Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm
sao cho
được gọi là ……của bất phương trình
”.
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm sao cho
được gọi là miền nghiệm của bất phương trình
.
Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.
Ta có a = 1 > 0, b = − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Phương trình
có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Cho tam giác
. Tìm công thức sai:
Ta có:
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho tam giác đều
cạnh
. Tính độ dài
.
Gọi là trung điểm
. Suy ra
.
Áp dụng định lí Pytago trong tam giác vuông . Suy ra
.
Trên mặt phẳng tọa độ Oxy, cho các điểm
. Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:

Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong mặt phẳng Oxy cho
,
,
. Khẳng định nào sau đây đúng.
Do nên loại đáp án
.
Do,
,
suy ra
không vuông góc
nên loại đáp án
.
Ta có ,
,
, suy ra
,
. Do đó tam giác
vuông cân tại
.
Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:
.
Số tập hợp con có 2 phần tử của tập hợp
là:
Các tập hợp con của tập hợp là:
Có tất cả 15 tập con của tập hợp A.
Miền nghiệm của hệ bất phương trình
chứa điểm nào sau đây?
Ta thấy là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm
thuộc cả ba miền nghiệm của ba bất phương trình.
Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn:
.
Để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước
phải bằng
nghĩa là:
Vậy với thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.
Tổng các nghiệm của phương trình
là:
ĐK: x ≥ 0.
Dễ thấy x = 0 không là nghiệm của phương trình.
Xét x ≠ 0. Khi đó phương trình tương đương với
Đặt
Suy ra . Phương trình trở thành:
5t = 2(t2−1) + 4 ⇔ 2t2 − 5t + 2 = 0 ⇔ t = 2 (thỏa mãn) hoặc (loại)
Với t = 2 ta có (thỏa mãn)
Vậy phương trình có nghiệm là .
Tổng các nghiệm của phương trình bằng 3.
Tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm phương trình là:
Các giá trị m làm cho biểu thức
luôn dương là
Biểu thức luôn dương
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Xác định A ∩ B trong trường hợp sau:
![]()
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Cho đường thẳng
và bất phương trình
. Tìm điều kiện của
và
để mọi điểm thuộc
đều là nghiệm của bất phương trình đã cho.
Để mọi điểm thuộc đường thẳng đều là nghiệm của bất phương trình thì điều kiện cần là
phải song song với
. Khi đó ta có:
Với ta được
Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng là đồ thị của đường thẳng
khi
tịnh tiến xuống dưới theo trục
.
Nghĩa là .
Cho
và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn
và
. Tìm
.
Ta có:
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Cho
không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Cho
và
Khi đó:
Ta có:
Ta có:
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5| − m = 0 có hai nghiệm phân biệt?
PT: |x2−4|x|−5| − m = 0 ⇔ |x2−4|x|−5| = m .
Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .
Xét hàm số y = x2 − 4x − 5 (P1) có đồ thị như hình 1.

Xét hàm số y = x2 − 4|x| − 5 (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.
Phần 2: Lấy đối xứng phần 1 qua trục Oy.
Ta được đồ thị (P2) như hình 2.
Xét hàm số y = |x2−4|x|−5| (P), ta có: .
Suy ra đồ thị hàm số (P) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.
Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.
Ta được đồ thị (P) như hình 3.
Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m (1) có hai nghiệm phân biệt.
Mà . Vậy có 2008 giá trị.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Trước hết, ta vẽ hai đường thẳng:
Thử trực tiếp ta thấy là nghiệm của phương trình (2) nhưng không phải là nghiệm của phương trình (1). Sau khi gạch bỏ các miền không thích hợp, tập hợp nghiệm của bất phương trình chính là các điểm thuộc đường thẳng
Chọn đáp án .
Giải bất phương trình ![]()
Ta có: .
Cho
. Với m là bao nhiêu thì (1) có nghiệm duy nhất
ĐK x > 2
.
Phương trình (1) có nghiệm duy nhất .
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Xác định tọa độ điểm Q sao cho tứ giác
là hình bình hành?
Gọi tọa độ điểm
Ta có:
Vì MNPQ là hình bình hành nên
Vậy tọa độ điểm Q cần tìm là .
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Trong hệ tọa độ
cho
Tìm tọa độ của vectơ ![]()
Ta có
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Tìm mệnh đề đúng.
Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.
Cho
. Điều kiện để
là:
Ta có:
.
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh