Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tam giác ABC, có trọng tâm G. Gọi A_{1},B_{1},C_{1} lần lượt là trung điểm của BC,CA,AB. Chọn khẳng định sai?

    Ta có: \overrightarrow{GC} = -
2\overrightarrow{GC_{1}} nên \overrightarrow{GC} =
2\overrightarrow{GC_{1}} sai.

    Chọn \overrightarrow{GC} =
2\overrightarrow{GC_{1}}.

  • Câu 2: Thông hiểu

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} ight). Khẳng định nào sau đây sai?

    Ta có \overrightarrow{BC} = \left( 6; -
\frac{5}{2} ight) suy ra BC =
\sqrt{6^{2} + \left( - \frac{5}{2} ight)^{2}} =
\frac{13}{2}nên chọn đáp án sai \left| \overrightarrow{BC} ight| =
\frac{\sqrt{13}}{2}.

  • Câu 3: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2;3)\overrightarrow{b} = (4;1). Tìm vectơ \overrightarrow{d} biết \overrightarrow{a}.\overrightarrow{d} = 4\overrightarrow{b}.\overrightarrow{d} = -
2.

    Gọi \overrightarrow{d} = (x;y).

    Ta có: \overrightarrow{d}.\overrightarrow{a}
= 4 \Leftrightarrow - 2x + 3y = 4\overrightarrow{b}.\overrightarrow{d} = - 2
\Leftrightarrow 4x + y = - 2

    Giải hệ phương trình: \left\{
\begin{matrix}
- 2x + 3y = 4 \\
4x + y = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{5}{7} \\
y = \frac{6}{7} \\
\end{matrix} ight. nên \overrightarrow d=\left(\mathbf{-}\frac{5}{7};\frac{6}{7}ight).

  • Câu 4: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 5: Vận dụng cao

    Tìm tất cả giá trị của tham số m để hệ bất phương trình \left\{ \begin{matrix}
x \geq 0 \\
x - y \leq 0 \\
y - mx - 2 \leq 0 \\
\end{matrix} ight. có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.

    Họ đường thẳng \left( d_{m} ight):y -
mx - 2 = 0 luôn đi qua điểm A(0;2), hay nói cách khác các đường thẳng \left( d_{m} ight) xoay quanh A.

    Mặt khác, ta có 1 - m.0 - 2 \leq
0 đúng với mọi m

    => Miền nghiệm của bất phương trình y
- mx - 2 \leq 0 luôn chứa điểm (0;1).

    Do đó ta có 3 khả năng sau

    Vậy m < 0.

  • Câu 6: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 7: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B
= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}
ight) \Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack
\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 8: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 9: Thông hiểu

    Miền nghiệm của bất phương trình 2x + y > 1 không chứa điểm nào sau đây?

    Xét điểm D( - 1\ \ ;\ \  - 1). Vì 2.( - 1) - 1 = - 3 < 1 nên miền nghiệm của bất phương trình đã cho không chứa điểm D( - 1\ \ ;\ \  - 1).

  • Câu 10: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 11: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 12: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y > x + 3 \\
y < x + 1 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 13: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 14: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?

    Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0,  ∀x ∈ ℝ.

  • Câu 16: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 17: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 18: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 19: Nhận biết

    Trong hệ tọa độ Oxy, cho tam giác ABCA(3;5),\ B(1;2),\ C(5;2). Tìm tọa độ trọng tâm G của tam giác ABC?

    Ta có \left\{ \begin{matrix}
x_{G} = \frac{3 + 1 + 5}{3} = 3 \\
y_{G} = \frac{5 + 2 + 2}{3} = 3 \\
\end{matrix} ight.\ \overset{}{ightarrow}G(3;3).

  • Câu 20: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 21: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 22: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 23: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 24: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của aΔ.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0

  • Câu 26: Thông hiểu

    Tìm parabol (P):y=ax^{2}+3x-2, biết rằng parabol có đỉnh I(-\frac{1}{2};-\frac{11}{4}).

     Vì hàm số bậc hai có đỉnh I(-\frac{1}{2};-\frac{11}{4}) nên:

    \frac{-b}{2a}= \frac {-1}2 \Leftrightarrow b=a-\frac {11}4=a{(\frac{-1}2})^{2}+3.(-\frac1{2})-2.

    Suy ra a=3.

  • Câu 27: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 28: Vận dụng cao

    Tổng các nghiệm của phương trình \sqrt{4x^{2} - 1} - \sqrt{2x + 1} = 1 + x -
2x^{2} là:

    Đặt \sqrt{4x^{2} - 1} = a;\sqrt{2x + 1} =
b(a,b \geq 0).

    Ta có 1 + x - 2x^{2} = -
\frac{1}{2}(4x^{2} - 1) + \frac{1}{2}(2x + 1).

    Phương trình trở thành a - b =
\frac{1}{2}\left( b^{2} - a^{2} ight) \Leftrightarrow a =
b

    Thay vào ta được x = 1;x = -
\frac{1}{2}. Vậy tổng các nghiệm của phương trình là \frac{1}{2}.

  • Câu 29: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 30: Thông hiểu

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Số nghiệm thực của phương trình \sqrt{x - 1}.\sqrt{2x + 6} = x + 3

    ĐK: x \geq 1 , \sqrt{x - 1}.\sqrt{2x + 6} = x + 3 \Leftrightarrow(x - 1)(2x + 6) = (x + 3)^{2}\Leftrightarrow (x + 3)(x - 5) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3(KTM) \\x = 5(TM) \\\end{matrix} ight..

  • Câu 32: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 33: Nhận biết

    Cho bất phương trình 3x + 2 + 2(y – 2) < 2(x + 1) miền nghiệm của bất phương trình không chứa điểm nào sau đây?

     Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 34: Nhận biết

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 35: Vận dụng

    Cho 4 điểm A(1; -
2),B(0;3),C( - 3;4),D( - 1;8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?

    Ta có: \overrightarrow{AD}( - 2;10),\
\overrightarrow{AB}( - 1;5) \Rightarrow \overrightarrow{AD} =
2\overrightarrow{AB} \Rightarrow 3 điểm A,B,D thẳng hàng.

  • Câu 36: Nhận biết

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 37: Thông hiểu

    Cho \overrightarrow{a}, \overrightarrow{b}không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ } là:

    Ta có- \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } ight) =
\frac{1}{2}\overrightarrow{\ x\ }. Chọn - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ }.

  • Câu 38: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -8).

    Xét tỉ số \frac{4}{- 4} eq\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại đáp án \overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-2}{6}\overset{}{ightarrow}\overrightarrow{u},\\overrightarrow{v} không cùng phương. Loại đáp án Hai vectơ \overrightarrow{u} = (2; - 1)\ và\\overrightarrow{v} = ( - 2; - 1) đối nhau.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

    Chọn đáp án \overrightarrow{\mathbf{u}}\mathbf{-}\overrightarrow{\mathbf{v}}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 39: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 40: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để phương trình x2 − (m−1)x + m + 2 = 0 có hai nghiệm phân biệt x1,  x2 khác 0 thỏa mãn \frac{1}{x_{1}^{2}} + \frac{1}{x_{2}^{2}} >1.

    Đặt f(x) = x2 − (m−1)x + m + 2

    Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi:

    \left\{ \begin{matrix}\Delta > 0 \\f(0) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m^{2} - 6m - 7 > 0 \\m + 2 eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\left\lbrack \begin{matrix}m > 7 \\m < - 1 \\\end{matrix} ight.\  \\m eq - 2 \\\end{matrix} ight.

    Theo Viet, ta có \left\{ \begin{matrix}x_{1} + x_{2} = m - 1 \\x_{1}x_{2} = m + 2 \\\end{matrix} ight..

    Yêu cầu bài toán \frac{1}{{x_{1}}^{2}} +\frac{1}{{x_{2}}^{2}} > 1 \Leftrightarrow \frac{{x_{1}}^{2} +{x_{2}}^{2}}{{x_{1}}^{2}.{x_{2}}^{2}} > 1

    \Leftrightarrow \frac{\left( x_{1} +x_{2} ight)^{2} - 2x_{1}x_{2}}{\left( x_{1}x_{2} ight)^{2}} >1

    \Leftrightarrow \frac{(m - 1)^{2} - 2(m+ 2)}{(m + 2)^{2}} > 1

    \Leftrightarrow \frac{8m + 7}{(m +2)^{2}} < 0

    \Leftrightarrow \left\{ \begin{matrix}m eq - 2 \\m < - \frac{7}{8} \\\end{matrix} ight..

    Kết hợp điều kiện ta được m ∈ (−∞;−2) ∪ (−2;−1).

  • Câu 41: Vận dụng

    Tích các nghiệm của phương trình 3\sqrt{x + 3} = 3x^{2} + 4x - 1 là:

    ĐKXĐ: x ≥  − 3

    Phương trình \Leftrightarrow - 27(x + 3) -3\sqrt{x + 3} + 3x^{2} + 31x + 80 = 0

    Đặt t = \sqrt{x + 3}, (t≥0) phương trình trở thành  − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)

    Δt = (18x+93)2 suy ra (1) \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{- 3x - 16}{9} \\t = \frac{x + 5}{3} \\\end{matrix} ight.

    \bullet \sqrt{x + 3} = \frac{- 3x -16}{9} Vô nghiệm vì với x ≥  − 3 thì \frac{- 3x - 16}{9} < 0

    \bullet \sqrt{x + 3} = \frac{x + 5}{3}\Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow x = 1 hoặc x =  − 2

    Vậy phương trình ban đầu có hai nghiệm x = 1x =  − 2, tích các nghiệm của phương trình là 1.(−2) =  − 2.

  • Câu 42: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là sai:

    Ta thấy mệnh đề A ∈ A sai vì giữa hai tập hợp không có quan hệ phụ thuộc.

  • Câu 43: Thông hiểu

    Tìm tất cả các giá trị của tham số m để bất phương trình x^{2} - (m + 2)x + 8m + 1 \leq 0 vô nghiệm.

    Để bất phương trình x^{2} - (m + 2)x + 8m
+ 1 \leq 0 vô nghiệm thì x^{2} - (m
+ 2)x + 8m + 1 > 0,\forall x\mathbb{\in R}.

    {x^2} - (m + 2)x + 8m + 1 > 0,\forall x \in \mathbb{R}

    \Leftrightarrow m^{2} + 4m + 4 - 32m - 4
< 0

    \Leftrightarrow m^{2} - 28m <
0

    \Leftrightarrow 0 < m <
28.

  • Câu 44: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}2x+y\leq 6\\ 3x+4y\leq 6 \\ 5x-2y\geq 0\\x\leq 2 \\ y\geq -1 \end{matrix}ight. có miền nghiệm là miền ngũ giác ABCDE như hình dưới. Giá trị nhỏ nhất của F = 12x -39y là:

    Tìm giá trị nhỏ nhất của biểu thức F = ax + by

    Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.

    Tọa độ đỉnh A là tọa độ giao điểm hai đường thẳng a và c

    => Tọa độ điểm A là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {5x - 2y = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{4}{3}} \\   {y = \dfrac{{10}}{3}} \end{array}} ight. \hfill \\   \Rightarrow A\left( {\dfrac{4}{3};\dfrac{{10}}{3}} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng a và e

    => Tọa độ điểm B là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {x = 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow B\left( {2;2} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh D là tọa độ giao điểm hai đường thẳng b và d

    => Tọa độ điểm D là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x- 4y = 6} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{{2}}{3}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow D\left( {\dfrac{{2}}{3}; - 1} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh E là tọa độ giao điểm hai đường thẳng d và e

    => Tọa độ điểm E là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {5x - 2y = 0} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{2}{5}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow E\left( { - \dfrac{2}{5}; - 1} ight) \hfill \\ \end{matrix}

    Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị nhỏ nhất của biểu thức F trên miền tứ giác ABCDE.

    Tính các giá trị của biểu thức F = 12x -39y tại các đỉnh của đa giác.

    Tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight) ta có: F = 12.\frac{4}{3} - 39.\frac{{10}}{3} =  - 114

    Tại B\left( {2;2} ight) ta có: F = 12.2 - 39.2 =  - 54

    Tại C\left( {2;0} ight) ta có: F = 12.2 - 39.0 = 24

    Tại D\left( {\frac{{2}}{3}; - 1} ight) ta có: F = 12.\frac{{2}}{3} - 39.\left( { - 1} ight) = 47

    Tại E\left( { - \frac{2}{5}; - 1} ight) ta có: F = 12.\left( { - \frac{2}{5}} ight) - 39.\left( { - 1} ight) = \frac{{171}}{5}

    F đạt giá trị nhỏ nhất bằng -114 tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight)

  • Câu 45: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo