Biết
. Khi đó
có giá trị bằng:
Ta có:
Biết
. Khi đó
có giá trị bằng:
Ta có:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Trong không gian với hệ tọa độ
, cho bốn điểm
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Ta có
Mặt phẳng đi qua
và nhận
là vectơ pháp tuyến có phương trình tổng quát là
.
Khoảng cách từ điểm đến mặt phẳng
là:
.
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với
Nếu số phức
thỏa mãn
thì phần thực của
bằng:
Gọi
Do
Ta có
Vậy phần thực của số phức là
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Ta có N là trung điểm của CD nên
M là trung điểm của AB nên
Suy ra
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Phần thực của số phức
là:
Ta có:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Cho
và
, khi đó
bằng:
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và đường thẳng
. Viết phương trình đường thẳng
đi qua
, đồng thời vuông góc với cả hai đường thẳng
và
.
Đường thẳng và
có vectơ chỉ phương lần lượt là
Gọi là vectơ chỉ phương của đường thẳng ∆.
Do
Mà ∆ đi qua do đó ∆ có phương trình là
.
Xét các số phức z thỏa mãn
. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức
là một đường tròn có bán kính bằng
Ta có
Đặt
Ta có
Biết
là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Số phức liên hợp của số phức
là
=
= a - bi
Tìm nguyên hàm của hàm số
?
Đặt
Câu nào sau đây đúng? Trong không gian Oxyz:
A sai và có thể (P) và (Q) trùng nhau
B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.
C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.
Trong hệ trục tọa độ Oxy, cho parabol
và hai đường thẳng
(mô tả như hình vẽ). Gọi
là diện tích hình phẳng giới hạn bới và đường thẳng
(phần tô màu đen);
là diện tích hình phẳng giới hạn bới parabol
và đường thẳng
(phần gạch chéo). Với điều kiện nào sau đây của
thì
?

Phương trình hoành độ giao điểm của và đường thẳng
là:
Phương trình hoành độ giao điểm của và đường thẳng
là:
Diện tích hình phẳng giới hạn bởi và
là:
Diện tích hình phẳng giới hạn bởi và
là:
Khi đó:
Giá trị của tích phân
bằng:
Ta có: .
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho
. Giá trị của x và y bằng:
Ta có:
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Cho tứ diện
, có
đôi một vuông góc,
là điểm thuộc miền trong của tam giác
. Gọi khoảng cách từ
đến các mặt phẳng
lần lượt là
. Tính độ dài đoạn
sao cho tứ diện
có thể tích nhỏ nhất.
Xét hệ trục tọa độ Oxyz sao cho A thuộc tia Ox; B thuộc tia Oy và C thuộc tia Oz.
Ta có
Ta có:
Đẳng thức xảy ra khi chỉ khi
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Tìm số phức z thỏa mãn ![]()
Ta có
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Trong không gian toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
PTTQ của mặt phẳng có dạng , với
nên ta chọn
.
Cho tứ diện đều
với
lần lượt là trung điểm của
. Tính cosin của góc giữa hai đường thẳng
?
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Do đó:
Ta lại có suy ra
Vậy đáp án cần tìm là .
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tích phân
, với
có giá trị là:
Ta có:
Trong không gian với hệ tọa độ
, cho bốn điểm
,
và M thay đổi sao cho hình chiếu của M lên mặt phẳng
nằm trong tam giác ABC và các mặt phẳng
hợp với mặt phẳng
các góc bằng nhau. Tính giá trị nhỏ nhất của OM.
Hình vẽ minh họa
Gọi H là hình chiếu của M lên mặt phẳng (ABC).
Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn
Ta có , suy ra
Phương trình đường thẳng MH nhận làm vectơ chỉ phương nên MH là:
Khi đó:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là
Tìm nguyên hàm của hàm số
bằng:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Cho
và
. Tính
?
Ta có và
. Tính: