Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 2: Vận dụng

    Anh T dự định trồng cà phê và hạt tiêu trên một mảnh đất có diện tích 8ha. Nếu trồng 1ha cà phê thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1ha hạt tiêu thì cần 30 ngày công và thu được 50 triệu đồng. Anh T cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, anh T chỉ có thể sử dụng không quá 180 ngày công cho việc trồng hai loại cây.

    Gọi x là số hecta đất trồng cà phê và y là số hecta đất trồng hạt tiêu.

    Ta có các điều kiện ràng buộc đối với x,y như sau:

    Hiển nhiên x \geq 0,y \geq
0.

    Diện tích canh tác không vượt quá 8 ha nên x + y \leq 8.

    Số ngày công sử dụng không vượt quá 180 nên 20x + 30y \leq 180.

     

    Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc: \left\{ \begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight.

    Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ Oxy, ta được miền tứ giác OABC (Hình).

    Toạ độ các đỉnh của tứ giác đó là: O(0;0);A(0;6);B(6;2);C(8;0).

    Gọi F là số tiền (đơn vị: triệu đồng) anh T thu được, ta có: F = 40x +
50y.

    Ta phải tìm x,y thoả mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F = 40x + 50y trên miền tứ giác OABC.

    Tính các giá trị của biểu thức F tại các đỉnh của đa giác, ta có:

    Tại O(0;0):F = 40.0 + 50.0 =
0

    Tại A(0,6):F = 40.0 + 50.6 =
300

    Tại B(6;2):F = 40.6 + 50.2 =
340

    Tại C(8;0):F = 40.8 + 50.0 =
320

    F đạt giá trị lớn nhất bằng 340 tại B(6;2).

    Vậy để thu được nhiều tiền nhất, anh T cần trồng 6ha cà phê và 2ha hạt tiêu.

  • Câu 3: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 5: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 6: Thông hiểu

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 7: Thông hiểu

    Tổng các nghiệm của phương trình \sqrt{3x^{2} - 2x + 9} + \sqrt{3x^{2} - 2x + 2} =7 là:

    Đặt t = \sqrt{3x^{2} - 2x + 2}, điều kiện t ≥ 0. Khi đó \sqrt{3x^{2} - 2x + 9} = \sqrt{t^{2} +7}.

    Phương trình trở thành \sqrt{t^{2} + 7} +t = 7

    \Leftrightarrow \sqrt{t^{2} + 7} = 7 - t\Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t^{2} + 7 = t^{2} - 14t + 49 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t = 3 \\\end{matrix} ight.\  \Leftrightarrow t = 3(Thỏa mãn)

    Với t = 3 ta có \sqrt{3x^{2} - 2x + 2} = 3

    \Leftrightarrow 3x^{2} - 2x + 2 = 9\Leftrightarrow 3x^{2} - 2x - 7 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \frac{1 + \sqrt{22}}{3} \\x = \frac{1 - \sqrt{22}}{3} \\\end{matrix} ight.

    Vậy phương trình có hai nghiệm x = \frac{1\pm \sqrt{22}}{3}.

    Tổng các nghiệm của phương trình là \frac{1 + \sqrt{22}}{3} + \frac{1 - \sqrt{22}}{3} =\frac{2}{3} .

  • Câu 8: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(0; - 3),\ B(2;1),\ D(5;5) Tìm tọa độ điểm C để tứ giác ABCD là hình bình hành.

    Gọi C(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;4) \\
\overrightarrow{DC} = (x - 5;y - 5) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = x - 5 \\4 = y - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 7 \\y = 9 \\\end{matrix} ight.\ \overset{}{ightarrow}C(7;9).

  • Câu 9: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}ight)\Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 10: Nhận biết

    Tập xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    Điều kiện xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    x \geqslant 0

    => Tập xác định của hàm số là: D = [0; +∞)

  • Câu 11: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} vuông góc với \overrightarrow{v}.

    Ta có:

    \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u}\left( \frac{1}{2}; - 5 ight)

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; -
4)

    Để \overrightarrow{u}\bot\overrightarrow{v}
\Leftrightarrow \frac{1}{2}.k + 20 = 0 \Leftrightarrow k = -
40.

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 13: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0} Xác định vị trí điểm M.

    Giả sử G là trọng tâm tam giác ABC, khi đó ta có:

    \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0

    \Rightarrow M \equiv G

    => M là trọng tâm của tam giác ABC.

  • Câu 14: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(6;0),B(3;1)C( - 1; - 1). Tính số đo góc B của tam giác đã cho.

    Ta có: \overrightarrow{AB} = ( -
3;1)\overrightarrow{CB} =
(4;2).

    \cos B =
\frac{\overrightarrow{AB}.\overrightarrow{CB}}{AB.CB} = \frac{-
10}{\sqrt{10}.\sqrt{20}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CB} ight) = 135^{o}.

  • Câu 15: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 16: Thông hiểu

    Tam thức bậc hai f(x)=(1-\sqrt{2})x^{2}+(5-4\sqrt{2})x-3\sqrt{2}+6

     Ta có: \Delta >0a=1-\sqrt2 <0.

    Phương trình f(x)=0 có hai nghiệm là x=-3x=\sqrt2.

    Do đó f(x)>0 \forall x ∈(-3;\sqrt{2}).

  • Câu 17: Vận dụng

    Tìm tất cả các giá trị thực của tham số m sao cho phương trình (m−2)x2 − 2mx + m + 3 = 0 có hai nghiệm dương phân biệt.

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a eq 0 \\
\Lambda^{'} > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 eq 0 \\
m^{2} - (m - 2)(m + 3) > 0 \\
\frac{2m}{m - 2} > 0 \\
\frac{m + 3}{m - 2} > 0 \\
\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}
2 < m < 6 \\
m < - 3 \\
\end{matrix} ight.\  ight..

  • Câu 18: Thông hiểu

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 19: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 20: Thông hiểu

    Tam thức bậc hai :

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu .

  • Câu 21: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 22: Thông hiểu

    Tập hợp A =
\left\{ 1,2,3,4,5,6 ight\} có bao nhiêu tập hợp con gồm 2 phần tử:

    Tập A gồm 6 phần tử.

    Mỗi phần tử ghép với 1 phần tử còn lại ta được 1 tập con của A2 phần tử.

    Số tập con của A2 phần tử bằng: \frac{6.5}{2} = 15.

  • Câu 23: Vận dụng

    Số nghiệm của phương trình 3\sqrt{x} + 8 = 9x + \frac{1}{x} +\frac{1}{\sqrt{x}} là:

    ĐKXĐ: x > 0.

    Phương trình tương đương với

    3\left( \sqrt{x} - \frac{1}{3\sqrt{x}}ight) + 8 = 9(x + \frac{1}{9x}).

    Đặt t = \sqrt{x} - \frac{1}{3\sqrt{x}}\Rightarrow t^{2} = x + \frac{1}{9x} - \frac{2}{3} \Rightarrow x +\frac{1}{9x} = t^{2} + \frac{2}{3}

    Phương trình trở thành:

    3t + 8 = 9\left( t^{2} + \frac{2}{3}ight) \Leftrightarrow 9t^{2} - 3t - 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{2}{3} \\t = - \frac{1}{3} \\\end{matrix} ight.

    Với t = \frac{2}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = \frac{2}{3}\Leftrightarrow 3x - 2\sqrt{x} - 1 = 0 \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x} = 1 \\\sqrt{x} = - \frac{1}{3} \\\end{matrix} \Leftrightarrow x = 1 ight.

    Với t = - \frac{1}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = -\frac{1}{3}

    \Leftrightarrow 3x + \sqrt{x} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}\sqrt{x} = \frac{- 1 + \sqrt{13}}{6} \\\sqrt{x} = \frac{- 1 - \sqrt{13}}{6} \\\end{matrix} \Leftrightarrow x = \frac{7 - \sqrt{13}}{18} ight.

    Vậy phương trình có nghiệm là x = 1x = \frac{7 - \sqrt{13}}{18}.

  • Câu 24: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 25: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 26: Thông hiểu

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 28: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 29: Thông hiểu

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 30: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 31: Thông hiểu

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 32: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 33: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho tọa độ hai điểm A( - 1;3),B(2; - 1). Tính tọa độ vecto \overrightarrow{AB}?

    Ta có: A( - 1;3),B(2; - 1)

    \Rightarrow \overrightarrow{AB} = \left(
- 2 - ( - 1); - 1 - 3 ight) = (3; - 4)

    Vậy \overrightarrow{AB} = (3; -
4).

  • Câu 34: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 35: Thông hiểu

    Cho tam giác ABC, điểm M thuộc cạnh AB sao cho 3\
AM = ABN là trung điểm của AC. Tính \overrightarrow{MN} theo \overrightarrow{AB}\overrightarrow{AC}.

    N là trung điểm AC nên 2\
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{MA} + \overrightarrow{MA} + \overrightarrow{AC}.
\Leftrightarrow 2\overrightarrow{MN} = 2\ \overrightarrow{MA} +
\overrightarrow{AC} = - \frac{2}{3}\overrightarrow{AB} +
\overrightarrow{AC}.

    Suy ra \overrightarrow{MN} = -
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}.

  • Câu 36: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 37: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 38: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3
= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -
\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -
\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 39: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn 4\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}. Xác định vị trí điểm M.

    Ta có: ABCD là hình bình hành

    => \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC}

    Xét biểu thức:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow \overrightarrow {AC}  + \overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow 2\overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow \overrightarrow {AC}  = 2\overrightarrow {AM}  \hfill \\ \end{matrix}

    Vậy M là trung điểm của AC.

  • Câu 40: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 41: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 42: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
3x + y - 2 \geq 0 \\
x + 3y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
3.0 + 1 - 2 \geq 0 \\
0 + 3.1 + 1 \leq 0 \\
\end{matrix} ight.. Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
3.1 - 1 - 2 \geq 0 \\
1 + 3. - 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 43: Nhận biết

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 44: Nhận biết

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 45: Vận dụng cao

    Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.

    Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày

    Điều kiện: x, y > 0

    Khi đó số tiền lãi một ngày của nhà máy này là f(x;y) = 2x + 1,6y (triệu đồng)

    Số giờ làm việc trong ngày của đội 1 là 3x + y (giờ)

    Số giờ làm việc trong ngày của đội 2 là x
+ y (giờ)

    Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình: \left\{ \begin{matrix}
3x + y \leq 6 \\
x + y \leq 4 \\
x,\ y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (∗).

    Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi (x;y) là toạ độ một trong các đỉnh O(0;0),A(2;0),B(1;3),C(0;4).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(2;0) = 4 \\
f(1;3) = 6,8 \\
f(0;4) = 6,4 \\
\end{matrix} ight.

    Suy ra max\ f(x;y) = 6,8 khi (x;y) = (1;3)

    Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: 6,8 triệu đồng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo