Đề thi HK1 Toán 12 Chân trời sáng tạo Đề 2

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức toán 12 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Hàm số nào dưới dây nghịch biến trên \mathbb{R}?

    Xét hàm số y = x^{3} + 2x - 2020y' = 3x^{2} + 2 > 0;\forall
x\mathbb{\in R} suy ra hàm số y =
x^{3} + 2x - 2020 đồng biến trên \mathbb{R}.

  • Câu 2: Thông hiểu

    Cho đồ thị hàm số y = \frac{x^{2} - 2x}{1 - x}. Khẳng định nào sau đây đúng?

    Tập xác định D = ( - \infty;1) \cup (1; +
\infty)

    Ta có: y' = - 1 - \frac{1}{(1 -
x)^{2}} < 0;\forall x \in D

    Do đó hàm số nghịch biến trên từng khoảng xác định.

    Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng ( - \infty;1)(1; + \infty)”.

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của đồ thị hàm số là:

    Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.

  • Câu 4: Nhận biết

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

  • Câu 5: Thông hiểu

    Cho hàm số y = \frac{mx + n}{ax^{2} + bx
+ c} (với m,n,a,b,c\mathbb{\in
R}). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Ta có:

    Phương trình ax^{2} + bx + c = 0 có tối đa 2 nghiệm

    Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\ 
\end{gathered}  ight. nên y =
0 là đường tiệm cận ngang.

    Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y = - 2.

  • Câu 7: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 2x^{2} + 3 - 2m = 0 có nghiệm thuộc ( - 2;2)?

    Ta có: x^{4} - 2x^{2} + 3 =
2m

    Xét hàm số f(x) = x^{4} - 2x^{2} +
3f'(x) = 4x^{3} - 4x + 3 =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Theo yêu cầu bài toán ta có: 2 \leq 2m
\leq 11 \Leftrightarrow 1 \leq m \leq 5,5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;4;5 ight\}

  • Câu 8: Nhận biết

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 3}{13}

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 11: Nhận biết

    Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:

    Cân nặng (gam)

    [100; 110)

    [110; 120)

    [120; 130)

    [130; 140)

    [140; 150)

    Số quả cam ở lô hàng 1

    0

    10

    11

    19

    0

    Số quả cam ở lô hàng 1

    3

    15

    12

    7

    3

    Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.

    Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.

  • Câu 12: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 13: Thông hiểu

    Cho hàm số y = f(x) liên tục trên và có đồ thị như

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số y = f(x) không có đạo hàm tại x = −2 và x = 2. Đúng||Sai

    b) Hàm số y = f(x) có ba điểm cực trị. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số y =
f(x) bằng −2 đạt được tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) không có giá trị lớn nhất. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên và có đồ thị như

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số y = f(x) không có đạo hàm tại x = −2 và x = 2. Đúng||Sai

    b) Hàm số y = f(x) có ba điểm cực trị. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số y =
f(x) bằng −2 đạt được tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) không có giá trị lớn nhất. Sai||Đúng

    a) Đúng: Hàm số y = f(x) không có đạo hàm tại x = −2 và x = 2.

    b) Sai: Hàm số y = f(x) chỉ có một điểm cực trị là x = 0.

    c) Đúng: Giá trị nhỏ nhất của hàm số y =
f(x) bằng −2 đạt được tại x = 0.

    d) Sai: Ta thấy f(x) \leq 2;\forall
x\mathbb{\in R}, và có xảy ra dấu bằng nên hàm số y = f(x) có giá trị lớn nhất.

  • Câu 14: Vận dụng

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    Đáp án là:

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    a) Đúng: Thời gian tàu chạy quãng đường 1 km là: \frac{1}{10} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{10}.480000 = 48000 (đồng).

    b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0

    Thời gian tàu chạy quãng đường 1 km là: \frac{1}{x} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{x}.480 = \frac{480}{x} (nghìn đồng)

    Hàm chi phí cho phần thứ hai là p =
k.x^{3} (nghìn đồng/ giờ)

    Khi x = 10 \Rightarrow p = 30 \Rightarrow
k = 0,03 \Rightarrow p = 0,03x^{3} (nghìn đồng/ giờ)

    Do đó chi phí phần 2 để chạy 1 km là: \frac{1}{x}.0,03x^{3} = 0,03x^{2} (nghìn đồng)

    Vậy tổng chi phí f(x) = \frac{480}{x} +
0,03x^{3},

    c) Đúng. Tổng chi phí f(x) =
\frac{480}{x} + 0,03x^{3}

    Thay x = v = 30 ta được f(30) = \frac{480}{30} + 0,03(30)^{3} =
43(nghìn đồng).

    d) Đúng f(x) = \frac{480}{x} + 0,03x^{3}
= \frac{240}{x} + \frac{240}{x} + 0,03x^{2} \geq 3\sqrt[3]{1728} =
36

    Dấu ’’=’’ xảy ra khi x = 20.

  • Câu 15: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 16: Thông hiểu

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    Đáp án là:

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    a) Đúng: Số học sinh nặng dưới 50 kg là 2
+ 10 = 12.

    b) Đúng: Nhóm chứa mốt của mẫu số liệu là \lbrack 50;60).

    Do đó u_{m} = 50;n_{m} = 16;n_{m - 1} =
10,n_{m + 1} = 8,u_{m + 1} - u_{m} = 60 - 50 = 10.

    Mốt của mẫu số liệu ghép nhóm xấp xỉ bằng:

    M_{0} = 50 + \frac{16 - 10}{(16 - 10) +
(16 - 8)} \cdot 10 = \frac{380}{7} \approx 54,29(\text{\
}kg)

    Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(\text{\ }kg).

    c) Sai: Cỡ mẫu n = 40.

    Gọi x_{1},x_{2} \in \lbrack
30;40);x_{3},\ldots,x_{12} \in \lbrack 40;50);

    x_{13},\ldots,x_{28} \in \lbrack
50;60);x_{29},\ldots,x_{36} \in \lbrack 60;70);

    x_{37},x_{38} \in \lbrack
70;80);x_{39},x_{40} \in \lbrack 80;90).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) \in
\lbrack 40;50).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 40 + \frac{\frac{40}{4} - 2}{10}
\cdot (50 - 40) = 48.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) \in
\lbrack 60;70).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 60 + \dfrac{\dfrac{3 \cdot 40}{4} -(2 + 10 + 16)}{8}.(70 - 60) = \frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = \frac{125}{2} - 48 =
\frac{29}{2}

    d) Sai: Ta có bảng cân nặng của các em học sinh theo giá trị đại diện:

    Nhóm

    Giá trị đại diện

    Tần số

    [30; 40)

    35

    2

    [40; 50)

    45

    10

    [50; 60)

    55

    16

    [60; 70)

    65

    8

    [70; 80)

    75

    2

    [80; 90)

    85

    2

    Cỡ mẫu n = 2 + 10 + 16 + 8 + 2 + 2 =
40.

    Số trung bình của mẫu số liệu ghép nhóm là

     \frac{35.2 + 45.10 + 55.16 + 65.8 + 75.2
+ 85.2}{40} = \frac{2240}{40} = 56(kg)

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{40}\left( {2.35}^{2} +
{10.45}^{2} + {16.55}^{2} + {8.65}^{2} + {2.75}^{2} + {2.85}^{2} ight)
- 56^{2}

    = 3265 - 3136 = 129.

  • Câu 17: Thông hiểu

    Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y= \frac{x - 1}{x + m - 2} nghịch biến trên khoảng (6; + \infty)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y= \frac{x - 1}{x + m - 2} nghịch biến trên khoảng (6; + \infty)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK1 Toán 12 Chân trời sáng tạo Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo