Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Trong không gian
. Cho
với
. Biết mặt phẳng
qua điểm
và thể tích tứ diện
đạt giá trị nhỏ nhất. Khi đó phương trình
:
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Tìm số phức z thỏa mãn ![]()
Ta có
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Điểm biểu diễn của số phức
là:
Ta có:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Cho hình hộp
CÓ
. Giá trị của
bằng:
Ta có:
Vậy .
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Cho số phức
, giá trị của số phức
là?
Ta có:
Trong không gian
, cho đường thẳng
. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng
.
Đường thẳng có vectơ chỉ phương
Mặt phẳng vuông góc với nhận vectơ
làm vectơ pháp tuyến.
Do đó là mặt phẳng thỏa mãn.
Tìm nguyên hàm của hàm số
.
Ta có
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Trong không gian với hệ toạ độ
, cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ toạ độ , cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Cho tứ diện
trọng tâm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Suy ra mệnh đề sai là .
Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
Khi dừng hẳn
Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Trong không gian với hệ tọa độ
, cho
. Điểm
là điểm thuộc mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Khi đó,
có giá trị là:
Chọn sao cho
Ta tính được
Ta thấy
Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.
Vậy M là hình chiếu vuông góc của lên (Oxy)
Ta xác định được
Họ nguyên hàm của hàm số
là:
Ta có:
Phần thực của số phức
là:
Ta có:
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Cho hai hàm số
có đạo hàm trên
thỏa mãn
và
. Giá trị
bằng:
Chọn
Từ đó suy ra
Vậy
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
là:
Thể tích cần tính là:
Trong không gian với hệ trục tọa độ
, cho ba mặt phẳng ![]()
![]()
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Trong không gian với hệ trục tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Cho tam giác ABC có ![]()
Viết phương trình tham số của trung tuyến AM ?
Vì AM là trung tuyến nên M là trung điểm của BC. Gọi
Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:
Ta có 1 vecto chỉ phương của (AM) là
(AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được
người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
Vận tốc vật đạt được sau 5s là:
Ta có:
Do khi bắt đầu tăng tốc
Vật dừng hẳn khi
Khi đó quãng đường đi được bằng
Cho hàm số
có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có: