Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Cho tam giác ABC với
. Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song phân giác ngoài AF của góc A?
Một vecto chỉ phương của là
Ta có :
Vecto chỉ phương thứ hai
Suy ra vecto pháp tuyến của là
Mp đi qua
và nhận vecto
làm 1 VTPT có phương trình là:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức
. Tính |z|
Ta có
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là
và
. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số
. Tính thể tích bình cắm hoa?
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là và
. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số
. Tính thể tích bình cắm hoa?
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Tìm họ nguyên hàm của hàm số ![]()
Trong không gian với hệ tọa độ
, cho đường thẳng
và hai điểm
. Tìm điểm
thuộc
sao cho
vuông tại
.
Điểm thuộc đường thẳng
nên
.
Ta có và
.
Tam giác vuông tại
khi và chỉ khi
Khi đó tọa độ điểm .
Nguyên hàm của hàm số
là
Ta có: .
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Tìm số phức z thỏa mãn ![]()
Ta có
Nếu số phức
thỏa mãn
thì phần thực của
bằng:
Gọi
Do
Ta có
Vậy phần thực của số phức là
Ba mặt phẳng
cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Trong không gian
cho điểm
. Viết phương trình mặt phẳng
đi qua
và cắt các trục tọa độ
tại
sao cho
là trực tâm của tam giác
?
Giả sử .
Khi đó:
Ta có:
Ta có: vì H là trực tâm của tam giác ABC suy ra
Mặt khác
Vậy hay
.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Trong không gian với hệ tọa độ
, cho bốn điểm
,
và M thay đổi sao cho hình chiếu của M lên mặt phẳng
nằm trong tam giác ABC và các mặt phẳng
hợp với mặt phẳng
các góc bằng nhau. Tính giá trị nhỏ nhất của OM.
Hình vẽ minh họa
Gọi H là hình chiếu của M lên mặt phẳng (ABC).
Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn
Ta có , suy ra
Phương trình đường thẳng MH nhận làm vectơ chỉ phương nên MH là:
Khi đó:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Viết công thức tính thể tích
của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số
, trục
và hai đường thẳng
xung quanh trục
.
Thể tích của khối tròn xoay cần tính là:
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Một ô tô đang chạy với vận tốc
thì dừng lái đạp phanh. Sau khi đạp phanh, ô tô di chuyển động chậm dần đều với vận tốc
, trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phan đến lúc dừng hẳn là:
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
cắt các trục
,
lần lượt tại
khác gốc tọa độ sao cho
đạt giá trị nhỏ nhất, trong đó
lần lượt là diện tích các tam giác
và
lần lượt là diện tích các tam giác
. Điểm
nào dưới đây thuộc
?
Ta có . Lại có
,
và
.
Đặt , ta có
Tương tự, ta có và
.
Khi đó .
Dấu "=" xảy ra khi và chỉ khi hay
.
Từ đó suy ra nhận
làm vectơ pháp tuyến.
Do đó có phương trình
.
Vậy là điểm thuộc
.
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Cho tứ diện
có
. Gọi
là góc giữa
và
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Mặt khác
Do đó:
Vậy
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
bằng
Ta có .
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian với hệ trục tọa độ
, cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Họ các nguyên hàm của hàm số
là:
Ta có:
Số phức liên hợp của số phức
là
=
= a - bi
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho hàm số
có đạo hàm liên tục trên đoạn
và đồ thị hàm số
(như hình vẽ). biết
và
. Kết luận nào sau đây là đúng?

Hình vẽ minh họa:

Ta có:
Từ đồ thị ta thấy
Từ đồ thị ta thấy
=>
Mặt khác
Ta có bảng biến thiên như sau:

=> có duy nhất nghiệm trên
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Cho hàm số
có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi