Cho hình vuông
, tính
.

Vẽ .
Ta có: .
Cho hình vuông
, tính
.

Vẽ .
Ta có: .
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Tìm m để phương trình
có hai nghiệm phân biệt là:
Phương trình .
Phương trình đã cho có hai nghiệm ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng đồ thị hàm số y = 3x2 + (4−m)x − 1 trên
cắt trục hoành tại hai điểm phân biệt.
Xét hàm số y = 3x2 + (4−m)x − 1 trên . Ta có
+ TH1: Nếu thì hàm số đồng biến trên
nên m ≤ 1 không thỏa mãn yêu cầu bài toán.
+ TH2: Nếu :
Ta có bảng biến thiên

Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên cắt trục hoành tại hai điểm phân biệt
Vì − m2 + 8m − 28 = − (m−4)2 − 12 < 0, ∀m nên
(thỏa mãn m > 1).
Vậy là giá trị cần tìm.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Với . Ta có:
. Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.
Số nghiệm của phương trình
là:
ĐKXĐ: x3 + 1 ≥ 0 ⇔ x ≥ − 1.
Phương trình
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = x2 + 2 khi đó
Phương trình trở thành
Với 3a = b ta có
(thỏa mãn điều kiện)
Với a = 3b ta có
⇔ 9x2 − 10x + 8 = 0 (phương trình vô nghiệm).
Vậy phương trình có nghiệm là .
Cho hai điểm
và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Trong các tập hợp sau đây, tập hợp nào bằng tập hợp
:
Ta có:
Tập hợp là tập hợp
.
Vậy tập hợp
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Tìm tất cả các giá trị của m để tam thức
luôn dương với
.
Để tam thức luôn dương với
:
Xét ta có bảng xét dấu như sau:

Kết hợp các điều kiện ta được
Cho ngũ giác
. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Cho tam giác đều
cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Ta có: là bất phương trình bậc nhất hai ẩn.
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
. Điều kiện để
là:
Ta có:
.
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Cho hai lực
và
cùng tác động vào một vật đứng tại điểm O, biết hai lực
và
đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?
Hình vẽ minh họa

Theo quy tắc hình bình hành ta có:
Cho hai khoảng
và
. Khẳng định nào sau đây là sai?

Vậy khi
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?

Nhìn vào đồ thị ta có:
Bề lõm hướng xuống ⇒ a < 0.
Hoành độ đỉnh .
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm ⇒ c < 0.
Do đó: a < 0, b > 0, c < 0.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Tổng các nghiệm của phương trình
là:
Đặt , điều kiện t ≥ 0. Khi đó
.
Phương trình trở thành
(Thỏa mãn)
Với t = 3 ta có
Vậy phương trình có hai nghiệm .
Tổng các nghiệm của phương trình là .
Xác định m để
với mọi x ∈ ℝ
Để với mọi x ∈ ℝ thì
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Cho tọa độ ba điểm
. Tính
?
Ta có:
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí
, đi thẳng theo hai hướng tạo với nhau một góc
. Tàu thứ nhất chạy với tốc độ
, tàu thứ hai chạy với tốc độ
. Hỏi sau
giờ hai tàu cách nhau bao nhiêu
?

Ta có: Sau quãng đường tàu thứ nhất chạy được là:
Sau quãng đường tàu thứ hai chạy được là:
Vậy: sau hai tàu cách nhau là:
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Miền nghiệm của bất phương trình
không chứa điểm có tọa độ:
Ta có:
Thay vào bất phương trình ta được:
Vậy không thuộc miền nghiệm của bất phương trình.
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Giá trị nhỏ nhất của biểu thức F(x;y) = y – x trên miền xác định bởi hệ:
là:
Biểu diễn miền nghiệm của hệ :

Miền nghiệm của hệ là tam giác .
Ta có: ;
và
.
Giá trị nhỏ nhất của đạt được tại 1 trong 3 đỉnh tam giác
.
Với suy ra
.
Với suy ra
.
Với suy ra
.
Vậy giá trị nhỏ nhất đạt tại
.
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
sao cho điểm
cách đều hai điểm
?
Ta có:
Từ
Vậy tọa độ điểm D cần tìm là: .
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra