Cho hàm số . Mệnh đề nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên từng khoảng và .
Cho hàm số . Mệnh đề nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên từng khoảng và .
Cho hàm số . Hỏi hàm số có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Xét dấu ta có:
Vậy hàm số có 1 cực trị.
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
nên không phải tiệm cận đứng.
suy ra là một tiệm cận ngang
suy ra là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt?
Phương trình hoành độ giao điểm của đồ thị hàm số
Ta cps:
Đặt . Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số và đường thẳng .
Khảo sát sự biến thiên của hàm số ta có:
Ta có bảng biến thiên
Với thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên .
Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?
Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là và đường tiệm cận đứng của đồ thị là .
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là .
Trong không gian , cho hai điểm và . Vectơ có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian , cho vectơ . Tọa độ điểm là:
Ta có:
Cho tứ diện . Gọi là trọng tâm tam giác . Điểm xác định bởi công thức . Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia và ”.
Biết rằng vectơ và . Tìm tọa độ vectơ ?
Ta có:
Trong không gian với hệ trục tọa độ , cho tọa độ hai điểm . Tính chu vi tam giác ?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:
Thời gian |
[15; 20) |
[25; 30) |
[30; 35) |
Số ngày tập của A |
10 |
15 |
5 |
Số ngày tập của B |
9 |
21 |
0 |
Chọn kết luận đúng dưới đây?
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).
Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.
Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:
Đường kính (cm) |
[30; 32) |
[32; 34) |
[34; 36) |
[36; 38) |
[38; 40) |
A |
25 |
28 |
20 |
10 |
7 |
B |
22 |
27 |
19 |
18 |
14 |
Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:
Ta có:
Đường kính (cm) |
[30; 32) |
[32; 34) |
[34; 36) |
[36; 38) |
[38; 40) |
Giá trị đại diện |
31 |
33 |
35 |
37 |
39 |
A |
25 |
28 |
20 |
10 |
7 |
B |
22 |
27 |
19 |
18 |
14 |
Suy ra
Cho hàm số có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số . Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số là . Sai||Đúng
Cho hàm số có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số . Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số là . Sai||Đúng
Hàm số có tập xác định
Ta có:
Bảng biến thiên
a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .
b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)
c) Đúng: Xét nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số .
d) Sai: Xét nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số .
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi thì phần thứ hai bằng nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc thì chi phí nguyên liệu cho phần thứ nhất trên đường sông là đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên đường sông với vận tốc là . Sai||Đúng
c) Khi vận tốc thì tổng chi phí nguyên liệu trên đường sông là đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên đường sông nhỏ nhất là . Đúng||Sai
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi thì phần thứ hai bằng nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc thì chi phí nguyên liệu cho phần thứ nhất trên đường sông là đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên đường sông với vận tốc là . Sai||Đúng
c) Khi vận tốc thì tổng chi phí nguyên liệu trên đường sông là đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên đường sông nhỏ nhất là . Đúng||Sai
a) Đúng: Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (đồng).
b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0
Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (nghìn đồng)
Hàm chi phí cho phần thứ hai là (nghìn đồng/ giờ)
Khi (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy 1 km là: (nghìn đồng)
Vậy tổng chi phí ,
c) Đúng. Tổng chi phí
Thay ta được (nghìn đồng).
d) Đúng
Dấu ’’=’’ xảy ra khi x = 20.
Trong không gian , cho tam giác với tọa độ các điểm .
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là . Đúng||Sai
b) . Sai||Đúng
c) Tam giác là tam giác cân. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là . Sai||Đúng
Trong không gian , cho tam giác với tọa độ các điểm .
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là . Đúng||Sai
b) . Sai||Đúng
c) Tam giác là tam giác cân. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là . Sai||Đúng
a) Đúng.
Trọng tâm tam giác có tọa độ là:
b) Sai. Vì
c) Đúng. Do nên tam giác ABC cân tại A.
d) Sai. Gọi , vì ABCD là hình bình hành nên
Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:
Giờ |
[1; 2) |
[2; 3) |
[3; 4) |
[4; 5) |
[5; 6) |
Số học sinh |
8 |
10 |
12 |
9 |
3 |
Xét tính đúng sai của các khẳng định sau:
a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai
b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng
c) Tứ phân vị thứ ba của mẫu số liệu bằng . Đúng||Sai
d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng
Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:
Giờ |
[1; 2) |
[2; 3) |
[3; 4) |
[4; 5) |
[5; 6) |
Số học sinh |
8 |
10 |
12 |
9 |
3 |
Xét tính đúng sai của các khẳng định sau:
a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai
b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng
c) Tứ phân vị thứ ba của mẫu số liệu bằng . Đúng||Sai
d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng
Ta có
Giờ |
[1; 2) |
[2; 3) |
[3; 4) |
[4; 5) |
[5; 6) |
Số học sinh |
8 |
10 |
12 |
9 |
3 |
Tần số tích lũy |
8 |
18 |
30 |
39 |
42 |
a) Đúng: Ta có số phần tử của mẫu là:
Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10,5.
Xét nhóm 2 là nhóm [2;3) có và nhóm 1 là nhóm [1; 2) có
Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:
(giờ)
b) Sai: Ta có số phần tử của mẫu là
Mà suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21.
Xét nhóm 3 là nhóm [3; 4) có và nhóm 2 là nhóm [2;3) có .
Áp dụng công thức ta có trung vị của mẫu số liệu là:
(giờ)
Vậy tứ phân vị thứ 2 là
c) Đúng: Ta có số phần tử của mẫu là:
Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 31,5.
Xét nhóm 4 là nhóm [4;5) có và nhóm 3 là nhóm [3; 4) có .
Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:
(giờ)
d) Sai: Khoảng tứ phân vị của mẫu số liệu bằng .
Tìm tập hợp tất cả các giá trị thực của tham số để hàm số nghịch biến trên khoảng ?
Tìm tập hợp tất cả các giá trị thực của tham số để hàm số nghịch biến trên khoảng ?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Cho hình lập phương có đường chéo . Gọi là tâm hình vuông và điểm S thỏa mãn: . Khi đó độ dài của đoạn bằng với và là phân số tối giản. Tính giá trị của biểu thức .
Cho hình lập phương có đường chéo . Gọi là tâm hình vuông và điểm S thỏa mãn: . Khi đó độ dài của đoạn bằng với và là phân số tối giản. Tính giá trị của biểu thức .
Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:
Điểm trung bình | [5; 6) | [6; 7) | [7; 8) | [8; 9) | [9; 10) |
Số học sinh lớp 12C | 4 | 5 | 3 | 4 | 2 |
Số học sinh lớp 12D | 2 | 5 | 4 | 3 | 1 |
Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?
Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:
Điểm trung bình | [5; 6) | [6; 7) | [7; 8) | [8; 9) | [9; 10) |
Số học sinh lớp 12C | 4 | 5 | 3 | 4 | 2 |
Số học sinh lớp 12D | 2 | 5 | 4 | 3 | 1 |
Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?
Cho hàm số có đạo hàm . Hỏi hàm số có bao nhiêu cực trị?
Cho hàm số có đạo hàm . Hỏi hàm số có bao nhiêu cực trị?
Cho hàm số có bảng xét dấu như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu như sau:
Hàm số đồng biến trong khoảng nào dưới đây?