Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Tìm nguyên hàm của hàm số
?
Ta có:
Câu nào sau đây đúng? Trong không gian Oxyz:
A sai và có thể (P) và (Q) trùng nhau
B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.
C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.
Phần thực của số phức
là:
Ta có:
Trong các khẳng định sau đây, khẳng định nào đúng?
Ta có:
Do
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

Nửa đường tròn có phương trình
Xét parabol có trục đối xứng
nên có phương trình dạng
cắt
tại điểm
=>
cắt
tại điểm
thuộc
=>
Phương trình là:
Diện tích miền phẳng (phần tô màu trong hình là:
Xét đặt
=>
Ta có:
Khi đó ta có:
Số tiền trồng hoa tối thiểu là: đồng
Cho hàm số
có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hai đường thẳng chéo nhau
và ![]()
Mặt phẳng song song và cách đều và có phương trình tổng quát:
Phương trình (d) cho biết và (d) có vectơ chỉ phương
Chuyển về dạng tham số
để có
và vectơ chỉ phương
.
Gọi I là trung điểm AB thì I (2, 2, 0), M(x, y, z) bất kỳ .
là phương trình của mặt phẳng (P).
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Biết tích phân
trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Trong không gian
, cho điểm
. Phương trình mặt phẳng
đi qua
và chứa trục
là:
Mặt phẳng có VTPT
và đi qua điểm
.
Suy ra phương trình .
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho
và
. Tính
?
Ta có và
. Tính:
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Nếu
thì
bằng:
Ta có:
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;2;0), B(1;0;-2) và mặt
phẳng
. Gọi
là điểm thuộc mặt phẳng (P) sao cho MA=MB
và góc
có số đo lớn nhất. Khi đó giá trị
bằng ?
nên M thuộc mặt phẳng mặt phẳng trung trực của đoạn thẳng AB. Ta có phương trình trung trực của AB là (Q); y+z=0
M thuộc giao tuyến của hai mặt phẳng (P) và (Q) nên M thuộc đường thẳng
.
Gọi , ta có
.
Khảo sát hàm số , ta được
khi
.
Suy ra có số đo lớn nhất khi
, ta có
.
Khi đó giá trị .
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Cho số phức
. Tính |z|
Ta có
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Tìm nguyên hàm của hàm số ![]()
Đặt
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Trong không gian
cho điểm
. Mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Trong không gian cho điểm
. Mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số
quanh trục
bằng
Ta có:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Cho số phức
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Tích phân
có giá trị là:
Tích phân có giá trị là:
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Trong không gian với hệ tọa độ
, cho đường thẳng
và điểm
. Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?
Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương
Phương trình tham số của đường thẳng
Gọi P là hình chiếu vuông góc của A trên (∆).
Khi đó
Ta có . Vì
nên
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.