Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Tìm nguyên hàm của hàm số ![]()
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Trong không gian
, cho điểm
. Hỏi có bao nhiêu mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại
sao cho
?
Từ giả thiết, ta có thể coi (với
).
Khi đó, phương trình mặt phẳng (P) là .
Do (P) đi qua M(−1; 0; 3) nên .
Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.
Cũng theo trên, b = ±a, nên có 2 giá trị của b.
Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian với hệ tọa độ
, phương trình nào dưới đây là phương trình đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng vuông góc với mặt phẳng
nên
có một vectơ chỉ phương là
.
Phương trình là
Kiểm tra được điểm thỏa mãn hệ (*).
Vậy phương trình: cũng là phương trình của
.
Biết tích phân
trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Số phức liên hợp của số phức
là
=
= a - bi
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
là:
Phương trình hoành độ giao điểm 2 đồ thị là:
Diện tích cần tìm là:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho
. Với
, khẳng định nào sau đây đúng?
Xét , đặt t = ax + b
=>
=>
Nguyên hàm của hàm số
là
Ta có: .
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Biết rằng
với
là các số hữu tủ. Giá trị của
bằng:
Ta có:
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số
thỏa mãn F(2) = 0
Ta có: F(2) = 0 => C = 2
=>
Xét phương trình F(x) = x ta có:
Vậy tổng các nghiệm của phương trình đã cho bằng
Cho hàm số
có đạo hàm liên tục trên đoạn
và đồ thị hàm số
(như hình vẽ). biết
và
. Kết luận nào sau đây là đúng?

Hình vẽ minh họa:

Ta có:
Từ đồ thị ta thấy
Từ đồ thị ta thấy
=>
Mặt khác
Ta có bảng biến thiên như sau:

=> có duy nhất nghiệm trên
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho hàm số
có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Trong không gian, với hệ tọa độ
, cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là
Ta có:
Gọi tọa độ trực tâm khi đó
Theo đề bài ta có
Gọi là VTPT của mặt phẳng
ta có:
Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là là
Vậy .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Suy ra
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Một biển quảng cáo có dạng hình elip với bốn đỉnh
như hình vẽ:

Người ta chia elip bởi Parabol có đỉnh
, trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng ![]()
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Trong không gian với hệ tọa độ
, cho hai đường thẳng ![]()
?
Gọi lần lượt là vectơ chỉ phương của d1 và d2 ta chọn
Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn suy ra
Khi đó và
. Do đó (d1) và (d2) chéo nhau.
Trong các khẳng định sau, khẳng định nào sai?
Ta có: nên khẳng định
sai.
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Trong không gian
, cho hình bình hành hình bình hành. Biết các điểm
. Xác định tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có: