Cho hình phẳng
giới hạn bởi đồ thị các hàm số sau
và đườDng thẳng
(tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng
bằng

Đặt . Ta được hệ trục tọa độ OXY như hình vẽ
Ta có:
Thể tích cần tìm là
Cho hình phẳng
giới hạn bởi đồ thị các hàm số sau
và đườDng thẳng
(tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng
bằng

Đặt . Ta được hệ trục tọa độ OXY như hình vẽ
Ta có:
Thể tích cần tìm là
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Cho hàm số
có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số
thỏa mãn F(2) = 0
Ta có: F(2) = 0 => C = 2
=>
Xét phương trình F(x) = x ta có:
Vậy tổng các nghiệm của phương trình đã cho bằng
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Trong không gian
, phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho đường thẳng
và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?

Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .
Tính thể tích
của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Cho số phức
, giá trị của số phức
là?
Ta có:
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Trong không gian
, biết mặt phẳng
đi qua điểm
và cắt các tia dương
lần lượt tại ba điểm
khác gốc tọa độ
, sao cho
đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Vì mặt phẳng cắt các tia dương của trục
nên ta có
Ta có
Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:
Dấu bằng xảy ra khi:
Suy ra độ dài ba cạnh theo thứ tự lập thành một cấp số cộng.
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Trong không gian với hệ tọa độ
, cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho hàm số
là một nguyên hàm của
trên khoảng
thỏa mãn
. Xác định công thức
?
Ta có: (vì
)
Mà
Vậy .
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian
, cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Điểm biểu diễn của số phức
là:
Ta có:
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Trong không gian với hệ tọa độ
, cho
. Gọi
là trọng tâm của tam giác
. Gọi
là điểm nằm trên mặt phẳng
sao cho độ dài đoạn thẳng
ngắn nhất. Tính độ dài đoạn thẳng
.
Ta có: là trọng tâm tam giác
nên
Mặt phẳng có phương trình
.
ngắn nhất khi và chỉ khi
là hình chiếu vuông góc của
lên mặt phẳng
. Khi đó, ta có:
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và cắt đường thẳng
tại
. Tính độ dài đoạn
.
Điểm . Mặt khác
nên
Điểm .
Cho tứ diện
có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có:
Mà
Tính diện tích hình phẳng giới hạn bởi đồ thị
của hàm số
và đồ thị
của hàm số
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng cần tìm là:
Cho hình chóp
có
và
. Góc giữa hai đường thẳng
và
là:
Ta có:
(vì
và
).
Suy ra góc giữa hai đường thẳng SA và BC bằng .
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Tìm họ nguyên hàm của hàm số ![]()
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Tìm nguyên hàm của hàm số
?
Ta có:
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Trong không gian cho hình hộp
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: suy ra
đồng phẳng.