Tam thức bậc hai
nhận giá trị dương khi và chỉ khi:
Ta có: và
.
Phương trình có hai nghiệm phân biệt
.
Do đó khi
.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi:
Ta có: và
.
Phương trình có hai nghiệm phân biệt
.
Do đó khi
.
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
vuông góc với ![]()
Ta có:
Để .
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?
Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng
(2;+∞).
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ra được: thỏa mãn điều kiện
Vậy phương trình có nghiệm
Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Cho tam giác
có
là trung điểm của
là trọng tâm của tam giác
Khẳng định nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Vì
là trung điểm của
nên
Do đó
Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện
là
Biểu diễn miền nghiệm của hệ :
Nghiệm của hệ là miền đa giác
với
.
Giá trị lớn nhất đạt được tại 1 trong 5 đỉnh của đa giác.
Với .
Với.
Với .
Với .
Với .
Vậy GTLN .
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Miền nghiệm của bất phương trình
không chứa điểm có tọa độ:
Ta có:
Thay vào bất phương trình ta được:
Vậy không thuộc miền nghiệm của bất phương trình.
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho
và
. Khi đó,
bằng:
Ta có:
.
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi
Ta có: và
.
Phươn trình có hai nghiệm phân biệt
.
Do đó
.
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.
Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày
Điều kiện: x, y > 0
Khi đó số tiền lãi một ngày của nhà máy này là (triệu đồng)
Số giờ làm việc trong ngày của đội 1 là (giờ)
Số giờ làm việc trong ngày của đội 2 là (giờ)
Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình (∗).
Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi
là toạ độ một trong các đỉnh
.
Ta có:
Suy ra khi
Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: triệu đồng.
Cho các vectơ
. Tính tích vô hướng của
.
Ta có ,
suy ra
.
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Miền nghiệm của hệ bất phương trình
chứa điểm nào sau đây?
Với . Ta có:
. Cả ba bất phương trình đều thỏa mãn. Chọn đáp án này.
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Với giá trị nào của tham số a thì phương trình:
có đúng hai nghiệm phân biệt.
.
Phương trình có hai nghiệm phân biệt ⇔ 1 ≤ a < 4.
Cho hai vecto
và
biết
và
. Tính
.
Ta có:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Biết phương trình
có một nghiệm có dạng
, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.
Điều kiện:
Với điều kiện trên, phương trình tương đương
⇔ x2 − 3x + 1 = 0
hoặc
Theo yêu cầu đề bài ta chọn nghiệm .
Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.
Tìm tất cả các giá trị thực của tham số m sao cho phương trình (m−2)x2 − 2mx + m + 3 = 0 có hai nghiệm dương phân biệt.
Yêu cầu bài toán
.
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Cho tam giác
có
lần lượt là trung điểm
, điểm
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Gọi K là trung điểm BN.
Xét ta có
(1)
Xét ta có
(2)
Từ (1) và (2) suy ra .
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Tập nghiệm của phương trình
là:
Điều kiện .
Ta có: .
Loại . Do đó
.