Cho hàm số
có đạo hàm và liên tục trên đoạn
với
. Đặt
. Tìm giá trị nhỏ nhất của
?
Gọi sao cho
. Ta có:
Mà
Suy ra
Dấu bằng xảy ra khi và chỉ khi .
Vậy giá trị nhỏ nhất của đạt được bằng
khi
.
Cho hàm số
có đạo hàm và liên tục trên đoạn
với
. Đặt
. Tìm giá trị nhỏ nhất của
?
Gọi sao cho
. Ta có:
Mà
Suy ra
Dấu bằng xảy ra khi và chỉ khi .
Vậy giá trị nhỏ nhất của đạt được bằng
khi
.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ta có:
Nhận xét: Không thể dùng máy tính để tính ra kết quả trực tiếp như trên nhưng ta có thể dùng để kiểm tra kết quả bằng cách thử thay số trong các đáp án.
Trong không gian hệ tọa độ Oxyz, cho điểm
và mặt phẳng
. Gọi
thuộc
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Giả sử là điểm thỏa mãn
.
Khi đó ,
,
;
;
;
(vì
)
Vì I cố định nên đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên
.
Gọi là đường thẳng qua I và vuông góc với
Phương trình đường thẳng .
Tọa độ của M là nghiệm hệ phương trình:
.
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Trong không gian với hệ tọa độ
, điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Trong không gian với hệ tọa độ
, cho
. Điểm
là điểm thuộc mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Khi đó,
có giá trị là:
Chọn sao cho
Ta tính được
Ta thấy
Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.
Vậy M là hình chiếu vuông góc của lên (Oxy)
Ta xác định được
Thành phố định xây cây cầu bắc ngang con sông dài
, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Cho số phức
. Tính |z|
Ta có
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Trong không gian
, cho điểm
. Viết phương trình mặt phẳng đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
?
Xét tứ diện OABC có các cạnh đôi một vuông góc với nhau.
Ta có:
Chứng minh tương tự, ta được AC ⊥ OM.
Từ đó .
Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận làm vectơ pháp tuyến là:
Trong không gian tọa độ
, cho vectơ
. Trong các vectơ dưới đây, vectơ nào không cùng phương với
?
Ta có: cùng phương với mọi vectơ
Lại có
Vậy vectơ không cùng phương với là
.
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Trong không gian
, cho đường thẳng
và mặt phẳng
. Góc giữa đường thẳng
và mặt phẳng
bằng
Ta có:
∆ có vectơ chỉ phương là
(α) có vectơ pháp tuyến là
.
Cho số phức
. Tìm số phức
?
Ta có:
Trong không gian
, cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Điểm biểu diễn của số phức
là:
Ta có:
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Nguyên hàm của hàm số
là:
Ta có:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Trong không gian
. cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Tìm
biết rằng
là phân số tối giản?
Ta có:
Đổi cận khi đó suy ra
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Tìm nguyên hàm của hàm số ![]()
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Tìm họ nguyên hàm của hàm số ![]()
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Phần thực của số phức
là:
Ta có:
Tìm số phức z thỏa mãn ![]()
Ta có
Biết
là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tích phân
bằng:
Ta có:
.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
. Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng .
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Nguyên hàm của hàm số
là
Ta có: .
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Tính tích phân
?
Ta có:
.