Cho tam giác
và điểm
thỏa mãn
. Tìm vị trí điểm ![]()
Gọi là trung điểm của
là trung điểm
Cho tam giác
và điểm
thỏa mãn
. Tìm vị trí điểm ![]()
Gọi là trung điểm của
là trung điểm
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Cho tam giác
có
là trung điểm của
Tính
theo
và ![]()
Ta có
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng trục số như sau:

Vậy
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho 2 vectơ đơn vị
và
thỏa
. Hãy xác định
.
Ta có: và
.
Suy ra .
Phương trình
có mấy nghiệm ?
Đặt . Ta có hệ phương trình:
Với .
Với .
Vậy phương trình có 4 nghiệm.
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho hàm số
. Khẳng định nào sau đây là sai?
Ta có:
Khẳng định sai là:
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10; − 4) để đường thẳng d : y = − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?
Xét phương trình: − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0
Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là
Vậy trong nửa khoảng[ − 10; − 4) có 6 giá trị nguyên m.
Cho hệ bất phương trình
. Hỏi khi cho
,
có thể nhận mấy giá trị nguyên nào?
Khi hệ bất phương trình trở thành:
Vậy không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Cho tam giác
có tọa độ ba đỉnh
. Trọng tâm G của tam giác
là:
Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):
Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.
Nửa chu vi tam giác ABC:
Áp dụng công thức Hê - rông tính diện tích tam giác ABC:
Mặt khác
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Trong mặt phẳng Oxy, cho
. Tìm x để
và
cùng phương.
Để và
cùng phương thì
Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.
y = x2 − 4x + 1 = (x−2)2 − 3 ≥ − 3.
Dấu xảy ra khi và chỉ khi x = 2.
Vậy hàm số đã cho đạt giá trị nhỏ nhất là − 3 tại x = 2.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình
.
Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng
. Tính tích P = ab.
Vì (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng nên ta có hệ
(thỏa mãn a > 1) hoặc
(loại).
Suy ra P = ab = 16.12 = 192.
Tập
bằng tập nào sau đây?
Ta có:
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Cho hệ bất phương trình
. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:
Xét cặp số (-1; -1) thay vào bất phương trình ta thấy (Loại)
Xét cặp số (-1; 0) thay vào bất phương trình ta thấy (Loại)
Xét cặp số (1; 1) thay vào bất phương trình ta thấy:
Xét cặp số (2; 2) thay vào bất phương trình ta thấy
Xét cặp số (0; -1) thay vào bất phương trình ta thấy (Loại)
Vậy cặp số thỏa mãn hệ bất phương trình là:
Cho
,
. Tính góc của
.
Ta có .
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho hai vectơ không cùng phương
và
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ và
, đó là
."
Tập
bằng tập nào sau đây?
Ta có:
Cho tam giác đều
cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với
. Bất phương trình thứ hai sai nên không thỏa mãn.
Với
. Đúng. Chọn đáp án này.
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Giải phương trình: ![]()
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ta được thỏa mãn
Vậy phương trình có nghiệm .
Cho
và
Khi đó:
Ta có:
Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Bất phương trình
tương đương với bất phương trình nào sau đây?
Ta có: .
Cho tam giác đều
có cạnh bằng
và chiều cao
. Mệnh đề nào sau đây là sai?
+) nên đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
sai.
Gọi
là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Giả sử
là nghiệm của phương trình
. Khi đó giá trị lớn nhất của biểu thức
bằng:
Để phương trình có hai nghiệm thì
Áp dụng hệ thức Viet ta có:
Khi đó: .
Xét hàm số có hệ số
, hoành độ đỉnh
nên
đồng biến trên
.