Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 2: Thông hiểu

    Tam thức bậc hai f(x)=(1-\sqrt{2})x^{2}+(5-4\sqrt{2})x-3\sqrt{2}+6

     Ta có: \Delta >0a=1-\sqrt2 <0.

    Phương trình f(x)=0 có hai nghiệm là x=-3x=\sqrt2.

    Do đó f(x)>0 \forall x ∈(-3;\sqrt{2}).

  • Câu 3: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(6;0),B(3;1)C( - 1; - 1). Tính số đo góc B của tam giác đã cho.

    Ta có: \overrightarrow{AB} = ( -
3;1)\overrightarrow{CB} =
(4;2).

    \cos B =
\frac{\overrightarrow{AB}.\overrightarrow{CB}}{AB.CB} = \frac{-
10}{\sqrt{10}.\sqrt{20}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CB} ight) = 135^{o}.

  • Câu 4: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 5: Vận dụng

    Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Tính độ dài của vectơ \overrightarrow{v} =
\overrightarrow{GB} + \overrightarrow{GC}.

    Gọi M là trung điểm của BC.

    Ta có \left| \overrightarrow{GB} +
\overrightarrow{GC} ight| = \left| 2\overrightarrow{GM} ight| = 2GM
= 2.\frac{1}{3}AM = \frac{2}{3}AM = \frac{2}{3}\left( \frac{1}{2}BC
ight) = \frac{BC}{3} = 4.

  • Câu 6: Vận dụng

    Tam giác ABC cóAB = 10, AC = 24, diện tích bằng 120. Độ dài đường trung tuyến AM là:

    Ta có:

    Diện tích tam giác bằng 120

    \begin{matrix}  S = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.120}}{{10.23}} = 1 \hfill \\ \end{matrix}

    \Rightarrow \widehat A = {90^0} 

    Xét tam giác ABC vuông tại A ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} \hfill \\   \Rightarrow BC = \sqrt {{{10}^2} + {{24}^2}}  = 26 \hfill \\ \end{matrix}

    => Trung tuyến AM có độ dài là:

    AM = \frac{1}{2}BC = \frac{1}{2}.26 = 13

     

  • Câu 7: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 8: Nhận biết

    Cho bất phương trình x - 2y - 1 < 0 có tập nghiệm S. Khẳng định nào sau đây là đúng?

    Xét điểm ( - 2; - 1). Ta có: - 2 - 2( - 1) - 1 = - 1 < 0 thỏa mãn. Do đó ( - 2; - 1) \in S.

  • Câu 9: Thông hiểu

    Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn \overrightarrow{MA} +
\overrightarrow{MB} + 3\overrightarrow{MC} =
\overrightarrow{0}. Chọn mệnh đề đúng.

    \overrightarrow{MA} + \overrightarrow{MB}+ 3\overrightarrow{MC} = \overrightarrow{0}\Leftrightarrow2\overrightarrow{MI} = - 3\overrightarrow{MC}\Leftrightarrow2\overrightarrow{MI} = 3\overrightarrow{IM} - 3\overrightarrow{IC}\Leftrightarrow 5\overrightarrow{MI} =3\overrightarrow{CI}.

  • Câu 10: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 11: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 12: Nhận biết

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 13: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b . Biết rằng các góc của tam giác thỏa mãn biểu thức:

    4\left( \sin\widehat{A} +3\cos\widehat{B} ight) + 3\left( \cos\widehat{A} + 3\sin\widehat{B}ight) = 20

    Chọn khẳng định đúng?

    4\left( \sin\widehat{A} +
3cos\widehat{B} ight) + 3\left( \cos\widehat{A} + 3sin\widehat{B}
ight)

    = \left( 3cos\widehat{A} +
4sin\widehat{A} ight) + \left( 9sin\widehat{B} + 12cos\widehat{B}
ight)

    \leq \sqrt{\left( 4^{2} + 3^{2}
ight)\left( sin^{2}\widehat{A} + cos^{2}\widehat{A} ight)} +
\sqrt{\left( 9^{2} + 12^{2} ight)\left( sin^{2}\widehat{B} +
cos^{2}\widehat{B} ight)}

    = 5 + 15 = 20

    Dấu bằng xảy ra khi và chỉ khi \left\lbrack \begin{matrix}\dfrac{\sin A}{\cos A} = \dfrac{3}{4} \\\dfrac{\sin B}{\cos B} = \dfrac{9}{12} \\\end{matrix} ight.\  \Rightarrow \tan A = \cot B =\dfrac{3}{4}

    \Rightarrow \tan A = \cot\left(
\frac{\pi}{2} - B ight)

    \Leftrightarrow A = \frac{\pi}{2} - B
\Rightarrow A + B = \frac{\pi}{2}

    \Rightarrow C =
\frac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại C.

  • Câu 14: Thông hiểu

    Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 12,B = \{ n \in \mathbb{N} \mid n \leq
6\}, C = \{ n \in \mathbb{N} \mid 4
\leq n \leq 12\}. Mệnh đề nào sau đây là đúng?

    Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:

    A \cap (B \cup C) = A

  • Câu 15: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight.?

     Thay tọa độ (0;0) vào hệ \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight. ta được \left\{\begin{matrix}-1>0\\ 4<0\end{matrix}ight. không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.

  • Câu 16: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 17: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 18: Vận dụng cao

    Phương trình 2x +
1 + x\sqrt{x^{2} + 2} + (x + 1)\sqrt{x^{2} + 2x + 3} = 0 có mấy nghiệm nguyên dương ?

    Đặt a = \sqrt{x^{2} + 2}\ \ ;\ b =
\sqrt{x^{2} + 2x + 3}\ \ \ \ (a,\ b > 0)\

    \Rightarrow x = \frac{b^{2} - a^{2} -
1}{2}

    Phương trình đã cho trở thành:

    \begin{matrix}
(b - a)\left\lbrack (a + b) + \frac{(a + b)^{2}}{2} + \frac{1}{2}
ightbrack = 0 \\
\Leftrightarrow a = b \Leftrightarrow x = - \frac{1}{2}. \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên dương.

  • Câu 19: Vận dụng cao

    Cho tam giác ABC. Lấy các điểm M,N sao cho \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0};2\overrightarrow{NA} + 3\overrightarrow{NC} =
\overrightarrow{0}\overrightarrow{BC} =
k\overrightarrow{BP}. Xác định k để ba điểm M,N,P thẳng hàng.

    Ta có:

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} =
\frac{3}{5}\overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    \overrightarrow{NP} =
\overrightarrow{NC} + \overrightarrow{CP}

    = \frac{2}{5}\overrightarrow{AC} -
\left( \overrightarrow{BP} - \overrightarrow{BC} ight)

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\overrightarrow{BC}

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\left( \overrightarrow{AC} -
\overrightarrow{AB} ight)

    = \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB}

    Để ba điểm M,N,Pthẳng hàng thì \exists m\mathbb{\in R}:\overrightarrow{NP}
= m\overrightarrow{MN} hay

    \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB} = \frac{3m}{5}\overrightarrow{AC} -
\frac{m}{2}\overrightarrow{AB}

    \left\{ \begin{matrix}\dfrac{1}{k} - \dfrac{2}{5} = \dfrac{3m}{5} \\\dfrac{1}{k} - 1 = - \dfrac{m}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 4 \\k = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 20: Nhận biết

    Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{a} =
\frac{5}{4}\overrightarrow{b}\overset{}{ightarrow}\overrightarrow{a},\
\overrightarrow{b} cùng hướng.

  • Câu 21: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 22: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 23: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = (3;4)\overrightarrow{v} = ( - \ 8;6). Khẳng định nào sau đây đúng?

    \overrightarrow{u} = (3;4) \Rightarrow
\left| \overrightarrow{u} ight| = \sqrt{3^{2} + 4^{2}} = 5\overrightarrow{v} = ( - \ 8;6) \Rightarrow
\left| \overrightarrow{v} ight| = \sqrt{( - 8)^{2} + 6^{2}} =
10 nên đáp án \left|
\overrightarrow{u} ight| = \left| \overrightarrow{v} ight| sai.

    \frac{3}{- 8} eq
\frac{4}{6} nên đáp án M\left( 0; -
\frac{1}{2} ight).\overrightarrow{v} cùng phương sai.

    \overrightarrow{u}.\overrightarrow{v}
= 3.( - 8) + 4.6 = 0 \Rightarrow
\overrightarrow{u}\bot\overrightarrow{v} nên đáp án \overrightarrow{u} vuông góc với \overrightarrow{v} đúng.

  • Câu 24: Nhận biết

    Kí hiệu C_{U}A có nghĩa là gì?

    Cho hai tập hợp AU. Nếu A là tập con của U thì hiệu U\setminus A gọi là phần bù của A trong U, kí hiệu {C_U}A.

  • Câu 25: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 26: Vận dụng

    Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

    Do miền nghiệm không chứa biên nên ta loại đáp án \left\{ \begin{matrix}
x - 2y \leq 0 \\
x + 3y \geq - 2 \\
\end{matrix} ight.\left\{
\begin{matrix}
x - 2y \leq 0 \\
x + 3y \leq - 2 \\
\end{matrix} ight.. Chọn điểm M(0;1)thử vào các hệ bất phương trình.

    Xét đáp án \left\{ \begin{matrix}
x - 2y > 0 \\
x + 3y < - 2 \\
\end{matrix} ight., ta có \left\{ \begin{matrix}
0 - 2.1 > 0 \\
0 + 3.1 < - 2 \\
\end{matrix} ight.. Sai.

    Vậy chọn đáp án \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
\end{matrix} ight..

  • Câu 27: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng lên. Loại đáp án y =  − x2 + 4x − 9y =  − x2 + 4x.

    Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.

  • Câu 28: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0} Xác định vị trí điểm M.

    Giả sử G là trọng tâm tam giác ABC, khi đó ta có:

    \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0

    \Rightarrow M \equiv G

    => M là trọng tâm của tam giác ABC.

  • Câu 29: Thông hiểu

    Phương trình\frac{x^{2}-4x-2}{\sqrt{x-2}}=\sqrt{x-2} có tất cả bao nhiêu nghiệm?

     Điều kiện: x>2.

    Ta có: \frac{x^{2}-4x-2}{\sqrt{x-2}}=\sqrt{x-2}  \Rightarrow x^2-4x-2=x-2x^2-5x=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 5}\end{array}} ight..

    Loại x=0. Do đó phương trình có 1 nghiệm.

  • Câu 30: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 31: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 32: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 33: Vận dụng

    Đồ thị hàm số y = x2 − 6|x| + 5:

    Ta có: y = x^{2} - 6|x| + 5 = \left\{
\begin{matrix}
y_{1} = x^{2} - 6x + 5\ \ \ khi\ x \geq 0\ \ \left( C_{1} ight) \\
y_{2} = x^{2} + 6x + 5\ \ \ khi\ x < 0\ \ \left( C_{2} ight) \\
\end{matrix} ight.

    Đồ thị  (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần

    Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung

    Phần đồ thị  (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung

    Ta có đồ thị  (C) như hình vẽ

    Vậy đồ thị  (C) có trục đối xứng có phương trình x = 0.

  • Câu 34: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 35: Vận dụng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Biết \left| \overrightarrow{a} ight| =2 , \left| \overrightarrow{b} ight|= \sqrt{3}\left( \overrightarrow{a},\overrightarrow{b}
ight) = 120^{o}. Tính\left|
\overrightarrow{a} + \overrightarrow{b} ight|.

    Ta có: \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{7 - 2\sqrt{3}}.

  • Câu 36: Thông hiểu

    Giả sử x_{1},x_{2} là nghiệm của phương trình x^{2} - (m + 2)x + m^{2} + 1 =
0. Khi đó giá trị lớn nhất của biểu thức P = 4\left( x_{1} + x_{2} ight) -
x_{1}x_{2} bằng:

    Để phương trình có hai nghiệm x_{1};x_{2} thì

    \Delta = (m + 2)^{2} - 4\left( m^{2} + 1
ight) \geq 0 \Leftrightarrow - 3m^{2} + 4m \geq 0 \Leftrightarrow 0
\leq m \leq \frac{4}{3}.

    Áp dụng hệ thức Viet ta có: \left\{
\begin{matrix}
x_{1} + x_{2} = m + 2 \\
x_{1}.x_{2} = m^{2} + 1 \\
\end{matrix} ight.

    Khi đó: P = 4(m + 2) - \left( m^{2} + 1
ight) = - m^{2} + 4m + 7.

    Xét hàm số P(m) = - m^{2} + 4m +
7,\forall m \in \left\lbrack 0;\frac{4}{3} ightbrack có hệ số a < 0, hoành độ đỉnh x = 2 nên P(m) đồng biến trên \left\lbrack 0;\frac{4}{3} ightbrack
\Rightarrow \max_{\ _{\left\lbrack 0;\frac{4}{3} ightbrack}}P =
P\left( \frac{4}{3} ight) = \frac{95}{9}.

  • Câu 37: Vận dụng

    Phương trình (x -1)(x + 3) + 2(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 8 có mấy nghiệm ?

    Điều kiện: \left\lbrack \begin{matrix}x \leq - 3 \\x > 1 \\\end{matrix} ight.

    Đặt t = (x - 1)\sqrt{\frac{x + 3}{x - 1}}\Rightarrow t^{2} = (x - 1)(x + 3).

    PT đã cho trở thành:

    t^{2} + 2t - 8 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 2\ \  \\t = - 4\ \ \  \\\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 2 \\\Rightarrow (x - 1)(x + 3) = 4 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{2}(TM) \\x = - 1 - 2\sqrt{2}(L) \\\end{matrix} ight.\  \\\end{matrix}

    Với t =  − 4 ta được ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = - 4 \\\Rightarrow (x - 1)(x + 3) = 16 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{5}(L) \\x = - 1 - 2\sqrt{5}(TM) \\\end{matrix} ight.\  \\\end{matrix}

    Vậy phương trình có hai nghiệm là x = - 1+ 2\sqrt{2} ; x = - 1 -2\sqrt{5}.

  • Câu 38: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 39: Thông hiểu

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 40: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 41: Thông hiểu

    Cho \overrightarrow{a} = ( - 5;0),\ \overrightarrow{b}
= (4;x). Tìm x để hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương.

    Hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương \Leftrightarrow - 5.x =
0.4\overset{}{ightarrow}x = 0.

  • Câu 42: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 43: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 44: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 45: Thông hiểu

    Cho hàm số y =
\left\{ \begin{matrix}
- 2x + 1 & khi & x \leq - 3 \\
\frac{x + 7}{2} & khi & x > - 3 \\
\end{matrix} ight.. Biết f(x0) = 5 thì x0

    TH1. x0 ≤  − 3: Với f(x0) = 5 ⇔  − 2x0 + 1 = 5 ⇔ x0 =  − 2 (Loại).

    TH2. x0 >  − 3: Với f\left( x_{0} ight) = 5 \Leftrightarrow
\frac{x_{0} + 7}{2} = 5 \Leftrightarrow x_{0} = 3 (thỏa mãn).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo