Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 2: Thông hiểu

    Cho hình bình hành ABCD. Tính \overrightarrow{AB} theo \overrightarrow{AC}\overrightarrow{BD}.

    ABCD là hình bình hành nên \overrightarrow{CB} + \overrightarrow{AD} =
\overrightarrow{0}.Ta có \left\{
\begin{matrix}
\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} \\
\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB} \\
\end{matrix} ight.

    = > 2\overrightarrow{AB} =
\overrightarrow{AC} + \overrightarrow{DB} + \left( \overrightarrow{CB} +
\overrightarrow{AD} ight) = \overrightarrow{AC} +
\overrightarrow{DB}\overset{}{ightarrow}\overrightarrow{AB} =
\frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{BD}.

  • Câu 3: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 4: Nhận biết

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 5: Vận dụng

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y\leq 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) \leqslant 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 \leqslant 3} \\   { - 15 \leqslant 8} \end{array}\left( {TM} ight)} ight.

    Vậy điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y> 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) > 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y<- 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) <  - 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 <  - 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y\leq -3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) \leqslant  - 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 \leqslant  - 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

  • Câu 6: Thông hiểu

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 7: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 8: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 9: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

  • Câu 11: Thông hiểu

    Cho \overrightarrow{OM} = ( - 2; - 1),\overrightarrow{ON} = (3; - 1). Tính góc của \left(
\overrightarrow{OM},\overrightarrow{ON} ight).

    Ta có \cos\left(\overrightarrow{OM},\overrightarrow{ON} ight) =\frac{\overrightarrow{OM}.\overrightarrow{ON}}{\left|\overrightarrow{OM} ight|.\overrightarrow{|ON|}}= \frac{-5}{\sqrt{5}.\sqrt{10}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(\overrightarrow{OM},\overrightarrow{ON} ight) = 135^{o}.

  • Câu 12: Vận dụng cao

    Tìm tất cả giá trị của tham số m để hệ bất phương trình \left\{ \begin{matrix}
x \geq 0 \\
x - y \leq 0 \\
y - mx - 2 \leq 0 \\
\end{matrix} ight. có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.

    Họ đường thẳng \left( d_{m} ight):y -
mx - 2 = 0 luôn đi qua điểm A(0;2), hay nói cách khác các đường thẳng \left( d_{m} ight) xoay quanh A.

    Mặt khác, ta có 1 - m.0 - 2 \leq
0 đúng với mọi m

    => Miền nghiệm của bất phương trình y
- mx - 2 \leq 0 luôn chứa điểm (0;1).

    Do đó ta có 3 khả năng sau

    Vậy m < 0.

  • Câu 13: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 14: Thông hiểu

    Trong hệ tọa độ Oxy, cho các điểm A(0;1),B(1;3),C(2;7). Xác định tọa độ điểm N thỏa mãn biểu thức \overrightarrow{AB} = 2\overrightarrow{AN} +
3\overrightarrow{CN}?

    Theo bài ra ta có:

    \overrightarrow{AB} =
2\overrightarrow{AN} + 3\overrightarrow{CN}

    \Leftrightarrow \overrightarrow{AO} +
\overrightarrow{OB} = 2\overrightarrow{AO} + 2\overrightarrow{ON} +
3\overrightarrow{CO} + 3\overrightarrow{ON}

    \Leftrightarrow \overrightarrow{ON} =
\frac{1}{5}\left( \overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} ight)

    \Rightarrow N\left( \frac{1 +
6}{5};\frac{1 + 3 + 21}{5} ight) = \left( \frac{7}{5};5
ight)

  • Câu 15: Thông hiểu

    Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?

    *a = 0thì bpt trở thành  − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.

    * a ≠ 0 thì ax^{2} - x + a \geq 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 4a^{2} \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
a \geq \frac{1}{2} \\
a \leq - \frac{1}{2} \\
\end{matrix} ight.\  \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow a \geq \frac{1}{2}.

  • Câu 16: Thông hiểu

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 17: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 18: Vận dụng cao

    Tập tất cả các giá trị của tham số m để phương trình \sqrt{x^{2} - 2mx + 1} = m - 2 có nghiệm thực là

    * Với m < 2 ⇒ phương trình vô nghiệm

    * Với m ≥ 2, \sqrt{x^2-2mx+1}=m-2

    \Leftrightarrow x^2-2mx+1=m^2-4m+4

    \Leftrightarrow x^2-2mx-m^2+4m-3=0.

    Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.

    Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2;  + ∞).

  • Câu 19: Nhận biết

    Trong mặt phẳng tọa độ Oxy, khoảng cách giữa hai điểm M(1;4)N(3;2) bằng:

    Khoảng cách giữa hai điểm M, N là

    MN = \sqrt{\left( x_{N} - x_{M}
ight)^{2} + \left( y_{N} - y_{M} ight)^{2}}

    = \sqrt{(3 - 1)^{2} + (2 - 4)^{2}} =
2\sqrt{2}

  • Câu 20: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 21: Vận dụng

    Cho A = ( -
\infty; - 2brack, B = \lbrack 3;
+ \infty)C = (0;4). Khi đó, (A \cup B) \cap C là:

    Ta có: A \cup B = ( - \infty; - 2brack
\cup \lbrack 3; + \infty)

    Suy ra (A \cup B) \cap C = \lbrack
3;4).

  • Câu 22: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 23: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 25: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} vuông góc với \overrightarrow{v}.

    Ta có:

    \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u}\left( \frac{1}{2}; - 5 ight)

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; -
4)

    Để \overrightarrow{u}\bot\overrightarrow{v}
\Leftrightarrow \frac{1}{2}.k + 20 = 0 \Leftrightarrow k = -
40.

  • Câu 26: Thông hiểu

    Miền nghiệm của bất phương trình - x + y < 2 được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?

    Vẽ đường thẳng -x + y = 2

    Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.

    Vậy đáp án là:

  • Câu 27: Nhận biết

    Tập nghiệm của bất phương trình: 2x^{2}–7x–15≥0 là:

     Ta có: 2x^{2}–7x–15≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le  - \frac{3}{2}}\\{x \ge 5}\end{array}} ight..

    Vậy D=(-\infty ;-\frac{3}{2}]\cup [5;+\infty ).

  • Câu 28: Vận dụng

    Tổng các nghiệm của phương trình \frac{x^{2} + x + 1}{\sqrt{x^{2} - x + 1}} =3\sqrt{x}

    ĐKXĐ: x ≥ 0

    Dễ thấy x = 0 không phải là nghiệm của phương trình

    Xét x > 0, phương trình \Leftrightarrow x^{2} + x + 1 =3\sqrt{x}.\sqrt{x^{2} - x + 1} \Leftrightarrow x + 1 + \frac{1}{x} =3\sqrt{x - 1 + \frac{1}{x}}

    Đặt t = \sqrt{x - 1 + \frac{1}{x}},\ \ t\geq 1 \Rightarrow x + \frac{1}{x} = t^{2} + 1

    Phương trình trở thành t^{2} + 2 = 3t\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 1 \\t = 2 \\\end{matrix} ight.

    Với t = 1 ta có \sqrt{x - 1 + \frac{1}{x}} = 1 \Leftrightarrowx^{2} - x + 1 = x \Leftrightarrow x = 1(thỏa mãn)

    Với t = 2 ta có \sqrt{x - 1 + \frac{1}{x}} = 2 \Leftrightarrowx^{2} - 5x + 1 = 0 \Leftrightarrow x = \frac{5 \pm\sqrt{21}}{2}(thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{5\pm \sqrt{21}}{2}x = 1.

    Tổng các nghiệm của phương trình là \frac{5 + \sqrt{21}}{2} + \frac{5 - \sqrt{21}}{2} +1 = 6.

  • Câu 29: Vận dụng cao

    Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ Oth,trong đó t là thời gian , kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1, 2m. Sau đó 1 giây, nó đạt độ cao 8, 5m\left| 2x^{2} + x - 3 ight| = \left\{
\begin{matrix}
2x^{2} + x - 3 & khi & 2x^{2} + x - 3 \geq 0 \\
- \left( 2x^{2} + x - 3 ight) & khi & 2x^{2} + x - 3 < 0 \\
\end{matrix} ight. giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.

    Tại t = 0 ta có y = h = 1, 2; tại t = 1 ta có y = h = 8, 5; tại t = 2, ta có y = h = 6.

    hệ trục Oth như hình vẽ.

    Parabol (P) có phương trình: y = at2 + bt + c, với a ≠ 0.

    Giả sử tại thời điểm t thì quả bóng đạt độ cao lớn nhất h.

    Theo bài ra ta có: tại t = 0 thì h = 1, 2 nên A(0;  1,2) ∈ (P).

    Tại t = 1 thì h = 8, 5 nên B(1;  8,5) ∈ (P).

    Tại t = 2 thì h = 6 nên C(2;  6) ∈ (P).

    Vậy ta có hệ: \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
a + b + c = 8,5 \\
4a + 2b + c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \  \\
a = - 4,9\  \\
b = 12,2\  \\
\end{matrix} ight..

    Vậy hàm số Parabol cần tìm có dạng: y =  − 4, 9t2 + 12, 2t + 1, 2.

  • Câu 30: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm B( - 3;6),\ C(1; - 3). Xác định điểm E trên trục hoành sao cho ba điểm B,\ \ C,\ \ E thẳng hàng.

    Gọi E(x;0) khi đó \overrightarrow{BE}(x + 3; - 6),\ \
\overrightarrow{EC}(1 - x; - 3)

    Ba điểm B,C,E thẳng hàng khi và chỉ khi \overrightarrow{BE} cùng phương với \overrightarrow{EC}

    \Leftrightarrow \frac{x + 3}{1 - x} =
\frac{- 6}{- 3} \Leftrightarrow x = - \frac{1}{3}.

  • Câu 31: Nhận biết

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 32: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 33: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 34: Nhận biết

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 35: Vận dụng

    Cho tam thức bậc hai f(x) = \left( 2m^{2} + m - 6 ight)x^{2} + (2m -
3)x - 1. Tìm tất cả các giá trị thực của tham số m để bất phương trình f(x) > 0 vô nghiệm?

    Bất phương trình: f(x) > 0\
(*) vô nghiệm khi và chỉ khi

    \left( 2m^{2} + m - 6 ight)x^{2} + (2m
- 3)x - 1 \leq 0,\forall x\mathbb{\in R}

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    Với m = - 2 thì (*) \Leftrightarrow - 7x - 1 > 0 \Leftrightarrow x
< - \frac{1}{7} loại giá trị m =
- 2.

    Với m = \frac{3}{2} thì bất phương trình (*) \Leftrightarrow 0x - 1 <
0 bất phương trình vô nghiệm, nhận giá trị m = \frac{3}{2}.

    Xét 2m^{2} + m - 6 eq 0

    \left( 2m^{2} + m - 6 ight)x^{2} + (2m
- 3)x - 1 \leq 0,\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} + m - 6 < 0 \\
(2m - 3)^{2} - 4\left( 2m^{2} + m - 6 ight).( - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < \dfrac{3}{2} \hfill \\
   - \dfrac{5}{6} \leqslant m \leqslant \frac{3}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - \frac{5}{6} \leqslant m < \frac{3}{2}

    Vậy m \in \left\lbrack -
\frac{5}{6};\frac{3}{2} ightbrack thì bất phương trình (*) vô nghiệm.

  • Câu 36: Thông hiểu

    Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]

    Ta có:

    Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.

    Biểu diễn tập [‒5; 5] trên trục số đúng là:

    Biểu diễn tập hợp

  • Câu 37: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{x^{2} + 2x + 3} + \frac{1}{\sqrt{5 -
2x}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\ .

    Phương trình x2 + 2x + 3 = 0 ⇔ x ∈ ⌀5 - 2x = 0 \Leftrightarrow x =
\frac{5}{2}.

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in \left( \  -
\infty;\frac{5}{2} ight).

    Vậy tập xác định của hàm số là D = \left(
\  - \infty;\frac{5}{2} ight).

  • Câu 38: Nhận biết

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 39: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 40: Nhận biết

    Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

    f(x) = x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].

  • Câu 41: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Biểu diễn \overrightarrow{AG} theo hai vecto \overrightarrow{AB},\overrightarrow{AC}

    Cách 1: Giả sử I là trung điểm của BC

    \begin{matrix}   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI}  \hfill \\   \Leftrightarrow \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AI}  \hfill \\ \end{matrix}

    Theo tính chất đường trung tuyến trong tam giác ABC ta có:

    \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AI} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AI} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AI}

    \begin{matrix}   \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  \hfill \\ \end{matrix}

    Cách 2: Ta có:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AA}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow 0  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AG}  \hfill \\ \end{matrix}

  • Câu 42: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 43: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 44: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 45: Thông hiểu

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo