Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Cho tam giác ABC có điểm O thỏa mãn
. Khẳng định nào sau đây là đúng?
Ta có: .

Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.
Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ vào hệ
ta được
thỏa mãn.
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Xét đáp án
là bất phương trình bậc nhất 3 ẩn
, không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
là bất phương trình bậc nhất hai ẩn có dạng
,
.
Xét đáp án
là bất phương trình có chứa
nên không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
không là bất phương trình bậc nhất hai ẩn vì không có dạng
.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Trong hệ tọa độ
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn biểu thức
?
Theo bài ra ta có:
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3 .
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi
Ta có: và
.
Phươn trình có hai nghiệm phân biệt
.
Do đó
.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Phương trình
có mấy nghiệm ?
Đặt . Ta có hệ phương trình:
Với .
Với .
Vậy phương trình có 4 nghiệm.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác đều
có cạnh bằng
và chiều cao
. Mệnh đề nào sau đây là sai?
+) nên đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
sai.
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng
khi
.
Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 ⇒ c = 1.
(P)có giá trị nhỏ nhất bằng khi
nên:
⇔
.
Vậy (P): y = x2 − x + 1.
Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: ![]()
Vì là mệnh đề sai nên
không thuộc miền nghiệm của bất phương trình.
Cho tam giác
, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?
Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm . Vậy có 6 véc tơ.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Nghiệm của bất phương trình
có
Bảng xét dấu

Suy ra
.
Vậy nghiệm của bất phương trình có 3 khoảng.
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Giả sử đồ thị parabol
đi qua điểm
và có trục đối xứng là đường thẳng
. Tính tổng các giá trị
và
?
Ta có:
Trục đối xứng của là:
Giá trị biểu thức
là:
Ta có:
Khoảng cách từ
đến
không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm
mà từ đó có thể nhìn được
và
dưới một góc
. Biết
,
. Khoảng cách
gần nhất với kết quả nào sau đây?
Ta có:
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .
Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện
là
Biểu diễn miền nghiệm của hệ :
Nghiệm của hệ là miền đa giác
với
.
Giá trị lớn nhất đạt được tại 1 trong 5 đỉnh của đa giác.
Với .
Với.
Với .
Với .
Với .
Vậy GTLN .
Số tập hợp con của tập hợp
là:
Các tập hợp con của tập A:
Số tập con có 3 phần tử là
Số tập con có 2 phần tử là
Số tập con có 1 phần tử là
Vậy tập hơp A có tất cả 8 tập con.
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Ta có:
sai do
.
sai do
.
sai do
.
đúng do
.
Cho tứ giác
Gọi
lần lượt là trung điểm của
Khẳng định nào sau đây sai?
Ta có (do cùng song song và bằng
).
Do đó là hình bình hành.
Do đó sai.
Dây truyền đỡ trên cầu treo có dạng Parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A, B trên mỗi trục AA′ và BB′ với độ cao 30 m. Chiều dài đoạn A′B′ trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là OC = 5 m. Gọi Q′, P′, H′, O, I′, J′, K′ là các điểm chia đoạn A′B′ thành các phần bằng nhau. Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ′, PP′, HH′, OC, II′, JJ′, KK′ gọi là các dây cáp treo. Tính tổng độ dài của các dây cáp treo?


Giả sử Parabol có dạng: y = ax2 + bx + c, a ≠ 0.
hệ trục Oxy như hình vẽ, khi đó parabol đi qua điểm A(100; 30), và có đỉnh C(0; 5). Đoạn AB chia làm 8 phần, mỗi phần 25 m.
Suy ra:
.
Khi đó, tổng độ dài của các dây cáp treo bằng OC + 2y1 + 2y2 + 2y3
= 78, 75 (m).
Biết phương trình
có nghiệm duy nhất là
. Hãy chọn khẳng định đúng.
ĐK
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp
.
Ta có: .
Tập nghiệm
của phương trình
là:
Ta có: .
Vậy .
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Cho hàm số
. Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho tam giác ABC. Gọi M là trung điểm BC và N là trung điểm AM. Đường thẳng BN cắt AC tại P. Khi đó
thì giá trị của x là:
Hình vẽ minh họa

Kẻ . Do M là trung điểm BC
=> D là trung điểm CP (1).
Vì , mà N là trung điểm AM
=> P là trung điểm AD (2).
Từ (1), (2) ta suy ra .
=>
Ta có
=>
Ta có: (vì
ngược hướng)
=>
Tính giá trị
biết rằng
?
Ta có:
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".