Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 2: Nhận biết

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 3: Thông hiểu

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 4: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.

    Khẳng định nào sau đây là sai?

    Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải

    \overset{}{ightarrow} Hàm số không đổi trên khoảng (0;2).

    Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;3).

    Chọn đáp án Hàm số đồng biến trên khoảng (2;3).

  • Câu 5: Thông hiểu

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 6: Vận dụng cao

    Cho hai điểm A,\
\ B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
ight|

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA \Rightarrow 2\overrightarrow{EA} + \overrightarrow{EB} =
\overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB \Rightarrow 2\overrightarrow{FB} + \overrightarrow{FA} =
\overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +2\overrightarrow{MB} ight|

    \Leftrightarrow \left| 2\overrightarrow{ME}+ 2\overrightarrow{EA} + \overrightarrow{ME} + \overrightarrow{EB}ight|= \left| 2\overrightarrow{MF} + 2\overrightarrow{FB} +\overrightarrow{MF} + \overrightarrow{FA} ight|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} ight| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} ight| \Leftrightarrow
\left| 3\ \overrightarrow{ME} ight| = \left| 3\ \overrightarrow{MF}
ight| \Leftrightarrow ME = MF. \
(*)

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF. Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF.

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| là đường trung trực của đoạn thẳng AB.

  • Câu 7: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|

     Hình vẽ minh họa

    Tính độ lớn vectơ

    Ta có:\left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ACD vuông cân tại D ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2} \hfill \\   \Rightarrow AC = a\sqrt 2  \hfill \\   \Rightarrow AC = \left| {\overrightarrow {AC} } ight| = a\sqrt 2  \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 9: Vận dụng cao

    Phương trình 6x^{2} - 10x + 5 = (4x - 1)\sqrt{6x^{2} - 6x +
5} có mấy nghiệm nguyên ?

    Đặt t = \sqrt{6x^{2} - 6x + 5}\ \ \ \ (t
\geq 0). Phương trình đã cho trở thành:

    \begin{matrix}
t^{2} - (4x - 1)t - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 4x \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\sqrt{6x^{2} - 6x + 5}\  = 1 \\
\sqrt{6x^{2} - 6x + 5}\  = 4x \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{- 3 + \sqrt{59}}{10}.
\\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 10: Thông hiểu

    Cho hàm số y =
\frac{x + 1}{x - 1}. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.

    Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng  − 2.

    Khi đó: \frac{x_{0} + 1}{x_{0} - 1} = - 2
\Leftrightarrow x_{0} + 1 = 2\left( 1 - x_{0} ight) \Leftrightarrow
3x_{0} = 1 \Leftrightarrow x_{0} = \frac{1}{3} \Rightarrow M\left(
\frac{1}{3}; - 2 ight).

  • Câu 11: Vận dụng cao

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 12: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 13: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 14: Vận dụng

    Biểu thức F(x;y)
= y - x đạt giá trị nhỏ nhất với điều kiện \left\{ \begin{matrix}
2x - y \geq 2 \\
x - 2y \leq 2 \\
x + y \leq 5 \\
x \geq 0 \\
\end{matrix} ight. tại điểm M có toạ độ là:

    Vẽ các đường thẳng :

    \begin{matrix}
\left( d_{1} ight):y = 2x - 2 \\
\left( d_{2} ight):y = \frac{1}{2}x - 1 \\
\left( d_{3} ight):y = 5 - x \\
\end{matrix}

    Khi đó miền nghiệm của hệ là miền trong của tam giác ABC

    Tọa độ các đỉnh: A\left(
\frac{7}{3};\frac{8}{3} ight); B(4;1);C\left( \frac{2}{3}; - \frac{2}{3}
ight)

    Ta có : F(4;1) = - 3; \ \ F\left( \frac{2}{3}; - \frac{2}{3} ight) =
\frac{- 4}{3} \Rightarrow F_{\min}
= - 3

  • Câu 15: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 16: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -8).

    Xét tỉ số \frac{4}{- 4} eq\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại đáp án \overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-2}{6}\overset{}{ightarrow}\overrightarrow{u},\\overrightarrow{v} không cùng phương. Loại đáp án Hai vectơ \overrightarrow{u} = (2; - 1)\ và\\overrightarrow{v} = ( - 2; - 1) đối nhau.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

    Chọn đáp án \overrightarrow{\mathbf{u}}\mathbf{-}\overrightarrow{\mathbf{v}}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 17: Thông hiểu

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 18: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 19: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 20: Vận dụng

    Từ hai vị trí AB của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30^{0}, phương nhìn BC tạo với phương nằm ngang góc 15^{0}30'. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

    Từ giả thiết, ta suy ra tam giác ABC\widehat{CAB} = 60^{0},\ \ \widehat{ABC} =
105^{0}30'c = 70. Khi đó \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Leftrightarrow \widehat{C} = 180^{0} - \left(
\widehat{A} + \widehat{B} ight) =
180^{0} - 165^{0}30' = 14^{0}30'.

    Theo định lí sin, ta có \frac{b}{\sin B}
= \frac{c}{\sin C} hay \frac{b}{sin105^{0}30'} =
\frac{70}{sin14^{0}30'}

    Do đó AC = b =
\frac{70.sin105^{0}30'}{sin14^{0}30'} \approx 269,4m.

    Gọi CH là khoảng cách từ C đến mặt đất. Tam giác vuông ACH có cạnh CH đối diện với góc 30^{0} nên

    CH = \frac{AC}{2} = \frac{269,4}{2} =
134,7\ m. Vậy ngọn núi cao khoảng 135m.

  • Câu 21: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 22: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 23: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 24: Vận dụng

    Lớp 10B_{1}7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B_{1} là:

    Ta dùng biểu đồ Ven để giải

    Nhìn vào biểu đồ, số học sinh giỏi ít nhất 1 trong 3 môn là:

    1 + 2 + 1 + 3 + 1 + 1 + 1 =
10.

  • Câu 25: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 26: Thông hiểu

    Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:

     Vì B' đối xứng với B qua A => A là trung điểm của BB'

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_{B'}} = 2{x_A}} \\   {{y_B} + {y_{B'}} = 2{x_A}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 2{x_A} - {x_B}} \\   {{y_{B'}} = 2{x_A} - {y_B}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 4} \\   {{y_{B'}} = 1} \end{array}} ight. \Leftrightarrow B'\left( {4;1} ight) \hfill \\ \end{matrix}

  • Câu 27: Vận dụng

    Cho tam giác ABC và điểm M thỏa mãn điều kiện \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Mệnh đề nào sau đây sai?

    Ta có \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}
\Leftrightarrow \overrightarrow{BA} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MC} =
\overrightarrow{AB}

    \Rightarrow MABC là hình bình hành \Rightarrow \overrightarrow{MA} =
\overrightarrow{CB}.

    Do đó \overrightarrow{MA} =
\overrightarrow{BC} sai.

  • Câu 28: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;2)B(
- 3;1). Tìm tọa độ điểm C thuộc trục tung sao cho tam giác ABC vuông tại A.

    C \in Oy \Rightarrow
C(0;a).

    Ta có: \overrightarrow{AB} = ( - 4; -
1);\overrightarrow{AC} = ( - 1;a - 2)

    Để tam giác ABC vuông tại A khi và chỉ khi \overrightarrow{AB}.\overrightarrow{AC} = 0
\Leftrightarrow 4 - a + 2 = 0 \Leftrightarrow a = 6 \Rightarrow
C(0;6).

  • Câu 29: Nhận biết

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

  • Câu 30: Thông hiểu

    Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0,    ∀x ∈ ℝ?

    f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.

  • Câu 31: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 32: Thông hiểu

    Xác định tập hợp B=\{x∈Z|−2≤x<3\} bằng cách liệt kê các phần tử.

     Ta có: B=\{x∈Z|−2≤x<3\} =\{–2; –1; 0; 1; 2\}.

  • Câu 33: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 34: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 35: Thông hiểu

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x) < 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
a < 0 \\
\end{matrix} ight.\  \Leftrightarrow (m + 2)^{2} + 8(m - 4) < 0
\Leftrightarrow m^{2} + 12m - 28 < 0 \Leftrightarrow - 14 < m <
2.

  • Câu 36: Thông hiểu

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 37: Vận dụng

    Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8 m/s^{2}, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.

    Gọi vận tốc ban đầu của vật là v_0 = 12 m/s.

    Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.

    Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:

    s = {v_0}t + \frac{1}{2}g{t^2}

    Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.

    Ta có hàm số: s = f\left( t ight) = 12t + \frac{1}{2}.9,8.{t^2} = 12t + 4,9{t^2}

    Khi t = 7 thì vật đã rơi được quãng đường là:

    s = f(7) = 12.7 + 4,9. 72 = 324,1 (m).

  • Câu 38: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 39: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 40: Vận dụng

    Tổng các nghiệm của phương trình x(x + 5) = 2\sqrt[3]{x^{2} + 5x - 2} - 2 là:

    Đặt t = \sqrt[3]{x^{2} + 5x - 2}. Phương trình trở thành:

    t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t =  − 2

    Ta được

    \sqrt[3]{x^{2} + 5x - 2} = - 2\Leftrightarrow x^{2} + 5x + 6 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = - 2 \\x = - 3 \\\end{matrix} ight..

    Tổng các nghiệm của phương trình là  − 5.

  • Câu 41: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\frac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\dfrac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{B}}{2}} =\tan\dfrac{\widehat{C}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{C}}{2}}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\left( 1 + \tan^{2}\dfrac{\widehat{B}}{2}ight) = \tan\dfrac{\widehat{C}}{2}.\left( 1 +\tan^{2}\dfrac{\widehat{C}}{2} ight)

    Đặt \tan\dfrac{\widehat{B}}{2} =x;\tan\dfrac{\widehat{C}}{2} = y khi đó ta có:

    x\left( 1 + x^{2} ight) = y\left( 1 +
y^{2} ight)

    \Leftrightarrow x^{3} - y^{3} + x - y =
0

    \Leftrightarrow (x - y)\left( x^{2} + xy
+ y^{2} + 1 ight) = 0

    \Leftrightarrow x - y = 0

    Do đó \tan\frac{\widehat{B}}{2} =
\tan\frac{\widehat{C}}{2} \Leftrightarrow \frac{\widehat{B}}{2} =
\frac{\widehat{C}}{2} \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân tại A.

  • Câu 42: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 43: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho \overrightarrow{a} = ( - 1;1),\overrightarrow{b} =
(4; - 2). Xác định tọa độ vecto \overrightarrow{v} = \overrightarrow{a} +
2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a} = ( - 1;1) \Rightarrow 2\overrightarrow{a} = ( - 2;2)
\\
\overrightarrow{b} = (4; - 2) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{v} =
\overrightarrow{a} + 2\overrightarrow{b} = \left( - 2 + 4;2 + ( - 2)
ight) = (2;0)

  • Câu 44: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 45: Thông hiểu

    Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng?

    Gọi Mlà trung điểm BC.

    Ta có \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) \Rightarrow
\overrightarrow{AG} = \frac{\overrightarrow{AB} +
\overrightarrow{AC}}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo