Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Cho
. Giá trị của x và y bằng:
Ta có:
Cho hình phẳng
giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
. Tìm tọa độ giao điểm
của đường thẳng
và
, biết đường thẳng d' có phương trình 
Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Cho hàm số
có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là:
Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.
Ta có
Suy ra một vectơ pháp tuyến của là
Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên
.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Cho hai số phức
. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức
, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Do M, N lần lượt là điểm biểu diễn số phức nên
Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ
Vậy G là điểm biểu diễn của số phức:
Biết
, a là các số hữu tỉ. Giá trị của a là:
Ta có:
Đặt
Đổi cận
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với
Cho hai đường thẳng: ![]()
và mặt phẳng
.
Hình chiếu của
theo phương của
lên mặt phẳng
có phương trình tổng quát:
Vectơ chỉ phương của Vectơ chỉ phương của
Phương trình của mặt phẳng chứa và có phương của
có dạng:
Điểm A (7, 3, 9) thuộc mặt phẳng này
=> D = -53
Giao tuyến của mặt phẳng này với mặt phẳng là hình chiếu của
theo phương của
lên
:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho đường thẳng
có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Tìm số phức z thỏa mãn ![]()
Ta có
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian
, cho các điểm
. Số điểm cách đều bốn mặt phẳng
là
Gọi là điểm cách đều bốn mặt phẳng đã cho.
Dễ thấy các mặt phẳng lần lượt là các mặt phẳng
.
Mặt phẳng (ABC) có phương trình tổng quát là .
Do I cách đều các mặt phẳng này nên ta có:
Ta có các trường hợp
Trường hợp 1. . Khi đó (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Trường hợp 2. Trong ba số có hai số bằng nhau và bằng số đối của số còn lại.
Khi đó, không mất tính tổng quát ta có thể giả sử (các trường hợp còn lại tương tự) và (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Vậy số điểm cách đều bốn mặt phẳng đã cho là .
Trong không gian
, cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Cho hàm số
có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Tìm nguyên hàm của hàm số
??
Đặt
Xét các số phức z thỏa mãn
. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức
là một đường tròn có bán kính bằng
Ta có
Đặt
Ta có
Số phức liên hợp của số phức
là
=
= a - bi
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Nguyên hàm của hàm số
là:
Ta có:
Giá trị của
?
Ta có:
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho
và hai mặt phẳng
. Khi đó:
Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).
Vì nên
.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Trong không gian với hệ tọa độ
, điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Trong không gian
, cho ba điểm
. Các khẳng định sau là đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
Trong không gian , cho ba điểm
. Các khẳng định sau là đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Ta có .
Ta có:
.
Ta có:
.
Ta có:
.
Ta có:
.