Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Cho hàm số
. Tính tích phân
?
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Trong không gian với hệ tọa độ
; cho điểm
. Gọi
là hình chiếu vuông góc của điểm
trên ba trục tọa độ
. Viết phương trình mặt phẳng
?
Có là hình chiếu của
lên các trục tọa độ nên mặt phẳng cần tìm là
Hàm số
có nguyên hàm là:
Ta có:
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Một chất điểm chuyển động với gia tốc
. Vận tốc ban đầu của chất điểm là
. Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được
giây bằng bao nhiêu?
Ta có:
Cho
và
. Tính
?
Ta có và
. Tính:
Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Tích phân
có giá trị là:
Ta biến đổi:
Xét
Đặt
Xét
Đặt
Đổi cận
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Phần thực của số phức
là:
Ta có:
Cho tam giác ABC có
.
Viết phương trình tổng quát của cạnh AC.
(AC) là đường thẳng đi qua 2 điểm A và C nên nhận làm 1 VTCP.
(AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian với hệ toạ độ
, cho mặt phẳng
. Vectơ nào là vectơ pháp tuyến của mặt phẳng
?
Vectơ nào là vectơ pháp tuyến của mặt phẳng có tọa độ là
hoặc
.
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Giá trị của tích phân
bằng:
Ta có: .
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Tìm số phức z thỏa mãn ![]()
Ta có
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Cho hàm số
liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Điều kiện cần và đủ để ba vectơ
không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Cho tứ diện
, có
đôi một vuông góc,
là điểm thuộc miền trong của tam giác
. Gọi khoảng cách từ
đến các mặt phẳng
lần lượt là
. Tính độ dài đoạn
sao cho tứ diện
có thể tích nhỏ nhất.
Xét hệ trục tọa độ Oxyz sao cho A thuộc tia Ox; B thuộc tia Oy và C thuộc tia Oz.
Ta có
Ta có:
Đẳng thức xảy ra khi chỉ khi
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho tứ diện
. Đặt
. Gọi
là trung điểm của
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa
Vì M là trung điểm của BC nên suy ra
Ta có:
Trong không gian
, cho mặt phẳng
. Đường thẳng
vuông góc với mặt phẳng
có một vectơ chỉ phương có tọa độ là:
Mặt phẳng có một vectơ pháp tuyến là
.
Do nên vectơ
cũng là một vectơ chỉ phương của
.
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Trong không gian với hệ trục tọa độ
, cho hình hộp
có
. Tọa độ trọng tâm tam giác
là
Hình vẽ minh họa
Gọi I là trung điểm của đoạn BD’ suy ra
Gọi là trọng tâm tam giác
Ta có: với
Do đó:
Vậy tọa độ trọng tâm tam giác cần tìm là
Trong không gian với hệ tọa độ
, cho bốn điểm
,
và M thay đổi sao cho hình chiếu của M lên mặt phẳng
nằm trong tam giác ABC và các mặt phẳng
hợp với mặt phẳng
các góc bằng nhau. Tính giá trị nhỏ nhất của OM.
Hình vẽ minh họa
Gọi H là hình chiếu của M lên mặt phẳng (ABC).
Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn
Ta có , suy ra
Phương trình đường thẳng MH nhận làm vectơ chỉ phương nên MH là:
Khi đó:
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.