Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Cho ba điểm
phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm thỏa mãn cả hai phương trình trong hệ
.
Cho 5 điểm M, N, P, Q, R. Tính tổng ![]()
Ta có:
Gọi
là tâm của hình vuông
. Vectơ nào trong các vectơ dưới đây bằng ![]()
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
Đáp án Ta có
Chọn đáp án này.
Đáp án Ta có
Từ hai vị trí
và
của một tòa nhà, người ta quan sát đỉnh
của ngọn núi. Biết rằng độ cao
, phương nhìn
tạo với phương nằm ngang góc
, phương nhìn
tạo với phương nằm ngang góc
. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Từ giả thiết, ta suy ra tam giác có
và
Khi đó
Theo định lí sin, ta có hay
Do đó
Gọi là khoảng cách từ
đến mặt đất. Tam giác vuông
có cạnh
đối diện với góc
nên
Vậy ngọn núi cao khoảng
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Từ suy ra
Cho tam giác
có diện tích
, lấy
là trọng tâm và
. Giả sử
, tính giá trị biểu thức
theo
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
. Kẻ
Tam giác vuông =>
Tam giác vuông =>
Ta có:
Mặt khác áp dụng định lí sin cho tam giác AMB ta được:
Từ (*) và (**) ta được:
Chứng minh tương tự ta có:
Do đó:
Cho tam thức
. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.
Để f(x) ≥ 0 với mọi x ∈ ℝ
Tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm phương trình là:
Gọi
là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Trong mặt phẳng
cho
. Tính
?
Ta có ,
suy ra
.
Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?
*x2 − x − 5 = 0 có 2 nghiệm phân biệt
* − x2 − x − 1 = 0vô nghiệm, a = − 1 < 0 nên − x2 − x − 1 < 0, ∀x ∈ ℝ
*2x2 + x = 0 có 2 nghiệm phân biệt
*x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.
Trong mặt phẳng Oxy cho
,
,
. Khẳng định nào sau đây đúng.
Do nên loại đáp án
.
Do,
,
suy ra
không vuông góc
nên loại đáp án
.
Ta có ,
,
, suy ra
,
. Do đó tam giác
vuông cân tại
.
Cho biết
. Tính
.
Ta có:
.
Hàm số y = − x2 + 2(m−1)x + 3 nghịch biến trên (1;+∞) khi giá trị m thỏa mãn:
Đồ thị hàm số có trục đối xứng là đường x = m − 1. Đồ thị hàm số đã cho có hệ số x2 âm nên sẽ đồng biến trên (−∞;m−1) và nghịch biến trên (m−1;+∞). Theo đề, cần: m − 1 ≤ 1 ⇔ m ≤ 2.
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Chọn đáp án vì theo định nghĩa bất phương trình bậc nhất hai ẩn.
Trong hệ tọa độ
, cho bốn điểm
. Các điểm nào trong các điểm đã cho thẳng hàng với nhau?
Ta có:
Vậy ba điểm thẳng hàng.
Cho M là trung điểm AB, tìm đẳng thức sai
![]()
Ta có: .
Đáp án sai là .
Trong mặt phẳng tọa độ
, cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Số nghiệm của phương trình
là:
.
Vậy phương trình có hai nghiệm.
Giá trị nhỏ nhất của biểu thức F(x;y) = y – x trên miền xác định bởi hệ:
là:
Biểu diễn miền nghiệm của hệ :

Miền nghiệm của hệ là tam giác .
Ta có: ;
và
.
Giá trị nhỏ nhất của đạt được tại 1 trong 3 đỉnh tam giác
.
Với suy ra
.
Với suy ra
.
Với suy ra
.
Vậy giá trị nhỏ nhất đạt tại
.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Xác định A ∩ B trong trường hợp sau:
![]()
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Cho tam giác đều
cạnh
Biết rằng tập hợp các điểm
thỏa mãn đẳng thức
là đường tròn cố định có bán kính
Tính bán kính
theo ![]()
Gọi là trọng tâm của tam giác
Ta có
Chọn điểm sao cho
Vì là trọng tâm của tam giác
nên
Khi đó
Do đó
Vì là điểm cố định thỏa mãn
nên tập hợp các điểm
cần tìm là đường tròn tâm
bán kính
Tìm tập xác định của ![]()
Điều kiện xác định: .
Vậy .
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Một cửa hàng bán hai loại mặt hàng
và
. Biết rằng cứ bán một mặt hàng loại
cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại
cửa hàng lãi 7 nghìn đồng. Gọi
lần lượt là số mặt hàng loại
và mặt hàng loại
mà cửa hàng đó bán ra trong một tháng. Cặp số
nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?
Đặt x là số tiền lãi của mặt hàng A
y là số tiền lãi của mặt hàng B
Đổi 30 triệu = 30 000 nghìn đồng
Theo đề bài ta có:
TH1: Thay A (1000; 2000) vào phương trình
. Thay B(3000; 1000
vào phương trình
: Thay C
vào phương trình
TH4: Thay vào phương trình
Vậy đáp án là: C
Cho hai khoảng
và
. Khẳng định nào sau đây là sai?

Vậy khi
Tập xác định của hàm số
là
Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔ − 3 ≤ x ≤ 3.
Hàm số xác định khi và chỉ khi
. Vậy x ∈ [ − 3; 3] ∖ {2}.
Tam thức bậc hai
:
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hướng lên.
Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có: