Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Các hệ bất phương trình ;
có chứa các bất phương trình bậc hai
=> Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.
Đáp án là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.
Đáp án có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.
Miền nghiệm của hệ bất phương trình
là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?
Xét điểm thử vào các bất phương trình của hệ thấy thỏa mãn.
Chỉ có hình vẽ chứa điểm
. Chọn đáp án hình vẽ này.
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Số giá trị nguyên của
để tam thức
nhận giá trị âm là:
Ta có: và
.
Phương trình có hai nghiệm
.
Do đó (5 giá trị).
Cho tam giác đều
có cạnh bằng
và chiều cao
. Mệnh đề nào sau đây là sai?
+) nên đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
sai.
Trong mặt phẳng tọa độ
, gọi
là trực tâm tam tam giác
có tọa độ các đỉnh
. Tính giá trị biểu thức
?
Ta có: là trực tâm tam giác ABC nên
Ta có hệ phương trình
Vậy biểu thức
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là:
Tính giá trị
biết rằng
?
Ta có:
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Mệnh đề nào sau đây sai?
Với ba điểm phân biệt nằm trên một đường thẳng, đẳng thức
xảy ra khi
nằm giữa
và
.
Chọn đáp án sai là: Nếu ba điểm phân biệt nằm tùy ý trên một đường thẳng thì
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây cùng phương?
Ta có nên chọn đáp án
và
.
Miền nghiệm của bất phương trình
được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?
Vẽ đường thẳng -x + y = 2
Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.
Vậy đáp án là:
Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)
Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt ⇔ Δ = 4 − m > 0 ⇔ m < 4.
Theo giả thiết
TH1:
TH2: : không thỏa mãn (*).
Do đó (P) Chọn A.
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho tam giác
có diện tích
, lấy
là trọng tâm và
. Giả sử
, tính giá trị biểu thức
theo
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
. Kẻ
Tam giác vuông =>
Tam giác vuông =>
Ta có:
Mặt khác áp dụng định lí sin cho tam giác AMB ta được:
Từ (*) và (**) ta được:
Chứng minh tương tự ta có:
Do đó:
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Tất cả các giá trị của tham số m để các nghiệm của phương trình
cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:
Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: .
Tổng
bằng vectơ nào sau đây?
Ta có
.
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Tập
bằng tập nào sau đây?
Trong mặt phẳng tọa độ
cho tọa độ hai điểm
. Tính tọa độ vecto
?
Ta có:
Vậy .
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Lớp
có
học sinh giỏi Toán,
học sinh giỏi Lý,
học sinh giỏi Hóa,
học sinh giỏi cả Toán và Lý,
học sinh giỏi cả Toán và Hóa,
học sinh giỏi cả Lý và Hóa,
học sinh giỏi cả
môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp
là:
Ta dùng biểu đồ Ven để giải

Nhìn vào biểu đồ, số học sinh giỏi ít nhất trong
môn là:
Một tam giác có ba cạnh là
Bán kính đường tròn ngoại tiếp là:
Ta có:
Suy ra:
.
Mà
.
Cho các vectơ
. Tính tích vô hướng của
.
Ta có ,
suy ra
.
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Nửa mặt phẳng là miền nghiệm của bất phương trình
không chứa điểm nào trong các điểm sau:
Thay điểm vào bất phương trình, ta được:
(sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Trong hệ tọa độ
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn biểu thức
?
Theo bài ra ta có:
Số nghiệm của phương trình
là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:
.
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có:
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).