Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho hai số phức
. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức
, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Do M, N lần lượt là điểm biểu diễn số phức nên
Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ
Vậy G là điểm biểu diễn của số phức:
Tìm họ nguyên hàm của hàm số ![]()
Cho
và hai mặt phẳng
. Khi đó:
Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).
Vì nên
.
Xét các số phức z thỏa mãn
. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức
là một đường tròn có bán kính bằng
Ta có
Đặt
Ta có
Cho số phức
, giá trị của số phức
là?
Ta có:
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Cho số phức
. Số phức
bằng:
Ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Cho tam giác
. Lấy điểm
nằm ngoài mặt phẳng
. Trên đoạn
lấy điểm
sao cho
và trên đoạn
lấy điểm
sao cho
. Biết biểu diễn
là duy nhất. Tính giá trị biểu thức
?
Hình vẽ minh họa
Theo giả thiết ta có: ;
Lấy điểm P trên cạnh AC sao cho . Khi đó:
Cho số phức
. Tính |z|
Ta có
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Trong không gian
, cho ba điểm
và điểm
là tâm đường tròn ngoại tiếp tam giác
. Tính giá trị biểu thức
?
Ta có: nên tam giác ABC vuông tại B
Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.
Vậy đáp án cần tìm là
Cho 2 đường thẳng
và 
Mặt phẳng (P) chứa (d) và song song với
có phương trình tổng quát :
Phương trình (d) cho và vectơ chỉ phương của (d) là:
Phương trình cho vectơ chỉ phương của
là :
Gọi là điểm bất kỳ thuộc mặt phẳng (P) thì :
Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn
là?
Giả sử:
Theo bài ra ta có:
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Một ô tô đang chạy với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
, trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Khi xe dừng hẳn thì vận tốc bằng 0.
Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là
Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là
Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc và 5 s ô tô chuyển động chậm dần đều.
Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là
Vậy trong 8 giây cuối ô tô đi được quang đường
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Để hoàn thành bài tập làm mô hình của lớp, bạn Minh làm một mô hình có dáng khối tròn xoay. Mặt cắt qua trục của mô hình (như hình vẽ), đường cong AB là một phần của parabol có đỉnh là điểm A, .
Tính thể tích của mô hình.

Kí hiệu hình vẽ:

Ta gọi thể tích của chiếc mũ là V
Thể tích của khối trụ có bán kính đáy bằng và đường cao là
là V1
Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong AB và hai trục tọa độ quanh trục Oy là V2.
Ta có:
Chọn hệ trục tọa độ như hình vẽ
Do parabol có đỉnh A nên nó có phương trình dạng
Vì qua điểm
nên
=> (vì
)
=>
=>
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Xác định nguyên hàm
của hàm số
?
Ta có:
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị như hình vẽ:

Tính tích phân
?
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Trong không gian
, biết mặt phẳng
đi qua điểm
và cắt các tia dương
lần lượt tại ba điểm
khác gốc tọa độ
, sao cho
đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Vì mặt phẳng cắt các tia dương của trục
nên ta có
Ta có
Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:
Dấu bằng xảy ra khi:
Suy ra độ dài ba cạnh theo thứ tự lập thành một cấp số cộng.
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có bao nhiêu điểm
cách đều các mặt phẳng
?
Ta có
Ta có:
Ta có:
Gọi điểm cách đều các mặt phẳng
Từ
Từ
Từ
Từ (1), (3), (5) suy ra , b khác 0 tùy ý.
Như vậy có vô số điểm cách đều bốn mặt phẳng
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Họ nguyên hàm của hàm số
là:
Ta có:
.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Tích phân
bằng:
Ta có:
Xác định giá trị của tham số
thỏa mãn
?
Ta có:
Vậy đáp án .
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Cho số phức
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Trong không gian với hệ tọa độ
; cho điểm
. Gọi
là hình chiếu vuông góc của điểm
trên ba trục tọa độ
. Viết phương trình mặt phẳng
?
Có là hình chiếu của
lên các trục tọa độ nên mặt phẳng cần tìm là
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).