Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Thành phố định xây cây cầu bắc ngang con sông dài
, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Cho tứ diện ABCD có
. Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Phần thực của số phức
là:
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Cho hàm số
xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Trong không gian hệ trục tọa độ
, cho các điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng
. Khi đó độ dài đoạn thẳng
bằng:
Vì lần lượt là hình chiếu của
lên mặt phẳng
nên
suy ra
.
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Viết phương trình tham số của đường thẳng d qua hai điểm: ![]()
Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là hay ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Nguyên hàm của hàm số
là:
Ta có:
.
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Trong không gian
, cho đường thẳng
và mặt phẳng
. Mệnh đề nào sau đây là đúng?
Viết lại đường thẳng d ở dạng tham số
Xét phương trình
Kết luận phương trình có vô số nghiệm
Trong không gian với hệ trục tọa độ
, cho điểm
. Mặt phẳng
qua
cắt chiều dương của các trục
lần lượt tại
thỏa mãn
. Tính giá trị nhỏ nhất của thể tích khối chóp
?
Giả sử với
.
Khi đó mặt phẳng có dạng:
.
Vì (P) đi qua M nên
Vì
Thể tích khối chóp là:
Ta có:
khi
.
Biết
là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Nếu
thì
bằng:
Ta có:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).

Giả sử
là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Trong không gian , cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Xác định nguyên hàm
của hàm số
?
Ta có:
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Cho số phức
. Tính |z|
Ta có
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Cho hàm số
liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Ba mặt phẳng
cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Cho các số phức z thỏa mãn
. Tập hợp các điểm biểu diễn các số phức
trên các mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.
Đặt
Khi đó phương trình
Với