Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Đáp án là:

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Khoảng cách từ chân cổng đến trục đối xứng Oy là \frac{8}{2} = 4.

    Hoành độ hai chân cổng là -
4;4

    Tung độ chân cổng là: y = -
\frac{1}{2}.4^{2} = - 8

    Vậy chiều cao của cổng là | - 8| =
8 mét.

  • Câu 2: Thông hiểu

    Xác định M = A ∪ B trong trường hợp A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 10}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.

    Liệt kê các phần tử ta có:

    A = \left \{ {0; 4; 8} ight \}

    B = \left \{ {0; 3; 6; 9} ight \}

    Vậy M = A ∪ B = \left \{ {0; 3; 4; 6; 8; 9} ight \}.

  • Câu 3: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 4: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 5: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 6: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 7: Thông hiểu

    Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.

    \overrightarrow{MB} = \overrightarrow{MA} +\overrightarrow{AB} = \frac{1}{2}\overrightarrow{OA} +\overrightarrow{OB} - \overrightarrow{OA}= -\frac{1}{2}\overrightarrow{OA} + \overrightarrow{OB} .

  • Câu 8: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(1;1),\ B(2; - 1),\ C(4;3),\ D(3;5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 2) \\
\overrightarrow{DC} = (1; - 2) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} =
\overrightarrow{DC}\overset{}{ightarrow}ABCD là hình bình hành.

  • Câu 9: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 10: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 11: Vận dụng cao

    Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình |f(x)| − 1 = m có đúng 2 nghiệm phân biệt.

    + Phương trình  ⇔ |f(x)| = m + 1.

    + Đồ thị hàm số y = |f(x)| có dạng:

    + Dựa vào đồ thị, để phương trình |f(x)| = m + 1 có hai nghiệm phân biệt thì:

    \left\lbrack \begin{matrix}
m + 1 > 1 \\
m + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > 0 \\
m = - 1 \\
\end{matrix} ight..

  • Câu 12: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 13: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 15: Vận dụng cao

    Nghiệm của phương trình \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x +
3}{5} là:

    Điều kiện: x \geq \frac{2}{3} .Ta có

    \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x
+ 3}{5}

    \Leftrightarrow \left( \sqrt{4x + 1} -
\sqrt{3x - 2} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) =
\left( \frac{x + 3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2}
ight)

    \Leftrightarrow x + 3 = \left( \frac{x +
3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight)

    \Leftrightarrow (x + 3)\left\lbrack 1 -
\frac{1}{5}\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) ightbrack =
0

    \Leftrightarrow \sqrt{4x + 1} + \sqrt{3x -
2} = 5 ( vì x + 3 > 0 )

     ⇔ x = 2.

  • Câu 16: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABC\
B(9;7),\ C(11; - 1). Gọi M,N lần lượt là trung điểm của AB,\ AC. Tìm tọa độ vectơ \overrightarrow{MN}?

    Ta có \overrightarrow{MN} =
\frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(2; - 8) = (1; -
4).

  • Câu 17: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 18: Nhận biết

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

  • Câu 19: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 20: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( 1 - \sqrt{3} ight)x - 8 -
5\sqrt{3}:

    f(x) = x^{2} + \left( 1 - \sqrt{3}
ight)x - 8 - 5\sqrt{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 - \sqrt{3} \\
x = 1 + 2\sqrt{3} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án Âm với mọi x \in \left( - 2 - \sqrt{3};1 + 2\sqrt{3}
ight).

  • Câu 21: Vận dụng

    Tìm giá trị thực của tham số m để phương trình (m+1)x2 − 2mx + m − 2 = 0 có hai nghiệm phân biệt x1,  x2 khác 0 thỏa mãn \frac{1}{x_{1}} + \frac{1}{x_{2}} < 3\ \ \
?

    Ta có Δ′ = m + 2.

    Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi \left\{ \begin{matrix}
a eq 0 \\
\Delta' > 0 \\
P eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 1 eq 0 \\
m + 2 > 0 \\
m - 2 eq 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
m eq \left\{ - 1\ ;\ 2 ight\} \\
m > - 2 \\
\end{matrix} ight.\  ight.

    Theo định lý Vi-et, ta có: \left\{
\begin{matrix}
x_{1} + x_{2} = \frac{2m}{m + 1} \\
x_{1}.x_{2} = \frac{m - 2}{m + 1} \\
\end{matrix} ight.

    Theo bài ra, ta có \frac{1}{x_{1}} +
\frac{1}{x_{2}} = \frac{x_{1} + x_{2}}{x_{1}.x_{2}} = \frac{2m}{m - 2}
< 3 \Leftrightarrow \left\lbrack \begin{matrix}
m > 6 \\
m < 2 \\
\end{matrix} ight.

    Kết hợp với điều kiện ta được \left\lbrack
\begin{matrix}
m > 6 \\
m \in ( - 2\ ;\  - 1) \cup ( - 1\ ;\ 2) \\
\end{matrix} ight. là giá trị cần tìm.

  • Câu 22: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 23: Thông hiểu

    Miền nghiệm của bất phương trình - x + y < 2 được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?

    Vẽ đường thẳng -x + y = 2

    Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.

    Vậy đáp án là:

  • Câu 24: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 25: Nhận biết

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 26: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 27: Thông hiểu

    Số phần tử của tập hợp A = \left\{ k^{2} + 1|k \in \mathbb{Z,}|k| \leq 2
ight\}

    Ta có: \left\{ \begin{matrix}
\mathbf{k \in}\mathbf{Z} \\
\left| \mathbf{k} ight|\mathbf{\leq}\mathbf{2} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow k =}\left\{
\mathbf{\pm}\mathbf{2;}\mathbf{\pm}\mathbf{1;0}
ight\}\mathbf{\Rightarrow A =}\left\{ \mathbf{5;2;1}
ight\}

  • Câu 28: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 29: Thông hiểu

    Tập nghiệm của phương trình \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1} là?

     Điều kiện: x > \frac13.

    Ta có: \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1}  \Leftrightarrow 3x^{2}-7x+2=3x-1\Leftrightarrow 3x^2-10x+3=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{3}}\\{x = 3}\end{array}} ight.. Loại x= \frac13.

    Vậy S=\{3\}.

     

  • Câu 30: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 31: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
1;1),B(1;3)C(1; - 1). Khẳng định nào sau đây là đúng?

    \overrightarrow{AB}\mathbf{=}(2;2)\Rightarrow\left|\overrightarrow{{AB}}ight|\mathbf{=}{2}\sqrt{{2}}.

    \overrightarrow{AC}=(2;-2)\Rightarrow\left|\overrightarrow {AC}ight|\mathbf{=}2\sqrt{{2}}.

    Ta có: AB = AC\Rightarrow \Delta{ABC} cân tại A.

    \overrightarrow{BC}=(0;-4)\Rightarrow\left|\overrightarrow{BC}ight|={4}.

    BC^2=AB^2+AC^2 =8+8=4^2 \Rightarrow \Delta ABC vuông tại A.

    Vậy \Delta ABC vuông cân tại A.

  • Câu 32: Vận dụng cao

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Đáp án là:

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: x,y (ha)

    Điều kiện: x,y \geq 0

    Số tiền cần bỏ ra để thuê người trồng hoa là 30y.100000 = 3000000y (trồng).

    Lợi nhuận thu được là

    f(x;y) = 1000000x + 12000000 -
3000000y

    \Rightarrow f(x;y) = 10000000x +
9000000y (đồng).

    Vì số công trồng rau không vượt quá 80 nên 20x
\leq 80 \Leftrightarrow x \leq 4

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 10 \\
0 \leq x \leq 4 \\
y \geq 0 \\
\end{matrix} ight.\ (*)

    Ta cần tìm giá trị lớn nhất của f(x;y) trên miền nghiệm của hệ (*).

    Miền nghiệm của hệ (*) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là toạ độ của một trong các đỉnh O(0;0),A(4;0),B(4;6),C(0;10).

    => f(x;y) lớn nhất khi (x;y) = (4;6)

    Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất

  • Câu 33: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 34: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 35: Thông hiểu

    Cho tam thức f(x) = ax^{2} + bx + c (a ≠ 0), có ∆ = b^{2}  – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta ' \leqslant 0} \end{array}} ight.

  • Câu 36: Thông hiểu

    Tập nghiệm của phương trình \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0 là:

     Điều kiện x>2.

    Ta có: \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0\Leftrightarrow x^2-5x+4=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 37: Vận dụng

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là:

    x = \sqrt{\sqrt{3x^{2} + 1} -1}

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\left\lbrack \begin{matrix}x = 0 \\x = \pm 1 \\\end{matrix} ight.\  \\\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}x = 0 \\x = 1 \\\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 38: Vận dụng

    Cho x,y thoả mãn hệ \left\{ \begin{matrix}
x + 2y - 100 \leq 0 \\
2x + y - 80 \leq 0 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight. Tìm giá trị lớn nhất P_{\max} của biểu thức P = (x;y) = 40000x + 30000y

    Trong mặt phẳng tọa độ Oxy, vẽ các đường thẳng d_{1}:x + 2y - 100 = 0,\ d_{2}:2x + y - 80 =
0.

    Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.

    Xét các đỉnh của miền khép kín tạo bởi hệ là

    O(0;0), \ \ A\ (0;50), \ \ B(20;40),C(40;0).

    Ta có \left\{ \begin{matrix}
P(0;0) = 0 \\
P(0;50) = 1500000 \\
P(20;40) = 2000000 \\
P(40;0) = 1600000 \\
\end{matrix} ight. \overset{}{ightarrow}P_{\max} =
2000000.

  • Câu 39: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 40: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}

    Dựng hình bình hành tâm O như sau:

    Tính độ lớn tổng vectơ

    Ta có:

    \begin{matrix}  \overrightarrow {CB}  + \overrightarrow {AB}  = \overrightarrow {DA}  + \overrightarrow {DC}  = \overrightarrow {DB}  \hfill \\   \Rightarrow \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {DB} } ight| = DB = 2OB \hfill \\ \end{matrix}

    Vì tam giác AOB vuông tại A ta có:

    \begin{matrix}  B{O^2} = A{B^2} + A{O^2} \hfill \\   \Rightarrow B{O^2} = {3^2} + {2^2} = 13 \hfill \\   \Rightarrow BO = \sqrt {13}  \hfill \\   \Rightarrow \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \sqrt {13}  \hfill \\ \end{matrix}

  • Câu 41: Nhận biết

    Số nghiệm của phương trình \sqrt{2x-4}=\sqrt{x^{2}-3x} là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {2x - 4 \geqslant 0} \\   {{x^2} - 3x \geqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {x \in \left( { - \infty ;0} ight] \cup \left[ {3; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow x \geqslant 3 \hfill \\ \end{matrix}

    \begin{matrix}  \sqrt {2x - 4}  = \sqrt {{x^2} - 3x}  \hfill \\   \Leftrightarrow 2x - 4 = {x^2} - 3x \hfill \\   \Leftrightarrow {x^2} - 5x + 4 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {ktm} ight)} \\   {x = 4\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy phương trình đã cho có tất cả 1 nghiệm.

  • Câu 42: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 43: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 44: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 45: Vận dụng

    Cho số thực a
< 0. Điều kiện cần và đủ để ( -
\infty;a) \cup \left\lbrack \frac{4}{a}; + \infty ight)\mathbb{=
R} là:

    Ta có: ( - \infty;a) \cup \left\lbrack
\frac{4}{a}; + \infty ight)\mathbb{= R \Leftrightarrow}a \geq
\frac{4}{a} \Leftrightarrow a^{2} \leq 4 (vì a < 0 nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)

    \Leftrightarrow - 2 \leq a \leq
2

    a < 0 \Rightarrow - 2 \leq a <
0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo