Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Cho . Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Tìm m để hàm số xác định trên khoảng (0;1).
*Gọi D là tập xác định của hàm số .
*.
*Hàm số xác định trên khoảng (0;1)
.
Cho tam giác , có trọng tâm
. Gọi
lần lượt là trung điểm của
. Chọn khẳng định sai?
Ta có: nên
sai.
Chọn .
Cho . Điều kiện để
là:
Ta có:
.
Cho Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác ABC đều cạnh . Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Một tam giác có ba cạnh là . Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho bất phương trình có tập nghiệm là
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Ta thấy
thỏa mãn phương trình do đó
là một cặp nghiệm của phương trình.
Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:
Ta có: A\ B = {1; 4}.
Bất phương trình tương đương với bất phương trình nào sau đây?
Ta có: .
Cho tam giác có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có
Cho hình vuông . Khẳng định nào sau đây đúng?
là hình vuông
.
Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính .
Do ABCD là hình chữ nhật =>
Xét tam giác ABD vuông tại A ta có:
Ta lại có:
Có bao nhiêu giá trị nguyên của tham số sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng , giả sử chiều cao của giác kế là
.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh
của tháp. Đọc trên giác kế số đo của góc
. Chiều cao của ngọn tháp gần với giá trị nào sau đây:
Tam giác vuông tại
có
Vậy chiếu cao của ngọn tháp là
Trong các vecto dưới đây, vecto nào cùng phương với vecto ?
Nhận thấy nên
cùng phương với
.
Giả sử là nghiệm của phương trình
. Khi đó giá trị lớn nhất của biểu thức
bằng:
Để phương trình có hai nghiệm thì
Áp dụng hệ thức Viet ta có:
Khi đó: .
Xét hàm số có hệ số
, hoành độ đỉnh
nên
đồng biến trên
.
Biết phương trình có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?
Điều kiện:
x2 + 3x ≥ 0⇔
phương trình .
Đặt , điều kiện t ≥ 0.
Phương trình trở thành t2 + 3t − 10 = 0
⇔ ⇒
, thoả mãn (1) ⇒ x1 + 4x2 = 0.
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Tìm mệnh đề trong các câu sau.
Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.
Chọn đáp án Paris là thủ đô của Đức.
Cho hệ bất phương trình . Hỏi khi cho
,
có thể nhận mấy giá trị nguyên nào?
Khi hệ bất phương trình trở thành:
Vậy không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.
Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.
Với m = 4 thì g(x) = − 1 < 0 thỏa mãn yêu cầu bài toán
Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.
Do đó
⇔ m < 4
Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.
Cho bốn điểm phân biệt thỏa mãn
. Khẳng định nào sau đây sai?
Phải suy ra là hình bình hành (nếu
không thẳng hàng) hoặc bốn điểm
thẳng hàng.
Đáp án sai là là hình bình hành.
Cho hệ bất phương trình . Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Nếu tam giác có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho tam giác có góc
tù. Cho các biểu thức sau:
(1)
(2)
(3)
(4)
Số các biểu thức mang giá trị dương là:
Ta có: tù nên
Do đó: .
Cho tập Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Trên mặt phẳng tọa độ Oxy, cho các điểm . Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:
Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho . Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Tập nghiệm của bất phương trình là
Ta có: .
Cho hình vuông , dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:
Biết các hình vuông nhỏ có kích thước . Tính độ dài vectơ:
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Tam giác có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Ta có:
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho đường thẳng d : y = x + 1 và Parabol (P) : y = x2 − x − 2. Biết rằng d cắt (P) tại hai điểm phân biệt A, B. Khi đó diện tích tam giác OAB bằng:
Phương trình hoành độ giao điểm của d và (P) là x2 − x − 2 = x + 1 ⇔ x2 − 2x − 3 = 0.
Phương trình này có a − b + c = 0 nên có hai nghiệm x1 = − 1,x2 = 3.
Suy ra A(−1;0) và B(3;4).
Diện tích tam giác OAB bằng .
Cho đoạn thẳng và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Tam thức bậc hai nhận giá trị không âm khi và chỉ khi
Ta có: và
.
Phương trình có hai nghiệm phân biệt là
.
Do đó,
.
Phương trình có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Cho mệnh đề “
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Cho đường tròn và hai tiếp tuyến song song với nhau tiếp xúc với
tại hai điểm
và
Mệnh đề nào sau đây đúng?
Do hai tiếp tuyến song song và là hai tiếp điểm nên
là đường kính.
Do đó là trung điểm của
.
Suy ra .
Cho hàm số . Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).