Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:
- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Tính thể tích của khối lập phương
, biết
.
Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
;
Tìm điều kiện của tham số để hàm số
có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32
Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20
Đồ thị hàm số (m là tham số thực) có bốn tiệm cận khi và chỉ khi:
Điều kiện
Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:
Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận
Nếu thì
=> y = 1 là tiệm cận ngang của đồ thị hàm số
Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20
=> Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a
=> f(3) < m < f(-1)
Trong các hình dưới đây hình nào không phải khối đa diện lồi?
Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Một chất điểm chuyển động với vận tốc được cho bởi công thức với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?
Hình hộp đứng có đáy là hình thoi (không phải là hình chữ nhật) có 3 mặt phẳng đối xứng bao gồm:
- Hai mặt phẳng chứa đường chéo của đáy và vuông góc với đáy.
- Một mặt phẳng là mặt phẳng trung trực của cạnh bên.
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1, . Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Có bao nhiêu giá trị nguyên dương của tham số để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho hàm số y = f(x) có . Số điểm cực trị của hàm số đã cho là
Ta có:
Nhận thấy
=> f’(x) không đổi dấu khi qua nghiệm x = -2 nên x = -2 không là điểm cực trị của hàm số
Ngoài ra f’(x) cùng dấu với tam thức bậc hai x2(x - 1) = x2 – x nên suy ra x = 0, x = 1 là hai điểm cực trị của hàm số.
Tâm đối xứng của đồ thị hàm số là điểm nào trong các điểm cho sau đây?
Đồ thị hàm số nhận giao của hai tiệm cận làm tâm đối xứng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng là
Do đó tâm đối xứng của đồ thị hàm số là điểm .
Cho hình chóp có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.
Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Cho hàm số . Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Hàm số liên tục trên đoạn
Ta có:
Khi đó nên
.
Đồ thị của hàm số có bao nhiêu đường tiệm cận?
Tập xác định
suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
suy ra đường thẳng
không là đường tiệm cận đứng của đồ thị hàm số đã cho.
suy ra đường thẳng
là đường tiệm cận đứng của đồ thị hàm số đã cho.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.
Tìm số mặt của hình đa diện dưới đây là?
Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số có đồ thị
. Xác định tất cả các giá trị thực của tham số
để
cắt đường thẳng
tại bốn điểm phân biệt?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Đồ thị cắt
tại bốn điểm phân biệt khi và chỉ khi
có hai nghiệm phân biệt khác
Khi đó ta có: .
Tìm tất cả các giá trị thực của tham số để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Điều kiện cần
Điều kiện đủ:
Khi suy ra
là điểm cực đại của hàm số.
Khi suy ra
là điểm cực tiểu của hàm số.
Vậy giá trị m thỏa mãn yêu cầu bài toán là .
Cho hình lăng trụ tam giác có đáy
là tam giác vuông cân tại
, cạnh
. Biết
tạo với mặt phẳng
một góc
và
. Tính thể tích
của khối đa diện
.
Gọi H là hình chiếu của C' trên mặt phẳng .
Suy ra AH là hình chiếu của AC' trên mặt phẳng .
Do đó
Tam giác vuông , có
Thể tích khối lăng trụ
Suy ra thể tích cần tính là:
.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Cho hàm số có đồ thị như hình vẽ sau đây:
Khẳng định nào sau đây đúng?
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương =>
Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm =>
Đồ thị hàm số nhận làm tiệm cận đứng và
làm tiệm cận ngang
Chọn a > 0 => b < 0; c > 0; d > 0 =>
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu:
Từ bảng xét dấu của suy ra hàm số đồng biến trên khoảng
.
Tìm tiệm cận ngang của đồ thị hàm số ?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Cho hàm số có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Cho hàm số có bảng biến thiên như sau:
Số nghiệm của phương trình là:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Phương trình (*) có 1 nghiệm
Phương trình (**) có 2 nghiệm
=> Số nghiệm của phương trình là 3 nghiệm
Xác định giá trị thực của tham số để hàm số
đồng biến trên khoảng
?
Tập xác định
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là .
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Hàm số nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số bậc bốn có đồ thị như hình vẽ dưới đây:
Số điểm cực trị của hàm số là:
Ta có:
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Cho hàm số . Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Cho hàm số có bảng xét dấu của đạo hàm
như sau:
Hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Cho hàm số
Ta có: có hai nghiệm phân biệt là -2 và 3
=> f’(x) < 0 =>
Vậy hàm số nghịch biến trên khoảng (-2; 3)
Cho hàm số . Đồ thị hàm số có mấy đường tiệm cận?
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Cho hàm số . Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Điều kiện của tham số để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Gọi
lần lượt là chiều rộng và chiều cao của bể cá.
Ta có thể tích bể cá .
Theo đề bài ta có:
Ta có bảng biển thiên
Cho hàm số có bảng biến thiên như hình vẽ:
Hàm số nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Giá trị nhỏ nhất của hàm số trên đoạn
là:
Ta có:
Lại có:
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.
Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp