Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Ta có \left\{ \begin{matrix}
x_{I} = \frac{2 + 4}{2} = 3 \\
y_{I} = \frac{- 3 + 7}{2} = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}I(3;2).

  • Câu 2: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; - \ 1)B(3;2). Tìm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    M \in Oy \Rightarrow
M(0;b).

    Ta có: \overrightarrow{MA} = (1; - 1 - b)
\Rightarrow \left|
\overrightarrow{MA} ight| = \sqrt{1^{2} + ( - 1 - b)^{2}}

    Ta có: \overrightarrow{MB} = (3;2 - b)
\Rightarrow \left|
\overrightarrow{MB} ight| = \sqrt{3^{2} + (2 - b)^{2}}

    MA^{2} + MB^{2} = 1 + 1 + 2b + b^{2} + 9 + 4 - 4b + b^{2} = 2b^{2} - 2b + 15 = 2\left\lbrack \left( b - \frac{1}{2} ight)^{2}
+ \frac{29}{4} ightbrack \geq
\frac{29}{2}

    Suy ra MA^{2} + MB^{2} nhỏ nhất khi và chỉ khi b = \frac{1}{2} \Rightarrow
M\left( 0;\frac{1}{2} ight).

  • Câu 3: Vận dụng

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B,\tan\widehat{AOB} = \frac{AB}{OB} \Rightarrow AB = tan60^{0}.OB =
60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là h = AB +
OC = \left( 60\sqrt{3} + 1 ight)\ m.

  • Câu 4: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 5: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm giá trị của a để A
\cap B = \lbrack - 2;5brack.

    Để A \cap B = \lbrack -
2;5brack khi và chỉ khi \left\{
\begin{matrix}
a > - 3 \\
a = - 2 \\
\end{matrix} \Leftrightarrow a = - 2 ight..

    Vậy a = - 2 là giá trị cần tìm.

  • Câu 6: Nhận biết

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 7: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 8: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 9: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 10: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 11: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 12: Thông hiểu

    Xác định m để ({m^2} + 2){x^2} - 2(m - 2)x + 2 > 0 với mọi x ∈ ℝ

     Để ({m^2} + 2){x^2} - 2(m - 2)x + 2 > 0 với mọi x ∈ ℝ thì

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{m^2} + 2 > 0,\forall x \in \mathbb{R}} \\   {{{\left( {m - 2} ight)}^2} - \left( {{m^2} + 2} ight).2 < 0} \end{array}} ight. \hfill \\   \Leftrightarrow {m^2} - 4m + 4 - 2{m^2} - 4 < 0 \hfill \\   \Leftrightarrow  - {m^2} - 4m < 0 \hfill \\   \Leftrightarrow m \in \left( { - \infty , - 4} ight) \cup \left( { - 4; + \infty } ight) \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 14: Vận dụng

    Cho đường tròn O và hai tiếp tuyến song song với nhau tiếp xúc với (O) tại hai điểm AB. Mệnh đề nào sau đây đúng?

    Do hai tiếp tuyến song song và A,\ \
B là hai tiếp điểm nên AB là đường kính.

    Do đó O là trung điểm của AB.

    Suy ra \overrightarrow{OA} = -
\overrightarrow{OB}.

  • Câu 15: Nhận biết

    Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.

    Ta có a = 1 > 0, b =  − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).

  • Câu 16: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 17: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 18: Thông hiểu

    Cho hàm số: f(x) =
\left\{ \begin{matrix}
- 2(x - 3) & khi & - 1 \leq x \leq 1 \\
\sqrt{x^{2} - 1} & khi & x > 1 \\
\end{matrix} ight.. Giá trị của f(−1); f(1) là:

    Ta có: f(−1) =  − 2(−1−3) = 8; f(1) = \sqrt{1^{2} - 1} = 0.

    Chọn đáp án 80.

  • Câu 19: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 20: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 21: Vận dụng

    Cho parabol (P):y=ax^{2}+bx+c (aeq 0). Xét dấu hệ số a và biệt thức \Delta khi (P) hoàn toàn nằm phía trên trục hoành.

     Khi đồ thị hàm số hoàn toàn nằm phía trên trục hoành thì phương trình y=0 vô nghiệm Suy ra \Delta <0a>0 (bề lõm hướng lên trên).

     

  • Câu 22: Nhận biết

    Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

    Các hệ bất phương trình \left\{\begin{matrix}x^{2}+y<0\\ y-x>0\end{matrix}ight.\left\{\begin{matrix}2x-y^{2}<5\\ 4x+3y>10^{10}\end{matrix}ight. có chứa các bất phương trình bậc hai {x^2} + y < 0;2x - {y^2} < 5 => Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.

    Đáp án y - 2x <0 là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.

    Đáp án \left\{\begin{matrix}x<1\\ y-1>2\end{matrix}ight. có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.

  • Câu 23: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;1),\ B(3;2),\ C(6;5). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

    Gọi D(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1) \\
\overrightarrow{DC} = (6 - x;5 - y) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = 6 - x \\1 = 5 - y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\ \overset{}{ightarrow}D(4;4).

  • Câu 24: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 25: Vận dụng cao

    Cho tam giác ABC đều cạnh a. Đường thẳng \Delta qua A và song song với BC, lấy điểm M \in \Delta. Tính giá trị nhỏ nhất của \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| khi M di động trên \Delta.

    Hình vẽ minh họa

    Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có

    Ta có:

    \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| = \left| \overrightarrow{CA} + 2\left(
\overrightarrow{IB} - \overrightarrow{IM} ight) ight|

    = \left| \overrightarrow{CA} +
2\overrightarrow{IB} - 2\overrightarrow{IM} ight| = \left|
\overrightarrow{CA} + \overrightarrow{DB} - 2\overrightarrow{IM}
ight|

    = \left| \overrightarrow{CA} -
\overrightarrow{CA} - 2\overrightarrow{IM} ight|

    = 2\left| \overrightarrow{IM} ight|
\geq 2IH = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}

    Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng \Delta.

  • Câu 26: Thông hiểu

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 27: Thông hiểu

    Xác định M = A ∪ B trong trường hợp A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 10}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.

    Liệt kê các phần tử ta có:

    A = \left \{ {0; 4; 8} ight \}

    B = \left \{ {0; 3; 6; 9} ight \}

    Vậy M = A ∪ B = \left \{ {0; 3; 4; 6; 8; 9} ight \}.

  • Câu 28: Nhận biết

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

  • Câu 29: Nhận biết

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 30: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 31: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b, độ dài các cạnh tam giác thỏa mãn biểu thức \left\{ \begin{matrix}
a = x^{2} + x + 1 \\
b = 2x + 1 \\
c = x^{2} - 1 \\
\end{matrix} ight.với x là số thực lớn hơn 1. Tính độ lớn góc \widehat{A}?

    Áp dụng định lí cosin ta có: \cos\widehat{A} = \frac{b^{2} + c^{2} -
a^{2}}{2bc}

    Ta có: \left\{ \begin{matrix}
a^{2} = x^{4} + 2x^{3} + 3x^{2} + 2x + 1 \\
b^{2} = 4x^{2} + 4x + 1 \\
c^{2} = x^{4} - 2x^{2} + 1 \\
bc = 2x^{3} + x^{2} - 2x - 1 \\
\end{matrix} ight.

    Từ đó suy ra

    b^{2} + c^{2} - a^{2} = -
bc

    \Rightarrow \cos\widehat{A} = -
\frac{1}{2}

    \Rightarrow \widehat{A} =
120^{0}

  • Câu 32: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)

     Thay tọa độ M(1;5)N(-2;8) vào y=ax^{2}+bx+2. Ta có:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{8 = 4a - 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 1}\end{array}} ight.} ight..

    Do đó y=2x^{2}+x+2.

  • Câu 33: Thông hiểu

    Cho tam thức f(x) = ax^{2} + bx + c (a ≠ 0), có ∆ = b^{2}  – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta ' \leqslant 0} \end{array}} ight.

  • Câu 34: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 35: Thông hiểu

    Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x + y - 3 > 0?

    Xét điểm M\left( 1;\frac{3}{2}ight) . Ta có: 2.1 + \frac{3}{2}- 3 = \frac{1}{2} > 0 nên M\left( 1;\frac{3}{2} ight) thuộc miền nghiệm của bất phương trình đã cho.

  • Câu 36: Vận dụng

    Anh T dự định trồng cà phê và hạt tiêu trên một mảnh đất có diện tích 8ha. Nếu trồng 1ha cà phê thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1ha hạt tiêu thì cần 30 ngày công và thu được 50 triệu đồng. Anh T cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, anh T chỉ có thể sử dụng không quá 180 ngày công cho việc trồng hai loại cây.

    Gọi x là số hecta đất trồng cà phê và y là số hecta đất trồng hạt tiêu.

    Ta có các điều kiện ràng buộc đối với x,y như sau:

    Hiển nhiên x \geq 0,y \geq
0.

    Diện tích canh tác không vượt quá 8 ha nên x + y \leq 8.

    Số ngày công sử dụng không vượt quá 180 nên 20x + 30y \leq 180.

     

    Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc: \left\{ \begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight.

    Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ Oxy, ta được miền tứ giác OABC (Hình).

    Toạ độ các đỉnh của tứ giác đó là: O(0;0);A(0;6);B(6;2);C(8;0).

    Gọi F là số tiền (đơn vị: triệu đồng) anh T thu được, ta có: F = 40x +
50y.

    Ta phải tìm x,y thoả mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F = 40x + 50y trên miền tứ giác OABC.

    Tính các giá trị của biểu thức F tại các đỉnh của đa giác, ta có:

    Tại O(0;0):F = 40.0 + 50.0 =
0

    Tại A(0,6):F = 40.0 + 50.6 =
300

    Tại B(6;2):F = 40.6 + 50.2 =
340

    Tại C(8;0):F = 40.8 + 50.0 =
320

    F đạt giá trị lớn nhất bằng 340 tại B(6;2).

    Vậy để thu được nhiều tiền nhất, anh T cần trồng 6ha cà phê và 2ha hạt tiêu.

  • Câu 37: Vận dụng cao

    Phương trình 2x +
1 + x\sqrt{x^{2} + 2} + (x + 1)\sqrt{x^{2} + 2x + 3} = 0 có mấy nghiệm nguyên dương ?

    Đặt a = \sqrt{x^{2} + 2}\ \ ;\ b =
\sqrt{x^{2} + 2x + 3}\ \ \ \ (a,\ b > 0)\

    \Rightarrow x = \frac{b^{2} - a^{2} -
1}{2}

    Phương trình đã cho trở thành:

    \begin{matrix}
(b - a)\left\lbrack (a + b) + \frac{(a + b)^{2}}{2} + \frac{1}{2}
ightbrack = 0 \\
\Leftrightarrow a = b \Leftrightarrow x = - \frac{1}{2}. \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên dương.

  • Câu 38: Nhận biết

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 39: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 40: Vận dụng

    Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7).

    Vậy A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7) = \lbrack - 4;9brack.

  • Câu 41: Vận dụng

    Tổng các nghiệm của phương trình \frac{x^{2} + x + 1}{\sqrt{x^{2} - x + 1}} =3\sqrt{x}

    ĐKXĐ: x ≥ 0

    Dễ thấy x = 0 không phải là nghiệm của phương trình

    Xét x > 0, phương trình \Leftrightarrow x^{2} + x + 1 =3\sqrt{x}.\sqrt{x^{2} - x + 1} \Leftrightarrow x + 1 + \frac{1}{x} =3\sqrt{x - 1 + \frac{1}{x}}

    Đặt t = \sqrt{x - 1 + \frac{1}{x}},\ \ t\geq 1 \Rightarrow x + \frac{1}{x} = t^{2} + 1

    Phương trình trở thành t^{2} + 2 = 3t\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 1 \\t = 2 \\\end{matrix} ight.

    Với t = 1 ta có \sqrt{x - 1 + \frac{1}{x}} = 1 \Leftrightarrowx^{2} - x + 1 = x \Leftrightarrow x = 1(thỏa mãn)

    Với t = 2 ta có \sqrt{x - 1 + \frac{1}{x}} = 2 \Leftrightarrowx^{2} - 5x + 1 = 0 \Leftrightarrow x = \frac{5 \pm\sqrt{21}}{2}(thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{5\pm \sqrt{21}}{2}x = 1.

    Tổng các nghiệm của phương trình là \frac{5 + \sqrt{21}}{2} + \frac{5 - \sqrt{21}}{2} +1 = 6.

  • Câu 42: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 43: Thông hiểu

    Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng?

    Gọi Mlà trung điểm BC.

    Ta có \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) \Rightarrow
\overrightarrow{AG} = \frac{\overrightarrow{AB} +
\overrightarrow{AC}}{3}.

  • Câu 44: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 45: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo