Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tọa độ hai điểm P(1;2)Q(3; - 4). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{PQ} = (3 - 1; - 4
- 2) = (2; - 6)

  • Câu 2: Nhận biết

    Mệnh đề nào sau đây là mệnh đề tương đương?

    Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.

  • Câu 3: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Tìm tất cả các giá trị thực của tham số m sao cho phương trình (m−2)x2 − 2mx + m + 3 = 0 có hai nghiệm dương phân biệt.

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a eq 0 \\
\Lambda^{'} > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 eq 0 \\
m^{2} - (m - 2)(m + 3) > 0 \\
\frac{2m}{m - 2} > 0 \\
\frac{m + 3}{m - 2} > 0 \\
\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}
2 < m < 6 \\
m < - 3 \\
\end{matrix} ight.\  ight..

  • Câu 5: Thông hiểu

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 6: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sqrt{sin^{2}}\alpha = \sin\alpha.

    Ta có \sqrt{sin^{2}\alpha}
\Leftrightarrow \sin\alpha \Leftrightarrow \left| \sin\alpha ight| =
\sin\alpha.

    Đẳng thức \left| \sin\alpha ight| =
\sin\alpha\overset{}{ightarrow}\sin\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc II.

  • Câu 7: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 8: Thông hiểu

    Các giá trị m để tam thức f(x)=x^{2}-(m+2)x+8m+1 đổi dấu 2 lần là:

     Để f(x) đổi dấu 2 lần thì \Delta >0.

    Ta có: (m+2)^2-4 (8m+1)>0 \Leftrightarrow m^2-28m>0 \Leftrightarrow m<0 hoặc m>28.

     

  • Câu 9: Vận dụng cao

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 10: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 11: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 12: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 13: Vận dụng cao

    Tìm tất cả giá trị của tham số m để hệ bất phương trình \left\{ \begin{matrix}
x \geq 0 \\
x - y \leq 0 \\
y - mx - 2 \leq 0 \\
\end{matrix} ight. có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.

    Họ đường thẳng \left( d_{m} ight):y -
mx - 2 = 0 luôn đi qua điểm A(0;2), hay nói cách khác các đường thẳng \left( d_{m} ight) xoay quanh A.

    Mặt khác, ta có 1 - m.0 - 2 \leq
0 đúng với mọi m

    => Miền nghiệm của bất phương trình y
- mx - 2 \leq 0 luôn chứa điểm (0;1).

    Do đó ta có 3 khả năng sau

    Vậy m < 0.

  • Câu 14: Nhận biết

    Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

    f(x) = x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].

  • Câu 15: Thông hiểu

    Cho góc \alpha thỏa \sin\alpha = \frac{3}{5}90^{O} < \alpha < 180^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{4}{5} \\
90{^\circ} < \alpha < 180{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{4}{5}.

  • Câu 16: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 17: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 18: Vận dụng cao

    Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

    Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
3 = 4a + 2b + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = - 4a \\
4a + 2b + c = 3 \\
\end{matrix} ight..

    Mặt khác (P) cắt trục tung tại (0;−1) nên c =  − 1. Suy ra \left\{ \begin{matrix}
b = - 4a \\
4a + 2b = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 4 \\
\end{matrix} ight..

    (P) : y =  − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

    Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.

    Suy ra 0 < m < 3.

  • Câu 19: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây cùng phương?

    Ta có \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b} = - \left( - \frac{1}{2}\overrightarrow{a} +
\overrightarrow{b} ight) nên chọn đáp án \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b}-
\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}.

  • Câu 20: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{x + 1}}{x - 3} là:

    Hàm số y = \frac{\sqrt{x + 1}}{x -
3}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x - 3 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 3 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).

  • Câu 21: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b\widehat{C} <
\widehat{B}. Biết rằng:

    \dfrac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\dfrac{b^{2} - c^{2}}{b^{2} + c^{2}}

    Chọn khẳng định đúng?

    Ta có:

    \frac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\frac{\sin\widehat{B}.\cos\widehat{C} -\sin\widehat{C}.\cos\widehat{B}}{\sin\widehat{B}.\cos\widehat{C} +\sin\widehat{C}.\cos\widehat{B}}

    = \dfrac{\dfrac{b}{2R}.\cos\widehat{C} -\dfrac{c}{2R}.\cos\widehat{B}}{\dfrac{b}{2R}.\cos\widehat{C} +\dfrac{c}{2R}.\cos\widehat{B}}

    = \dfrac{2ab\cos\widehat{C} -2ac.\cos\widehat{B}}{2ab\cos\widehat{C} +2ac.\cos\widehat{B}}

    = \frac{\left( a^{2} + b^{2} - c^{2}
ight) - \left( a^{2} + c^{2} - b^{2} ight)}{\left( a^{2} + b^{2} -
c^{2} ight) + \left( a^{2} + c^{2} - b^{2} ight)}

    = \frac{b^{2} -
c^{2}}{a^{2}}

    \frac{\sin\left( \widehat{B} -
\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =
\frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow \frac{b^{2} - c^{2}}{a^{2}}
= \frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow a^{2} = b^{2} +
c^{2}

    Vậy tam giác ABC là tam giác vuông tại A.

  • Câu 22: Vận dụng

    Từ hai vị trí AB của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30^{0}, phương nhìn BC tạo với phương nằm ngang góc 15^{0}30'. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

    Từ giả thiết, ta suy ra tam giác ABC\widehat{CAB} = 60^{0},\ \ \widehat{ABC} =
105^{0}30'c = 70. Khi đó \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Leftrightarrow \widehat{C} = 180^{0} - \left(
\widehat{A} + \widehat{B} ight) =
180^{0} - 165^{0}30' = 14^{0}30'.

    Theo định lí sin, ta có \frac{b}{\sin B}
= \frac{c}{\sin C} hay \frac{b}{sin105^{0}30'} =
\frac{70}{sin14^{0}30'}

    Do đó AC = b =
\frac{70.sin105^{0}30'}{sin14^{0}30'} \approx 269,4m.

    Gọi CH là khoảng cách từ C đến mặt đất. Tam giác vuông ACH có cạnh CH đối diện với góc 30^{0} nên

    CH = \frac{AC}{2} = \frac{269,4}{2} =
134,7\ m. Vậy ngọn núi cao khoảng 135m.

  • Câu 23: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN}=-3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

     Vì \overrightarrow{MN}=-3\overrightarrow{MP} nên M nằm giữa NP, đồng thời MN=3MP.

  • Câu 24: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)

     Thay tọa độ M(1;5)N(-2;8) vào y=ax^{2}+bx+2. Ta có:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{8 = 4a - 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 1}\end{array}} ight.} ight..

    Do đó y=2x^{2}+x+2.

  • Câu 25: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 26: Vận dụng cao

    Tập tất cả các giá trị của tham số m để phương trình \sqrt{x^{2} - 2mx + 1} = m - 2 có nghiệm thực là

    * Với m < 2 ⇒ phương trình vô nghiệm

    * Với m ≥ 2, \sqrt{x^2-2mx+1}=m-2

    \Leftrightarrow x^2-2mx+1=m^2-4m+4

    \Leftrightarrow x^2-2mx-m^2+4m-3=0.

    Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.

    Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2;  + ∞).

  • Câu 27: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{2x - 1} + x^{2} - 3x + 1 = 0 là :

    Ta có \sqrt{2x - 1} + x^{2} - 3x + 1 = 0\Leftrightarrow \sqrt{2x - 1} = - x^{2} + 3x - 1

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\2x - 1 = \left( - x^{2} + 3x - 1 ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\(x - 1)^{2}(x^{2} - 4x + 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x^{2} - 4x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \pm \sqrt{2} \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 2 - \sqrt{2} \\\end{matrix} ight.

    Phương trình có nghiệm là x = 1x = 2 - \sqrt{2}.

    Vậy tổng các nghiệm của phương trình là 1+ 2 - \sqrt{2} = 3 - \sqrt{2}.

  • Câu 28: Thông hiểu

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 29: Vận dụng

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}.(\overrightarrow{MB}+\overrightarrow{MC})=0 là:

    Ta có: \overrightarrow {MB}  + \overrightarrow {MC}  = 2\overrightarrow {MI} (I là trung điểm của BC)

    \begin{matrix}  \overrightarrow {MA} .\left( {\overrightarrow {MB}  + \overrightarrow {MC} } ight) = 0 \hfill \\   \Leftrightarrow \overrightarrow {MA} .\left( {2\overrightarrow {MI} } ight) = 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MA} .\overrightarrow {MI}  = 0 \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MI}  = 0 \hfill \\   \Rightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {MI} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {MI}  \hfill \\ \end{matrix}

    \Rightarrow \widehat {AMI} = {90^0}

    => Qũy tích điểm M là đường tròn đường kính IA.

  • Câu 30: Thông hiểu

    Cho tam giác ABC có BC = a, CA = b, AB = c. Tính P=(\overrightarrow{AB}+\overrightarrow{AC})\times \overrightarrow{BC}

    Ta có: 

    \begin{matrix}  P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\overrightarrow {BC}  \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {BA}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( { - \overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = {\left( {\overrightarrow {AC} } ight)^2} - {\left( {\overrightarrow {AB} } ight)^2} = {\left| {\overrightarrow {AC} } ight|^2} - {\left| {\overrightarrow {AB} } ight|^2} \hfill \\   \Rightarrow P = {b^2} - {c^2} \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 32: Nhận biết

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 33: Nhận biết

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 34: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 35: Thông hiểu

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 36: Vận dụng

    Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.:

    Nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight. là miền đa giác OABCD với O(0;0);A(1;0);B(4;3);C(2;4);D(0;4).

    Giá trị lớn nhất F(x;y)=x+2y đạt được tại 1 trong 5 đỉnh của đa giác.

    Với O(0;0) \Rightarrow F=0.

    VớiA(1;0)\Rightarrow F=1.

    Với B(4;3) \Rightarrow F=10.

    Với C(2;4) \Rightarrow F=10.

    Với D(0;4) \Rightarrow F=8.

    Vậy GTLN F=10.

  • Câu 37: Nhận biết

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 38: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Khẳng định nào sau đây sai?

    Dựa vào các đáp án, ta có nhận xét sau:

    \left| 3\ \overrightarrow{OA} + 4\
\overrightarrow{OB} ight| = 5a đúng, gọi C nằm trên tia đối của tia AO sao cho OC
= 3\ OA \Rightarrow 3\ \overrightarrow{OA} =
\overrightarrow{OC}.D nằm trên tia đối của tia BO sao cho OD = 4\ OB \Rightarrow 4\
\overrightarrow{OB} = \overrightarrow{OD}.Dựng hình chữ nhật OCED suy ra \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{OE} (quy tắc hình bình hành).

    Ta có \left| 3\overrightarrow{OA} +
4\overrightarrow{OB} ight| = \left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = \left| \overrightarrow{OE} ight| = OE =
CD = \sqrt{OC^{2} + OD^{2}} = 5a.

    \left| 2\ \overrightarrow{OA} ight| +
\left| 3\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 2\ \overrightarrow{OA} ight| + \left| 3\
\overrightarrow{OB} ight| = 2\left| \overrightarrow{OA} ight| +
3\left| \overrightarrow{OB} ight| = 2a + 3a = 5a.

    \left| 7\ \overrightarrow{OA} - 2\
\overrightarrow{OB} ight| = 5a sai, xử lý tương tự như ở trên. Chọn đáp án này.

    \left| 11\ \overrightarrow{OA} ight| -
\left| 6\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 11\ \overrightarrow{OA} ight| - \left| 6\
\overrightarrow{OB} ight| = 11\left| \overrightarrow{OA} ight| -
6\left| \overrightarrow{OB} ight| = 11a - 6a = 5a.

  • Câu 39: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y > 11 không chứa điểm nào sau đây?

    Xét điểm (1; - 3). Ta có: - 3.1 - 5.3 = - 18 > 11 không thỏa mãn. Do đó (1;3) không thuộc miền nghiệm của bất phương trình - 3x - 5y >
11.

  • Câu 40: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 41: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 42: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 43: Nhận biết

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 44: Thông hiểu

    Cho hình thoi ABCD tâm O, cạnh bằng a và \widehat{A}=60^0. Kết luận nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn kết luận đúng

    Ta có:  ABCD là hình thoi \widehat{A}=60^0

    => \widehat{ADC}=120^0

    Áp dụng định lí cosin trong tam giác ADC ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} - 2AD.DC\cos {120^0} \hfill \\   \Rightarrow A{C^2} = {a^2} + {a^2} - 2.a.a.\left( { - \dfrac{1}{2}} ight) \hfill \\   \Rightarrow A{C^2} = 3{a^2} \hfill \\   \Rightarrow AC = a\sqrt 3  \hfill \\   \Rightarrow OA = \dfrac{1}{2}AC = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    =>AO=|\overrightarrow{AO}|=\frac{a\sqrt{3}}{2}

  • Câu 45: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm M( - 3;1),N(1;4),P(5;3). Xác định tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành?

    Gọi tọa độ điểm Q(x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MQ} = (x + 3;y - 1) \\
\overrightarrow{NP} = (4; - 1) \\
\end{matrix} ight.

    Vì MNPQ là hình bình hành nên

    \overrightarrow{MQ} =
\overrightarrow{NP} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 4 \\
y - 1 = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 0 \\
\end{matrix} ight.

    Vậy tọa độ điểm Q cần tìm là Q(1;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo