Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho số phức z = a + bi,\left( {a,b \in \mathbb{R}} ight) thỏa mãn \left( {1 + i} ight)z + 2\overline z  = 3 + 2i. Tính P = a + b

    Giả sử: z = a + bi{\text{ }}\left( {a,b \in \mathbb{R}} ight)

    \left( {1 + i} ight)\left( {a + bi} ight) + 2\left( {a - bi} ight) = 3 + 2i

    \Leftrightarrow 3a - b + \left( {a - b} ight)i = 3 + 2i

    \Leftrightarrow \left\{ \begin{gathered}  3a - b = 3 \hfill \\  a - b = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = \frac{1}{2} \hfill \\  b =  - \frac{3}{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow P = a + b =  - 1

  • Câu 2: Thông hiểu

    Cho \int_{0}^{1}{\frac{x}{(x + 2)^{2}}dx}
= a + ln2 + cln3 với a;b;c là các số hữu tỉ. Giá trị của biểu thức K =
3a + b + c bằng:

    Ta có: \int_{0}^{1}{\frac{x}{(x +
2)^{2}}dx} = \int_{0}^{1}{\frac{x + 2 - 2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{x + 2}{(x +
2)^{2}}dx} - \int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{1}{x + 2}dx} -
\int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \left. \ \ln|x + 2| ight|_{0}^{1} -\left. \ \frac{2}{x + 2} ight|_{0}^{1} = \ln3 - \ln2 -\frac{1}{3}

    Suy ra a = - \frac{1}{3};b = - 1;c = 1
\Rightarrow K = - 1

  • Câu 3: Vận dụng

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 4: Thông hiểu

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 5: Thông hiểu

    Hàm số F(x) là nguyên hàm của f(x) = (1 - x)\ln\left( x^{2} + 1
ight). Hỏi hàm số F(x) có bao nhiêu điểm cực trị?

    TXĐ: D\mathbb{= R}

    Ta có: F'(x) = f(x) = (1 -
x)\ln\left( x^{2} + 1 ight)

    \Rightarrow F'(x) = 0
\Leftrightarrow (1 - x)\ln\left( x^{2} + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - x = 0 \\
\ln\left( x^{2} + 1 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Phương trình F'(x) = 0 có 1 nghiệm đơn x = 1 và một nghiệm kép x = 0 nên hàm số F(x) có 1 điểm cực trị.

  • Câu 6: Nhận biết

    Tìm số phức z thỏa mãn z + 2 - 3i = 3 - 2i

     Ta có z + 2 - 3i = 3 - 2i \Leftrightarrow z = 3 - 2i - 2 + 3i = 1 + i

  • Câu 7: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 8: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \left( x^{2} - 1 ight)e^{x^{3} -
3x}, biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành?

    Ta có:

    F(x) = \int_{}^{}{\left( x^{2} - 1
ight)e^{x^{3} - 3x}dx} = \frac{1}{3}\int_{}^{}{e^{x^{3} - 3x}d\left(
x^{3} - 3x ight)}

    = \frac{1}{3}e^{x^{3} - 3x} +
C

    F'(x) = f(x) = \left( x^{2} - 1
ight)e^{x^{3} - 3x} = 0 \Leftrightarrow x = \pm 1

    F''(x) = 2xe^{x^{3} - 3x} +
\left( x^{2} - 1 ight)e^{x^{3} - 3x};F''(1) >
0;F''(1) < 0

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(1;0)

    Suy ra F(1) = 0 \Leftrightarrow
\frac{1}{3}e^{- 2} + C = 0 \Rightarrow C = -
\frac{1}{3e^{2}}

    Do đó F(x) = \frac{e^{x^{3} - 3x + 2} -
1}{3e^{2}}

  • Câu 9: Thông hiểu

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Ta có: F(x) là một nguyên hàm của hàm số f(x)e^{2x} nên

    F'(x) = f(x)e^{2x} \Leftrightarrow
\left\lbrack (x - 1)e^{x} ightbrack' = f(x)e^{2x}

    Hay f(x)e^{2x} = e^{x} + (x - 1)e^{x} =
xe^{x}

    Xét I =
\int_{}^{}{f'(x)e^{2x}}dx, đặt \left\{ \begin{matrix}
u = e^{2x} \\
dv = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2e^{2x}dx \\
v = f(x) \\
\end{matrix} ight.

    Khi đó

    I = f(x)e^{2x} -
\int_{}^{}{2f(x)e^{2x}}dx

    = xe^{x} - 2(x - 1)e^{x} + C = (2 -
x)e^{x} + C

  • Câu 10: Vận dụng

    Điểm biểu diễn của số phức z = \frac{1}{{2 - 3i}} là:

     Ta có: z = \frac{1}{{2 - 3i}} = \frac{2}{{13}} + \frac{3}{{13}}i

  • Câu 11: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 12: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'\overrightarrow{AB} +
\overrightarrow{B'C'} + \overrightarrow{DD'} =
k.\overrightarrow{AC'}. Giá trị của k bằng:

    Ta có: \overrightarrow{AC'} =
\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CC'} =
\overrightarrow{AB} + \overrightarrow{B'C'} +
\overrightarrow{DD'}

    Vậy k = 1.

  • Câu 13: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 14: Vận dụng cao

    Cho tích phân I = \int\limits_1^e {\left( {x + \frac{1}{x}} ight)\ln xdx}  = a{e^2} + b, a và b là các số hữu tỉ. Giá trị của 2a - 3b là:

     Ta có:

    \begin{matrix}  I = \int\limits_1^e {\left( {x + \dfrac{1}{x}} ight)\ln xdx}  \hfill \\ = \int\limits_1^e {x\ln xdx}  + \int\limits_1^e {\dfrac{1}{x}\ln xdx}  \hfill \\ \end{matrix}

    = \left. {\left( {\frac{{{x^2}}}{2}\ln x} ight)} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx}  + \int\limits_0^1 {dt}  = \frac{{{e^2}}}{4} + \frac{5}{4}, với t = \ln x

    \begin{matrix}   \Rightarrow a = \dfrac{1}{4},b = \dfrac{5}{4} \hfill \\   \Rightarrow 2a - 3b =  - \dfrac{{13}}{4} \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 16: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 17: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 18: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 19: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 20: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 21: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 22: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 23: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 2}
= \frac{z + 2}{1}. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng d.

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = (1; -
2;1)

    Mặt phẳng vuông góc với d nhận vectơ \overrightarrow{u} làm vectơ pháp tuyến.

    Do đó (P):x - 2y + z + 1 = 0 là mặt phẳng thỏa mãn.

  • Câu 24: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 25: Vận dụng

    Cho {z_1},{z_2} là hai số phức thỏa mãn \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1. Tính giá trị của biểu thức P = \left| {{z_1} + {z_2}} ight|

    Cách 1: + Đặt z = x + yi,x,y \in \mathbb{R} ta có

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \left| {2x + \left( {2y - 1} ight)i} ight| = \left| {\left( {2 - y} ight) + xi} ight|

    \sqrt {4{x^2} + {{\left( {2y - 1} ight)}^2}}  = \sqrt {{{\left( {2 - y} ight)}^2} + {x^2}}  \Leftrightarrow 4{x^2} + 4{y^2} - 4y + 1 = 4 - 4y + {y^2} + {x^2}

    \Leftrightarrow {x^2} + {y^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức: \forall {z_1},{z_2} \in \mathbb{C} ta có

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight)

    => P = \sqrt 3

    Cách 2.

    + Biến đổi: \left| {iz + 2} ight| = \left| { - i\left( {iz + 2} ight)} ight| = \left| {z - 2i} ight|

    Ta có \left| {2z - i} ight| = \left| {z - 2i} ight| \Rightarrow {\left| {2z - i} ight|^2} = {\left| {z - 2i} ight|^2} \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức bình phương mô đun:

    {\left| {m{z_1} + n{z_2}} ight|^2} = {m^2}{z_1}^2 + 2mn{z_1}{z_2}cos\left( {{z_1},{z_2}} ight) + {n^2}{z_2}^2

    Trong đó \left( {{z_1},{z_2}} ight) là góc \widehat {MON} với M, N lần lượt là các điểm biểu diễn số phức {z_1},{z_2} trên mặt phẳng phức

    \left| {{z_1} - {z_2}} ight| = 1 \Rightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1

    \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 1 \Rightarrow cos\left( {{z_1},{z_2}} ight) = \frac{1}{2}

    {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

    Vậy {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

  • Câu 26: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A( - 1;2;4),B(0;1;5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A( - 1;2;4),B(0;1;5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 28: Vận dụng

    Cho hai số thực bc (c>0). Kí hiệu A , B là hai điểm biểu diễn hai nghiệm phức của phương trình {z^2} + 2bz + c = 0 trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).

     Ta có: {z^2} + 2bz + c = 0 . Vì {z_1} + {z_2} =  - 2b{z_1}{z_2} = c là số thực.

    \Rightarrow {z_2} = \overline {{z_1}} \Rightarrow \left| {{z_2}} ight| = \left| {\overline {{z_1}} } ight| = \left| {{z_1}} ight|. Vậy ta có: {x_1} = bx_1^2 + y_2^2 = c .

    Ta có: {z_1} = {x_1} + {y_1}i \Rightarrow A\left( {{x_1};{y_1}} ight); {z_1} = {x_2} + {y_2}i \Rightarrow B(x_2;y_2).

    Để tam giác OAB là tam giác vuông tại O =  > \overrightarrow {OA} .\overrightarrow {OB}  = 0

    \Rightarrow {x_1}{x_2} + {y_1}{y_2} = 0\Rightarrow x_1^2-y_1^2=0\Rightarrow x_1^2=y_1^2\Rightarrow c=2b^2.

  • Câu 29: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 30: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 31: Thông hiểu

    Cho tứ diện ABCD trọng tâm G. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Vì G là trọng tâm tứ diện ABCD nên suy ra:

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{AG} =
\overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD}

    \Leftrightarrow \overrightarrow{AG} =
\left( \overrightarrow{GA} + \overrightarrow{AB} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AC} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AD} ight)

    \Leftrightarrow 4\overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    Suy ra mệnh đề sai là \overrightarrow{AG}
= \frac{2}{3}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight).

  • Câu 32: Nhận biết

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 33: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 34: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(1;2;3) và có véc-tơ chỉ phương là \overrightarrow{u} = (2;4;6). Phương trình nào sau đây không phải là của đường thẳng \Delta?

    Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình \left\{ \begin{matrix}
x = 3 + 2t \\
y = 6 + 4t \\
z = 12 + 6t \\
\end{matrix} ight..

  • Câu 35: Thông hiểu

    Cho số phức z thỏa mãn \left( {1 - i} ight)z + 2i\overline z  = 5 + 3i. Môđun của z là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight).

    \left( {1 - i} ight)\left( {x + yi} ight) + 2i\left( {x - yi} ight) = 5 + 3i

    \Leftrightarrow \left( {x + 3y} ight) + \left( {x + y} ight)i = 5 + 3i \Leftrightarrow \left\{ \begin{gathered}  x + 3y = 5 \hfill \\  x + y = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x = 2 \hfill \\  y = 1 \hfill \\ \end{gathered}  ight. \Rightarrow \left| z ight| = \sqrt 5

  • Câu 36: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 37: Vận dụng

    Cho số phức z = a + bi , \left( {a,b \in \mathbb{R}} ight)thỏa mãn \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9\left| {\overline z } ight| > 2.

    Tính P = a + b.

     Ta áp dụng công thức z = a + bi \Rightarrow \overline z  = a - bi, có:

    \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9

    \Leftrightarrow \left( {a + bi + 1 + i} ight)\left( {a - bi - i} ight) + 3i = 9

    \Leftrightarrow {a^2} + {b^2} + 2b + a + 1 - \left( {b + 1} ight)i = 9 - 3i

    Ta xét: \left\{ \begin{gathered}  {a^2} + {b^2} + 2b + a + 1 = 9 \hfill \\  b + 1 = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  {a^2} + a = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  a = 0 \hfill \\ \end{gathered}  ight. \vee \left\{ \begin{gathered}  b = 2 \hfill \\  a =  - 1 \hfill \\ \end{gathered}  ight.

    Với {z_1} = 2i \Rightarrow \left| {{z_1}} ight| = 2 nên không thỏa yêu cầu bài toán.

    Với {z_2} =  - 1 + 2i \Rightarrow \left| {{z_2}} ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 thỏa yêu cầu bài toán.

    Vậy P = a + b = 1

  • Câu 38: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 39: Nhận biết

    Họ nguyên hàm của hàm số f(x) = \sin x\cos x + \frac{1}{x + 1} là:

    Ta có:

    f(x) = \frac{1}{2}\sin2x + \frac{1}{x +1}

    \Rightarrow F(x) = \int_{}^{}{\left(\frac{1}{2}\sin2x + \frac{1}{x + 1} ight)dx} = - \frac{1}{4}\cos2x +\ln|x + 1| + C

  • Câu 40: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 41: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

  • Câu 42: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 43: Vận dụng

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 44: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = \sqrt {2 + \cos x}, trục hoành và các đường thẳng x = 0;x = \frac{\pi }{2}. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V là:

    Thể tích cần tính là:

    \begin{matrix}  V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {\sqrt {2 + \cos x} } ight)}^2}dx}  \hfill \\   \Rightarrow V = \pi \int\limits_0^{\frac{\pi }{2}} {\left( {2 + \cos x} ight)dx}  \hfill \\   \Rightarrow V = \left. {\pi \left( {2 + \sin x} ight)} ight|_0^{\frac{\pi }{2}} = \pi \left( {\pi  + 1} ight) \hfill \\ \end{matrix}

     

  • Câu 45: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0,(Q):x - 2y + z + 8 =0,(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt phẳng (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0,(Q):x - 2y + z + 8 =0,(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt phẳng (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 46: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 47: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 48: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 7t(m/s). Đi được 5s người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = - 70\left( m/s^{2} ight). Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.

    Vận tốc vật đạt được sau 5s là: v_{0} =
7.5 = 35(m/s)

    Ta có: v_{2}(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{- 70dt} = - 70t + C

    Do khi bắt đầu tăng tốc v_{0} = 35(m/s)
\Rightarrow v_{(t = 0)} = 35 \Rightarrow C = 35

    \Rightarrow v_{2}(t) = - 70t +
35

    Vật dừng hẳn khi v_{2}(t) = - 70t + 35 =
0 \Rightarrow t_{2} = \frac{1}{2}(s)

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{5}{v_{1}(t)dt} +
\int_{0}^{\frac{1}{2}}{v_{2}(t)dt}

    = \int_{0}^{5}{7tdt} +
\int_{0}^{\frac{1}{2}}{( - 70t + 35)dt} = 96,25(m)

  • Câu 49: Vận dụng cao

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 50: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 50 lượt xem
Sắp xếp theo