Tìm số phức
trong phương trình sau: ![]()
Ta có
Tìm số phức
trong phương trình sau: ![]()
Ta có
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ tọa độ
, viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Nếu số phức
thỏa mãn
thì phần thực của
bằng:
Gọi
Do
Ta có
Vậy phần thực của số phức là
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Trong không gian
, cho điểm
và mặt phẳng
. Tìm điểm
thuộc
, điểm
thuộc mặt phẳng
sao cho chu vi tam giác
bé nhất. Giá trị chu vi tam giác
bé nhất là:
Hình vẽ minh họa:
Gọi lần lượt là hình chiếu của
lên các mặt phẳng (P) và (Oxy) ta được
.
Gọi M, N lần lượt là các điểm đối xứng với qua các mặt phẳng (P) và (Oxy).
Khi đó ta có nên
Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).
Tìm một nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Trong không gian
, cho điểm
. Tọa độ trung điểm của
là.
Tọa độ trung điểm I của AB là:
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Xác định tích phân
?
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Trong không gian với hệ tọa độ
, cho
. Điểm
là điểm thuộc mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Khi đó,
có giá trị là:
Chọn sao cho
Ta tính được
Ta thấy
Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.
Vậy M là hình chiếu vuông góc của lên (Oxy)
Ta xác định được
Cho hai mặt phẳng
Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):
Vì (D) song song với (P) và (Q)
=> Một vectơ chỉ phương của (D) là:
Xét vecto pháp tuyến của (R), có:
Xét đáp án có điểm N
cùng phương với
=> (D) vuông góc với (S).
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Cho số phức
. Tính |z|
Ta có
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Tìm nguyên hàm của hàm số
?
Ta có:
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Cho hàm số
xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Cho hình phẳng
giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Họ nguyên hàm của hàm số
là:
Ta có:
Trong không gian cho hình chóp
có đáy
là hình bình hành tâm
. Khi đó
bằng.
Do là tâm của hình bình hành
nên
.
Áp dụng quy tắc ba điểm, ta có
Trong các số phức z thỏa mãn điều kiện
. Số phức z có mô đun bé nhất bằng
Đặt
Khi đó
Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng .
Cho
. Tính
.
Ta có:
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Số phức liên hợp của số phức
là
=
= a - bi
Cho hàm số
có đạo hàm liên tục trên
và thỏa mãn
. Biết rằng
và
. Tích phân
bằng bao nhiêu?
Cho hàm số có đạo hàm liên tục trên
và thỏa mãn
. Biết rằng
và
. Tích phân
bằng bao nhiêu?
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Cho hàm số
. Tính ![]()
Ta có:
.
Nguyên hàm của hàm số
là:
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Trong không gian
. Cho
với
. Biết mặt phẳng
qua điểm
và thể tích tứ diện
đạt giá trị nhỏ nhất. Khi đó phương trình
:
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Biết rằng
. Xác định
?
Ta có:
Do đó:
Trong không gian
, hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.