Nguyên hàm của hàm số
là:
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Trong không gian
, phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Cho biết có n mặt phẳng với phương trình tương ứng là
với
đi qua điểm
và không đi qua gốc tọa độ O , đồng thời cắt các trục tọa độ
theo thứ tự tại A, B, C sao cho hình chóp OABC là hình chóp đều. Khi đó giá trị
bằng?
Giả sử mặt phẳng thỏa mãn yêu cầu bài toán
+) Ta có:
.
Vì hình chóp OABC là hình chóp đều, suy ra
Nên ta có (do (P) không đi qua gốc tọa độ nên
)
+) Vì điểm nên suy ra:
Nhận thấy nếu thì
, trường hợp này không thỏa mãn do
Như vậy ta sẽ có 3 mặt phẳng thỏa mãn yêu cầu bài toán lần lượt ứng với các trường hợp và
Vậy suy ra
.
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được 56m. Tính giá trị của
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Cho các mệnh đề sau:
(I) Vectơ
luôn đồng phẳng với hai vectơ
.
(II) Nếu có
và ít nhất một trong ba số
khác không thì ba vectơ
đồng phẳng.
(III) Nếu ba vectơ
không đồng phẳng và
thì
.
Hỏi có bao nhiêu mệnh đề đúng?
Do được biểu thị qua hai vectơ
nên (I) đúng.
Xét mệnh đề (II): Giả sử , khi đó:
Suy ra ba vectơ đồng phẳng. Vậy mệnh đề (II) đúng.
Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

Đáp án: 4,32m2.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Giao điểm của hai parabol tại
Do đó, diện tích của con cá là
Trong không gian
, cho mặt phẳng
. Viết phương trình mặt phẳng
sao cho phép đối xứng qua mặt phẳng
biến mặt phẳng
thành mặt phẳng
.
Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là .
Ta có và
.
Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.
Ta có , (ảnh của A, B trùng với chính nó vì
).
Do C’ đối xứng với qua mặt phẳng Oxy, suy ra
Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:
Số phức
bằng:
Ta có:
Tìm số phức z thỏa mãn ![]()
Ta có
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Diện tích S của hình phẳng trên là:
Ta có:
=>
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:
: vectơ chỉ phương của trục Ox:
.
: Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
, qua A nên:
Vậy ta có phương trình mp cần tìm là:
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với
Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có:
Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Cho
. Giá trị của x và y bằng:
Ta có: