Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 2: Vận dụng

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}.(\overrightarrow{MB}+\overrightarrow{MC})=0 là:

    Ta có: \overrightarrow {MB}  + \overrightarrow {MC}  = 2\overrightarrow {MI} (I là trung điểm của BC)

    \begin{matrix}  \overrightarrow {MA} .\left( {\overrightarrow {MB}  + \overrightarrow {MC} } ight) = 0 \hfill \\   \Leftrightarrow \overrightarrow {MA} .\left( {2\overrightarrow {MI} } ight) = 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MA} .\overrightarrow {MI}  = 0 \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MI}  = 0 \hfill \\   \Rightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {MI} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {MI}  \hfill \\ \end{matrix}

    \Rightarrow \widehat {AMI} = {90^0}

    => Qũy tích điểm M là đường tròn đường kính IA.

  • Câu 3: Vận dụng

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} =
15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx
68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 4: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    Chọn khẳng định đúng.

    Ta có:

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\cot^{2}\widehat{B} + \cot^{2}\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} -2

    \Leftrightarrow \left(\sin^{2}\widehat{B} + \sin^{2}\widehat{C} ight)\left(\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} ight) =4

    \Leftrightarrow\dfrac{\sin^{2}\widehat{B}}{\sin^{2}\widehat{C}} +\dfrac{\sin^{2}\widehat{C}}{\sin^{2}\widehat{B}} - 2 = 0

    \Leftrightarrow \left(\dfrac{\sin\widehat{B}}{\sin\widehat{C}} -\dfrac{\sin\widehat{C}}{\sin\widehat{B}} ight)^{2} = 0

    \Leftrightarrow \sin\widehat{B} =
\sin\widehat{C}

    \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân.

  • Câu 5: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 6: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 7: Thông hiểu

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}

    Ta có: Tam giác ABC đều => \left\{ {\begin{array}{*{20}{c}}  {\left( {\overrightarrow {AB} ,\overrightarrow {AC} } ight) = {{60}^0}} \\   {\left| {\overrightarrow {AB} } ight| = \left| {\overrightarrow {AC} } ight| = a} \end{array}} ight.

    \begin{matrix}   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {AC} } ight|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = a.a.\cos \left( {{{60}^0}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \frac{1}{2}{a^2} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 9: Vận dụng

    Cho A = \lbrack
- 4;7brackB = ( - \infty; -
2) \cup (3; + \infty). Khi đó, A
\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup
(3;7brack.

  • Câu 10: Vận dụng

    Cho điểm A(3;3) và điểm M thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
x + y + 2 \geq 0 \\
- x + y + 2 \geq 0 \\
x - y + 2 \geq 0 \\
\end{matrix} ight.. Độ dài AM lớn nhất là

    Miền nghiệm của hệ bất phương trình là miền không bị gạch trong hình bên.

    Suy ra độ dài AM lớn nhất khi và chỉ khi M trùng với đỉnh nào đó của đa giác nghiệm.

    => AM_{max}=\sqrt{34}

  • Câu 11: Thông hiểu

    Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:

     Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2. 

    Do đó B\subset A

  • Câu 12: Nhận biết

    Cho biết x là một phần tử của tập hợp A, xét các mệnh đề sau:

    (I) x \in A.

    (II) \left\{ x ight\} \in
A.

    (III) x \subset A.

    (IV) \left\{ x ight\} \subset
A.

    Trong các mệnh đề sau, mệnh đề nào là đúng:

    I đúng.

    II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.

    III sai vì 1 phần tử thì không thể là con của 1 tập hợp.

    IV đúng.

  • Câu 13: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình 3\sqrt{x - 1} + m\sqrt{x + 1} = 2\sqrt[4]{x^{2} -
1} có nghiệm là:

    ĐKXĐ: x ≥ 1 .

    Chia cả hai vế cho \sqrt{x + 1} ta có

    pt \Leftrightarrow 3\frac{\sqrt{x -
1}}{\sqrt{x + 1}} + m = 2\frac{\sqrt[4]{x^{2} - 1}}{\sqrt{x + 1}}
\Leftrightarrow - 3\sqrt{\frac{x - 1}{x + 1}} + 2\sqrt[4]{\frac{x - 1}{x
+ 1}} = m

    Đặt t = \sqrt[4]{\frac{x - 1}{x + 1}} =
\sqrt[4]{1 - \frac{2}{x + 1}} \Rightarrow 0 \leq t < 1

    Phương trình trở thành  − 3t2 + 2t = m (*)

    Xét hàm số y =  − 3t2 + 2t trên [0; 1) , ta có - \frac{b}{2a} = \frac{1}{3}, y\left( \frac{1}{3} ight) =
\frac{1}{3}

    Bảng biến thiên

    Phương trình ban đầu có nghiệm phương trình (*) có nghiệm t∈ [0; 1)

    đồ thị hàm số y =  − 3t2 + 2t trên [0; 1) cắt đường thẳng y = m \Leftrightarrow - 1 < m \leq
\frac{1}{3}

    Vậy phương trình ban đầu có nghiệm khi và chỉ khi - 1 < m \leq \frac{1}{3}.

  • Câu 14: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 15: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{x + 1}}{x - 3} là:

    Hàm số y = \frac{\sqrt{x + 1}}{x -
3}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x - 3 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 3 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).

  • Câu 16: Nhận biết

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 17: Thông hiểu

    Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3  (m≠1)(P). Đỉnh của (P)S(−1;−2) thì m bằng bao nhiêu:

    Do đỉnh của (P)S(−1;−2) suy ra - 1 = \frac{m - 2}{m - 1} \Leftrightarrow m = \frac{3}{2}.

  • Câu 18: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 19: Thông hiểu

    Tam thức bậc hai f(x)=(1-\sqrt{2})x^{2}+(5-4\sqrt{2})x-3\sqrt{2}+6

     Ta có: \Delta >0a=1-\sqrt2 <0.

    Phương trình f(x)=0 có hai nghiệm là x=-3x=\sqrt2.

    Do đó f(x)>0 \forall x ∈(-3;\sqrt{2}).

  • Câu 20: Thông hiểu

    Tập hợp B=(2;+∞)\cup [-3;8] bằng tập hợp nào sau đây?

     Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp

    Vậy B=(2;+∞)\cup [-3;8] =[-3;+∞)

  • Câu 21: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 22: Thông hiểu

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 23: Thông hiểu

    Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x + y - 3 > 0?

    Xét điểm M\left( 1;\frac{3}{2}ight) . Ta có: 2.1 + \frac{3}{2}- 3 = \frac{1}{2} > 0 nên M\left( 1;\frac{3}{2} ight) thuộc miền nghiệm của bất phương trình đã cho.

  • Câu 24: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 25: Vận dụng

    Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng

    f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.

    f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.

    f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.

     ⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.

  • Câu 26: Vận dụng cao

    Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O), M là một điểm thay đổi trên (O). Gọi x,y lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \left|
\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC}
ight|. Tính tổng x;y.

    Hình vẽ minh họa

    Dựng hình bình hành DBCA. Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} - \overrightarrow{MC} ight|

    = \left| \overrightarrow{MD} +
\overrightarrow{DA} + \overrightarrow{MD} + \overrightarrow{DB} -
\overrightarrow{MD} - \overrightarrow{DC} ight|

    = \left| \overrightarrow{MD} ight| =
MD

    Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:

    \left\{ \begin{matrix}
MD \geq DO - OM = DO - OE = DE \\
MD \leq DO + OM = DO + OE = DC \\
\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.

    Vậy x + y = DE + DC

    = DC - CE + DC

    = 2DC - 2OC = 2.\frac{a\sqrt{3}}{2} -
2.\frac{a}{\sqrt{3}} = \frac{4a}{\sqrt{3}}

  • Câu 27: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(0; - 3),\ B(2;1),\ D(5;5) Tìm tọa độ điểm C để tứ giác ABCD là hình bình hành.

    Gọi C(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;4) \\
\overrightarrow{DC} = (x - 5;y - 5) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = x - 5 \\4 = y - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 7 \\y = 9 \\\end{matrix} ight.\ \overset{}{ightarrow}C(7;9).

  • Câu 28: Vận dụng

    Tính tổng bình phương các nghiệm của phương trình: \sqrt{x + 2} + \sqrt{5 - x} + \sqrt{(x+ 2)(5 - x)} = 4 là:

    ĐK x ∈ [ − 2; 5] Đặt t = \sqrt{x + 2} + \sqrt{5 - x} ,t ≥ 0.

    \Rightarrow \sqrt{(x + 2)(5 - x)} =\frac{t^{2} - 7}{2}

    Phương trình trở thành t + \frac{t^{2} -7}{2} = 4 \Leftrightarrow t^{2} + 2t- 15 = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 3(TM) \\t = - 5(KTM) \\\end{matrix} ight.

    \Rightarrow - x^{2} + 3x + 10 = 9\Leftrightarrow \left\lbrack \begin{matrix}x = \frac{3 + \sqrt{13}}{2} = x_{1}(TM) \\x = \frac{3 - \sqrt{13}}{2} = x_{2}(TM) \\\end{matrix} ight.  ⇒ x12 + x22 = 11.

  • Câu 29: Vận dụng cao

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 30: Thông hiểu

    Tập nghiệm S của phương trình \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2là:

     Điều kiện: x \ge1.

    Ta có: \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2\Leftrightarrow \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+\frac{2(x+2)}{x+2}\Leftrightarrow \sqrt {x - 1}  =  - x - 11 + 2x + 4 \Leftrightarrow \sqrt {x - 1}=x-7\Rightarrow x-1=(x-7)^2 \Leftrightarrow x^2-15x+50=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 5}\\{x = 10}\end{array}} ight..

    Thử lại x=5 không thỏa mãn.

    Vậy S=\{10\}

  • Câu 31: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

  • Câu 32: Nhận biết

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Ta có \left\{ \begin{matrix}
x_{I} = \frac{2 + 4}{2} = 3 \\
y_{I} = \frac{- 3 + 7}{2} = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}I(3;2).

  • Câu 33: Thông hiểu

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

     Ta có: \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}= 4\overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = 4\overrightarrow {MO}.

  • Câu 34: Vận dụng

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Ta có

    \bullet \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OE} = \left( \overrightarrow{OA} + \overrightarrow{OC}
ight) + \overrightarrow{OE} = \overrightarrow{OB} +
\overrightarrow{OE} = \overrightarrow{0}. Do đo \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OE} = \overrightarrow{0}. đúng.

    \bullet \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OB} = \left( \overrightarrow{OA} + \overrightarrow{OC}
ight) + \overrightarrow{OB}

    = \overrightarrow{OB} +
\overrightarrow{OB} = 2\overrightarrow{OB} =
\overrightarrow{EB}. Do đo \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OB} = \overrightarrow{EB} đúng.

    \bullet \overrightarrow{AB} + \overrightarrow{CD} +
\overrightarrow{EF} = \left( \overrightarrow{AB} + \overrightarrow{CD}
ight) + \overrightarrow{EF} = \left( \overrightarrow{AB} +
\overrightarrow{BO} ight) + \overrightarrow{EF}

    = \overrightarrow{AO} +
\overrightarrow{EF} = \overrightarrow{AO} + \overrightarrow{OA} =
\overrightarrow{AA} = \overrightarrow{0}. Do đó \overrightarrow{AB} + \overrightarrow{CD} +
\overrightarrow{EF} = \overrightarrow{0} đúng.

    Dùng phương pháp loại trừ, suy ra \overrightarrow{BC} + \overrightarrow{EF} =
\overrightarrow{AD} sai.

  • Câu 35: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 36: Thông hiểu

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 37: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Ở đây đẹp quá!

    Phương trình x^{2} - 9x + 2 = 0 vô nghiệm.

    16 không là số nguyên tố.

    Số \pi có lớn hơn 3 hay không?

    Câu “Phương trình x^{2} - 9x + 2 =
0 vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.

  • Câu 38: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}. Xác định vị trí điểm M.

     Điểm M là trọng tâm tam giác ABC khi và chỉ khi \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}.

  • Câu 40: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 41: Thông hiểu

    Tam thức bậc hai f(x)=x^{2}+(\sqrt{5}-1)x-\sqrt{5} nhận giá trị dương khi và chỉ khi:

     Ta có: \Delta >0a=1>0.

     Phương trình f(x)=0 có hai nghiệm phân biệt x=-\sqrt5 ;x=1.

    Do đó f(x)>0 khi x∈(−∞;-\sqrt{5})∪(1;+∞).

  • Câu 42: Nhận biết

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 43: Nhận biết

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 44: Nhận biết

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 45: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo