Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Tính tổng bình phương các nghiệm của phương trính
bằng:
ĐK:
.
Đặt , (t≥0)Phương trình thành
.
t = 1 ⇒ x2 − 2x − 1 = 0
.
Vậy phương trình đã cho có hai nghiệm là .
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho hình chữ nhật ABCD có
, AD = 1. Tính góc giữa hai vectơ
và ![]()
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Cho
,
. Tính góc của
.
Ta có .
Trong mặt phẳng tọa độ
, cho hai điểm
. Xác định điểm
trên trục hoành sao cho ba điểm
thẳng hàng.
Gọi khi đó
Ba điểm thẳng hàng khi và chỉ khi
cùng phương với
.
Lớp
có
học sinh giỏi Toán,
học sinh giỏi Lý,
học sinh giỏi Hóa,
học sinh giỏi cả Toán và Lý,
học sinh giỏi cả Toán và Hóa,
học sinh giỏi cả Lý và Hóa,
học sinh giỏi cả
môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp
là:
Ta dùng biểu đồ Ven để giải

Nhìn vào biểu đồ, số học sinh giỏi ít nhất trong
môn là:
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Gọi
lần lượt là trung điểm các cạnh
của tứ giác
. Đẳng thức nào sau đây sai?
Do M là trung điểm các cạnh AD nên
Do N lần lượt là trung điểm các cạnh BC nên . Nên
đúng.
Ta có
Vậy . Nên
đúng.
Mà . Nên
đúng.
Vậy sai.
Phương trình
có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Tập nghiệm của phương trình
là:
.
Vậy S = {2;4}.
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Các hệ bất phương trình ;
có chứa các bất phương trình bậc hai
=> Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.
Đáp án là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.
Đáp án có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Tập nghiệm của bất phương trình
là:
Ta có:
Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện
là
Biểu diễn miền nghiệm của hệ :
Nghiệm của hệ là miền đa giác
với
.
Giá trị lớn nhất đạt được tại 1 trong 5 đỉnh của đa giác.
Với .
Với.
Với .
Với .
Với .
Vậy GTLN .
Cho tam giác
Hai điểm
chia cạnh
theo ba phần bằng nhau
Tính
theo
và ![]()
Ta có
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Xác định A ∩ B trong trường hợp sau:
![]()
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Cho đường thẳng
và bất phương trình
. Tìm điều kiện của
và
để mọi điểm thuộc
đều là nghiệm của bất phương trình đã cho.
Để mọi điểm thuộc đường thẳng đều là nghiệm của bất phương trình thì điều kiện cần là
phải song song với
. Khi đó ta có:
Với ta được
Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng là đồ thị của đường thẳng
khi
tịnh tiến xuống dưới theo trục
.
Nghĩa là .
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Số nghiệm của phương trình
là:
.
Vậy phương trình có 1 nghiệm.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho hình thoi
có
. Tính
.

Vì nên
.
Tập tất cả các giá trị của tham số m để phương trình
có nghiệm thực là
* Với m < 2 ⇒ phương trình vô nghiệm
* Với m ≥ 2,
.
Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.
Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2; + ∞).
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Viết mệnh đề sau bằng cách sử dụng kí hiệu
hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi
Ta có: và
.
Phươn trình có hai nghiệm phân biệt
.
Do đó
.
Trong các mệnh đề sau, mệnh đề nào là sai:
Ta thấy mệnh đề sai vì giữa hai tập hợp không có quan hệ phụ thuộc.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Cho tam thức bậc hai
có đồ thị như hình vẽ dưới đây

Bảng biến thiên của tam thức bậc hai là
Từ đồ thị ta có:
Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3
=> f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án


Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án

Vậy bảng biến thiên đúng là

Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Trong hệ trục tọa độ
, cho hai điểm
. Tọa độ của véctơ
bằng
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.