Cho tam giác đều
cạnh
. Tính độ dài
.
Gọi là trung điểm
. Suy ra
.
Áp dụng định lí Pytago trong tam giác vuông . Suy ra
.
Cho tam giác đều
cạnh
. Tính độ dài
.
Gọi là trung điểm
. Suy ra
.
Áp dụng định lí Pytago trong tam giác vuông . Suy ra
.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Từ suy ra
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)
Thay tọa độ và
vào
. Ta có:
.
Do đó .
Cho bất phương trình
. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.
Ta có: . Suy ra
.
Nhận xét: không thuộc
.
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Tính tổng
.
Ta có .
Tìm tất cả các giá trị thực của tham số m để bất phương trình (m2−4)x2 + (m−2)x + 1 < 0 vô nghiệm.
• Xét m2 − 4 = 0 ⇔ m = ± 2
Với m = − 2, bất phương trình trở thành : không thỏa mãn.
Với m = 2, bất phương trình trở thành 1 < 0: vô nghiệm. Do đó m = 2 thỏa mãn.
• Xét m ≠ ± 2. Yêu cầu bài toán
⇔ (m2−4)x2 + (m−2)x + 1 ≥ 0, ∀x ∈ ℝ
Kết hợp hai trường hợp, ta được hoặc m ≥ 2.
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Trong mặt phẳng Oxy, cho
. Tìm x để
và
cùng phương.
Để và
cùng phương thì
Cho mệnh đề chứa biến
chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:
Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2.
Do đó
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cặp số
là nghiệm của bất phương trình nào sau đây?
Vì là mệnh đề đúng nên cặp số
là nghiệm của bất phương trình
.
Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng
là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Tìm tập xác định của hàm số
?
Điều kiện xác định:
.
Vậy tập xác định của hàm số là .
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:
.
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Trong hệ tọa độ
cho tam giác
có
, trọng tâm
và trung điểm cạnh
là
Tổng hoành độ của điểm
và
là
Vì là trung điểm
nên
Vì là trọng tâm tam giác
nên
Suy ra
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện: .
Ta có: .
Loại . Do đó phương trình có 1 nghiệm.
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Chọn phát biểu đúng về mệnh đề sau: "
,
"?
Phát biểu đúng của mệnh đề ",
" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.
Anh T dự định trồng cà phê và hạt tiêu trên một mảnh đất có diện tích 8ha. Nếu trồng 1ha cà phê thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1ha hạt tiêu thì cần 30 ngày công và thu được 50 triệu đồng. Anh T cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, anh T chỉ có thể sử dụng không quá 180 ngày công cho việc trồng hai loại cây.
Gọi là số hecta đất trồng cà phê và
là số hecta đất trồng hạt tiêu.
Ta có các điều kiện ràng buộc đối với như sau:
Hiển nhiên .
Diện tích canh tác không vượt quá 8 ha nên .
Số ngày công sử dụng không vượt quá 180 nên .
Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc:
Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ , ta được miền tứ giác
(Hình).
Toạ độ các đỉnh của tứ giác đó là: .
Gọi là số tiền (đơn vị: triệu đồng) anh T thu được, ta có:
.
Ta phải tìm thoả mãn hệ bất phương trình sao cho
đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức
trên miền tứ giác
.
Tính các giá trị của biểu thức tại các đỉnh của đa giác, ta có:
Tại
Tại
Tại
Tại
đạt giá trị lớn nhất bằng 340 tại
.
Vậy để thu được nhiều tiền nhất, anh T cần trồng 6ha cà phê và 2ha hạt tiêu.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Số tập hợp con có 2 phần tử của tập hợp
là:
Các tập hợp con của tập hợp là:
Có tất cả 15 tập con của tập hợp A.
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Điểm
thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Xét hệ . Thay tọa độ
vào hệ:
. Cả 2 bất phương trình đều đúng. Chọn đáp án này.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho tập hợp
và
Tập
là:
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Nghiệm của phương trình
là:
Điều kiện: .Ta có
( vì x + 3 > 0 )
⇔ x = 2.
Cho phương trình
(
là tham số). Tìm
để phương trình vô nghiệm.
Đặt . Khi đó ta có phương trình:
. (1)
Với thì
(Loại)
Với để phương trình ban đầu vô nghiệm thì:
TH1: (1) vô nghiệm .
TH2: (1) có 2 nghiệm âm
Kết hợp 2 trường hợp, ta được .
Khoảng giá trị của x khi
trong hệ bất phương trình
là:
Với hệ bất phương trình trở thành:
Vậy khi thì khoảng giá trị của x là
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho
Tập nào sau đây bằng tập ![]()
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.