Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Phương trình tổng quát của mặt phẳng
chứa giao tuyến của hai mặt phẳng
và
, chứa điểm
là:
Vì mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên thuộc chùm mặt phẳng
Mặt khác, ta có
Thế vào .
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Viết phương trình tham số của đường thẳng d qua hai điểm: ![]()
Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là hay ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Tích phân
bằng:
Ta có:
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Gọi
Ta có:
Theo bài ra ta có:
Vậy điểm E có tọa độ là .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng
. Gọi M là điểm thuộc (P) sao cho
vuông tại M . Khoảng cách từ M đến (Oxy) bằng:
Ta có: suy ra M thuộc mặt cầu (S) đường kính AB.
Gọi I là trung điểm AB , khi đó và
.
Ta tính được suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .
Phương trình đường thẳng qua I và vuông góc với (P) là:
Tọa độ của M là nghiệm của hệ phương trình:
suy ra .
Suy ra .
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Thể tích
của khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục hoành và đường thẳng
khi quay quanh trục
?
Phương trình hoành độ giao điểm của đường và trục hoành là:
Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường , trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho hai số phức z, w thỏa mãn
;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Nguyên hàm của hàm số
là
Ta có: .
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Cho đường thẳng
và mặt phẳng
. Mặt phẳng (P) qua d và tạo với
một góc nhỏ nhất. Một véc tơ pháp tuyến của (P) là:

Gọi ;
H là hình chiếu vuông góc của B lên ; K là hình chiếu của H lên
.
Suy ra: cố định;
.
Mà (vì
)
Suy ra nhỏ nhất bằng
khi
.
Khi đó và có một VTCP
.
Vậy (P) có một VTPT là .
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Cho số phức
. Tính |z|
Ta có
Trong không gian với hệ tọa độ
, tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Tích phân
có giá trị là:
Ta biến đổi:
Xét
Đặt
Xét
Đặt
Đổi cận
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi
là hình chiếu vuông góc của
trên mặt phẳng tọa độ
. Viết phương trình đường thẳng
.
Ta có: d đi qua M(2; −3; 1) và có vectơ chỉ phương
Mặt phẳng (Oxz) có vectơ pháp tuyến và có phương trình y = 0.
Suy ra
Gọi H là hình chiếu vuông góc của M trên Oxz ⇒ H(2; 0; 1).
Suy ra d' là đường thẳng qua H(2; 0; 1) và nhận vectơ làm vectơ chỉ phương.
Vậy phương trình đường thẳng cần tìm là .
Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
Khi dừng hẳn
Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:
Cho tứ diện ABCD có
. Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Cho số phức
, giá trị của số phức
là?
Ta có:
Cho giá trị của tích phân
,
. Giá trị của biểu thức
là:
Ta có:
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Tìm nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Vậy .
Tích phân
có giá trị là:
Tích phân có giá trị là: