Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Giải hệ phương trình:
. Nghiệm (x; y) là:
Đặt
Hệ phương trình ban đầu trở thành:
Với S = 5; P = 6 ta có:
Với S = -10; P = 21 ta có:
Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Tập
bằng tập nào sau đây?
Ta có:
Giá trị lớn nhất của hàm số
bằng:
Ta có
Vậy giá trị lớn nhất của hàm số bằng
.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Tìm tất cả các giá trị của m để bất phương trình
với mọi x ∈ ℝ
Để bất phương trình với mọi x ∈ ℝ thì:
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Bất phương trình bậc nhất hai ẩn là:
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Đẳng thức vectơ nào sau đây đúng?
Ta có
Mặt khác và
cùng hướng
hay
.
Cho hai tập hợp: X =
là bội của
và
và Y=
n là bội số của 12}
Trong các mệnh đề nào sau đây, mệnh đề nào là sai?
là bội của
và
là số tự nhiên chia hết cho
và
chia hết cho
Tập hợp các số tự nhiên chia hết cho
là bội của
chia hết cho
Tập hợp các số tự nhiên chia hết cho
đáp án sai là
và
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình 
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Trong mặt phẳng tọa độ
, cho hai vecto
và
với
. Tìm giá trị của tham số m để
?
Ta có:
Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Tích các nghiệm của phương trình
là:
Điều kiên:
Phương trình tương đương:
Đặt
Với t = 4 ta có:
Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Cho M là trung điểm AB, tìm đẳng thức sai
![]()
Ta có: .
Đáp án sai là .
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Giá trị nhỏ nhất
của biểu thức
trên miền xác định bởi hệ
là :
Trong mặt phẳng tọa độ vẽ các đường thẳng
Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ là
Ta có
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Trong các mệnh đề sau, mệnh đề nào là sai:
Ta thấy mệnh đề sai vì giữa hai tập hợp không có quan hệ phụ thuộc.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Tất cả các giá trị của tham số m để các nghiệm của phương trình
cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:
Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: .
Cho hình bình hành
Tính
theo
và ![]()
Vì là hình bình hành nên
Ta có
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Cho 2 vectơ
và
có
,
và
. Tính
.
Ta có
.
Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.
Xét
+) (không thỏa mãn yêu cầu bài toán)
+) (không thỏa mãn)
Xét
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 − 4mx + m2 − 2m trên đoạn [ − 2; 0] bằng 3. Tính tổng T các phần tử của S.
Parabol có hệ số theo x2 là 4 > 0 nên bề lõm hướng lên. Hoành độ đỉnh .
• Nếu thì xI < − 2 < 0 . Suy ra f(x) đồng biến trên đoạn [ − 2; 0].
Do đó min[ − 2; 0]f(x) = f(−2) = m2 + 6m + 16.
Theo yêu cầu bài toán: m2 + 6m + 16 = 3 (vô nghiệm).
• Nếu thì xI ∈ [0; 2]. Suy ra f(x) đạt giá trị nhỏ nhất tại đỉnh.
Do đó .
Theo yêu cầu bài toán (thỏa mãn − 4 ≤ m ≤ 0).
• Nếu thì xI > 0 > − 2. Suy ra f(x) nghịch biến trên đoạn [ − 2; 0].
Do đó min[ − 2; 0]f(x) = f(0) = m2 − 2m.
Theo yêu cầu bài toán:
Vậy
Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.
Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày
Điều kiện: x, y > 0
Khi đó số tiền lãi một ngày của nhà máy này là (triệu đồng)
Số giờ làm việc trong ngày của đội 1 là (giờ)
Số giờ làm việc trong ngày của đội 2 là (giờ)
Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình (∗).
Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi
là toạ độ một trong các đỉnh
.
Ta có:
Suy ra khi
Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: triệu đồng.
Cho ngũ giác
. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.