Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm Vì
nên miền nghiệm của bất phương trình chứa điểm
Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.
y = x2 − 4x + 1 = (x−2)2 − 3 ≥ − 3.
Dấu xảy ra khi và chỉ khi x = 2.
Vậy hàm số đã cho đạt giá trị nhỏ nhất là − 3 tại x = 2.
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Từ yêu cầu bài toán
Suy ra
Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho
và
Khi đó,
là:

Vậy
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Cho hai điểm
phân biệt. Tập hợp những điểm
thỏa mãn
là
Ta có:
.
Tập hợp điểm là đường tròn đường kính
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Phương trình
có bao nhiêu nghiệm thực phân biệt?
Điều kiện: .
Ta có: .
.
Vậy phương trình có 3 nghiệm thực phân biệt.
Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?
Hình vẽ minh họa

Ta có:
G là trọng tâm tam giác ABC =>
D là trung điểm của BC =>
E là trung điểm của AC =>
F là trung điểm của AB =>
Khi đó:
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm thỏa mãn cả hai phương trình trong hệ
.
Trong các mệnh đề sau, mệnh đề nào là sai:
Ta thấy mệnh đề sai vì giữa hai tập hợp không có quan hệ phụ thuộc.
Cho hệ bất phương trình
. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:
Xét cặp số (-1; -1) thay vào bất phương trình ta thấy (Loại)
Xét cặp số (-1; 0) thay vào bất phương trình ta thấy (Loại)
Xét cặp số (1; 1) thay vào bất phương trình ta thấy:
Xét cặp số (2; 2) thay vào bất phương trình ta thấy
Xét cặp số (0; -1) thay vào bất phương trình ta thấy (Loại)
Vậy cặp số thỏa mãn hệ bất phương trình là:
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Suy ra
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Chọn phát biểu đúng về mệnh đề sau: "
,
"?
Phát biểu đúng của mệnh đề ",
" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.
Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng
Hệ số góc a = 2018.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là:
Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

Do miền nghiệm không chứa biên nên ta loại đáp án và
. Chọn điểm
thử vào các hệ bất phương trình.
Xét đáp án , ta có
. Sai.
Vậy chọn đáp án .
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.
Với m = 0 thì f(x) = − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán
Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó
Vậy với thì biểu thức f(x) luôn âm.
Trong các tập hợp sau, tập hợp nào bằng nhau:
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> . Vậy tập hợp
bằng tập hợp
. Đáp án đúng
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> ;
. Vậy tập hợp
không bằng tập hợp
.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Trong hệ tọa độ
cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng ![]()
Ta có
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Số nghiệm nguyên dương của phương trình
là
.
Vậy phương trình có một nghiệm nguyên dương.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.