Tìm tất cả các giá trị của tham số m để hàm số ; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Tìm tất cả các giá trị của tham số m để hàm số ; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Tìm tất cả các giá trị của tham số để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số y = f(x) có đạo hàm liên tục trên . Đồ thị hàm số y f’(x) như hình vẽ bên:
Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:
Vậy hàm số đã cho có đúng một cực trị
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có 12 cạnh.
Cho hàm số bậc ba có đồ thị như hình vẽ bên.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là bao nhiêu?
Đáp án: 6
Cho hàm số bậc ba có đồ thị như hình vẽ bên.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là bao nhiêu?
Đáp án: 6
Ta có:
Dựa vào đồ thị hàm số, ta thấy:
(1) có nghiệm (nghiệm đơn) và
(nghiệm kép)
(2) có nghiệm ba nghiệm đơn với
Hàm số
có tập xác định
+) Tìm tiệm cận ngang:
Vì
Nên Đồ thị hàm số
nhận đường thẳng
làm TCN.
+) Tìm tiệm cận đứng:
Tại các điểm mẫu của
nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.
Và do hàm số xác định trên nên giới hạn một bên của hàm số
tại các điểm
là các giới hạn vô cực.
Do đó, đồ thị hàm số có 5 TCĐ:
và
.
Vậy ĐTHS có 6 đường tiệm cận: 1
và
TCĐ
.
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.
Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?
Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:
Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên dễ dàng ta thấy
là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7
là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)
Vậy chọn đáp án A.
Cho hàm số có đồ thị
là parabol như hình vẽ:
Khẳng định nào sau đây là đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Vậy hàm số đồng biến trên các khoảng và
.
Cho hàm số có bảng biến thiên như sau:
Số điểm cực trị của hàm số là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Tính theo thể tích
của khối hộp chữ nhật
. Biết rằng mặt phẳng
hợp với đáy
một góc
,
hợp với đáy
một góc
và
.
Ta có
Tam giác vuông , có
.
Tam giác vuông , có
.
Tam giác vuông , có
.
Diện tích hình chữ nhật .
Vậy
Cho hình chóp có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?
Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số đạt cực đại tại
thỏa mãn
. Khi đó:
Tập xác định
Ta có: hàm số có hai cực trị
khi và chỉ khi
Khi đó .
Mặt khác
Vậy đáp án cần tìm là .
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên
Cho đồ thị hàm số có đồ thị như hình sau:
Đồ thị hàm số trên có đường tiệm cận đứng là:
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là .
Số các giá trị nguyên của tham số để hàm số
có giá trị nhỏ nhất trên đoạn
thuộc khoảng
là:
Xét hàm số trên
ta có:
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Cho đồ thị hàm số như hình vẽ:
Hàm số đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Cho đồ thị hàm số như hình vẽ dưới đây:
Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Có bao nhiêu giá trị nguyên của để hàm số
có
điểm cực trị?
Có bao nhiêu giá trị nguyên của để hàm số
có
điểm cực trị?
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Suy ra hàm số nghịch biến trên khoảng
Mà nên hàm số cũng nghịch biến trên khoảng
.
Cho hàm số có bảng xét dấu của đạo hàm
như sau:
Hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu:
Từ bảng xét dấu của suy ra hàm số đồng biến trên khoảng
.
Một chất điểm chuyển động với vận tốc được cho bởi công thức với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Tổng độ dài của tất cả các cạnh của một tứ diện đều cạnh
.
Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Có bao nhiêu giá trị nguyên của tham số để phương trình
có 4 nghiệm thực phân biệt?
Đặt . Ta được phương trình
Phương trình đã cho có 4 nghiệm thực phân biệt khi và chỉ khi phương trình có 2 nghiệm dương phân biệt
Do
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):
Cho lăng trụ đứng có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.
Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ:
Giả sử lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Từ đồ thị hàm số liên tục trên
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
;
Có bao nhiêu giá trị nguyên của tham số để phương trình
có nghiệm thuộc
?
Ta có:
Xét hàm số có
Ta có bảng biến thiên
Theo yêu cầu bài toán ta có:
Vì
Số giá trị nguyên của tham số để hàm số
không có điểm cực đại là:
Hàm số không có điểm cực đại
Vì
Vậy có bốn giá trị nguyên của tham số thỏa mãn yêu cầu đề bài.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng:
Ta có:
Ta có bảng xét dấu:
Hàm số đồng biến khi và chỉ khi
Vậy đáp án cần tìm là .
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:
Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Đồ thị hàm số có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Cho hàm số f(x) có đạo hàm . Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:
Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Cho hàm số bậc ba có đồ thị như hình vẽ:
Số nghiệm thực của phương trình là:
Ta có:
Quan sát đồ thị ta thấy cắt đồ thị hàm số
tại ba điểm phân biệt
=> Phương trình có ba nghiệm thực phân biệt.
Gọi là tập hợp các giá trị thực của tham số
để hàm số
nghịch biến trên một đoạn có độ dài bằng
. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp
bằng:
Ta có:
Gọi là nghiệm của phương trình (*) ta có bảng biến thiên:
Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt thỏa mãn
(*) có hai nghiệm phân biệt
Suy ra
Vậy tổng tất cả các phần tử của tập S bằng 8.
Cho đồ thị hàm số như sau:
Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Giá trị của tham số m để bất phương trình có nghiệm là:
Đặt
Khi đó bất phương trình ban đầu trở thành:
Xét hàm số trên
Ta có:
Bảng biến thiên của
Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì .