Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 2: Nhận biết

    Tích phân I = \int\limits_e^{{e^2}} {\frac{{x + 1}}{{{x^2}}}dx} có giá trị là:

     Tích phân I = \int\limits_e^{{e^2}} {\frac{{x + 1}}{{{x^2}}}dx} có giá trị là:

    \begin{matrix}  I = \int\limits_e^{{e^2}} {\dfrac{{x + 1}}{{{x^2}}}dx}  \hfill \\   = \int\limits_e^{{e^2}} {\left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} ight)dx}  \hfill \\   = \left. {\left( {\ln \left| x ight| - \dfrac{1}{x}} ight)} ight|_e^{{e^2}} \hfill \\   = 1 + \dfrac{1}{e} - \dfrac{1}{{{e^2}}} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 4: Nhận biết

    Giả sử f(x) là một hàm số bất kì và liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta). Mệnh đề nào sau đây sai?

    Dựa vào tính chất của tích phân với f(x) là một số bất kì liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta) ta có:

    \int_{a}^{b}{f(x)dx} =
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{b}^{c}{f(x)dx}

    = \int_{a}^{b + c}{f(x)dx} + \int_{b +
c}^{b}{f(x)dx}

  • Câu 5: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 6: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 7: Nhận biết

    Cho hàm số y = f\left( x ight) liên tục trên đoạn \left[ {a;b} ight]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight), trục hoành và hai đường thẳng x = a;x = b;\left( {a < b} ight). Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:

    Thể tích của khối tròn xoay cần tính là: V = 2\pi \int\limits_a^b {{f^2}\left( x ight)dx}

  • Câu 8: Thông hiểu

    Biết rằng f'(x) = x\sqrt{1 +
x^{2}}3f(0) = 4. Tìm hàm số f(x)?

    Ta có: f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{x\sqrt{1 + x^{2}}dx}

    = \frac{1}{2}\int_{}^{}{\left( 1 + x^{2}
ight)^{\frac{1}{2}}d\left( 1 + x^{2} ight)} = \frac{\left( \sqrt{1 +
x^{2}} ight)^{3}}{3} + C

    3f(0) = 4 \Leftrightarrow
3\frac{\left( \sqrt{1 + 0^{2}} ight)^{3}}{3} + 3C = 4 \Leftrightarrow
C = 1

    Vậy f(x) = \frac{\left( \sqrt{1 + x^{2}}
ight)^{3}}{3} + 1

  • Câu 9: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;4;1),\ B( - 1;1;3) và mặt phẳng (P):x - 3y + 2z - 5 = 0. Một mặt phẳng (Q) đi qua hai điểm A;B và vuông góc với (P) có dạng ax + by + cz - 11 = 0. Khẳng định nào sau đây là đúng?

    Vì (Q) vuông góc với (P) nên (Q) nhận véc-tơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - 3;2) làm véc-tơ chỉ phương.

    Mặt khác do (Q) đi qua hai điểm A, B nên nhận \overrightarrow{n_{AB}} = ( - 3; - 3;2) làm véc-tơ chỉ phương.

    Vậy (Q) có véc-tơ pháp tuyến là \overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{AB}} ightbrack =
(0;8;12)

    Vậy phương trình mặt phẳng (Q) là:

    0(x - 2) + 8(y - 4) + 12(z - 1) =
0

    \Leftrightarrow 2y + 3z - 11 =
0

    Vậy a + b + c = 5.

  • Câu 10: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Diện tích S của hình phẳng được giới hạn bởi đồ thị hàm số y = f(x) và trục Ox (phần gạch sọc) được tính bởi công thức

    Từ đồ thị hàm số ta thấy \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 3;1brack \\
f(x) \leq 0;\forall x \in \lbrack 1;3brack \\
\end{matrix} ight.

    Do đó:

    S = \int_{- 3}^{3}{\left| f(x)
ight|d(x)}

    = \int_{- 3}^{1}{\left| f(x)
ight|d(x)} + \int_{1}^{3}{\left| f(x) ight|d(x)}

    = \int_{- 3}^{1}{f(x)d(x)} -
\int_{1}^{3}{f(x)d(x)}

  • Câu 11: Vận dụng cao

    Tích phân I = \int\limits_0^{\frac{\pi }{4}} {\frac{{2x - \sin x}}{{2 - 2\cos x}}dx} có giá trị là:

    Ta biến đổi: I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{4}} {\frac{{2x - \sin x}}{{2 - 2\cos x}}dx}  = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{x}{{1 - \cos x}}dx}  - \frac{1}{2}\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\sin x}}{{1 - \cos x}}dx}

    Xét  {I_1} = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{x}{{1 - \cos x}}dx}  = \frac{1}{2}\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{x}{{{{\sin }^2}\frac{x}{2}}}dx}

    Đặt \left\{ \begin{gathered}  u = x \hfill \\  dv = \frac{1}{{{{\sin }^2}\frac{x}{2}}}dx \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  du = dx \hfill \\  v =  - 2\cot \frac{x}{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \frac{1}{2}\left[ {\left. {\left( { - 2x.\cot \frac{x}{2}} ight)} ight|_{\frac{\pi }{3}}^{\frac{\pi }{2}} + 2\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\cot \frac{x}{2}dx} } ight] = \frac{1}{2}\left[ { - \pi  + \frac{{2\pi \sqrt 3 }}{3} + 4\ln \sqrt 2 } ight]

    Xét {I_2} = \frac{1}{2}\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\sin x}}{{1 - \cos x}}dx}

    Đặt t = 1 - \cos x \Rightarrow dt = \sin xdx

    Đổi cận \left\{ \begin{gathered}  x = \frac{\pi }{3} \Rightarrow t = \frac{1}{2} \hfill \\  x = \frac{\pi }{2} \Rightarrow t = 1 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_2} = \frac{1}{2}\int\limits_{\frac{1}{2}}^1 {\frac{1}{t}dt = \frac{1}{2}\left. {\left( {\ln \left| t ight|} ight)} ight|} _{\frac{1}{2}}^1 = \frac{1}{2}\ln 2

    I = {I_1} - {I_2} = \frac{1}{2}\left( { - \pi  + \frac{{2\pi \sqrt 3 }}{3} + 4\ln \sqrt 2  - \ln 2} ight)

  • Câu 12: Nhận biết

    Xét số phức z thỏa mãn: \left( {1 + 2i} ight)\left| z ight| = \frac{{\sqrt {10} }}{z} - 2 + i. Mệnh đề nào dưới đây đúng?

     Giả sử: z = x + yi{\text{ }},\left( {x,y \in \mathbb{R}} ight)\left| z ight| = c{\text{ }}\left( {c > 0} ight), thay vào đẳng thức ta có:

    \left( {1 + 2i} ight)c = \frac{{\sqrt {10} }}{{x + yi}} = 2 + i

    \Leftrightarrow \left( {1 + 2i} ight)c = \frac{{\sqrt {10} \left( {x - yi} ight)}}{{{c^2}}} - 2 + i

    \Leftrightarrow c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 + i\left( {2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1} ight) = 0

    \Rightarrow \left\{ \begin{gathered}  c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 = 0 \hfill \\  2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c + 2 = \frac{{x\sqrt {10} }}{{{c^2}}} \hfill \\   - 2c + 1 = \frac{{y\sqrt {10} }}{{{c^2}}} \hfill \\ \end{gathered}  ight.

    \Rightarrow {\left( {c + 2} ight)^2} + {\left( {2c - 1} ight)^2} = \frac{{10\left( {{x^2} + {y^2}} ight)}}{{{c^4}}} = \frac{{10}}{{{c^2}}}

    \Leftrightarrow \left[ \begin{gathered}  c = 1\left( {t/m} ight) \hfill \\  c =  - 1\left( {{\text{ko }}t/m} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left| z ight| = 1

    Do đó ta có: \frac{1}{2} < \left| z ight| < \frac{3}{2}

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm G là điểm thỏa mãn \overrightarrow{GS} + \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O là tâm hình bình hành ABCD suy ra \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    Ta có:

    \overrightarrow{GS} +
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD} = \overrightarrow{GS} + 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{GS} +
4\overrightarrow{GO} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GS} = 4\overrightarrow{OG} suy ra ba điểm G;S;O thẳng hàng.

  • Câu 14: Vận dụng cao

    Tính tổng S = \frac{{{2^2}}}{2}C_{2018}^1 + \frac{{{2^3}}}{3}C_{2018}^2 + \frac{{{2^4}}}{4}C_{2018}^3 + .... + \frac{{{2^{2019}}}}{{2019}}C_{2018}^{2018}

    Ta có:

    \begin{matrix}  {\left( {1 + x} ight)^{2018}} = 1 + C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}} \hfill \\   \Rightarrow {\left( {1 + x} ight)^{2018}} - 1 = C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}} \hfill \\ \end{matrix}

    Khi đó ta có:

    \begin{matrix}  \int\limits_0^2 {\left[ {{{\left( {1 + x} ight)}^{2018}} - 1} ight]dx = \int\limits_0^2 {\left( {C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}}} ight)dx} }  \hfill \\   \Leftrightarrow \left. {\left[ {{{\left( {1 + x} ight)}^{2018}} - 1} ight]} ight|_0^2 = \left. {\left( {\dfrac{{{x^2}}}{2}C_{2018}^1 + \dfrac{{{x^3}}}{3}C_{2018}^2 + ... + \dfrac{{{x^{2019}}}}{{2019}}C_{2019}^{2019}} ight)} ight|_0^2 \hfill \\   \Leftrightarrow S = \dfrac{{{3^{2019}}}}{{2019}} - 2 - \dfrac{1}{{2019}} = \dfrac{{{3^{2019}} - 4039}}{{2019}} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 16: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 17: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\sqrt[3]{x} là:

    Ta có:

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
\sqrt[3]{x} ight)dx} = \int_{}^{}{x^{\frac{2}{3}}dx} =
\frac{3}{4}x^{\frac{4}{3}} + C = \frac{3x\sqrt[3]{x}}{4} +
C.

  • Câu 18: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 19: Vận dụng

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 20: Vận dụng

    Cho biểu thức A = 1 + {z^3} + {z^6} + ... + {z^{2016}} với z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\,. Biểu thức A có giá tri là? 

    1 || Một || một

    Đáp án là:

    Cho biểu thức A = 1 + {z^3} + {z^6} + ... + {z^{2016}} với z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\,. Biểu thức A có giá tri là? 

    1 || Một || một

     Ta có L = \frac{{1 - {{({z^3})}^{673}}}}{{1 - {z^3}}} = \frac{{1 - {{( - 1)}^{673}}}}{{1 - ( - 1)}} = 1

  • Câu 21: Nhận biết

    Cho tứ diện ABCDA(3, -2,1), B\left( { - 4,0,3} ight),C\left( {1,4, - 3} ight),D\left( {2,3,5} ight). Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:

    Theo đề bài, ta có các vecto là

    \begin{array}{l}\overrightarrow {AC}  = \left( { - 2,6, - 4} ight);\overrightarrow {BD}  = \left( {6,3,2} ight)\\ \Rightarrow \left[ {\overrightarrow {AC} ,\overrightarrow {BD} } ight] = \left( {24, - 20, - 42} ight).\end{array}

    Có thể chọn \overrightarrow n  = \left( {12, - 10, - 21} ight) làm một vectơ pháp tuyến cho mặt phẳng.

    Phương trình mặt phẳng này có dạng 12x - 10y - 21z + D = 0.

    Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên: 12.3 - 10( - 2) - 21.1 + D = 0 \Leftrightarrow D =  - 35

    Vậy phương trình cần tìm 12x - 10y - 21z - 35 = 0.

  • Câu 22: Thông hiểu

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 23: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 24: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 25: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 26: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2),B( - 1;2;4) và đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm M \in \Delta mà tổng MA^{2} + MB^{2} có giá trị nhỏ nhất có tọa độ là:

    M \in \Delta nên ta có tọa độ điểm M(1 - t; - 2 + t;2t).

    Ta có:

    MA^{2} + MB^{2} = ( - t)^{2} + (t -
6)^{2} + (2t - 2)^{2} + (2 - t)^{2} + (t - 4)^{2} + (2t - 4)^{2}

    = 12t^{2} - 48t + 76 = 12(t - 2)^{2} +
28 \geq 28

    Vậy giá trị nhỏ nhất của MA^{2} +
MB^{2}28 khi t = 2 \Rightarrow M( - 1;0;4).

  • Câu 27: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 28: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 29: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 30: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 31: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 32: Vận dụng

    Nếu số phức z e 1 thỏa mãn \left| z ight| = 1 thì phần thực của \frac{1}{{1 - z}} bằng:

    Gọi z = a + bi,\left( {a,b \in \mathbb{R}} ight),z e 1

    Do \left| z ight| = 1 \Rightarrow {a^2} + {b^2} = 1

    Ta có

    \frac{1}{{1 - z}} = \frac{1}{{\left( {1 - a} ight) - bi}} = \frac{{\left( {1 - a} ight) + bi}}{{{{\left( {1 - a} ight)}^2} + {b^2}}}

    = \frac{{1 - a}}{{2 - 2a}} + \frac{b}{{2 - 2a}}i = \frac{1}{2} + \frac{b}{{2 - 2a}}i

    Vậy phần thực của số phức \frac{1}{{1 - z}}\frac{1}{2}

  • Câu 33: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x + 2y + 4z - 1 = 0;(\beta):2x + 3y - 2z+ 5 = 0. Chọn khẳng định đúng.

    Hai mặt phẳng (\alpha);(\beta) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(\alpha)}} =
(1;2;4),\overrightarrow{n_{(\beta)}} = (2;3; - 2)

    Ta có \overrightarrow{n_{(\alpha)}}.\overrightarrow{n_{(\beta)}}
= 1.2 + 2.3 + 4.( - 2) = 0

    (\alpha)\bot(\beta).

  • Câu 34: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 35: Thông hiểu

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 36: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 37: Vận dụng cao

    Biết rằng có n mặt phẳng với phương trình tương ứng là \left( P_{i} ight):x + a_{i}y + b_{i}z + c_{i} =0,(i = 1,2,...n) đi qua M(1;2;3) (nhưng không đi qua O) và cắt các trục tọa độ Ox,Oy,Oz theo thứ tự tại A,B,C sao cho hình chóp O.ABC là hình chóp đều. Tính tổng S = a_{1} + a_{2} + ... +
a_{n}.

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c), với a,b,c eq 0. Khi đó trọng tâm của tam giác ABC là G\left(
\frac{a}{3};\frac{b}{3};\frac{c}{3} ight) mặt phẳng (Pi) có dạng \frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1 \Leftrightarrow x + \frac{a}{b}y +
\frac{a}{c}z - a = 0.

    Theo bài ra (Pi) đi qua M(1; 2; 3) nên ta có: 1 + \frac{2a}{b} + \frac{3a}{c} - a = 0\ \ \
(1)

    Mặt khác, vì O.ABC là hình chóp đều nên tam giác ABC đều nên:

    AB = BC = AC

    \Leftrightarrow \sqrt{a^{2} + b^{2}} =
\sqrt{a^{2} + c^{2}} = \sqrt{b^{2} + c^{2}}

    \Leftrightarrow a^{2} = b^{2} =
c^{2} kết hợp với (1) ta có các trường hợp sau:

    a = b = c ⇒ a = 1 + 2 + 3 = 6 nên (P_1): x + y + z − 6 = 0

    a = b = −c ⇒ a = 1 + 2 − 3 = 0 không thỏa yêu cầu.

    a = −b = c ⇒ a = 1 − 2 + 3 = 2 nên (P_2): x − y + z − 2 = 0

    a = −b = −c ⇒ a = 1 − 2 − 3 = −5 nên (P_3): x − y − z + 5 = 0

    −a = −b = c ⇒ a = 1 + 2 − 3 = 0, không thỏa yêu cầu

    −a = b = −c ⇒ a = 1 − 2 + 3 = 2 nên (P): x − y + z − 2 = 0 trùng với (P2)

    −a = b = c ⇒ a = 1 − 2 − 3 = −5 nên (P): x − y − z + 5 = 0 trùng với (P3)

    −a = −b = −c ⇒ a = 1 + 2 + 3 = 6 nên (P): x + y + z − 6 = 0 trùng với (P1)

    Vậy S = a_1 + a_2 + a_3 = 1 − 1 − 1 = −1.

  • Câu 38: Vận dụng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 39: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 40: Vận dụng

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 41: Vận dụng

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 42: Thông hiểu

    Cho ba điểm  A\left( {2, - 1,1} ight);\,\,B\left( {3, - 2, - 1} ight);\,\,\,C\left( {1,3,4} ight). Tìm tọa độ giao điểm của đường thẳng AB và mặt phẳng (yOz)

    Gọi M\left( {0,y,z} ight)  là giao điểm của đường thẳng AB và mặt phẳng (yOz).

    Ta có \overrightarrow {AM}  = \left( { - 2,y + 1,z - 1} ight)\overrightarrow {AB}  = \left( {1, - 1, - 2} ight) cùng phương.

    \Rightarrow \frac{{ - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 2}} \Rightarrow x = 0;y = 1;z = 5 \Rightarrow M\left( {0,1,5} ight)

  • Câu 43: Nhận biết

    Giá trị của z = 1 + i + {i^2} + ... + {i^{2023}} là?

    Ta có: z = \frac{{{i^{2022}} - 1}}{{i - 1}} = 1 + i

    (Áp dụng công thức: {S_n} = 1 + p + {p^2} + ... + {p^n} = \frac{{{p^{n - 1}} - 1}}{{p - 1}})

  • Câu 44: Nhận biết

    Trong không gian Oxyz, một đường thẳng (d) có:

     Trong không gian Oxyz, một đường thẳng (d) có vô số vecto chỉ phương.

  • Câu 45: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 46: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 47: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 48: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 49: Vận dụng

    Cho z1 = 1 + i; z2 = -1 - i. Tìm {z_3} \in \mathbb{C} sao cho các điểm biểu diễn của {z_1};\,\,{z_2};\,\,{z_3} tạo thành tam giác đều.

     Giả sử {z_3} = x + yi

    Để các điểm biểu diễn của {z_1};\,\,{z_2};\,\,{z_3} tạo thành một tam giác đều thì

    \left\{ {\begin{array}{*{20}{c}}  {\left| {{z_1} - {z_2}} ight| = \left| {{z_1} - {z_3}} ight|} \\   {\left| {{z_1} - {z_2}} ight| = \left| {{z_2} - {z_3}} ight|} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sqrt {4 + 4}  = \sqrt {{{\left( {x - 1} ight)}^2} + {{\left( {y - 1} ight)}^2}} } \\   {\sqrt {4 + 4}  = \sqrt {{{\left( {x + 1} ight)}^2} + {{\left( {y + 1} ight)}^2}} } \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{{\left( {x - 1} ight)}^2} + {{\left( {y - 1} ight)}^2} = 8} \\   {x + y = 0} \end{array}} ight.

    \Rightarrow 2{y^2} = 6 \Rightarrow y =  \pm \sqrt 3  \Rightarrow x =  \mp \sqrt 3

    Vậy có hai số phức thoả mãn là: {z_3} = {\text{\{ }}\sqrt 3  - \sqrt 3 i;\,\, - \sqrt 3  + \sqrt 3 i\}

  • Câu 50: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo