Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 2: Vận dụng cao

    Cho hai quả bóng A, B đều chuyển động thẳng, di chuyển ngược chiều và va chạm với nhau. Sau mỗi va chạm, hai quả bóng nảy ngược lại một đoạn thì dừng hẳn. Tính khoảng cách giữa hai quả bóng sau khi dừng hẳn. Biết sau khi va chạm, quả bóng A này ngược lại với vận tốc {v_A}\left( t ight) = 8 - 2t\left( {m/s} ight) và quả bóng B nảy ngược lại với vận tốc {v_b}\left( t ight) = 12 - 4t\left( {m/s} ight).

    Thời gian quả bóng A chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_A}\left( t ight) = 0 \Rightarrow 8 - 2t = 0 \Rightarrow t = 4\left( s ight)

    Quãng đường quả bóng A di chuyển được là: 

    {S_A} = \int\limits_0^4 {\left( {8 - 2t} ight)dt}  = 16\left( m ight)

    Thời gian quả bóng B chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_B}\left( t ight) = 0 \Rightarrow 12 - 4t = 0 \Rightarrow t = 3\left( s ight)

    Quãng đường quả bóng B di chuyển được là:

    {S_B} = \int\limits_0^3 {\left( {12 - 4t} ight)dt}  = 18\left( m ight)

    Vậy khoảng cách hai quả bóng sau khi dừng hẳn là 

    S = {S_A} + {S_B} = 16 + 18 = 34\left( m ight)

  • Câu 3: Vận dụng

    Xét các số phức z thỏa mãn \left| z ight| = \sqrt 2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức w = \frac{{4 + iz}}{{1 + z}} là một đường tròn có bán kính bằng

    Ta có

    w=\frac{4+i z}{1+z} \Rightarrow \mathrm{w}(1+z)=4+i z \Leftrightarrow z(\mathrm{w}-i)=4-\mathrm{w} \Rightarrow \sqrt{2}|\mathrm{w}-i|=|4-\mathrm{w}|

    Đặt \mathrm{w}=x+y i(x, y \in \mathbb{R})

    Ta có

    \sqrt{2} . \sqrt{x^2+(y-1)^2}=\sqrt{(x-4)^2+y^2}

    \Leftrightarrow 2\left(x^2+y^2-2 y+1ight)=x^2-8 x+16+y^2

    \Leftrightarrow x^2+y^2+8 x-4 y-14=0 \Leftrightarrow(x+4)^2+(y-2)^2=34

  • Câu 4: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

  • Câu 5: Vận dụng

    Cho số phức z thỏa mãn \left( {1 + 3i} ight)z + 2i =  - 4. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?

    Ta có: \left( {1 + 3i} ight)z + 2i =  - 4 \Leftrightarrow z = \frac{{ - 4 - 2i}}{{1 + 3i}} =  - 1 + i

  • Câu 6: Nhận biết

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 8: Vận dụng

    Cho biểu thức A = 1 + {z^3} + {z^6} + ... + {z^{2016}} với z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\,. Biểu thức A có giá tri là? 

    1 || Một || một

    Đáp án là:

    Cho biểu thức A = 1 + {z^3} + {z^6} + ... + {z^{2016}} với z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\,. Biểu thức A có giá tri là? 

    1 || Một || một

     Ta có L = \frac{{1 - {{({z^3})}^{673}}}}{{1 - {z^3}}} = \frac{{1 - {{( - 1)}^{673}}}}{{1 - ( - 1)}} = 1

  • Câu 9: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 11: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 12: Vận dụng cao

    Để hoàn thành bài tập làm mô hình của lớp, bạn Minh làm một mô hình có dáng khối tròn xoay. Mặt cắt qua trục của mô hình (như hình vẽ), đường cong AB là một phần của parabol có đỉnh là điểm A, .OO' = 5cm;OA = 10cm;OB = 20cm Tính thể tích của mô hình.

    Tính thể tích của mô hình

    Kí hiệu hình vẽ:

    Tính thể tích của mô hình

    Ta gọi thể tích của chiếc mũ là V

    Thể tích của khối trụ có bán kính đáy bằng OA = 10cm và đường cao là OO' = 5cm là V1

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong AB và hai trục tọa độ quanh trục Oy là V2.

    Ta có: V = {V_1} + {V_2}

    {V_1} = {5.10^2}\pi  = 500\pi \left( {c{m^3}} ight)

    Chọn hệ trục tọa độ như hình vẽ

    Do parabol có đỉnh A nên nó có phương trình dạng \left( P ight):y = a{\left( {x - 10} ight)^2}

    (P) qua điểm B\left( {0;20} ight) nên a = \frac{1}{5}

    => \left( P ight):y = \frac{1}{5}{\left( {x - 10} ight)^2} \Rightarrow x = 10 - \sqrt {5y} (vì x < 10

    =>{V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } ight)}^2}dy}

    = \pi \left( {3000 - \frac{{8000}}{3}} ight) = \frac{{1000\pi }}{3}

    => V = {V_1} + {V_2} = \frac{{1000\pi }}{3} + 500\pi

    = \frac{{2500\pi }}{3}\left( {c{m^3}} ight)

  • Câu 13: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 14: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 15: Nhận biết

    Họ nguyên hàm của hàm số f(x) = \sin x\cos x + \frac{1}{x + 1} là:

    Ta có:

    f(x) = \frac{1}{2}\sin2x + \frac{1}{x +1}

    \Rightarrow F(x) = \int_{}^{}{\left(\frac{1}{2}\sin2x + \frac{1}{x + 1} ight)dx} = - \frac{1}{4}\cos2x +\ln|x + 1| + C

  • Câu 16: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 17: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 18: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 20: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 21: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 22: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;1) và mặt phẳng (P):2x - y + z - 3 = 0. Gọi (Q) là mặt phẳng đi qua A và song song với mặt phẳng (P). Điểm nào sau đây không nằm trên mặt phẳng (Q)?

    Phương trình mặt phẳng (Q)đi qua A và song song với mặt phẳng (P) có dạng

    (Q):2x - y + z + 3 = 0

    Thay tọa độ các đáp án vào phương trình mặt phẳng (Q) ta có 3 điểm K;I;M thoả mãn, còn điểm N không thoả mãn.

  • Câu 23: Thông hiểu

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 24: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; 0; 0), B(3; 2; 1), C\left( -
\frac{5}{3};\frac{4}{3};\frac{8}{3} ight) và M thay đổi sao cho hình chiếu của M lên mặt phẳng (ABC) nằm trong tam giác ABC và các mặt phẳng (MAB),(MBC),(MCA) hợp với mặt phẳng (ABC) các góc bằng nhau. Tính giá trị nhỏ nhất của OM.

    Hình vẽ minh họa

    Gọi H là hình chiếu của M lên mặt phẳng (ABC).

    Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn

    BC.\overrightarrow{HA} +
AC.\overrightarrow{HB} + AB.\overrightarrow{HC} =
\overrightarrow{0}

    Ta có AB = 3, AC = 4, BC = 5, suy ra

    \left\{ \begin{matrix}
5(x - 1) + 4(x - 3) + 3x + 5 = 0 \\
5y + 4(y - 2) + 3y - 4 = 0\  \\
5z + 4(z - 1) + 3z - 8 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow H(1;1;1)

    Phương trình đường thẳng MH nhận \overrightarrow{u} =
\overrightarrow{n_{ABC}} làm vectơ chỉ phương nên MH là: \left\{ \begin{matrix}
x\  = \ 1\  + \ t \\
y\  = \ 1\  - \ 2t \\
z\  = \ 1\  + \ 2t \\
\end{matrix} ight.

    Khi đó: OM_{\min} = \frac{\left|
\left\lbrack \overrightarrow{MH};\overrightarrow{OH} ightbrack
ight|}{\left| \overrightarrow{MH} ight|} =
\frac{\sqrt{26}}{3}

  • Câu 25: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 26: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 27: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3} - x và đồ thị hàm số y = x - x^{2}?

    Phương trình hoành độ giao điểm x^{3} - x
= x - x^{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó ta có:

    S = \int_{- 2}^{1}{\left| x^{3} + x^{2}
- 2x ight|dx}

    = \int_{- 2}^{0}{\left| x^{3} + x^{2} -
2x ight|dx} + \int_{0}^{1}{\left| x^{3} + x^{2} - 2x
ight|dx}

    = \left| \int_{- 2}^{0}{\left( x^{3} +
x^{2} - 2x ight)dx} ight| + \left| \int_{0}^{1}{\left( x^{3} + x^{2}
- 2x ight)dx} ight|

    = \left| \left. \ \left( \frac{x^{4}}{4}
+ \frac{x^{3}}{3} - x^{2} ight) ight|_{- 2}^{0} ight| + \left|
\left. \ \left( \frac{x^{4}}{4} + \frac{x^{3}}{3} - x^{2} ight)
ight|_{0}^{1} ight|

    = \frac{8}{3} + \frac{5}{12} =
\frac{37}{12}

  • Câu 28: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 29: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

  • Câu 30: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 31: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 32: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 33: Nhận biết

    Cho số phức z = a + bi,\left( {a,b \in \mathbb{R}} ight) thỏa mãn \left( {1 + i} ight)z + 2\overline z  = 3 + 2i. Tính P = a + b

    Giả sử: z = a + bi{\text{ }}\left( {a,b \in \mathbb{R}} ight)

    \left( {1 + i} ight)\left( {a + bi} ight) + 2\left( {a - bi} ight) = 3 + 2i

    \Leftrightarrow 3a - b + \left( {a - b} ight)i = 3 + 2i

    \Leftrightarrow \left\{ \begin{gathered}  3a - b = 3 \hfill \\  a - b = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = \frac{1}{2} \hfill \\  b =  - \frac{3}{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow P = a + b =  - 1

  • Câu 34: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 35: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 36: Thông hiểu

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 37: Nhận biết

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 38: Nhận biết

    Cho số phức z thỏa mãn {z^2} - 6z + 13 = 0. Giá trị của \left| {z + \frac{6}{{z + i}}} ight| là:

     {z^2} - 6z + 13 = 0 \Leftrightarrow \left[ \begin{gathered}  z = 3 + 2i \hfill \\  z = 3 - 2i \hfill \\ \end{gathered}  ight.

    Với z = 3 + 2i \Rightarrow z + \frac{6}{{z + i}} = 4 + i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = \sqrt {17}

    Với z = 3 - 2i \Rightarrow z + \frac{6}{{z + i}} = \frac{{24}}{5} - \frac{7}{5}i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = 5

  • Câu 39: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Vận dụng

    Biết xe^{x} là một nguyên hàm của hàm số f( - x) trên khoảng ( - \infty; + \infty). Gọi F(x) là một nguyên hàm của f'(x)e^{x} thỏa mãn F(0) = 1. Giá trị của F( - 1) bằng:

    Ta có: f( - x) = \left( xe^{x}
ight)' = e^{x} + xe^{x};\forall x \in ( - \infty; +
\infty)

    Do đó f( - x) = e^{- ( - x)} - ( - x)e^{-
( - x)};\forall x \in ( - \infty; + \infty)

    Suy ra f(x) = e^{- x}(1 - x);\forall x
\in ( - \infty; + \infty)

    Nên f'(x) = \left\lbrack e^{- x}(1 -
x) ightbrack' = e^{- x}(x - 2)

    \Rightarrow f'(x)e^{x} = e^{- x}(x -
2)e^{x} = x - 2

    Vậy F(x) = \int_{}^{}{(x - 2)dx} =
\frac{1}{2}(x - 2)^{2} + C

    Từ đó F(0) = \frac{1}{2}(0 - 2)^{2} + C =
C + 2

    F(0) = 1 \Rightarrow C = -
1

    Vậy F(x) = \frac{1}{2}(x - 2)^{2} - 1
\Rightarrow F( - 1) = \frac{1}{2}( - 1 - 2)^{2} - 1 =
\frac{7}{2}

  • Câu 41: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 42: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 43: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 44: Nhận biết

    Trong không gian cho hai đường thẳng a;b lần lượt có vectơ chỉ phương \overrightarrow{u};\overrightarrow{v}. Gọi \alpha là góc giữa hai đường thẳng a;b. Khẳng định nào sau đây đúng?

    Khẳng định đúng: “Nếu a\bot b thì \overrightarrow{u}.\overrightarrow{v} =
\overrightarrow{0}”.

  • Câu 45: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 46: Vận dụng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 47: Nhận biết

    Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

    Mặt phẳng (Oxz) đi qua điểm O(0;0;0) và nhận \overrightarrow{j} = (0;1;0) là một véc-tơ pháp tuyến nên phương trình của mặt phẳng (Oxz)(Oxz).

  • Câu 48: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (2; - 2; - 4)\overrightarrow{b} = (1; - 1;1). Mệnh đề nào sau đây sai?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = (3; - 3; - 3) đúng

    \left\{ \begin{matrix}
\overrightarrow{a} = 2(1; - 1; - 2) \\
\overrightarrow{b} = (1; - 1;1) \\
\end{matrix} ight. suy ra Hai vectơ \overrightarrow{a};\overrightarrow{b} không cùng phương.

    Vậy mệnh đề sai là: “Hai vectơ \overrightarrow{a};\overrightarrow{b} cùng phương”.

  • Câu 49: Nhận biết

    Cho số phức z = 1 - i + {i^3}. Tìm phần thực a và phần ảo b của z.

     Ta có z = 1 - i + {i^3} = 1 - i - i = 1 - 2i \Rightarrow a = 1,b =  - 2

  • Câu 50: Vận dụng cao

    Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox,y'Oy,z'Oz lần lượt tại các điểm A,B,C sao cho OA = OB = 2OC eq 0?

    Đặt A(a;0;0),B(0;b;0),C(0;0;c) với abc eq 0.

    Phương trình mặt phẳng (P) đi qua ba điểm A, B, C có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Do OA = OB = 2OC nên ta có |a| = |b| = 2|c|.

    Suy ra a = ±2c, b = ±2c.

    Nếu a = 2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{9}{2}.

    Ta có (P): x + y + 2z − 9 = 0.

    Nếu a = 2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} -
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{5}{2}

    Ta có (P): x − y + 2z − 5 = 0.

    Nếu a = −2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{7}{2}

    Ta có (P): − x + y + 2z − 7 = 0.

    Nếu a = −2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{- 2c} + \frac{3}{c} = 1 \Rightarrow c =
\frac{3}{2}

    Ta có (P): − x − y + 2z − 3 = 0.

    Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo