Cho số phức
. Tìm số phức
?
Ta có:
Cho số phức
. Tìm số phức
?
Ta có:
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Một vật chuyển động với vận tốc
thì tăng tốc với gia tốc
Tính quãng đường vật đi được trong khoảng thời gian
giây kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường đi được bằng
Trong không gian với hệ trục toạ độ
, cho điểm
thoả mãn
. Biết rằng khoảng cách từ
tới mặt phẳng
lần lượt là 2 và 3. Tính khoảng cách từ
đến mặt phẳng
.
Ta có:
Giả sử khi đó ta có:
Mà
bằng
Ta có .
Biết
, a và b là các số hữu tỉ. Giá trị của
là:
Biết . Giá trị của
là:
Ta có:
Trong không gian với hệ tọa độ
, tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Trong không gian với hệ tọa độ
, cho mặt phẳng
và điểm
. Viết phương trình đường thẳng qua
và vuông góc với
.
Mặt phẳng có vectơ pháp tuyến là
nên đường thẳng cần tìm có vectơ chỉ phương là
.
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho
. Giá trị của x và y bằng:
Ta có:
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Một vật chuyển động với vận tốc
có gia tốc
. Vận tốc ban đầu của vật là
. Tính vận tốc của vật sau
giây, (làm tròn kết quả đến hàng đơn vị).
Vận tốc của vật là:
Do vận tốc ban đầu của vật là
Vận tốc của vật sau 10s là
Tìm tọa độ trung điểm
của đoạn thẳng
. Biết tọa độ hai điểm
và
.
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho là một nguyên hàm của hàm số
và
. Tính ![]()
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Xác định nguyên hàm
của hàm số
?
Ta có:
Cho số phức
. Tính |z|
Ta có
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hình lăng trụ
có
là trung điểm của
. Đặt
. Đẳng thức nào sau đây đúng?
Ta có: M là trung điểm của BB’ khi đó
Khi đó:
Vậy đẳng thức đúng là .
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Họ các nguyên hàm của hàm số
trên khoảng
là:
Ta có:
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Cho số phức
, giá trị của số phức
là?
Ta có:
Trong không gian với hệ tọa độ
, cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Xác định nguyên hàm
của hàm số
?
Ta có:
Cho hình phẳng
giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Trong không gian với hệ tọa độ cho các điểm
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm
?
Mặt phẳng có phương trình là:
, do đó
.
Lại có A là trung điểm BD.
Ta có chứa các điểm O, A, B, D;
chứa các điểm O, B, C;
chứa các điểm O, A, C;
chứa các điểm A, B, C, D;
chứa các điểm O, C ,D.
Vậy có mặt phẳng phân biệt thỏa mãn bài toán.
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
. Khoảng cách giữa đưởng thẳng
và mặt phẳng
bằng:
Đường thẳng đi qua
và có vectơ chỉ phương
Mặt phẳng có vectơ pháp tuyến
.
Ta có: , nên đường thằng
song song với mặt phẳng
.
Vậy khoảng cách giữa đường thẳng và mặt phẳng
bằng khoảng cách từ
đến mặt phẳng
:
Xác định hàm số f(x) biết rằng ![]()
Mà
Vậy hàm số cần tìm là