Cho tam giác
, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?
Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm . Vậy có 6 véc tơ.
Cho tam giác
, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?
Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm . Vậy có 6 véc tơ.
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có
Khẳng định nào sau đây là đúng?
Ta có cùng hướng.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Cho hàm số:
. Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Tính tổng bình phương các nghiệm của phương trính
bằng:
ĐK:
.
Đặt , (t≥0)Phương trình thành
.
t = 1 ⇒ x2 − 2x − 1 = 0
.
Vậy phương trình đã cho có hai nghiệm là .
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Cho hai khoảng
và
. Khẳng định nào sau đây là sai?

Vậy khi
Cho bất phương trình
miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của a và Δ.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0
Cho tam giác
, kẻ đường cao
và
. Gọi
là trung điểm của
,
là điểm thỏa mãn
và
. Khi đó độ dài vectơ
bằng bao nhiêu?
Hình vẽ minh họa

Gọi E là điểm đối xứng của B qua A, ta có:
Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác
Suy ra K là giao điểm của a và đường tròn tâm A bán kính .
Điểm K cần tìm là N hoặc P
Ta có: .
Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8
, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.
Gọi vận tốc ban đầu của vật là .
Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.
Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:
Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.
Ta có hàm số:
Khi t = 7 thì vật đã rơi được quãng đường là:
.
Cho hệ bất phương trình
có miền nghiệm là miền ngũ giác
như hình dưới. Giá trị nhỏ nhất của
là:

Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.
Tọa độ đỉnh A là tọa độ giao điểm hai đường thẳng a và c
=> Tọa độ điểm A là nghiệm của hệ phương trình:
Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng a và e
=> Tọa độ điểm B là nghiệm của hệ phương trình:
Tọa độ đỉnh D là tọa độ giao điểm hai đường thẳng b và d
=> Tọa độ điểm D là nghiệm của hệ phương trình:
Tọa độ đỉnh E là tọa độ giao điểm hai đường thẳng d và e
=> Tọa độ điểm E là nghiệm của hệ phương trình:
Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị nhỏ nhất của biểu thức F trên miền tứ giác ABCDE.
Tính các giá trị của biểu thức tại các đỉnh của đa giác.
Tại ta có:
Tại ta có:
Tại ta có:
Tại ta có:
Tại ta có:
F đạt giá trị nhỏ nhất bằng -114 tại
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Cho
. Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Mệnh đề nào sau đây sai?
Với ba điểm phân biệt nằm trên một đường thẳng, đẳng thức
xảy ra khi
nằm giữa
và
.
Chọn đáp án sai là: Nếu ba điểm phân biệt nằm tùy ý trên một đường thẳng thì
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Cho hai tập hợp
. Tìm giá trị của a để
.
Để khi và chỉ khi
.
Vậy là giá trị cần tìm.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Cho tam thức
. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.
Để f(x) ≥ 0 với mọi x ∈ ℝ
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Điểm
thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Xét hệ . Thay tọa độ
vào hệ:
. Cả 2 bất phương trình đều đúng. Chọn đáp án này.
Trong mặt phẳng tọa độ
tìm điểm
thuộc trục hoành để khoảng cách từ đó đến điểm
bằng ![]()
Vì .
Ta có: .
Ta có:
.
Kí hiệu
có nghĩa là gì?
Cho hai tập hợp và
. Nếu
là tập con của
thì hiệu
gọi là phần bù của
trong
, kí hiệu
.
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Gọi
lần lượt là trung điểm của các cạnh
và
của tứ giác
. Mệnh đề nào sau đây đúng?
Do M là trung điểm các cạnh AB nên .
Do N lần lượt là trung điểm các cạnh DC nên .
Ta có
Mặt khác
Do đó .
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Phương trình
có mấy nghiệm nguyên ?
Đặt . Ta có hệ phương trình:
Với t = − x ta được
Với t = x − 1 ta được
Vậy phương trình có 2 nghiệm x = − 2 và .
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho
. Điều kiện để
là:
Ta có:
.
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.