Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện \left| {zi - \left( {2 + i} ight)} ight| = 2 là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {zi - \left( {2 + i} ight)} ight| = 2

    \Leftrightarrow \left| {xi - y - 2 - i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 2} ight)^2} = 4

  • Câu 2: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 3: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 3;4), đường thẳng d:\frac{x + 2}{3} = \frac{y - 5}{- 5} = \frac{z -
2}{- 1} và mặt phẳng (P):2x + z - 2
= 0. Viết phương trình đường thẳng \Delta qua M vuông góc với d và song song với (P).

    Đường thẳng d:\frac{x + 2}{3} = \frac{y -
5}{- 5} = \frac{z - 2}{- 1} có vec tơ chỉ phương \overrightarrow{u_{d}} = (3; - 5; -
1).

    Mặt phẳng (P):2x + z - 2 = 0 có vec tơ pháp tuyến \overrightarrow{n_{(P)}} =
(2;0;1).

    Đường thẳng ∆ vuông góc với d nên vectơ chỉ phương \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Đường thẳng ∆ song song với (P) nên \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Ta có \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ightbrack = ( - 5; -
5;10)

    Suy ra vec tơ chỉ phương của đường thẳng ∆ là \overrightarrow{u_{\Delta}} = \frac{-
1}{5}.\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{(P)}}
ightbrack = (1;1; - 2)

    Vậy phương trình đường thẳng ∆ là \Delta:\frac{x - 1}{1} = \frac{y + 3}{1} = \frac{z
- 4}{- 2}.

  • Câu 4: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 5: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 6: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 7: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 8: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 9: Vận dụng

    Cho số phức {z_1},{z_2} thỏa mãn \left| {z + 2 - i} ight| = 2\left| {z - 1 - i} ight|{z_1} + {z_2} = 1 + i.

    Tính giá trị biểu thức P = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

     Ta có \left| {{z_1} + 2 - i} ight| = 2\left| {{z_1} - 1 - i} ight|{z_1} + {z_2} = 1 + i

    \Rightarrow \left| {{z_1} + 2 - i} ight| = 2\left| {{z_2}} ight|

    \Rightarrow 4{\left| {{z_2}} ight|^2} = \left( {{z_1} + 2 - i} ight)\left( {\overline {{z_1}}  + 2 + i} ight) = {\left| {{z_1}} ight|^2} + \left( {2 - i} ight)\overline {{z_1}}  + \left( {2 + i} ight){z_1} + 5.(1)

    Tương tự ta có

    4{\left| {{z_1}} ight|^2} = {\left| {{z_2}} ight|^2} + \left( {2 - i} ight)\overline {{z_2}}  + \left( {2 + i} ight){z_2} + 5.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 ight)

    Cộng (1) và (2) ta có:

    4P = P + \left( {2 - i} ight)\overline {{z_1} + {z_2}}  + \left( {2 + i} ight)\left( {{z_1} + {z_2}} ight) + 10

    = P + \left( {2 - i} ight)\left( {1 - i} ight) + \left( {2 + i} ight)\left( {1 + i} ight) + 10 = P + 12 \Rightarrow P = 4.

  • Câu 10: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 11: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 13: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 14: Vận dụng

    Trong các số phức z thỏa mãn điều kiện \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|. Số phức z có mô đun bé nhất bằng

     Đặt z = x + yi{\mkern 1mu} {\mkern 1mu} \left( {x,y \in \mathbb{R}} ight)

    Khi đó \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|

    \Leftrightarrow \left| {x + yi - 2 - 4i} ight| = \left| {x + yi - 2i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 4} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow  - 4x - 4y + 16 = 0

    \Leftrightarrow x + y - 4 = 0

    Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng \Delta :x + y - 4 = 0.

    {\left| z ight|_{\min }} = d\left( {O;\Delta } ight) = \frac{{\left| 4 ight|}}{{\sqrt 2 }} = 2\sqrt 2

  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B(0;1;1),C(1;0; - 2). Điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z + 2 = 0 sao cho giá trị của biểu thức T = MA^{2} + 2MB^{2} +
3MC^{2} nhỏ nhất. Khi đó, giá trị của biểu thức a + b + c là:

    Điểm M luôn tồn tại.

    Ta có M \in (P) nên a + b + c + 2 = 0 \Leftrightarrow a + b + c = -
2.

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 17: Thông hiểu

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 18: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 19: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 20: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(0; −1; 2), B(2; −3; 0), C(−2; 1; 1), D(0; −1; 3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?

    Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y + 1;z - 2) \\
\overrightarrow{BM} = (x - 2;y + 3;z) \\
\overrightarrow{CM} = (x + 2;y - 1;z - 1) \\
\overrightarrow{DM} = (x;y + 1;z - 3) \\
\end{matrix} ight.

    Từ giả thiết \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1 \Leftrightarrow \left\{
\begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = 1 \\
\overrightarrow{MC}.\overrightarrow{MD} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + (y + 1)(y + 3) + z(z - 2) = 1 \\
x(x + 2) + (y + 1)(y - 1) + (z - 1)(z - 3) = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x + 4y - 2z + 2 = 0 \\
x^{2} + y^{2} + z^{2} + 2x - 4z + 1 = 0 \\
\end{matrix} ight.

    Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm I_1(1; −2; 1), R_1 = 2 và mặt cầu tâm I_2(−1; 0; 2), R_2 = 2

    I_{1}I_{2} = \sqrt{5}

    Dễ thấy r = \sqrt{{R_{1}}^{2} - \left(
\frac{I_{1}I_{2}}{2} ight)^{2}} = \frac{\sqrt{11}}{2}

  • Câu 21: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 22: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 23: Nhận biết

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 24: Thông hiểu

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 25: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 26: Vận dụng

    Xác định hàm số f(x) biết rằng f'\left( x ight) = x\sqrt {1 + {x^2}} ;3f\left( 0 ight) = 4

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  \hfill \\   \Rightarrow f\left( x ight) = \int {x\sqrt {{x^2} + 1} dx}  = \dfrac{1}{2}\int {{{\left( {{x^2} + 1} ight)}^{\frac{1}{2}}}d\left( {{x^2} + 1} ight) = \dfrac{{{{\left( {\sqrt {{x^2} + 1} } ight)}^3}}}{3} + C}  \hfill \\ \end{matrix}

    3f\left( 0 ight) = 4 \Rightarrow 3\left[ {\frac{{{{\left( {\sqrt {{0^2} + 1} } ight)}^3}}}{3} + C} ight] = 4 \Rightarrow C = 1

    Vậy hàm số cần tìm là f\left( x ight) = \frac{{{{\left( {\sqrt {{x^2} + 1} } ight)}^3}}}{3} + 1

  • Câu 27: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 4z - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

    Mặt phẳng ax + by + cz + d = 0 có vectơ pháp tuyến \overrightarrow{n} =
(a;b;c)

    Mặt phẳng (P):2x - 3y + 4z - 5 =
0 có vectơ pháp tuyến là: \overrightarrow{n} = (2; - 3;4)

  • Câu 28: Vận dụng cao

    Số nghiệm nguyên âm của phương trình: {x^3} - ax + 2 = 0 với a = \int\limits_1^{3e} {\frac{1}{x}dx} là:

     Ta có:

    \begin{matrix}  a = \int\limits_1^{3e} {\dfrac{1}{x}dx}  = \left. {\left( {\ln \left| x ight|} ight)} ight|_1^{3e} = 3 \hfill \\   \Rightarrow {x^3} - 3x + 2 = 0 \hfill \\   \Leftrightarrow {\left( {x - 1} ight)^2}\left( {x + 2} ight) = 0 \hfill \\   \Leftrightarrow x = 1 \vee x =  - 2 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 30: Nhận biết

    Cho hai số phức {z_1} = 4 - 3i{z_2} = 7 + 3i. Tìm số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {4 - 3i} ight) - \left( {7 + 3i} ight) \hfill \\ = 4 - 3i - 7 - 3i \hfill \\ = (4 - 7) + ( - 3 - 3)i \hfill \\ =  - 3 - 6i \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Xét trong không gian Oxyz cho tam giác ABC.

    Biết A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight), hãy tìm tọa độ điểm D sao cho ABCD là hình bình hành?

     Gọi D\left( {x,y,z} ight) là tọa độ của điểm cần tìm.

    Để ABCD là hình bình hành \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB}

    \Leftrightarrow \left\{ \begin{array}{l}x - {x_A} = 2 + 3\\y - {y_A} =  - 6 + 1\\z - {z_A} = 6 - 1\end{array} ight. \Rightarrow D\left( {7; - 1;2} ight)

  • Câu 32: Nhận biết

    Trong không gian Oxyz cho tam giác ABC, biết: A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight). Tìm tọa độ vectơ trung tuyến \overrightarrow {AM}

     Ta có A\left( {2,4, - 3} ight);\,\,\overrightarrow {AB}  = \left( { - 3, - 1,1} ight);\,\,\overrightarrow {AC}  = \left( {2, - 6,6} ight) nên suy ra được tọa độ 2 điểm tương ứng là:

    \overrightarrow {AB} \left\{ \begin{array}{l}x - {x_A} =  - 3\\y - {y_A} =  - 1\\z - {z_A} = 1\end{array} ight. \Rightarrow B\left( { - 1;3; - 2} ight);\,\,\,\,\,\,\,\,\,

    \overrightarrow {AC} \left\{ \begin{array}{l}x - {x_A} = 2\\y - {y_A} =  - 6\\z - {z_A} = 6\end{array} ight. \Rightarrow C\left( {4; - 2;3} ight)

    Vậy ta được: B\left( { - 1,3, - 2} ight);\,C(4, - 2,3).

    \overrightarrow {AM} là vecto trung tuyến của tam giác ABC nên M là trung điểm của BC. Suy ra M có tọa độ là: M\left( {\frac{3}{2},\frac{1}{2},\frac{1}{2}} ight).

    Suy ra ta có \overrightarrow {AM}  = \left( {\frac{3}{2} - 2,\frac{1}{2} - 4,\frac{1}{2} + 3} ight) = \left( { - \frac{1}{2},\frac{{ - 7}}{2},\frac{7}{2}} ight)

    Vậy \overrightarrow {AM}  = \left( { - \frac{1}{2}, - \frac{7}{2},\frac{7}{2}} ight).

  • Câu 33: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 34: Nhận biết

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} {\left( {\sin 2x - \cos 3x} ight)dx} có giá trị là:

     Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} {\left( {\sin 2x - \cos 3x} ight)dx} có giá trị là:

    I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} {\left( {\sin 2x - \cos 3x} ight)dx}  = \left. {\left( { - \frac{1}{2}\cos 2x - \frac{1}{3}\sin 3x} ight)} ight|_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} =  - \frac{3}{4}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 35: Thông hiểu

    Biết rằng \int_{0}^{\pi^{2}}{\left(
\sin\sqrt{x} - \cos\sqrt{x} ight)dx = A + Bx} với A;B\mathbb{\in Z}. Chọn kết luận đúng?

    Đặt t = \sqrt{x} \Rightarrow t^{2} = x
\Rightarrow 2tdt = dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = \pi^{2} \Rightarrow t = \pi \\
\end{matrix} ight. khi đó ta được:

    \int_{0}^{\pi^{2}}{\left( \sin\sqrt{x} -\cos\sqrt{x} ight)dx =}\int_{0}^{\pi}{\left( \sin t - \cos tight)tdt} = I

    Đặt \left\{ \begin{matrix}
u = t \\
dv = \left( \sin t - \cos t ight)dt \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dt \\
v = - \cos t - \sin t \\
\end{matrix} ight.

    \Rightarrow I = 2\left\lbrack \left. \
t\left( - \cos t - \sin t ight) ight|_{0}^{\pi} +
\int_{0}^{\pi}{\left( \cos t + \sin t ight)dt}
ightbrack

    \Rightarrow I = 2\left\lbrack \left. \
\pi + \left( \sin t - \cos t ight) ight|_{0}^{\pi} ightbrack = 4
+ 2\pi

    \Rightarrow \left\{ \begin{matrix}
A = 4 \\
B = 2 \\
\end{matrix} ight.\  \Rightarrow A + B = 6

  • Câu 36: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 37: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 38: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 39: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 40: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{1}{{\sqrt {2x + 1} }}{\text{   khi }}x \geqslant 0 \hfill \\
  {\left( {2x + 1} ight)^3}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.F(4) + F(
- 1) = 8. Giá trị biểu thức Q = F(
- 2) + F(12) bằng:

    Ta có: F\left( x ight) = \int {f\left( x ight)dx}  = \left\{ \begin{gathered}
  \sqrt {2x + 1}  + {C_1}{\text{   khi }}x \geqslant 0 \hfill \\
  \frac{{{{\left( {2x + 1} ight)}^4}}}{8}{\text{ + }}{{\text{C}}_2}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.

    F(4) + F( - 1) = 8\Rightarrow \sqrt{8 +1} + C_{1} + \frac{( - 2 + 1)^{4}}{8} + C_{2} = 8\Rightarrow C_{1} +C_{2} = \frac{39}{8}(*)

    Do đó: Q = F( - 2) + F(12) = \sqrt{2.12 +
1} + \frac{( - 4 + 1)^{4}}{8} + C_{1} + C_{2} = 20

  • Câu 41: Thông hiểu

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 42: Vận dụng cao

    Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

    Tính số tiền tối thiểu để trồng kín hoa trong vườn

    Nửa đường tròn (T) có phương trình y = \sqrt {2 - {x^2}}

    Xét parabol (P) có trục đối xứng Oy nên có phương trình dạng y = a{x^2} + c

    (P) cắt Oy tại điểm \left( {0; - 1} ight) => c =  - 1

    (P) cắt (T) tại điểm \left( {1;1} ight) thuộc (T) => a + c = 1 \Rightarrow a = 2

    Phương trình (P) là: y = 2{x^2} - 1

    Diện tích miền phẳng D (phần tô màu trong hình là:

    \begin{matrix}  S = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}}  - 2{x^2} + 1} ight)dx}  \hfill \\   = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}} } ight)dx}  + \int\limits_{ - 1}^1 {\left( { - 2{x^2} + 1} ight)dx}  = {I_1} + {I_2} \hfill \\ \end{matrix}

    \Rightarrow {I_1} = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}} } ight)dx}  = \left. {\left( { - \frac{2}{3}{x^3} + x} ight)} ight|_{ - 1}^1 = \frac{2}{3}

    Xét {I_2} = \int\limits_{ - 1}^1 {\left( { - 2{x^2} + 1} ight)dx} đặt x = \sqrt 2 \sin t;t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight]

    => dx = \sqrt 2 \cos tdt

    Ta có: x \in \left[ {1;1} ight] \Rightarrow t \in \left[ { - \frac{\pi }{4};\frac{\pi }{4}} ight]

    Khi đó ta có:

    \begin{matrix}  {I_2} = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\sqrt {2 - 2{{\sin }^2}t} .\sqrt 2 \cos tdt}  \hfill \\   = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {{{\cos }^2}tdt}  = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\left( {1 + \cos 2t} ight)dt}  \hfill \\   = \left. {\left( {t + \frac{1}{2}\sin 2t} ight)} ight|_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} = 1 + \dfrac{\pi }{2} \hfill \\   \Rightarrow S = {I_1} + {I_2} = \dfrac{5}{3} + \dfrac{\pi }{2}\left( {{m^2}} ight) \hfill \\ \end{matrix}

    Số tiền trồng hoa tối thiểu là: 300000.\left( {\frac{5}{3} + \frac{\pi }{2}} ight) \approx 971239 đồng

  • Câu 43: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 44: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 45: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 46: Vận dụng

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 47: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 48: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 49: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 50: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo