Cho
và
. Tính
?
Ta có và
. Tính:
Cho
và
. Tính
?
Ta có và
. Tính:
Trong các số phức z thỏa mãn điều kiện
. Số phức z có mô đun bé nhất bằng
Đặt
Khi đó
Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng .
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho ba mặt phẳng
và
qua hai điểm
và vuông góc với
. Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)
Theo đề bài ta có Một vecto chỉ phương của
là:
=> A đúng
Vecto chỉ phương thứ hai của là:
Một vecto pháp tuyến của là:
=> B đúng.
Vecto chỉ phương của là:
Ta có: nên
không vuông góc với
.
Phần thực của số phức
là:
Ta có:
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Tìm số phức z thỏa mãn ![]()
Ta có
Điểm biểu diễn của số phức
là:
Ta có:
Số phức
bằng:
Ta có:
Trong không gian với hệ trục tọa độ
, cho tọa độ ba điểm
. Điểm
thuộc mặt phẳng
sao cho giá trị của biểu thức
nhỏ nhất. Khi đó, giá trị của biểu thức
là:
Điểm luôn tồn tại.
Ta có nên
.
Nguyên hàm của hàm số
là:
Ta có:
.
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Tìm
biết rằng
là phân số tối giản?
Ta có:
Đổi cận khi đó suy ra
Trong không gian với hệ trục tọa độ
, cho điểm
và đường thẳng
. Tìm tọa độ hình chiếu vuông góc của
lên đường thẳng
.
Gọi (P) là mặt phẳng đi qua và vuông góc với đường thẳng d.
Suy ra (P) nhận làm vectơ pháp tuyến.
Phương trình mặt phẳng
.
Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra .
Tọa độ điểm H là nghiệm của hệ
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho
là nguyên hàm của hàm số
thỏa mãn
. Tổng các nghiệm của phương trình
là:
Ta có:
Đặt
Theo bài ra ta có:
Ta có:
Vậy tổng các nghiệm của phương trình bằng 2.
Viết phương trình tham số của đường thẳng (d) qua điểm E(2, -4, 3) và song song với đường thẳng MN với tọa độ M(3, 2, 5) và N(1, -2, 2)
Đường thẳng d song song với MN nên VTCP của đường thẳng d chính là hay ta có
Như vậy, (d) là đường thẳng đi qua điểm E (2, -4, 3) và nhận làm 1 VTCP có phương trình là:
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Cho hàm số
có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Tính thể tích khối tròn xoay sinh bởi Elip (E):
quay quanh trục hoành?
Xét có
. Do đó hai đỉnh thuộc trục lớn có tọa độ
Vì
Do đó thể tích khối tròn xoay là
Số nghiệm nguyên âm của phương trình:
với
là:
Ta có:
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian
, cho mặt phẳng
. Viết phương trình mặt phẳng
sao cho phép đối xứng qua mặt phẳng
biến mặt phẳng
thành mặt phẳng
.
Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là .
Ta có và
.
Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.
Ta có , (ảnh của A, B trùng với chính nó vì
).
Do C’ đối xứng với qua mặt phẳng Oxy, suy ra
Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Số phức liên hợp của số phức
là
=
= a - bi
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Cho số phức
. Tính |z|
Ta có
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Cho
và
, khi đó
bằng:
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Tìm nguyên hàm của hàm số
bằng: