Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tam thức bậc hai .

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu .

  • Câu 2: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 3: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

  • Câu 4: Thông hiểu

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 5: Vận dụng cao

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 6: Vận dụng cao

    Biết phương trình (x + 5)(2 - x) = 3\sqrt{x^{2} + 3x}có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?

    Điều kiện:

    x2 + 3x ≥ 0⇔ \left\lbrack \begin{matrix}
x \leq - 3 \\
x \geq 0 \\
\end{matrix} ight.\ (1)

    phương trình \Leftrightarrow x^{2} + 3x +
3\sqrt{x^{2} + 3x} - 10 = 0.

    Đặt t = \sqrt{x^{2} + 3x}, điều kiện t ≥ 0.

    Phương trình trở thành t2 + 3t − 10 = 0

    \left\lbrack \begin{matrix}
t = 2(TM) \\
t = - 5(KTM) \\
\end{matrix} ight. \sqrt{x^{2} + 3x} = 2 \Leftrightarrow x^{2} + 3x -
4 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 = x_{2} \\
x = - 4 = x_{1} \\
\end{matrix} ight., thoả mãn (1) ⇒ x1 + 4x2 = 0.

  • Câu 7: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 8: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 9: Vận dụng

    Cho A = \lbrack- 4;7brackB = ( - \infty; -2) \cup (3; + \infty). Khi đó, A\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup(3;7brack.

  • Câu 10: Thông hiểu

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 11: Nhận biết

    Tam giác ABC có \hat B = {60^0},\hat C = {45^0};AC = 5. Độ dài cạnh AB là:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin B}} = \dfrac{{AB}}{{\sin C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin C}}{{\sin B}} = \dfrac{{5.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{5\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

  • Câu 13: Nhận biết

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 14: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 15: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 16: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y > 11 không chứa điểm nào sau đây?

    Xét điểm (1; - 3). Ta có: - 3.1 - 5.3 = - 18 > 11 không thỏa mãn. Do đó (1;3) không thuộc miền nghiệm của bất phương trình - 3x - 5y >
11.

  • Câu 17: Thông hiểu

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 18: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 19: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 20: Vận dụng

    Cho tam giác ABC. Lấy điểm M trên BC sao cho \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AC}.\overrightarrow{AM} = 0. Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AC}.\overrightarrow{AM} = 0 \Leftrightarrow \overrightarrow{AM}\left(
\overrightarrow{AB} - \overrightarrow{AC} ight) = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0 nên AM\bot BC.

  • Câu 21: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA( -
2;2),\ B(3;5) và trọng tâm là gốc tọa độ O(0;0). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    O là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{- 2 + 3 + x}{3} = 0 \\
\frac{2 + 5 + y}{3} = 0 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 1 \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 22: Nhận biết

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 23: Vận dụng

    Cho đường tròn O và hai tiếp tuyến MT,\ \ MT' (TT' là hai tiếp điểm). Khẳng định nào sau đây đúng?

    Do MT,\ \ MT' là hai tiếp tuyến (TT' là hai tiếp điểm) nên MT = MT'.

  • Câu 24: Thông hiểu

    Cho tọa độ ba điểm A(0;3),B(4;0),C( - 2; - 5). Tính \overrightarrow{AB}.\overrightarrow{BC}?

    Ta có: A(0;3),B(4;0),C( - 2; -
5)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{AB} = (4; - 3) \\
\overrightarrow{BC} = ( - 6; - 5) \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 4.( - 6) + ( - 3).( - 5) = -
9

  • Câu 25: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 27: Nhận biết

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 28: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 29: Nhận biết

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 30: Thông hiểu

    Cho f(x)=ax^{2}+bx+c(a≠0)Δ=b^{2}−4ac<0. Khi đó mệnh đề nào đúng?

     Khi \Delta<0 thì f(x) luôn cùng dấu với hệ số a \text{       } \forall x\in \mathbb{R}. Do đó nó không đổi dấu.

  • Câu 31: Vận dụng cao

    Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight| là đường tròn cố định có bán kính R. Tính bán kính R theo a.

    Gọi G là trọng tâm của tam giác ABC. Ta có

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) + 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 4\left(\overrightarrow{MI} + \overrightarrow{IC} ight).

    Chọn điểm I sao cho 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow 3\left(\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} ight)+ \overrightarrow{IC} - \overrightarrow{IA} =\overrightarrow{0}.

    G là trọng tâm của tam giác ABCnên \overrightarrow{IA} + \overrightarrow{IB} +
\overrightarrow{IC} = 3\ \overrightarrow{IG}.

    Khi đó \overrightarrow{IG} +\overrightarrow{IC} - \overrightarrow{IA} = \overrightarrow{0}\Leftrightarrow 9\ \overrightarrow{IG} + \overrightarrow{AI} +\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow \overrightarrow{IG} = \overrightarrow{CA}. (*)

    Do đó \left| 2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC} ight| = \left|\overrightarrow{MB} - \overrightarrow{MA} ight|\Leftrightarrow \left|9\overrightarrow{MI} + 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} ight| = \left| \overrightarrow{AB} ight|\Leftrightarrow 9MI = AB.

    I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính R
= \frac{AB}{9} = \frac{a}{9}.

  • Câu 32: Nhận biết

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M(0; - 3) lần lượt vào từng phương trình của hệ \left\{\begin{matrix}2x - y \leq 3 \\2x + 5y \leq 12x + 8 \\\end{matrix} ight. ta thấy thỏa mãn.

  • Câu 33: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}2x+y\leq 6\\ 3x+4y\leq 6 \\ 5x-2y\geq 0\\x\leq 2 \\ y\geq -1 \end{matrix}ight. có miền nghiệm là miền ngũ giác ABCDE như hình dưới. Giá trị nhỏ nhất của F = 12x -39y là:

    Tìm giá trị nhỏ nhất của biểu thức F = ax + by

    Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.

    Tọa độ đỉnh A là tọa độ giao điểm hai đường thẳng a và c

    => Tọa độ điểm A là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {5x - 2y = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{4}{3}} \\   {y = \dfrac{{10}}{3}} \end{array}} ight. \hfill \\   \Rightarrow A\left( {\dfrac{4}{3};\dfrac{{10}}{3}} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng a và e

    => Tọa độ điểm B là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {x = 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow B\left( {2;2} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh D là tọa độ giao điểm hai đường thẳng b và d

    => Tọa độ điểm D là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x- 4y = 6} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{{2}}{3}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow D\left( {\dfrac{{2}}{3}; - 1} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh E là tọa độ giao điểm hai đường thẳng d và e

    => Tọa độ điểm E là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {5x - 2y = 0} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{2}{5}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow E\left( { - \dfrac{2}{5}; - 1} ight) \hfill \\ \end{matrix}

    Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị nhỏ nhất của biểu thức F trên miền tứ giác ABCDE.

    Tính các giá trị của biểu thức F = 12x -39y tại các đỉnh của đa giác.

    Tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight) ta có: F = 12.\frac{4}{3} - 39.\frac{{10}}{3} =  - 114

    Tại B\left( {2;2} ight) ta có: F = 12.2 - 39.2 =  - 54

    Tại C\left( {2;0} ight) ta có: F = 12.2 - 39.0 = 24

    Tại D\left( {\frac{{2}}{3}; - 1} ight) ta có: F = 12.\frac{{2}}{3} - 39.\left( { - 1} ight) = 47

    Tại E\left( { - \frac{2}{5}; - 1} ight) ta có: F = 12.\left( { - \frac{2}{5}} ight) - 39.\left( { - 1} ight) = \frac{{171}}{5}

    F đạt giá trị nhỏ nhất bằng -114 tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight)

  • Câu 34: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 35: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 36: Vận dụng

    Tam giác ABC vuông tại A, đường cao AH = 32\ \ cm. Hai cạnh ABAC tỉ lệ với 34. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?

    Do tam giác ABC vuông tại A, có tỉ lệ 2 cạnh góc vuông AB:AC3:4 nên AB là cạnh nhỏ nhất trong tam giác.

    Ta có \frac{AB}{AC} = \frac{3}{4}
\Rightarrow AC = \frac{4}{3}AB.

    Trong \Delta ABCAH là đường cao

    \Rightarrow \frac{1}{AH^{2}} =
\frac{1}{AB^{2}} + \frac{1}{AC^{2}} = \frac{1}{AB^{2}} + \frac{1}{\left(
\frac{4}{3}AB^{2} ight)}

    \Leftrightarrow \frac{1}{32^{2}} =
\frac{1}{AB^{2}} + \frac{9}{16AB^{2}} \Rightarrow AB = 40.

  • Câu 37: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 38: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b, độ dài các cạnh tam giác thỏa mãn biểu thức \frac{1}{a + b} + \frac{1}{b + c} =
\frac{3}{a + b + c}. Tính độ lớn góc \widehat{B}?

    Ta có:

    \frac{1}{a + b} + \frac{1}{b + c} =
\frac{3}{a + b + c}

    \Leftrightarrow \frac{a + b + c}{a + b}
+ \frac{a + b + c}{b + c} = 3

    \Leftrightarrow 1 + \frac{c}{a + b} + 1
+ \frac{a}{b + c} = 3

    \Leftrightarrow \frac{c}{a + b} +
\frac{a}{b + c} = 1

    \Leftrightarrow c(b + c) + a(a + b) = (b
+ c)(a + b)

    \Leftrightarrow c^{2} + cb + a^{2} + ab
= ab + b^{2} + ac + bc

    \Leftrightarrow c^{2} + a^{2} - b^{2} =
ac

    \Leftrightarrow \frac{c^{2} + a^{2} -
b^{2}}{2ac} = \frac{1}{2}

    \Leftrightarrow \cos\widehat{B} =
\frac{1}{2}

    \Leftrightarrow \widehat{B} =
60^{0}

  • Câu 39: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 40: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 41: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;3),\ B( - 1;2),\ C( - 2;1). Tìm tọa độ của vectơ \overrightarrow{AB} -
\overrightarrow{AC}.

    Ta có \left\{ \begin{matrix}\overrightarrow{AB} = ( - 2; - 1) \\\overrightarrow{AC} = ( - 3; - 2) \\\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} -\overrightarrow{AC} = \left( - 2 - ( - 3); - 1 - ( - 2) ight) =(1;1).

    Cách khác: \overrightarrow{AB} -
\overrightarrow{AC} = \overrightarrow{CB} = (1;1).

  • Câu 42: Nhận biết

    Bất phương trình 3x – 2(y – x + 1) > 0 tương đương với bất phương trình nào sau đây?

    Ta có: 3x – 2(y – x + 1) > 0 \Leftrightarrow 5x-2y-2>0.

  • Câu 43: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 44: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 45: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?

     

    Ta có: \overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AD}  = \frac{2}{3}.\frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )= \frac{1}{3}(2\overrightarrow {AF}  + 2\overrightarrow {AE} ) = \frac{2}{3}\overrightarrow {AF}  + \frac{2}{3}\overrightarrow {AE}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo