Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b và các góc của tam giác thỏa mãn biểu thức:

    \left\{ \begin{matrix}\sin\widehat{B}.\sin\widehat{C} = \dfrac{3}{4} \\a^{2} = \dfrac{a^{3} - b^{3} - c^{3}}{a - b - c} \\\end{matrix} ight.. Khi đó tam giác ABC là tam giác gì?

    Ta có:

    a^{2} = \frac{a^{3} - b^{3} - c^{3}}{a -
b - c}

    \Leftrightarrow a^{2}(a - b - c) = a^{3}
- b^{3} - c^{3}

    \Leftrightarrow a^{2}(a + b) = (b +
c)\left( b^{2} - bc + c^{2} ight)

    \Leftrightarrow a^{2} = b^{2} - bc +
c^{2}

    \Leftrightarrow b^{2} + c^{2} - a^{2} =
bc

    \Leftrightarrow \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{1}{2}

    \Leftrightarrow \cos\widehat{A} =
\frac{1}{2}

    \Leftrightarrow \widehat{A} =
\frac{\pi}{3}(*)

    Ta lại có:

    \sin\widehat{B}.sin\widehat{C} =
\frac{3}{4}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) - \cos\left( \widehat{B} + \widehat{C} ight) =
\frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) + \cos\widehat{A} = \frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) = 1

    \Leftrightarrow \widehat{B} -
\widehat{C} = 0 \Leftrightarrow \widehat{B} = \widehat{C}

    Vậy tam giác ABC là tam giác đều.

  • Câu 2: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 3: Vận dụng cao

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =
3 có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}
+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq
\frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3
\Leftrightarrow t + t + 3 +
2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}
3 - t \geq 0 \\
t(t + 3) = (3 - t)^{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
t \leq 3 \\
t = 1 \\
\end{matrix} ight.  ⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}
x = 1 = x_{1} \\
x = 2 = x_{2} \\
\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 4: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 5: Vận dụng cao

    Cho tam giác ABC đều cạnh a. Đường thẳng \Delta qua A và song song với BC, lấy điểm M \in \Delta. Tính giá trị nhỏ nhất của \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| khi M di động trên \Delta.

    Hình vẽ minh họa

    Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có

    Ta có:

    \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| = \left| \overrightarrow{CA} + 2\left(
\overrightarrow{IB} - \overrightarrow{IM} ight) ight|

    = \left| \overrightarrow{CA} +
2\overrightarrow{IB} - 2\overrightarrow{IM} ight| = \left|
\overrightarrow{CA} + \overrightarrow{DB} - 2\overrightarrow{IM}
ight|

    = \left| \overrightarrow{CA} -
\overrightarrow{CA} - 2\overrightarrow{IM} ight|

    = 2\left| \overrightarrow{IM} ight|
\geq 2IH = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}

    Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng \Delta.

  • Câu 6: Thông hiểu

    Cho hàm số: y =
\left\{ \begin{matrix}
\frac{1}{x - 1} & x \leq 0 \\
\sqrt{x + 2} & x > 0 \\
\end{matrix} ight.. Tập xác định của hàm số là tập hợp nào sau đây?

    Với x ≤ 0 ta có: y = \frac{1}{x - 1} xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.

    Với x > 0 ta có: y = \sqrt{x + 2} xác định với mọi x ≥  − 2 nên xác định với mọi x > 0.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 7: Thông hiểu

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 8: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 9: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 10: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 11: Vận dụng

    Cho parabol (P):y=ax^{2}+bx+c (aeq0). Xét dấu hệ số a và biệt thức \Delta khi (P) cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.

     Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình y=0 có 2 nghiệm phân biệt. Suy ra \Delta >0.

    Đỉnh nằm phía trên trục hoành nên suy ra a<0 (bề lõm hướng xuống). 

  • Câu 12: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 13: Vận dụng

    Cho hình chữ nhật ABCD có AB = \sqrt{2}, AD = 1. Tính góc giữa hai vectơ \overrightarrow{AC}\overrightarrow{BD}

    Ta có: 

    ABCD là hình chữ nhật

    \begin{matrix}   \Rightarrow AC = BD = \sqrt 3  \hfill \\   \Rightarrow OB = OC = \dfrac{{\sqrt 3 }}{2} \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AC}  = 2\overrightarrow {OC} } \\   {\overrightarrow {BD}  = 2\overrightarrow {OD} } \end{array}} ight. \Rightarrow \left( {\overrightarrow {AC} ,\overrightarrow {BD} } ight) = \left( {\overrightarrow {OC} ,\overrightarrow {OD} } ight) = \widehat {DOC}

    Xét tam giác ODC ta có:

    \begin{matrix}  \cos \widehat {DOC} = \dfrac{{O{D^2} + O{C^2} - {{\left( {DC} ight)}^2}}}{{2OD.OC}} \hfill \\   \Rightarrow \cos \widehat {DOC} = \dfrac{{{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} - 2}}{{2{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2}}} =  - \dfrac{1}{3} \hfill \\   \Rightarrow \widehat {DOC} \approx {109^0} \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Cho hình bình hành ABCD. Gọi G là trọng tâm của tam giác ABC. Mệnh đề nào sau đây đúng?

    G là trọng tâm của tam giác ABC nên \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{O}

    \Rightarrow \overrightarrow{GA} +
\overrightarrow{GC} = - \overrightarrow{GB}.

    Do đó \overrightarrow{GA} +
\overrightarrow{GC} + \overrightarrow{GD} = - \overrightarrow{GB} +
\overrightarrow{GD} = \overrightarrow{GD} - \overrightarrow{GB} =
\overrightarrow{BD}.

  • Câu 15: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 16: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 17: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Điều kiện 2x^{2} - 5x + 2 \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq \frac{1}{2} \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là \left( -
\infty;\frac{1}{2} ightbrack \cup \lbrack 2; + \infty).

  • Câu 18: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 19: Thông hiểu

    Tìm tất cả các giá trị của m để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}.

    Để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Xét g\left( x ight) = 1 - 4{x^2} ta có bảng xét dấu như sau:

    Tìm m để tam thức bậc hai luôn dương với mọi x

    g\left( x ight) < 0 \Rightarrow x \in \left( { - \infty ; - \frac{1}{2}} ight) \cup \left( {\frac{1}{2}; + \infty } ight)

    Kết hợp các điều kiện ta được m \in \left( {\frac{1}{2}; + \infty } ight)

  • Câu 20: Thông hiểu

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 21: Thông hiểu

    Cho tam giác ABC, có trọng tâm G. Gọi A_{1},B_{1},C_{1} lần lượt là trung điểm của BC,CA,AB. Chọn khẳng định sai?

    Ta có: \overrightarrow{GC} = -
2\overrightarrow{GC_{1}} nên \overrightarrow{GC} =
2\overrightarrow{GC_{1}} sai.

    Chọn \overrightarrow{GC} =
2\overrightarrow{GC_{1}}.

  • Câu 22: Nhận biết

    Cho bất phương trình x - 2y - 1 < 0 có tập nghiệm S. Khẳng định nào sau đây là đúng?

    Xét điểm ( - 2; - 1). Ta có: - 2 - 2( - 1) - 1 = - 1 < 0 thỏa mãn. Do đó ( - 2; - 1) \in S.

  • Câu 23: Thông hiểu

    Với giá trị nào của x thì mệnh đề chứa biến "\sqrt{x^{2}-3x+5}>2x+3" là đúng?

     Thay x=-1 vào 2 vế, ta được: 3>1 (đúng).

  • Câu 24: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 25: Thông hiểu

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 26: Thông hiểu

    Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0?

    (x; y) = (2; 3) => x = 2;{\text{ }}y = 3 thay vào bất phương trình ta có:

    2 + 2.3 - 1 = 7 > 0 => Đáp án sai

    (x; y) = (1; 2) => x = 1;{\text{ }}y = 2 thay vào bất phương trình ta có:

    1 + 2.2 - 1 = 4 > 0 => Đáp án sai

    (x; y) = (0; 1) => x = 0;{\text{ }}y = 1 thay vào bất phương trình ta có:

    0 + 2.1 - 1 = 1> 0 => Đáp án sai

    (x; y) = (-1; 0) => x = -1;{\text{ }}y = 0 thay vào bất phương trình ta có:

    -1 + 2.0 - 1 = -2 < 0 => Đáp án đúng

    Vậy (x; y) = (-1; 0) là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0

  • Câu 27: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 28: Nhận biết

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

     Ta có: \overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{MC}-\overrightarrow{MD}  \Leftrightarrow \overrightarrow {AB}= \overrightarrow {DC} (Đúng).

  • Câu 29: Thông hiểu

    Nghiệm của phương trình \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1} là:

     Điều kiện: x>1.

    Ta có: \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1}  \Rightarrow x^2-4x+3=x-1\Leftrightarrow x^2-5x+4=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 30: Nhận biết

    Trong mặt phẳng tọa độ Oxy, khoảng cách giữa hai điểm M(1;4)N(3;2) bằng:

    Khoảng cách giữa hai điểm M, N là

    MN = \sqrt{\left( x_{N} - x_{M}
ight)^{2} + \left( y_{N} - y_{M} ight)^{2}}

    = \sqrt{(3 - 1)^{2} + (2 - 4)^{2}} =
2\sqrt{2}

  • Câu 31: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

  • Câu 32: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 33: Thông hiểu

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 34: Vận dụng

    Phương trình \sqrt{x} + \sqrt{9 - x} = \sqrt{- x^{2} + 9x +9} có mấy nghiệm ?

    Điều kiện: 0 ≤ x ≤ 9

    Bình phương hai vế phương trình đã cho ta được:

    \begin{matrix}x + 2\sqrt{9x - x^{2}} + 9 - x = - x^{2} + 9x + 9 \\\Leftrightarrow 2\sqrt{9x - x^{2}} = - x^{2} + 9x \\\end{matrix}

    Đặt t = \sqrt{9x - x^{2}}\ \ \ \ (t \geq0). PT trên trở thành: 2t = t^{2}\Leftrightarrow \left\lbrack \begin{matrix}t = 0 \\t = 2 \\\end{matrix} ight.

    Với t = 0 \Rightarrow \sqrt{9x - x^{2}} =0 \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = 9 \\\end{matrix} ight. (TM)

    Với t = 2 \Rightarrow \sqrt{9x - x^{2}} =2 \Leftrightarrow \left\lbrack \begin{matrix}x = \frac{9 + \sqrt{65}}{2} \\x = \frac{9 - \sqrt{65}}{2} \\\end{matrix} ight. (TM)

    Vậy phương trình có tập nghiệm là S =\left\{ 0;9;\frac{9 \pm \sqrt{65}}{2} ight\} (3 nghiệm).

  • Câu 35: Thông hiểu

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 37: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 39: Vận dụng

    Giá trị nhỏ nhất F_{\min} của biểu thức F(x;y) = 4x + 3y trên miền xác định bởi hệ \left\{ \begin{matrix}
0 \leq x \leq 10 \\
0 \leq y \leq 9 \\
2x + y \geq 14 \\
2x + 5y \geq 30 \\
\end{matrix} ight. là :

    Trong mặt phẳng tọa độ Oxy, vẽ các đường thẳng

    d_{1}:2x + y - 14 = 0,\ d_{2}:2x + 5y - 30 = 0, \Delta:y = 9,\Delta':x = 10.

    Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.

    Xét các đỉnh của miền khép kín tạo bởi hệ là A(5;4),B\left( \frac{5}{2};9 ight), C(10;9),D(10;2).

    Ta có \left\{ \begin{matrix}
F(5;4) = 32 \\
F\left( \frac{5}{2};9 ight) = 37 \\
F(10;9) = 67 \\
F(10;2) = 46 \\
\end{matrix} ight. \overset{}{ightarrow}F_{\min} = 32.

  • Câu 40: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là sai:

    Ta thấy mệnh đề A ∈ A sai vì giữa hai tập hợp không có quan hệ phụ thuộc.

  • Câu 41: Vận dụng

    Một tam giác có ba cạnh là 52,56,60. Bán kính đường tròn ngoại tiếp là:

    Ta có: p = \frac{a + b + c}{2} = \frac{52 + 56 + 60}{2} = 84.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)} = \sqrt{84(84 - 52)(84 - 56)(84
- 60)} = 1344.

    S = \frac{abc}{4R} \Rightarrow R =
\frac{abc}{4S} =
\frac{52.56.60}{4.1344} = \frac{65}{2}.

  • Câu 42: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Môn toán khó quá!

    (2) Bạn có đói không?

    (3) 2 > 3 hoặc 1 \leq 4.

    (4) \pi < 2.

    Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow2 câu là mệnh đề.

  • Câu 43: Vận dụng

    Cho A = \left\{
x|\left( 2x - x^{2} ight)\left( 2x^{2} - 3x - 2 ight) = 0
ight\}B = \left\{
n\mathbb{\in N}*|3 < n^{2} < 30 ight\}. Khi đó, A \cap B bằng:

    Ta có: \left( 2x - x^{2} ight)\left(2x^{2} - 3x - 2 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}2x - x^{2} = 0 \\2x^{2} - 3x - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = 2 \\x = - \frac{1}{2} \\\end{matrix} ight.

    \Rightarrow A = \left\{ - \frac{1}{2};0;2
ight\}

    \left\{ \begin{matrix}
n\mathbb{\in N}* \\
3 < n^{2} < 30 \\
\end{matrix} ight. \mathbf{\Leftrightarrow}\left\{ \begin{matrix}
n\mathbb{\in N}* \\
\sqrt{3} < n < \sqrt{30} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}B = \left\{ 2;3;4;5
ight\}.

    \Rightarrow A \cap B = \left\{ 2
ight\}.

  • Câu 44: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 45: Nhận biết

    Cho tam giác đều ABC có đường cao AH. Tính (\overrightarrow{AH},\overrightarrow{BA}).

     Lấy D sao cho \overrightarrow {BD}=\overrightarrow {AH}.

    Ta có: (\overrightarrow{AH},\overrightarrow{BA}) =(\overrightarrow{BD},\overrightarrow{BA})=90^{\circ} +60^{\circ}= 150^{\circ}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo