Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|

     Hình vẽ minh họa

    Tính độ lớn vectơ

    Ta có:\left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ACD vuông cân tại D ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2} \hfill \\   \Rightarrow AC = a\sqrt 2  \hfill \\   \Rightarrow AC = \left| {\overrightarrow {AC} } ight| = a\sqrt 2  \hfill \\ \end{matrix}

  • Câu 2: Vận dụng

    Cho hình chữ nhật ABCD có AB = \sqrt{2}, AD = 1. Tính góc giữa hai vectơ \overrightarrow{AC}\overrightarrow{BD}

    Ta có: 

    ABCD là hình chữ nhật

    \begin{matrix}   \Rightarrow AC = BD = \sqrt 3  \hfill \\   \Rightarrow OB = OC = \dfrac{{\sqrt 3 }}{2} \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AC}  = 2\overrightarrow {OC} } \\   {\overrightarrow {BD}  = 2\overrightarrow {OD} } \end{array}} ight. \Rightarrow \left( {\overrightarrow {AC} ,\overrightarrow {BD} } ight) = \left( {\overrightarrow {OC} ,\overrightarrow {OD} } ight) = \widehat {DOC}

    Xét tam giác ODC ta có:

    \begin{matrix}  \cos \widehat {DOC} = \dfrac{{O{D^2} + O{C^2} - {{\left( {DC} ight)}^2}}}{{2OD.OC}} \hfill \\   \Rightarrow \cos \widehat {DOC} = \dfrac{{{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} - 2}}{{2{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2}}} =  - \dfrac{1}{3} \hfill \\   \Rightarrow \widehat {DOC} \approx {109^0} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 4: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 5: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 6: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 7: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 8: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 9: Thông hiểu

    Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?

    Đồ thị hàm số bậc hai y = f(x) = a{x^2} + bx + c ,(a e 0) là một đường parabol có đỉnh là điểm I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} ight), có trục đối xứng là đường thẳng x = - \frac{b}{{2a}}. Parabol này quay bề lõm lên trên nếu a > 0.

    Hàm số y = 2x + x^{2}a = 1 > 0

    => Đồ thị hàm số y = 2x + x^{2} có bề lõm quay lên.

  • Câu 10: Vận dụng

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là:

    x = \sqrt{\sqrt{3x^{2} + 1} -1}

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\left\lbrack \begin{matrix}x = 0 \\x = \pm 1 \\\end{matrix} ight.\  \\\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}x = 0 \\x = 1 \\\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 11: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 12: Nhận biết

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 13: Thông hiểu

    Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0?

    (x; y) = (2; 3) => x = 2;{\text{ }}y = 3 thay vào bất phương trình ta có:

    2 + 2.3 - 1 = 7 > 0 => Đáp án sai

    (x; y) = (1; 2) => x = 1;{\text{ }}y = 2 thay vào bất phương trình ta có:

    1 + 2.2 - 1 = 4 > 0 => Đáp án sai

    (x; y) = (0; 1) => x = 0;{\text{ }}y = 1 thay vào bất phương trình ta có:

    0 + 2.1 - 1 = 1> 0 => Đáp án sai

    (x; y) = (-1; 0) => x = -1;{\text{ }}y = 0 thay vào bất phương trình ta có:

    -1 + 2.0 - 1 = -2 < 0 => Đáp án đúng

    Vậy (x; y) = (-1; 0) là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0

  • Câu 14: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho hàm số: y =
\left\{ \begin{matrix}
\frac{1}{x - 1} & x \leq 0 \\
\sqrt{x + 2} & x > 0 \\
\end{matrix} ight.. Tập xác định của hàm số là tập hợp nào sau đây?

    Với x ≤ 0 ta có: y = \frac{1}{x - 1} xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.

    Với x > 0 ta có: y = \sqrt{x + 2} xác định với mọi x ≥  − 2 nên xác định với mọi x > 0.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 16: Thông hiểu

    Biết phương trình 3x + 1 - \sqrt{3x^{2} + 7x} - \sqrt{3x - 1} =0 có một nghiệm có dạng x = \frac{a +\sqrt{b}}{c}, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.

    Điều kiện: \left\{ \begin{matrix}3x^{2} + 7x \geq 0 \\3x - 1 \geq 0 \\\end{matrix} ight.\  \Leftrightarrow x \geq \frac{1}{3}\ \(*)

    Với điều kiện trên, phương trình tương đương

    \left\lbrack (2x + 1) - \sqrt{3x^{2} +7x} ightbrack + \left\lbrack x - \sqrt{3x - 1} ightbrack =0

    \Leftrightarrow \frac{x^{2} - 3x +1}{(2x + 1) + \sqrt{3x^{2} + 7x}} + \frac{x^{2} - 3x + 1}{x + \sqrt{3x -1}} = 0

    \Leftrightarrow \left( x^{2} - 3x + 1ight)\left( \frac{1}{2x + 1 + \sqrt{3x^{2} + 7x}} + \frac{1}{x +\sqrt{3x - 1}} ight) = 0

     ⇔ x2 − 3x + 1 = 0

    \Leftrightarrow x = \frac{3 +\sqrt{5}}{2} hoặc x = \frac{3 -\sqrt{5}}{2}

    Theo yêu cầu đề bài ta chọn nghiệm x =\frac{3 + \sqrt{5}}{2}.

    Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.

  • Câu 17: Nhận biết

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

  • Câu 18: Thông hiểu

    Trong hệ tọa độ Oxy, cho bốn điểm A(3;0),B(4; - 3),C(8; - 1),D( - 2;1). Các điểm nào trong các điểm đã cho thẳng hàng với nhau?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AC} = (5; - 1) \\
\overrightarrow{AD} = ( - 5;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AD}

    Vậy ba điểm A,C,D thẳng hàng.

  • Câu 19: Vận dụng

    Cho parabol (P) : y = ax2 + bx + c, (a≠0) có đồ thị như hình bên. Khi đó 2a + b + 2c có giá trị là

    Parabol (P) : y = ax2 + bx + c, (a≠0) đi qua các điểm A(−1; 0), B(1; −4), C(3; 0) nên có hệ phương trình: \left\{ \begin{matrix}
a - b + c = 0 \\
a + b + c = - 4 \\
9a + 3b + c = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 2 \\
c = - 3 \\
\end{matrix} ight..

    Khi đó: 2a + b + 2c = 2.1 − 2 + 2(−3) =  − 6.

  • Câu 20: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 21: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\frac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\dfrac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{B}}{2}} =\tan\dfrac{\widehat{C}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{C}}{2}}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\left( 1 + \tan^{2}\dfrac{\widehat{B}}{2}ight) = \tan\dfrac{\widehat{C}}{2}.\left( 1 +\tan^{2}\dfrac{\widehat{C}}{2} ight)

    Đặt \tan\dfrac{\widehat{B}}{2} =x;\tan\dfrac{\widehat{C}}{2} = y khi đó ta có:

    x\left( 1 + x^{2} ight) = y\left( 1 +
y^{2} ight)

    \Leftrightarrow x^{3} - y^{3} + x - y =
0

    \Leftrightarrow (x - y)\left( x^{2} + xy
+ y^{2} + 1 ight) = 0

    \Leftrightarrow x - y = 0

    Do đó \tan\frac{\widehat{B}}{2} =
\tan\frac{\widehat{C}}{2} \Leftrightarrow \frac{\widehat{B}}{2} =
\frac{\widehat{C}}{2} \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân tại A.

  • Câu 22: Vận dụng

    Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

    Do miền nghiệm không chứa biên nên ta loại đáp án \left\{ \begin{matrix}
x - 2y \leq 0 \\
x + 3y \geq - 2 \\
\end{matrix} ight.\left\{
\begin{matrix}
x - 2y \leq 0 \\
x + 3y \leq - 2 \\
\end{matrix} ight.. Chọn điểm M(0;1)thử vào các hệ bất phương trình.

    Xét đáp án \left\{ \begin{matrix}
x - 2y > 0 \\
x + 3y < - 2 \\
\end{matrix} ight., ta có \left\{ \begin{matrix}
0 - 2.1 > 0 \\
0 + 3.1 < - 2 \\
\end{matrix} ight.. Sai.

    Vậy chọn đáp án \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
\end{matrix} ight..

  • Câu 23: Vận dụng cao

    Cho tam giác ABC đều cạnh a. Đường thẳng \Delta qua A và song song với BC, lấy điểm M \in \Delta. Tính giá trị nhỏ nhất của \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| khi M di động trên \Delta.

    Hình vẽ minh họa

    Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có

    Ta có:

    \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| = \left| \overrightarrow{CA} + 2\left(
\overrightarrow{IB} - \overrightarrow{IM} ight) ight|

    = \left| \overrightarrow{CA} +
2\overrightarrow{IB} - 2\overrightarrow{IM} ight| = \left|
\overrightarrow{CA} + \overrightarrow{DB} - 2\overrightarrow{IM}
ight|

    = \left| \overrightarrow{CA} -
\overrightarrow{CA} - 2\overrightarrow{IM} ight|

    = 2\left| \overrightarrow{IM} ight|
\geq 2IH = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}

    Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng \Delta.

  • Câu 24: Vận dụng cao

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 25: Vận dụng cao

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =
3 có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}
+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq
\frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3
\Leftrightarrow t + t + 3 +
2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}
3 - t \geq 0 \\
t(t + 3) = (3 - t)^{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
t \leq 3 \\
t = 1 \\
\end{matrix} ight.  ⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}
x = 1 = x_{1} \\
x = 2 = x_{2} \\
\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 26: Nhận biết

    Cho tam giác ABC có tọa độ ba đỉnh A(1;2),B(3; - 2),C(2;3). Trọng tâm G của tam giác ABC là:

    Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{G} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{G} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{G} = 2 \\y_{G} = 1 \\\end{matrix} ight.\  \Rightarrow G(2;1)

  • Câu 27: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 28: Nhận biết

    Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?

    Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0,  ∀x ∈ ℝ.

  • Câu 29: Vận dụng

    Cho số thực a
< 0. Điều kiện cần và đủ để ( -
\infty;a) \cup \left\lbrack \frac{4}{a}; + \infty ight)\mathbb{=
R} là:

    Ta có: ( - \infty;a) \cup \left\lbrack
\frac{4}{a}; + \infty ight)\mathbb{= R \Leftrightarrow}a \geq
\frac{4}{a} \Leftrightarrow a^{2} \leq 4 (vì a < 0 nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)

    \Leftrightarrow - 2 \leq a \leq
2

    a < 0 \Rightarrow - 2 \leq a <
0.

  • Câu 30: Thông hiểu

    Cho tam giác ABC. Hai điểm M,\ \ N chia cạnh BC theo ba phần bằng nhau BM = MN = NC. Tính \overrightarrow{AM} theo \overrightarrow{AB}\overrightarrow{AC}.

    Ta có \overrightarrow{AM} =
\overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} +
\frac{1}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{3}\left(
\overrightarrow{AC} - \overrightarrow{AB} ight) =
\frac{2}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}.

  • Câu 31: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 32: Nhận biết

    Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

    Xét đáp án x + y < 0 

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0 

    Vậy cặp số (2; 3) không là nghiệm của bất phương trình.

    Xét đáp án x + y > 0

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án x - y < 0

    Thay x=2;y=3 ta được: 2 - 3 = -1 < 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án 2x - y > 0

    Thay x=2;y=3 ta được: 2.2 - 3 = 1 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

  • Câu 33: Thông hiểu

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 34: Vận dụng

    Cho hình bình hành ABCDO là giao điểm của hai đường chéo. Gọi E,\ \ F lần lượt là trung điểm của AB,\ \ BC. Đẳng thức nào sau đây sai?

    Ta có OF,\ \ OE lần lượt là đường trung bình của tam giác \Delta
BCD\Delta ABC.

    \Rightarrow BEOF là hình bình hành.

    \overrightarrow{BE} +
\overrightarrow{BF} = \overrightarrow{BO} \Rightarrow
\overrightarrow{BE} + \overrightarrow{BF} - \overrightarrow{DO} =
\overrightarrow{BO} - \overrightarrow{DO} = \overrightarrow{OD} -
\overrightarrow{OB} = \overrightarrow{BD}.

  • Câu 35: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABC\
B(9;7),\ C(11; - 1). Gọi M,N lần lượt là trung điểm của AB,\ AC. Tìm tọa độ vectơ \overrightarrow{MN}?

    Ta có \overrightarrow{MN} =
\frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(2; - 8) = (1; -
4).

  • Câu 36: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 37: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Giả sử x_{1},x_{2} là nghiệm của phương trình x^{2} - (m + 2)x + m^{2} + 1 =
0. Khi đó giá trị lớn nhất của biểu thức P = 4\left( x_{1} + x_{2} ight) -
x_{1}x_{2} bằng:

    Để phương trình có hai nghiệm x_{1};x_{2} thì

    \Delta = (m + 2)^{2} - 4\left( m^{2} + 1
ight) \geq 0 \Leftrightarrow - 3m^{2} + 4m \geq 0 \Leftrightarrow 0
\leq m \leq \frac{4}{3}.

    Áp dụng hệ thức Viet ta có: \left\{
\begin{matrix}
x_{1} + x_{2} = m + 2 \\
x_{1}.x_{2} = m^{2} + 1 \\
\end{matrix} ight.

    Khi đó: P = 4(m + 2) - \left( m^{2} + 1
ight) = - m^{2} + 4m + 7.

    Xét hàm số P(m) = - m^{2} + 4m +
7,\forall m \in \left\lbrack 0;\frac{4}{3} ightbrack có hệ số a < 0, hoành độ đỉnh x = 2 nên P(m) đồng biến trên \left\lbrack 0;\frac{4}{3} ightbrack
\Rightarrow \max_{\ _{\left\lbrack 0;\frac{4}{3} ightbrack}}P =
P\left( \frac{4}{3} ight) = \frac{95}{9}.

  • Câu 39: Thông hiểu

    Cho các vectơ \overrightarrow{a} = (1; - 3),\ \
\overrightarrow{b} = (2;5). Tính tích vô hướng của \overrightarrow{a}\left( \overrightarrow{a} +
2\overrightarrow{b} ight).

    Ta có \overrightarrow{a}.\overrightarrow{a} =
10, \overrightarrow{a}.\overrightarrow{b} = -
13 suy ra \overrightarrow{a}\left(
\overrightarrow{a} + 2\overrightarrow{b} ight) = - 16.

  • Câu 40: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 41: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 42: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 43: Thông hiểu

    Cho tọa độ ba điểm A(0;3),B(4;0),C( - 2; - 5). Tính \overrightarrow{AB}.\overrightarrow{BC}?

    Ta có: A(0;3),B(4;0),C( - 2; -
5)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{AB} = (4; - 3) \\
\overrightarrow{BC} = ( - 6; - 5) \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 4.( - 6) + ( - 3).( - 5) = -
9

  • Câu 44: Vận dụng

    Cho góc \widehat{xOy} = 30{^\circ}. Gọi AB là hai điểm di động lần lượt trên OxOy sao cho AB
= 1. Khi OB có độ dài lớn nhất thì độ dài của đoạn OA bằng:

    Theo định lí hàm sin, ta có

    \frac{OB}{\sin\widehat{OAB}} =
\frac{AB}{\sin\widehat{AOB}} \Leftrightarrow OB =
\frac{AB}{\sin\widehat{AOB}}.sin\widehat{OAB} = \frac{1}{sin30{^\circ}}.sin\widehat{OAB} =
2sin\widehat{OAB}

    Do đó, độ dài OB lớn nhất khi và chỉ khi \sin\widehat{OAB} = 1
\Leftrightarrow \widehat{OAB} = 90{^\circ}.

    Khi đó OB = 2.

    Tam giác OAB vuông tại A \Rightarrow OA = \sqrt{OB^{2} - AB^{2}} =
\sqrt{2^{2} - 1^{2}} = \sqrt{3}.

  • Câu 45: Nhận biết

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo