Đề thi HK1 Toán 12 Kết nối tri thức Đề 5

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức toán 12 kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Tìm các khoảng nghịch biến của hàm số y = \frac{1 - x}{x + 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y = \frac{1 - x}{x + 1}
\Rightarrow y' = \frac{- 2}{(x + 1)^{2}} < 0;\forall x \in
D

    Do đó hàm số luôn nghịch biến trên từng khoảng xác định.

  • Câu 2: Nhận biết

    Chọn hàm số có nhiều điểm cực trị nhất trong các hàm số sau?

    Ta có:

    Hàm số y = - 3x + 1y = \frac{2x + 1}{x - 3} không có điểm cực trị (đạo hàm không đổi dấu).

    Hàm số y = x^{4} + 3x^{2} + 1y' = 4x^{3} + 6x = 0 \Leftrightarrow x =
0. Đạo hàm đổi dấu qua 1 điểm x =
0 nên hàm số y = x^{4} + 3x^{2} +
1 chỉ có một điểm cực trị.

    Hàm số y = x^{3} - 3x^{2} + 1y' = 3x^{2} - 6x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.. Đạo hàm đổi dấu qua hai điểm x = 0x =
2 nên hàm số y = x^{3} - 3x^{2} +
1 có hai điểm cực trị.

    Vậy hàm số có nhiều điểm cực trị nhất là: y = x^{3} - 3x^{2} + 1.

  • Câu 3: Thông hiểu

    Cho hàm số y = \frac{x}{\sqrt{x^{2} -
4}}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Tập xác định D = ( - \infty; - 2) \cup
(2; + \infty)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 1 \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận ngang là y = \pm 1

    Lại có \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} y =  + \infty  \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận đứng là x = \pm 2

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.

  • Câu 4: Thông hiểu

    Cho hình vẽ:

    Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?

    Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số a > 0

    Mặt khác hàm số đạt cực tiểu tại x = 1;x= - 1 và giá trị cực tiểu y(1) = y(- 1) = - 2 nên hàm số cần tìm là y= x^{4} - 2x^{2} - 1.

  • Câu 5: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm B( - 1;2;1),B'( -
2;1;0),C'(5;3;2). Xác định tọa độ điểm C?

    Hình vẽ minh họa

    Gọi tọa độ điểm C(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{CC'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
5 - x = - 2 - ( - 1) \\
3 - y = 1 - 2 \\
2 - z = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 6 \\
y = 4 \\
z = 3 \\
\end{matrix} ight.

    Vậy tọa độ C(6;4;3).

  • Câu 6: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hình vẽ minh họa

    \overrightarrow{EG} =
\overrightarrow{AC} (AEGC là hình chữ nhật) nên \left(
\overrightarrow{AB};\overrightarrow{EG} ight) = \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = \widehat{BAC} =
45^{0}(AEGC là hình vuông)

  • Câu 7: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u}\overrightarrow{v} tạo với nhau một góc 120^{0}. Biết rằng \left| \overrightarrow{u} ight| = 2;\left|
\overrightarrow{v} ight| = 5, tính \left| \overrightarrow{u} + \overrightarrow{v}
ight|?

    Ta có: \left( \left| \overrightarrow{u} +
\overrightarrow{v} ight| ight)^{2} = \left( \overrightarrow{u} +
\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
2\overrightarrow{u}.\overrightarrow{v} +
{\overrightarrow{v}}^{2}

    = \left| \overrightarrow{u} ight|^{2}
+ 2\left| \overrightarrow{u} ight|.\left| \overrightarrow{v}
ight|\cos\left( \overrightarrow{u};\overrightarrow{v} ight) + \left|
\overrightarrow{v} ight|^{2} = 2^{2} + 2.2.5.\left( - \frac{1}{2}
ight) + 5^{2} = 19

    \Rightarrow \left| \overrightarrow{u} +
\overrightarrow{v} ight| = \sqrt{19}

    Vậy đáp án đúng là: \left|
\overrightarrow{u} + \overrightarrow{v} ight| =
\sqrt{19}.

  • Câu 8: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;3; - 1),B(3; - 1;5). Tìm tọa độ điểm M thỏa mãn hệ thức \overrightarrow{MA} =
3\overrightarrow{MB}?

    Ta có: \overrightarrow{MA} =3\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} - 3x_{B}}{1 - 3} = 4 \\y_{M} = \dfrac{y_{A} - 3y_{B}}{1 - 3} = - 3 \\z_{M} = \dfrac{z_{A} - 3z_{B}}{1 - 3} = 8 \\\end{matrix} ight.\  \Rightarrow M(4; - 3;8)

  • Câu 9: Nhận biết

    Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.

    Chiều cao(cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    Số học sinh nữ lớp 12B

    0

    5

    13

    7

    0

    Số học sinh nữ lớp 12C

    2

    10

    9

    3

    1

    Chọn đáp án có khẳng định đúng.

    Ta có

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25

    Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.

  • Câu 10: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 11: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 12: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm đã cho là:

    Ta có: \frac{3n}{4} = \frac{3.20}{4} =
151 + 3 + 8 < 15 < 1 + 3
+ 8 + 6 nên tứ phân vị thứ ba của mẫu số liệu thuộc nhóm [17;18).

  • Câu 13: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:

    a) Hàm số nghịch biến trên khoảng (−2, 0).

    b) Hàm số đồng biến trên khoảng (0; +∞) nên khẳng định đồng biến trên khoảng (−1; +∞) là sai.

    c) Hàm số đồng biến trên khoảng (0; +∞) nên nên hàm số đồng biến trên khoảng (2; +∞).

    d) Hàm số đạt cực tiểu tại x = 0 (chú ý: y = −1 gọi là giá trị cực tiểu).

  • Câu 14: Vận dụng

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    Đáp án là:

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại làP(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}.

    b) Sai. Đạo hàm của P(x)P'(x) = \frac{3}{2}x -
\frac{3}{40}x^{2}.

    c) Sai. Xét phương trình P'(x) = 0
\Leftrightarrow \frac{3}{2}x - \frac{3}{40}x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    d) Đúng. Ta có bảng biến thiên:

    Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.

  • Câu 15: Thông hiểu

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    Đáp án là:

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    a) Đúng: Giá trị đại diện nhóm [50;60) là 55

    b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .

    c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).

    d) Sai: Khi đó

    u_{m} = 30;n_{m} = 16;n_{m- 1} = 12;n_{m + 1} = 7;u_{m + 1} - u_{m} = 40 - 30 = 10

    Ta có mốt là:

    M_{0} = 30 + \frac{16 - 12}{(16 - 2) +
(16 - 7)}.10 = \frac{430}{13} \approx 33,08

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.

  • Câu 16: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 17: Thông hiểu

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Biết rằng đồ thị hàm số y =\frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + x - 2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng \sqrt{7}. Hỏi có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết rằng đồ thị hàm số y =\frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + x - 2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng \sqrt{7}. Hỏi có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng cao

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK1 Toán 12 Kết nối tri thức Đề 5 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo