Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Giá trị
là:
Ta có: .
Cho phương trình
. Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Cho biết
là một phần tử của tập hợp
xét các mệnh đề sau:
(I) ![]()
(II)
.
(III) ![]()
(IV) ![]()
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Tam giác
là tam giác gì khi có các góc thỏa mãn biểu thức
?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho mệnh đề chứa biến
chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Một tam giác có ba cạnh là
Bán kính đường tròn ngoại tiếp là:
Ta có:
Suy ra:
.
Mà
.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Trước hết, ta vẽ hai đường thẳng:
Thử trực tiếp ta thấy là nghiệm của phương trình (2) nhưng không phải là nghiệm của phương trình (1). Sau khi gạch bỏ các miền không thích hợp, tập hợp nghiệm của bất phương trình chính là các điểm thuộc đường thẳng
Chọn đáp án .
Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với
{
,
và
}
Ta liệt kê các phần tử của tập A: .
Như vậy chỉ có phương án là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có:
Cho tam giác
đều cạnh
nội tiếp đường tròn
,
là một điểm thay đổi trên
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
. Tính tổng
.
Hình vẽ minh họa
Dựng hình bình hành DBCA. Ta có:
Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:
Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.
Vậy
Cho tam giác
, kẻ đường cao
và
. Gọi
là trung điểm của
,
là điểm thỏa mãn
và
. Khi đó độ dài vectơ
bằng bao nhiêu?
Hình vẽ minh họa

Gọi E là điểm đối xứng của B qua A, ta có:
Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác
Suy ra K là giao điểm của a và đường tròn tâm A bán kính .
Điểm K cần tìm là N hoặc P
Ta có: .
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?
TH1:; phương trình chỉ có một nghiệm duy nhất nên loại m = 0
TH2: m ≠ 0
Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì
đồng thời m ∈ [ − 7; 7].
Vậy m = {1; 2;3;4;5;6;7}→ có 7 giá trị nguyên của m thỏa mãn.
Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?
Hình vẽ minh họa

Ta có:
G là trọng tâm tam giác ABC =>
D là trung điểm của BC =>
E là trung điểm của AC =>
F là trung điểm của AB =>
Khi đó:
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
?
Thay tọa độ (0;0) vào hệ ta được
không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.
Cho tam giác
Tập hợp tất cả các điểm
thỏa mãn đẳng thức
là
Ta có
Mà cố định
Tập hợp điểm
là đường tròn tâm
, bán kính
.
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Cho 4 điểm A, B, C, D phân biệt. Khi đó
bằng
Ta có:
Cho
và
. Khi đó,
bằng:
Ta có:
.
Các giá trị của tham số m để phương trình
(1) có nghiệm là:
Đặt
⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3
Vì nên
Phương trình (1) trở thành 4t2 − 3 + m = t ⇔ − 4t2 + t + 3 = m.
Xét hàm số y = − 4t2 + t − 3 với
Ta có
Bảng biến thiên

Phương trình (1) có nghiệm ⇔ phương trình có nghiệm
⇔ đồ thị hàm số y = − 4t2 + t − 3 trên cắt đường thẳng
.
Vậy phương trình (1) có nghiệm khi và chỉ khi .
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ
theo các vectơ đơn vị là
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Tổng các nghiệm của phương trình
là
ĐKXĐ: x ≥ 0
Dễ thấy x = 0 không phải là nghiệm của phương trình
Xét x > 0, phương trình
Đặt
Phương trình trở thành
• Với t = 1 ta có (thỏa mãn)
• Với t = 2 ta có (thỏa mãn)
Vậy phương trình có nghiệm là và x = 1.
Tổng các nghiệm của phương trình là .
Cho ba điểm
phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Tập xác định của hàm số
là:
Hàm số xác định ⇔ x − 1 ≥ 0 ⇔ x ≥ 1.
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Xét đáp án
là bất phương trình bậc nhất 3 ẩn
, không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
là bất phương trình bậc nhất hai ẩn có dạng
,
.
Xét đáp án
là bất phương trình có chứa
nên không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
không là bất phương trình bậc nhất hai ẩn vì không có dạng
.
Cho hình chữ nhật ABCD có
, AD = 1. Tính góc giữa hai vectơ
và ![]()
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
hoàn toàn nằm phía trên trục hoành.
Khi đồ thị hàm số hoàn toàn nằm phía trên trục hoành thì phương trình vô nghiệm Suy ra
và
(bề lõm hướng lên trên).