Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Biết
, a và b là các số hữu tỉ. Giá trị của
là:
Biết . Giá trị của
là:
Ta có:
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Tìm nguyên hàm của hàm số
?
Ta có:
Tìm họ nguyên hàm của hàm số
?
Ta có:
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Trong không gian
cho ba điểm
và mặt phẳng
. Gọi
là điểm thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Gọi G là trọng tâm tam giác ABC ta có:
Lại có
Vì là một hằng số nên S nhỏ nhất khi MG nhỏ nhất, hay M là hình chiếu của G lên (P).
Từ đó ta tìm được và
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Trong không gian với hệ trục tọa độ
cho các điểm
. Phương trình mặt phẳng đi qua
và vuông góc với
là:
Ta có:
Vậy phương trình mặt phẳng đi qua và vuông góc với
là:
Tính tích phân
?
Ta có:
.
Tính
?
Áp dụng công thức
Suy ra
Trong không gian với hệ tọa độ
,cho đường thẳng
. Phương trình nào dưới đây là phương trình chính tắc của đường thẳng
?
Đường thẳng đi qua điểm
và nhận
làm vectơ chỉ phương.
Phương trình chính tắc của
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Cho hàm số
liên tục trên
và
,
là một nguyên hàm của
trên
. Chọn khẳng định sai trong các khẳng định sau?
Theo định nghĩa tích phân ta có: .
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Trong không gian
, cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Cho hai số phức
. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức
, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Do M, N lần lượt là điểm biểu diễn số phức nên
Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ
Vậy G là điểm biểu diễn của số phức:
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Một ô tô đang chuyển động đều với vận tốc
thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
(trong đó
là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian
giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Khi dừng hẳn
Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Chọn khẳng định đúng trong các khẳng định sau?
Đặt . Đổi cận
Ta có: .
Vậy khẳng định đúng .
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Họ các nguyên hàm của hàm số
trên khoảng
là:
Ta có:
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a) là một nguyên hàm của
. Đúng||Sai
b) . Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Cho số phức
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Phần thực của số phức
là:
Ta có:
Số phức
là số phức nào sau đây?
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian với hệ tọa độ
, cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Trong không gian
,cho hai đường thẳng
và
. Khoảng cách giữa hai đường thẳng
và
là:
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Khoảng cách giữa hai đường thẳng và
là: