Trong không gian với hệ trục tọa độ
, cho tọa độ hai điểm
. Tính chu vi tam giác
?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ
, cho tọa độ hai điểm
. Tính chu vi tam giác
?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ tọa độ
, cho hai điểm
. Viết phương trình đường thẳng
?
Vectơ chỉ phương của đường thẳng là
. Suy ra phương trình đường thẳng
là:
Điểm biểu diễn của số phức
là:
Ta có:
Tìm nguyên hàm của hàm số ![]()
Trong không gian
cho điểm
. Mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Trong không gian cho điểm
. Mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Giả sử
với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Phần thực của số phức
là:
Ta có:
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Cho hàm số
dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Tìm nguyên hàm của hàm số
?
Ta có:
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Trong không gian
, mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Tìm nguyên hàm của hàm số
?
Ta có:
Tính diện tích hình phẳng giới hạn bởi hai đồ thị
và
?
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Trong không gian
, cho tam giác
với
. Đường trung tuyến xuất phát từ đỉnh
của tam giác
nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?
Gọi là trung điểm của
, suy ra tọa độ điểm
.
Đường trung tuyến xuất phát từ đỉnh có vectơ chỉ phương là
.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Trong không gian
, cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian , cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho là một nguyên hàm của hàm số
và
. Tính ![]()
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số
thỏa mãn F(2) = 0
Ta có: F(2) = 0 => C = 2
=>
Xét phương trình F(x) = x ta có:
Vậy tổng các nghiệm của phương trình đã cho bằng
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với
Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Tìm số phức z thỏa mãn ![]()
Ta có
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Cho số phức
. Tính |z|
Ta có
Tích phân
bằng:
Ta có:
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Trong không gian với hệ trục tọa độ
, cho
. Phương trình mặt phẳng
đi qua
cắt các trục tọa độ
lần lượt tại
(khác
) sao cho
là trực tâm tam giác
là:
Mặt phẳng cắt trục
lần lượt tại
suy ra
là trực tâm của tam giác
và
Phương trình mặt phẳng .
Trong không gian
, cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Số phức
bằng:
Ta có:
Tìm nguyên hàm của hàm số
là
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
.
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Trong không gian hệ trục tọa độ
, cho tọa độ ba điểm
. Tính tích vô hướng của
?
Ta có:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho hai điểm
và
. Tọa độ điểm
đối xứng với
qua
là:
Vì điểm đối xứng với
qua
nên
là trung điểm của
Cho số phức
. Tìm số phức
?
Ta có:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ta có:
Nhận xét: Không thể dùng máy tính để tính ra kết quả trực tiếp như trên nhưng ta có thể dùng để kiểm tra kết quả bằng cách thử thay số trong các đáp án.
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .