Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Cho tứ giác
Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ ![]()
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Trong hệ tọa độ
, cho bốn điểm
. Các điểm nào trong các điểm đã cho thẳng hàng với nhau?
Ta có:
Vậy ba điểm thẳng hàng.
Miền nghiệm của bất phương trình
được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?
Vẽ đường thẳng -x + y = 2
Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.
Vậy đáp án là:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Số nghiệm nguyên dương của phương trình
là
.
Vậy phương trình có một nghiệm nguyên dương.
Cho tam giác
, kẻ đường cao
và
. Gọi
là trung điểm của
,
là điểm thỏa mãn
và
. Khi đó độ dài vectơ
bằng bao nhiêu?
Hình vẽ minh họa

Gọi E là điểm đối xứng của B qua A, ta có:
Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác
Suy ra K là giao điểm của a và đường tròn tâm A bán kính .
Điểm K cần tìm là N hoặc P
Ta có: .
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.
Ta thấy 2x2 − 3x + 2 > 0, ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.
Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)
Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất .
Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng
là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Bất phương trình
tương đương với bất phương trình nào sau đây?
Ta có: .
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với
.Bất phương trình thứ hai sai nên không thỏa mãn.
Với
. Đúng.
Giá trị biểu thức
là:
Ta có:
Tìm tất cả giá trị của tham số
để hệ bất phương trình
có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.
Họ đường thẳng luôn đi qua điểm
, hay nói cách khác các đường thẳng
xoay quanh A.
Mặt khác, ta có đúng với mọi m
=> Miền nghiệm của bất phương trình luôn chứa điểm
.
Do đó ta có 3 khả năng sau
Vậy .
Tập nghiệm của phương trình
là?
Điều kiện: .
Ta có: . Loại
.
Vậy .
Một chiếc cổng parabol dạng
có chiều rộng
. Hỏi chiều cao của chiếc cổng là?

Đáp án: 8
Một chiếc cổng parabol dạng có chiều rộng
. Hỏi chiều cao của chiếc cổng là?
Đáp án: 8
Khoảng cách từ chân cổng đến trục đối xứng Oy là .
Hoành độ hai chân cổng là
Tung độ chân cổng là:
Vậy chiều cao của cổng là mét.
Trong các vecto dưới đây, vecto nào cùng phương với vecto
?
Nhận thấy nên
cùng phương với
.
Kí hiệu
có nghĩa là gì?
Cho hai tập hợp và
. Nếu
là tập con của
thì hiệu
gọi là phần bù của
trong
, kí hiệu
.
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho tam giác
có
. Biết rằng các góc của tam giác thỏa mãn biểu thức:
![]()
Chọn khẳng định đúng?
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác vuông tại C.
Cho hai điểm
phân biệt. Tập hợp những điểm
thỏa mãn
là
Ta có:
.
Tập hợp điểm là đường tròn đường kính
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Giá trị nhỏ nhất của biểu thức F(x;y) = y – x trên miền xác định bởi hệ:
là:
Biểu diễn miền nghiệm của hệ :

Miền nghiệm của hệ là tam giác .
Ta có: ;
và
.
Giá trị nhỏ nhất của đạt được tại 1 trong 3 đỉnh tam giác
.
Với suy ra
.
Với suy ra
.
Với suy ra
.
Vậy giá trị nhỏ nhất đạt tại
.
Cho tam giác
đều cạnh
. Tính ![]()
Gọi là trung điểm của
Suy ra
Ta lại có
Tập xác định của hàm số
là
Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔ − 3 ≤ x ≤ 3.
Hàm số xác định khi và chỉ khi
. Vậy x ∈ [ − 3; 3] ∖ {2}.
Trong mặt phẳng Oxy, cho
và
. Kết luận nào sau đây sai?
Ta có:
Vậy kết luận sai là:
Cho tam thức f(x) =
(a ≠ 0), có ∆ =
. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Cho tứ giác
Gọi
lần lượt là trung điểm của
Khẳng định nào sau đây sai?
Ta có (do cùng song song và bằng
).
Do đó là hình bình hành.
Do đó sai.
Từ hai vị trí
và
của một tòa nhà, người ta quan sát đỉnh
của ngọn núi. Biết rằng độ cao
, phương nhìn
tạo với phương nằm ngang góc
, phương nhìn
tạo với phương nằm ngang góc
. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Từ giả thiết, ta suy ra tam giác có
và
Khi đó
Theo định lí sin, ta có hay
Do đó
Gọi là khoảng cách từ
đến mặt đất. Tam giác vuông
có cạnh
đối diện với góc
nên
Vậy ngọn núi cao khoảng
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây cùng phương?
Ta có nên chọn đáp án
và
.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Cho
và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn
và
. Tìm
.
Ta có:
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x ≥ 1 .
Chia cả hai vế cho ta có
Đặt
Phương trình trở thành − 3t2 + 2t = m (*)
Xét hàm số y = − 3t2 + 2t trên [0; 1) , ta có ,
Bảng biến thiên

Phương trình ban đầu có nghiệm ⇔ phương trình (*) có nghiệm t∈ [0; 1)
⇔ đồ thị hàm số y = − 3t2 + 2t trên [0; 1) cắt đường thẳng
Vậy phương trình ban đầu có nghiệm khi và chỉ khi .
Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn:
.
Để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước
phải bằng
nghĩa là:
Vậy với thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.
Tìm các giá trị của m để biểu thức sau luôn dương
![]()
Tam thức − 4x2 + 5x − 2 có a = − 4 < 0, Δ = − 7 < 0
suy ra − 4x2 + 5x − 2 < 0 ∀x
Do đó h(x) luôn dương khi và chỉ khi h′(x) = − x2 + 4(m+1)x + 1 − 4m2 luôn âm
Vậy với thì biểu thức h(x) luôn dương.