Đề thi giữa kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi giữa HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y = (m - 1)x^{3} - 3(m - 1)x^{2} + 3x +
2; (m là tham số) đồng biến trên tập số thực?

    Ta có: y' = 3(m - 1)x^{2} - 6(m - 1)x
+ 3

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m - 1 = 0 \\
\left\{ \begin{matrix}
m - 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
9(m - 1)^{2} - 9(m - 1) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
1 \leq m \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 1 \leq m \leq 2

    Vậy đáp án cần tìm là 1 \leq m \leq
2.

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 3: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 4: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 5: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} là bao nhiêu?

    Đáp án: 6

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} là bao nhiêu?

    Đáp án: 6

    Ta có: f^{2}(x) - 2f(x) = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = 0\ \ \ (1) \\f(x) = 2\ \ \ (2) \\\end{matrix} ight.

    Dựa vào đồ thị hàm số, ta thấy:

    (1) có nghiệm x_{1} = a < - 1 (nghiệm đơn) và x_{2} = 1 (nghiệm kép)

    \Rightarrow f(x) = k(x - a)(x - 1)^{2}(k
> 0)

    (2) có nghiệm ba nghiệm đơn x_{1},x_{2},x_{3} với x_{1} = b < - 1 < x_{2} = 0 < 1 <
x_{3} = c\ \ \ (b > a)

    \Rightarrow f(x) - 2 = k(x - b)x(x -
c)(k > 0).

    \Rightarrow Hàm số y = g(x) có tập xác định D\mathbb{= R}\backslash\left\{ a;b;0;1;c
ight\}

    +) Tìm tiệm cận ngang:

    g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} = \frac{(x + 1)\left( x^{2} - 1
ight)}{f(x)\left\lbrack f(x) - 2 ightbrack} = \frac{(x + 1)^{2}}{k^{2}(x - 1)(x - b)x(x - c)(x
- a)}

    Nên \lim_{x ightarrow + \infty}g(x) =
0,\lim_{x ightarrow - \infty}g(x) = 0 \Rightarrow Đồ thị hàm số y = g(x) nhận đường thẳng y = 0 làm TCN.

    +) Tìm tiệm cận đứng:

    Tại các điểm x = a,x = b,x = 0,x = 1,x =
c mẫu của g(x) nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.

    Và do hàm số xác định trên D\mathbb{=R}\backslash\left\{ a; b ; 0; 1; c ight\} nên giới hạn một bên của hàm số y = g(x) tại các điểm x = a,x = b,x = 0,x = 1,x = c là các giới hạn vô cực.

    Do đó, đồ thị hàm số y = g(x) có 5 TCĐ: x = a,x = b,x = 0,x = 1x = c.

    Vậy ĐTHS y = g(x) có 6 đường tiệm cận: 1 TCN: y = 0 và 5 TCĐx = a,x
= b,x = 0,x = 1,x = c.

  • Câu 6: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 7: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 8: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có đồ thị f'(x) là parabol như hình vẽ:

    Khẳng định nào sau đây là đúng?

    Từ đồ thị hàm số ta có bảng biến thiên như sau:

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 1)(3; +
\infty).

  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số y = \left|
f(x) ight| là:

    Khi đó bảng biến thiên của hàm số y =
\left| f(x) ight| là:

    Dựa vào bảng biến thiên ta thấy hàm số y
= \left| f(x) ight| có 5 điểm cực trị.

  • Câu 12: Vận dụng

    Tính theo a thể tích V của khối hộp chữ nhật ABCD.A'B'C'D'. Biết rằng mặt phẳng \left( {A'BC} ight) hợp với đáy \left( {ABCD} ight) một góc 60^0, A'C hợp với đáy \left( {ABCD} ight) một góc 30^0AA' = a\sqrt 3.

     

    Ta có

    {30^0} = \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA};

    {60^0} = \widehat {\left( {A'BC} ight),\left( {ABCD} ight)} = \widehat {A'B,AB} = \widehat {A'BA}

    Tam giác vuông A'AB, có AB = \frac{{AA'}}{{\tan \widehat {A'BA}}} = a.

    Tam giác vuông A'AC, có AC = \frac{{AA'}}{{\tan \widehat {A'CA}}} = 3a.

    Tam giác vuông ABC, có BC = \sqrt {A{C^2} - A{B^2}}  = 2a\sqrt 2.

    Diện tích hình chữ nhật {S_{ABCD}} = AB.BC = 2{a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}\sqrt 6

  • Câu 13: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 14: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 15: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} + mx -
1 đạt cực đại tại x_{1};x_{2} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} = 3. Khi đó:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + m hàm số có hai cực trị x_{1};x_{2} khi và chỉ khi \Delta > 0 \Leftrightarrow
9 - 3m > 0 \Leftrightarrow m < 3

    Khi đó \left\{ \begin{matrix}x_{1} + x_{2} = 2 \\x_{1}.x_{2} = \dfrac{m}{3} \\\end{matrix} ight..

    Mặt khác {x_{1}}^{2} + {x_{2}}^{2} = 3
\Leftrightarrow \left( x_{1} + x_{2} ight)^{2} - 2x_{1}.x_{2} =
3

    \Leftrightarrow 2^{2} - 2.\frac{m}{3} =
3 \Leftrightarrow m = \frac{3}{2}(tm)

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 16: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hàm số đã cho đồng biến trên ( -
1;2).

  • Câu 17: Nhận biết

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 18: Thông hiểu

    Số các giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - x^{2} - 3x + 2m + 7 có giá trị nhỏ nhất trên đoạn \lbrack 2;4brack thuộc khoảng ( - 5;8) là:

    Xét hàm số y = \frac{1}{3}x^{3} - x^{2} -
3x + 2m + 7 trên \lbrack
2;4brack ta có:

    y' = x^{2} - 2x - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}y(2) = - \dfrac{1}{3} + 2m \\y(4) = \dfrac{1}{3} + 2m \\y(3) = - 2 + 2m \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}y = - 2 + 2m\in ( - 5;8)

    \Leftrightarrow - 5 < - 2 + 2m < 8
\Leftrightarrow - 3 < 2m < 10 \Leftrightarrow - \frac{3}{2} < m
< 5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 19: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số g(x) = 2f(x) + 2021 đồng biến trên khoảng:

    Ta có: g'(x) = 2f'(x) > 0
\Leftrightarrow f'(x) > 0

    \Leftrightarrow x \in ( - \infty; - 4)
\cup (7; + \infty)

    Nên suy ra hàm số cũng đồng biến trên (8;
+ \infty).

  • Câu 20: Thông hiểu

    Cho đồ thị hàm số như hình vẽ dưới đây:

    Xác định hàm số tương ứng

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1

    => Loại A và B

    Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C

  • Câu 21: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Nhận biết

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 23: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm f'(x) như sau:

    Hàm số f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.

  • Câu 24: Thông hiểu

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}. Hàm số f(x) đồng biến trên khoảng nào dưới đây?

    Ta có:

    f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}

    \Rightarrow f'(x) = 0
\Leftrightarrow (x - 1)^{3}(2 - x)(x - 3)^{3} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Từ bảng xét dấu của f'(x) suy ra hàm số đồng biến trên khoảng (1;2).

  • Câu 25: Thông hiểu

    Một chất điểm chuyển động với vận tốc được cho bởi công thức v(t) = - t^{2} + 4t + 2 với t (giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?

    Ta có: v(t) = - t^{2} + 4t + 2 với t > 0.

    v'(t) = - 2t + 4

    v'(t) = 0 \Leftrightarrow - 2t + 4 =
0 \Leftrightarrow t = 2 (thỏa mãn).

    Bảng biến thiên

    Dựa vào bảng biến thiên, tại thời điểm t
= 2 giây thì vận tốc của chất điểm là lớn nhất.

  • Câu 26: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 28: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 3x^{2} + m = 0 có 4 nghiệm thực phân biệt?

    Đặt t = x^{2};(t \geq 0). Ta được phương trình 3t^{2} - 3t + m =
0(*)

    Phương trình đã cho có 4 nghiệm thực phân biệt khi và chỉ khi phương trình có 2 nghiệm dương phân biệt \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
9 - 4m > 0 \\
3 > 0 \\
m > 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m <
\frac{9}{4}

    Do m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 29: Vận dụng

    Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?

     Có 9 mặt đối xứng (như hình vẽ sau):

    Hình lập phương

  • Câu 30: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 32: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 33: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 2x^{2} + 3 - 2m = 0 có nghiệm thuộc ( - 2;2)?

    Ta có: x^{4} - 2x^{2} + 3 =
2m

    Xét hàm số f(x) = x^{4} - 2x^{2} +
3f'(x) = 4x^{3} - 4x + 3 =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Theo yêu cầu bài toán ta có: 2 \leq 2m
\leq 11 \Leftrightarrow 1 \leq m \leq 5,5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;4;5 ight\}

  • Câu 34: Thông hiểu

    Số giá trị nguyên của tham số m để hàm số y = mx^{4} - (m - 3)x^{2} +
m^{2} không có điểm cực đại là:

    Hàm số y = mx^{4} - (m - 3)x^{2} +
m^{2} không có điểm cực đại

    \Leftrightarrow \left\{ \begin{matrix}
a \geq 0 \\
a.b \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
- (m - 3) \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
m \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m \leq 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;3 ight\}

    Vậy có bốn giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 35: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm y = f'(x) =
x^{2}\left( x^{2} - 1 ight);\forall x\mathbb{\in R}. Hàm số y = f( - x) đồng biến trên khoảng:

    Ta có:

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    y = f( - x) \Rightarrow y' = -
f'( - x)

    Hàm số y = f( - x) đồng biến khi và chỉ khi

    - f'( - x) < 0 \Leftrightarrow
f'( - x) > 0

    \Leftrightarrow - 1 < - x < 1
\Leftrightarrow 1 > x > - 1

    Vậy đáp án cần tìm là ( -
1;1).

  • Câu 36: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 37: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 38: Thông hiểu

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 39: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 40: Thông hiểu

    Đồ thị hàm số y = \frac{\left( m^{2} - 3m
ight)x - 1}{x - 2} có đường tiệm cận ngang qua điểm A(1; - 2) khi:

    Để đồ thị hàm số y = \frac{\left( m^{2} -
3m ight)x - 1}{x - 2} có đường tiệm cận ngang là y = m^{2} - 3m

    Đường tiệm cận ngang đi qua A(1; -
2) nên ta có:

    m^{2} - 3m = - 2 \Leftrightarrow m^{2} -
3m + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Vậy đáp án đúng là \left\lbrack
\begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 41: Nhận biết

    Cho hàm số f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 1} ight){\left( {x + 2} ight)^5},\forall x \in \mathbb{R}. Số cực trị của hàm số đã cho là

    Xét phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 2} \end{array}} ight.

    Ta có bảng xét dấu:

    Xác định số điểm cực trị của hàm số

    Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1

    => Hàm số có hai điểm cực trị

  • Câu 42: Nhận biết

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

  • Câu 43: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 44: Nhận biết

    Cho đồ thị hàm số như sau:

    Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:

    Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là x = -
1;y = 1.

  • Câu 45: Vận dụng

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo