Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 2: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 3: Thông hiểu

    Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.

    Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:

    Đặt P: “Quyển vở này của Nam”, Q: “Quyển vở này có 118 trang”

    Theo đề bài, P đúng, Q đúng nên \overline{P} sai, \overline{Q} sai.

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng Q sai.

    Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.

  • Câu 4: Vận dụng

    Tìm tập xác định D của hàm số f(x) = \sqrt{\sqrt{x^{2} + x - 12} -
2\sqrt{2}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
\sqrt{x^{2} + x - 12} - 2\sqrt{2} \geq 0 \\
x^{2} + x - 12 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + x - 12 \geq 8 \\
x^{2} + x - 12 \geq 0 \\
\end{matrix} \Leftrightarrow ight.\ x^{2} + x - 12 \geq 8

     ⇔ x2 + x − 20 ≥ 0

    Bảng xét dấu

    Dựa vào bảng xét dấu, ta thấy x2 + x − 20 ≥ 0 ⇔ x ∈ (−∞ ; −5) ∪ (4 ;  + ∞].

    Vậy tập xác định của hàm số là D = (−∞ ; −5) ∪ (4 ;  + ∞].

  • Câu 5: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 6: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC. Tính \overrightarrow{AB} theo \overrightarrow{AM}\overrightarrow{BC}.

    Ta có \overrightarrow{AB} =
\overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{AM} -
\frac{1}{2}\overrightarrow{BC}.

  • Câu 7: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 8: Nhận biết

    Tập nghiệm của bất \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 là:

     Ta có: \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 \Leftrightarrow \frac{\sqrt2}2 < x <1.

    Vậy D=(\frac{\sqrt{2}}{2};1)

  • Câu 9: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi. \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{5}{13}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = - \frac{5}{12}.

  • Câu 10: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 11: Nhận biết

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

  • Câu 12: Thông hiểu

    Tập nghiệm của phương trình x + \sqrt{x - 1} = 2 + \sqrt{x - 1}là:

    Phương trình x + \sqrt{x - 1} = 2 +\sqrt{x - 1} \Leftrightarrow \left\{ \begin{matrix}x \geq 1 \\x = 2 \\\end{matrix} ight.\  \Leftrightarrow x = 2.

    Vậy S = {2}.

  • Câu 13: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 14: Nhận biết

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 15: Thông hiểu

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 16: Thông hiểu

    Tập X = \left\{
x\mathbb{\in N}|(x + 1)\left( x^{2} - x - 12 ight) = 0
ight\} bằng tập nào sau đây?

    \left( \mathbf{x +}\mathbf{1}
ight)\left( \mathbf{x}^{\mathbf{2}}\mathbf{- x -}\mathbf{12}
ight)\mathbf{=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack
\begin{matrix}
\mathbf{x = -}\mathbf{1}\mathbb{otin N} \\
\mathbf{x = -}\mathbf{3}\mathbb{otin N} \\
\mathbf{x =}\mathbf{4}\mathbb{\in N} \\
\end{matrix} ight.\ \mathbf{\Rightarrow X =}\left\{ \mathbf{4}
ight\}\mathbf{.}

  • Câu 17: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 18: Vận dụng cao

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Đáp án là:

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là xy (ha)

    Điều kiện: x,y \geq 0

    Lợi nhuận thu được là f(x;y) = 3000000x +
4000000y (đồng).

    Tổng số công dùng để trồng x ha cà phê và y ha sầu riêng là 20x + 30y.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x,y \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x,y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*)

    Miền nghiệm của hệ bất phương trình (*) là tứ giác OABC (kể cả biên)

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là tọa độ của một trong các đỉnh O(0;0),A(8;0),B(6;2),C(0;6).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(8;0) = 24000000 \\
f(6;2) = 26000000 \\
f(0;6) = 2400000 \\
\end{matrix} ight..

    Suy ra f(x;y) lớn nhất khi (x;y) = (6;2)

    Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.

  • Câu 19: Thông hiểu

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 20: Thông hiểu

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 21: Vận dụng cao

    Cho tam giác ABC có diện tích S, lấy G là trọng tâm và \widehat{GAB} = \alpha;\widehat{GBC} =
\beta;\widehat{GCA} = \gamma. Giả sử AB = c;BC = a;AC = b , tính giá trị biểu thức \cot\alpha + \cot\beta +
\cot\gamma theo a;b;c;S?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC. Kẻ MH\bot
AB

    Tam giác AMH vuông => \cos\alpha = \frac{AH}{AM}

    Tam giác BMH vuông => \cos B = \frac{BH}{BM} =
\frac{2BH}{a}

    Ta có: AB = AH + HB

    \Rightarrow c = AM.cos\alpha +
\frac{a}{2}.cos\beta

    \Rightarrow \cos\alpha =\frac{1}{AM}\left( c - \frac{a}{2}.\cos\beta ight)(*)

    Mặt khác áp dụng định lí sin cho tam giác AMB ta được:

    \frac{MB}{\sin\alpha} = \frac{MA}{\sin
B} \Rightarrow \sin\alpha = \frac{MB.sinB}{MA} =
\frac{a.sinB}{2MA}(**)

    Từ (*) và (**) ta được:

    \cot\alpha = \dfrac{c - \dfrac{a}{2}\cos B}{\dfrac{a}{2}\sin B} = \dfrac{2c - a\cos B}{b}

    = \dfrac{R\left( 4c - 2a\cos Bight)}{ab} = \dfrac{4c^{2} - 2ac\cos B}{\dfrac{abc}{R}}

    \Rightarrow \cot\alpha = \frac{3c^{2} +
b^{2} - a^{2}}{4S}

    Chứng minh tương tự ta có: \left\{\begin{matrix}\cot\beta = \dfrac{3a^{2} + c^{2} - b^{2}}{4S} \\\cot\gamma = \dfrac{3b^{2} + b^{2} - c^{2}}{4S} \\\end{matrix} ight.

    Do đó:

    \cot\alpha + \cot\beta +
\cot\gamma

    = \frac{3c^{2} + b^{2} - a^{2}}{4S} +
\frac{3a^{2} + c^{2} - b^{2}}{4S} + \frac{3b^{2} + b^{2} -
c^{2}}{4S}

    = \frac{3\left( a^{2} + b^{2} + c^{2}
ight)}{4S}

  • Câu 22: Vận dụng cao

    Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ Oth,trong đó t là thời gian , kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1, 2m. Sau đó 1 giây, nó đạt độ cao 8, 5m\left| 2x^{2} + x - 3 ight| = \left\{
\begin{matrix}
2x^{2} + x - 3 & khi & 2x^{2} + x - 3 \geq 0 \\
- \left( 2x^{2} + x - 3 ight) & khi & 2x^{2} + x - 3 < 0 \\
\end{matrix} ight. giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.

    Tại t = 0 ta có y = h = 1, 2; tại t = 1 ta có y = h = 8, 5; tại t = 2, ta có y = h = 6.

    hệ trục Oth như hình vẽ.

    Parabol (P) có phương trình: y = at2 + bt + c, với a ≠ 0.

    Giả sử tại thời điểm t thì quả bóng đạt độ cao lớn nhất h.

    Theo bài ra ta có: tại t = 0 thì h = 1, 2 nên A(0;  1,2) ∈ (P).

    Tại t = 1 thì h = 8, 5 nên B(1;  8,5) ∈ (P).

    Tại t = 2 thì h = 6 nên C(2;  6) ∈ (P).

    Vậy ta có hệ: \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
a + b + c = 8,5 \\
4a + 2b + c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \  \\
a = - 4,9\  \\
b = 12,2\  \\
\end{matrix} ight..

    Vậy hàm số Parabol cần tìm có dạng: y =  − 4, 9t2 + 12, 2t + 1, 2.

  • Câu 23: Thông hiểu

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 24: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?

    Bất phương trình bậc hai một ẩn là: 3x^{2} – 12x + 1 ≤ 0

  • Câu 25: Thông hiểu

    Giá trị α, (0° ≤ α ≤ 180°) thoả mãn \tanα = 1,607 gần nhất với giá trị:

    Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.

    Vậy α ≈ 58°

  • Câu 26: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 27: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 28: Thông hiểu

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 29: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight.?

     Thay tọa độ (0;0) vào hệ \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight. ta được \left\{\begin{matrix}-1>0\\ 4<0\end{matrix}ight. không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.

  • Câu 30: Thông hiểu

    Điểm A( -
1;3) là điểm thuộc miền nghiệm của bất phương trình:

    - 3.( - 1) + 2.3 - 4 > 0 là mệnh đề đúng nên A( - 1;3) là điểm thuộc miền nghiệm của bất phương trình - 3x + 2y - 4 > 0.

  • Câu 31: Nhận biết

    Trong hệ tọa độ Oxy, cho tam giác ABCA(3;5),\ B(1;2),\ C(5;2). Tìm tọa độ trọng tâm G của tam giác ABC?

    Ta có \left\{ \begin{matrix}
x_{G} = \frac{3 + 1 + 5}{3} = 3 \\
y_{G} = \frac{5 + 2 + 2}{3} = 3 \\
\end{matrix} ight.\ \overset{}{ightarrow}G(3;3).

  • Câu 32: Thông hiểu

    Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác \vec{0} có điểm đầu và điểm cuối là các đỉnh A, B, C?

    Ta có các vectơ khác \vec{0} có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:

    \begin{matrix}  \overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {BC}  \hfill \\  \overrightarrow {BA} ,\overrightarrow {CA} ,\overrightarrow {CB}  \hfill \\ \end{matrix}

  • Câu 33: Vận dụng cao

    Phương trình \sqrt{x^{2} + 3} + \sqrt{10 - x^{2}} = 5 có mấy nghiệm ?

    Đặt u = \sqrt{x^{2} + 3}\ \ ;\ \ v =
\sqrt{10 - x^{2}}\ \ \ \ (u\ ,\ v \geq 0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
u + v = 5 \\
u^{2} + v^{2} = 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u + v = 5 \\
u.v = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \Rightarrow x = \pm 1.

    Với \left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \Rightarrow x = \pm \sqrt{6}.

    Vậy phương trình có 4 nghiệm.

  • Câu 34: Vận dụng

    Cho góc \widehat{xOy} = 30{^\circ}. Gọi AB là hai điểm di động lần lượt trên OxOy sao cho AB
= 1. Khi OB có độ dài lớn nhất thì độ dài của đoạn OA bằng:

    Theo định lí hàm sin, ta có

    \frac{OB}{\sin\widehat{OAB}} =
\frac{AB}{\sin\widehat{AOB}} \Leftrightarrow OB =
\frac{AB}{\sin\widehat{AOB}}.sin\widehat{OAB} = \frac{1}{sin30{^\circ}}.sin\widehat{OAB} =
2sin\widehat{OAB}

    Do đó, độ dài OB lớn nhất khi và chỉ khi \sin\widehat{OAB} = 1
\Leftrightarrow \widehat{OAB} = 90{^\circ}.

    Khi đó OB = 2.

    Tam giác OAB vuông tại A \Rightarrow OA = \sqrt{OB^{2} - AB^{2}} =
\sqrt{2^{2} - 1^{2}} = \sqrt{3}.

  • Câu 35: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(–4;0),B(–5;0)C(3;0). Tìm điểm M thuộc trục hoành sao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}.

    M \in Ox \Rightarrow
M(a;0).

    Ta có: \overrightarrow{MA} = ( - 4 -
a;0); \overrightarrow{MB} = ( - 5 -
a;0) ;\overrightarrow{MC} = (3 -
a;0).

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow - 3a - 6 = 0 \Leftrightarrow
a = - 2 \Rightarrow M( - 2;0).

  • Câu 36: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 37: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}.Trong các kết quả sau đây,hãy chọn kết quả đúng.

    Ta thấy vế trái của 4 phương án giống nhau.

    Bài toán cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0} suy ra \left( \overrightarrow{a},\overrightarrow{b}
ight) = 0^{0}

    Do đó \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos0^{o} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight| nên

  • Câu 38: Vận dụng

    Cho x, y thỏa mãn hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\\ x\geq0\\ y\geq0\end{matrix}ight.. Tìm giá trị lớn nhất của biểu thức P(x;y) = 40000x+30000y

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\\ x\geq0\\ y\geq0\end{matrix}ight.:

    Nghiệm của hệ là miền tứ giác OABC với O(0;0); A(40;0);C(0;50) và tọa độ B là nghiệm của hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\end{matrix}ight., suy ra B(20;40).

    Giá trị lớn nhất của P =40000x+30000y đạt được tại 1 trong 4 đỉnh của tứ giác.

    Với O(0;0) \Rightarrow P=0.

    Với A(40;0) \Rightarrow P=1600000.

    Với B(20;40)\Rightarrow P=2000000.

    Với C(0;50) \Rightarrow P=1500000.

    Vậy GTLN P=2000000.

  • Câu 39: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 40: Thông hiểu

    Cho f(x)=ax^{2}+bx+c(a≠0)Δ=b^{2}−4ac<0. Khi đó mệnh đề nào đúng?

     Khi \Delta<0 thì f(x) luôn cùng dấu với hệ số a \text{       } \forall x\in \mathbb{R}. Do đó nó không đổi dấu.

  • Câu 41: Thông hiểu

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).

    Trục đối xứng - \frac{b}{2a} = -
1\overset{}{ightarrow}b = 4.

    Do I \in (P)\overset{}{ightarrow} - 2 =
2.( - 1)^{2} - 4 + c\overset{}{ightarrow}c = 0.

    Vậy (P) : y = 2x2 + 4x.

  • Câu 42: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 43: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Khẳng định nào sau đây sai?

    Dựa vào các đáp án, ta có nhận xét sau:

    \left| 3\ \overrightarrow{OA} + 4\
\overrightarrow{OB} ight| = 5a đúng, gọi C nằm trên tia đối của tia AO sao cho OC
= 3\ OA \Rightarrow 3\ \overrightarrow{OA} =
\overrightarrow{OC}.D nằm trên tia đối của tia BO sao cho OD = 4\ OB \Rightarrow 4\
\overrightarrow{OB} = \overrightarrow{OD}.Dựng hình chữ nhật OCED suy ra \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{OE} (quy tắc hình bình hành).

    Ta có \left| 3\overrightarrow{OA} +
4\overrightarrow{OB} ight| = \left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = \left| \overrightarrow{OE} ight| = OE =
CD = \sqrt{OC^{2} + OD^{2}} = 5a.

    \left| 2\ \overrightarrow{OA} ight| +
\left| 3\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 2\ \overrightarrow{OA} ight| + \left| 3\
\overrightarrow{OB} ight| = 2\left| \overrightarrow{OA} ight| +
3\left| \overrightarrow{OB} ight| = 2a + 3a = 5a.

    \left| 7\ \overrightarrow{OA} - 2\
\overrightarrow{OB} ight| = 5a sai, xử lý tương tự như ở trên. Chọn đáp án này.

    \left| 11\ \overrightarrow{OA} ight| -
\left| 6\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 11\ \overrightarrow{OA} ight| - \left| 6\
\overrightarrow{OB} ight| = 11\left| \overrightarrow{OA} ight| -
6\left| \overrightarrow{OB} ight| = 11a - 6a = 5a.

  • Câu 44: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 45: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo