Cho số phức
, giá trị của số phức
là?
Ta có:
Cho số phức
, giá trị của số phức
là?
Ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Giả sử
là một hàm số bất kì và liên tục trên khoảng
và
. Mệnh đề nào sau đây sai?
Dựa vào tính chất của tích phân với là một số bất kì liên tục trên khoảng
và
ta có:
Trong không gian với hệ tọa độ
, cho hai đường thẳng:
và ![]()
a) Vectơ có tọa độ
là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng
đi qua điểm
. Đúng||Sai
c) Đường thẳng
đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng
và
khoảng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho hai đường thẳng:
và
a) Vectơ có tọa độ là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng đi qua điểm
. Đúng||Sai
c) Đường thẳng đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng và
khoảng
. Sai||Đúng
a) Vectơ có tọa độ là một vectơ chỉ phương của
nên mệnh đề sai
b) Mệnh đề đúng
c) Gọi
nên mệnh đề đúng
d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:
: vectơ chỉ phương của trục Ox:
.
: Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
, qua A nên:
Vậy ta có phương trình mp cần tìm là:
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm họ nguyên hàm của hàm số ![]()
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Tìm nguyên hàm của hàm số
?
Ta có:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho hai đường thẳng (d1 ):
và ![]()
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Tìm số phức z thỏa mãn ![]()
Ta có
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho hàm số
có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Trong không gian với hệ trục tọa độ
, mặt phẳng
đi qua hai điểm
cắt các tia
lần lượt tại
sao cho
nhỏ nhất, với
là trọng tâm tam giác
. Biết
, hãy tính
.
Gọi với
.
Khi đó phương trình của .
Vì nên
. Kết hợp với điều kiện
suy ra
và
.
Cũng từ trên ta có .
Trọng tâm của tam giác
có tọa độ
.
Xét hàm số với
.
Ta có .
Bảng biến thiên
đạt giá trị nhỏ nhất khi và chỉ khi
đạt giá trị nhỏ nhất. Điều này xảy ra khi
; lúc đó
và
.
Vậy
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Trong không gian với hệ tọa độ
, cho ba điểm
. Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng
?
Ta có:
Vậy là đáp án cần tìm.
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Giá trị của
bằng
Ta có:
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian Oxyz, đường thẳng (d) qua
và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
Tích vô hướng của 2 vectơ
trong không gian được tính bằng:
Theo định nghĩa tích vô hướng của hai vecto, ta có: .
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ
(đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Trong không gian với hệ tọa độ
, cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c) Hình chiếu vuông góc của điểm
trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian với hệ tọa độ , cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) Hình chiếu vuông góc của điểm trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Ta có:
a) sai.
b) sai.
c) đúng
d) Gọi ,
,
Vì là hình bình hành nên
.
Vậy d) sai
Số phức liên hợp của số phức
là
=
= a - bi
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có: . Nhân cả hai vế với
ta được:
Lấy nguyên hàm hai vế ta được:
Suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là:
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Trong không gian với hệ tọa độ
, cho hai điểm
. Giả sử
là tâm đường tròn ngoại tiếp tam giác
. Tính
.
Ta có:
Mặt phẳng (OAB) đi qua O và có vec-tơ pháp tuyến nên có phương trình
.
Ta xác định được
Theo giả thiết
Mặt khác
Giải hệ gồm (1), (2) và (3) ta được .
Vậy .
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Tìm nguyên hàm của hàm số ![]()
Tìm nguyên hàm của hàm số
?
Ta có: