Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Diện tích tam giác có ba cạnh lần lượt là và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3) hoặc
(4)
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Bảng xét dấu sau đây là của tam thức bậc hai nào?
Từ bảng xét dấu ta có:
có hai nghiệm phân biệt
và
khi
Do đó
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Trong mặt phẳng tọa độ , cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó
Ta có: G là trọng tâm tam giác ABC =>
Tìm tập xác định của hàm số .
Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).
Do đó tập xác định D = ℝ.
Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với {
,
và
}
Ta liệt kê các phần tử của tập A: .
Như vậy chỉ có phương án là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.
Trong mặt phẳng tọa độ , khoảng cách giữa hai điểm
và
bằng:
Khoảng cách giữa hai điểm M, N là
Tìm tập xác định D của hàm số
Điều kiện .
Vậy tập xác định của hàm số là .
Cho hình chữ nhật ABCD có , AD = 1. Tính góc giữa hai vectơ
và
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Cho tam giác đều có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Với giá trị nào của x thì mệnh đề chứa biến "" là đúng?
Thay vào 2 vế, ta được:
(đúng).
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài
Dựng hình bình hành tâm O như sau:
Ta có:
Vì tam giác AOB vuông tại A ta có:
Cho tam giác vuông tại
có
. Tính
Ta có:
Cho và
. Khi đó,
bằng:
Ta có:
.
Cho có
Diện tích của tam giác là:
Ta có:
Trong các mệnh đề sau, mệnh đề nào là sai:
Ta thấy mệnh đề sai vì giữa hai tập hợp không có quan hệ phụ thuộc.
Cho ba điểm phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?
Ta có: .
Gọi là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Cho đường thẳng và bất phương trình
. Tìm điều kiện của
và
để mọi điểm thuộc
đều là nghiệm của bất phương trình đã cho.
Để mọi điểm thuộc đường thẳng đều là nghiệm của bất phương trình thì điều kiện cần là
phải song song với
. Khi đó ta có:
Với ta được
Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng là đồ thị của đường thẳng
khi
tịnh tiến xuống dưới theo trục
.
Nghĩa là .
Tìm tất cả các giá trị của m để tam thức luôn dương với
.
Để tam thức luôn dương với
:
Xét ta có bảng xét dấu như sau:
Kết hợp các điều kiện ta được
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình f(|x|) − 1 = m có đúng 3 nghiệm phân biệt.
Hàm số f(x) = ax2 + bx + c có đồ thị là (C), lấy đối xứng phần đồ thị nằm bên phải Oy của (C) qua Oy ta được đồ thị (C′) của hàm số y = f(|x|).
Dựa vào đồ thị, phương trình f(|x|) − 1 = m ⇔ (|x|) = m + 1 có đúng 3 nghiệm phân biệt khi m + 1 = 3 ⇔ m = 2.
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Cho hệ bất phương trình có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: ?
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án đúng
Vậy là nghiệm của bất phương trình bậc nhất hai ẩn:
Số nghiệm của phương trình là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Biết phương trình có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Cho bất phương trình có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Cho tam giác có
,
,
.Tính
.
Ta có ,
suy ra
.
Cho . Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.
Giá trị nhỏ nhất của biểu thức
trên miền xác định bởi hệ
là :
Trong mặt phẳng tọa độ vẽ các đường thẳng
Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ là
Ta có
Phương trình có mấy nghiệm ?
Điều kiện: 0 ≤ x ≤ 9
Bình phương hai vế phương trình đã cho ta được:
Đặt . PT trên trở thành:
Với (TM)
Với (TM)
Vậy phương trình có tập nghiệm là (3 nghiệm).
Cho phương trình . Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Phương trình có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Tam giác có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt