Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 2: Vận dụng

    Cho tam giác ABC có điểm O thỏa mãn |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}|. Khẳng định nào sau đây là đúng?

     Ta có: |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}| \Leftrightarrow\left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|.

    Vẽ hình bình hành ACBD, suy ra \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {CD} } ight|. Mà \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|. Suy ra CD=BA. Do đó ACBD là hình chữ nhật. Do đó tam giác ACB vuông C.

  • Câu 3: Nhận biết

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 4: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} và vectơ \overrightarrow{v} có độ dài bằng nhau.

    Ta có: \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u} = \left( \frac{1}{2}; - 5 ight) \Rightarrow \left|
\overrightarrow{u} ight| = \frac{\sqrt{101}}{2}

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; - 4)
\Rightarrow \left| \overrightarrow{v} ight| = \sqrt{k^{2} +
16}

    Để \left| \overrightarrow{u} ight| =
\left| \overrightarrow{v} ight| \Leftrightarrow \frac{\sqrt{101}}{2} =
\sqrt{k^{2} + 16} \Leftrightarrow \frac{101}{4} = k^{2} + 16
\Leftrightarrow k = \pm \frac{\sqrt{37}}{2}.

  • Câu 5: Nhận biết

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 6: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 7: Nhận biết

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

  • Câu 8: Vận dụng cao

    Tam giác ABC thỏa mãn đẳng thức

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} + \dfrac{b^{2}\cos\dfrac{C -A}{2}}{2\sin\dfrac{B}{2}} + \dfrac{b^{2}\cos\dfrac{A -B}{2}}{2\sin\dfrac{C}{2}} = a^{2} + b^{2} + c^{2}

    Biết AB = c;BC = a;AC = b. Chọn khẳng định nào dưới đây đúng?

    Ta có:

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} = \dfrac{a\left( 2R\sin A ight)\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}}

    = 2aR.\cos\dfrac{A}{2}\cos\dfrac{B -C}{2}

    = 2aR.\sin\dfrac{B + C}{2}\cos\dfrac{B -C}{2}

    = aR.\left( \sin B + \sin C ight) =
\frac{a(b + c)}{2}

    Chứng minh tương tự và suy ra ta có:

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} + \dfrac{b^{2}\cos\dfrac{C -A}{2}}{2\sin\dfrac{B}{2}} + \dfrac{b^{2}\cos\dfrac{A -B}{2}}{2\sin\dfrac{C}{2}}

    = \frac{a(b + c)}{2} + \frac{b(c +
a)}{2} + \frac{c(a + b)}{2}

    = ab + bc + ca

    \leq \frac{a^{2} + b^{2}}{2} +
\frac{b^{2} + c^{2}}{2} + \frac{c^{2} + a^{2}}{2} = a^{2} + b^{2} +
c^{2}

    Dấu bằng xảy ra khi và chỉ khi a = b =
c

    Vậy tam giác ABC là tam giác đều.

  • Câu 9: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 10: Thông hiểu

    Trong hệ tọa độ Oxy, cho các điểm A(0;1),B(1;3),C(2;7). Xác định tọa độ điểm N thỏa mãn biểu thức \overrightarrow{AB} = 2\overrightarrow{AN} +
3\overrightarrow{CN}?

    Theo bài ra ta có:

    \overrightarrow{AB} =
2\overrightarrow{AN} + 3\overrightarrow{CN}

    \Leftrightarrow \overrightarrow{AO} +
\overrightarrow{OB} = 2\overrightarrow{AO} + 2\overrightarrow{ON} +
3\overrightarrow{CO} + 3\overrightarrow{ON}

    \Leftrightarrow \overrightarrow{ON} =
\frac{1}{5}\left( \overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} ight)

    \Rightarrow N\left( \frac{1 +
6}{5};\frac{1 + 3 + 21}{5} ight) = \left( \frac{7}{5};5
ight)

  • Câu 11: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 12: Thông hiểu

    Tam thức bậc hai f(x)=−x^{2}+5x−6 nhận giá trị dương khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phươn trình f(x)=0 có hai nghiệm phân biệt x=2;x=3.

    Do đó f(x)>0 \Leftrightarrow x \in (2;3).

  • Câu 13: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 14: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 15: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 16: Vận dụng cao

    Phương trình \sqrt{x^{2} + 3} + \sqrt{10 - x^{2}} = 5 có mấy nghiệm ?

    Đặt u = \sqrt{x^{2} + 3}\ \ ;\ \ v =
\sqrt{10 - x^{2}}\ \ \ \ (u\ ,\ v \geq 0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
u + v = 5 \\
u^{2} + v^{2} = 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u + v = 5 \\
u.v = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \Rightarrow x = \pm 1.

    Với \left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \Rightarrow x = \pm \sqrt{6}.

    Vậy phương trình có 4 nghiệm.

  • Câu 17: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 18: Thông hiểu

    Cho tam giác đều ABC có cạnh bằng a và chiều cao AH. Mệnh đề nào sau đây là sai?

    +)AH\bot BC nên đáp án \overrightarrow{AH}.\overrightarrow{BC} =
0 đúng.

    +)\left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0}. Đáp án \left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0} đúng.

    +)\overrightarrow{AB}.\overrightarrow{AC}= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight)=a.a.\cos 60^{\ ^{{^\circ}}} = \frac{a^{2}}{2}. Đáp án \overrightarrow{AB}.\overrightarrow{AC} =
\frac{a^{2}}{2}. đúng.

    +)\overrightarrow{AC}.\overrightarrow{CB}
= \left| \overrightarrow{AC} ight|.\left| \overrightarrow{CB}
ight|.cos120^{\ ^{{^\circ}}} = - \frac{a^{2}}{2}. Đáp án \overrightarrow{AC}.\overrightarrow{CB} =
\frac{a^{2}}{2}. sai.

  • Câu 19: Thông hiểu

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 20: Thông hiểu

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 21: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

  • Câu 22: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 23: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 24: Vận dụng

    Nghiệm của bất phương trình x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4} >
0

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x +
4} = \frac{- x^{3} + 2x^{2} + 5x - 6}{- x^{2} + 3x + 4}

    = \frac{(x - 1)\left( - x^{2} + x + 6
ight)}{- x^{2} + 3x + 4}

    - x^{2} + x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.\ ,\

    - x^{2} + 3x + 4 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng xét dấu

    Suy ra

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4}
> 0 \Leftrightarrow x \in ( - 2; - 1) \cup (1;3) \cup (4; +
\infty).

    Vậy nghiệm của bất phương trình có 3 khoảng.

  • Câu 25: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA(6;1),\ B( - 3;5) và trọng tâm G( - 1;1). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{6 + ( - 3) + x}{3} = - 1 \\
\frac{1 + 5 + y}{3} = 1 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 6 \\
y = - 3 \\
\end{matrix} ight.\ .

  • Câu 26: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 27: Thông hiểu

    Giá trị biểu thức A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} là:

    Ta có:

    \begin{matrix}  A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} \hfill \\  A = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} \hfill \\  A = \dfrac{1}{4} + \dfrac{3}{4} = 1 \hfill \\ \end{matrix}

  • Câu 28: Vận dụng

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm Cmà từ đó có thể nhìn được ABdưới một góc 56^{0}16'. Biết CA = 200\ m, CB = 180\ m. Khoảng cách AB gần nhất với kết quả nào sau đây?

    Ta có: AB^{2} = CA^{2} + CB^{2} -
2CB.CA.cosC = 200^{2} + 180^{2} -
2.200.180.cos56^{0}16' \simeq
32416 \Rightarrow AB \simeq 180.

  • Câu 29: Nhận biết

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 30: Vận dụng

    Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.:

    Nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight. là miền đa giác OABCD với O(0;0);A(1;0);B(4;3);C(2;4);D(0;4).

    Giá trị lớn nhất F(x;y)=x+2y đạt được tại 1 trong 5 đỉnh của đa giác.

    Với O(0;0) \Rightarrow F=0.

    VớiA(1;0)\Rightarrow F=1.

    Với B(4;3) \Rightarrow F=10.

    Với C(2;4) \Rightarrow F=10.

    Với D(0;4) \Rightarrow F=8.

    Vậy GTLN F=10.

  • Câu 31: Thông hiểu

    Số tập hợp con của tập hợp A= \left \{ {-1;2;b} ight \} là:

    Các tập hợp con của tập A:

    Số tập con có 3 phần tử là \left\{ { - 1;2;b} ight\}

    Số tập con có 2 phần tử là \left\{ { - 1;2} ight\};\left\{ { - 1;b} ight\};\left\{ {2;b} ight\}

    Số tập con có 1 phần tử là \left\{ { - 1} ight\};\left\{ 2 ight\};\left\{ b ight\};\left\{ \emptyset  ight\}

    Vậy tập hơp A có tất cả 8 tập con.

  • Câu 32: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Số nguyên dương là số tự nhiên khác 0.

    Bạn hãy cố gắng, nhất định bạn sẽ thành công.

    Tổng các góc của một tam giác là 180{^\circ}.

    Cố lên, sắp đến nơi rồi!

    Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là 180{^\circ}.” là mệnh đề.

  • Câu 33: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 34: Thông hiểu

    Cho tứ giác ABCD. Gọi M,\
N,\ P,\ Q lần lượt là trung điểm của AB, BC, CD, DA. Khẳng định nào sau đây sai?

    Ta có \left\{ \begin{matrix}
MN \parallel PQ \\
MN = PQ \\
\end{matrix} ight. (do cùng song song và bằng \frac{1}{2}AC).

    Do đó MNPQ là hình bình hành.

    Do đó \left| \overrightarrow{MN} ight|
= \left| \overrightarrow{AC} ight| sai.

  • Câu 35: Vận dụng cao

    Dây truyền đỡ trên cầu treo có dạng Parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A, B trên mỗi trục AABB với độ cao 30 m. Chiều dài đoạn AB trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là OC = 5 m. Gọi Q, P, H, O, I, J, K là các điểm chia đoạn AB thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ, PP, HH, OC, II, JJ, KK gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo?

    Giả sử Parabol có dạng: y = ax2 + bx + c, a ≠ 0.

    hệ trục Oxy như hình vẽ, khi đó parabol đi qua điểm A(100;  30), và có đỉnh C(0; 5). Đoạn AB chia làm 8 phần, mỗi phần 25 m.

    Suy ra:\left\{ \begin{matrix}
30 = 10000a + 100b + c \\
\frac{- b}{2a} = 0 \\
5 = c \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = \frac{1}{400} \\
b = 0 \\
c = 5 \\
\end{matrix} ight. \Rightarrow
(P):y = \frac{1}{400}x^{2} + 5.

    Khi đó, tổng độ dài của các dây cáp treo bằng OC + 2y1 + 2y2 + 2y3

    = 5 + 2\left( \frac{1}{400}.25^{2} + 5
ight) + 2\left( \frac{1}{400}.50^{2} + 5 ight) + 2\left(
\frac{1}{400}.75^{2} + 5 ight)

     = 78, 75 (m).

  • Câu 36: Nhận biết

    Biết phương trình \sqrt{7x + 1} = 2\sqrt{x + 4} có nghiệm duy nhất là x = x_{0} . Hãy chọn khẳng định đúng.

    ĐK x \in \left\lbrack - \frac{1}{7}; +
\infty ight)

    \sqrt{7x + 1} = 2\sqrt{x + 4}\Leftrightarrow 7x + 1 = 4(x + 4)\Leftrightarrow x = 5(TM)  \Rightarrow x_{0} = 5 \in (4;6).

  • Câu 37: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y > x + 3 \\
y < x + 1 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 38: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 39: Thông hiểu

    Tập nghiệm S của phương trình \sqrt{2x}+x-1=0 là:

     Ta có: \sqrt{2x}+x-1=0  \Rightarrow 2x=(1-x)^2\Leftrightarrow 2x=1-2x+x^2 \Leftrightarrow x^2-4x+1=0\Leftrightarrow x=2-\sqrt3.

    Vậy S =\{2-\sqrt{3}\}.

  • Câu 40: Vận dụng cao

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 41: Thông hiểu

    Cho hàm số y =
\left\{ \begin{matrix}
- 2x + 1 & khi & x \leq - 3 \\
\frac{x + 7}{2} & khi & x > - 3 \\
\end{matrix} ight.. Biết f(x0) = 5 thì x0

    TH1. x0 ≤  − 3: Với f(x0) = 5 ⇔  − 2x0 + 1 = 5 ⇔ x0 =  − 2 (Loại).

    TH2. x0 >  − 3: Với f\left( x_{0} ight) = 5 \Leftrightarrow
\frac{x_{0} + 7}{2} = 5 \Leftrightarrow x_{0} = 3 (thỏa mãn).

  • Câu 42: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 43: Thông hiểu

    Cho tam giác ABC. Gọi M là trung điểm BC và N là trung điểm AM. Đường thẳng BN cắt AC tại P. Khi đó \overrightarrow{AC}=x\overrightarrow{CP} thì giá trị của x là:

    Hình vẽ minh họa

    Tìm x

    Kẻ MD // BP, (D ∈ AC). Do M là trung điểm BC 

    => D là trung điểm CP (1).

    MD // NP, mà N là trung điểm AM

    => P là trung điểm AD (2).

    Từ (1), (2) ta suy ra AP = PD = DC.

    => AP = \frac{1}{2}CP

    Ta có AC = AP + CP

    => AC = \frac{3}{2}CP

    Ta có: \overrightarrow {AC}  =  - \frac{3}{2}\overrightarrow {CP}(vì \overrightarrow {AC} ,\overrightarrow {CP} ngược hướng)

    => x =  - \frac{3}{2}

  • Câu 44: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 45: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo