Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giải bất phương trình \frac{{5{x^2} + 3x - 8}}{{{x^2} - 7x + 6}} \leqslant 0

    Ta có bảng xét dấu như sau:

    Tìm tập nghiệm của bất phương trình

    Vậy tập nghiệm của bất phương trình là: S = \left[ {\frac{{ - 8}}{5};1} ight) \cup \left( {1;6} ight)

  • Câu 2: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 3: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Ta có: \overrightarrow{u} = (2; - 1) = -( - 2;1) = - \overrightarrow{v}\ \ \ \ \  \Rightarrow \ \\overrightarrow{u}\overrightarrow{v} đối nhau.

  • Câu 4: Thông hiểu

    Cho bất phương trình m{x^2} - (2m - 1)x + m + 1 < 0 (1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

    Để m{x^2} - (2m - 1)x + m + 1 < 0 thì m{x^2} - (2m - 1)x + m + 1 \geqslant 0 nghiệm đúng với \forall x \in \mathbb{R}.

    Nghĩa là:\left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( {2m - 1} ight)}^2} - 4m\left( {m + 1} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4{m^2} - 4m + 1 - 4{m^2} - 4m \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   { - 8m + 1 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \geqslant \dfrac{1}{8}} \end{array}} ight. \Leftrightarrow m \geqslant \frac{1}{8} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 6: Thông hiểu

    Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:

    Ta có: I là tâm hình chữ nhật ABCD

    => I là trung điểm của AC và I là trung điểm của BD

    Khi đó ta tìm tọa độ điểm B và điểm C

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_D} = 2{x_I}} \\   {{y_B} + {y_D} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = 2{x_I} - {x_D}} \\   {{y_B} = 2{y_I} - {y_D}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = -4} \\   {{y_B} =  - 1} \end{array}} ight. \Rightarrow B\left( {-4; - 1} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_C} = 2{x_I}} \\   {{y_A} + {y_C} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} = 2{x_I} - {x_A}} \\   {{y_C} = 2{y_I} - {y_A}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} =  - 2} \\   {{y_C} =  - 3} \end{array}} ight. \Rightarrow C\left( { - 2; - 3} ight) \hfill \\ \end{matrix}

    => Gọi M là trung điểm của BC có tọa độ là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_C} = 2{x_M}} \\   {{y_B} + {y_C} = 2{y_M}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x_B} + {x_C}}}{2} = {x_M}} \\   {\dfrac{{{y_B} + {y_C}}}{2} = {y_M}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_M} =  - 3} \\   {{y_M} =  - 2} \end{array}} ight. \Rightarrow M\left( { - 3; - 2} ight) \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 8: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 10: Thông hiểu

    Cho tam giác ABC, có trọng tâm G. Gọi A_{1},B_{1},C_{1} lần lượt là trung điểm của BC,CA,AB. Chọn khẳng định sai?

    Ta có: \overrightarrow{GC} = -
2\overrightarrow{GC_{1}} nên \overrightarrow{GC} =
2\overrightarrow{GC_{1}} sai.

    Chọn \overrightarrow{GC} =
2\overrightarrow{GC_{1}}.

  • Câu 11: Vận dụng

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 12: Vận dụng

    Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

    Tính thời điểm hai vận động viên cách nhau 10km

    Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?

    Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ

    Điều kiện: x > 0

    Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)

    Đoạn đường mà vận động viên B chạy được là 12x (km)

    Ta có: \widehat {AOB} = {135^0} - {15^0} = {120^0}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  A{B^2} = B{C^2} + A{C^2} - 2BC.AC.\cos \widehat {AOB} \hfill \\   \Leftrightarrow {10^2} = {\left( {13x} ight)^2} + {\left( {12x} ight)^2} - 2.13x.12x.\cos {120^0} \hfill \\   \Leftrightarrow {10^2} = 169{x^2} + 144{x^2} + 156{x^2} \hfill \\   \Leftrightarrow {x^2} = \dfrac{{100}}{{469}} \hfill \\   \Rightarrow x \approx 0,46 \hfill \\ \end{matrix}

    0,46 giờ ≈ 28 phút

    Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.

    Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.

  • Câu 13: Nhận biết

    Cho tam giác ABC. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh A,\ B,\ C?

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{BC},\ \ \overrightarrow{CB},\ \
\overrightarrow{CA},\ \ \overrightarrow{AC}.

  • Câu 14: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 15: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}x+5y<1\\ 5x-4y>6\end{matrix}ight.. Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?

    Khi y=0 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 5.0 < 1} \\   {5x - 4.0 > 6} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {5x > 6} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > \dfrac{6}{5}} \end{array}} ight.\left( {VN} ight) \Rightarrow x \in \left\{ \emptyset  ight\} \hfill \\ \end{matrix}

    Vậy y=0 không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.

  • Câu 17: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 18: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 19: Vận dụng cao

    Cho tam giác ABC có diện tích S, lấy G là trọng tâm và \widehat{GAB} = \alpha;\widehat{GBC} =
\beta;\widehat{GCA} = \gamma. Giả sử AB = c;BC = a;AC = b , tính giá trị biểu thức \cot\alpha + \cot\beta +
\cot\gamma theo a;b;c;S?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC. Kẻ MH\bot
AB

    Tam giác AMH vuông => \cos\alpha = \frac{AH}{AM}

    Tam giác BMH vuông => \cos B = \frac{BH}{BM} =
\frac{2BH}{a}

    Ta có: AB = AH + HB

    \Rightarrow c = AM.cos\alpha +
\frac{a}{2}.cos\beta

    \Rightarrow \cos\alpha =\frac{1}{AM}\left( c - \frac{a}{2}.\cos\beta ight)(*)

    Mặt khác áp dụng định lí sin cho tam giác AMB ta được:

    \frac{MB}{\sin\alpha} = \frac{MA}{\sin
B} \Rightarrow \sin\alpha = \frac{MB.sinB}{MA} =
\frac{a.sinB}{2MA}(**)

    Từ (*) và (**) ta được:

    \cot\alpha = \dfrac{c - \dfrac{a}{2}\cos B}{\dfrac{a}{2}\sin B} = \dfrac{2c - a\cos B}{b}

    = \dfrac{R\left( 4c - 2a\cos Bight)}{ab} = \dfrac{4c^{2} - 2ac\cos B}{\dfrac{abc}{R}}

    \Rightarrow \cot\alpha = \frac{3c^{2} +
b^{2} - a^{2}}{4S}

    Chứng minh tương tự ta có: \left\{\begin{matrix}\cot\beta = \dfrac{3a^{2} + c^{2} - b^{2}}{4S} \\\cot\gamma = \dfrac{3b^{2} + b^{2} - c^{2}}{4S} \\\end{matrix} ight.

    Do đó:

    \cot\alpha + \cot\beta +
\cot\gamma

    = \frac{3c^{2} + b^{2} - a^{2}}{4S} +
\frac{3a^{2} + c^{2} - b^{2}}{4S} + \frac{3b^{2} + b^{2} -
c^{2}}{4S}

    = \frac{3\left( a^{2} + b^{2} + c^{2}
ight)}{4S}

  • Câu 20: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 21: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 22: Vận dụng

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là:

    x = \sqrt{\sqrt{3x^{2} + 1} -1}

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\left\lbrack \begin{matrix}x = 0 \\x = \pm 1 \\\end{matrix} ight.\  \\\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}x = 0 \\x = 1 \\\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 23: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 24: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 25: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 26: Thông hiểu

    Tập X có bao nhiêu tập hợp con, biết X có 3 phần tử ?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 27: Thông hiểu

    Tập hợp nào sau đây là tập xác định của hàm số y = \sqrt{1 + 5x} + \frac{|x|}{\sqrt{7 -
2x}}?

    Hàm số xác đinh khi và chỉ khi \left\{
\begin{matrix}
1 + 5x \geq 0 \\
7 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - \frac{1}{5} \\
x < \frac{7}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{5} \leq x <
\frac{7}{2}.

  • Câu 28: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 29: Thông hiểu

    Cho tam giác ABC với M,\ \
N,\ \ P lần lượt là trung điểm của. Khẳng định nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có \overrightarrow{AP} + \overrightarrow{BM} +
\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA}

    = \frac{1}{2}\left( \overrightarrow{AB}
+ \overrightarrow{BC} + \overrightarrow{CA} ight) =
\frac{1}{2}\overrightarrow{AA} = \overrightarrow{0}.

    Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} =
\overrightarrow{0}.. Ta có \overrightarrow{MN} + \overrightarrow{NP} +
\overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.. Ta có \overrightarrow{PB} + \overrightarrow{MC} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =
\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AN} =
\overrightarrow{PM} = - \overrightarrow{MP}. Chọn đáp án này.

  • Câu 30: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 31: Vận dụng cao

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

  • Câu 32: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 33: Nhận biết

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 34: Nhận biết

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Ta có \left\{ \begin{matrix}
x_{I} = \frac{2 + 4}{2} = 3 \\
y_{I} = \frac{- 3 + 7}{2} = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}I(3;2).

  • Câu 35: Vận dụng cao

    Cho hình vuông ABCD, dựng các hình vuông A_{1}A_{2}A_{3}A_{4};B_{1}B_{2}B_{3}B_{4};C_{1}C_{2}C_{3}C_{4};D_{1}D_{2}D_{3}D_{4} với A,B,C,D là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

    Biết các hình vuông nhỏ có kích thước 1cm
\times 1cm. Tính độ dài vectơ:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    = \overrightarrow{B_{2}B_{1}} +
\overrightarrow{C_{3}C_{2}} + \overrightarrow{D_{2}D_{3}} +
\overrightarrow{A_{1}E} + \overrightarrow{EA_{4}} =
\overrightarrow{X_{1}Z_{1}}

    \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    = \overrightarrow{B_{3}B_{2}} +
\overrightarrow{C_{4}C_{3}} + \overrightarrow{D_{1}D_{4}} +
\overrightarrow{A_{2}F} + \overrightarrow{FA_{1}} =
\overrightarrow{X_{2}Z_{2}}

    \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    = \overrightarrow{B_{4}B_{3}} +
\overrightarrow{C_{1}C_{4}} + \overrightarrow{D_{2}D_{1}} +
\overrightarrow{A_{3}K} + \overrightarrow{KA_{2}} =
\overrightarrow{X_{3}Z_{3}}

    Khi đó tổng vecto cần tính có kết quả là:

    |\overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}|

    = \left| \overrightarrow{X_{1}Z_{1}} +
\overrightarrow{X_{2}Z_{2}} + \overrightarrow{X_{3}Z_{3}} ight| =
\left| \overrightarrow{MN} + \overrightarrow{MQ} ight| = \left|
\overrightarrow{MP} ight| = \sqrt{34}

  • Câu 36: Thông hiểu

    Miền nghiệm của bất phương trình 2x + y > 1 không chứa điểm nào sau đây?

    Xét điểm D( - 1\ \ ;\ \  - 1). Vì 2.( - 1) - 1 = - 3 < 1 nên miền nghiệm của bất phương trình đã cho không chứa điểm D( - 1\ \ ;\ \  - 1).

  • Câu 37: Nhận biết

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 38: Vận dụng

    Cho tam giác ABC vuông cân đỉnh A, đường cao AH. Khẳng định nào sau đây sai?

    Do \Delta ABC cân tại A, AH là đường cao nên H là trung điểm BC.

    Xét các đáp án:

    Đáp án \left| \overrightarrow{AH} +
\overrightarrow{HB} ight| = \left| \overrightarrow{AH} +
\overrightarrow{HC} ight|. Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AH} + \overrightarrow{HB} ight| = \left|
\overrightarrow{AB} ight| = a \\
\left| \overrightarrow{AH} + \overrightarrow{HC} ight| = \left|
\overrightarrow{AC} ight| = a \\
\end{matrix} ight.

    \Rightarrow \left| \overrightarrow{AH} +
\overrightarrow{HB} ight| = \left| \overrightarrow{AH} +
\overrightarrow{HC} ight|.

    Đáp án \overrightarrow{AH} -
\overrightarrow{AB} = \overrightarrow{AH} -
\overrightarrow{AC}.. Ta có \left\{
\begin{matrix}
\overrightarrow{AH} - \overrightarrow{AB} = \overrightarrow{BH} \\
\overrightarrow{AH} - \overrightarrow{AC} = \overrightarrow{CH} = -
\overrightarrow{BH} \\
\end{matrix} ight.\ . Do đó đáp án này sai.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{HC} -
\overrightarrow{HA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{HC} - \overrightarrow{HA} = \overrightarrow{AC} \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{HC} -
\overrightarrow{HA}.

    Đáp án \left| \overrightarrow{AH} ight|
= \left| \overrightarrow{AB} - \overrightarrow{AH} ight|.. Ta có \left| \overrightarrow{AB} -
\overrightarrow{AH} ight| = \left| \overrightarrow{HB} ight| =
\left| \overrightarrow{AH} ight| (do \Delta ABC vuông cân tại A).

  • Câu 39: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 40: Thông hiểu

    Cặp bất phương trình nào sau đây là tương đương?

    Ta có: x-2 \le 0 \Leftrightarrow x \le2.

    Ta có: x^{2}(x-2)\leq 0 \Leftrightarrow x-2 \le0 (Vì x^2\ge0 với mọi giá trị x). Do đó x \le 2.

  • Câu 41: Vận dụng

    Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính \overrightarrow{AB}\times \overrightarrow{BD}.

    Do ABCD là hình chữ nhật => \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight) = {180^0} - \widehat {ABD}

    Xét tam giác ABD vuông tại A ta có:

    \begin{matrix}  DB = \sqrt {A{B^2} + A{D^2}}  = \sqrt {89}  \hfill \\   \Rightarrow \cos \widehat {ABD} = \dfrac{{AB}}{{BD}} = \dfrac{8}{{\sqrt {89} }} \hfill \\ \end{matrix}

    Ta lại có: 

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {BD}  = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {BD} } ight|. - \cos \left( {\widehat {ABD}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {BD}  = 8.\sqrt {89} .\left( {\dfrac{{ - 8}}{{\sqrt {89} }}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {BD}  =  - 64 \hfill \\ \end{matrix}

  • Câu 42: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 43: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 44: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 45: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo