Trong không gian
, cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Trong không gian
, cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hàm số
có đạo hàm
với
. Chọn kết luận đúng?
Ta có:
Ta có:
Vậy .
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Một chất điểm dạng chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô tăng tốc bằng:
Số phức liên hợp của số phức
là
=
= a - bi
Tìm nguyên hàm
.
Ta có:
Trong không gian
, cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tọa độ điểm
là:
Hình vẽ minh họa
Gọi B1 là điểm đối xứng với B qua (P).
Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)
(hằng số).
Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).
Từ đó suy ra tọa độ của điểm B là .
Tính thể tích
của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Trong không gian hệ trục tọa độ
, cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Cho số phức
. Tính |z|
Ta có
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho hai đường thẳng chéo nhau
và ![]()
Mặt phẳng song song và cách đều và có phương trình tổng quát:
Phương trình (d) cho biết và (d) có vectơ chỉ phương
Chuyển về dạng tham số
để có
và vectơ chỉ phương
.
Gọi I là trung điểm AB thì I (2, 2, 0), M(x, y, z) bất kỳ .
là phương trình của mặt phẳng (P).
Trong không gian
, hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Giá trị của
bằng
Ta có:
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số
quanh trục
bằng
Ta có:
Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Trong không gian với hệ trục tọa độ
, khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Viết phương trình đường thẳng
đi qua
và song song với hai mặt phẳng
?
Ta có:
Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là .
Vậy phương trình đường thẳng d là
Trong không gian
, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây:
.
Gọi điểm
Mặt phẳng cách đều hai mặt phẳng trên có dạng:
Để mp (γ) cách đều hai mp trên thì
hoặc
Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).
Với ta có
nên A; B cùng phía.
Với ta có
nên A; B khác phía.
Vậy phương trình mặt phẳng cần tìm là .
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Phương trình tổng quát của mặt phẳng
chứa giao tuyến của hai mặt phẳng
và
, chứa điểm
là:
Vì mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên thuộc chùm mặt phẳng
Mặt khác, ta có
Thế vào .
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Trong không gian với hệ tọa độ
,cho đường thẳng
. Phương trình nào dưới đây là phương trình chính tắc của đường thẳng
?
Đường thẳng đi qua điểm
và nhận
làm vectơ chỉ phương.
Phương trình chính tắc của
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Biết rằng
. Xác định
?
Ta có:
Do đó: