Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn gồm 45 câu hỏi bám sát 4 chuyên đề giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức môn Toán lớp 10 sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 2: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 3: Thông hiểu

    Xác định tập hợp C = (2;+∞) \setminus  [-3;8] 

    Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp C

    Vậy C = (2;+∞) \setminus  [-3;8] =(8;+∞)

  • Câu 4: Thông hiểu

    Các giá trị m làm cho biểu thức f(x) = x^{2} + 4x + m + 3 luôn dương là

    Biểu thức f(x) = x^{2} + 4x + m + 3 luôn dương

    \begin{matrix}   \Leftrightarrow f(x) = {x^2} + 4x + m + 3 > 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{2^2} - \left( {m + 3} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {m > 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 6: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 7: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 8: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 9: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 10: Vận dụng

    Tìm các giá trị của m để biểu thức sau luôn dương

    h(x) = \frac{- x^{2} + 4(m + 1)x + 1 -
4m^{2}}{- 4x^{2} + 5x - 2}

    Tam thức  − 4x2 + 5x − 2a =  − 4 < 0,  Δ =  − 7 < 0

    suy ra  − 4x2 + 5x − 2 < 0  ∀x

    Do đó h(x) luôn dương khi và chỉ khi h′(x) =  − x2 + 4(m+1)x + 1 − 4m2 luôn âm

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 < 0 \\
\Delta' = 4(m + 1)^{2} + \left( 1 - 4m^{2} ight) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 8m + 5 < 0 \Leftrightarrow m
< - \frac{5}{8}

    Vậy với m < - \frac{5}{8} thì biểu thức h(x) luôn dương.

  • Câu 11: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 12: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 13: Vận dụng cao

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Đáp án là:

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là xy (ha)

    Điều kiện: x,y \geq 0

    Lợi nhuận thu được là f(x;y) = 3000000x +
4000000y (đồng).

    Tổng số công dùng để trồng x ha cà phê và y ha sầu riêng là 20x + 30y.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x,y \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x,y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*)

    Miền nghiệm của hệ bất phương trình (*) là tứ giác OABC (kể cả biên)

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là tọa độ của một trong các đỉnh O(0;0),A(8;0),B(6;2),C(0;6).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(8;0) = 24000000 \\
f(6;2) = 26000000 \\
f(0;6) = 2400000 \\
\end{matrix} ight..

    Suy ra f(x;y) lớn nhất khi (x;y) = (6;2)

    Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 15: Thông hiểu

    Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.

    Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:

    Đặt P: “Quyển vở này của Nam”, Q: “Quyển vở này có 118 trang”

    Theo đề bài, P đúng, Q đúng nên \overline{P} sai, \overline{Q} sai.

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng Q sai.

    Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.

  • Câu 16: Nhận biết

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 17: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 18: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm giá trị của a để A
\cap B = \lbrack - 2;5brack.

    Để A \cap B = \lbrack -
2;5brack khi và chỉ khi \left\{
\begin{matrix}
a > - 3 \\
a = - 2 \\
\end{matrix} \Leftrightarrow a = - 2 ight..

    Vậy a = - 2 là giá trị cần tìm.

  • Câu 19: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 20: Vận dụng

    Cho 2 vectơ đơn vị \overrightarrow{a}\overrightarrow{b} thỏa\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2. Hãy xác định \left(
3\overrightarrow{a} - 4\overrightarrow{b} ight)\left(
2\overrightarrow{a} + 5\overrightarrow{b} ight).

    Ta có: \left| \overrightarrow{a} ight|
= \left| \overrightarrow{b} ight| = 1\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2 \Leftrightarrow \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = 4 \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 1 .

    Suy ra \left( 3\overrightarrow{a} -4\overrightarrow{b} ight)\left( 2\overrightarrow{a} +5\overrightarrow{b} ight)= 6{\overrightarrow{a}}^{2} -20{\overrightarrow{b}}^{2} + 7\overrightarrow{a}.\overrightarrow{b} = -7.

  • Câu 21: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 22: Thông hiểu

    Cho tam giác ABC. Gọi I là trung điểm AB. Tìm điểm M thỏa mãn hệ thức: \overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}

    Ta có:

    I là trung điểm của AB => \overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}

    Khi đó:

    \begin{matrix}  \overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MI}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow \overrightarrow {MI}  + \overrightarrow {MC}  = \vec 0 \hfill \\ \end{matrix}

    Vậy M là trung điểm của IC.

  • Câu 23: Vận dụng

    Cho tam giác ABC, AB =
5,AC = 1. Tính tọa độ điểm D là chân đường phân giác góc A. Biết B(7;
- 2);C(1;4).

    Theo tính chất đường phân giác: \frac{DB}{DC} = \frac{AB}{AC}. Suy ra \overrightarrow{DB} = -
5\overrightarrow{DC}.

    Gọi D(x;y). Suy ra \overrightarrow{DB}(7 - x; - 2 -
y);\overrightarrow{DC}(1 - x;4 - y).

    Ta có: \left\{ \begin{matrix}
7 - x = - 5(1 - x) \\
- 2 - y = - 5(4 - y) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm D(2;3).

  • Câu 24: Thông hiểu

    Cho tam giác đều ABC có cạnh bằng a và chiều cao AH. Mệnh đề nào sau đây là sai?

    +)AH\bot BC nên đáp án \overrightarrow{AH}.\overrightarrow{BC} =
0 đúng.

    +)\left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0}. Đáp án \left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0} đúng.

    +)\overrightarrow{AB}.\overrightarrow{AC}= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight)=a.a.\cos 60^{\ ^{{^\circ}}} = \frac{a^{2}}{2}. Đáp án \overrightarrow{AB}.\overrightarrow{AC} =
\frac{a^{2}}{2}. đúng.

    +)\overrightarrow{AC}.\overrightarrow{CB}
= \left| \overrightarrow{AC} ight|.\left| \overrightarrow{CB}
ight|.cos120^{\ ^{{^\circ}}} = - \frac{a^{2}}{2}. Đáp án \overrightarrow{AC}.\overrightarrow{CB} =
\frac{a^{2}}{2}. sai.

  • Câu 25: Thông hiểu

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 26: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 27: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 28: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 29: Nhận biết

    Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?

    Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0,  ∀x ∈ ℝ.

  • Câu 30: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 31: Nhận biết

    Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình 2x + y < 1?

     Thay (0; 1) vào bất phương trình, ta được: 1 < 1 (sai). Do đó cặp số này không là nghiệm của bất phương trình.

  • Câu 32: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 33: Vận dụng cao

    Phương trình \sqrt{x^{2} + 3} + \sqrt{10 - x^{2}} = 5 có mấy nghiệm ?

    Đặt u = \sqrt{x^{2} + 3}\ \ ;\ \ v =
\sqrt{10 - x^{2}}\ \ \ \ (u\ ,\ v \geq 0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
u + v = 5 \\
u^{2} + v^{2} = 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u + v = 5 \\
u.v = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \Rightarrow x = \pm 1.

    Với \left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \Rightarrow x = \pm \sqrt{6}.

    Vậy phương trình có 4 nghiệm.

  • Câu 34: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 35: Thông hiểu

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 36: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 37: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 38: Vận dụng

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?

    Xét điểm M(0;1) thử vào các bất phương trình của hệ thấy thỏa mãn.

    Chỉ có hình vẽ chứa điểm M(0;1). Chọn đáp án hình vẽ này.

  • Câu 39: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 40: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây là cùng phương?

    Ta có \overrightarrow{v} = -
\frac{1}{3}\overrightarrow{a} + \frac{1}{4}\overrightarrow{b} = -
\frac{1}{6}\left( 2\overrightarrow{a} - \frac{3}{2}\overrightarrow{b}
ight) = - \frac{1}{6}\overrightarrow{u}.

    Hai vectơ \overrightarrow{u}\overrightarrow{v} là cùng phương.

    Chọn đáp án \overrightarrow{u} =
2\overrightarrow{a} - \frac{3}{2}\overrightarrow{b}\overrightarrow{v} = -
\frac{1}{3}\overrightarrow{a} +
\frac{1}{4}\overrightarrow{b}.

  • Câu 41: Vận dụng

    Tổng các nghiệm của phương trình \frac{x^{2} + x + 1}{\sqrt{x^{2} - x + 1}} =3\sqrt{x}

    ĐKXĐ: x ≥ 0

    Dễ thấy x = 0 không phải là nghiệm của phương trình

    Xét x > 0, phương trình \Leftrightarrow x^{2} + x + 1 =3\sqrt{x}.\sqrt{x^{2} - x + 1} \Leftrightarrow x + 1 + \frac{1}{x} =3\sqrt{x - 1 + \frac{1}{x}}

    Đặt t = \sqrt{x - 1 + \frac{1}{x}},\ \ t\geq 1 \Rightarrow x + \frac{1}{x} = t^{2} + 1

    Phương trình trở thành t^{2} + 2 = 3t\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 1 \\t = 2 \\\end{matrix} ight.

    Với t = 1 ta có \sqrt{x - 1 + \frac{1}{x}} = 1 \Leftrightarrowx^{2} - x + 1 = x \Leftrightarrow x = 1(thỏa mãn)

    Với t = 2 ta có \sqrt{x - 1 + \frac{1}{x}} = 2 \Leftrightarrowx^{2} - 5x + 1 = 0 \Leftrightarrow x = \frac{5 \pm\sqrt{21}}{2}(thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{5\pm \sqrt{21}}{2}x = 1.

    Tổng các nghiệm của phương trình là \frac{5 + \sqrt{21}}{2} + \frac{5 - \sqrt{21}}{2} +1 = 6.

  • Câu 42: Vận dụng

    Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7).

    Vậy A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7) = \lbrack - 4;9brack.

  • Câu 43: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ vecto \overrightarrow{w} = 8\overrightarrow{j} -
3\overrightarrow{i} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{w} =
8\overrightarrow{j} - 3\overrightarrow{i} = ( - 3;8).

  • Câu 44: Thông hiểu

    Điểm A( -
1;3) là điểm thuộc miền nghiệm của bất phương trình:

    - 3.( - 1) + 2.3 - 4 > 0 là mệnh đề đúng nên A( - 1;3) là điểm thuộc miền nghiệm của bất phương trình - 3x + 2y - 4 > 0.

  • Câu 45: Thông hiểu

    Tập nghiệm của phương trình 2x-\sqrt{x-8}=\sqrt{8-x}+16 là:

    Xét phương trình: 2x - \sqrt{x - 8} =\sqrt{8 - x} + 16. (1)

    Điều kiện : \left\{ \begin{matrix}x - 8 \geq 0 \\8 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 8 \\\end{matrix} ight.\  \Leftrightarrow x = 8.

    Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo