Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Trong các tập hợp sau, tập hợp nào bằng nhau:
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> . Vậy tập hợp
bằng tập hợp
. Đáp án đúng
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> ;
. Vậy tập hợp
không bằng tập hợp
.
Khoảng giá trị của x khi
trong hệ bất phương trình
là:
Với hệ bất phương trình trở thành:
Vậy khi thì khoảng giá trị của x là
.
Cho bất phương trình
có tập nghiệm là
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Ta thấy
thỏa mãn phương trình do đó
là một cặp nghiệm của phương trình.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Phương trình
có bao nhiêu nghiệm?
.
Vậy phương trình có 2 nghiệm.
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho hàm số
. Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).
Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Cho
Tập nào sau đây bằng tập ![]()
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Trong mặt phẳng tọa độ
, cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Đẳng thức vectơ nào sau đây đúng?
Ta có
Mặt khác và
cùng hướng
hay
.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − (m−1)x + m + 2 = 0 có hai nghiệm phân biệt x1, x2 khác 0 thỏa mãn ![]()
Đặt f(x) = x2 − (m−1)x + m + 2
Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi:
Theo Viet, ta có .
Yêu cầu bài toán
.
Kết hợp điều kiện ta được m ∈ (−∞;−2) ∪ (−2;−1).
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Các giá trị của tham số m để phương trình
(1) có nghiệm là:
Đặt
⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3
Vì nên
Phương trình (1) trở thành 4t2 − 3 + m = t ⇔ − 4t2 + t + 3 = m.
Xét hàm số y = − 4t2 + t − 3 với
Ta có
Bảng biến thiên

Phương trình (1) có nghiệm ⇔ phương trình có nghiệm
⇔ đồ thị hàm số y = − 4t2 + t − 3 trên cắt đường thẳng
.
Vậy phương trình (1) có nghiệm khi và chỉ khi .
Xác định m để
với mọi x ∈ ℝ
Để với mọi x ∈ ℝ thì
Gọi
là giao điểm hai đường chéo
và
của hình bình hành
. Đẳng thức nào sau đây là đẳng thức sai?
Từ hình vẽ ta thấy đẳng thức sai là .
Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?
Thay cặp số (1; – 1) vào bất phương trình ta được:
thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình 
Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng
Giá trị nhỏ nhất
của biểu thức
trên miền xác định bởi hệ
là :
Trong mặt phẳng tọa độ vẽ các đường thẳng
Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ là
Ta có
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho hai vectơ
và
. Góc giữa hai vectơ
và
là:
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Ta có:
sai do
.
sai do
.
sai do
.
đúng do
.
Xác định parabol
, biết rằng
đi qua điểm
và có trục đối xứng
.
Vì hàm số có trục đối xứng và đi qua điểm
nên:
và
.
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.