳng định nào sau đây có thể xảy ra.

    Do f^{'}(x) < 0,\forall x \in (0;
+ \infty) nên hàm số y =
f(x) nghịch biến trên (0; +
\infty).

    Khi đó ta có:

    f(2024) < f(0) = 3 \Rightarrow f(2024)
= 3,5 sai

    f(2023) < f(0) = 3 \Rightarrow f(2023)
+ f(2024) < 3 + 3 = 6 \Rightarrow f(2023) + f(2024) = 6 sai

    f(2023) > f(2024) \Rightarrow f(2023)
< f(2024) sai

    Do đó, f( - 2024) = 3 đúng.

  • Câu 10: Vận dụng

    Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?

    Hình hộp chữ nhật (không là hình lập phương) có các mặt phẳng đối xứng là các mặt các mặt phẳng trung trực của các cặp cạnh đối.

    Mp đối xứng của hình hộp chữ nhật

  • Câu 11: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 12: Nhận biết

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 13: Thông hiểu

    Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 8x + m} có ba đường tiệm cận?

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x - 1}{x^{2} - 8x + m} = 0 nên suy ra hàm số có 1 đường tiệm cận ngang là y = 0

    Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình x^{2} - 8x + m = 0 có hai nghiệm phân biệt khác 1

    \left\{ \begin{matrix}
16 - m > 0 \\
1^{2} - 8.1 + m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 16 \\
m eq 7 \\
\end{matrix} ight.

    Do m nguyên dương nên có 14 giá trị m thỏa mãn.

  • Câu 14: Thông hiểu

    Tìm hàm số tương ứng với đồ thị hàm số sau đây?

    Đồ thị hàm số có hệ số a < 0 và có hai điểm cực trị là A(0;1),B(2;5) nên chỉ có hàm số y = - x^{3} + 3x^{2} + 1 thỏa mãn vì

    y' = - 3x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
x = 0 \Rightarrow y = 1 \Rightarrow A(0;1) \\
x = 2 \Rightarrow y = 5 \Rightarrow B(2;5) \\
\end{matrix} ight..

    Vậy hàm số xác định được là y = - x^{3} +
3x^{2} + 1.

  • Câu 15: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m với m là tham số. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên khoảng (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Hàm số nghịch biến trên (0;2) khi và chỉ khi y' \leq 0;\forall x \in
(0;2)

    Xét hàm số y = - \frac{3}{2}x trên khoảng (0;2) ta có bảng biến thiên như sau:

    Vậy để hàm số nghịch biến trên (0;2) thì m
\leq - 3.

  • Câu 16: Thông hiểu

    Số điểm cực trị của hàm số f(x) = (x +
2)^{3}(x - 3)^{2}(x - 2)^{5} là:

    Ta có:

    f'(x) = 3(x + 2)^{2}(x - 3)^{2}(x -2)^{5}+ 2(x + 2)^{3}(x - 3)(x - 2)^{5}+ 5(x + 2)^{3}(x - 3)^{2}(x -2)^{4}

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ight brack\left\lbrack 3(x - 3) + 2(x +2)(x - 2) + 5(x + 2)(x - 3) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left\lbrack 3\left( x^{2} -5x + 6 ight) + 2\left( x^{2} - 4 ight) + 5\left( x^{2} - x - 6ight) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 3x^{2} - 15x + 18 +2x^{2} - 8 + 5x^{2} - 5x - 30 ight)

    \Leftrightarrow f'(x) = \left\lbrack
(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20
ight)

    Khi đó

    f'(x) = 0

    \Leftrightarrow \left\lbrack (x +
2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20 ight)
= 0(*)

    Phương trình (*) có ba nghiệm bội lẻ x =
3;x = 1 \pm \sqrt{3}

    Vậy hàm số ban đầu có ba điểm cực trị.

  • Câu 17: Vận dụng cao

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 18: Thông hiểu

    Gọi P là tập tất cả các số nguyên dương của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 đồng biến trên khoảng (3; + \infty). Tính tổng tất cả các phần tử của tập P?

    Theo yêu cầu bài toán \Leftrightarrow
y' = 4x^{3} - 4mx \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow 4x\left( x^{2} - m
ight) \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow m \leq x^{2};\forall x
\in (3; + \infty)

    Do đó m \leq 9 \Rightarrow P = \left\{
1;2;3;...;9 ight\}

    Vậy tổng tất cả các phần tử của tập P bằng 45.

  • Câu 19: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 20: Vận dụng

    Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y = x^{3} + (x + 10)x^{2} - x + 1 cắt trục hoành tại đúng một điểm?

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} + (a + 10)x^{2} - x + 1 =
0(*)

    \Leftrightarrow x^{3} + 10x^{2} - x + 1
= - ax^{2}

    Ta thấy x = 0 không là nghiệm của phương trình nên (*) \Leftrightarrow -
\frac{x^{3} + 10x^{2} - x + 1}{x^{2}} = a

    Xét hàm số f(x) = - \frac{x^{3} + 10x^{2}
- x + 1}{x^{2}};\left( \forall x\mathbb{\in R}\backslash\left\{ 0
ight\} ight)

    Ta có: f'(x) = - \frac{x^{3} + x -
2}{x^{3}} = - \frac{(x - 1)\left( x^{2} + x + 2
ight)}{x^{3}}

    f'(x) = 0 \Leftrightarrow x =
1

    Bảng biến thiên của hàm số f(x) như sau:

    Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm \Leftrightarrow a > - 11

    a nguyên âm nên a \in \left\{ - 10; - 9; - 8;...; - 1
ight\}

    Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.

  • Câu 21: Thông hiểu

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}. Hàm số f(x) đồng biến trên khoảng nào dưới đây?

    Ta có:

    f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}

    \Rightarrow f'(x) = 0
\Leftrightarrow (x - 1)^{3}(2 - x)(x - 3)^{3} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Từ bảng xét dấu của f'(x) suy ra hàm số đồng biến trên khoảng (1;2).

  • Câu 22: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 23: Nhận biết

    Hàm số y =
\frac{x - 2}{x - 1} đồng biến trên khoảng nào dưới đây?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}. Ta có: y' = \frac{1}{(x - 1)^{2}} > 0;\forall
x\mathbb{\in R}\backslash\left\{ 1 ight\}

    Suy ra hàm số đồng biến trên khoảng ( -
\infty;1)(1; +
\infty).

  • Câu 24: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 25: Thông hiểu

    Số giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}?

    Theo yêu cầu bài toán \Leftrightarrow
y' = x^{2} - 4mx + 4 \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 4 \leq 0 \Leftrightarrow
- 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 26: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

  • Câu 27: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 28: Thông hiểu

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 29: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 30: Nhận biết

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{x}{x^{2} - 1}?

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x}{x^{2} - 1} = 0

    Do đó tiệm cận ngang của đồ thị hàm số y
= \frac{x}{x^{2} - 1}y =
0.

  • Câu 31: Vận dụng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 32: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 33: Vận dụng

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 34: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Khi đó, giá trị lớn nhất của hàm số g(x)
= f\left( 2 - x^{2} ight) trên \left\lbrack 0;\sqrt{2} ightbrack là:

    Đặt t = 2 - x^{2};t' = - 2x \leq
0;\forall x \in \left\lbrack 0;\sqrt{2} ightbrack \Rightarrow t \in
\lbrack 0;2brack

    \Rightarrow \max_{\left\lbrack
0;\sqrt{2} ightbrack}g(x) = \max_{\lbrack 0;2brack}f(t) =
f(0)

  • Câu 35: Thông hiểu

    Biết rằng đồ thị hàm số y = f(x) = ax^{4}
+ bx^{2} + c có hai điểm cực trị là A(0;2)B(2; - 14). Khi đó giá trị của hàm số y = f(x) tại x = 3 bằng:

    Ta có: y = f(x) = ax^{4} + bx^{2} + c
\Rightarrow y' = 4ax^{3} + 2bx

    Đồ thị hàm số y = f(x) = ax^{4} + bx^{2}
+ c có hai điểm cực trị là A(0;2)B(2; - 14) nên ta có

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 14 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
16a + 4b + c = - 14 \\
32a + 4b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
b = - 8 \\
a = 1 \\
\end{matrix} ight.

    Suy ra y = f(x) = x^{4} - 8x^{2} + 2
\Rightarrow f(3) = 11.

  • Câu 36: Nhận biết

    Tìm giá trị lớn nhất của hàm số f(x) = -
x^{3} + 48x trên \lbrack -
7;5brack?

    Ta có: f'(x) = - 3x^{2} +
48

    \Rightarrow f'(x) = 0
\Leftrightarrow - x^{3} + 48x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
x = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(0) = 0;f( - 7) = 7 \\
f( - 4) = - 128 \\
f(4) = 128;f(5) = 115 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 7;5brack}f(x) =
128

  • Câu 37: Nhận biết

    Hàm số y = \frac{1}{3}{x^3} - \frac{5}{2}{x^2} + 6x nghịch biến trên khoảng nào?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {y' = {x^2} - 2x + 6} \\   {y' < 0} \end{array} \Rightarrow } ight.{x^2} - 2x + 6 < 0 \Rightarrow 2 < x < 3

    => Hàm số nghịch biến trên khoảng (2; 3)

  • Câu 38: Nhận biết

    Cho hàm số y =
f(x) có đồ thị f'(x) là parabol như hình vẽ:

    Khẳng định nào sau đây là đúng?

    Từ đồ thị hàm số ta có bảng biến thiên như sau:

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 1)(3; +
\infty).

  • Câu 39: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 40: Nhận biết

    Cho hàm số y = f(x) là hàm đa thức có đạo hàm f'(x) = (x - 1)(x -
2)^{2}(x + 1)^{3}. Số điểm cực trị của hàm số là:

    Ta có:

    f'(x) = (x - 1)(x - 2)^{2}(x +
1)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 41: Vận dụng

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 42: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 43: Thông hiểu

    Hàm số y = \frac{2x + 2021}{x -
2} có bao nhiêu điểm cực trị?

    Tập xác định D = ( - \infty;2) \cup (2; +
\infty)

    Ta có: y' = \frac{- 2025}{(x -
2)^{2}} < 0;\forall x eq 2 suy ra hàm số nghịch biến trên mỗi khoảng ( - \infty;2)(2; + \infty)

    Do đó hàm số không có điểm cực trị.

  • Câu 44: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 45: Thông hiểu

    Hàm số nào sau đây có cực trị?

    Hàm số y = \sqrt{x - 1}y' = \frac{1}{2\sqrt{x - 1}} > 0;\forall x
\in (1; + \infty) suy ra hàm số không có cực trị.

    Hàm số y = x^{2} - 2x + 3y' = 2x - 2 = 0 \Leftrightarrow x =
1y' đổi dấu đi qua x = 1 suy ra hàm số có cực trị tại điểm x = 1.

    Hàm số y = x^{3} + 8x + 9y' = 3x^{2} + 8 > 0;\forall
x\mathbb{\in R} suy ra hàm số không có cực trị.

    Hàm số y = \frac{2x - 1}{3x + 1}y' = \frac{5}{(3x + 1)^{2}} >
0 với \forall x \in \left( -
\infty; - \frac{1}{3} ight) \cup \left( - \frac{1}{3}; + \infty
ight) suy ra hàm số không có cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo