Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Trong không gian tọa độ
cho các điểm
. Hỏi có bao nhiêu mặt phẳng cách đều 5 điểm trên?
Hình vẽ minh họa
Ta có: . Suy ra
là hình bình hành.
nên
là hình chóp đỉnh E có đáy ABCD là hình bình hành.
Gọi lần lượt là trung điểm các cạnh
.
Do đó có 5 mặt phẳng cách đều 5 điểm là:
Mặt phẳng qua 4 trung điểm của 4 cạnh bên: (GHIK)
Mặt phẳng qua 4 trung điểm lần lượt của EC, ED, AD, BC: (IKQN)
Mặt phẳng qua 4 trung điểm của EB, EA, AD, BC: (HGQN)
Mặt phẳng qua 4 trung điểm của EA, ED, CD, AB: (GKPM)
Mặt phẳng qua 4 trung điểm của EB, EC, CD, AB: (HIPM)
Cho số phức
. Tính |z|
Ta có
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Trong không gian
, cho điểm
thuộc mặt phẳng
. Mệnh đề nào dưới đây đúng?
Ta có điểm thuộc mặt phẳng
nên:
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có:
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận làm vectơ pháp tuyến.
Vậy phương trình mặt phẳng qua là
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Trong không gian
, cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Trong các số phức z thỏa mãn điều kiện
. Số phức z có mô đun bé nhất bằng
Đặt
Khi đó
Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng .
Cho hàm số
có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
. Khoảng cách giữa đưởng thẳng
và mặt phẳng
bằng:
Đường thẳng đi qua
và có vectơ chỉ phương
Mặt phẳng có vectơ pháp tuyến
.
Ta có: , nên đường thằng
song song với mặt phẳng
.
Vậy khoảng cách giữa đường thẳng và mặt phẳng
bằng khoảng cách từ
đến mặt phẳng
:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Một ô tô đang chạy với vận tốc
thì tăng tốc chuyển động nhanh dần với gia tốc
. Tính quãng đường mà ô tô đi được sau
giây kể từ khi ôtô bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 6 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Tính chất nào sau đây sai?
Tính chất sai là:
Cho giá trị của tích phân
,
. Giá trị a.b gần nhất với giá trị nào sau đây?
Ta có:
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Diện tích hình phẳng giới hạn bởi các đường
bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
bằng
Ta có .
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Cho số phức
. Số phức
bằng:
Ta có:
Trong không gian hệ trục tọa độ
, cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Trong không gian hệ trục tọa độ
, cho hai điểm
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là:
Gọi tọa độ độ điểm . Vì điểm
nên
Vậy đáp án cần tìm là: .