Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ: x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}3m - 1 eq 0 \\x = \frac{5m + 1}{3m - 1} > - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq \frac{1}{3} \\\frac{8m}{3m - 1} > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m > \frac{1}{3} \\m < 0 \\\end{matrix} ight..

  • Câu 2: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 3: Thông hiểu

    Miền nghiệm của bất phương trình 2x - \sqrt{2}y + \sqrt{2} - 2 \leq 0 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 1).2.1 - \sqrt{2}.1 + \sqrt{2} - 2 = 0 \leq
0 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \ 1).

  • Câu 4: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 5: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 6: Thông hiểu

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 7: Thông hiểu

    Cho phương trình x^{2} - mx - m^{2} = 0 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -
10;10brack để phương trình đã cho có hai nghiệm trái dấu?

    Từ yêu cầu bài toán

    \Leftrightarrow a.c < 0
\Leftrightarrow - m^{2} < 0 \Leftrightarrow m^{2} > 0
\Leftrightarrow m eq 0

    Suy ra m \in \left\{ - 10;....; - 1
ight\} \cup \left\{ 1;...;10 ight\}

    Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 8: Vận dụng

    Cho A = \lbrack- 4;7brackB = ( - \infty; -2) \cup (3; + \infty). Khi đó, A\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup(3;7brack.

  • Câu 9: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 10: Nhận biết

    Cặp số nào sau đây là nghiệm của bất phương trình - 5x + y \geq 5 ?

    Thay các cặp số vào bất phương trình ta thấy (0;5) là nghiệm của bất phương trình đã cho.

  • Câu 11: Vận dụng

    Cho hai điểm B,C phân biệt. Tập hợp những điểm M thỏa mãn \overrightarrow{CM}.\overrightarrow{CB} =
{\overrightarrow{CM}}^{2}

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
{\overrightarrow{CM}}^{2} \Leftrightarrow
\overrightarrow{CM}.\overrightarrow{CB} - {\overrightarrow{CM}}^{2} =
0 \Leftrightarrow
\overrightarrow{CM}.\left( \overrightarrow{CB} - \overrightarrow{CM}
ight) = \overrightarrow{CM}.\overrightarrow{MB} = 0.

    Tập hợp điểm M là đường tròn đường kính BC.

  • Câu 12: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 13: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 14: Thông hiểu

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Do ABCD là hình bình hành nên \overrightarrow{BC} =
\overrightarrow{AD}.

    Suy ra \overrightarrow{AB} -
\overrightarrow{BC} = \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}.

  • Câu 15: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 16: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 17: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Ta có:

    G là trọng tâm tam giác ABC => \overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AD}

    D là trung điểm của BC => 2\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {AC}

    E là trung điểm của AC => \overrightarrow {AC}  = 2\overrightarrow {AE}

    F là trung điểm của AB => \overrightarrow {AB}  = 2\overrightarrow {AF}

    Khi đó:

    \begin{matrix}  \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AD}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   = \dfrac{1}{3}\left( {2\overrightarrow {AF}  + 2\overrightarrow {AE} } ight) \hfill \\   = \dfrac{1}{3}\overrightarrow {AF}  + \dfrac{1}{3}\overrightarrow {AE}  \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 19: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là sai:

    Ta thấy mệnh đề A ∈ A sai vì giữa hai tập hợp không có quan hệ phụ thuộc.

  • Câu 20: Thông hiểu

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 21: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{IB} + \overrightarrow{IC} =
2\overrightarrow{IM}. Mặt khác I là trung điểm AM nên \overrightarrow{IA} + \overrightarrow{IM} =
\overrightarrow{0}. Suy ra \overrightarrow{IB} + \overrightarrow{IC} +
2\overrightarrow{IA} = 2\overrightarrow{IM} + 2\overrightarrow{IA} =
2\left( \overrightarrow{IM} + \overrightarrow{IA} ight) =
\overrightarrow{0}.

  • Câu 22: Vận dụng

    Tổng các nghiệm của phương trình x(x + 5) = 2\sqrt[3]{x^{2} + 5x - 2} - 2 là:

    Đặt t = \sqrt[3]{x^{2} + 5x - 2}. Phương trình trở thành:

    t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t =  − 2

    Ta được

    \sqrt[3]{x^{2} + 5x - 2} = - 2\Leftrightarrow x^{2} + 5x + 6 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = - 2 \\x = - 3 \\\end{matrix} ight..

    Tổng các nghiệm của phương trình là  − 5.

  • Câu 23: Nhận biết

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 24: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 25: Nhận biết

    Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng

    Hệ số góc a = 2018.

  • Câu 26: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 27: Vận dụng

    Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

    Do miền nghiệm không chứa biên nên ta loại đáp án \left\{ \begin{matrix}
x - 2y \leq 0 \\
x + 3y \geq - 2 \\
\end{matrix} ight.\left\{
\begin{matrix}
x - 2y \leq 0 \\
x + 3y \leq - 2 \\
\end{matrix} ight.. Chọn điểm M(0;1)thử vào các hệ bất phương trình.

    Xét đáp án \left\{ \begin{matrix}
x - 2y > 0 \\
x + 3y < - 2 \\
\end{matrix} ight., ta có \left\{ \begin{matrix}
0 - 2.1 > 0 \\
0 + 3.1 < - 2 \\
\end{matrix} ight.. Sai.

    Vậy chọn đáp án \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
\end{matrix} ight..

  • Câu 28: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 29: Thông hiểu

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

  • Câu 30: Thông hiểu

    Tập nghiệm của bất phương trình x^{2} + 4x + 4 > 0 là:

    Ta có:

    \begin{matrix}  {x^2} + 4x + 4 > 0 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ \end{matrix}

    Vậy tập nghiệm của bất phương trình là: (–∞; –2) ∪ (–2; +∞)

  • Câu 31: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 32: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 33: Vận dụng

    Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.

    Với m = 0 thì f(x) =  − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán

    Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó f(x) < 0,\ \
\forall x \Leftrightarrow \left\{ \begin{matrix}
a = m < 0 \\
\Delta = 1 + 4m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
m > - \frac{1}{4} \\
\end{matrix} \Leftrightarrow - \frac{1}{4} < m < 0 ight.

    Vậy với - \frac{1}{4} < m <
0 thì biểu thức f(x) luôn âm.

  • Câu 34: Thông hiểu

    Trong các tập hợp sau, tập hợp nào bằng nhau:

    • A = \left \{ {0; 2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 12}

    => A = \left \{ {0; 2; 4; 6; 8} ight \}; B = \left \{ {0; 2; 4; 6; 8; 10} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x ⋮ 22< x < 6}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và 1 < x < 5}

    => A = \left \{ {4} ight \} ; B = \left \{ {4} ight \}. Vậy tập hợp A bằng tập hợp B. Đáp án đúng

    • A = \left \{ {2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 10}

    => A = \left \{ {2; 4; 6; 8} ight \}; B =\left \{  {0; 2; 4; 6; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x chia hết cho 3 và x < 12}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và x < 12}

    => A = \left \{{0; 3; 6; 9} ight \}; B =\left \{  {0; 4; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

  • Câu 35: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 36: Nhận biết

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Ta có \left\{ \begin{matrix}
x_{I} = \frac{2 + 4}{2} = 3 \\
y_{I} = \frac{- 3 + 7}{2} = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}I(3;2).

  • Câu 37: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 38: Nhận biết

    Số nghiệm nguyên dương của phương trình \sqrt{x - 1} = x - 3

    \sqrt{x - 1} = x - 3 \Leftrightarrow\left\{ \begin{matrix}x \geq 3 \\x - 1 = (x - 3)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x^{2} - 7x + 10 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\\left\lbrack \begin{matrix}x = 2 \\x = 5 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Rightarrow x = 5.

    Vậy phương trình có một nghiệm nguyên dương.

  • Câu 39: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 40: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 41: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 42: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 43: Thông hiểu

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 44: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 45: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo