Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight). Khi đó số điểm cực trị của hàm số F(x) là:

    Ta có: F(x) là một nguyên hàm của hàm số f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight)

    \Rightarrow F'(x) = 2019^{x}\left( 4
- x^{2} ight)\left( x^{2} - 3x + 2 ight) = 2019^{x}(x - 2)^{2}(x +
2)(1 - x)

    \Rightarrow F'(x) = 0
\Leftrightarrow 2019^{x}(x - 2)^{2}(x + 2)(1 - x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.. Do x = -
2;x = 1 là nghiệm bội 1 còn x =
2 là nghiệm bội 2 nên hàm số F(x) có hai điểm cực trị.

  • Câu 2: Vận dụng

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 3: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 4: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 5: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u};\overrightarrow{CA'} =
\overrightarrow{v};\overrightarrow{BD'} =
\overrightarrow{x};\overrightarrow{DB'} =
\overrightarrow{y}. Chọn khẳng định đúng?

    I là tâm hình bình hành ABCD nên

    4\overrightarrow{OI} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}

    \Leftrightarrow 4\overrightarrow{OI} =
\frac{1}{2}\left( \overrightarrow{C'A} + \overrightarrow{D'B} +
\overrightarrow{A'C} + \overrightarrow{B'D} ight)

    \Leftrightarrow 4\overrightarrow{OI} = -
\frac{1}{2}\left( \overrightarrow{AC'} + \overrightarrow{BD'} +
\overrightarrow{CA'} + \overrightarrow{DB'} ight)

    \Leftrightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} ight)

  • Câu 6: Vận dụng cao

    Cho đồ thị hàm số y = f\left( x ight) có đồ thị f'\left( x ight) trên \left[ { - 3;2} ight] như hình vẽ. Tính giá trị của f\left( { - 1} ight) + f\left( 1 ight). Biết phần cong của đồ thị là mộ phần của parabol y = a{x^2} + bx + cf\left( { - 3} ight) = 0.

    Tính giá trị của biểu thức

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho đồ thị hàm số y = f\left( x ight) có đồ thị f'\left( x ight) trên \left[ { - 3;2} ight] như hình vẽ. Tính giá trị của f\left( { - 1} ight) + f\left( 1 ight). Biết phần cong của đồ thị là mộ phần của parabol y = a{x^2} + bx + cf\left( { - 3} ight) = 0.

    Tính giá trị của biểu thức

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 8: Thông hiểu

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 9: Nhận biết

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 10: Nhận biết

    Cho hai số phức {z_1} = 4 - 3i{z_2} = 7 + 3i. Tìm số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {4 - 3i} ight) - \left( {7 + 3i} ight) \hfill \\ = 4 - 3i - 7 - 3i \hfill \\ = (4 - 7) + ( - 3 - 3)i \hfill \\ =  - 3 - 6i \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 12: Nhận biết

    Tìm số phức z thỏa mãn z + 2 - 3i = 3 - 2i

     Ta có z + 2 - 3i = 3 - 2i \Leftrightarrow z = 3 - 2i - 2 + 3i = 1 + i

  • Câu 13: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 14: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 16: Nhận biết

    Giá trị của z = 1 + i + {i^2} + ... + {i^{2023}} là?

    Ta có: z = \frac{{{i^{2022}} - 1}}{{i - 1}} = 1 + i

    (Áp dụng công thức: {S_n} = 1 + p + {p^2} + ... + {p^n} = \frac{{{p^{n - 1}} - 1}}{{p - 1}})

  • Câu 17: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 18: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 19: Vận dụng cao

    Cho hai đường thẳng: ({d_1}):\frac{{x - 3}}{{ - 7}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{3},({d_2}):\frac{{x - 7}}{1} = \frac{{y - 3}}{2} = \frac{{z - 9}}{{ - 1}}

    và mặt phẳng (\alpha ):x + y + z + 3 = 0 .

    Hình chiếu của ({d_2}) theo phương của ({d_1})  lên mặt phẳng (\alpha ) có phương trình tổng quát:

    Vectơ chỉ phương của ({d_1}):\overrightarrow a  = ( - 7,2,3). Vectơ chỉ phương của ({d_2}):\overrightarrow b  = (1,2, - 1).

    Phương trình của mặt phẳng chứa ({d_2}) và có phương của ({d_1})có dạng: 

    2x + y + 4z + D = 0

    Điểm A (7, 3, 9) thuộc mặt phẳng này 

    => D = -53

    Giao tuyến của mặt phẳng này với mặt phẳng (\alpha ) là hình chiếu của ({d_2}) theo phương của ({d_1}) lên (\alpha ): \left\{ \begin{array}{l}2x + y + 4z - 53 = 0\\x + y + z + 3 = 0\end{array} ight.

  • Câu 20: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{1}{2x - 1};y
= 1 và đường thẳng x = 2

    Phương trình hoành độ giao điểm:

    \frac{1}{2x - 1} = 1 \Leftrightarrow\left\{ \begin{matrix}x eq \dfrac{1}{2} \\2x - 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{1}{2} \\x = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 1

    Khi đó:

    S = \int_{1}^{2}{\left| \frac{1}{2x - 1}
- 1 ight|dx} = \left| \int_{1}^{2}{\left( \frac{1}{2x - 1} - 1
ight)dx} ight|

    = \left| \left. \ \left( \frac{\ln|2x -1|}{2} - x ight) ight|_{1}^{2} ight| = \left| \frac{1}{2}\ln3 - 1ight| = 1 - \frac{1}{2}\ln3.

  • Câu 21: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P) đi qua điểm M(3; - 1;4), đồng thời vuông góc với giá của vectơ \overrightarrow{a} =
(1;1;2) có phương trình là:

    Mặt phẳng (P) nhận vectơ \overrightarrow{a} = (1;1;2) làm vectơ pháp tuyến và đi qua điểm M(3; -
1;4) nên có phương trình là1(x - 3)
- 1(y + 1) + 2(z - 4) = 0

    \Leftrightarrow x - y + 2z - 12 =
0.

  • Câu 22: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 23: Vận dụng

    Cho a, b, c là các số thực và z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}. Giá trị của \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight) bằng:

     Cách 1: Ta có

    z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2} \Rightarrow {z^2} =  - \frac{1}{2} - i\frac{{\sqrt 3 }}{2}

    {z^3} = 1;{z^4} = z{z^2} + z =  - 1 .

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = {a^2} + {b^2}{z^3} + {c^2}{z^3} + ab\left( {{z^2} + z} ight) + bc\left( {{z^2} + z} ight) + ca\left( {{z^2} + z} ight)

    = {a^2} + {b^2} + {c^2} - ab - bc - ca

    Cách 2: Chọn a = 1;b = 2;c = 3.

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = \left( {1 + 2z + 3{z^2}} ight)\left( {1 + 2{z^2} + 3z} ight) = 3

    Thử lại các đáp án với a = 1;b = 2;c = 3  ta thấy chỉ có đáp án {a^2} + {b^2} + {c^2} - ab - bc - ca

    thỏa mãn.

  • Câu 24: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 25: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 26: Nhận biết

    Họ nguyên hàm của hàm số f(x) = \sin x\cos x + \frac{1}{x + 1} là:

    Ta có:

    f(x) = \frac{1}{2}\sin2x + \frac{1}{x +1}

    \Rightarrow F(x) = \int_{}^{}{\left(\frac{1}{2}\sin2x + \frac{1}{x + 1} ight)dx} = - \frac{1}{4}\cos2x +\ln|x + 1| + C

  • Câu 27: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + 2i} ight| = 2 Biết rằng tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn. Tính bán kính của đường tròn đó.

    Ta có: {\text{w}} = 3 - 2i + \left( {2 - i} ight)z = 3 - 7i + \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow {\text{w}} - 3 + 7i = \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow \left| {{\text{w}} - 3 + 7i} ight| = \left| {\left( {2 - i} ight)\left( {z - 1 + 2i} ight)} ight| = \left| {2 - i} ight|\left| {z - 1 + 2i} ight| = 2\sqrt 5

    => Tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn bán kính R = 2\sqrt 5

  • Câu 28: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 29: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(2;0; - 1),B(1; - 2;3),C(0;1;2). Viết phương trình mặt phẳng đi qua ba điểm A;B;C.

    Ta có: \overrightarrow{AB} = ( - 1; -
2;4),\overrightarrow{AC} = ( - 2;1;3)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = -
5(2;1;1) làm vectơ pháp tuyến.

    Vậy phương trình mặt phẳng qua A;B;C

    2(x - 2) + (y - 0) + (z + 1) =
0

    \Leftrightarrow 2x + y + z - 3 =
0

  • Câu 30: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 31: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;3),B(2;3; - 4),C( - 3;1;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
- 3 - x = 1 \\
1 - y = 3 \\
2 - z = - 7 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = 9 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2;9).

  • Câu 32: Thông hiểu

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 33: Vận dụng

    Điểm biểu diễn của số phức z = \frac{1}{{2 - 3i}} là:

     Ta có: z = \frac{1}{{2 - 3i}} = \frac{2}{{13}} + \frac{3}{{13}}i

  • Câu 34: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 35: Thông hiểu

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 36: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

  • Câu 37: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 38: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 39: Nhận biết

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

  • Câu 40: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 41: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 42: Vận dụng

    Cho số phức {z_1},{z_2} thỏa mãn \left| {z + 2 - i} ight| = 2\left| {z - 1 - i} ight|{z_1} + {z_2} = 1 + i.

    Tính giá trị biểu thức P = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

     Ta có \left| {{z_1} + 2 - i} ight| = 2\left| {{z_1} - 1 - i} ight|{z_1} + {z_2} = 1 + i

    \Rightarrow \left| {{z_1} + 2 - i} ight| = 2\left| {{z_2}} ight|

    \Rightarrow 4{\left| {{z_2}} ight|^2} = \left( {{z_1} + 2 - i} ight)\left( {\overline {{z_1}}  + 2 + i} ight) = {\left| {{z_1}} ight|^2} + \left( {2 - i} ight)\overline {{z_1}}  + \left( {2 + i} ight){z_1} + 5.(1)

    Tương tự ta có

    4{\left| {{z_1}} ight|^2} = {\left| {{z_2}} ight|^2} + \left( {2 - i} ight)\overline {{z_2}}  + \left( {2 + i} ight){z_2} + 5.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 ight)

    Cộng (1) và (2) ta có:

    4P = P + \left( {2 - i} ight)\overline {{z_1} + {z_2}}  + \left( {2 + i} ight)\left( {{z_1} + {z_2}} ight) + 10

    = P + \left( {2 - i} ight)\left( {1 - i} ight) + \left( {2 + i} ight)\left( {1 + i} ight) + 10 = P + 12 \Rightarrow P = 4.

  • Câu 43: Thông hiểu

    Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:

    Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là \overrightarrow {{e_1}}  = \left( {1,0,0} ight)

    Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP \overrightarrow {{e_1}}  = \left( {1,0,0} ight) có PTTS là:

    (d): \left\{ \begin{array}{l}x = t - 1\\y = 5\\z = 2\end{array} ight.\,\,\,;t \in \mathbb{R}

  • Câu 44: Vận dụng

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 45: Vận dụng cao

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 như hình vẽ:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1)thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.?

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1) thì được thiết diện là một tam giác đều có cạnh bằng 2\sqrt{1 - x^{2}}

    Do đó, diện tích của thiết diện: S(x) =\frac{\left( 2\sqrt{1 - x^{2}} ight)^{2}\sqrt{3}}{4} = \sqrt{3}\left(1 - x^{2} ight)

    V = \int_{- 1}^{1}{S(x)dx} = \int_{-1}^{1}{\left\lbrack \sqrt{3}\left( 1 - x^{2} ight) ightbrackdx}

    = \sqrt{3}\left. \ \left( x -\frac{x^{3}}{3} ight) ight|_{- 1}^{1} =\frac{4\sqrt{3}}{3}

  • Câu 46: Nhận biết

    Viết phương trình tham số của đường thẳng (d) qua điểm E(2, -4, 3) và song song với đường thẳng MN với tọa độ M(3, 2, 5) và N(1, -2, 2)

     Đường thẳng d song song với MN nên VTCP của đường thẳng d chính là \overrightarrow {MN} hay ta có

    \left( d ight):\overrightarrow {MN}  = \left( { - 2, - 3, - 3} ight) =  - \left( {2,3,3} ight)

    Như vậy, (d) là đường thẳng đi qua điểm E (2, -4, 3) và nhận làm 1 VTCP có phương trình là:

    \left( d ight)\left\{ \begin{array}{l}x = 2 + 2n\\y = 3n - 4\\z = 3 + 3n\end{array} ight.\,\,;n \in \mathbb{R}

  • Câu 47: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 48: Nhận biết

    Cho số phức z thỏa mãn {z^2} - 6z + 13 = 0. Giá trị của \left| {z + \frac{6}{{z + i}}} ight| là:

     {z^2} - 6z + 13 = 0 \Leftrightarrow \left[ \begin{gathered}  z = 3 + 2i \hfill \\  z = 3 - 2i \hfill \\ \end{gathered}  ight.

    Với z = 3 + 2i \Rightarrow z + \frac{6}{{z + i}} = 4 + i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = \sqrt {17}

    Với z = 3 - 2i \Rightarrow z + \frac{6}{{z + i}} = \frac{{24}}{5} - \frac{7}{5}i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = 5

  • Câu 49: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 50: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo