Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho đường tròn O và hai tiếp tuyến MT,\ \ MT' (TT' là hai tiếp điểm). Khẳng định nào sau đây đúng?

    Do MT,\ \ MT' là hai tiếp tuyến (TT' là hai tiếp điểm) nên MT = MT'.

  • Câu 2: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b và các góc của tam giác thỏa mãn biểu thức:

    \left\{ \begin{matrix}\sin\widehat{B}.\sin\widehat{C} = \dfrac{3}{4} \\a^{2} = \dfrac{a^{3} - b^{3} - c^{3}}{a - b - c} \\\end{matrix} ight.. Khi đó tam giác ABC là tam giác gì?

    Ta có:

    a^{2} = \frac{a^{3} - b^{3} - c^{3}}{a -
b - c}

    \Leftrightarrow a^{2}(a - b - c) = a^{3}
- b^{3} - c^{3}

    \Leftrightarrow a^{2}(a + b) = (b +
c)\left( b^{2} - bc + c^{2} ight)

    \Leftrightarrow a^{2} = b^{2} - bc +
c^{2}

    \Leftrightarrow b^{2} + c^{2} - a^{2} =
bc

    \Leftrightarrow \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{1}{2}

    \Leftrightarrow \cos\widehat{A} =
\frac{1}{2}

    \Leftrightarrow \widehat{A} =
\frac{\pi}{3}(*)

    Ta lại có:

    \sin\widehat{B}.sin\widehat{C} =
\frac{3}{4}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) - \cos\left( \widehat{B} + \widehat{C} ight) =
\frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) + \cos\widehat{A} = \frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) = 1

    \Leftrightarrow \widehat{B} -
\widehat{C} = 0 \Leftrightarrow \widehat{B} = \widehat{C}

    Vậy tam giác ABC là tam giác đều.

  • Câu 3: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 4: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Chọn đáp án 2x + 3y < 5 vì theo định nghĩa bất phương trình bậc nhất hai ẩn.

  • Câu 5: Nhận biết

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 6: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 7: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 8: Vận dụng cao

    Phương trình 2\left( x^{2} - 3x + 2 ight) = 3\sqrt{x^{3} +
8} có mấy nghiệm nguyên ?

    Điều kiện: x ≥  − 2

    PT đã cho tương đương với: 2\left( x^{2} -
2x + 4 ight) - 2(x + 2) = 3\sqrt{(x + 2)\left( x^{2} - 2x + 4
ight)}

    Do x =  − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:

    \frac{2\left( x^{2} - 2x + 4 ight)}{x +
2} - 3\sqrt{\frac{x^{2} - 2x + 4}{x + 2}} - 2 = 0

    Đặt t = \sqrt{\frac{x^{2} - 2x + 4}{x +
2}}\ \ \ \ (t \geq 0) ta có: 2t^{2} -
3t - 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 2\ \ \ (t/m) \\
t = - \frac{1}{2}\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}
\sqrt{\frac{x^{2} - 2x + 4}{x + 2}} = 2 \Leftrightarrow \frac{x^{2} - 2x
+ 4}{x + 2} = 4 \\
\Leftrightarrow x^{2} - 6x - 4 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 + \sqrt{13} \\
x = 3 - \sqrt{13} \\
\end{matrix} ight.\ (TM) \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 9: Thông hiểu

    Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?

     Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là kết luận của định lí.

  • Câu 10: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}

    Dựng hình bình hành tâm O như sau:

    Tính độ lớn tổng vectơ

    Ta có:

    \begin{matrix}  \overrightarrow {CB}  + \overrightarrow {AB}  = \overrightarrow {DA}  + \overrightarrow {DC}  = \overrightarrow {DB}  \hfill \\   \Rightarrow \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {DB} } ight| = DB = 2OB \hfill \\ \end{matrix}

    Vì tam giác AOB vuông tại A ta có:

    \begin{matrix}  B{O^2} = A{B^2} + A{O^2} \hfill \\   \Rightarrow B{O^2} = {3^2} + {2^2} = 13 \hfill \\   \Rightarrow BO = \sqrt {13}  \hfill \\   \Rightarrow \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \sqrt {13}  \hfill \\ \end{matrix}

  • Câu 11: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ vecto \overrightarrow{w} = 8\overrightarrow{j} -
3\overrightarrow{i} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{w} =
8\overrightarrow{j} - 3\overrightarrow{i} = ( - 3;8).

  • Câu 13: Thông hiểu

    Xác định tập hợp B=\{x∈Z|−2≤x<3\} bằng cách liệt kê các phần tử.

     Ta có: B=\{x∈Z|−2≤x<3\} =\{–2; –1; 0; 1; 2\}.

  • Câu 14: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 15: Vận dụng

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 16: Thông hiểu

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 17: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 18: Nhận biết

    Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi

    Ta có: f(x) = x^{2} - 2x - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).

  • Câu 19: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \sqrt{2x + m} = x - 1\ \
(*) có hai nghiệm phân biệt lớn hơn 1?

    Phương trình

    \sqrt{2x + m} = x - 1

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 \geq 0 \\
2x + m = (x - 1)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 4x + 1 - m = 0\ (**) \\
\end{matrix} ight.

    Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 \Leftrightarrow (**) có hai nghiệm phân biệt lớn hơn 1.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
1 < x_{1} < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
0 < x_{1} - 1 < x_{2} - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3 + m > 0 \\
\left( x_{1} - 1 ight).\left( x_{2} - 1 ight) > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
x_{1}x_{2} - \left( x_{1} + x_{2} ight) + 1 > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
1 - m - 4 + 1 > 0 \\
4 > 2 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < 2

  • Câu 20: Nhận biết

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 21: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 22: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 23: Thông hiểu

    Cho phương trình x^{2} - mx - m^{2} = 0 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -
10;10brack để phương trình đã cho có hai nghiệm trái dấu?

    Từ yêu cầu bài toán

    \Leftrightarrow a.c < 0
\Leftrightarrow - m^{2} < 0 \Leftrightarrow m^{2} > 0
\Leftrightarrow m eq 0

    Suy ra m \in \left\{ - 10;....; - 1
ight\} \cup \left\{ 1;...;10 ight\}

    Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 24: Nhận biết

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 25: Thông hiểu

    Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng 5\sqrt{5} là:

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  = \left( {x - 6;10} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {AB} } ight| = \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  \hfill \\  \left| {\overrightarrow {AB} } ight| = 5\sqrt 5  \hfill \\   \Leftrightarrow \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  = 5\sqrt 5  \hfill \\   \Leftrightarrow {x^2} - 12x + 136 = 125 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 11} \\   {x = 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 27: Thông hiểu

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 28: Vận dụng cao

    Cho hai điểm A,\
\ B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
ight|

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA \Rightarrow 2\overrightarrow{EA} + \overrightarrow{EB} =
\overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB \Rightarrow 2\overrightarrow{FB} + \overrightarrow{FA} =
\overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +2\overrightarrow{MB} ight|

    \Leftrightarrow \left| 2\overrightarrow{ME}+ 2\overrightarrow{EA} + \overrightarrow{ME} + \overrightarrow{EB}ight|= \left| 2\overrightarrow{MF} + 2\overrightarrow{FB} +\overrightarrow{MF} + \overrightarrow{FA} ight|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} ight| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} ight| \Leftrightarrow
\left| 3\ \overrightarrow{ME} ight| = \left| 3\ \overrightarrow{MF}
ight| \Leftrightarrow ME = MF. \
(*)

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF. Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF.

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| là đường trung trực của đoạn thẳng AB.

  • Câu 29: Vận dụng

    Tam giác ABC vuông tại A, có AB =
c,\ \ AC = b. Gọi \mathcal{l}_{a} là độ dài đoạn phân giác trong góc \widehat{BAC}. Tính \mathcal{l}_{a} theo bc.

    Ta có BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{b^{2} + c^{2}}

    Do AD là phân giác trong của \widehat{BAC}

    \Rightarrow BD = \frac{AB}{AC}.DC =
\frac{c}{b}.DC = \frac{c}{b + c}.BC
= \frac{c\sqrt{b^{2} + c^{2}}}{b + c}.

    Theo định lí hàm cosin, ta có

    BD^{2} = AB^{2} + AD^{2} -
2.AB.AD.cos\widehat{ABD} \Leftrightarrow \frac{c^{2}\left( b^{2} + c^{2}
ight)}{(b + c)^{2}} = c^{2} + AD^{2} -
2c.AD.cos45{^\circ}

    \Rightarrow AD^{2} - c\sqrt{2}.AD +
\left( c^{2} - \frac{c^{2}\left( b^{2} + c^{2} ight)}{(b + c)^{2}}
ight) = 0 \Leftrightarrow AD^{2}
- c\sqrt{2}.AD + \frac{2bc^{3}}{(b + c)^{2}} = 0.

    \Rightarrow AD = \frac{\sqrt{2}bc}{b +
c} hay \mathcal{l}_{a} =
\frac{\sqrt{2}bc}{b + c}.

  • Câu 30: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 31: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 33: Thông hiểu

    Tam thức bậc hai .

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu .

  • Câu 34: Thông hiểu

    Cho tập hợp A = (
- 3;mbrackB = \{ x \in
\mathbb{Z} \parallel x \mid \leq 3\}. Giá trị nguyên dương của m để tập hợp \mathbb{Z} \cap (A \setminus  B) có đúng 10 phần tử là:

    Ta có B = \lbrack -
3;3brack.

    Theo giả thiết thì A \smallsetminus B
eq \varnothing nên m >
3A \smallsetminus B =
(3;mbrack.

    Như vậy, để tập hợp \mathbb{Z} \cap (A
\smallsetminus B) có 10 phần tử thì

    \mathbb{Z} \cap (A \smallsetminus B) = \{
4;5;\ldots;13\}

    Do đó m = 13.

  • Câu 35: Nhận biết

    Mệnh đề nào sau đây là mệnh đề tương đương?

    Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.

  • Câu 36: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 37: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 38: Vận dụng

    Trong mặt phẳng Oxy cho A( - 1;1), B(1;3), C(1;
- 1). Khẳng định nào sau đây đúng.

    Do \overrightarrow{AB} = (2;2) nên loại đáp án \overrightarrow {AB}=(-4;2).

    Do\overrightarrow{AB} =
(2;2),\overrightarrow{BC} = (0; -
4),\overrightarrow{AB}.\overrightarrow{BC} = -
8 suy ra\overrightarrow{AB} không vuông góc \overrightarrow{BC} nên loại đáp án \overrightarrow{AB}\bot\overrightarrow{BC}.

    Ta có \overrightarrow{AB} =
(2;2), \overrightarrow{AC} = (2; -
2), \overrightarrow{BC} = (0; -
4), suy ra AB = AC =
\sqrt{8}, \overrightarrow{AB}.\overrightarrow{AC} =
0. Do đó tam giác ABC vuông cân tại A.

  • Câu 39: Vận dụng

    Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?

    Gọi y là số tiền lãi của cửa hàng bán giày.

    Ta có y = (120−x)(x−40) =  − x2 + 160x − 4800 =  − (x−80)2 + 1600 ≤ 1600.

    Dấu " = " xảy ra  ⇔ x = 80.

    Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.

  • Câu 40: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 41: Thông hiểu

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 42: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 43: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
5x - 2y - 1 > 0 \\
2x + 2y + 5 > 0 \\
x + y + 1 < 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
5.0 - 2.0 - 1 > 0 \\
2.0 + 2.0 + 5 > 0 \\
0 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{
\begin{matrix}
5.1 - 2.0 - 1 > 0 \\
2.1 + 2.0 + 5 > 0 \\
1 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 2) \Rightarrow \left\{
\begin{matrix}
5.0 - 2. - 2 - 1 > 0 \\
2.0 + 2. - 2 + 5 > 0 \\
0 - 2 + 1 < 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 44: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

  • Câu 45: Vận dụng

    Giá trị nhỏ nhất của biểu thức F = y - x trên miền xác định bởi hệ \left\{ \begin{matrix}
y - 2x \leq 2 \\
2y - x \geq 4 \\
x + y \leq 5 \\
\end{matrix} ight. là:

    Miền nghiệm của hệ \left\{ \begin{matrix}
y - 2x \leq 2 \\
2y - x \geq 4 \\
x + y \leq 5 \\
\end{matrix} ight. là miền trong của tam giác ABC kể cả biên

    Ta thấy F = y - x đạt giá trị nhỏ nhất chỉ có thể tại các điểm A, B, C.

    Tại A(0;\ 2) thì F = 2.

    Tại B(1;\ 4) thì F = 3

    Tại A(2;\ 3) thì F = 1.

    Vậy \min F = 1 khi x = 2, y =
3.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo