Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.
Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày
Điều kiện: x, y > 0
Khi đó số tiền lãi một ngày của nhà máy này là (triệu đồng)
Số giờ làm việc trong ngày của đội 1 là (giờ)
Số giờ làm việc trong ngày của đội 2 là (giờ)
Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình (∗).
Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi
là toạ độ một trong các đỉnh
.
Ta có:
Suy ra khi
Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: triệu đồng.
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Biết phương trình
có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Cho tam giác
có
là trung điểm của
Tính
theo
và ![]()
Ta có
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .
Cho biết
. Tính
.
Ta có:
.
Giá trị nhỏ nhất của biểu thức F(x;y) = y – x trên miền xác định bởi hệ:
là:
Biểu diễn miền nghiệm của hệ :

Miền nghiệm của hệ là tam giác .
Ta có: ;
và
.
Giá trị nhỏ nhất của đạt được tại 1 trong 3 đỉnh tam giác
.
Với suy ra
.
Với suy ra
.
Với suy ra
.
Vậy giá trị nhỏ nhất đạt tại
.
Cho tam thức bậc hai f(x) = x2 − 5x + 6 và a là số thực lớn hơn 3. Tìm khẳng định đúng trong các khẳng định sau.

Dựa vào bảng xét dấu thì f(x) > 0 khi x < 2 ∨ x > 3 mà a > 3 nên f(a) > 0.
Nghiệm của phương trình:
là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Điểm
thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ lần lượt vào từng phương trình của hệ
ta thấy thỏa mãn.
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Giá trị
là:
Ta có: .
Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.
Với m = 4 thì g(x) = − 1 < 0 thỏa mãn yêu cầu bài toán
Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.
Do đó
⇔ m < 4
Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.
Tập nghiệm của phương trình
là:
.
Vậy S = {2;4}.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Cho tam giác
, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?
Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm . Vậy có 6 véc tơ.
Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên .
Mặt khác (P) cắt trục tung tại (0;−1) nên c = − 1. Suy ra .
(P) : y = − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.
Suy ra 0 < m < 3.
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ vecto
?
Ta có:
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây cùng phương?
Ta có nên chọn đáp án
và
.
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Cho tam giác
có
Tính ![]()
Ta có
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Giả sử đồ thị parabol
đi qua điểm
và có trục đối xứng là đường thẳng
. Tính tổng các giá trị
và
?
Ta có:
Trục đối xứng của là:
Phương trình
có mấy nghiệm ?
Điều kiện:
Đặt .
PT đã cho trở thành:
Với t = 2 ta được
Với t = − 4 ta được ta được
Vậy phương trình có hai nghiệm là ;
.
Miền nghiệm của bất phương trình
được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?
Vẽ đường thẳng -x + y = 2
Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.
Vậy đáp án là:
Cho
Tìm ![]()
Vậy
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.