Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Nghiệm của bất phương trình x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4} >
0

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x +
4} = \frac{- x^{3} + 2x^{2} + 5x - 6}{- x^{2} + 3x + 4}

    = \frac{(x - 1)\left( - x^{2} + x + 6
ight)}{- x^{2} + 3x + 4}

    - x^{2} + x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.\ ,\

    - x^{2} + 3x + 4 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng xét dấu

    Suy ra

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4}
> 0 \Leftrightarrow x \in ( - 2; - 1) \cup (1;3) \cup (4; +
\infty).

    Vậy nghiệm của bất phương trình có 3 khoảng.

  • Câu 2: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Môn toán khó quá!

    (2) Bạn có đói không?

    (3) 2 > 3 hoặc 1 \leq 4.

    (4) \pi < 2.

    Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow2 câu là mệnh đề.

  • Câu 4: Vận dụng cao

    Phương trình \sqrt{x^{2} + 3} + \sqrt{10 - x^{2}} = 5 có mấy nghiệm ?

    Đặt u = \sqrt{x^{2} + 3}\ \ ;\ \ v =
\sqrt{10 - x^{2}}\ \ \ \ (u\ ,\ v \geq 0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
u + v = 5 \\
u^{2} + v^{2} = 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u + v = 5 \\
u.v = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \Rightarrow x = \pm 1.

    Với \left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \Rightarrow x = \pm \sqrt{6}.

    Vậy phương trình có 4 nghiệm.

  • Câu 5: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} và vectơ \overrightarrow{v} có độ dài bằng nhau.

    Ta có: \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u} = \left( \frac{1}{2}; - 5 ight) \Rightarrow \left|
\overrightarrow{u} ight| = \frac{\sqrt{101}}{2}

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; - 4)
\Rightarrow \left| \overrightarrow{v} ight| = \sqrt{k^{2} +
16}

    Để \left| \overrightarrow{u} ight| =
\left| \overrightarrow{v} ight| \Leftrightarrow \frac{\sqrt{101}}{2} =
\sqrt{k^{2} + 16} \Leftrightarrow \frac{101}{4} = k^{2} + 16
\Leftrightarrow k = \pm \frac{\sqrt{37}}{2}.

  • Câu 6: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 7: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 8: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 9: Thông hiểu

    Số nghiệm của phương trình \sqrt{2x^{2}-2x+4}=\sqrt{x^{2}-x+2}

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {2{x^2} - 2x + 4 \geqslant 0} \\   {{x^2} - x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 2x + 4}  = \sqrt {{x^2} - x + 2}  \hfill \\   \Leftrightarrow 2{x^2} - 2x + 4 = {x^2} - x + 2 \hfill \\   \Leftrightarrow {x^2} - x + 2 = 0\left( {VN} ight) \hfill \\ \end{matrix}

    Do {\left( {x - \frac{1}{2}} ight)^2} + \frac{7}{4} > 0,\forall x

    Vậy phương trình vô nghiệm.

  • Câu 10: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 11: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B
= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}
ight) \Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack
\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 12: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(1;1),\ B(2; - 1),\ C(4;3),\ D(3;5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 2) \\
\overrightarrow{DC} = (1; - 2) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} =
\overrightarrow{DC}\overset{}{ightarrow}ABCD là hình bình hành.

  • Câu 13: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 14: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 15: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 16: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 17: Thông hiểu

    Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng?

    Gọi Mlà trung điểm BC.

    Ta có \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) \Rightarrow
\overrightarrow{AG} = \frac{\overrightarrow{AB} +
\overrightarrow{AC}}{3}.

  • Câu 18: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA( -
2;2),\ B(3;5) và trọng tâm là gốc tọa độ O(0;0). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    O là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{- 2 + 3 + x}{3} = 0 \\
\frac{2 + 5 + y}{3} = 0 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 1 \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 19: Nhận biết

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 20: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho vectơ \overrightarrow{a} = (9;3). Vectơ nào sau đây không vuông góc với vectơ \overrightarrow{a}?

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.1 +
3.( - 3) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{1}} nên đáp án \overrightarrow{v_{1}} = (1; - 3) đúng.

    \overrightarrow{a}.\overrightarrow{v_{2}} = 9.2 +
3.( - 6) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{2}} nên đáp án \overrightarrow{v_{2}} = (2; - 6) đúng.

    \overrightarrow{a}.\overrightarrow{v_{3}} = 9.1 +
3.3 = 18 eq 0 nên đáp án \overrightarrow{v_{3}} = (1;3) sai.

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.( -
1) + 3.3 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{4}} nên đáp án \overrightarrow{v_{4}} = ( - 1;3) đúng.

  • Câu 21: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 22: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây là cùng phương?

    Ta có \overrightarrow{v} = -
\frac{1}{3}\overrightarrow{a} + \frac{1}{4}\overrightarrow{b} = -
\frac{1}{6}\left( 2\overrightarrow{a} - \frac{3}{2}\overrightarrow{b}
ight) = - \frac{1}{6}\overrightarrow{u}.

    Hai vectơ \overrightarrow{u}\overrightarrow{v} là cùng phương.

    Chọn đáp án \overrightarrow{u} =
2\overrightarrow{a} - \frac{3}{2}\overrightarrow{b}\overrightarrow{v} = -
\frac{1}{3}\overrightarrow{a} +
\frac{1}{4}\overrightarrow{b}.

  • Câu 23: Vận dụng cao

    Dây truyền đỡ trên cầu treo có dạng Parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A, B trên mỗi trục AABB với độ cao 30 m. Chiều dài đoạn AB trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là OC = 5 m. Gọi Q, P, H, O, I, J, K là các điểm chia đoạn AB thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ, PP, HH, OC, II, JJ, KK gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo?

    Giả sử Parabol có dạng: y = ax2 + bx + c, a ≠ 0.

    hệ trục Oxy như hình vẽ, khi đó parabol đi qua điểm A(100;  30), và có đỉnh C(0; 5). Đoạn AB chia làm 8 phần, mỗi phần 25 m.

    Suy ra:\left\{ \begin{matrix}
30 = 10000a + 100b + c \\
\frac{- b}{2a} = 0 \\
5 = c \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = \frac{1}{400} \\
b = 0 \\
c = 5 \\
\end{matrix} ight. \Rightarrow
(P):y = \frac{1}{400}x^{2} + 5.

    Khi đó, tổng độ dài của các dây cáp treo bằng OC + 2y1 + 2y2 + 2y3

    = 5 + 2\left( \frac{1}{400}.25^{2} + 5
ight) + 2\left( \frac{1}{400}.50^{2} + 5 ight) + 2\left(
\frac{1}{400}.75^{2} + 5 ight)

     = 78, 75 (m).

  • Câu 24: Thông hiểu

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} ight). Khẳng định nào sau đây sai?

    Ta có \overrightarrow{BC} = \left( 6; -
\frac{5}{2} ight) suy ra BC =
\sqrt{6^{2} + \left( - \frac{5}{2} ight)^{2}} =
\frac{13}{2}nên chọn đáp án sai \left| \overrightarrow{BC} ight| =
\frac{\sqrt{13}}{2}.

  • Câu 25: Nhận biết

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 26: Thông hiểu

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 27: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Số nguyên dương là số tự nhiên khác 0.

    Bạn hãy cố gắng, nhất định bạn sẽ thành công.

    Tổng các góc của một tam giác là 180{^\circ}.

    Cố lên, sắp đến nơi rồi!

    Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là 180{^\circ}.” là mệnh đề.

  • Câu 28: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 29: Thông hiểu

    Xác định tập hợp sau đây trên trục số: C = \left( {7;12} ight] \cap \left( { - \infty ;9} ight]:

    Xác định tập hợp trên trục số như sau:

    Xác định tập hợp trên trục số

  • Câu 30: Thông hiểu

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 31: Vận dụng

    Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.:

    Nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight. là miền đa giác OABCD với O(0;0);A(1;0);B(4;3);C(2;4);D(0;4).

    Giá trị lớn nhất F(x;y)=x+2y đạt được tại 1 trong 5 đỉnh của đa giác.

    Với O(0;0) \Rightarrow F=0.

    VớiA(1;0)\Rightarrow F=1.

    Với B(4;3) \Rightarrow F=10.

    Với C(2;4) \Rightarrow F=10.

    Với D(0;4) \Rightarrow F=8.

    Vậy GTLN F=10.

  • Câu 32: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 33: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 34: Thông hiểu

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 35: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 36: Thông hiểu

    Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0,    ∀x ∈ ℝ?

    f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.

  • Câu 37: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 38: Vận dụng

    Tổng các nghiệm của phương trình \frac{2x^{2} + 8x + 1}{2x + 1} = 5\sqrt{x} là:

    ĐK: x ≥ 0.

    Dễ thấy x = 0 không là nghiệm của phương trình.

    Xét x ≠ 0. Khi đó phương trình tương đương với

    10x\sqrt{x} + 5\sqrt{x} = 2x^{2} + 1 +8x \Leftrightarrow 5(\sqrt{x} + \frac{1}{2\sqrt{x}}) = 2(x +\frac{1}{4x}) + 4

    Đặt t = \sqrt{x} + \frac{1}{2\sqrt{x}}\geq 2\sqrt{\sqrt{x}.\frac{1}{2\sqrt{x}}} = \sqrt{2} \Rightarrow t \geq\sqrt{2}

    Suy ra x + \frac{1}{4x} = t^{2} -1. Phương trình trở thành:

    5t = 2(t2−1) + 4 ⇔ 2t2 − 5t + 2 = 0 ⇔ t = 2 (thỏa mãn) hoặc t = \frac{1}{2} (loại)
    Với t = 2 ta có x + \frac{1}{4x} = 3 \Leftrightarrow 4x^{2} - 12x +1 = 0 \Leftrightarrow x = \frac{3 \pm 2\sqrt{2}}{2} (thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{3\pm 2\sqrt{2}}{2}.

    Tổng các nghiệm của phương trình bằng 3.

  • Câu 39: Nhận biết

    Biết phương trình \sqrt{7x + 1} = 2\sqrt{x + 4} có nghiệm duy nhất là x = x_{0} . Hãy chọn khẳng định đúng.

    ĐK x \in \left\lbrack - \frac{1}{7}; +
\infty ight)

    \sqrt{7x + 1} = 2\sqrt{x + 4}\Leftrightarrow 7x + 1 = 4(x + 4)\Leftrightarrow x = 5(TM)  \Rightarrow x_{0} = 5 \in (4;6).

  • Câu 40: Thông hiểu

    Số tập hợp con của tập hợp A= \left \{ {-1;2;b} ight \} là:

    Các tập hợp con của tập A:

    Số tập con có 3 phần tử là \left\{ { - 1;2;b} ight\}

    Số tập con có 2 phần tử là \left\{ { - 1;2} ight\};\left\{ { - 1;b} ight\};\left\{ {2;b} ight\}

    Số tập con có 1 phần tử là \left\{ { - 1} ight\};\left\{ 2 ight\};\left\{ b ight\};\left\{ \emptyset  ight\}

    Vậy tập hơp A có tất cả 8 tập con.

  • Câu 41: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 42: Nhận biết

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 43: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

  • Câu 44: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 45: Nhận biết

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo