Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

Đồ thị của hàm số thỏa mãn bài toán.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

Đồ thị của hàm số thỏa mãn bài toán.
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là
trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Cho hàm số
có đạo hàm trên khoảng
và có bảng biến thiên như sau:

Hàm số
là hàm số nào dưới đây?
Nhận diện đồ thị hàm số bậc 4 trùng phương nên loại hàm số
Hàm số có 3 cực trị nên nên loại hàm số
.
Vì nên hàm số cần tìm là
.
Cho hàm số
với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Tìm giá trị lớn nhất của hàm số
trên đoạn
?
Ta có:
.
Cho hàm số
có đồ thị là đường cong trong hình vẽ:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên
.
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây

Số đường tiệm cận của đồ thị hàm số y = f(x) là
Dựa vào bảng biến thiên ta thấy
=> x = -2 là tiệm cận đúng của đồ thị hàm số
Ta cũng có = > y = 5 là tiệm cận ngang của đồ thị hàm số
Do đó đồ thị hàm số có 2 đường tiệm cận
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Hàm số
nghịch biến trên khoảng
khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng khi
Vậy đáp án cần tìm là .
Cho hàm số
có đồ thị như sau:

Xét tính đúng sai của các khẳng định sau:
a)
là đồ thị của hàm số
. Đúng||Sai
b)
là đồ thị của hàm số
. Đúng||Sai
c)
là đồ thị của hàm số
. Sai|| Đúng
d) Đồ thị của hàm số
và
là khác nhau. Sai|| Đúng
Cho hàm số có đồ thị như sau:
Xét tính đúng sai của các khẳng định sau:
a) là đồ thị của hàm số
. Đúng||Sai
b) là đồ thị của hàm số
. Đúng||Sai
c) là đồ thị của hàm số
. Sai|| Đúng
d) Đồ thị của hàm số và
là khác nhau. Sai|| Đúng
a) Đồ thị hàm số
- Giữ nguyên phần trên trục Ox.
- Đối xứng với phần bị bỏ của đồ thị qua trục Ox.
b) Ta có:
Do đó đồ thị hàm số gồm hai phần:
Phần 1: Đồ thị hàm số với
.
Phần 2: Đối xứng với phần còn lại của đồ thị với x < −1 qua trục Ox.
c) Đồ thị gồm hai phần:
Phần 1: Giữ nguyên phần trên Ox
Phần 2: Đối xứng với phần bị bỏ của đồ thị qua trục Ox.
d) Đồ thị của hàm số và
là giống nhau.
Cho hàm số y = f(x) có đạo hàm
. Khi đó số cực trị của hàm số là:
Ta có:
=> Hàm số có 1 cực trị.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hàm số
với
là tham số. Tìm giá trị của tham số
để đồ thị hàm số
có cực đại tại
và cực tiểu tại
sao cho
?
Ta có:
Hàm số có cực đại tại và cực tiểu tại
khi và chỉ khi
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Tìm giá trị lớn nhất của hàm số
trên
?
Ta có:
Cho hình chóp đều
có tất cả các cạnh bằng
. Mặt phẳng
song song với mặt đáy
và cắt các cạnh bên
lần lượt tại
. Tính diện tích tam giác
biết mặt phẳng
chia khối chóp đã cho thành hai phần có thể tích bằng nhau.

Mặt phẳng và cắt các cạnh
lần lượt tại
.
Theo Talet, ta có .
Do đó .
Theo giả thiết .
Suy ra tam giác MNP là tam giác đều cạnh .
Vậy diện tích .
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Cho hàm số
xác định và liên tục trên
có bảng xét dấu như sau:

Số điểm cực trị của hàm số đã cho là:
Dựa vào bảng xét dấu của ta thấy
đổi dấu 4 lần và hàm số
xác định và liên tục trên
Suy ra hàm số có 4 điểm cực trị.
Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Vận tốc của một chất điểm được xác định bởi công thức
(với
được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:
Gia tốc của chất điểm gia tốc là hàm số bậc hai ẩn
đạt giá trị nhỏ nhất tại
Tại đó, vận tốc của chất điểm bằng .
Giá trị lớn nhất của hàm số
trên khoảng (0; 3)
Tập xác định
Xét hàm số trên khoảng (0;3)
Ta có:
Ta có bảng biến thiên:

Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
ho hàm số
. Khẳng định nào sau đây là khẳng định đúng?
Đồ thị hàm số có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1
Tìm các giá trị của tham số
để hàm số
có ba điểm cực trị
;
thỏa mãn
?
Tập xác định
Ta có:
Để hàm số có ba cực trị thì
Suy ra ;
Vậy đáp án đúng là
Cho hàm số
có bảng xét dấu đạo hàm như hình vẽ:

Hàm số
nghịch biến trên khoảng:
Ta có:
. Khi đó ta có bảng biến thiên:
Hàm số nghịch biến trên khoảng
.
Cho hàm số
xác định trên
và có bảng xét dấu đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đạo hàm ta thấy hàm số có 1 điểm cực trị.
Cho hàm số
với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Tính tổng tất cả các nghiệm của phương trình
là:
Xét hàm số
Nên hàm số đồng biến trên
Phương trình có dạng
Vậy tổng tất cả các nghiệm bằng .
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Hàm số có đồ thị như sau:
a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.
b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.
c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.
d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Tồn tại bao nhiêu giá trị nguyên của tham số
sao cho đồ thị hàm số
có ít nhất một tiệm cận đứng nằm bên phải trục tung?
Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình có ít nhất 1 nghiệm dương.
Ta có:
Để (∗) có ít nhất 1 nghiệm dương thì:
TH1: (*) có 2 nghiệm trái dấu
Mà nên
.
TH2: (*) có 2 nghiệm phân biệt
Mà nên
.
TH3: (*) có nghiệm kép lớn hơn 0.
.
Mà nên
.
Vậy có 32 giá trị nguyên của
thỏa mãn yêu cầu bài toán.
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.