Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình ![]()
Thay cặp số vào hệ ta được
không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho
Tìm
để hai vectơ
cùng phương.
Hai vectơ cùng phương
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Cho tam giác ABC. Lấy điểm
trên BC sao cho
. Khẳng định nào sau đây đúng?
Ta có:
nên
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho bất phương trình
miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho hai vectơ
và
. Góc giữa hai vectơ
và
là:
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:
Ta có: I là tâm hình chữ nhật ABCD
=> I là trung điểm của AC và I là trung điểm của BD
Khi đó ta tìm tọa độ điểm B và điểm C
=> Gọi M là trung điểm của BC có tọa độ là:
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Chọn phát biểu đúng về mệnh đề sau: "
,
"?
Phát biểu đúng của mệnh đề ",
" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Khoảng cách từ
đến
không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm
mà từ đó có thể nhìn được
và
dưới một góc
. Biết
,
. Khoảng cách
gần nhất với kết quả nào sau đây?
Ta có:
Số nghiệm của phương trình
là:
ĐKXĐ:
Đặt
Phương trình trở thành
(đối chiếu ĐKXĐ loại
)
Với t = 1 ta có
Với ta có
Vậy phương trình có hai nghiệm và
.
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Giả sử
. Tính số đo góc
?
Ta có:
Theo định lí cosin ta có:
Ta thấy
Mặt khác
Do đó: khi
Vậy tam giác ABC là tam giác vuông tại .
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tích vô hướng của hai vecto
và
là:
Ta có:
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho các vectơ
. Tính tích vô hướng của
.
Ta có ,
suy ra
.
Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn:
?
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án đúng
Vậy là nghiệm của bất phương trình bậc nhất hai ẩn:
Tìm tất cả các giá trị thực của m để phương trình x4 − 2x2 + 3 − m = 0 có nghiệm.
Đặt t = x2 (t≥0).
Khi đó, phương trình đã cho trở thành: t2 − 2t + 3 − m = 0. (*)
Để phương trình đã cho có nghiệm khi và chỉ khi (*) có nghiệm không âm.
Phương trình (*) vô nghiệm khi và chỉ khi Δ′ < 0 ⇔ m − 2 < 0 ⇔ m < 2.
Phương trình (*) có 2 nghiệm âm khi và chỉ khi .
Do đó, phương trình (*) có nghiệm không âm khi và chỉ khi m ≥ − 2.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Xác định m để
với mọi x ∈ ℝ
Để với mọi x ∈ ℝ thì
Cho tam giác đều
cạnh
Biết rằng tập hợp các điểm
thỏa mãn đẳng thức
là đường tròn cố định có bán kính
Tính bán kính
theo ![]()
Gọi là trọng tâm của tam giác
Ta có
Chọn điểm sao cho
Vì là trọng tâm của tam giác
nên
Khi đó
Do đó
Vì là điểm cố định thỏa mãn
nên tập hợp các điểm
cần tìm là đường tròn tâm
bán kính
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Phủ định của mệnh đề "
là số vô tỷ" là mệnh đề nào sau đây?
Phủ định của mệnh đề P là mệnh đề “không phải P".
Chọn đáp án không là số vô tỷ.
Cho tam giác
, có trọng tâm
. Gọi
lần lượt là trung điểm của
. Chọn khẳng định sai?
Ta có: nên
sai.
Chọn .
Số tập hợp con của tập hợp
là:
Các tập hợp con của tập A:
Số tập con có 3 phần tử là
Số tập con có 2 phần tử là
Số tập con có 1 phần tử là
Vậy tập hơp A có tất cả 8 tập con.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi:
Ta có: và
.
Phương trình có hai nghiệm phân biệt
.
Do đó khi
.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3 .
Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng − 3.
Vì (P) có đỉnh I(2;−1) nên ta có . (1)
Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng − 3. Suy ra A(0;−3).
Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c = − 3 ⇔ c = − 3. (2)
Từ (1) và (2), ta có .
Vậy .
Cho đường tròn
và hai tiếp tuyến song song với nhau tiếp xúc với
tại hai điểm
và
Mệnh đề nào sau đây đúng?
Do hai tiếp tuyến song song và là hai tiếp điểm nên
là đường kính.
Do đó là trung điểm của
.
Suy ra .
Miền nghiệm của hệ bất phương trình
là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?
Xét điểm thử vào các bất phương trình của hệ thấy thỏa mãn.
Chỉ có hình vẽ chứa điểm
. Chọn đáp án hình vẽ này.
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.