Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 2: Thông hiểu

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Ta có:

    f'(x) = 4x^{3} - 4x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0

    b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = −3

    c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là −4, −3

    d) Dựa vào bảng biến thiên ta thấy hàm số g(x) = f(x) + 3 có được bằng cách tịnh tiến đồ thị y = f(x) lên trên 3 đơn vị. Suy ra đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0).

  • Câu 3: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 4: Nhận biết

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 5: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 6: Vận dụng

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Cho hàm số y = \frac{x + m}{x^{2} +
1}. Biết \min_{\mathbb{R}}y = -
2. Mệnh đề nào dưới đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: \min_{\mathbb{R}}y = - 2\Leftrightarrow \left\{ \begin{matrix}\forall x\mathbb{\in R}:\dfrac{x + m}{x^{2} + 1} \geq - 2(*) \\\exists x_{0}:\dfrac{x_{0} + m}{{x_{0}}^{2} + 1} = - 2(**) \\\end{matrix} ight.

    Từ (*) \Leftrightarrow \frac{x + m}{x^{2}
+ 1} \geq - 2 \Leftrightarrow 2x^{2} + x + m + 2 \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow 1 - 4.2.(m + 2) \leq 0
\Leftrightarrow m \geq \frac{- 15}{8}

    Từ (**) suy ra m = \frac{- 15}{8} \in ( -
2;0).

    Vậy - 2 < m < 0 là đáp án cần tìm.

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 9: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

    Tình tổng các giá trị nguyên của tham số m

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có 3 điểm cực trị. Tổng các phần tử của S là:

    Xét hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có đạo hàm

    \begin{matrix}  y' = 2\left( {x - 1} ight)f'\left( {{{\left( {x - 1} ight)}^2} + m} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} + m =  - 1} \\   {{{\left( {x - 1} ight)}^2} + m = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} =  - 1 - m} \\   {{{\left( {x - 1} ight)}^2} = 3 - m} \end{array}} ight. \hfill \\ \end{matrix}

    Để hàm số có 3 điểm cực trị thì

    \begin{matrix}   - 1 - m \leqslant 0 < 3 - m \hfill \\   \Leftrightarrow  - 1 \leqslant m < 3 \hfill \\   \Rightarrow m \in \left\{ { - 1;0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy tổng các phần tử của S là 2

  • Câu 10: Vận dụng cao

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Cho hình vẽ:

    Biết rằng đường trong trong hình vẽ trên là đồ thị của một trong các hàm số nào dưới đây, đó là hàm số nào?

    Đây là đồ thị hàm số bậc ba có dạng y =
ax^{3} + bx^{2} + cx + d với hệ số a > 0

    Đồ thị hàm số cắt trục hoành tại điểm (3;0) nên hàm số thích hợp là y = x^{3} - 5x^{2} + 6x.

  • Câu 12: Thông hiểu

    Cho hàm số y =
f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Tìm tất cả các giá trị của m...

    Hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng nào?

    Ta có: y' = - 2f'(3 -
2x)

    y' < 0 \Leftrightarrow -
2f'(3 - 2x) < 0 \Leftrightarrow f'(3 - 2x) >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
- 1 < 3 - 2x < 1 \\
3 - 2x > 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 < x < 2 \\
x < - \frac{1}{2} \\
\end{matrix} ight.

    Vậy hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng (1;2).

  • Câu 13: Thông hiểu

    Xác định giá trị thực của tham số m để hàm số y
= \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; - 8)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Hàm số y = \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; -
8)

    \Leftrightarrow \left\{ \begin{matrix}
y' > 0;\forall x \in ( - \infty; - 8) \\
x eq - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{m - 5}{(x + m)^{2}} > 0;\forall x \in ( - \infty; - 8) \\- m otin ( - \infty; - 8) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 5 \\
- m \geq - 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 5 \\
m \leq 8 \\
\end{matrix} ight.\  \Leftrightarrow 5 < m \leq 8

    Vậy đáp án cần tìm là (5;8brack.

  • Câu 14: Nhận biết

    Cho hàm số y = \frac{{x + 1}}{{1 - x}}. Khẳng định nào dưới đây là khẳng định đúng?

    Hàm số y = \frac{{x + 1}}{{1 - x}} có tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\} và có đạo hàm

    y' = \frac{2}{{{{\left( {x - 1} ight)}^2}}} > 0,\forall x \in D

    => A là khẳng định đúng

  • Câu 15: Thông hiểu

    Cho đồ thị của hàm số y = ax^{4} + bx^{2}
+ c;(a eq 0) có điểm cực đại A(0;
- 3) và điểm cực tiểu B( - 1; -
5). Tính giá trị biểu thức T = a +
2b + 3c?

    Đồ thị hàm số đi qua điểm A(0; -
3)B( - 1; - 5) nên \left\{ \begin{matrix}
c = - 3 \\
a + b + c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = - 3 \\
a + b = - 2 \\
\end{matrix} ight.\ (*)

    y = ax^{4} + bx^{2} + c \Rightarrow
y' = 4ax^{3} + 2bx

    Đồ thị hàm số có điểm cực tiểu B( - 1; -
5) nên - 4a - 2b =
0(**)

    Từ (*) và (**) ta có hệ phương trình \left\{ \begin{matrix}
a + b = - 2 \\
- 4a - 2b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = - 3 \\
\end{matrix} ight.\  \Rightarrow y = 2x^{4} - 4x^{2} - 3 \Rightarrow
\left\{ \begin{matrix}
y' = 8x^{3} - 8x \\
y'' = 24x^{2} - 8 \\
\end{matrix} ight.

    y''(0) = - 8 < 0 suy ra A(0; - 3) là điểm cực đại.

    y''( - 1) = 16 > 0 suy ra B( - 1; - 5) là điểm cực tiểu

    Vậy T = a + 2b + 3c = - 15

  • Câu 16: Vận dụng

    Cho tứ diện ABCD có thể tích V. Gọi V' là thể tích của khối tứ diện có các đỉnh là trọng tâm của các mặt của khối tứ diện ABCD. Tính tỉ số \frac{{V'}}{V}.

     

    Gọi M là trung điểm AC; E và F lần lượt là trọng tâm của tam giác ABC, ACD.

    Trong tam giác MBD có EF = \frac{1}{3}BD.

    Tương tự ta có các cạnh còn lại của tứ diện mới sinh ra bằng \frac{1}{3} cạnh của tứ diện ban đầu.

    Do đó \frac{{V'}}{V} = {\left( {\frac{1}{3}} ight)^3} = \frac{1}{{27}}.

  • Câu 17: Thông hiểu

    Cho hàm số y = f(x) = \frac{ax^{2} + bx +
c}{mx + n} với a eq 0;\ m eq
0, có đồ thị là đường cong như hình vẽ bên dưới.

    Với m = 1 thì giá trị S = a + b + c là bao nhiêu?

    Đáp án: 7

    Đáp án là:

    Cho hàm số y = f(x) = \frac{ax^{2} + bx +
c}{mx + n} với a eq 0;\ m eq
0, có đồ thị là đường cong như hình vẽ bên dưới.

    Với m = 1 thì giá trị S = a + b + c là bao nhiêu?

    Đáp án: 7

    Với m = 1, ta có y = f(x) = \frac{ax^{2} + bx + c}{x +
n}.

    Đồ thị hàm số có tiệm cận đứng là x = -
2 nên n = 2.

    Khi đó f(x) = \frac{ax^{2} + bx + c}{x +
2}.

    Thực hiện phép chia đa thức lấy tử chia mẫu ta được thương là ax + b - 2a, nên đồ thị hàm số có đường tiệm cận xiên là y = ax + b - 2a, mặt khác nhìn vào đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên là y = x + 1.

    Nên ta có phương trình:

    ax + b - 2a = x + 1 \Rightarrow \left\{
\begin{matrix}
a = 1 \\
b - 2a = 1 \\
\end{matrix} ight. hay \left\{
\begin{matrix}
a = 1 \\
b = 3 \\
\end{matrix} ight..

    Khi đó f(x) = \frac{x^{2} + 3x + c}{x +
2}.

    Vì đồ thị hàm số đi qua điểm ( - 3; -
3) nên ta được c = 3.

    Suy ra f(x) = \frac{x^{2} + 3x + 3}{x +
2}.

    Vậy S = 1 + 3 + 3 = 7.

  • Câu 18: Nhận biết

    Cho hàm số f(x) = x^{3} - 3x. Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;1brack?

    Xét hàm số f(x) = x^{3} - 3x xác định trên tập số thực có:

    f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 2) = - 2 \\
f(1) = - 2 \\
f( - 1) = 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;1brack}f(x) = -
2

    Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 3mx^{2} +
3\left( m^{2} - 1 ight)x với m là tham số. Tìm tất cả các giá trị của m để hàm số f(x) đạt cực đại tại x_{0} = 1?

    Hàm số đạt cực đại tại x_{0} =
1

    \Leftrightarrow \left\{ \begin{matrix}
f'(1) = 0 \\
f''(1) < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 - 6m + 3m^{2} - 3 = 0 \\
6 - 6m < 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.\  \\
m > 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 2

    Vậy đáp án cần tìm là m = 2.

  • Câu 20: Nhận biết

    Giá trị lớn nhất của hàm số y = \frac{- x
+ 3}{x - 2} trên đoạn \lbrack -
2;0brack bằng

    Ta có: D\mathbb{= R}\backslash\left\{ 2
ight\}

    y' = \frac{- 1}{(x - 2)^{2}} <
0;\forall x eq 2

    Suy ra hàm số nghịch biến trên đoạn \lbrack - 2;0brack.

    Do đó \max_{\lbrack - 2;0brack}y = y( -
2) = \frac{- ( - 2) + 3}{- 2 - 2} = - \frac{5}{4}

  • Câu 21: Thông hiểu

    Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm trùng phương không nghịch biến trên tập xác định của nó

    Với y = \frac{{x + 1}}{{ - x + 3}} \Rightarrow y' = \frac{4}{{{{\left( { - x + 3} ight)}^2}}} > 0,\forall x e 3

    Hàm số đã cho đồng biến trên từng khoảng xác định

    Với y =  - 2{x^3} - 3x + 5 \Rightarrow y' =  - 6{x^2} - 3 < 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên \mathbb{R}

  • Câu 22: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 23: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 24: Nhận biết

    Hàm số y = - x^{3} + 1 có bao nhiêu điểm cực trị?

    Ta có: y' = - 3x^{2} \leq 0;\forall
x\mathbb{\in R} suy ra hàm số luôn nghịch biến trên \mathbb{R}.

    Vậy hàm số đã cho không có điểm cực trị.

  • Câu 25: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 26: Thông hiểu

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    a) Điều kiện xác định của hàm số \left\{
\begin{matrix}
x^{2} - x + 2 > 0;\forall x \\
x - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow x eq 1.

    Vậy tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1
ight\}.

    b) Ta có: \lim_{x ightarrow -
\infty}f(x) = - 1 nên y = −1 là đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang.

    c) Do \lim_{x ightarrow 1^{+}}f(x) = +
\infty nên x = 1 là đường tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).

    d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:


    Miền giới hạn là hình chữ nhật có diện tích là S = 2.1 = 2

  • Câu 27: Thông hiểu

    Cho hàm số y = \frac{\sqrt{x - 1} - 1}{x
- 2}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack 1;2) \cup (2; +
\infty)

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = 1

    \lim_{x ightarrow 2^{-}}y = \lim_{x
ightarrow 2^{-}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{-}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{-}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{+}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{+}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x - 1} - 1}{x - 2} = 0

    Vậy đồ thị có một tiệm cận ngang y =
0.

  • Câu 28: Thông hiểu

    Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

    Giá trị nhỏ nhất của hàm số

    Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:

    Từ bảng biến thiên ta có:

    \begin{matrix}  f\left( x ight) \geqslant f\left( { - 4} ight),\forall x \in \left( { - \infty ;0} ight] \hfill \\  f\left( x ight) \geqslant f\left( 8 ight),\forall x \in \left( { - \infty ;0} ight) \hfill \\ \end{matrix}

    Mặt khác f(-4) > f(8) => \forall x \in \left( { - \infty ; + \infty } ight) thì f\left( x ight) \geqslant f\left( 8 ight)

    Vậy \mathop {\min }\limits_\mathbb{R} f\left( x ight) = f\left( 8 ight)

  • Câu 29: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 31: Thông hiểu

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 32: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số nghịch biến trên (3; + \infty)

    Suy ra hàm số nghịch biến trên (4;10).

  • Câu 33: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 34: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 35: Vận dụng

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 36: Vận dụng

    Đường thẳng y = m^{2} cắt đồ thị hàm số y = x^{4} - x^{2} - 10 tại hai điểm phân biệt sao cho tam giác OAB vuông (với O là gốc tọa độ). Mệnh đề nào sau đây đúng?

    Xét hàm số y = x^{4} - x^{2} -
10 ta có y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{\sqrt{2}}{2} \\x = - \dfrac{\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    m^{2} \geq 0;\forall m nên từ bảng biến thiên ta thấy đường thẳng y =
m^{2} luôn cắt đồ thị hàm số y =
x^{4} - x^{2} - 10 tại những cặp điểm đối xứng nhau qua trục tung.

    Giả sử A\left( x_{1};m^{2}
ight);B\left( - x_{1};m^{2} ight). Tam giác OAB vuông

    \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{0}
\Leftrightarrow - {x_{1}}^{2} + m^{4} = 0 \Leftrightarrow x_{1} =
m^{2}

    Suy ra A\left( m^{2};m^{2}
ight)A\left( m^{2};m^{2}
ight) thuộc đồ thị hàm số nên

    m^{8} - m^{4} - 10 = m^{2}
\Leftrightarrow m^{2} = 2 \in (1;3)

  • Câu 37: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 38: Nhận biết

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 39: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2},\forall x \in \mathbb{R}. Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?

    Ta có: 

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2} = 0 \hfill \\   \Leftrightarrow {x^2}{\left( {x - 3} ight)^3}\left( {x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn khẳng định đúng

    Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)

  • Câu 40: Nhận biết

    Đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số nào sau đây?

    y = \frac{2}{3x + 2}\lim_{x ightarrow \infty}y = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số. (Loại)

    y = \frac{2x^{3} - 3}{x + 2}\lim_{x ightarrow \infty}y =
\infty nên đồ thị hàm số không có tiệm cận ngang (loại)

    y = \frac{2x^{2} + x - 1}{(x + 1)(3 - x)}
= \frac{2x^{2} + x - 1}{- x^{2} + 2x + 3}\lim_{x ightarrow \infty}y = - 2 suy ra y = - 2 là tiệm cận ngang (Thỏa mãn).

    Vậy đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số y = \frac{2x^{2}
+ x - 1}{(x + 1)(3 - x)}.

  • Câu 41: Vận dụng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 42: Vận dụng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 43: Thông hiểu

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 44: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 45: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo