Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn:
Khi đó trong trước khi dừng hẳn vật di chuyển được:
Cho hàm số
có đạo hàm liên tục trên đoạn
và đồ thị hàm số
(như hình vẽ). biết
và
. Kết luận nào sau đây là đúng?

Hình vẽ minh họa:

Ta có:
Từ đồ thị ta thấy
Từ đồ thị ta thấy
=>
Mặt khác
Ta có bảng biến thiên như sau:

=> có duy nhất nghiệm trên
Cho
là miền hình phẳng giới hạn bởi các đường
và đồ thị của hai hàm số
. Gọi V là thể tích của vật thể tròn xoay khi quay
quanh Ox. Mệnh đề nào dưới đây đúng?
Thể tích của khối tròn xoay cần tính là:
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Cho số phức
. Tính |z|
Ta có
Cho số phức
, giá trị của số phức
là?
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Mặt phẳng (P) chứa đường thẳng
và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là
. Tính tổng ![]()
Hình vẽ minh họa
Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương
Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.
Phương trình tham số của
Lấy điểm N(1; 2; 0) ∈ ∆.
Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.
Khi đó
Lại có:
Vậy lớn nhất khi và chỉ khi H trùng với K
Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).
Vectơ pháp tuyến của (Q) là
Vectơ pháp tuyến của (P) là
Phương trình mặt phẳng (P) là
Vậy
Điểm biểu diễn của số phức
là:
Ta có:
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Trong không gian với hệ toạ độ
, cho hai điểm
. Phương trình mặt phẳng
vuông góc với
và hợp với các trục tọa độ một tứ diện có thể tích bằng
là
Ta có
Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz
Suy ra
Ta có thể tích tứ diện
Vậy đáp án cần tìm là:
Trong không gian với hệ tọa độ
, cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Số phức liên hợp của số phức
là
=
= a - bi
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

Nửa đường tròn có phương trình
Xét parabol có trục đối xứng
nên có phương trình dạng
cắt
tại điểm
=>
cắt
tại điểm
thuộc
=>
Phương trình là:
Diện tích miền phẳng (phần tô màu trong hình là:
Xét đặt
=>
Ta có:
Khi đó ta có:
Số tiền trồng hoa tối thiểu là: đồng
Trong không gian
, cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian , cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Giá trị của
bằng
Ta có:
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành;
và
bằng:
Hoành độ giao điểm của đồ thị hàm số và trục hoành là nghiệm của phương trình:
Diện tích hình phẳng giới hạn bởi các đường là:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho
và
. Tính
?
Ta có và
. Tính:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ trục tọa độ
cho vectơ
. Khi đó tọa độ của
là.
Do .
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Trong không gian với hệ tọa độ
có bao nhiêu mặt phẳng song song với mặt phẳng
, cách điểm
một khoảng bằng
biết rằng tồn tại một điểm
trên mặt phẳng đó thỏa mãn
?
Mặt phẳng song song với (Q) có dạng mà
Với m = −15 thì với mọi ta có
Do đó không có mặt phẳng nào thỏa mãn đề bài
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
mà tổng
có giá trị nhỏ nhất có tọa độ là:
Vì nên ta có tọa độ điểm
.
Ta có:
Vậy giá trị nhỏ nhất của là
khi
.
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có: . Nhân cả hai vế với
ta được:
Lấy nguyên hàm hai vế ta được:
Suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là:
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a) là một nguyên hàm của
. Đúng||Sai
b) . Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Cho M trên đường thẳng AB với
và
. Nếu
với
thì tọa độ của M là:
Vì M nằm trên AB và nên khi xét theo tọa độ vecto 2 điểm A và B, ta có:
Biết rằng
. Xác định
?
Ta có:
Do đó:
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?