Trong không gian với hệ trục toạ độ
, tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Trong không gian với hệ trục toạ độ
, tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Tìm số phức z thỏa mãn ![]()
Ta có
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho hai điểm
. Mặt phẳng chứa đường thẳng
và song song với
có phương trình :
Theo đề bài ta có
cùng phương với vectơ
Mặt khác, trục có vectơ chỉ phương
cùng phương với vectơ
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa
và song song với trục
. Phương trình mặt phẳng này có dạng :
Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có:
Vậy phương trình mặt phẳng cần tìm :
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Tìm số phức
trong phương trình sau: ![]()
Ta có
Giả sử
và
. Khi đó
bằng
Ta có:
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Cho 2 đường thẳng
và 
Mặt phẳng (P) chứa (d) và song song với
có phương trình tổng quát :
Phương trình (d) cho và vectơ chỉ phương của (d) là:
Phương trình cho vectơ chỉ phương của
là :
Gọi là điểm bất kỳ thuộc mặt phẳng (P) thì :
Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.
Số phức
có phần thực là?
2
Số phức có phần thực là?
2
Ta có:
Vậy phần thực của số phức
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
là:
Thể tích cần tính là:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường
, khi xoay quanh trục
.
Phương trình hoành độ giao điểm là:
Gọi là thể tích khối tròn xoay cần tìm ta có:
Đặt
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Trong không gian
, cho vectơ
. Tọa độ điểm
là:
Ta có:
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Tính diện tích S của hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Trong không gian
, cho mặt phẳng
. Đường thẳng
vuông góc với mặt phẳng
có một vectơ chỉ phương có tọa độ là:
Mặt phẳng có một vectơ pháp tuyến là
.
Do nên vectơ
cũng là một vectơ chỉ phương của
.
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Tích phân
có giá trị là:
Ta biến đổi:
Xét
Đặt
Xét
Đặt
Đổi cận
Trong không gian với hệ tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thuộc
sao cho
ngắn nhất.
Gọi là điểm sao cho
Suy ra J(2; 3; 1).
Khi đó
Vậy đạt GTNN khi và chỉ khi
đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).
Vậy M(2; 3; 0).
Trong không gian
, cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tọa độ điểm
là:
Hình vẽ minh họa
Gọi B1 là điểm đối xứng với B qua (P).
Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)
(hằng số).
Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).
Từ đó suy ra tọa độ của điểm B là .
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian hệ trục tọa độ
, cho tam giác
có
. Tính diện tích tam giác
?
Ta có:
Suy ra . Lại có:
Suy ra diện tích tam giác là:
Tìm nguyên hàm của hàm số
??
Đặt