Cho số phức
, giá trị của số phức
là?
Ta có:
Cho số phức
, giá trị của số phức
là?
Ta có:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho
. Giá trị của x và y bằng:
Ta có:
Tìm nguyên hàm của hàm số
.
Ta có
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian với hệ trục tọa độ
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Cho hàm số
có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Hàm số
có nguyên hàm là:
Ta có:
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
. Giá trị của m để hai đường thẳng
và
cắt nhau là
Đường thẳng đi qua A(1; 0; −1), có vectơ chỉ phương
Đường thẳng đi qua B(1; 2; 3), có vectơ chỉ phương
Ta có và
Hai đường thẳng d và d 0 cắt nhau
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Gọi
là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Cho tứ diện đều
,
là trung điểm cạnh
. Khi đó
bằng:
Hình vẽ minh họa
Giả sử cạnh tứ diện bằng a
Tam giác BCD đều suy ra
Tam giác ABC đều suy ra
Ta có:
Mặt khác
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Trong không gian
, cho điểm
. Hỏi có bao nhiêu mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại
sao cho
?
Từ giả thiết, ta có thể coi (với
).
Khi đó, phương trình mặt phẳng (P) là .
Do (P) đi qua M(−1; 0; 3) nên .
Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.
Cũng theo trên, b = ±a, nên có 2 giá trị của b.
Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Cho hai đường thẳng: ![]()
và mặt phẳng
.
Hình chiếu của
theo phương của
lên mặt phẳng
có phương trình tổng quát:
Vectơ chỉ phương của Vectơ chỉ phương của
Phương trình của mặt phẳng chứa và có phương của
có dạng:
Điểm A (7, 3, 9) thuộc mặt phẳng này
=> D = -53
Giao tuyến của mặt phẳng này với mặt phẳng là hình chiếu của
theo phương của
lên
:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho hình phẳng
giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Trong không gian
, cho hai điểm
. Mặt phẳng đi qua
và vuông góc với đường thẳng
là:
Gọi (α) là mặt phẳng đi qua và vuông góc với đường thẳng
.
Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là
Vậy phương trình mặt phẳng (α) là:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho hàm số
liên tục trên đoạn
và
. Tính tích phân
?
Ta có:
Trong không gian
cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian
, hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Tìm họ nguyên hàm của hàm số
?
Ta có:
Nguyên hàm của hàm số
là
Ta có: .
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có: . Nhân cả hai vế với
ta được:
Lấy nguyên hàm hai vế ta được:
Suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Tính tổng ![]()
Ta có:
Khi đó ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Trong không gian cho hình hộp
có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Trong không gian với hệ trục tọa độ
, cho điểm
. Mặt phẳng
qua
cắt chiều dương của các trục
lần lượt tại
thỏa mãn
. Tính giá trị nhỏ nhất của thể tích khối chóp
?
Giả sử với
.
Khi đó mặt phẳng có dạng:
.
Vì (P) đi qua M nên
Vì
Thể tích khối chóp là:
Ta có:
khi
.
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức
. Số phức
bằng:
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .