Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 2: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 3: Nhận biết

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

    Đáp án là:

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

     Ta có: \overline z  = 24 + 7i \Rightarrow z = 24 - 7i

    Suy ra a + bi=10.

  • Câu 4: Nhận biết

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 5: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 6: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 7: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M thoả mãn OM
= 7. Biết rằng khoảng cách từ M tới mặt phẳng (Oxz),(Oyz) lần lượt là 2 và 3. Tính khoảng cách từ M đến mặt phẳng (Oxy).

    Ta có: (Oxz):y = 0,(Oyz):x =
0

    Giả sử M(a;b;c) khi đó ta có:

    \left\{ \begin{matrix}
OM = 7 \\
d\left( M;(Oxz) ight) = 2 \\
d\left( M;(Oyz) ight) = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} = 49 \\
b^{2} = 4 \\
a^{2} = 9 \\
\end{matrix} ight.\  \Rightarrow c^{2} = 36

    d\left( M;(Oxy) ight) = \sqrt{c^{2}}
= 6

  • Câu 8: Vận dụng

    Biết xe^{x} là một nguyên hàm của hàm số f( - x) trên khoảng ( - \infty; + \infty). Gọi F(x) là một nguyên hàm của f'(x)e^{x} thỏa mãn F(0) = 1. Giá trị của F( - 1) bằng:

    Ta có: f( - x) = \left( xe^{x}
ight)' = e^{x} + xe^{x};\forall x \in ( - \infty; +
\infty)

    Do đó f( - x) = e^{- ( - x)} - ( - x)e^{-
( - x)};\forall x \in ( - \infty; + \infty)

    Suy ra f(x) = e^{- x}(1 - x);\forall x
\in ( - \infty; + \infty)

    Nên f'(x) = \left\lbrack e^{- x}(1 -
x) ightbrack' = e^{- x}(x - 2)

    \Rightarrow f'(x)e^{x} = e^{- x}(x -
2)e^{x} = x - 2

    Vậy F(x) = \int_{}^{}{(x - 2)dx} =
\frac{1}{2}(x - 2)^{2} + C

    Từ đó F(0) = \frac{1}{2}(0 - 2)^{2} + C =
C + 2

    F(0) = 1 \Rightarrow C = -
1

    Vậy F(x) = \frac{1}{2}(x - 2)^{2} - 1
\Rightarrow F( - 1) = \frac{1}{2}( - 1 - 2)^{2} - 1 =
\frac{7}{2}

  • Câu 9: Nhận biết

    Tính tích phân \int_{1}^{2}{\frac{x -
1}{x}dx}?

    Ta có: \int_{1}^{2}{\frac{x - 1}{x}dx} =
\int_{1}^{2}{\left( 1 - \frac{1}{x} ight)dx} = \left. \ \left( x -
\ln|x| ight) ight|_{1}^{2}

    = (2 - \ln2) - (1 - \ln1) = 1 -\ln2

  • Câu 10: Thông hiểu

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    a) Đúng: Ta có

    \overrightarrow{MA} = -
\overrightarrow{AM} = - \frac{1}{5}\overrightarrow{AD} = -
\frac{1}{5}\overrightarrow{b}

    b) Sai:

    \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC} = \frac{2}{5}(\overrightarrow{EF} +
\overrightarrow{EH} + \overrightarrow{EA}) =
\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -
\overrightarrow{c})

    c) Đúng:

    (m.\overrightarrow{a} +n.\overrightarrow{b} + p.\overrightarrow{c})^{2} =m^{2}.{\overrightarrow{a}}^{2} + n^{2}.{\overrightarrow{b}}^{2}+p^{2}.{\overrightarrow{c}}^{2} +2mn.\overrightarrow{a}.\overrightarrow{b}+2np\overrightarrow{b}.\overrightarrow{c} +2mp.\overrightarrow{a}.\overrightarrow{c}= m^{2}.{\overrightarrow{a}}^{2} +
n^{2}.{\overrightarrow{b}}^{2} + p^{2}.{\overrightarrow{c}}^{2}

    (vì \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đôi một vuông góc nên \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{b}.\overrightarrow{c} =
\overrightarrow{a}.\overrightarrow{c} = 0).

    Ta có

    \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AE} + \overrightarrow{EN}

    = -\frac{1}{5}\overrightarrow{b} + \overrightarrow{c} +\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -\overrightarrow{c})

    = \frac{2}{5}\overrightarrow{a} +\frac{1}{5}\overrightarrow{b} +\frac{3}{5}\overrightarrow{c}.

    d) Đúng:

    MN^{2} =
{\overrightarrow{MN}}^{2} = \left( \frac{2}{5}\overrightarrow{a} +
\frac{1}{5}\overrightarrow{b} + \frac{3}{5}\overrightarrow{c}
ight)^{2}

    = \frac{4}{25}{\overrightarrow{a}}^{2} +\frac{1}{25}{\overrightarrow{b}}^{2} +\frac{9}{25}{\overrightarrow{c}}^{2}= \frac{4}{25}.4 + \frac{1}{25}.9 +\frac{9}{25}.4 = \frac{61}{25}

    Suy ra MN =
\frac{\sqrt{61}}{5}.

  • Câu 11: Vận dụng cao

    Cho hai đường thẳng chéo nhau \left( d ight):\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = 2t\end{array} ight.\left( d' ight):\left\{ \begin{array}{l}x + 2z - 2 = 0\\y - 3 = 0\end{array} ight.

    Mặt phẳng song song và cách đều và có phương trình tổng quát:

    Phương trình (d) cho biết A(2, 1, 0) \in (d) và (d) có vectơ chỉ phương \overrightarrow a  = \left( {1, - 1,2} ight)

    Chuyển (\triangle ) về dạng tham số \left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} ight. để có B(2, 3, 0) \in (\triangle ) và vectơ chỉ phương \overrightarrow b  = \left( { - 2,0,1} ight) .

    Gọi I là trung điểm AB  thì I (2, 2, 0), M(x, y, z) bất kỳ \in (P) .

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {IM}  = 0 \Leftrightarrow x + 5y + 2z - 12 = 0là phương trình của mặt phẳng (P).

  • Câu 12: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

  • Câu 13: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 4x\left(
1 + \ln x ight) là:

    Ta có: \left\{ \begin{gathered}
  u = 1 + \ln x \hfill \\
  dv = 4xdx \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  du = \frac{1}{x}dx \hfill \\
  v = 2{x^2} \hfill \\ 
\end{gathered}  ight.

    Khi đó \int_{}^{}{f(x)dx} =
\int_{}^{}{4x\left( 1 + \ln x ight)dx} = \left( 1 + \ln x
ight)2x^{2} - \int_{}^{}{2xdx}

    = \left( 1 + \ln x ight)2x^{2} - x^{2}
+ C = x^{2}(1 + 2lnx) + C

  • Câu 14: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 15: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 16: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào dưới đây là sai?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC}

    Vậy đáp án sai là: \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{A'A} =
\overrightarrow{AC}.

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ vectơ \overrightarrow{a} là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ vectơ \overrightarrow{a} = (2;
- 3;1).

  • Câu 18: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 19: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

  • Câu 20: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 21: Vận dụng

    Cho a, b, c là các số thực và z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}. Giá trị của \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight) bằng:

     Cách 1: Ta có

    z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2} \Rightarrow {z^2} =  - \frac{1}{2} - i\frac{{\sqrt 3 }}{2}

    {z^3} = 1;{z^4} = z{z^2} + z =  - 1 .

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = {a^2} + {b^2}{z^3} + {c^2}{z^3} + ab\left( {{z^2} + z} ight) + bc\left( {{z^2} + z} ight) + ca\left( {{z^2} + z} ight)

    = {a^2} + {b^2} + {c^2} - ab - bc - ca

    Cách 2: Chọn a = 1;b = 2;c = 3.

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = \left( {1 + 2z + 3{z^2}} ight)\left( {1 + 2{z^2} + 3z} ight) = 3

    Thử lại các đáp án với a = 1;b = 2;c = 3  ta thấy chỉ có đáp án {a^2} + {b^2} + {c^2} - ab - bc - ca

    thỏa mãn.

  • Câu 22: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 23: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) liên tục trên \lbrack a;bbrack; f(b) = 5;\int_{a}^{b}{f'(x)dx} =
3\sqrt{5}. Tính giá trị f(a)?

    Ta có: \int_{a}^{b}{f'(x)dx} =
3\sqrt{5} \Leftrightarrow f(b) - f(a) = 3\sqrt{5}

    \Leftrightarrow f(a) = f(b) - 3\sqrt{5}
= \sqrt{5}\left( \sqrt{5} - 3 ight)

  • Câu 24: Thông hiểu

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 25: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 26: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}2x^{2} + x;\ \ \ x \geq 0 \\x.\sin x;\ \ \ \ x \leq 0 \\\end{matrix} ight.. Tính tích phân \int_{- \pi}^{1}{f(x)dx}?

    Ta có:

    \int_{- \pi}^{1}{f(x)dx} = \int_{-\pi}^{0}{(x.\sin x)dx} + \int_{0}^{1}{\left( 2x^{2} + xight)dx}

    = - \int_{- \pi}^{0}{xd\left( \cos xight)} + \left. \ \left( \frac{2}{3}x^{3} + \frac{1}{2}x^{2} ight)ight|_{0}^{1}

    = \left. \ \left( - x\cos x ight)
ight|_{- \pi}^{0} + \left. \ \left( \frac{2}{3}x^{3} +
\frac{1}{2}x^{2} ight) ight|_{0}^{1}

    = \pi + \frac{7}{6} + \left. \ \left(
\sin x ight) ight|_{- \pi}^{0} = \pi + \frac{7}{6}

  • Câu 27: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 28: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 29: Vận dụng

    Cho số phức z = a + bi , \left( {a,b \in \mathbb{R}} ight)thỏa mãn \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9\left| {\overline z } ight| > 2.

    Tính P = a + b.

     Ta áp dụng công thức z = a + bi \Rightarrow \overline z  = a - bi, có:

    \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9

    \Leftrightarrow \left( {a + bi + 1 + i} ight)\left( {a - bi - i} ight) + 3i = 9

    \Leftrightarrow {a^2} + {b^2} + 2b + a + 1 - \left( {b + 1} ight)i = 9 - 3i

    Ta xét: \left\{ \begin{gathered}  {a^2} + {b^2} + 2b + a + 1 = 9 \hfill \\  b + 1 = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  {a^2} + a = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  a = 0 \hfill \\ \end{gathered}  ight. \vee \left\{ \begin{gathered}  b = 2 \hfill \\  a =  - 1 \hfill \\ \end{gathered}  ight.

    Với {z_1} = 2i \Rightarrow \left| {{z_1}} ight| = 2 nên không thỏa yêu cầu bài toán.

    Với {z_2} =  - 1 + 2i \Rightarrow \left| {{z_2}} ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 thỏa yêu cầu bài toán.

    Vậy P = a + b = 1

  • Câu 30: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 31: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + 2i} ight| = 2 Biết rằng tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn. Tính bán kính của đường tròn đó.

    Ta có: {\text{w}} = 3 - 2i + \left( {2 - i} ight)z = 3 - 7i + \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow {\text{w}} - 3 + 7i = \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow \left| {{\text{w}} - 3 + 7i} ight| = \left| {\left( {2 - i} ight)\left( {z - 1 + 2i} ight)} ight| = \left| {2 - i} ight|\left| {z - 1 + 2i} ight| = 2\sqrt 5

    => Tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn bán kính R = 2\sqrt 5

  • Câu 32: Thông hiểu

    Trong không gian Oxyz, cho bốn điểm A( - 1;3;1),B(1; - 1;2),C(2;1;3),D(0;1;
- 1). Mặt phẳng (P) chứa AB và song song với CD có phương trình là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 4;1) \\
\overrightarrow{CD} = ( - 2;0; - 4) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{CD} ightbrack = (8;3; -
4).

    Mặt phẳng (P) đi qua A( -
1;3;1), nhận \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{CD} ightbrack =
(8;3; - 4) là vectơ pháp tuyến, có phương trình là

    \ 8(x + 1) + 3(y - 3) - 4(z - 1) =
0

    \Leftrightarrow 8x + 3y - 4z + 3 =
0

    (Thỏa mãn song song CD nên thỏa mãn đề bài).

  • Câu 33: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 34: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 35: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 36: Nhận biết

    Trong không gian Oxyz, tìm phương trình mặt phẳng (\alpha) cắt ba trục Ox,Oy,Oz lần lượt tại ba điểm A( - 3;0;0),B(0;4;0),C(0;0; -
2)?

    Phương trình mặt phẳng (\alpha): \frac{x}{- 3} + \frac{y}{4} + \frac{z}{- 2}
= 1

    \Leftrightarrow 4x - 3y + 6z = -
12

    \Leftrightarrow 4x - 3y + 6z + 12 =
0

  • Câu 37: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 38: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 39: Vận dụng

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2}, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?

    Do M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2} nên M\left( {1; - 1} ight),N\left( {3;2} ight)

    Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ G\left( {\frac{4}{3};\frac{1}{3}} ight)

    Vậy G là điểm biểu diễn của số phức: z = \frac{4}{3} + \frac{1}{3}i

  • Câu 40: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 41: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 42: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 43: Nhận biết

    Cho z_1 =2-iz_2 = 5+6i. Tính T = z_1 : z_2?

     Ta có z_1 =2-iz_2 = 5+6i. Tính:

     z_1 : z_2 = \frac {2-i}{5+6i}=\frac {(2-i)(5-6i)}{(5+6i)(5-6i)}=\frac{4}{61} - \frac{17}{61}i

  • Câu 44: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABC với A(1;1;1),B( - 1;1;0),C(1;3;2). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?

    Gọi M là trung điểm của BC, suy ra tọa độ điểm M(0;2;1).

    Đường trung tuyến xuất phát từ đỉnh A có vectơ chỉ phương là \overrightarrow{AM} = ( - 1;1;0).

  • Câu 45: Vận dụng cao

    Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox,y'Oy,z'Oz lần lượt tại các điểm A,B,C sao cho OA = OB = 2OC eq 0?

    Đặt A(a;0;0),B(0;b;0),C(0;0;c) với abc eq 0.

    Phương trình mặt phẳng (P) đi qua ba điểm A, B, C có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Do OA = OB = 2OC nên ta có |a| = |b| = 2|c|.

    Suy ra a = ±2c, b = ±2c.

    Nếu a = 2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{9}{2}.

    Ta có (P): x + y + 2z − 9 = 0.

    Nếu a = 2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} -
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{5}{2}

    Ta có (P): x − y + 2z − 5 = 0.

    Nếu a = −2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{7}{2}

    Ta có (P): − x + y + 2z − 7 = 0.

    Nếu a = −2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{- 2c} + \frac{3}{c} = 1 \Rightarrow c =
\frac{3}{2}

    Ta có (P): − x − y + 2z − 3 = 0.

    Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.

  • Câu 46: Vận dụng

    Họ các nguyên hàm của hàm số f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} trên khoảng \left( { - 1; + \infty } ight)

     f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} = \frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}

    \int {f\left( x ight)dx}  = \int {\left[ {\frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}} ight]dx}  = 2\ln \left| {x + 1} ight| + \frac{3}{{x + 1}} + C

  • Câu 47: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 48: Nhận biết

    Tìm số phức z thỏa mãn z + 2 - 3i = 3 - 2i

     Ta có z + 2 - 3i = 3 - 2i \Leftrightarrow z = 3 - 2i - 2 + 3i = 1 + i

  • Câu 49: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 50: Vận dụng cao

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 51 lượt xem
Sắp xếp theo