Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Xác định tọa độ điểm Q sao cho tứ giác
là hình bình hành?
Gọi tọa độ điểm
Ta có:
Vì MNPQ là hình bình hành nên
Vậy tọa độ điểm Q cần tìm là .
Cho hệ bất phương trình
có miền nghiệm là miền tứ giác OABC như hình dưới. Giá trị lớn nhất của
là:

Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.
Quan sát hình vẽ ta có:
Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng và
=> Tọa độ điểm B là nghiệm của hệ phương trình:
Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F trên miền tứ giác OABC.
Tính các giá trị của biểu thức tại các đỉnh của đa giác.
Tại ta có:
Tại ta có:
Tại ta có:
Tại ta có:
F đạt giá trị lớn nhất bằng 162 tại
Cho tam giác
có
và
. Biết rằng:

Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Cho hàm số
. Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).
Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình ![]()
Thay cặp số vào hệ ta được
không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.
Cho
. Điều kiện để
là:
Ta có:
.
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Vì và
nên đáp án
sai.
Vì nên đáp án
và
cùng phương sai.
Vì nên đáp án
vuông góc với
đúng.
Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.
Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).
Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1
⇔ (1) có 2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1
.
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Cho các mệnh đề sau đây:
(I). Nếu tam giác
đều thì tam giác
có
.
(II). Nếu
đều là các số chẵn thì
là một số chẵn.
(III). Nếu tam giác
có tổng hai góc bằng
thì tam giác
là tam giác vuông.
Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?
Mệnh đề đảo của
(I). Nếu tam giác có
thì tam giác
đều
Mệnh đề sai.
(II). Nếu là một số chẵn thì
đều là các số chẵn
Mệnh đề sai.
(III). Nếu tam giác là tam giác vuông thì tam giác
có tổng hai góc bằng
Mệnh đề đúng.
Có 1 mệnh đề đảo là đúng.
Cho hình bình hành
Tính
theo
và ![]()
Vì là hình bình hành nên
Ta có
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Trong các hàm số sau, hàm số nào nghịch biến trên ℝ?
Hàm số y = ax + b với a ≠ 0 nghịch biến trên ℝ khi và chỉ khi a < 0.
Cho tam giác đều
cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: ![]()
Vì là mệnh đề sai nên
không thuộc miền nghiệm của bất phương trình.
Cho lục giác đều
có tâm
Đẳng thức nào sau đây sai?
Ta có
Do đo
đúng.
Do đo
đúng.
Do đó
đúng.
Dùng phương pháp loại trừ, suy ra sai.
Bất phương trình
tương đương với bất phương trình nào sau đây?
Ta có: .
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:
Xét: Không có
thỏa mãn.
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có:
Tổng
bằng vectơ nào sau đây?
Ta có
.
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi
.
Ta có .
Mà theo giả thiết
Suy ra
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho
Tìm
biết
.
Ta có
Để
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Cho hình vuông
cạnh
. Gọi
là trung điểm của
, lấy các điểm
lần lượt là các điểm thay đổi trên các cạnh
sao cho
. Tìm giá trị nhỏ nhất của biểu thức
.
Hình vẽ minh họa

Đặt
Khi đó
Dấu bằng xảy ra khi và chỉ khi hay P, Q là trung điểm của BC, DA
Ta có:
Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.
Ta lại có:
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Tập nghiệm
của phương trình
là:
Điều kiện: .
Ta có:
.
Thử lại không thỏa mãn.
Vậy
Phương trình
có mấy nghiệm ?
Điều kiện: 0 ≤ x ≤ 9
Bình phương hai vế phương trình đã cho ta được:
Đặt . PT trên trở thành:
Với (TM)
Với (TM)
Vậy phương trình có tập nghiệm là (3 nghiệm).