Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

  • Câu 2: Vận dụng

    Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.:

    Nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight. là miền đa giác OABCD với O(0;0);A(1;0);B(4;3);C(2;4);D(0;4).

    Giá trị lớn nhất F(x;y)=x+2y đạt được tại 1 trong 5 đỉnh của đa giác.

    Với O(0;0) \Rightarrow F=0.

    VớiA(1;0)\Rightarrow F=1.

    Với B(4;3) \Rightarrow F=10.

    Với C(2;4) \Rightarrow F=10.

    Với D(0;4) \Rightarrow F=8.

    Vậy GTLN F=10.

  • Câu 3: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng \mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 5: Nhận biết

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

     Ta có: \overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{MC}-\overrightarrow{MD}  \Leftrightarrow \overrightarrow {AB}= \overrightarrow {DC} (Đúng).

  • Câu 6: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 7: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 0 \\
\end{matrix} ight.. Vậy tập xác định: D = [ − 1;  + ∞) ∖ {0}.

  • Câu 8: Nhận biết

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 9: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 10: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 11: Thông hiểu

    Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) =  − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên là:

    Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.

  • Câu 12: Vận dụng cao

    Phương trình 6x^{2} - 10x + 5 = (4x - 1)\sqrt{6x^{2} - 6x +
5} có mấy nghiệm nguyên ?

    Đặt t = \sqrt{6x^{2} - 6x + 5}\ \ \ \ (t
\geq 0). Phương trình đã cho trở thành:

    \begin{matrix}
t^{2} - (4x - 1)t - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 4x \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\sqrt{6x^{2} - 6x + 5}\  = 1 \\
\sqrt{6x^{2} - 6x + 5}\  = 4x \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{- 3 + \sqrt{59}}{10}.
\\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 13: Thông hiểu

    Miền nghiệm của bất phương trình \left( 1 + \sqrt{3} ight)x - \left( 1 - \sqrt{3}
ight)y \geq 2 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \  - 1). Vì \left( 1 + \sqrt{3} ight).1 - \left( 1 -
\sqrt{3} ight).( - 1) = 2 \geq 2 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \  -
1).

  • Câu 14: Vận dụng

    Số nghiệm của phương trình 3x^{2} + 15x + 2\sqrt{x^{2} + 5x + 1} = 2 là:

    Đặt t = \sqrt{x^{2} + 5x + 1} (t≥0).Phương trình trở thành: 3t^{2} + 2t - 5 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1\ \ (t/m) \\t = - \frac{5}{3}\ \ (l) \\\end{matrix} ight.

    Với t = 1 ta được \sqrt{x^{2} + 5x + 1} =1 \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = - 5 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 15: Thông hiểu

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 16: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{i} + \overrightarrow{j}

    Ta có \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{i} +
\overrightarrow{j} = (1;1).

  • Câu 17: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=3\overrightarrow{i}+6\overrightarrow{j}\overrightarrow{b}=8\overrightarrow{i}-4\overrightarrow{j}. Kết luận nào sau đây sai?

    Ta có:

    \begin{matrix}  \vec a = 3\vec i + 6\vec j \Rightarrow \vec a = \left( {3;6} ight) \hfill \\  \vec b = 8\vec i - 4\vec j \Rightarrow \vec b = \left( {8; - 4} ight) \hfill \\   \Rightarrow \vec a.\vec b = 3.8 + \left( { - 4} ight).6 = 0 \hfill \\   \Rightarrow \left| {\vec a.\vec b} ight| = 0 \hfill \\   \Rightarrow \vec a \bot \vec b \hfill \\ \end{matrix}

    Vậy kết luận sai là: |\overrightarrow{a}|\times |\overrightarrow{b}|=0

  • Câu 18: Thông hiểu

    Tập X = \left\{
x\mathbb{\in N}|(x + 1)\left( x^{2} - x - 12 ight) = 0
ight\} bằng tập nào sau đây?

    \left( \mathbf{x +}\mathbf{1}
ight)\left( \mathbf{x}^{\mathbf{2}}\mathbf{- x -}\mathbf{12}
ight)\mathbf{=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack
\begin{matrix}
\mathbf{x = -}\mathbf{1}\mathbb{otin N} \\
\mathbf{x = -}\mathbf{3}\mathbb{otin N} \\
\mathbf{x =}\mathbf{4}\mathbb{\in N} \\
\end{matrix} ight.\ \mathbf{\Rightarrow X =}\left\{ \mathbf{4}
ight\}\mathbf{.}

  • Câu 19: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 20: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 21: Vận dụng

    Từ một đỉnh tháp chiều cao CD = 80\ m, người ta nhìn hai điểm AB trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26' so với phương nằm ngang. Ba điểm A,B,D thẳng hàng. Tính khoảng cách AB (chính xác đến hàng đơn vị)?

    Ta có: Trong tam giác vuông CDA: tan72^{0}12' = \frac{CD}{AD} \Rightarrow AD = \frac{CD}{tan72^{0}12'}
= \frac{80}{tan72^{0}12'} \simeq 25,7.

    Trong tam giác vuông CDB: tan34^{0}26' = \frac{CD}{BD} \Rightarrow BD =
\frac{CD}{tan34^{0}26'} =
\frac{80}{tan34^{0}26'} \simeq 116,7.

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91\ m.

  • Câu 22: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 23: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 24: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 25: Vận dụng cao

    Cho tam giác ABC cạnh BC =
10, lấy I \in BC sao cho \frac{IB}{IC} = \frac{3}{2}. Đường tròn tâm I bán kính 3 tiếp xúc với các cạnh AB,AC lần lượt tại các điểm M,N. Tính độ dài cạnh AB?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\sin\widehat{B} = \dfrac{IM}{BI} = \dfrac{1}{2} \\\sin\widehat{C} = \dfrac{IN}{CI} = \dfrac{3}{4} \\\end{matrix} ight. từ đó suy ra \left\{ \begin{matrix}\cos\widehat{B} = \dfrac{\sqrt{3}}{2} \\\cos\widehat{C} = \dfrac{\sqrt{7}}{4} \\\end{matrix} ight. (do \widehat{B};\widehat{C} là các góc nhọn)

    Đặt AB = c;AC = b. Do AI là phân góc của góc \widehat{A} nên \frac{c}{b} = \frac{6}{4} \Rightarrow 2c =
3b

    Mặt khác, theo định lí cosin trong tam giác ABC ta có:

    \left\{ \begin{matrix}
c^{2} = b^{2} + BC^{2} - 2b.BC.cos\widehat{C} \\
b^{2} = c^{2} + BC^{2} - 2c.BC.cos\widehat{B} \\
\end{matrix} ight.

    Thay số ta được hệ phương trình:

    \left\{ \begin{matrix}
2c = 3b \\
c^{2} = b^{2} + 100 - 5\sqrt{70}b \\
b^{2} = c^{2} + 100 - 10\sqrt{3}c \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 2\left( 3\sqrt{3} - \sqrt{7} ight) \\
c = 3\left( 3\sqrt{3} - \sqrt{7} ight) \\
\end{matrix} ight.

    Vậy AB = 3\left( 3\sqrt{3} - \sqrt{7}
ight)

  • Câu 26: Thông hiểu

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 27: Thông hiểu

    Tập nghiệm của phương trình \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1} là?

     Điều kiện: x > \frac13.

    Ta có: \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1}  \Leftrightarrow 3x^{2}-7x+2=3x-1\Leftrightarrow 3x^2-10x+3=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{3}}\\{x = 3}\end{array}} ight.. Loại x= \frac13.

    Vậy S=\{3\}.

     

  • Câu 28: Vận dụng cao

    Cho tam giác ABCM là trung điểm của BC. Điểm E xác định 2\overrightarrow{EA} + \overrightarrow{EC} =
\overrightarrow{0}. Đường thẳng d đi qua E song song với AB cắt AM,BC lần lượt tại D;F. Điểm G nằm trên cạnh AB sao cho diện tích các tam giác BFGADE bằng nhau. Biết \overrightarrow{AG} =
\alpha\overrightarrow{AB}. Tính giá trị của \alpha?

    Hình vẽ minh họa:

    Theo định lí Ta – lét ta có:

    \frac{FB}{FC} = \frac{EA}{EC} =
\frac{1}{2} \Rightarrow FC = \frac{2}{3}BC

    \Rightarrow FM = \frac{2}{3}BC - MC =
\frac{2}{3}BC - \frac{1}{2}BC = \frac{1}{6}BC

    \Rightarrow \overrightarrow{FM} =
\frac{1}{4}\overrightarrow{FC}

    Mặt khác \overrightarrow{EC} = -
2\overrightarrow{EA};\overrightarrow{DA} = -
\frac{DA}{DM}.\overrightarrow{DM} mà ba điểm D;E;F thẳng hàng nên theo định lí Menelaus ta được:

    \left( - \frac{DA}{DM}
ight).\frac{1}{4}.( - 2) = 1

    \Rightarrow \frac{DA}{DM} =
2

    Ta có:

    \overrightarrow{AD} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}

    Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó \overrightarrow{BG} =
\overrightarrow{DE}

    Ta có:

    \overrightarrow{AE} =
\overrightarrow{AD} + \overrightarrow{DE} =
\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} +
\overrightarrow{BG}

    \overrightarrow{AE} =
\frac{1}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{BG} =
\frac{1}{3}\overrightarrow{BA}

    Hay \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AB}

    Vậy \alpha = \frac{2}{3}

  • Câu 29: Nhận biết

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 30: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 31: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 32: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;1),\ B(3;2),\ C(6;5). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

    Gọi D(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1) \\
\overrightarrow{DC} = (6 - x;5 - y) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = 6 - x \\1 = 5 - y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\ \overset{}{ightarrow}D(4;4).

  • Câu 34: Vận dụng

    Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.

    Hoành độ đỉnh của (P)x = - \frac{b}{2a} = \frac{2m}{2m} =
1.

    Suy ra tung độ đỉnh y =  − 4m − 2. Do đó tọa độ đỉnh của (P)I(1;−4m−2).

    Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên  − 4m − 2 = 3.1 − 1 ⇔ m =  − 1.

  • Câu 35: Nhận biết

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 36: Thông hiểu

    Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?

    *a = 0thì bpt trở thành  − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.

    * a ≠ 0 thì ax^{2} - x + a \geq 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 4a^{2} \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
a \geq \frac{1}{2} \\
a \leq - \frac{1}{2} \\
\end{matrix} ight.\  \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow a \geq \frac{1}{2}.

  • Câu 37: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 38: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 39: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 40: Nhận biết

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 41: Vận dụng

    Cho hai lực \overrightarrow{F_1}\overrightarrow{F_2} cùng tác động vào một vật đứng tại điểm O, biết hai lực \overrightarrow{F_1}\overrightarrow{F_2} đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?

     

    Đặt \overrightarrow {AB},\overrightarrow {AC},\overrightarrow {AD} tương ứng với các vectơ\overrightarrow {F} như hình vẽ.

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {AC} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {BD} } ight| = \left| {\overrightarrow {AD} } ight| = AD.

    Theo đề bài, góc \widehat{B AC} bằng 60 độ. Suy ra \hat B=120^{\circ}.

    A{D^2} = A{B^2} + B{D^2} - 2.AB.BD.\cos 60^\circ  = 7500. Suy ra AD=50\sqrt3N.

     

     

  • Câu 42: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 43: Vận dụng cao

    Cho hình vuông ABCD, dựng các hình vuông A_{1}A_{2}A_{3}A_{4};B_{1}B_{2}B_{3}B_{4};C_{1}C_{2}C_{3}C_{4};D_{1}D_{2}D_{3}D_{4} với A,B,C,D là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

    Biết các hình vuông nhỏ có kích thước 1cm
\times 1cm. Tính độ dài vectơ:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    = \overrightarrow{B_{2}B_{1}} +
\overrightarrow{C_{3}C_{2}} + \overrightarrow{D_{2}D_{3}} +
\overrightarrow{A_{1}E} + \overrightarrow{EA_{4}} =
\overrightarrow{X_{1}Z_{1}}

    \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    = \overrightarrow{B_{3}B_{2}} +
\overrightarrow{C_{4}C_{3}} + \overrightarrow{D_{1}D_{4}} +
\overrightarrow{A_{2}F} + \overrightarrow{FA_{1}} =
\overrightarrow{X_{2}Z_{2}}

    \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    = \overrightarrow{B_{4}B_{3}} +
\overrightarrow{C_{1}C_{4}} + \overrightarrow{D_{2}D_{1}} +
\overrightarrow{A_{3}K} + \overrightarrow{KA_{2}} =
\overrightarrow{X_{3}Z_{3}}

    Khi đó tổng vecto cần tính có kết quả là:

    |\overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}|

    = \left| \overrightarrow{X_{1}Z_{1}} +
\overrightarrow{X_{2}Z_{2}} + \overrightarrow{X_{3}Z_{3}} ight| =
\left| \overrightarrow{MN} + \overrightarrow{MQ} ight| = \left|
\overrightarrow{MP} ight| = \sqrt{34}

  • Câu 44: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 45: Vận dụng

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} ight| = 4, \left| \overrightarrow{b} ight| =
5\left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{o}. Tính \left| \overrightarrow{a} +
\overrightarrow{b} ight|.

    Ta có \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ \cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{21}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo