Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi G là trọng tâm tam giác AB'C. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BA} +
\overrightarrow{BC} + \overrightarrow{BB'} =
\overrightarrow{BD'}

    Do G là trọng tâm tam giác AB'C suy ra \overrightarrow{BA} + \overrightarrow{BC} +
\overrightarrow{BB'} = 3\overrightarrow{BG} \Leftrightarrow
\overrightarrow{BD'} = 3\overrightarrow{BG}

  • Câu 2: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 3: Vận dụng cao

    Trong không gian Oxyz, cho điểm P(1;1;2). Mặt phẳng (\alpha) đi qua P cắt các trục Ox,Oy, Oz lần lượt tại A,B,C khác gốc tọa độ sao cho T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} đạt giá trị nhỏ nhất, trong đó S_{1},S_{2},S_{3} lần lượt là diện tích các tam giác OAB,OBC,OCAR_{1},R_{2},R_{3} lần lượt là diện tích các tam giác PAB,PBC,PCA. Điểm M nào dưới đây thuộc (\alpha) ?

    Ta có \overrightarrow{OP} = (1;1;2)
\Rightarrow OP = \sqrt{6}. Lại có d(P,(Oxy)) = 2, d(P,(Oxz)) = 1d(P,(Oyz)) = 1.

    Đặt d = d(O,(ABC)), ta có

    V_{P.OAB} = V_{O.PAB}

    \Leftrightarrow d(P,(Oxy)) \cdot
S_{\bigtriangleup OAB} = d(O,(ABC)) \cdot S_{\bigtriangleup
PAB}

    \Leftrightarrow 2S_{1} =
dR_{1}

    \Leftrightarrow \frac{R_{1}}{S_{1}} =
\frac{2}{d}

    Tương tự, ta có \frac{R_{2}}{S_{2}} =
\frac{1}{d}\frac{R_{3}}{S_{3}}
= \frac{1}{d}.

    Khi đó T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} =
\frac{6}{d^{2}} \geq \frac{6}{OP^{2}} = 1.

    Dấu "=" xảy ra khi và chỉ khi d =
OP hay OP\bot(ABC).

    Từ đó suy ra (\alpha) nhận \overrightarrow{OP} = (1;1;2) làm vectơ pháp tuyến.

    Do đó (\alpha) có phương trình 1(x - 1) + 1(y - 1) + 2(z - 2) = 0
\Leftrightarrow x + y + 2z - 6 = 0.

    Vậy M(4;0;1) là điểm thuộc (\alpha).

  • Câu 4: Thông hiểu

    Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau \left( d_{1}
ight):\frac{x - 2}{2} = \frac{y + 2}{1} = \frac{z - 6}{- 2}\left( d_{2} ight):\frac{x - 4}{1} =
\frac{y + 2}{- 2} = \frac{z + 1}{3}. Phương trình mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight)

    Phương trình tham số \left( d_{1}
ight):\left\{ \begin{matrix}
x = 2 + 2t_{1} \\
y = - 2 + t_{1} \\
z = 6 - 2t_{1} \\
\end{matrix} ight.\ ;\left( t_{1}\mathbb{\in R} ight)

    \left( d_{1} ight) đi qua điểm M(2; - 2;6) và có vectơ chỉ phương \overrightarrow{u_{1}} = (2;1; -
2)

    Phương trình tham số \left( d_{2}
ight):\left\{ \begin{matrix}
x = 4 + t_{2} \\
y = - 2 - 2t_{2} \\
z = - 1 + 3t_{2} \\
\end{matrix} ight.\ ;\left( t_{2}\mathbb{\in R} ight)

    \left( d_{2} ight) đi qua điểm N(4; - 2; - 1) và có vectơ chỉ phương \overrightarrow{u_{2}} = (1; -
2;3)

    Vì mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight), ta có:

    \left\{ \begin{matrix}
\overrightarrow{n_{P}}\bot\overrightarrow{u_{1}} \\
\overrightarrow{n_{P}}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = -
(1;8;5)

    Mặt phẳng (P) đi qua M(2; - 2;6) và vectơ pháp tuyến \overrightarrow{u_{1}} = (2;1; - 2) nên phương trình mặt phẳng (P):(x - 2) + 8(y +
2) + 5(z - 6) = 0 hay (P):x + 8y +
5z - 16 = 0.

  • Câu 5: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 6: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 7: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 8: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 9: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 10: Nhận biết

    Giá trị của z = 1 + i + {i^2} + ... + {i^{2023}} là?

    Ta có: z = \frac{{{i^{2022}} - 1}}{{i - 1}} = 1 + i

    (Áp dụng công thức: {S_n} = 1 + p + {p^2} + ... + {p^n} = \frac{{{p^{n - 1}} - 1}}{{p - 1}})

  • Câu 11: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 12: Thông hiểu

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 13: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 14: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 17: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 18: Nhận biết

    Cho hình phẳng \left( H ight) giới hạn với các đường y = {x^2};y = 0;x = 2. Tính thể tích V của khối tròn xoay thu được khi \left( H ight) quay quanh trục Ox?

    Thể tích cần tìm là:

    V = \pi \int\limits_0^2 {{x^4}dx}  = \left. {\pi .\frac{{{x^5}}}{5}} ight|_0^2 = \frac{{32\pi }}{5}

  • Câu 19: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 20: Thông hiểu

    Cho hàm số y = f(x) xác định trên tập số thực thỏa mãn f(x) >
0;\forall x\mathbb{\in R}f'(x) - 2f(x) = 0. Tính f( - 1) biết rằng f(1) = 1?

    f(x) > 0;\forall x\mathbb{\in
R} nên ta có:

    f'(x) - 2f(x) = 0 \Leftrightarrow
\frac{f'(x)}{f(x)} = 2

    \Rightarrow
\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{2dx}

    \Rightarrow \exists C\mathbb{\in
R}:ln\left| f(x) ight| = 2x + C

    \Rightarrow \ln f(x) = 2x +
C

    Cho x = 1 \Rightarrow \ln f(1) = 2 + C\Rightarrow \ln1 = 2 + C \Rightarrow C = - 2

    Do đó \ln f(x) = 2x - 2 \Leftrightarrow
f(x) = e^{2x - 2} \Rightarrow f( - 1) = e^{- 4}

  • Câu 21: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 22: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 23: Thông hiểu

    Cho hàm số f(x) liên tục trên \mathbb{R}\int_{0}^{2}{\left\lbrack f(x) + 3x^{2}
ightbrack dx} = 10. Xác định giá trị của \int_{0}^{2}{f(x)dx}?

    Ta có: \int_{0}^{2}{\left\lbrack f(x) +
3x^{2} ightbrack dx} = 10 \Leftrightarrow \int_{0}^{2}{f(x)dx} = 10
- \int_{0}^{2}{3x^{2}dx}

    \Leftrightarrow \int_{0}^{2}{f(x)dx} =
10 - \left. \ x^{3} ight|_{0}^{2} = 2

  • Câu 24: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 25: Nhận biết

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức có giá trị P = 2a - 1 là:

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức P = 2a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_0^1 {\dfrac{x}{{x + 1}}} dx \hfill \\   = \int\limits_0^1 {\left( {1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 \hfill \\ = 1 - \ln 2 \hfill \\   \Rightarrow a = 1 - \ln 2 \hfill \\   \Rightarrow P = 2a - 1 = 1 - 2\ln 2 \hfill \\ \end{matrix}

     

  • Câu 26: Vận dụng cao

    Cho đường thẳng y = \frac{1}{2}x +a và parabol y = x^{2} (a là tham số thực). Gọi S_{1};S_{2} lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì A thuộc khoảng nào dưới đây?

    Phương trình hoành độ giao điểm của của hai đồ thị:

    \frac{1}{2}x + a = x^{2} \Leftrightarrow2x^{2} - x - 2a = 0

    Theo giả thiết, phương trình có hai nghiệm phân biệt

    \Delta = 1 + 16a > 0 \Rightarrow a> - \frac{1}{16}

    Khi đó, phương trình có hai nghiệm x_{1};x_{2};\left( x_{1} < x_{2}ight) thỏa mãn:

    \left\{ \begin{matrix}S = x_{1} + x_{2} = \frac{1}{2} \\P = x_{1}.x_{2} = - a \\\end{matrix} ight.

    Diện tích hình phẳng:

    S_{1} = \int_{- 2a}^{x_{1}}{\left(\frac{x}{2} + a ight)dx} + \int_{x_{1}}^{0}{x^{2}dx}

    = \left. \ \left( \frac{x^{2}}{4} + axight) ight|_{- 2a}^{x_{1}} + \left. \ \frac{x^{3}}{3}ight|_{x_{1}}^{0}

    = \frac{1}{4}{x_{1}}^{2} + ax_{1} -\frac{1}{4}.4a^{2} + 2a^{2} - \frac{1}{3}{x_{1}}^{3}

    = - \frac{1}{3}{x_{1}}^{3} +\frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2}

    Diện tích hình phẳng:

    S_{2} = \int_{x_{1}}^{x_{2}}{\left(\frac{1}{2}x + a - x^{2} ight)dx} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    Theo giả thiết ta có:

    S_{1} = S_{2}

    \Leftrightarrow = -\frac{1}{3}{x_{1}}^{3} + \frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2} =\frac{\left( x_{2} - x_{1} ight)^{3}}{6}

    \Leftrightarrow \frac{1}{4}\left({x_{1}}^{2} - 4a^{2} ight) + a\left( x_{1} + 2a ight) -\frac{{x_{1}}^{3}}{3} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    \Leftrightarrow - \frac{1}{6}\left({x_{1}}^{3} + {x_{2}}^{3} ight) + \frac{1}{2}x_{1}x_{2}\left( x_{2} -x_{1} ight) + \frac{{x_{1}}^{2}}{4} + ax_{1} + a^{2} = 0

    \Leftrightarrow - \frac{1}{6}\left(\frac{1}{8} + \frac{3a}{2} ight) - \frac{a}{2}\sqrt{\frac{1}{4} + 4a}+ \frac{\left( 1 + \sqrt{1 + 16a} ight)^{2}}{64} + a.\frac{1 - \sqrt{1+ 16a}}{4} + a^{2} = 0

    \Rightarrow a \approx 3,684 \in \left(\frac{7}{2};4 ight)

  • Câu 27: Nhận biết

    Cho số phức z  thỏa mãn z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}}. Viết z dưới dạng z = a + bi, \, \, a,b \in \mathbb{R}. Khi đó tổng a+b có giá trị bằng bao nhiêu?

     z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}} = {\left( { - i} ight)^{2024}} = {\left( {{i^4}} ight)^{506}} = 1

  • Câu 28: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 29: Vận dụng

    Trong các số phức z thỏa mãn điều kiện \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|. Số phức z có mô đun bé nhất bằng

     Đặt z = x + yi{\mkern 1mu} {\mkern 1mu} \left( {x,y \in \mathbb{R}} ight)

    Khi đó \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|

    \Leftrightarrow \left| {x + yi - 2 - 4i} ight| = \left| {x + yi - 2i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 4} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow  - 4x - 4y + 16 = 0

    \Leftrightarrow x + y - 4 = 0

    Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng \Delta :x + y - 4 = 0.

    {\left| z ight|_{\min }} = d\left( {O;\Delta } ight) = \frac{{\left| 4 ight|}}{{\sqrt 2 }} = 2\sqrt 2

  • Câu 30: Nhận biết

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 31: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình đường thẳng đi qua hai điểm A( - 2;3;2)B(5;4; - 1)

    Vectơ chỉ phương của đường thẳng cần tìm là \overrightarrow{AB} = (7;1; - 3) và đường thẳng đi qua điểm A( - 2;3;2).

    Vậy phương trình đường thẳng cần tìm là: \frac{x + 2}{7} = \frac{y - 3}{1} = \frac{z - 2}{-
3}.

  • Câu 32: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 33: Vận dụng

    Cho hai số phức z, w thỏa mãn \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|; w = z + m + i với m \in \mathbb{R} là tham số. Giá trị của m để ta luôn có \left| w ight| \geqslant 2\sqrt 5 là:

     Đặt z = a + ib,\left( {a,b \in \mathbb{R}} ight) có biểu diễn hình học là điểm M\left( {x;y} ight)

    Ta có:

    \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|

    \Leftrightarrow \left| {x - 1 + iy} ight| = \left| {x + 3 + \left( {y - 2} ight)i} ight|

    \Leftrightarrow \sqrt {{{\left( {x - 1} ight)}^2} + {y^2}}  = \sqrt {{{\left( {x + 3} ight)}^2} + {{\left( {y - 2} ight)}^2}}

    \Leftrightarrow  - 2x + 1 = 6x + 9 - 4y + 4 \Leftrightarrow 2x - y + 3 = 0

    Suy ra biểu diễn của số phức là đường thẳng \Delta :2x - y + 3 = 0

    Ta xét: \left| \omega  ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {z + m + i} ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {x + m +  + \left( {y + 1} ight)i} ight| \geqslant 2\sqrt 5

    với I\left( { - m; - 1} ight).

    Mà ta có MI \geqslant d\left( {I,\Delta } ight)

    Nên MI \geqslant 2\sqrt 5  \Leftrightarrow d\left( {I,\Delta } ight) \geqslant 2\sqrt 5  \Leftrightarrow \frac{{\left| { - 2m + 4} ight|}}{{\sqrt 5 }} \geqslant 2\sqrt 5  \Leftrightarrow \left| { - 2m + 4} ight| \geqslant 10

    \Leftrightarrow \left[ \begin{gathered}   - 2m + 4 \geqslant 10 \hfill \\   - 2m + 4 \leqslant  - 10 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m \leqslant  - 3 \hfill \\  m \geqslant 7 \hfill \\ \end{gathered}  ight.

  • Câu 34: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 35: Vận dụng cao

    Cho hàm số y = f(x) là hàm số bậc ba có đồ thị như hình vẽ:

    Biết \int_{1}^{4}{x.f''(x - 1)dx}
= 7\int_{1}^{2}{2x.f'\left(
x^{2} - 1 ight)dx} = - 3. Phương trình tiếp tuyến với đồ thị hàm số y = f(x) tại điểm có hoành độ x = 3 là:

    Từ đồ thị hàm số ta suy ra f(0) =
2;f'(0) = 0

    Xét tích phân \int_{1}^{2}{2x.f'\left( x^{2} - 1
ight)dx}. Đặt u = x^{2} - 1
\Rightarrow du = 2xdx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 2 \Rightarrow u = 3 \\
\end{matrix} ight.

    Do đó \int_{1}^{2}{2x.f'\left( x^{2}
- 1 ight)dx} = \int_{1}^{3}{f'(u)du} = \left. \ f(u)
ight|_{0}^{3} = f(3) - f(0)

    \Rightarrow f(3) - f(0) = - 3
\Rightarrow f(3) = - 1

    Xét tích phân \int_{1}^{4}{x.f''(x - 1)dx}. Đặt u = x - 1 \Rightarrow du = dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow u = 0 \\
x = 4 \Rightarrow u = 3 \\
\end{matrix} ight.

    \Rightarrow \int_{1}^{4}{x.f''(x
- 1)dx} = \int_{0}^{3}{(u + 1)f''(u)du} = \int_{0}^{3}{(u +
1)d\left\lbrack f'(u) ightbrack}

    = \left. \ (u + 1)f'(u)
ight|_{0}^{3} - \int_{0}^{3}{f'(u)du}

    = 4f'(3) - f'(0) - \left. \ f(u)
ight|_{0}^{3}

    = 4f'(3) - f'(0) - f(3) +
f(0)

    Theo bài ra suy ra

    4f'(3) - f'(0) - f(3) + f(0) =
7

    \Rightarrow 4f'(3) = 7 + f(3) - f(0)
= 4 \Rightarrow f'(3) = 1

    Như vậy f(3) = - 1;f'(3) =
1. Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 3 là: y = x - 4.

  • Câu 36: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 37: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight). Khi đó số điểm cực trị của hàm số F(x) là:

    Ta có: F(x) là một nguyên hàm của hàm số f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight)

    \Rightarrow F'(x) = 2019^{x}\left( 4
- x^{2} ight)\left( x^{2} - 3x + 2 ight) = 2019^{x}(x - 2)^{2}(x +
2)(1 - x)

    \Rightarrow F'(x) = 0
\Leftrightarrow 2019^{x}(x - 2)^{2}(x + 2)(1 - x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.. Do x = -
2;x = 1 là nghiệm bội 1 còn x =
2 là nghiệm bội 2 nên hàm số F(x) có hai điểm cực trị.

  • Câu 38: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 39: Nhận biết

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 40: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 41: Nhận biết

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

    Đáp án là:

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

     Ta có: \overline z  = 24 + 7i \Rightarrow z = 24 - 7i

    Suy ra a + bi=10.

  • Câu 42: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 43: Vận dụng

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 44: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 45: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 46: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 47: Vận dụng

    Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn \left| {z + i} ight| = \left| {\overline z  + 1} ight| là?

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {z + i} ight| = \left| {\overline z  + 1} ight|

    \Leftrightarrow \left| {x + \left( {y + 1} ight)i} ight| = \left| {\left( {x + 1} ight) - yi} ight|

    \Leftrightarrow {x^2} + {\left( {y + 1} ight)^2} = {\left( {x + 1} ight)^2} + {\left( { - y} ight)^2}

    \Leftrightarrow 2x - 2y = 0

    \Leftrightarrow x - y = 0

  • Câu 48: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x}{2} = \frac{y}{- 1} = \frac{z +
1}{1} và mặt phẳng (P):x - 2y - 2z
+ 5 = 0. Điểm A nào dưới đây thuộc d và thỏa mãn khoảng cách từ A đến mặt phẳng (P) bằng 3?

    Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).

    Khoảng cách từ A đến (P) là

    \frac{\left| 2a + 2a - 2(a - 1) + 5
ight|}{\sqrt{9}} = 3

    \Leftrightarrow |2a + 9| = 9\Leftrightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{9}{2} \\\end{matrix} ight.

    Với a = 0 \Rightarrow A(0;\ 0; -
1)

  • Câu 49: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 50: Nhận biết

    Tính diện tích hình phẳng giới hạn bởi các đường thẳng y = \cos x;Ox;x = - \frac{\pi}{2};x =
\frac{\pi}{2}?

    Hình vẽ minh họa

    Ta có: \cos x = 0 \Rightarrow x =
\frac{\pi}{2} + k\pi;k\mathbb{\in Z}

    Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Diện tích hình giới hạn là S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\left| \cos x ight|dx} = \left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\cos xdx} ight| = \left| \left. \ \sin x ight|_{- \frac{\pi}{2}}^{\frac{\pi}{2}} ight| = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo