Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 2: Nhận biết

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 3: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 4: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 5: Vận dụng

    Cho tam giác ABC vuông cân tại CAB =
\sqrt{2}. Tính độ dài của \overrightarrow{AB} +
\overrightarrow{AC}.

    Ta có AB = \sqrt{2} \Rightarrow AC = CB =
1.

    Gọi I là trung điểm BC \Rightarrow AI = \sqrt{AC^{2} + CI^{2}} =
\frac{\sqrt{5}}{2}.

    Khi đó \overrightarrow{AC} +
\overrightarrow{AB} = 2\overrightarrow{AI} \Rightarrow \left|
\overrightarrow{AC} + \overrightarrow{AB} ight| = 2\left|
\overrightarrow{AI} ight| = 2.\frac{\sqrt{5}}{2} =
\sqrt{5}.

  • Câu 6: Thông hiểu

    Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) =  − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên là:

    Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.

  • Câu 7: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 8: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 9: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|

     Hình vẽ minh họa

    Tính độ lớn vectơ

    Ta có:\left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ACD vuông cân tại D ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2} \hfill \\   \Rightarrow AC = a\sqrt 2  \hfill \\   \Rightarrow AC = \left| {\overrightarrow {AC} } ight| = a\sqrt 2  \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 11: Thông hiểu

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 12: Vận dụng cao

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

  • Câu 13: Vận dụng cao

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \sqrt[2017]{\sin\widehat{C}}

    Giả sử AB = c;BC = a;AC = b. Tính số đo góc \widehat{C}?

    Ta có:

    \sin\widehat{C} \in \lbrack - 1;1brack
\Rightarrow sin^{2017}\widehat{C} \geq sin^{2}\widehat{C}

    \Rightarrow sin^{2}\widehat{A} +
sin^{2}\widehat{B} \geq sin^{2}\widehat{C}

    \Rightarrow 4R^{2}.\left\lbrack
sin^{2}\widehat{A} + sin^{2}\widehat{B} ightbrack \geq
4R^{2}.sin^{2}\widehat{C}

    \Rightarrow a^{2} + b^{2} \geq
c^{2}

    \Rightarrow a^{2} + b^{2} - c^{2} \geq
0

    Theo định lí cosin ta có:

    \Rightarrow \cos\widehat{C} =
\frac{a^{2} + b^{2} - c^{2}}{2ab} \geq 0

    Ta thấy

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \frac{1 - \cos2\widehat{A}}{2} + \frac{1 -\cos2\widehat{B}}{2}

    = 1 - \frac{\cos2\widehat{A} +\cos2\widehat{B}}{2}

    = 1 - \cos\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B}ight)

    = 1 - \cos\widehat{C}.\cos\left(\widehat{A} - \widehat{B} ight) \geq 1

    Mặt khác \sqrt[2017]{\sin\widehat{C}}\leq \sqrt[2017]{1} = 1

    Do đó: sin^{2}\widehat{A} +
sin^{2}\widehat{B} = \sqrt[2017]{\sin\widehat{C}} khi \left\{ \begin{matrix}\cos\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = 0 \\\sin\widehat{C} = 1 \\\end{matrix} ight.

    \Rightarrow \widehat{C} =\dfrac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại \widehat{C}.

  • Câu 14: Vận dụng

    Cho A = \lbrack
1;4brack, B = (2;6),C =
(1;2). Khi đó, A \cap B \cap
C là:

    Ta có: A \cap B = (2;4brack \Rightarrow
A \cap B \cap C = \varnothing.

  • Câu 15: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm C đối xứng với điểm B qua A?

    Gọi tọa độ điểm C là C(x;y)

    Vì điểm C đối xứng với điểm B qua A suy ra A là trung điểm của BC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{- 2 + x}{2} \\5 = \dfrac{6 + y}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\  \Leftrightarrow C(4;4)

    Vậy tọa độ điểm C cần tìm là C(4;4).

  • Câu 16: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.|\overrightarrow{b}|.

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|\overrightarrow{a} ight|.\left| \overrightarrow{b}ight|.\cos(\overrightarrow{a},\overrightarrow{b}).

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|\overrightarrow{a} ight|.|\overrightarrow{b}|

    Suy ra \cos(\overrightarrow{a},\overrightarrow{b}) = - 1\longrightarrow (\overrightarrow{a},\overrightarrow{b}) =180^{\circ}

  • Câu 17: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 18: Thông hiểu

    Cho hình bình hành ABCD, điểm M thoả mãn: \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{AB}. Khi đó M là trung điểm của:

    Ta có: \overrightarrow{MA} +
\overrightarrow{MC} = 2\overrightarrow{MI} =
\overrightarrow{AB}.

    Vậy M là trung điểm của AD.

  • Câu 19: Thông hiểu

    Tập hợp A =
\left\{ 1,2,3,4,5,6 ight\} có bao nhiêu tập hợp con gồm 2 phần tử:

    Tập A gồm 6 phần tử.

    Mỗi phần tử ghép với 1 phần tử còn lại ta được 1 tập con của A2 phần tử.

    Số tập con của A2 phần tử bằng: \frac{6.5}{2} = 15.

  • Câu 20: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 21: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 22: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 24: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 25: Thông hiểu

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 26: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho hai vecto \overrightarrow{u} = ( - 2; -
4),\overrightarrow{v} = (2x - y;y). Khi nào hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau?

    Ta có:

    \overrightarrow{u} = \overrightarrow{v}
\Leftrightarrow \left\{ \begin{matrix}
2x - y = - 2 \\
y = - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x + 4 = - 2 \\
y = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = - 4 \\
\end{matrix} ight.

    Vậy hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau khi x = - 3;y = - 4.

  • Câu 28: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 29: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 30: Nhận biết

    Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{a} =
\frac{5}{4}\overrightarrow{b}\overset{}{ightarrow}\overrightarrow{a},\
\overrightarrow{b} cùng hướng.

  • Câu 31: Vận dụng

    Biết rằng hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} và tổng lập phương các nghiệm của phương trình y = 0 bằng 9. Tính P = abc.

    Hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} nên ta có - \frac{b}{2a} = \frac{3}{2} và điểm \left( \frac{3}{2};\frac{1}{4} ight) thuộc đồ thị \Rightarrow \frac{9}{4}a +
\frac{3}{2}b + c = \frac{1}{4}.

    Gọi x1, x2 là hai nghiệm của phương trình y = 0. Theo giả thiết: x13 + x23 = 9

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{3} - 3x_{1}x_{2}\left( x_{1} + x_{2} ight) =
9\overset{Viet}{ightarrow}\left( - \frac{b}{a} ight)^{3} - 3\left( -
\frac{b}{a} ight)\left( \frac{c}{a} ight) = 9.

    Từ đó ta có hệ \left\{ \begin{matrix}
- \frac{b}{2a} = \frac{3}{2} \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\left( - \frac{b}{a} ight)^{3} - 3\left( - \frac{b}{a} ight)\left(
\frac{c}{a} ight) = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = - 3a \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\frac{c}{a} = 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}P = abc = 6.

  • Câu 32: Vận dụng cao

    Tổng các nghiệm của phương trình \sqrt{4x^{2} - 1} - \sqrt{2x + 1} = 1 + x -
2x^{2} là:

    Đặt \sqrt{4x^{2} - 1} = a;\sqrt{2x + 1} =
b(a,b \geq 0).

    Ta có 1 + x - 2x^{2} = -
\frac{1}{2}(4x^{2} - 1) + \frac{1}{2}(2x + 1).

    Phương trình trở thành a - b =
\frac{1}{2}\left( b^{2} - a^{2} ight) \Leftrightarrow a =
b

    Thay vào ta được x = 1;x = -
\frac{1}{2}. Vậy tổng các nghiệm của phương trình là \frac{1}{2}.

  • Câu 33: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 34: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} vuông góc với \overrightarrow{v}.

    Ta có:

    \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u}\left( \frac{1}{2}; - 5 ight)

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; -
4)

    Để \overrightarrow{u}\bot\overrightarrow{v}
\Leftrightarrow \frac{1}{2}.k + 20 = 0 \Leftrightarrow k = -
40.

  • Câu 35: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{9 - x^{2}}}{x^{2} - 6x + 8}

    Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔  − 3 ≤ x ≤ 3.

    Hàm số xác định khi và chỉ khi

    \left\{ \begin{matrix}
9 - x^{2} \geq 0 \\
x^{2} - 6x + 8 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 4 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.. Vậy x ∈ [ − 3; 3] ∖ {2}.

  • Câu 36: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 37: Vận dụng

    Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, OQ=\sqrt{2}+\sqrt{6}m

    Tính độ dài PT

    Khi đó đoạn PT bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\widehat {SQB} = \widehat {PQT} = \alpha } \\   {\widehat {TOP} = \beta } \end{array}} ight.

    Áp dụng định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  P{Q^2} = O{P^2} + O{Q^2} - 2OP.OQ.\cos \widehat {POQ} \hfill \\   \Rightarrow P{Q^2} = {\left( {\sqrt 2 } ight)^2} + {\left( {\sqrt 2  + \sqrt 6 } ight)^2} - 2.\sqrt 2 .\left( {\sqrt 2  + \sqrt 6 } ight).\cos {45^0} \hfill \\   \Rightarrow PQ = 2\sqrt 2 \left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  \cos \alpha  = \cos \widehat {OQP} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{O{Q^2} + P{Q^2} - O{P^2}}}{{2.OQ.PQ}} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{{{\left( {\sqrt 2  + \sqrt 6 } ight)}^2} + {{\left( {2\sqrt 2 } ight)}^2} - {{\left( {\sqrt 2 } ight)}^2}}}{{2.\left( {\sqrt 2  + \sqrt 6 } ight).\sqrt 2 }} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{2} \Rightarrow \alpha  = {30^0} \hfill \\ \end{matrix}

    Ta lại có: \beta  = {45^0} + \alpha  = {45^0} + {30^0} = {75^0}

    => {\widehat {TPO}}=75^0

    Xét tam giác OTP ta có: 

    \begin{matrix}  \widehat {OTP} + \widehat {TOP} + \widehat {TPO} = {180^0} \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {\widehat {TOP} + \widehat {TPO}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {{{45}^0} + {{75}^0}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {60^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác OTP ta có:

    \begin{matrix}  \dfrac{{OP}}{{\sin \widehat {OTP}}} = \dfrac{{PT}}{{\sin \widehat {TOP}}} \hfill \\   \Rightarrow PT = \dfrac{{OP.\sin \widehat {TOP}}}{{\sin \widehat {OTP}}} \hfill \\   \Rightarrow PT = \dfrac{{2.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{2\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 39: Nhận biết

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 40: Vận dụng

    Anh T dự định trồng cà phê và hạt tiêu trên một mảnh đất có diện tích 8ha. Nếu trồng 1ha cà phê thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1ha hạt tiêu thì cần 30 ngày công và thu được 50 triệu đồng. Anh T cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, anh T chỉ có thể sử dụng không quá 180 ngày công cho việc trồng hai loại cây.

    Gọi x là số hecta đất trồng cà phê và y là số hecta đất trồng hạt tiêu.

    Ta có các điều kiện ràng buộc đối với x,y như sau:

    Hiển nhiên x \geq 0,y \geq
0.

    Diện tích canh tác không vượt quá 8 ha nên x + y \leq 8.

    Số ngày công sử dụng không vượt quá 180 nên 20x + 30y \leq 180.

     

    Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc: \left\{ \begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight.

    Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ Oxy, ta được miền tứ giác OABC (Hình).

    Toạ độ các đỉnh của tứ giác đó là: O(0;0);A(0;6);B(6;2);C(8;0).

    Gọi F là số tiền (đơn vị: triệu đồng) anh T thu được, ta có: F = 40x +
50y.

    Ta phải tìm x,y thoả mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F = 40x + 50y trên miền tứ giác OABC.

    Tính các giá trị của biểu thức F tại các đỉnh của đa giác, ta có:

    Tại O(0;0):F = 40.0 + 50.0 =
0

    Tại A(0,6):F = 40.0 + 50.6 =
300

    Tại B(6;2):F = 40.6 + 50.2 =
340

    Tại C(8;0):F = 40.8 + 50.0 =
320

    F đạt giá trị lớn nhất bằng 340 tại B(6;2).

    Vậy để thu được nhiều tiền nhất, anh T cần trồng 6ha cà phê và 2ha hạt tiêu.

  • Câu 41: Vận dụng cao

    Cho hình vuông ABCD cạnh a. Gọi M là trung điểm của AB, lấy các điểm P,Q,R lần lượt là các điểm thay đổi trên các cạnh BC,AC,AD sao cho \widehat{PMR} = 90^{0}. Tìm giá trị nhỏ nhất của biểu thức \left|\overrightarrow{MP} + \overrightarrow{MQ} + \overrightarrow{MR}ight|.

    Hình vẽ minh họa

    Tìm giá trị nhỏ nhất của biểu thức

    Đặt \left| {\overrightarrow {AR} } ight| = x;\left| {\overrightarrow {BP} } ight| = y;\left| {\overrightarrow {ME} } ight| = z;\left| {\overrightarrow {EQ} } ight| = t

    Khi đó \Delta AMR\sim\Delta BPM

    \Rightarrow \left\{ \begin{matrix}xy = \dfrac{a^{2}}{4} \\x + y \geq 2\sqrt{xy} = a \\\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi x =y hay P, Q là trung điểm của BC, DA

    Ta có:

    \left| \overrightarrow{MP} +\overrightarrow{MQ} + \overrightarrow{MR} ight|^{2} = (x + y + z)^{2}+ t^{2} \geq (1 + z)^{2} + t^{2} = \left| \overrightarrow{MH}ight|

    Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.

    Ta lại có: \widehat{MDH} \approx 108^{0}\Rightarrow MH \geq MD = \frac{a\sqrt{5}}{2}

  • Câu 42: Thông hiểu

    Cho hai vectơ \overrightarrow{u} = ( - 4; - 3)\overrightarrow{v} = ( - 1; - 7). Góc giữa hai vectơ \overrightarrow{u}\overrightarrow{v} là:

    \cos\left( \overrightarrow{u},\overrightarrow{v} ight) = \dfrac{( - 4)(- 1) + ( - 3).( - 7)}{\sqrt{4^{2} + 3^{2}}.\sqrt{1^{2} + 7^{2}}} =\dfrac{\sqrt{2}}{2}

    \Rightarrow \left( \overrightarrow{u},\overrightarrow{v} ight) =45^{0}

  • Câu 43: Thông hiểu

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 44: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 45: Thông hiểu

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.

    Ta có M \in (P)\overset{}{ightarrow}c =
4.

    Trục đối xứng - \frac{b}{2a} =
1\overset{}{ightarrow}b = - 4.

    Vậy (P) : y = 2x2 − 4x + 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo