Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho hai điểm
phân biệt và cố định, với
là trung điểm của
Tập hợp các điểm
thỏa mãn đẳng thức
là
Chọn điểm thuộc đoạn
sao cho
Chọn điểm thuộc đoạn
sao cho
Ta có
Vì là hai điểm cố định nên từ đẳng thức
suy ra tập hợp các điểm
là trung trực của đoạn thẳng
Gọi
là trung điểm của
suy ra
cũng là trung điểm của
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Tam giác
vuông ở
và có góc
. Hệ thức nào sau đây là sai?
Vì nên loại
.
Vì nên loại
.
Vì nên loại
.
Vì nên chọn
.
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Miền nghiệm của bất phương trình
chứa điểm có tọa độ:
Ta có:
Vì là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ
.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi:
Ta có: và
.
Phương trình có hai nghiệm phân biệt
.
Do đó khi
.
Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?
Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình .
Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?
Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Cho tam giác
đều có cạnh là 6. Tính
.
Hình vẽ minh họa
Gọi là trung điểm của
. Vì tam giác
đều có cạnh là 6, nên ta có
.
Xét tam giác vuông tại
, có
.
Suy ra
Mặt khác ta có:
.
Trong mặt phẳng Oxy, cho
. Tìm x để
và
cùng phương.
Để và
cùng phương thì
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Cho tam giác
đều cạnh
là trung điểm của
. Tính ![]()
Gọi là điểm thỏa mãn tứ giác
là hình bình hành
là hình chữ nhật.
Ta có
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Tam giác
có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Xác định parabol
, biết rằng
đi qua điểm
và có trục đối xứng
.
Vì hàm số có trục đối xứng và đi qua điểm
nên:
và
.
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.
Cho hàm số
. Khẳng định nào sau đây là sai?
Ta có:
Khẳng định sai là:
Cho M là trung điểm AB, tìm đẳng thức sai
![]()
Ta có: .
Đáp án sai là .
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Biết rằng hàm số y = ax2 + bx + c (a≠0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A(0;6). Tính tích P = abc.
Nhận xét: Hàm số đi qua điểm A(0;6); đạt cực tiểu bằng 4 tại x = 2 nên đồ thị hàm số đi qua I(2;4) và nhận x = 2 làm trục đối xứng, hàm số cũng đi qua điểm A(0;6) suy ra:
.
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:
Vì B' đối xứng với B qua A => A là trung điểm của BB'
Biểu thức
đạt giá trị nhỏ nhất với điều kiện
tại điểm
có toạ độ là:
Vẽ các đường thẳng :
Khi đó miền nghiệm của hệ là miền trong của tam giác
Tọa độ các đỉnh:
Ta có :
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Với . Ta có:
. Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Số nghiệm của phương trình
là:
Đặt (t≥0).Phương trình trở thành:
Với t = 1 ta được .
Vậy phương trình có hai nghiệm.
Tập
bằng tập nào sau đây?
Ta có:
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho tập hợp
và
Tập
là:
Tính độ dài đoạn thẳng
biết tọa độ
?
Ta có:
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .