Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số f(x) = - x^{3} - 3x^{2} + m trên \lbrack - 1;1brack bằng 0?

    Ta có: f'(x) = - 3x^{2} -
6x

    Xét f'(x) = 0 \Leftrightarrow -
3x^{2} - 6x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f( - 1) = m - 2 \\
f(0) = m \\
f(1) = m - 4 \\
\end{matrix} ight.m - 4
< m - 2 < m

    Khi đó \min_{\lbrack - 1;1brack}f(x) =
f(1) = m - 4

    Theo đề bài ra ta có:

    \min_{\lbrack - 1;1brack}f(x) = 0
\Leftrightarrow m - 4 = 0 \Leftrightarrow m = 4

    Vậy đáp án cần tìm là m = 4.

  • Câu 3: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 4: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở B, AC = a\sqrt 2, SA=a và vuông góc với đáy (ABC). Gọi G là trọng tâm tam giác SBC. Mặt phẳng (\alpha) qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính theo a thể tích V của khối chóp S.AMN.

     

    Từ giả thiết suy ra AB=BC=a.

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{{a^2}}}{2}. Do đó {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{{{a^3}}}{6}.

    Gọi I là trung điểm BC.

    Do G là trọng tâm \Delta SBC nên \frac{{SG}}{{SI}} = \frac{2}{3}.

    BC\parallel \left( \alpha  ight)\xrightarrow{{}}BC song song với giao tuyến MN

    ightarrow{{}}\Delta AMN \backsim \Delta ABC theo tỉ số \frac{2}{3}\xrightarrow{{}}{S_{\Delta AMN}} = \frac{4}{9}{S_{\Delta SBC}}

    Vậy thể tích khối chóp {V_{S.AMN}} = \frac{4}{9}.{V_{S.ABC}} = \frac{{2{a^3}}}{{27}}.

  • Câu 5: Vận dụng

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 6: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 9: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 10: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 11: Nhận biết

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1}?

    Ta có: \lim_{x ightarrow +
\infty}\frac{3x - 1}{- x - 1} = \lim_{x ightarrow - \infty}\frac{3x -
1}{- x - 1} = - 3

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1} là đường thẳng y = - 3.

  • Câu 12: Thông hiểu

    Cho hàm số y = \frac{\sqrt{x - 1} - 1}{x
- 2}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack 1;2) \cup (2; +
\infty)

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = 1

    \lim_{x ightarrow 2^{-}}y = \lim_{x
ightarrow 2^{-}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{-}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{-}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{+}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{+}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x - 1} - 1}{x - 2} = 0

    Vậy đồ thị có một tiệm cận ngang y =
0.

  • Câu 13: Vận dụng

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 14: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 15: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 16: Vận dụng

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 18: Thông hiểu

    Có bao nhiêu số nguyên m thỏa mãn điều kiện hàm số y = 2x^{3} + 9mx^{2} + 12m^{2}x + m - 2 đồng biến trên khoảng ( - \infty; +
\infty)?

    Ta có:

    y' = 6x^{2} + 18mx +
12m^{2}. Hàm số đồng biến trên khoảng ( - \infty; + \infty) \Leftrightarrow y' \leq 0;\forall x\mathbb{\in
R}

    \Leftrightarrow x^{2} + 3mx + 2m^{2}
\leq 0

    \Leftrightarrow \Delta \leq 0
\Leftrightarrow m^{2} \leq 0 \Leftrightarrow m = 0

    Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số y = 2x^{3} + 9mx^{2} + 12m^{2}x + m - 2 đồng biến trên khoảng ( - \infty; +
\infty).

  • Câu 19: Vận dụng

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để đồ thị hàm số y = x^{4} - 2mx^{2} + m- 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 2. Tìm giá trị tham số m thỏa mãn yêu cầu bài toán?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 21: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 22: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y = x^{4} + mx^{2} + c có ba điểm cực trị?

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi b < 0.

  • Câu 23: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 24: Nhận biết

    Đồ thị hàm số y = \frac{{1 - 3x}}{{x + 2}} có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

    Ta có: \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \frac{{1 - 3x}}{{x + 2}} =  + \infty ;\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \frac{{1 - 3x}}{{x + 2}} =  - \infty => Đồ thị hàm số có tiệm cận đứng là x = -2

    Ta có: \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - 3x}}{{x + 2}} =  - 3 => y = -3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 25: Nhận biết

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 26: Thông hiểu

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Ta có: f'(x) = 0 \Leftrightarrow
3x^{3} - 3x^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    a) Hàm số đồng biến trên khoảng (1; +∞).

    b) Hàm số nghịch biến trên khoảng (−∞; 1) nên nghịch biến trên (−1; 1).

    c) Hàm số có đúng một điểm cực trị.

    d) Hàm số có đúng một điểm cực tiểu x = 1.

  • Câu 27: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 28: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 29: Thông hiểu

    Cho hàm số y = \frac{ax - b}{x -
c} có đồ thị như hình vẽ:

    Tính giá trị biểu thức T = a + b +
c?

    Từ đồ thị hàm số đã cho ta thấy đường tiệm cận đứng x = 2, đường tiệm cận ngang y = - 1

    Xét hàm số y = \frac{ax - b}{x -
c} đồ thị có tiệm cận đứng x =
c và tiệm cận ngang y =
a

    suy ra c = 2;a = - 1

    Đồ thị hàm số y = \frac{ax - b}{x -
c} đi qua điểm (1;0) \Rightarrow \frac{a.1 - b}{1 - c} = 0
\Leftrightarrow a + b = 0 \Leftrightarrow b = 1

    Vậy T = - 1 + 1 + 2 = 2.

  • Câu 30: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 31: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 32: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 33: Thông hiểu

    Có bao nhiêu giá trị của tham số m để hàm số y
= f(x) = x^{3} + \frac{1}{2}\left( x^{2} - 1 ight)x^{2} + 1 -
m có điểm cực đại là x = -
1?

    Ta có: \left\{ \begin{matrix}
f'(x) = 3x^{2} + \left( m^{2} - 1 ight)x \\
f''(x) = 6x + m^{2} - 1 \\
\end{matrix} ight.

    Hàm số có điểm cực đại là x = -
1 khi \left\{ \begin{matrix}
f'( - 1) = 0 \\
f''( - 1) < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4 - m^{2} = 0 \\
m^{2} - 7 < 0 \\
\end{matrix} ight.\  \Leftrightarrow m = \pm 2

  • Câu 34: Thông hiểu

    Cho hàm số y = \frac{x - 1}{x^{2} + 2mx +
3m^{2} - m - 1} với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để đồ thị hàm số đã cho có ba đường tiệm cận?

    Ta có: \lim_{x ightarrow \pm \infty}y =
0 suy ra y = 0 là một tiệm cận ngang của đồ thị hàm số.

    Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.

    \Leftrightarrow x^{2} + 2mx + 3m^{2} - m
- 1 = 0 có hai nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
   - 2{m^2} + m + 1 > 0 \hfill \\
  3{m^2} + m e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
   - \frac{1}{2} < m < 1 \hfill \\
  m e 0 \hfill \\
  m e  - \frac{1}{3} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 35: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 36: Thông hiểu

    Điều kiện của tham số m để hàm số y = \frac{x + m}{x + 2} nghịch biến trên từng khoảng xác định là:

    Xét hàm số y = \frac{x + m}{x +
2} ta có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}

    Hàm số nghịch biến trên từng khoảng xác định \Leftrightarrow y' < 0;\forall x \in
D

    \Leftrightarrow 2 - m < 0
\Leftrightarrow m > 2

    Vậy đáp án cần tìm là m >
2.

  • Câu 37: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực tiểu của hàm số đã cho là

    Đạo hàm f'(x) đổi dấu từ âm sang dương hai lần qua các điểm x = -
2x = 2 nên hàm số đã cho có hai điểm cực tiểu.

  • Câu 38: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 39: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x + 2)(3 - x). Mệnh đề nào sau đây đúng?

    Xét f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu f'(x) như sau:

    Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng ( - \infty; - 2);(3; + \infty), hàm số đồng biến trên khoảng ( - 2;3).

  • Câu 40: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 41: Nhận biết

    Trong các hàm số sau đây, hàm số nào không nghịch biến trên \mathbb{R}?

    Với y =  - \frac{1}{{{x^2} + 1}} \Rightarrow y' = \frac{{2x}}{{{{\left( {{x^2} + 1} ight)}^2}}}

    y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên \mathbb{R}

  • Câu 42: Thông hiểu

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = x + \sqrt{4 - x^{2}} lần lượt là M;m. Tính giá trị biểu thức P = M^{2} - m^{2}?

    Tập xác định D = \lbrack -
2;2brack

    Ta có: y' = 1 - \frac{x}{\sqrt{4 -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow 1 - \frac{x}{\sqrt{4 -
x^{2}}} = 0

    \Leftrightarrow x = \sqrt{4 - x^{2}}
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} = 4 - x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Khi đó: \left\{ \begin{matrix}
f(2) = 2;f( - 2) = - 2 \\
f\left( \sqrt{2} ight) = 2\sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 2;2brack}f(x) = M = 2\sqrt{2} \\
\min_{\lbrack - 2;2brack}f(x) = m = - 2 \\
\end{matrix} ight.

    \Rightarrow P = M^{2} - m^{2} =
4

  • Câu 43: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 44: Thông hiểu

    Tất cả các giá trị của tham số m để hàm số y = - x^{4} + (m +
1)x^{2} đạt cực đại tại x =
0 là:

    Ta có: y' = - 4x^{3} + 2(m +
1)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{1}{2}(m + 1)(*) \\\end{matrix} ight.

    Ta thấy hệ số a = - 1 < 0 nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại x =
0.

    Để hàm số đạt cực đại tại x = 0 thì hàm số có một cực trị hay phương trình (*) vô nghiệm hoặc có nghiệm kép

    \Leftrightarrow m + 1 \leq 0 \Leftrightarrow m
\leq - 1.

  • Câu 45: Vận dụng cao

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có bảng biến thiên như hình dưới đây.

    Số tiệm cận đứng của đồ thị hàm số

    Hỏi đồ thị hàm số g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}} có bao nhiêu tiệm cận đứng?

    Ta có: f'\left( x ight) = 3a{x^2} + 2bx + c = 3a\left( {x - 1} ight)\left( {x - 2} ight) = 3x\left( {{x^2} - 3x + 2} ight)

    Đồng nhất hai vế ta có: \left\{ {\begin{array}{*{20}{c}}  {2b =  - 9a} \\   {c = 6a} \end{array}} ight. \Rightarrow f\left( x ight) = a{x^3} - \frac{{9a}}{2}{x^2} + 6ax + d

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {f\left( 1 ight) = 5} \\   {f\left( 2 ight) = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a + \dfrac{9}{2}a + 6a + d = 5} \\   {8a - 18a + 12a + d = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{10}}{{49}}} \\   {d = \dfrac{{ - 20}}{{19}}} \end{array}} ight.

    Giải phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{2}} \\   {x = 2} \end{array}} ight.

    Hàm số có tập xác định là D = \left[ { - \frac{1}{2}; + \infty } ight)\backslash \left\{ {\frac{1}{2};1;2} ight\}

    Khi đó

    g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}}

    = \frac{{\left( {x - 1} ight)\left( {x - 2} ight)\sqrt {2x + 1} }}{{\left( {{x^2} - 1} ight)\left( {{x^2} - 4} ight).f\left( x ight)}}

    = \frac{{\sqrt {2x + 1} }}{{\left( {x + 1} ight)\left( {x + 2} ight)f\left( x ight)}}

    => Đồ thị hàm số có 2 đường tiệm cận đứng là x = \frac{1}{2};x = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo