Đề thi HK2 Toán 12 Đề 2

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho số phức z  thỏa mãn z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}}. Viết z dưới dạng z = a + bi, \, \, a,b \in \mathbb{R}. Khi đó tổng a+b có giá trị bằng bao nhiêu?

     z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}} = {\left( { - i} ight)^{2024}} = {\left( {{i^4}} ight)^{506}} = 1

  • Câu 2: Thông hiểu

    Cho hai điểmA\left( {1, - 4,5} ight),B\left( { - 2,3, - 4} ight) và vectơ \overrightarrow a  = \left( {2, - 3, - 1} ight). Mặt phẳng chứa hai điểm A, B và song song với vectơ \vec{a} có phương trình:

    Theo đề bài, ta có: A\left( {1, - 4,5} ight);B\left( { - 2,3, - 4} ight)

    \Rightarrow \overrightarrow {AB}  = \left( { - 3,7, - 9} ight);\overrightarrow a  = \left( {2, - 3, - 1} ight)

    Như vậy, \vec{AB}\vec{a} sẽ là cặp vectơ chỉ phương của (\beta)

    \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow a } ight] = \left( { - 34, - 21, - 5} ight) =\vec{n}

    Chọn \overrightarrow n  = \left( {34,21,5} ight) làm vectơ pháp tuyến của  (\beta)

    Phương trình mặt phẳng (\beta) có dạng 34x + 21y + 5z + D = 0

    Mặt khác, vì điểm A \in (\beta) nên thay tọa độ điểm A vào phương trình mặt phẳng (\beta)  được: 34 - 84 + 25 + D = 0 \Leftrightarrow D = 25

    Vậy (\beta) có phương trình là: 34x + 21y + 5z + 25 = 0

  • Câu 3: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 4: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 5: Thông hiểu

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;2;3),B(3;4;4),C(2;6;6)I(a;b;c) là trực tâm tam giác ABC. Tính a +
b + c?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BC} = ( - 1;2;2);\overrightarrow{AC} = (1;4;3) \\
\overrightarrow{AI} = (a - 1;b - 2;c - 3) \\
\overrightarrow{BI} = (a - 3;b - 4;c - 4) \\
(ABC):2x - 5y + 6z - 10 = 0 \\
\end{matrix} ight.

    Lại có:

    \left\{ \begin{matrix}
\overrightarrow{BI}.\overrightarrow{AC} = 0 \\
\overrightarrow{AI}.\overrightarrow{BC} = 0 \\
I \in (ABC) \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- 1(a - 1) + 2(b - 2) + 2(c - 3) = 0 \\1(a - 3) + 4(b - 4) + 3(c - 4) = 0 \\2a - 5b + 6c - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{27}{5} \\b = 4 \\c = \dfrac{16}{5} \\\end{matrix} ight.\  \Rightarrow a + b + c = \dfrac{63}{5}

  • Câu 7: Thông hiểu

    Xét (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 2x + 1, trục hoành, trục tung và đường thẳng x = a;(a
> 0). Giá trị của a sao cho thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành bằng 57\pi là?

    Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục hoành là:

    V = \pi\int_{0}^{a}{(2x + 1)^{2}dx} =
\pi\left. \ \frac{(2x + 1)^{3}}{6} ight|_{0}^{a}

    = \pi\left\lbrack \frac{(2a + 1)^{3}}{6}
- \frac{1}{6} ightbrack

    V = 57\pi \Leftrightarrow
\pi\left\lbrack \frac{(2a + 1)^{3}}{6} - \frac{1}{6} ightbrack =
57\pi

    \Leftrightarrow (2a + 1)^{3} = 343
\Leftrightarrow a = 3

    Vậy a = 3 là giá trị cần tìm.

  • Câu 8: Thông hiểu

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Đáp án là:

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Ta có:

    {z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 1 + \sqrt 2 i\\z = 1 - \sqrt 2 i\end{array} ight.

    Suy ra:  w = z_1^2 + z_2^2 + {z_1}{z_2}

    = {\left( {1 + \sqrt 2 i} ight)^2} + {\left( {1 - \sqrt 2 i} ight)^2} + \left( {1 + \sqrt 2 i} ight)\left( {1 - \sqrt 2 i} ight) = 1

  • Câu 9: Nhận biết

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c đều khác \vec{0}. Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi (có thể chọn 2 đáp án):

    Áp dụng Điều kiện để 3 vecto đồng phẳng là:

    \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d} eq  \vec{0} và có giá vuông góc với mp(P)

  • Câu 10: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 11: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z:4x - 2y + 1 = 0

    Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Ta có: \left| {z - 2 - i} ight| = \left| {\overline z  + 2i} ight|

    \Leftrightarrow \left| {\left( {x - 2} ight) + \left( {y - 1} ight)i} ight| = \left| {x + \left( {2 - y} ight)i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 1} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow 4x - 2y - 1 = 0

  • Câu 12: Nhận biết

    Phương trình tổng quát của mặt phẳng (\alpha) qua điểm B (3, 4, -5) và có cặp vectơ chỉ phương \overrightarrow a  = \left( {3,1, - 1} ight),\,\,\,\overrightarrow b  = \left( {1, - 2,1} ight)  là:

    Vectơ pháp tuyến của (\alpha) là tích có hướng của 2 vecto chỉ phương \overrightarrow n  = \left[ {\overrightarrow a \overrightarrow {,b} } ight] = \left( { - 1, - 4, - 7} ight) có thể thay thế bởi \overrightarrow n  = \left( {1,4,7} ight)

    Phương trình  (\alpha) có dạng x + 4y + 7z + D = 0

    B \in \left( \alpha  ight) \Leftrightarrow 3 + 16 - 35 + D = 0 \Leftrightarrow D = 16

    Vậy (\alpha): x + 4y +7z +16 = 0

  • Câu 13: Vận dụng cao

    Trong không gian Oxyz, cho mặt phẳng (P): x-2y+2z-5=0 và hai điểm A(-3;0;1), B(1;-1;3). Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

     khoảng cách nhỏ nhất

    Gọi (Q) là mặt phẳng qua A và song song (P).

    Ta có: (-3-2.0+2.1-5)(1+2.1+2.3-5) < 0 \Rightarrow A, B nằm về hai phía với (P).

    Gọi H là hình chiếu vuông góc của B lên (Q) \Rightarrow BH cố định và d(B,(Q))=BH.

    Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay d//(P) .

    Ta có: BK \geq BH \Leftrightarrow d(B, d) \geq d(B, d) \Rightarrow d (B, d)bé nhất bằng BH  khi K trùng với điểm H.

    Gọi \vec{n} là VTPT của (ABH) \Rightarrow \vec{n}=[\vec{n_p}, \vec{AB}]=(-2;6;7)

    Ta có đường thẳng d cần lập qua  A, H và có VTCP là \vec{u_d}=[\vec{n},\vec{n_P}]=(26; 11; -2)

    Vậy phương trình đường thẳng d cần lập là: \dfrac{x+3}{26}=\dfrac{y}{11}=\dfrac{z-1}{-2}

  • Câu 14: Thông hiểu

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    a) Ta có:

    Tọa độ của điểm A(2; - 1;5).

    b) G là trọng tâm tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{2 + 5 + x_{C}}{3} \\1 = \dfrac{- 1 - 5 + y_{C}}{3} \\1 = \dfrac{5 + 7 + x_{C}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = - 4 \\y_{C} = 9 \\x_{C} = - 9 \\\end{matrix} ight.\  \Rightarrow C( - 4;9; - 9)

    \Rightarrow a + b + c = - 4

    c) Ta có: \overrightarrow{AB} = (3; -
4;2);\overrightarrow{AC} = (x - 2;y + 1; - 4)

    Ba điểm A, B, M thằng hàng khi và chỉ khi

    \overrightarrow{AM} =
k\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = 3k \\
y + 1 = k.( - 4) \\
- 4 = k.2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
k = - 2 \\
\end{matrix} ight.

    Suy ra x + y = 3

    d) Ta có: N \in (Oxy) \Rightarrow N =
(x;y;0)

    \Rightarrow \overrightarrow{AN} = (x -
2;y + 1; - 5),\overrightarrow{AB} = (3; - 4;2)

    Ta có ∆ABN vuông cân tại A \Leftrightarrow \left\{ \begin{matrix}
AN\bot AB(*) \\
AN = AB(**) \\
\end{matrix} ight.

    Từ (*) \Leftrightarrow
\overrightarrow{AN}\bot\overrightarrow{AB} \Leftrightarrow 3(x - 2) -
4(y + 1) - 10 = 0

    \Leftrightarrow 3x - 4y = 20
\Leftrightarrow y = \frac{3}{4}x - 5

    Từ (**) AN^{2} = AB^{2} \Leftrightarrow
(x - 2)^{2} + (y + 1)^{2} + 25 = 9 + 16 + 4

    \Leftrightarrow (x - 2)^{2} + \left(
\frac{3x}{4} - 4 ight)^{2} = 4 \Leftrightarrow x =
\frac{16}{5}

    \Rightarrow y = - \frac{13}{5}
\Rightarrow N\left( \frac{16}{5}; - \frac{13}{5};0 ight)

    Vậy x_{N} + y_{N} =
\frac{3}{5}

  • Câu 15: Vận dụng

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Đáp án là:

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Ta có: z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m} = {(2i)^m} = {2^m}.{i^m}\,

    z là số thuần ảo khi và chỉ khi m = 2k + 1,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 17: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 18: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 20: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 21: Nhận biết

    Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

     Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx}  = \left. {\left( { - \frac{1}{x} + {x^2}} ight)} ight|_1^2 = \frac{7}{2}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 22: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} với các trục tọa độ?

    Xét \left\{ \begin{matrix}
x = 0 \Rightarrow y = - 2 \\
y = 0 \Rightarrow x = - 1 \\
\end{matrix} ight..

    Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x -
2} với các trục tọa độ là: S =
\int_{- 1}^{0}{\left| \frac{x + 1}{x - 2} ight|dx}.

    Vì biểu thức \frac{x + 1}{x - 2} không đổi dấu trên miền \lbrack - 1;0brack nên:

    S = \left| \int_{- 1}^{0}{\frac{x + 1}{x
- 2}dx} ight| = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = \left| 1 + 3(\ln2 - \ln3) ight| =3\ln\frac{3}{2} - 1

  • Câu 23: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 24: Thông hiểu

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 25: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 26: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 27: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 28: Vận dụng cao

    Cho hàm số y = f\left( x ight) có đạo hàm liên tục trên đoạn \left[ { - 3;3} ight] và đồ thị hàm số y = f'\left( x ight) (như hình vẽ). biết f\left( 1 ight) = 6g\left( x ight) = f\left( x ight) - \frac{{{{\left( {x + 1} ight)}^2}}}{2}. Kết luận nào sau đây là đúng?

    Kết luận nào sau đây là đúng

    Hình vẽ minh họa:

    Kết luận nào sau đây là đúng

    Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( x ight) - \left( {x + 1} ight) \hfill \\  g'\left( x ight) = 0 \Rightarrow f'\left( x ight) = x + 1 \hfill \\ \end{matrix}

    Từ đồ thị ta thấy g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {x = 1} \\   {x = 3} \end{array}} ight.

    Từ đồ thị ta thấy

    \begin{matrix}  \int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{ABCD}}}  \hfill \\   \Leftrightarrow f\left( 1 ight) - f\left( { - 3} ight) > 6 \hfill \\   \Leftrightarrow f\left( { - 3} ight) < 0 \hfill \\ \end{matrix}

    => g\left( { - 3} ight) = f\left( { - 3} ight) - 2 < 0

    Mặt khác

    \begin{matrix}\int\limits_{ - 3}^1 {f'\left( x ight)dx > {S_{OEFG}}}  \hfill \\   \Leftrightarrow f\left( 3 ight) - f\left( 1 ight) > 2 \hfill \\   \Leftrightarrow f\left( 3 ight) > 8 \Rightarrow G\left( 3 ight) > 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Kết luận nào sau đây là đúng

    => g\left( x ight) = 0 có duy nhất nghiệm trên \left[ { - 3;3} ight]

  • Câu 29: Thông hiểu

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 30: Nhận biết

    Cho hai số phức {z_1} = 5 - 7i{z_2} = 2 + 3i. Tìm số phức z = {z_1} + {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} + {z_2} \hfill \\  = \left( {5 - 7i} ight) + \left( {2 + 3i} ight) \hfill \\   = (5 + 2) + ( - 7 + 3)i \hfill \\ = 7 - 4i \hfill \\ \end{matrix}

  • Câu 31: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}, f(0) = 0;f'(0) eq 0;f( - 2) > 2 và thỏa mãn hệ thức f(x)f'(x) + 18x^{2}
= \left( 3x^{2} + x ight)f'(x) + (6x + 1)f(x) với \forall x\mathbb{\in R}. Giá trị của f( - 2) là:

    Ta có:

    f(x)f'(x) + 18x^{2} = \left( 3x^{2}
+ x ight)f'(x) + (6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) + 36x^{2}
= 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) -
\left\lbrack 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)
ightbrack = - 36x^{2}

    \Rightarrow \left\lbrack f^{2}(x) -
2\left( 3x^{2} + x ight)f(x) ightbrack' = -
36x^{2}

    \Rightarrow \int_{}^{}{\left\lbrack
f^{2}(x) - 2\left( 3x^{2} + x ight)f(x) ightbrack'dx} =
\int_{}^{}{\left( - 36x^{2} ight)dx}

    \Rightarrow f^{2}(x) - 2\left( 3x^{2} +
x ight)f(x) = - 12x^{3} + C

    Mặt khác f(0) = 0 \Rightarrow C =
0

    Vậy f^{2}(x) - 2\left( 3x^{2} + x
ight)f(x) = - 12x^{3}

    \Rightarrow f^{2}( - 2) - 20f( - 2) = 96
\Leftrightarrow \left\lbrack \begin{matrix}
f( - 2) = 24 \\
f( - 2) = - 4 \\
\end{matrix} ight.

    f( - 2) > 2 \Rightarrow f( - 2) =
24.

  • Câu 32: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 33: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 34: Vận dụng cao

    Trong không gian với hệ tọa độ cho các điểm A(1;0;0), B(0;2;0), C(0;0;3), D(2;-2;0). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểmO, A, B, C, D ?

     Mặt phẳng (ABC) có phương trình là:

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1\Leftrightarrow 6x + 3y + 2z - 6 = 0, do đó D \in \left( {ABC} ight).

    Lại có A là trung điểm BD.

    Ta có (Oxy) chứa các điểm O, A, B, D;

    (Oyz) chứa các điểm O, B, C;

    (Oxz) chứa các điểm O, A, C;

    (ABC) chứa các điểm A, B, C, D;

    (OCD) chứa các điểm O, C ,D.

    Vậy có mặt phẳng phân biệt thỏa mãn bài toán.

  • Câu 35: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + i} ight| = 2. Chọn phát biểu đúng:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có:

    \left| {z - 1 + i} ight| = 2

    \Leftrightarrow \left| {\left( {x - 1} ight) + \left( {y + 1} ight)i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 1} ight)^2} = 4

  • Câu 36: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 37: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 38: Vận dụng

    Trong các số phức z thỏa mãn điều kiện \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|. Số phức z có mô đun bé nhất bằng

     Đặt z = x + yi{\mkern 1mu} {\mkern 1mu} \left( {x,y \in \mathbb{R}} ight)

    Khi đó \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|

    \Leftrightarrow \left| {x + yi - 2 - 4i} ight| = \left| {x + yi - 2i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 4} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow  - 4x - 4y + 16 = 0

    \Leftrightarrow x + y - 4 = 0

    Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng \Delta :x + y - 4 = 0.

    {\left| z ight|_{\min }} = d\left( {O;\Delta } ight) = \frac{{\left| 4 ight|}}{{\sqrt 2 }} = 2\sqrt 2

  • Câu 39: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 40: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 41: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1). Viết phương trình đường thẳng d?

    Đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1) là:

    d:\frac{x - 3}{1} = \frac{y - 3}{3} =
\frac{z + 2}{1}

  • Câu 42: Nhận biết

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 43: Nhận biết

    Cho số phức z thỏa mãn {z^2} - 6z + 13 = 0. Giá trị của \left| {z + \frac{6}{{z + i}}} ight| là:

     {z^2} - 6z + 13 = 0 \Leftrightarrow \left[ \begin{gathered}  z = 3 + 2i \hfill \\  z = 3 - 2i \hfill \\ \end{gathered}  ight.

    Với z = 3 + 2i \Rightarrow z + \frac{6}{{z + i}} = 4 + i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = \sqrt {17}

    Với z = 3 - 2i \Rightarrow z + \frac{6}{{z + i}} = \frac{{24}}{5} - \frac{7}{5}i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = 5

  • Câu 44: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 45: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

  • Câu 46: Thông hiểu

    Số phức z thỏa mãn: \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i là:

     Ta áp dụng các quy tắc thực hiện phép tính, có:

    \begin{matrix}  \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i \hfill \\   \Leftrightarrow (1 + i)z = 7 + 3i - (2 - 3i)(1 + 2i) \hfill \\   \Leftrightarrow (1 + i)z =  - 1 + 2i \hfill \\   \Leftrightarrow z = \dfrac{{ - 1 + 2i}}{{1 + i}} \hfill \\   \Leftrightarrow z = \dfrac{1}{2} + \dfrac{3}{2}i \hfill \\ \end{matrix}

    Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.

  • Câu 47: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 48: Vận dụng cao

    Cho hai quả bóng A, B đều chuyển động thẳng, di chuyển ngược chiều và va chạm với nhau. Sau mỗi va chạm, hai quả bóng nảy ngược lại một đoạn thì dừng hẳn. Tính khoảng cách giữa hai quả bóng sau khi dừng hẳn. Biết sau khi va chạm, quả bóng A này ngược lại với vận tốc {v_A}\left( t ight) = 8 - 2t\left( {m/s} ight) và quả bóng B nảy ngược lại với vận tốc {v_b}\left( t ight) = 12 - 4t\left( {m/s} ight).

    Thời gian quả bóng A chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_A}\left( t ight) = 0 \Rightarrow 8 - 2t = 0 \Rightarrow t = 4\left( s ight)

    Quãng đường quả bóng A di chuyển được là: 

    {S_A} = \int\limits_0^4 {\left( {8 - 2t} ight)dt}  = 16\left( m ight)

    Thời gian quả bóng B chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_B}\left( t ight) = 0 \Rightarrow 12 - 4t = 0 \Rightarrow t = 3\left( s ight)

    Quãng đường quả bóng B di chuyển được là:

    {S_B} = \int\limits_0^3 {\left( {12 - 4t} ight)dt}  = 18\left( m ight)

    Vậy khoảng cách hai quả bóng sau khi dừng hẳn là 

    S = {S_A} + {S_B} = 16 + 18 = 34\left( m ight)

  • Câu 49: Thông hiểu

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tính x và y để ba điểm A, B, C đã cho thẳng hàng với nhau?

     A, B, C thẳng hàng \Leftrightarrow \overrightarrow {AB} cùng phương với \overrightarrow {AC}

    \Leftrightarrow \left\{ \begin{array}{l}{a_1}{b_2} - {a_2}{b_1} = 0\\{a_2}{b_3} - {a_3}{b_2} = 0\\{a_3}{b_1} - {a_1}{b_3} = 0\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {y - 1} ight) - 0\left( {x - 3} ight) = 0\\0\left( { - 1} ight) - \left( { - 1} ight)\left( {y - 1} ight) = 0\\ - 1\left( {x - 3} ight) - \left( { - 1} ight)\left( { - 1} ight) = 0\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} ight.

  • Câu 50: Thông hiểu

    Biết rằng \int_{}^{}{\frac{1}{x^{3} -
x}dx = a\ln\left| (x - 1)(x + 1) ight| + b\ln|x| + C}. Tính giá trị biểu thức H = 2a + b?

    Ta có:

    \frac{1}{x^{3} - x} = \frac{A}{x} +
\frac{B}{x - 1} + \frac{D}{c + 1}

    = \frac{A\left( x^{2} - 1 ight) + Bx(x
+ 1) + Dx(x - 1)}{x^{3} - x}

    = \frac{(A + B + D)x^{2} + (B - D)x -
A}{x^{3} - x}

    \Rightarrow \left\{ \begin{matrix}A + B + D = 0 \\B - D = 0 \\- A = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = \dfrac{1}{2} \\D = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{1}{x^{3} - x}dx}
= \int_{}^{}{\left\lbrack \frac{- 1}{x} + \frac{1}{2(x - 1)} +
\frac{1}{2(x + 1)} ightbrack dx}

    = \frac{1}{2}\ln\left| (x - 1)(x + 1)
ight| - \ln|x| + C

    Suy ra a = \frac{1}{2};b = - 1
\Rightarrow H = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo