Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 2: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 3: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa đường thẳng \Delta và mặt phẳng (\alpha) bằng

    Ta có:

    ∆ có vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    (α) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    \sin\widehat{\left( \Delta;(\alpha)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n}
ight|}{\left| \overrightarrow{u} ight|.\left| \overrightarrow{n}
ight|} = \frac{\left| 1.1 + 2.( - 1) + ( - 1).2 ight|}{\sqrt{1^{2} +
2^{2} + ( - 1)^{2}}.\sqrt{1^{2} + ( - 1)^{2} + 2^{2}}} =
\frac{1}{2}

    \Rightarrow \widehat{\left(
\Delta;(\alpha) ight)} = 30^{0}.

  • Câu 5: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 6: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 7: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 8: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y + 2}{- 1} = \frac{z}{-
2}. Mặt phẳng (P) chứa đường thẳng d và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là ax + by + cz + 9 = 0. Tính tổng a + b + c

    Hình vẽ minh họa

    Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1; - 2)

    Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.

    Phương trình tham số của \Delta:\left\{
\begin{matrix}
x = 1 \\
y = - 2 + t \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lấy điểm N(1; 2; 0) ∈ ∆.

    Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.

    Khi đó \left( (P),d ight) = \left(
(P),\Delta ight) = \widehat{NMH}

    Lại có: \cos\widehat{NMH} = \frac{MH}{NM}
\leq \frac{MK}{NM}

    Vậy \widehat{NMH}lớn nhất khi và chỉ khi H trùng với K

    Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).

    Vectơ pháp tuyến của (Q) là \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{u},\overrightarrow{j} ightbrack =
(2;0;1)

    Vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{n_{Q}},\overrightarrow{u} ightbrack = (1;5; -
2)

    Phương trình mặt phẳng (P) là 1(x - 1) +
5(y + 2) - 2(z - 0) = 0

    \Leftrightarrow x + 5y - 2z + 9 =
0

    Vậy a + b + c = 4

  • Câu 9: Nhận biết

    Tìm số phức z thỏa mãn z + 2 - 3i = 3 - 2i

     Ta có z + 2 - 3i = 3 - 2i \Leftrightarrow z = 3 - 2i - 2 + 3i = 1 + i

  • Câu 10: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 11: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 12: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 13: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 14: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 15: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta vuông góc với mặt phẳng (\alpha):x + 2z + 3 = 0. Một vectơ chỉ phương của \Delta là:

    Mặt phẳng (α) có một vectơ pháp tuyến là \overrightarrow{n} = (1;0;2).

    Đường thẳng \Delta vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là \overrightarrow{a} = \overrightarrow{n} =
(1;0;2).

  • Câu 17: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 19: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 20: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Diện tích S của hình phẳng được giới hạn bởi đồ thị hàm số y = f(x) và trục Ox (phần gạch sọc) được tính bởi công thức

    Từ đồ thị hàm số ta thấy \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 3;1brack \\
f(x) \leq 0;\forall x \in \lbrack 1;3brack \\
\end{matrix} ight.

    Do đó:

    S = \int_{- 3}^{3}{\left| f(x)
ight|d(x)}

    = \int_{- 3}^{1}{\left| f(x)
ight|d(x)} + \int_{1}^{3}{\left| f(x) ight|d(x)}

    = \int_{- 3}^{1}{f(x)d(x)} -
\int_{1}^{3}{f(x)d(x)}

  • Câu 21: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 22: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 23: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 24: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), B(-3;1;0)  và mặt phẳng (P):x+y+3z-14=0. Gọi M là điểm thuộc (P) sao cho \triangle AMB vuông tại M . Khoảng cách từ M đến (Oxy) bằng:

    Ta có: \widehat{AMB}=90^{\circ} suy ra M thuộc mặt cầu (S) đường kính AB.

    Gọi I là trung điểm AB , khi đó I(0;0;1)R=\frac{AB}{2}=\sqrt{11}.

    Ta tính được d(I;(P))=\sqrt{11}=R suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .

    Phương trình đường thẳng qua I và vuông góc với (P) là: 

    \left\{\begin{matrix} x=t \\ y=t \\ z=1+3t \end{matrix}ight.,  t\in \mathbb{R}

    Tọa độ của M là nghiệm của hệ phương trình:

     \left\{\begin{matrix} x=t \\ y=t \\ z=1+3t \\x+y+3z-14=0 \end{matrix}ight.,  t\in \mathbb{R}

    suy ra t=1.

    Suy ra M(1;1;4)\Rightarrow d(M;(Oxy))=4.

  • Câu 25: Vận dụng

    Cho biểu thức M = 1 - z + {z^2} - {z^3} + ... + {z^{2016}} - {z^{2017}} với z = \frac{{1 + 2i}}{{2 - i}}. Biểu thức M có giá tri là?

    Ta có: z = \frac{{1 + 2i}}{{2 - i}} = i.

    Khi đó:  M = \frac{{1 - {{( - z)}^{2018}}}}{{1 + z}} = \frac{{1 - {z^{2018}}}}{{1 + z}}

    = \frac{{1 - {z^{2018}}}}{{1 + z}} = \frac{{1 - {i^{2018}}}}{{1 + i}} = 1 - i.

  • Câu 26: Nhận biết

    Cho số phức z  thỏa mãn z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}}. Viết z dưới dạng z = a + bi, \, \, a,b \in \mathbb{R}. Khi đó tổng a+b có giá trị bằng bao nhiêu?

     z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}} = {\left( { - i} ight)^{2024}} = {\left( {{i^4}} ight)^{506}} = 1

  • Câu 27: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC, biết A;B;C lần lượt là giao điểm của mặt phẳng 2x - 3y + 4z + 24 = 0 với trục Ox,Oy,Oz.

    Theo giả thiết ta có: A( -
12;0;0),B(0;8;0),C(0;0; - 6) suy ra

    V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.12.8.6 = 96

  • Câu 28: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 29: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 30: Thông hiểu

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 31: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 32: Thông hiểu

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

  • Câu 33: Thông hiểu

    Cho hàm số f(x) liên tục trên \mathbb{R}\int_{0}^{2}{\left\lbrack f(x) + 3x^{2}
ightbrack dx} = 10. Xác định giá trị của \int_{0}^{2}{f(x)dx}?

    Ta có: \int_{0}^{2}{\left\lbrack f(x) +
3x^{2} ightbrack dx} = 10 \Leftrightarrow \int_{0}^{2}{f(x)dx} = 10
- \int_{0}^{2}{3x^{2}dx}

    \Leftrightarrow \int_{0}^{2}{f(x)dx} =
10 - \left. \ x^{3} ight|_{0}^{2} = 2

  • Câu 34: Nhận biết

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

  • Câu 35: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z:4x - 2y + 1 = 0

    Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Ta có: \left| {z - 2 - i} ight| = \left| {\overline z  + 2i} ight|

    \Leftrightarrow \left| {\left( {x - 2} ight) + \left( {y - 1} ight)i} ight| = \left| {x + \left( {2 - y} ight)i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 1} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow 4x - 2y - 1 = 0

  • Câu 36: Vận dụng cao

    Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).

    Tính thể tích V của nước có trong bể

    Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:

    Tính thể tích V của nước có trong bể

    Phương trình đường elip đáy khi đó có phương trình \frac{{{x^2}}}{{0,{5^2}}} + \frac{{{y^2}}}{{0,{4^2}}} = 1

    Khi đó chiều cao của mép nước trong bể với đường thẳng y=2

    Xét phương trình 0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}}  = 0,2 \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{4}

    Diện tích phần mặt chứa nước là:

    S = 0,5.0,4.\pi  - \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}} } ight)} dx \approx 0,506

    Do đó thể tích nước trong thùng là: V = 3S \approx 1,52{m^3}

  • Câu 37: Nhận biết

    Cho số phức z = {\left( {2i} ight)^4} - \frac{{{{\left( {1 + i} ight)}^6}}}{{5i}}. Số phức \overline {5z + 3i} là số phức nào sau đây?

     Ta tính được z = \frac{{88}}{5} \Rightarrow 5z + 3i = 88 + 3i

  • Câu 38: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 39: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 40: Vận dụng

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Đáp án là:

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Ta có: z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m} = {(2i)^m} = {2^m}.{i^m}\,

    z là số thuần ảo khi và chỉ khi m = 2k + 1,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 41: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 42: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 43: Vận dụng

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 44: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;1),B(2;1; - 2),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = - 1 \\
y - 3 = - 1 \\
z - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 2 \\
z = 5 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 2;2;5)

  • Câu 45: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 46: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 47: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 48: Vận dụng cao

    Biết I = \int\limits_0^1 {\frac{{\sqrt {{{\ln }^3}x + 3x} \left( {{{\ln }^2}x + \frac{1}{3}x} ight)}}{x}dx}  = \frac{2}{9}\left( {\sqrt {1 + ae + 27{e^2} + 27{e^3}}  - 3\sqrt 3 } ight), a là các số hữu tỉ. Giá trị của a là:

    Ta có:

    I = \int\limits_1^e {\frac{{\sqrt {{{\ln }^3}x + 3x} \left( {{{\ln }^2}x + \frac{1}{3}x} ight)}}{x}dx}  = \frac{1}{3}\int\limits_1^e {\frac{{\sqrt {{{\ln }^3}x + 3x} \left( {3{{\ln }^2}x + x} ight)}}{x}dx}

    Đặt t = {\ln ^3}x + 3x \Rightarrow dt = \frac{3}{x}{\ln ^2}x + 1

    Đổi cận \left\{ \begin{gathered}  x = 1 \Rightarrow t = 3 \hfill \\  x = e \Rightarrow t = 1 + 3e \hfill \\ \end{gathered}  ight.

    \Rightarrow I = \int\limits_3^{1 + 3e} {\sqrt t } dt = \frac{2}{3}\left. {\left( {\sqrt {{t^3}} } ight)} ight|_3^{1 + 3e} = \frac{2}{3}\left( {\sqrt {{{\left( {1 + 3e} ight)}^3}}  - 3\sqrt 3 } ight)

    = \frac{2}{9}\left( {\sqrt {1 + 9e + 27{e^2} + 27{e^3}}  - 3\sqrt 3 } ight) \Rightarrow a = 9

  • Câu 49: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 50: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo