Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 2: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 3: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 4: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 5: Vận dụng

    Cho số phức z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;100} ight] để z là số thực?

    Ta có: z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m} = {(8i)^{\frac{m}{2}}} = {8^{\frac{m}{2}}}.{i^{\frac{m}{2}}}

    z là số thực khi và chỉ khi \frac{m}{2} = 2k \Leftrightarrow m = 4k,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 6: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) liên tục trên \lbrack a;bbrack; f(b) = 5;\int_{a}^{b}{f'(x)dx} =
3\sqrt{5}. Tính giá trị f(a)?

    Ta có: \int_{a}^{b}{f'(x)dx} =
3\sqrt{5} \Leftrightarrow f(b) - f(a) = 3\sqrt{5}

    \Leftrightarrow f(a) = f(b) - 3\sqrt{5}
= \sqrt{5}\left( \sqrt{5} - 3 ight)

  • Câu 7: Nhận biết

    Cho số phức z  thỏa mãn z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}}. Viết z dưới dạng z = a + bi, \, \, a,b \in \mathbb{R}. Khi đó tổng a+b có giá trị bằng bao nhiêu?

     z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}} = {\left( { - i} ight)^{2024}} = {\left( {{i^4}} ight)^{506}} = 1

  • Câu 8: Vận dụng

    Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{x}{{\sqrt {8 - {x^2}} }} thỏa mãn F(2) = 0 

    \begin{matrix}  F\left( x ight) = \int {f\left( x ight)dx}  \hfill \\   = \int {\dfrac{x}{{\sqrt {8 - {x^2}} }}dx}  = \dfrac{1}{2}\int {d\frac{x}{{\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} ight)}  \hfill \\   \Rightarrow F\left( x ight) =  - \sqrt {8 - {x^2}}  + C \hfill \\ \end{matrix}

    Ta có: F(2) = 0 => C = 2

    => F\left( x ight) =  - \sqrt {8 - {x^2}}  + 2

    Xét phương trình F(x) = x ta có:

    \begin{matrix}  F\left( x ight) = x \hfill \\   \Leftrightarrow  - \sqrt {8 - {x^2}}  + 2 = x \hfill \\   \Leftrightarrow \sqrt {8 - {x^2}}  = 2 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2 - x \geqslant 0} \\   {8 - {x^2} = {{\left( {2 - x} ight)}^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {{x^2} - 2x + 2 = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {x = 1 \pm \sqrt 3 } \end{array}} ight. \Leftrightarrow x = 1 - \sqrt 3  \hfill \\ \end{matrix}

    Vậy tổng các nghiệm của phương trình đã cho bằng x = 1 - \sqrt 3

  • Câu 9: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 10: Vận dụng

    Cho số phức z thỏa mãn \left( {1 + 3i} ight)z + 2i =  - 4. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?

    Ta có: \left( {1 + 3i} ight)z + 2i =  - 4 \Leftrightarrow z = \frac{{ - 4 - 2i}}{{1 + 3i}} =  - 1 + i

  • Câu 11: Nhận biết

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt phẳng?

    Phương trình tổng quát của mặt phẳng là: 2x - 3y + 4z - 2024 = 0.

  • Câu 12: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 13: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 14: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 15: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 16: Vận dụng cao

    Cho đường thẳng y = \frac{1}{2}x +a và parabol y = x^{2} (a là tham số thực). Gọi S_{1};S_{2} lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì A thuộc khoảng nào dưới đây?

    Phương trình hoành độ giao điểm của của hai đồ thị:

    \frac{1}{2}x + a = x^{2} \Leftrightarrow2x^{2} - x - 2a = 0

    Theo giả thiết, phương trình có hai nghiệm phân biệt

    \Delta = 1 + 16a > 0 \Rightarrow a> - \frac{1}{16}

    Khi đó, phương trình có hai nghiệm x_{1};x_{2};\left( x_{1} < x_{2}ight) thỏa mãn:

    \left\{ \begin{matrix}S = x_{1} + x_{2} = \frac{1}{2} \\P = x_{1}.x_{2} = - a \\\end{matrix} ight.

    Diện tích hình phẳng:

    S_{1} = \int_{- 2a}^{x_{1}}{\left(\frac{x}{2} + a ight)dx} + \int_{x_{1}}^{0}{x^{2}dx}

    = \left. \ \left( \frac{x^{2}}{4} + axight) ight|_{- 2a}^{x_{1}} + \left. \ \frac{x^{3}}{3}ight|_{x_{1}}^{0}

    = \frac{1}{4}{x_{1}}^{2} + ax_{1} -\frac{1}{4}.4a^{2} + 2a^{2} - \frac{1}{3}{x_{1}}^{3}

    = - \frac{1}{3}{x_{1}}^{3} +\frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2}

    Diện tích hình phẳng:

    S_{2} = \int_{x_{1}}^{x_{2}}{\left(\frac{1}{2}x + a - x^{2} ight)dx} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    Theo giả thiết ta có:

    S_{1} = S_{2}

    \Leftrightarrow = -\frac{1}{3}{x_{1}}^{3} + \frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2} =\frac{\left( x_{2} - x_{1} ight)^{3}}{6}

    \Leftrightarrow \frac{1}{4}\left({x_{1}}^{2} - 4a^{2} ight) + a\left( x_{1} + 2a ight) -\frac{{x_{1}}^{3}}{3} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    \Leftrightarrow - \frac{1}{6}\left({x_{1}}^{3} + {x_{2}}^{3} ight) + \frac{1}{2}x_{1}x_{2}\left( x_{2} -x_{1} ight) + \frac{{x_{1}}^{2}}{4} + ax_{1} + a^{2} = 0

    \Leftrightarrow - \frac{1}{6}\left(\frac{1}{8} + \frac{3a}{2} ight) - \frac{a}{2}\sqrt{\frac{1}{4} + 4a}+ \frac{\left( 1 + \sqrt{1 + 16a} ight)^{2}}{64} + a.\frac{1 - \sqrt{1+ 16a}}{4} + a^{2} = 0

    \Rightarrow a \approx 3,684 \in \left(\frac{7}{2};4 ight)

  • Câu 17: Thông hiểu

    Cho hàm số F(x) = \left( ax^{2} + bx - c
ight).e^{2x} là một nguyên hàm của hàm số f(x) = \left( 2018x^{2} - 3x + 1
ight)e^{2x} trên khoảng ( -
\infty; + \infty). Giá trị biểu thức a + 2b + 4c bằng:

    Ta có: F'(x) = (2ax + b)e^{2x} +
2\left( ax^{2} + bx - c ight)e^{2x}

    = \left\lbrack 2ax^{2} + (2b + 2a)x + b
- 2c ightbrack e^{2x}

    Theo bài ra ta có:

    \Rightarrow \left\lbrack 2ax^{2} + (2b +
2a)x + b - 2c ightbrack e^{2x} = \left( 2018x^{2} - 3x + 1
ight)e^{2x}

    \Rightarrow \left\{ \begin{matrix}2a = 2018 \\2(a + b) = - 3 \\b - 2c = 1 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1009 \\b = \dfrac{- 2021}{2} \\c = \dfrac{- 2023}{4} \\\end{matrix} ight.\  \Rightarrow a + 2b + 4c = - 3035

  • Câu 18: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 20: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 21: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 22: Nhận biết

    Tính thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox:

    Thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox là:

    V = \pi\int_{1}^{2}{\left( \sqrt{2x}
ight)^{2}dx} = \pi\int_{1}^{2}{x^{2}dx} = \pi\left. \ x^{2}
ight|_{1}^{2} = 3\pi.

  • Câu 23: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 24: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 26: Vận dụng cao

    Trong không gian Oxyz, biết mặt phẳng (P) đi qua điểm M(1;4;9) và cắt các tia dương Ox,Oy,Oz lần lượt tại ba điểm A,B,C khác gốc tọa độ O, sao cho OA
+ OB + OC đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

    Vì mặt phẳng (P) cắt các tia dương của trục Ox,Oy,Oz nên ta có

    \frac{x}{OA} + \frac{y}{OB} +
\frac{z}{OC} = 1

    Ta có M \in (P) \Rightarrow \frac{1}{OA}
+ \frac{4}{OB} + \frac{9}{OC} = 1

    Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:

    (OA + OB + OC)\left( \frac{1}{OA} +
\frac{4}{OB} + \frac{9}{OC} ight)

    \geq \left(
\sqrt{OA}.\frac{1}{\sqrt{OA}} + \sqrt{OB}.\frac{2}{\sqrt{OB}} +
\sqrt{OC}.\frac{3}{\sqrt{OC}} ight)^{2} = 36

    \Rightarrow OA + OB + OC \geq
36

    Dấu bằng xảy ra khi: \left\{\begin{matrix}\dfrac{1}{OA} + \dfrac{4}{OB} + \dfrac{9}{OC} = 1 \\OA = \dfrac{OB}{2} = \dfrac{OC}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}OA = 6 \\OB = 12 \\OC = 18 \\\end{matrix} ight.

    Suy ra độ dài ba cạnh OA;OB;OC theo thứ tự lập thành một cấp số cộng.

  • Câu 27: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 28: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(−2; 1; 3), B(3; −2; 4), đường thẳng d:\frac{x - 1}{2} = \frac{y
- 6}{11} = \frac{z + 1}{- 4}và mặt phẳng (P): 41x − 6y + 54z + 49 = 0. Đường thẳng (d) đi qua B, cắt đường thẳng ∆ và mặt phẳng (P) lần lượt tại C và D sao cho thể tích của 2 tứ diện ABCOOACD bằng nhau, biết (d) có một vectơ chỉ phương là \overrightarrow{u} = (4;b;c). Tính b + c.

    Hình vẽ minh họa

    Ta có 1 = \frac{V_{OABC}}{V_{OACD}} =\dfrac{\dfrac{1}{3}d\left( O;(ABC) ight).S_{ABC}}{\dfrac{1}{3}d\left(O;(ACD) ight).S_{ACD}} = \dfrac{S_{ABC}}{S_{ACD}} =\frac{BC}{CD}

    Nên BC = CD. Vì C ∈ ∆ \Rightarrow C(2t +
1;11t + 6; - 4t - 1)

    C là trung điểm của BD nên D(4t - 1;22t +
14; - 8t - 6).

    Điểm D ∈ (P) nên 41(4t − 1) − 6(22t + 14) + 54(−8t − 6) + 49 = 0 ⇔ t = −1

    ⇒ C(−1; −5; 3).

    \overrightarrow{CB} = (4;3;1) =
\overrightarrow{u} là vectơ chỉ phương của đường thẳng d.

    Vậy b = 3, c = 1 ⇒ b + c = 4

  • Câu 29: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 30: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 31: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 32: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 33: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 34: Nhận biết

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

    Đáp án là:

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

     Ta có: \overline z  = 24 + 7i \Rightarrow z = 24 - 7i

    Suy ra a + bi=10.

  • Câu 35: Vận dụng

    Cho số phức w = x + yi;\left( {x,y \in \mathbb{R}} ight) thoả điều kiện \left| {{w^2} + 4} ight| = 2\left| w ight|.

    Đặt P = 8\left( {{x^2} - {y^2}} ight) + 12. Khẳng định nào sau đây đúng?

     Ta có:

    \left| {{w^2} + 4} ight| = 2\left| w ight| \Leftrightarrow \left| {{x^2} - {y^2} + 4 + 2xyi} ight| = 2\left| {x + yi} ight|

    \Leftrightarrow {\left( {{x^2} - {y^2} + 4} ight)^2} + 4{x^2}{y^2} = 4\left( {{x^2} + {y^2}} ight)

    \begin{matrix}   \Leftrightarrow {x^4} + {y^4} + 16 + 2{x^2}{y^2} + 4{x^2} - 12{y^2} = 0 \hfill \\   \Leftrightarrow {x^4} + {y^4} + 2{x^2}{y^2} - 4{x^2} - 4{y^2} + 4 + 8\left( {{x^2} - {y^2}} ight) + 12 = 0 \hfill \\ \end{matrix}

    \begin{matrix}   \Leftrightarrow 8\left( {{x^2} - {y^2}} ight) + 12 =  - \left( {{x^4} + {y^4} + 2{x^2}{y^2} - 4{x^2} - 4{y^2} + 4} ight) \hfill \\   \Leftrightarrow P =  - {\left( {{x^2} + {y^2} - 2} ight)^2} =  - {\left( {{{\left| {\text{w}} ight|}^2} - 2} ight)^2}. \hfill \\ \end{matrix}

    Nhận xét: câu này đáp án A cũng đúng vì \left| {\text{w}} ight| = \left| {\overline {\text{w}} } ight|.

  • Câu 36: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 37: Thông hiểu

    Cho \int_{2}^{3}{\frac{1}{(x + 1)(x +
2)}dx} = aln2 + bln3 + cln5 với a;b;c là các số thực. Giá trị của biểu thức T = a + b^{2} - c^{3} bằng:

    Ta có:

    \int_{2}^{3}{\frac{1}{(x + 1)(x + 2)}dx}
= \int_{2}^{3}{\left( \frac{1}{x + 1} - \frac{1}{x + 2}
ight)dx}

    = \left. \ \ln\left| \frac{x + 1}{x + 2}
ight| ight|_{2}^{3} = \ln\frac{4}{5} - \ln\frac{3}{4} = 4ln2 - ln3 -
ln5

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 1 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow T = a + b^{2} - c^{3} =
6

  • Câu 38: Vận dụng

    Điểm biểu diễn của số phức z = \frac{1}{{2 - 3i}} là:

     Ta có: z = \frac{1}{{2 - 3i}} = \frac{2}{{13}} + \frac{3}{{13}}i

  • Câu 39: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 40: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3),B( - 2;4;4),C(4;0;5). Gọi G là trọng tâm của tam giác ABC. Gọi M là điểm nằm trên mặt phẳng (Oxy) sao cho độ dài đoạn thẳng GM ngắn nhất. Tính độ dài đoạn thẳng GM.

    Ta có: G là trọng tâm tam giác ABC nên G = (1;2;4)

    Mặt phẳng (Oxy) có phương trình z = 0.

    GM ngắn nhất khi và chỉ khi M là hình chiếu vuông góc của G lên mặt phẳng (Oxy). Khi đó, ta có:

    GM = d\left( G,(Oxy) ight) =
\frac{4}{\sqrt{1}} = 4.

  • Câu 41: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 42: Thông hiểu

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos60^{0} - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.\cos60^{0}

    AC = AD \Rightarrow
\overrightarrow{AB}.\overrightarrow{CD} = 0 \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CD} ight) = 90^{0}

  • Câu 43: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = - 2x^{3} + x^{2} + x + 5 và đồ thị (C') của hàm số y = x^{2} - x + 5?

    Phương trình hoành độ giao điểm

    - 2x^{3} + x^{2} + x + 5 = x^{2} - x +
5

    \Leftrightarrow - 2x^{3} + 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{1}{\left| 2x^{3} - 2x
ight|dx}

    = \left| \int_{- 1}^{0}{\left( 2x^{3} -
2x ight)dx} ight| + \left| \int_{0}^{1}{\left( 2x^{3} - 2x
ight)dx} ight|

    = 1

  • Câu 44: Thông hiểu

    Cho hình chóp S.ABCAB = AC\widehat{SAB} = \widehat{SAC}. Góc giữa hai đường thẳng SABC là:

    Ta có:

    \overrightarrow{BC}.\overrightarrow{AS}
= \left( \overrightarrow{AC} - \overrightarrow{AB}
ight).\overrightarrow{AS}

    =
\overrightarrow{AC}.\overrightarrow{AS} -
\overrightarrow{AB}.\overrightarrow{AS}

    = AC.AS.\cos\widehat{SAC} -AB.AS.\cos\widehat{SAB} = 0 (vì AB =
AC\widehat{SAB} =
\widehat{SAC}).

    Suy ra góc giữa hai đường thẳng SA và BC bằng 90^{0}.

  • Câu 45: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 46: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 47: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 48: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 49: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 50: Nhận biết

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo