Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Tam thức bậc hai ![]()
Ta có: và
.
Phương trình có hai nghiệm là
và
.
Do đó
.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Gọi
là trọng tâm tam giác vuông
với cạnh huyền
Tính độ dài của vectơ
.
Gọi là trung điểm của
Ta có
Tam giác ABC có
, diện tích bằng 120. Độ dài đường trung tuyến AM là:
Ta có:
Diện tích tam giác bằng 120
Xét tam giác ABC vuông tại A ta có:
=> Trung tuyến AM có độ dài là:
Cho
Tìm ![]()
Vậy
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn
. Chọn mệnh đề đúng.
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Cho tam giác
có
. Biết rằng các góc của tam giác thỏa mãn biểu thức:
![]()
Chọn khẳng định đúng?
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác vuông tại C.
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
?
Thay tọa độ (0;0) vào hệ ta được
không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Cho tam giác
. Lấy các điểm
sao cho
và
. Xác định
để ba điểm
thẳng hàng.
Ta có:
Để ba điểm thẳng hàng thì
hay
Khẳng định nào sau đây là đúng?
Ta có cùng hướng.
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

Tập hợp A biểu thị trên trục số là nửa khoảng
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Vì và
nên đáp án
sai.
Vì nên đáp án
và
cùng phương sai.
Vì nên đáp án
vuông góc với
đúng.
Kí hiệu
có nghĩa là gì?
Cho hai tập hợp và
. Nếu
là tập con của
thì hiệu
gọi là phần bù của
trong
, kí hiệu
.
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

Do miền nghiệm không chứa biên nên ta loại đáp án và
. Chọn điểm
thử vào các hệ bất phương trình.
Xét đáp án , ta có
. Sai.
Vậy chọn đáp án .
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện: .
Ta có: .
Loại . Do đó phương trình có 1 nghiệm.
Trong các tập hợp sau đây, tập hợp nào bằng tập hợp
:
Ta có:
Tập hợp là tập hợp
.
Vậy tập hợp
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Đồ thị hàm số y = x2 − 6|x| + 5:
Ta có:
Đồ thị (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần
Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung
Phần đồ thị (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung
Ta có đồ thị (C) như hình vẽ

Vậy đồ thị (C) có trục đối xứng có phương trình x = 0.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Cho hai vectơ
và
. Biết
=2 ,
=
và
. Tính
.
Ta có:
.
Giả sử
là nghiệm của phương trình
. Khi đó giá trị lớn nhất của biểu thức
bằng:
Để phương trình có hai nghiệm thì
Áp dụng hệ thức Viet ta có:
Khi đó: .
Xét hàm số có hệ số
, hoành độ đỉnh
nên
đồng biến trên
.
Phương trình
có mấy nghiệm ?
Điều kiện:
Đặt .
PT đã cho trở thành:
Với t = 2 ta được
Với t = − 4 ta được ta được
Vậy phương trình có hai nghiệm là ;
.
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Cho
Tìm
để hai vectơ
cùng phương.
Hai vectơ cùng phương
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho hàm số
. Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).