Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 2: Thông hiểu

    Biết \int_{1}^{e}{\frac{\ln
x}{\sqrt{x}}dx} = a\sqrt{e} + b với a;b\mathbb{\in Z}. Xác định giá trị biểu thức P = ab?

    Đặt \left\{ \begin{matrix}u = \ln x \\dv = \dfrac{dx}{\sqrt{x}} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{dx}{x} \\v = 2\sqrt{x} \\\end{matrix} ight. khi đó ta có:

    \int_{1}^{e}{\frac{\ln x}{\sqrt{x}}dx} =
\left. \ \left( 2\sqrt{x}\ln x ight) ight|_{e}^{1} -
2\int_{1}^{e}\frac{dx}{x}

    = \left. \ \left( 2\sqrt{x}\ln x ight)
ight|_{e}^{1} - \left. \ \left( 4\sqrt{x} ight) ight|_{e}^{1} = -
2\sqrt{e} + 4

    Vậy \left\{ \begin{matrix}
a = - 2 \\
b = 4 \\
\end{matrix} ight.\  \Rightarrow P = a.b = - 8.

  • Câu 3: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{2x}{x + \sqrt{x^{2} -
1}}?

    Ta có: F(x) = \int_{}^{}{\frac{2x}{x +
\sqrt{x^{2} - 1}}dx} = \int_{}^{}{\left\lbrack 2x\left( x - \sqrt{x^{2}
- 1} ight) ightbrack dx}

    = \int_{}^{}{2x^{2}dx} -
\int_{}^{}{\left\lbrack 2x\sqrt{x^{2} - 1} ightbrack dx} =
\frac{2}{3}x^{3} - \int_{}^{}{\left( x^{2} - 1
ight)^{\frac{1}{2}}d\left( x^{2} - 1 ight)}

    = \frac{2}{3}x^{3} - \frac{2}{3}\left(
x^{2} - 1 ight)\sqrt{x^{2} - 1} + C

    Vậy một nguyên hàm của hàm số là F(x) =
\frac{2}{3}x^{3} - \frac{2}{3}\left( x^{2} - 1 ight)\sqrt{x^{2} -
1}.

  • Câu 4: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 5: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 6: Vận dụng

    Cho số phức z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;100} ight] để z là số thực?

    Ta có: z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m} = {(8i)^{\frac{m}{2}}} = {8^{\frac{m}{2}}}.{i^{\frac{m}{2}}}

    z là số thực khi và chỉ khi \frac{m}{2} = 2k \Leftrightarrow m = 4k,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 7: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 8: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 9: Nhận biết

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 10: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 11: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 12: Nhận biết

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x - my - z + 7 = 0,(Q):6x + 5y - 2z - 4 =
0. Xác định m để hai mặt phẳng (P)(Q) song song với nhau?

    Hai mặt phẳng đã cho song song với nhau khi và chỉ khi

    Tập xác định \frac{3}{6} = \frac{- m}{5}
= \frac{- 1}{- 2} eq \frac{7}{- 4}

    Vậy m = - \frac{5}{2} thì hai mặt phẳng (P);(Q) song song với nhau.

  • Câu 14: Vận dụng cao

    Cho hàm số y = f(x) dương và liên tục trên \lbrack 1;3brack thỏa mãn \max_{\lbrack 1;3brack}f(x) =
2;\min_{\lbrack 1;3brack}f(x) = \frac{1}{2} và biểu thức S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} đạt giá trị lớn nhất, khi đó \int_{1}^{3}{f(x)dx} bằng:

    Do \frac{1}{2} \leq f(x) \leq 2
\Rightarrow f(x) + \frac{1}{f(x)} \leq \frac{5}{2}

    \Rightarrow \int_{1}^{3}{\left\lbrack
f(x) + \frac{1}{f(x)} ightbrack dx} \leq 5

    \Rightarrow \int_{1}^{3}{f(x)dx} +
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5

    \Rightarrow
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5 -
\int_{1}^{3}{f(x)dx}

    \Rightarrow S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} \leq
5\int_{1}^{3}{f(x)dx} - \left\lbrack \int_{1}^{3}{f(x)dx}
ightbrack^{2}

    \leq \frac{25}{4} - \left\lbrack
\int_{1}^{3}{f(x)dx - \frac{5}{2}} ightbrack^{2} \leq
\frac{25}{4}

    Dấu bằng xảy ra khi và chỉ khi \int_{1}^{3}{f(x)dx} = \frac{5}{2}.

  • Câu 15: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 16: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 17: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7),M(x;y;1). Với giá trị nào của x;y thì ba điểm đã cho thẳng hàng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 4;2) \\
\overrightarrow{AM} = (x - 2;y + 1; - 4) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{3} =
\frac{y + 1}{- 4} = \frac{- 4}{2} \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là x = - 4;y =
7.

  • Câu 18: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 19: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 20: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 21: Thông hiểu

    Cho biết \int_{1}^{2}{\ln\left( 9 - x^{2}
ight)dx} = aln5 + bln2 + c với a;b;c\mathbb{\in Z}. Tính S = |a| + |b| + |c|?

    Xét trên đoạn \lbrack 1;2brack ta có:

    \ln\left( 9 - x^{2} ight) = \ln(3 - x)
+ \ln(3 + x)

    Xét I_{1} = \int_{1}^{2}{\ln(3 -
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 - x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x - 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x - 3}dx}

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 - x) ightbrackight|_{1}^{2} = 2\ln2 - 1

    Xét I_{2} = \int_{1}^{2}{\ln(3 +
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 + x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x + 3}dx}

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 + x) ightbrackight|_{1}^{2} = 5\ln5 - 8\ln2 - 1

    Vậy \int_{1}^{2}{\ln\left( 9 - x^{2}ight)dx} = I_{1} + I_{2} = 5\ln5 - 6\ln2 - 2 \Rightarrow S =13.

  • Câu 22: Vận dụng

    Trong không gian với hệ tọa đô Oxyz, cho điểm M(1;2;4). Gọi (P) là mặt phẳng đi qua M và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho thể tích tứ diện O.ABC nhỏ nhất. (P) đi qua điểm nào dưới đây?

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    M \in (P) \Rightarrow (P):\frac{1}{a}
+ \frac{2}{b} + \frac{4}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{2}{b} +
\frac{4}{c} \geq 3\sqrt[3]{\frac{1.2.4}{abc}} \Rightarrow abc \geq
8.27

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq 36

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{2}{b} = \frac{4}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = 12 \\
\end{matrix} ight.

    Phương trình mặt phẳng (P)\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1
\Rightarrow 4x + 2y + z - 12 = 0

    Mặt phẳng (P) đi qua điểm (2;2;0).

  • Câu 23: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 24: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 25: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 26: Vận dụng cao

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2; −1; 3), B(4; 0; 1), C(−10; 5; 3). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng (ABC)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1; - 2) \\
\overrightarrow{AC} = ( - 12;6;0) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (12;24;24) =
12(1;2;2)

    Vậy \overrightarrow{n_{(ABC)}} =
(1;2;2) là đáp án cần tìm.

  • Câu 28: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 29: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 30: Nhận biết

    Cho hai số phức {z_1} = 4 - 3i{z_2} = 7 + 3i. Tìm số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {4 - 3i} ight) - \left( {7 + 3i} ight) \hfill \\ = 4 - 3i - 7 - 3i \hfill \\ = (4 - 7) + ( - 3 - 3)i \hfill \\ =  - 3 - 6i \hfill \\ \end{matrix}

  • Câu 31: Vận dụng

    Xét các số phức z thỏa mãn \left| z ight| = \sqrt 2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức w = \frac{{4 + iz}}{{1 + z}} là một đường tròn có bán kính bằng

    Ta có

    w=\frac{4+i z}{1+z} \Rightarrow \mathrm{w}(1+z)=4+i z \Leftrightarrow z(\mathrm{w}-i)=4-\mathrm{w} \Rightarrow \sqrt{2}|\mathrm{w}-i|=|4-\mathrm{w}|

    Đặt \mathrm{w}=x+y i(x, y \in \mathbb{R})

    Ta có

    \sqrt{2} . \sqrt{x^2+(y-1)^2}=\sqrt{(x-4)^2+y^2}

    \Leftrightarrow 2\left(x^2+y^2-2 y+1ight)=x^2-8 x+16+y^2

    \Leftrightarrow x^2+y^2+8 x-4 y-14=0 \Leftrightarrow(x+4)^2+(y-2)^2=34

  • Câu 32: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta vuông góc với mặt phẳng (\alpha):x + 2z + 3 = 0. Một vectơ chỉ phương của \Delta là:

    Mặt phẳng (α) có một vectơ pháp tuyến là \overrightarrow{n} = (1;0;2).

    Đường thẳng \Delta vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là \overrightarrow{a} = \overrightarrow{n} =
(1;0;2).

  • Câu 34: Vận dụng

    Nếu số phức z e 1 thỏa mãn \left| z ight| = 1 thì phần thực của \frac{1}{{1 - z}} bằng:

    Gọi z = a + bi,\left( {a,b \in \mathbb{R}} ight),z e 1

    Do \left| z ight| = 1 \Rightarrow {a^2} + {b^2} = 1

    Ta có

    \frac{1}{{1 - z}} = \frac{1}{{\left( {1 - a} ight) - bi}} = \frac{{\left( {1 - a} ight) + bi}}{{{{\left( {1 - a} ight)}^2} + {b^2}}}

    = \frac{{1 - a}}{{2 - 2a}} + \frac{b}{{2 - 2a}}i = \frac{1}{2} + \frac{b}{{2 - 2a}}i

    Vậy phần thực của số phức \frac{1}{{1 - z}}\frac{1}{2}

  • Câu 35: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 36: Vận dụng

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 37: Nhận biết

    Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 38: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 39: Nhận biết

    Xét số phức z thỏa mãn: \left( {1 + 2i} ight)\left| z ight| = \frac{{\sqrt {10} }}{z} - 2 + i. Mệnh đề nào dưới đây đúng?

     Giả sử: z = x + yi{\text{ }},\left( {x,y \in \mathbb{R}} ight)\left| z ight| = c{\text{ }}\left( {c > 0} ight), thay vào đẳng thức ta có:

    \left( {1 + 2i} ight)c = \frac{{\sqrt {10} }}{{x + yi}} = 2 + i

    \Leftrightarrow \left( {1 + 2i} ight)c = \frac{{\sqrt {10} \left( {x - yi} ight)}}{{{c^2}}} - 2 + i

    \Leftrightarrow c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 + i\left( {2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1} ight) = 0

    \Rightarrow \left\{ \begin{gathered}  c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 = 0 \hfill \\  2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c + 2 = \frac{{x\sqrt {10} }}{{{c^2}}} \hfill \\   - 2c + 1 = \frac{{y\sqrt {10} }}{{{c^2}}} \hfill \\ \end{gathered}  ight.

    \Rightarrow {\left( {c + 2} ight)^2} + {\left( {2c - 1} ight)^2} = \frac{{10\left( {{x^2} + {y^2}} ight)}}{{{c^4}}} = \frac{{10}}{{{c^2}}}

    \Leftrightarrow \left[ \begin{gathered}  c = 1\left( {t/m} ight) \hfill \\  c =  - 1\left( {{\text{ko }}t/m} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left| z ight| = 1

    Do đó ta có: \frac{1}{2} < \left| z ight| < \frac{3}{2}

  • Câu 40: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 41: Nhận biết

    Tính diện tích hình phẳng giới hạn bởi các đường thẳng y = \cos x;Ox;x = - \frac{\pi}{2};x =
\frac{\pi}{2}?

    Hình vẽ minh họa

    Ta có: \cos x = 0 \Rightarrow x =
\frac{\pi}{2} + k\pi;k\mathbb{\in Z}

    Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Diện tích hình giới hạn là S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\left| \cos x ight|dx} = \left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\cos xdx} ight| = \left| \left. \ \sin x ight|_{- \frac{\pi}{2}}^{\frac{\pi}{2}} ight| = 2

  • Câu 42: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 43: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 44: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 1}{1} = \frac{y + 4}{2} =
\frac{z}{1} và điểm A(2;0;1). Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?

    Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương \overrightarrow{u_{(\Delta)}} = (1;\ 2;\
1)

    Phương trình tham số của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = - 4 + 2t \\
z = t \\
\end{matrix} ight.

    Gọi P là hình chiếu vuông góc của A trên (∆).

    Khi đó P \in (\Delta) \Rightarrow P( - 1
+ t; - 4 + 2t;t)

    Ta có \overrightarrow{AP} = ( - 3 + t; -
4 + 2t;t - 1). Vì \overrightarrow{AP}\bot\overrightarrow{u_{(\Delta)}}
\Rightarrow \overrightarrow{AP}.\overrightarrow{u_{(\Delta)}} =
0 nên

    \Leftrightarrow 1.( - 3 + t)
+ 2.( - 4 + 2t) + 1.(t - 1) = 0 \Leftrightarrow t = 2 \Rightarrow
P(1;0;2)

  • Câu 45: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 46: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(−2; 1; 3), B(3; −2; 4), đường thẳng d:\frac{x - 1}{2} = \frac{y
- 6}{11} = \frac{z + 1}{- 4}và mặt phẳng (P): 41x − 6y + 54z + 49 = 0. Đường thẳng (d) đi qua B, cắt đường thẳng ∆ và mặt phẳng (P) lần lượt tại C và D sao cho thể tích của 2 tứ diện ABCOOACD bằng nhau, biết (d) có một vectơ chỉ phương là \overrightarrow{u} = (4;b;c). Tính b + c.

    Hình vẽ minh họa

    Ta có 1 = \frac{V_{OABC}}{V_{OACD}} =\dfrac{\dfrac{1}{3}d\left( O;(ABC) ight).S_{ABC}}{\dfrac{1}{3}d\left(O;(ACD) ight).S_{ACD}} = \dfrac{S_{ABC}}{S_{ACD}} =\frac{BC}{CD}

    Nên BC = CD. Vì C ∈ ∆ \Rightarrow C(2t +
1;11t + 6; - 4t - 1)

    C là trung điểm của BD nên D(4t - 1;22t +
14; - 8t - 6).

    Điểm D ∈ (P) nên 41(4t − 1) − 6(22t + 14) + 54(−8t − 6) + 49 = 0 ⇔ t = −1

    ⇒ C(−1; −5; 3).

    \overrightarrow{CB} = (4;3;1) =
\overrightarrow{u} là vectơ chỉ phương của đường thẳng d.

    Vậy b = 3, c = 1 ⇒ b + c = 4

  • Câu 47: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 48: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 49: Vận dụng

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 50: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo