Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Do đó tiệm cận ngang của đồ thị hàm số là
.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Do đó tiệm cận ngang của đồ thị hàm số là
.
Một chất điểm chuyển động với quy luật
. Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Vận tốc của chuyển động là:
Vậy vận tốc đạt giá trị lớn nhất bằng khi
.
Cho hình lăng trụ tam giác
có đáy
là tam giác vuông cân tại
, cạnh
. Biết
tạo với mặt phẳng
một góc
và
. Tính thể tích
của khối đa diện
.

Gọi H là hình chiếu của C' trên mặt phẳng .
Suy ra AH là hình chiếu của AC' trên mặt phẳng .
Do đó
Tam giác vuông , có
Thể tích khối lăng trụ
Suy ra thể tích cần tính là:
.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Cho hàm số
có đồ thị như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Từ đồ thị hàm số ta có:
và
Ta có:
Khi đó:
Vậy hàm số đồng biến trên khoảng
.
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang?
Ta có: nên tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình
.
Cho hàm số
có đạo hàm trên
và đồ thị như hình vẽ.

a) Hàm số nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm
. Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng
. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ.
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số nghịch biến trên khoảng và đạt cực tiểu tại điểm
.
Vì hàm số đồng biến trên khoảng nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu:
Từ bảng xét dấu của suy ra hàm số đồng biến trên khoảng
.
Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?
Hàm trùng phương không nghịch biến trên tập xác định của nó
Với
Hàm số đã cho đồng biến trên từng khoảng xác định
Với
=> Hàm số nghịch biến trên
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số
xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.

Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có: suy ra hàm số nghịch biến trên mỗi khoảng
và
Do đó hàm số không có điểm cực trị.
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Đồ thị (C) của hàm số
có bảng biến thiên như hình vẽ.

Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng
. Giá trị của biểu thức
là:
Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3
=> Hàm số có dạng
Do tiếp tuyến song song với đường thẳng
=> 3 – b = 2 => b = 1
Vậy a = -3; b = 1; c = 1 => K = 2
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tồn tại bao nhiêu giá trị nguyên của tham số
sao cho đồ thị hàm số
có ít nhất một tiệm cận đứng nằm bên phải trục tung?
Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình có ít nhất 1 nghiệm dương.
Ta có:
Để (∗) có ít nhất 1 nghiệm dương thì:
TH1: (*) có 2 nghiệm trái dấu
Mà nên
.
TH2: (*) có 2 nghiệm phân biệt
Mà nên
.
TH3: (*) có nghiệm kép lớn hơn 0.
.
Mà nên
.
Vậy có 32 giá trị nguyên của
thỏa mãn yêu cầu bài toán.
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?
Hình hộp đứng có đáy là hình thoi (không phải là hình chữ nhật) có 3 mặt phẳng đối xứng bao gồm:

- Hai mặt phẳng chứa đường chéo của đáy và vuông góc với đáy.
- Một mặt phẳng là mặt phẳng trung trực của cạnh bên.
Cho hàm số
có đồ thị như hình vẽ bên dưới. Trong các hệ số
,
,
có bao nhiêu số dương?

Tiệm cận đứng:
Tiệm cận ngang:
Đồ thị cắt trục hoành tại nên
hay
Vậy trong các hệ số ,
,
có có hai số dương là
Cho hàm số
có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Điểm cực tiểu của hàm số là
Điểm cực tiểu của đồ thị hàm số là
Điểm cực đại của hàm số là .
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Từ đồ thị hàm số ta có:
Khi đó .
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Cho hàm số
có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

Dựa vào bảng biến thiên ta thấy:
Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1
=> Loại đáp án C và D
Hàm số đã cho nghịch biến trên mỗi khoảng xác định
Xét hàm số
=> Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A
Cho hàm số
. Tọa độ điểm cực tiểu của đồ thị hàm số là:
Ta có:
Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)
Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số ![]()
Ta có:
nên hàm số đạt cực đại tại điểm
và đạt cực tiểu tại
Mà suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Vậy tiếp tuyến song song với trục hoành.
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Cho hàm số
có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.
Tìm các giá trị của tham số m để bất phương trình
nghiệm đúng với mọi ![]()
Xét hàm số ta có:
=>
Ta có:
Số đường tiệm cận của đồ thị hàm số ![]()
Quy đồng biến đổi hàm số đã cho trở thành
Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang
=> Số tiệm cận là 2 đường
Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

Quan sát đồ thị hàm số ta thấy:
Hàm số có dạng hàm số bậc bốn trùng phương:
=> Loại đáp án B
Đồ thị có nhánh cuối của đồ thị đi lên
=> Hệ số a > 0
=> Loại đáp án A
Đồ thị hàm số cắt trục tung tại điểm O
=> c = 0
=> Loại đáp án C
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.