Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?

    Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình x^{2} - x + m > 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 - 4m < 0 \Leftrightarrow m
> \frac{1}{4}.

  • Câu 2: Thông hiểu

    Xác định tập hợp B=\{x∈Z|−2≤x<3\} bằng cách liệt kê các phần tử.

     Ta có: B=\{x∈Z|−2≤x<3\} =\{–2; –1; 0; 1; 2\}.

  • Câu 3: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 4: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} vuông góc với \overrightarrow{v}.

    Ta có:

    \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u}\left( \frac{1}{2}; - 5 ight)

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; -
4)

    Để \overrightarrow{u}\bot\overrightarrow{v}
\Leftrightarrow \frac{1}{2}.k + 20 = 0 \Leftrightarrow k = -
40.

  • Câu 5: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho \overrightarrow{a} = ( - 1;1),\overrightarrow{b} =
(4; - 2). Xác định tọa độ vecto \overrightarrow{v} = \overrightarrow{a} +
2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a} = ( - 1;1) \Rightarrow 2\overrightarrow{a} = ( - 2;2)
\\
\overrightarrow{b} = (4; - 2) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{v} =
\overrightarrow{a} + 2\overrightarrow{b} = \left( - 2 + 4;2 + ( - 2)
ight) = (2;0)

  • Câu 6: Vận dụng cao

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 7: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 8: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 9: Nhận biết

    Mệnh đề nào sau đây đúng?

    Vì vectơ - không cùng phương với mọi vectơ.

  • Câu 10: Thông hiểu

    Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0,    ∀x ∈ ℝ?

    f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.

  • Câu 11: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 12: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 13: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABC\
B(9;7),\ C(11; - 1). Gọi M,N lần lượt là trung điểm của AB,\ AC. Tìm tọa độ vectơ \overrightarrow{MN}?

    Ta có \overrightarrow{MN} =
\frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(2; - 8) = (1; -
4).

  • Câu 14: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 16: Thông hiểu

    Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3  (m≠1)(P). Đỉnh của (P)S(−1;−2) thì m bằng bao nhiêu:

    Do đỉnh của (P)S(−1;−2) suy ra - 1 = \frac{m - 2}{m - 1} \Leftrightarrow m = \frac{3}{2}.

  • Câu 17: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 18: Nhận biết

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 19: Thông hiểu

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} ight). Khẳng định nào sau đây sai?

    Ta có \overrightarrow{BC} = \left( 6; -
\frac{5}{2} ight) suy ra BC =
\sqrt{6^{2} + \left( - \frac{5}{2} ight)^{2}} =
\frac{13}{2}nên chọn đáp án sai \left| \overrightarrow{BC} ight| =
\frac{\sqrt{13}}{2}.

  • Câu 20: Thông hiểu

    Tập hợp A=(2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

    Xác định kết quả tập hợp bằng trục số như sau:

    Tìm kết quả của phép toán

    Vậy A=(2;+∞)\cap [-3;8] =(2;8]

  • Câu 21: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 22: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 23: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b và các góc của tam giác thỏa mãn biểu thức:

    \left\{ \begin{matrix}\sin\widehat{B}.\sin\widehat{C} = \dfrac{3}{4} \\a^{2} = \dfrac{a^{3} - b^{3} - c^{3}}{a - b - c} \\\end{matrix} ight.. Khi đó tam giác ABC là tam giác gì?

    Ta có:

    a^{2} = \frac{a^{3} - b^{3} - c^{3}}{a -
b - c}

    \Leftrightarrow a^{2}(a - b - c) = a^{3}
- b^{3} - c^{3}

    \Leftrightarrow a^{2}(a + b) = (b +
c)\left( b^{2} - bc + c^{2} ight)

    \Leftrightarrow a^{2} = b^{2} - bc +
c^{2}

    \Leftrightarrow b^{2} + c^{2} - a^{2} =
bc

    \Leftrightarrow \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{1}{2}

    \Leftrightarrow \cos\widehat{A} =
\frac{1}{2}

    \Leftrightarrow \widehat{A} =
\frac{\pi}{3}(*)

    Ta lại có:

    \sin\widehat{B}.sin\widehat{C} =
\frac{3}{4}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) - \cos\left( \widehat{B} + \widehat{C} ight) =
\frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) + \cos\widehat{A} = \frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) = 1

    \Leftrightarrow \widehat{B} -
\widehat{C} = 0 \Leftrightarrow \widehat{B} = \widehat{C}

    Vậy tam giác ABC là tam giác đều.

  • Câu 24: Vận dụng

    Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, AC=R\sqrt{2}. Tính số đo của \widehat{A} biết \widehat{A} là góc tù.

    Theo bài ra ta có: \widehat{A} là góc tù => \widehat B,\widehat C là góc nhọn.

    Xét tam giác ABC áp dụng định lí sin ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \dfrac{{R\sqrt 2 }}{{\sin \widehat B}} = \dfrac{R}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \widehat B = \dfrac{{R\sqrt 2 }}{{2R}} = \dfrac{{\sqrt 2 }}{2}} \\   {\sin \widehat C = \dfrac{R}{{2R}} = \dfrac{1}{2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\widehat B = {{45}^0}} \\   {\widehat C = {{30}^0}} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \widehat A + \widehat B + \widehat C = {180^0}

    \Rightarrow \widehat A = 180^0-45^0-35^0=105^0

  • Câu 25: Vận dụng cao

    Tổng các nghiệm của phương trình \sqrt{4x^{2} - 1} - \sqrt{2x + 1} = 1 + x -
2x^{2} là:

    Đặt \sqrt{4x^{2} - 1} = a;\sqrt{2x + 1} =
b(a,b \geq 0).

    Ta có 1 + x - 2x^{2} = -
\frac{1}{2}(4x^{2} - 1) + \frac{1}{2}(2x + 1).

    Phương trình trở thành a - b =
\frac{1}{2}\left( b^{2} - a^{2} ight) \Leftrightarrow a =
b

    Thay vào ta được x = 1;x = -
\frac{1}{2}. Vậy tổng các nghiệm của phương trình là \frac{1}{2}.

  • Câu 26: Vận dụng

    Tính tổng bình phương các nghiệm của phương trình: \sqrt{x + 2} + \sqrt{5 - x} + \sqrt{(x+ 2)(5 - x)} = 4 là:

    ĐK x ∈ [ − 2; 5] Đặt t = \sqrt{x + 2} + \sqrt{5 - x} ,t ≥ 0.

    \Rightarrow \sqrt{(x + 2)(5 - x)} =\frac{t^{2} - 7}{2}

    Phương trình trở thành t + \frac{t^{2} -7}{2} = 4 \Leftrightarrow t^{2} + 2t- 15 = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 3(TM) \\t = - 5(KTM) \\\end{matrix} ight.

    \Rightarrow - x^{2} + 3x + 10 = 9\Leftrightarrow \left\lbrack \begin{matrix}x = \frac{3 + \sqrt{13}}{2} = x_{1}(TM) \\x = \frac{3 - \sqrt{13}}{2} = x_{2}(TM) \\\end{matrix} ight.  ⇒ x12 + x22 = 11.

  • Câu 27: Nhận biết

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 28: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 29: Thông hiểu

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 30: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Biểu diễn \overrightarrow{AG} theo hai vecto \overrightarrow{AB},\overrightarrow{AC}

    Cách 1: Giả sử I là trung điểm của BC

    \begin{matrix}   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI}  \hfill \\   \Leftrightarrow \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AI}  \hfill \\ \end{matrix}

    Theo tính chất đường trung tuyến trong tam giác ABC ta có:

    \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AI} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AI} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AI}

    \begin{matrix}   \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  \hfill \\ \end{matrix}

    Cách 2: Ta có:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AA}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow 0  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AG}  \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 32: Vận dụng

    Cho đường tròn O và hai tiếp tuyến song song với nhau tiếp xúc với (O) tại hai điểm AB. Mệnh đề nào sau đây đúng?

    Do hai tiếp tuyến song song và A,\ \
B là hai tiếp điểm nên AB là đường kính.

    Do đó O là trung điểm của AB.

    Suy ra \overrightarrow{OA} = -
\overrightarrow{OB}.

  • Câu 33: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y < - 1 không chứa điểm nào sau đây?

    Xét điểm ( - 1; - 1). Ta có: - 3( - 1) - 5( - 1) = 8 < - 1 không thỏa mãn. Do đó ( - 1; - 1) không thuộc miền nghiệm của bất phương trình.

  • Câu 34: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 35: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0} Xác định vị trí điểm M.

    Giả sử G là trọng tâm tam giác ABC, khi đó ta có:

    \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0

    \Rightarrow M \equiv G

    => M là trọng tâm của tam giác ABC.

  • Câu 36: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 37: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 38: Thông hiểu

    Cho tam giác ABC có tọa độ ba đỉnh A(6;3),B( - 3;6),C(1; - 2). Xác định tọa độ điểm D \in BC thỏa mãn BD = 2CD?

    Giả sử tọa độ điểm D là: D(x;y)

    Ta có: D \in BC thỏa mãn BD = 2CD

    \Leftrightarrow \overrightarrow{BD} =
2\overrightarrow{DC}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BD} = (x + 3;y - 6) \\
\overrightarrow{DC} = (1 - x; - 2 - y) \\
\end{matrix} ight.

    \overrightarrow{BD} =
2\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 2 - 2x \\
y - 6 = - 4 - 2y \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{1}{3} \\y = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{1}{3};\dfrac{2}{3}ight)

  • Câu 39: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 40: Thông hiểu

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 41: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 42: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}x+2y\leq 6\\ 3x-y\leq 12\\ x\geq 0\\ y\geq 0\end{matrix}ight. có miền nghiệm là miền tứ giác OABC như hình dưới. Giá trị lớn nhất của F = 28x + 49y là:

    Tìm giá trị lớn nhất của biểu thức F = ax + by

    Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.

    Quan sát hình vẽ ta có: A\left( {0;3} ight);C\left( {4;0} ight);O\left( {0;0} ight)

    Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng {d_1}:x + 2y = 6{d_2}:3x - y = 12

    => Tọa độ điểm B là nghiệm của hệ phương trình: 

    \begin{matrix}  \left\{ \begin{gathered}  x + 2y = 6 \hfill \\  3x - y = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x = \dfrac{{30}}{7} \hfill \\  y = \dfrac{6}{7} \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow B\left( {\dfrac{{30}}{7};\dfrac{6}{7}} ight) \hfill \\ \end{matrix}

    Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F trên miền tứ giác OABC.

    Tính các giá trị của biểu thức  F = 28x + 49y tại các đỉnh của đa giác.

    Tại O\left( {0;0} ight) ta có: F = 28.0 + 49.0 = 0

    Tại A\left( {0;3} ight) ta có: F = 28.0 + 49.3 = 147

    Tại C\left( {4;0} ight) ta có: F = 28.4 + 49.0 = 112

    Tại B\left( {\frac{{30}}{7};\frac{6}{7}} ight) ta có: F = 28.\frac{{30}}{7} + 49.\frac{6}{7} = 162

    F đạt giá trị lớn nhất bằng 162 tại B\left( {\frac{{30}}{7};\frac{6}{7}} ight)

  • Câu 43: Thông hiểu

    Cho tam giác đều ABC có cạnh bằng a và chiều cao AH. Mệnh đề nào sau đây là sai?

    +)AH\bot BC nên đáp án \overrightarrow{AH}.\overrightarrow{BC} =
0 đúng.

    +)\left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0}. Đáp án \left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0} đúng.

    +)\overrightarrow{AB}.\overrightarrow{AC}= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight)=a.a.\cos 60^{\ ^{{^\circ}}} = \frac{a^{2}}{2}. Đáp án \overrightarrow{AB}.\overrightarrow{AC} =
\frac{a^{2}}{2}. đúng.

    +)\overrightarrow{AC}.\overrightarrow{CB}
= \left| \overrightarrow{AC} ight|.\left| \overrightarrow{CB}
ight|.cos120^{\ ^{{^\circ}}} = - \frac{a^{2}}{2}. Đáp án \overrightarrow{AC}.\overrightarrow{CB} =
\frac{a^{2}}{2}. sai.

  • Câu 44: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 45: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}ight)\Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo