Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng
là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng
là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Tìm tập xác định của hàm số
?
Điều kiện xác định:
.
Vậy tập xác định của hàm số là .
Số nghiệm của phương trình ![]()
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Tổng các nghiệm của phương trình
bằng:
.
Vậy, tổng các nghiệm của phương trình là .
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây là cùng phương?
Ta có .
Hai vectơ và
là cùng phương.
Chọn đáp án và
.
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có:
Cho
. Điểm
trên trục
sao cho ba điểm
thẳng hàng thì tọa độ điểm
là:
Ta có: trên trục
.
Ba điểm thẳng hàng khi
cùng phương với
.
Ta có . Do đó,
cùng phương với
. Vậy
.Đáp án là
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Trên mặt phẳng tọa độ, đường thẳng chia mặt phẳng thành hai nửa mặt phẳng.
Chọn điểm không thuộc đường thẳng đó. Ta thấy
là nghiệm của bất phương trình đã cho. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng bờ
chứa điểm
kể cả
.
Vậy bất phương trình luôn có vô số nghiệm.
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
?
Thay tọa độ (0;0) vào hệ ta được
không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.
Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D?

Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng và đường thẳng
Miền nghiệm gồm phần nhận giá trị dương.
Lại có thỏa mãn bất phương trình
Chọn đáp án .
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Từ suy ra
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho
. Với m là bao nhiêu thì (1) có nghiệm duy nhất
ĐK x > 2
.
Phương trình (1) có nghiệm duy nhất .
Cho ba điểm
phân biệt. Tập hợp những điểm
mà
là :
Ta có:
.
Tập hợp điểm là đường thẳng đi qua
và vuông góc với
.
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Hãy liệt kê các phần tử của tập hợp ![]()
Ta có: không có nghiệm thực.
Tập nghiệm của phương trình
là:
.
Vậy S = {2;4}.
Số nghiệm của phương trình
là:
.
Vậy phương trình có hai nghiệm.
Trong mặt phẳng tọa độ
, cho hai vecto
và
với
. Tìm giá trị của tham số m để
?
Ta có:
Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.
Cho hàm số
xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng
Đặt .
Hoành độ đỉnh của đồ thị hàm số là (bất đẳng thức Côsi).
Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên .
Suy ra, hàm số nghịch biến [ − 1; 1].
.
.
Theo đề bài ta có: y1 − y2 = 8 .
Cặp số
không là nghiệm của bất phương trình nào sau đây?
Xét đáp án
Thay ta được:
Vậy cặp số không là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Trong các tập hợp sau đây, tập hợp nào bằng tập hợp
:
Ta có:
Tập hợp là tập hợp
.
Vậy tập hợp
Tìm tập xác định của hàm số
.
ĐKXĐ: x2 + 2(1−m)x + 2m2 + 3 > 0
Xét tam thức bậc hai f(x) = x2 + 2(1−m)x + 2m2 + 3
Ta có
(Vì tam thức bậc hai f(m) = − m2 − 2m − 2 có am = − 1 < 0, Δ′m = − 1 < 0 )
Suy ra với mọi m ta có x2 + 2(1−m)x + 2m2 + 3 > 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Cho đường thẳng
và bất phương trình
. Tìm điều kiện của
và
để mọi điểm thuộc
đều là nghiệm của bất phương trình đã cho.
Để mọi điểm thuộc đường thẳng đều là nghiệm của bất phương trình thì điều kiện cần là
phải song song với
. Khi đó ta có:
Với ta được
Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng là đồ thị của đường thẳng
khi
tịnh tiến xuống dưới theo trục
.
Nghĩa là .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Cho tam giác ABC có BC = a, CA = b, AB = c. Tính ![]()
Ta có:
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Cho tam giác
với
lần lượt là trung điểm của. Khẳng định nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Chọn đáp án này.
Cho
và
. Khi đó,
bằng:
Ta có:
.
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"