Cho số phức
. Số phức
bằng:
Ta có:
Cho số phức
. Số phức
bằng:
Ta có:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Giá trị của tích phân
. Biểu thức
có giá trị là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Cho
và
, khi đó
bằng:
Ta có:
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Cho hai đường thẳng: ![]()
và mặt phẳng
.
Hình chiếu của
theo phương của
lên mặt phẳng
có phương trình tổng quát:
Vectơ chỉ phương của Vectơ chỉ phương của
Phương trình của mặt phẳng chứa và có phương của
có dạng:
Điểm A (7, 3, 9) thuộc mặt phẳng này
=> D = -53
Giao tuyến của mặt phẳng này với mặt phẳng là hình chiếu của
theo phương của
lên
:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho ba mặt phẳng
và
qua hai điểm
và vuông góc với
. Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)
Theo đề bài ta có Một vecto chỉ phương của
là:
=> A đúng
Vecto chỉ phương thứ hai của là:
Một vecto pháp tuyến của là:
=> B đúng.
Vecto chỉ phương của là:
Ta có: nên
không vuông góc với
.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tìm nguyên hàm của hàm số
bằng:
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Biết
, a là các số hữu tỉ. Giá trị của a là:
Ta có:
Đặt
Đổi cận
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Nguyên hàm của hàm số
là
Ta có: .
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho tứ diện
và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Nguyên hàm của hàm số
là:
Ta có:
.
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Trong không gian toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
PTTQ của mặt phẳng có dạng , với
nên ta chọn
.
Hàm số
có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:
Hàm số đi qua B(2; 10) =>
=>
=>
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho hàm số
liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Trong không gian với hệ tọa độ
, cho tam giác
với
. Diện tích của tam giác
là:
Ta có:
Diện tích tam giác là
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Tích phân
có giá trị là:
Ta biến đổi:
Đặt
Đổi cận
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong không gian với hệ trục tọa độ
, cho các vectơ
và
. Mệnh đề nào sau đây đúng?
Ta có:
không cùng phương vì
Vậy mệnh đề đúng là
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian
, cho điểm
và mặt phẳng
. Đường thẳng
qua điểm
, song song với mặt phẳng
, đồng thời cắt trục
. Viết phương trình tham số của đường thẳng
.
Gọi
Lại có
Do đó
Do đó, (d) là đường thẳng qua B(0; 0; 2) và nhận làm vectơ chỉ phương. Nên (d) có phương trình:
.
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Cho
. Giá trị của x và y bằng:
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.