Cho hình lập phương
. Tính
.
Hình vẽ minh họa
Ta có:
Cho hình lập phương
. Tính
.
Hình vẽ minh họa
Ta có:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Trong không gian tọa độ
cho các điểm
. Hỏi có bao nhiêu mặt phẳng cách đều 5 điểm trên?
Hình vẽ minh họa
Ta có: . Suy ra
là hình bình hành.
nên
là hình chóp đỉnh E có đáy ABCD là hình bình hành.
Gọi lần lượt là trung điểm các cạnh
.
Do đó có 5 mặt phẳng cách đều 5 điểm là:
Mặt phẳng qua 4 trung điểm của 4 cạnh bên: (GHIK)
Mặt phẳng qua 4 trung điểm lần lượt của EC, ED, AD, BC: (IKQN)
Mặt phẳng qua 4 trung điểm của EB, EA, AD, BC: (HGQN)
Mặt phẳng qua 4 trung điểm của EA, ED, CD, AB: (GKPM)
Mặt phẳng qua 4 trung điểm của EB, EC, CD, AB: (HIPM)
Cho đồ thị hàm số
như hình vẽ và
.

Tính diện tích của phần được gạch chéo theo
.
Từ đồ thị ta suy ra
Do đó, diện tích phần gạch chéo là
.
Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng
quay quanh
.
Tung độ giao điểm
Số phức liên hợp của số phức
là
=
= a - bi
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số
thỏa mãn F(2) = 0
Ta có: F(2) = 0 => C = 2
=>
Xét phương trình F(x) = x ta có:
Vậy tổng các nghiệm của phương trình đã cho bằng
Trong hệ trục tọa độ Oxy, cho parabol
và hai đường thẳng
(mô tả như hình vẽ). Gọi
là diện tích hình phẳng giới hạn bới và đường thẳng
(phần tô màu đen);
là diện tích hình phẳng giới hạn bới parabol
và đường thẳng
(phần gạch chéo). Với điều kiện nào sau đây của
thì
?

Phương trình hoành độ giao điểm của và đường thẳng
là:
Phương trình hoành độ giao điểm của và đường thẳng
là:
Diện tích hình phẳng giới hạn bởi và
là:
Diện tích hình phẳng giới hạn bởi và
là:
Khi đó:
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Tìm họ nguyên hàm của hàm số
?
Ta có:
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Trong không gian với hệ toạ độ
, cho
. Viết phương trình đường thẳng
qua
, song song với
sao cho khoảng cách từ
đến
là lớn nhất.
Hình vẽ minh họa
Vì nên hai điểm A, B khác phía so với (P).
Gọi H là hình chiếu của B lên d.
Ta có: BH ≤ BA nên khoảng cách BH từ B đến d lớn nhất khi và chỉ khi H trùng A.
Khi đó AB ⊥ d.
VTPT của (P) là
VTCP của d là
Mà d qua A(−3; 0; 1) nên phương trình đường thẳng d là:
Xác định nguyên hàm của hàm số
?
Ta có: .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho hình lập phương
có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Hình vẽ minh họa
Vì nên
Ta có:
Vậy
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Tìm nguyên hàm của hàm số ![]()
Đặt
Tính tổng ![]()
Ta có:
Khi đó ta có:
Tính
?
Áp dụng công thức
Suy ra
Trong không gian, cho hai vectơ
và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian
, cho đường thẳng
vuông góc với mặt phẳng
. Một vectơ chỉ phương của
là:
Mặt phẳng (α) có một vectơ pháp tuyến là .
Đường thẳng vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là
.
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Trong không gian với hệ tọa độ
, cho hai điểm
. Giả sử
là tâm đường tròn ngoại tiếp tam giác
. Tính
.
Ta có:
Mặt phẳng (OAB) đi qua O và có vec-tơ pháp tuyến nên có phương trình
.
Ta xác định được
Theo giả thiết
Mặt khác
Giải hệ gồm (1), (2) và (3) ta được .
Vậy .
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Trong không gian
, phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Tìm nguyên hàm của hàm số
??
Đặt
Số phức
có phần thực là?
2
Số phức có phần thực là?
2
Ta có:
Vậy phần thực của số phức
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho
là miền hình phẳng giới hạn bởi các đường
và đồ thị của hai hàm số
. Gọi V là thể tích của vật thể tròn xoay khi quay
quanh Ox. Mệnh đề nào dưới đây đúng?
Thể tích của khối tròn xoay cần tính là:
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân
giác trong góc A là
. Biết rằng điểm
thuộc đường thẳng AB và điểm
thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?
Giả sử , , ta có:
Theo bài ra: Vì d là đường phân giác của góc A nên:
Từ đây ta bình phương 2 vế được:
Vậy một véc tơ chỉ phương của AC là .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>