Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Trong mặt phẳng tọa độ
, cho hai điểm
. Xác định điểm
trên trục hoành sao cho ba điểm
thẳng hàng.
Gọi khi đó
Ba điểm thẳng hàng khi và chỉ khi
cùng phương với
.
Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Cho tọa độ hai điểm
và
. Khẳng định nào sau đây đúng?
Ta có:
Cho tam giác
có
là trung điểm của
Tính
theo
và ![]()
Ta có
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Ta có:
sai do
.
sai do
.
sai do
.
đúng do
.
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ra được thỏa mãn
Vậy nghiệm của phương trình là:
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ta có: thỏa mãn
Vậy phương trình có nghiệm là .
Cho hệ bất phương trình
có miền nghiệm là miền ngũ giác
như hình dưới. Giá trị nhỏ nhất của
là:

Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.
Tọa độ đỉnh A là tọa độ giao điểm hai đường thẳng a và c
=> Tọa độ điểm A là nghiệm của hệ phương trình:
Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng a và e
=> Tọa độ điểm B là nghiệm của hệ phương trình:
Tọa độ đỉnh D là tọa độ giao điểm hai đường thẳng b và d
=> Tọa độ điểm D là nghiệm của hệ phương trình:
Tọa độ đỉnh E là tọa độ giao điểm hai đường thẳng d và e
=> Tọa độ điểm E là nghiệm của hệ phương trình:
Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị nhỏ nhất của biểu thức F trên miền tứ giác ABCDE.
Tính các giá trị của biểu thức tại các đỉnh của đa giác.
Tại ta có:
Tại ta có:
Tại ta có:
Tại ta có:
Tại ta có:
F đạt giá trị nhỏ nhất bằng -114 tại
Biết phương trình
có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?
Điều kiện:
x2 + 3x ≥ 0⇔
phương trình .
Đặt , điều kiện t ≥ 0.
Phương trình trở thành t2 + 3t − 10 = 0
⇔ ⇒
, thoả mãn (1) ⇒ x1 + 4x2 = 0.
Trong các tập hợp sau, tập hợp nào bằng nhau:
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> . Vậy tập hợp
bằng tập hợp
. Đáp án đúng
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> ;
. Vậy tập hợp
không bằng tập hợp
.
Cho biết
. Tính
.
Ta có:
.
Điểm
là điểm thuộc miền nghiệm của bất phương trình:
Vì là mệnh đề đúng nên
là điểm thuộc miền nghiệm của bất phương trình
.
Cho
Tìm ![]()

Vậy .
Giá trị
là:
Ta có: .
Tổng các nghiệm của phương trình
là bao nhiêu?
.
Vậy tổng các nghiệm của phương trình là .
Cho hình vuông
cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Ta có: là bất phương trình bậc nhất hai ẩn.
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng.
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi
Chọn Ta có:

Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.
Số nghiệm của phương trình
là:
.
Vậy phương trình có hai nghiệm.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Giả sử
là nghiệm của phương trình
. Khi đó giá trị lớn nhất của biểu thức
bằng:
Để phương trình có hai nghiệm thì
Áp dụng hệ thức Viet ta có:
Khi đó: .
Xét hàm số có hệ số
, hoành độ đỉnh
nên
đồng biến trên
.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Cho phương trình
. Tìm
để phương trình có 3 nghiệm phân biệt?
Đáp án: 9
Cho phương trình . Tìm
để phương trình có 3 nghiệm phân biệt?
Đáp án: 9
Đặt thì phương trình
trở thành:
(1)
Để phương trình có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm
và một nghiệm
.
Khi thì
.
Vậy
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với
.Bất phương trình thứ hai sai nên không thỏa mãn.
Với
. Đúng.
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.

Ta có . Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:
Giữ nguyên đồ thị y = f(x) phía trên trục hoành.
Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).
Kết hợp hai phần ta được đồ thị hàm số y = |f(x)| như hình vẽ.

Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có ycbt ⇔ 0 < m < 1.
Tìm tất cả các giá trị thực của tham số m để bất phương trình (m2−4)x2 + (m−2)x + 1 < 0 vô nghiệm.
• Xét m2 − 4 = 0 ⇔ m = ± 2
Với m = − 2, bất phương trình trở thành : không thỏa mãn.
Với m = 2, bất phương trình trở thành 1 < 0: vô nghiệm. Do đó m = 2 thỏa mãn.
• Xét m ≠ ± 2. Yêu cầu bài toán
⇔ (m2−4)x2 + (m−2)x + 1 ≥ 0, ∀x ∈ ℝ
Kết hợp hai trường hợp, ta được hoặc m ≥ 2.