Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM}. (1) Mặt khác I là trung điểm AM nên 2\
\overrightarrow{AI} = \overrightarrow{AM}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{AB} + \overrightarrow{AC} = 4\
\overrightarrow{AI} \Leftrightarrow \overrightarrow{AI} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight).

  • Câu 2: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính \left| \overrightarrow{AB} - \overrightarrow{DA}
ight|.

    Ta có \left| \overrightarrow{AB} -
\overrightarrow{DA} ight| = \left| \overrightarrow{AB} +
\overrightarrow{AD} ight| = \left| \overrightarrow{AC} ight| = AC =
a\sqrt{2}.

  • Câu 3: Thông hiểu

    Cho hàm số: y = f(x) = |2x-3|. Tìm x để f(x) = 3

    Ta có:

    \begin{matrix}  f\left( x ight) = 3 \hfill \\   \Leftrightarrow \left| {2x - 3} ight| = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x - 3 = 3} \\   {2x - 3 =  - 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy x = 3 hoặc x = 0

  • Câu 4: Thông hiểu

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} ight). Khẳng định nào sau đây sai?

    Ta có \overrightarrow{BC} = \left( 6; -
\frac{5}{2} ight) suy ra BC =
\sqrt{6^{2} + \left( - \frac{5}{2} ight)^{2}} =
\frac{13}{2}nên chọn đáp án sai \left| \overrightarrow{BC} ight| =
\frac{\sqrt{13}}{2}.

  • Câu 5: Thông hiểu

    Giải bất phương trình \frac{{5{x^2} + 3x - 8}}{{{x^2} - 7x + 6}} \leqslant 0

    Ta có bảng xét dấu như sau:

    Tìm tập nghiệm của bất phương trình

    Vậy tập nghiệm của bất phương trình là: S = \left[ {\frac{{ - 8}}{5};1} ight) \cup \left( {1;6} ight)

  • Câu 6: Vận dụng

    Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

    Tính chiều cao của cột cờ

    Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:

    Ta có: \widehat {CAB} = {180^0} - {51^0}40' = {128^0}20'

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat {ABC} + \widehat {CAB} + \widehat {ACB} = {180^0} \hfill \\   \Leftrightarrow \widehat {ACB} = {180^0} - \left( {\widehat {ABC} + \widehat {CAB}} ight) \hfill \\   \Leftrightarrow \widehat {ACB} = {180^0} - \left( {{{45}^0}39' + {{128}^0}20'} ight) \hfill \\   \Leftrightarrow \widehat {ACB} = {6^0}1\prime  \hfill \\ \end{matrix}

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AB}}{{\sin \widehat {ACB}}} = \dfrac{{AC}}{{\sin \widehat {ABC}}} = \dfrac{{BC}}{{\sin \widehat {CAB}}} \hfill \\   \Rightarrow \dfrac{{10}}{{\sin {6^0}1'}} = \dfrac{{AC}}{{\sin {{45}^0}39'}} \hfill \\   \Rightarrow AC = \dfrac{{10.\sin {{45}^0}39'}}{{\sin {6^0}1'}} \hfill \\ \end{matrix}

    Ta có tam giác ACH vuông tại C

    \begin{matrix}   \Rightarrow CH = AC.\sin \widehat {HAC} \hfill \\   \Rightarrow CH = \dfrac{{10.\sin {{45}^0}39'}}{{\sin {6^0}1'}}.\sin {51^0}40' \approx 53,51\left( m ight) \hfill \\ \end{matrix}

    Chiều cao của cột cờ khoảng: 1,5+53,51=55,01(m)

  • Câu 7: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 8: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 9: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 10: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 11: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 12: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 13: Vận dụng cao

    Cho tam giác ABC cạnh BC =
10, lấy I \in BC sao cho \frac{IB}{IC} = \frac{3}{2}. Đường tròn tâm I bán kính 3 tiếp xúc với các cạnh AB,AC lần lượt tại các điểm M,N. Tính độ dài cạnh AB?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\sin\widehat{B} = \dfrac{IM}{BI} = \dfrac{1}{2} \\\sin\widehat{C} = \dfrac{IN}{CI} = \dfrac{3}{4} \\\end{matrix} ight. từ đó suy ra \left\{ \begin{matrix}\cos\widehat{B} = \dfrac{\sqrt{3}}{2} \\\cos\widehat{C} = \dfrac{\sqrt{7}}{4} \\\end{matrix} ight. (do \widehat{B};\widehat{C} là các góc nhọn)

    Đặt AB = c;AC = b. Do AI là phân góc của góc \widehat{A} nên \frac{c}{b} = \frac{6}{4} \Rightarrow 2c =
3b

    Mặt khác, theo định lí cosin trong tam giác ABC ta có:

    \left\{ \begin{matrix}
c^{2} = b^{2} + BC^{2} - 2b.BC.cos\widehat{C} \\
b^{2} = c^{2} + BC^{2} - 2c.BC.cos\widehat{B} \\
\end{matrix} ight.

    Thay số ta được hệ phương trình:

    \left\{ \begin{matrix}
2c = 3b \\
c^{2} = b^{2} + 100 - 5\sqrt{70}b \\
b^{2} = c^{2} + 100 - 10\sqrt{3}c \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 2\left( 3\sqrt{3} - \sqrt{7} ight) \\
c = 3\left( 3\sqrt{3} - \sqrt{7} ight) \\
\end{matrix} ight.

    Vậy AB = 3\left( 3\sqrt{3} - \sqrt{7}
ight)

  • Câu 14: Vận dụng

    Cho tam giác ABC vuông cân tại CAB =
\sqrt{2}. Tính độ dài của \overrightarrow{AB} +
\overrightarrow{AC}.

    Ta có AB = \sqrt{2} \Rightarrow AC = CB =
1.

    Gọi I là trung điểm BC \Rightarrow AI = \sqrt{AC^{2} + CI^{2}} =
\frac{\sqrt{5}}{2}.

    Khi đó \overrightarrow{AC} +
\overrightarrow{AB} = 2\overrightarrow{AI} \Rightarrow \left|
\overrightarrow{AC} + \overrightarrow{AB} ight| = 2\left|
\overrightarrow{AI} ight| = 2.\frac{\sqrt{5}}{2} =
\sqrt{5}.

  • Câu 15: Vận dụng cao

    Phương trình 6x^{2} - 10x + 5 = (4x - 1)\sqrt{6x^{2} - 6x +
5} có mấy nghiệm nguyên ?

    Đặt t = \sqrt{6x^{2} - 6x + 5}\ \ \ \ (t
\geq 0). Phương trình đã cho trở thành:

    \begin{matrix}
t^{2} - (4x - 1)t - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 4x \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\sqrt{6x^{2} - 6x + 5}\  = 1 \\
\sqrt{6x^{2} - 6x + 5}\  = 4x \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{- 3 + \sqrt{59}}{10}.
\\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 16: Thông hiểu

    Số phần tử của tập hợp A = \left\{ k^{2} + 1|k \in \mathbb{Z,}|k| \leq 2
ight\}

    Ta có: \left\{ \begin{matrix}
\mathbf{k \in}\mathbf{Z} \\
\left| \mathbf{k} ight|\mathbf{\leq}\mathbf{2} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow k =}\left\{
\mathbf{\pm}\mathbf{2;}\mathbf{\pm}\mathbf{1;0}
ight\}\mathbf{\Rightarrow A =}\left\{ \mathbf{5;2;1}
ight\}

  • Câu 17: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 18: Nhận biết

    Trong các hàm số sau, hàm số nào là nghịch biến:

    Ta có: 

    Hàm số y = f(x) = -2x + 2 có a = -2 < 0

    => Hàm số nghịch biến.

  • Câu 19: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 20: Thông hiểu

    Giả sử x_{1},x_{2} là nghiệm của phương trình x^{2} - (m + 2)x + m^{2} + 1 =
0. Khi đó giá trị lớn nhất của biểu thức P = 4\left( x_{1} + x_{2} ight) -
x_{1}x_{2} bằng:

    Để phương trình có hai nghiệm x_{1};x_{2} thì

    \Delta = (m + 2)^{2} - 4\left( m^{2} + 1
ight) \geq 0 \Leftrightarrow - 3m^{2} + 4m \geq 0 \Leftrightarrow 0
\leq m \leq \frac{4}{3}.

    Áp dụng hệ thức Viet ta có: \left\{
\begin{matrix}
x_{1} + x_{2} = m + 2 \\
x_{1}.x_{2} = m^{2} + 1 \\
\end{matrix} ight.

    Khi đó: P = 4(m + 2) - \left( m^{2} + 1
ight) = - m^{2} + 4m + 7.

    Xét hàm số P(m) = - m^{2} + 4m +
7,\forall m \in \left\lbrack 0;\frac{4}{3} ightbrack có hệ số a < 0, hoành độ đỉnh x = 2 nên P(m) đồng biến trên \left\lbrack 0;\frac{4}{3} ightbrack
\Rightarrow \max_{\ _{\left\lbrack 0;\frac{4}{3} ightbrack}}P =
P\left( \frac{4}{3} ight) = \frac{95}{9}.

  • Câu 21: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 22: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}
= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +
\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -
8).

    Xét tỉ số \frac{4}{- 4} eq
\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại \overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-
2}{6}\overset{}{ightarrow}\overrightarrow{u},\
\overrightarrow{v} không cùng phương. Loại \overrightarrow{u},\ \overrightarrow{v} cùng phương.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}
= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng. Chọn \overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 23: Nhận biết

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 24: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN}=-3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

     Vì \overrightarrow{MN}=-3\overrightarrow{MP} nên M nằm giữa NP, đồng thời MN=3MP.

  • Câu 25: Thông hiểu

    Cho mệnh đề chứa biến P(n):``n^{2} - 1 chia hết cho 4” với n là số nguyên. Xét xem các mệnh đề P(5)P(2) đúng hay sai?

    Thay n = 5n = 2 vào P(n) ta được các số 24 \vdots 43 không chia hết cho 4. Vậy P(5) đúng và P(2) sai.

  • Câu 26: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 27: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 29: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B
= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}
ight) \Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack
\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 30: Thông hiểu

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 31: Thông hiểu

    Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng  − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.

    (P) có hoành độ đỉnh bằng  − 3 và đi qua M(−2;1) nên ta có hệ

    \left\{ \begin{matrix}
- \frac{b}{2a} = - 3 \\
4a + 8 + c = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 6a \\
4a + c = - 7 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{3} \\
c = - \frac{13}{3} \\
\end{matrix} ight.

    \overset{}{ightarrow}S = a + c = -
5.

  • Câu 32: Vận dụng cao

    Cho hai điểm A,\
\ B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
ight|

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA \Rightarrow 2\overrightarrow{EA} + \overrightarrow{EB} =
\overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB \Rightarrow 2\overrightarrow{FB} + \overrightarrow{FA} =
\overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +2\overrightarrow{MB} ight|

    \Leftrightarrow \left| 2\overrightarrow{ME}+ 2\overrightarrow{EA} + \overrightarrow{ME} + \overrightarrow{EB}ight|= \left| 2\overrightarrow{MF} + 2\overrightarrow{FB} +\overrightarrow{MF} + \overrightarrow{FA} ight|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} ight| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} ight| \Leftrightarrow
\left| 3\ \overrightarrow{ME} ight| = \left| 3\ \overrightarrow{MF}
ight| \Leftrightarrow ME = MF. \
(*)

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF. Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF.

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| là đường trung trực của đoạn thẳng AB.

  • Câu 33: Vận dụng

    Biểu thức F(x;y)
= y - x đạt giá trị nhỏ nhất với điều kiện \left\{ \begin{matrix}
2x - y \geq 2 \\
x - 2y \leq 2 \\
x + y \leq 5 \\
x \geq 0 \\
\end{matrix} ight. tại điểm M có toạ độ là:

    Vẽ các đường thẳng :

    \begin{matrix}
\left( d_{1} ight):y = 2x - 2 \\
\left( d_{2} ight):y = \frac{1}{2}x - 1 \\
\left( d_{3} ight):y = 5 - x \\
\end{matrix}

    Khi đó miền nghiệm của hệ là miền trong của tam giác ABC

    Tọa độ các đỉnh: A\left(
\frac{7}{3};\frac{8}{3} ight); B(4;1);C\left( \frac{2}{3}; - \frac{2}{3}
ight)

    Ta có : F(4;1) = - 3; \ \ F\left( \frac{2}{3}; - \frac{2}{3} ight) =
\frac{- 4}{3} \Rightarrow F_{\min}
= - 3

  • Câu 34: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 35: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 36: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 37: Vận dụng

    Phương trình \sqrt[3]{\frac{2x}{x + 1}} + \sqrt[3]{\frac{1}{2} +\frac{1}{2x}} = 2 có nghiệm thuộc khoảng:

    Đặt t = \sqrt[3]{\frac{2x}{x +1}}. Phương trình đã cho trở thành: t+ \frac{1}{t} = 2 \Leftrightarrow t = 1

    Ta được \sqrt[3]{\frac{2x}{x + 1}} = 1\Leftrightarrow x = 1 thuộc [1 ; 2).

  • Câu 38: Nhận biết

    Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x_0; y_0) sao cho ax_0 + by_0 + c < 0 được gọi là ……của bất phương trình ax + by + c < 0”.

    Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x_0; y_0) sao cho ax_0 + by_0 + c < 0 được gọi là miền nghiệm của bất phương trình ax + by + c < 0.

  • Câu 39: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 40: Vận dụng cao

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 41: Nhận biết

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c;(a eq 0). Khẳng định nào sau đây đúng?

    Ta có: f(x) > 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta < 0 \\
\end{matrix} ight.

  • Câu 42: Vận dụng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Biết \left| \overrightarrow{a} ight| =2 , \left| \overrightarrow{b} ight|= \sqrt{3}\left( \overrightarrow{a},\overrightarrow{b}
ight) = 120^{o}. Tính\left|
\overrightarrow{a} + \overrightarrow{b} ight|.

    Ta có: \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{7 - 2\sqrt{3}}.

  • Câu 43: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + 2y < 0 \\
x - 3y > - 2 \\
y - x < 4 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Với C(0; - 1). Ta có: \left\{ \begin{matrix}
0 + 2. - 1 < 0 \\
0 - 3.( - 1) > - 2 \\
- 1 - 0 < 4 \\
\end{matrix} ight.. Cả ba bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 44: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA(6;1),\ B( - 3;5) và trọng tâm G( - 1;1). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{6 + ( - 3) + x}{3} = - 1 \\
\frac{1 + 5 + y}{3} = 1 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 6 \\
y = - 3 \\
\end{matrix} ight.\ .

  • Câu 45: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo