Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình ![]()
Thay cặp số vào hệ ta được
không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Tam thức bậc hai
:
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ Oth,trong đó t là thời gian , kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1, 2m. Sau đó 1 giây, nó đạt độ cao 8, 5mvà
giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.
Tại t = 0 ta có y = h = 1, 2; tại t = 1 ta có y = h = 8, 5; tại t = 2, ta có y = h = 6.

hệ trục Oth như hình vẽ.
Parabol (P) có phương trình: y = at2 + bt + c, với a ≠ 0.
Giả sử tại thời điểm t′ thì quả bóng đạt độ cao lớn nhất h′.
Theo bài ra ta có: tại t = 0 thì h = 1, 2 nên A(0; 1,2) ∈ (P).
Tại t = 1 thì h = 8, 5 nên B(1; 8,5) ∈ (P).
Tại t = 2 thì h = 6 nên C(2; 6) ∈ (P).
Vậy ta có hệ: .
Vậy hàm số Parabol cần tìm có dạng: y = − 4, 9t2 + 12, 2t + 1, 2.
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
vuông góc với ![]()
Ta có:
Để .
Cho điểm
và điểm
thuộc miền nghiệm của hệ bất phương trình
. Độ dài
lớn nhất là
Miền nghiệm của hệ bất phương trình là miền không bị gạch trong hình bên.
Suy ra độ dài lớn nhất khi và chỉ khi
trùng với đỉnh nào đó của đa giác nghiệm.
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho hình bình hành
Tính
theo
và ![]()
Vì là hình bình hành nên
Ta có
Cho
Tìm
biết
.
Ta có
Để
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.
Với m = 4 thì g(x) = − 1 < 0 thỏa mãn yêu cầu bài toán
Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.
Do đó
⇔ m < 4
Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.
Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?
Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ
Điều kiện: x > 0
Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)
Đoạn đường mà vận động viên B chạy được là 12x (km)
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
0,46 giờ ≈ 28 phút
Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.
Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Trong hệ trục tọa độ
, tọa độ của vectơ
là
Ta có
Cho bất phương trình
miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Cho tứ giác
Gọi
lần lượt là trung điểm của
Khẳng định nào sau đây sai?
Ta có (do cùng song song và bằng
).
Do đó là hình bình hành.
Do đó sai.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Tính tổng
.
Ta có .
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Một cửa hàng bán hai loại mặt hàng
và
. Biết rằng cứ bán một mặt hàng loại
cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại
cửa hàng lãi 7 nghìn đồng. Gọi
lần lượt là số mặt hàng loại
và mặt hàng loại
mà cửa hàng đó bán ra trong một tháng. Cặp số
nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?
Đặt x là số tiền lãi của mặt hàng A
y là số tiền lãi của mặt hàng B
Đổi 30 triệu = 30 000 nghìn đồng
Theo đề bài ta có:
TH1: Thay A (1000; 2000) vào phương trình
. Thay B(3000; 1000
vào phương trình
: Thay C
vào phương trình
TH4: Thay vào phương trình
Vậy đáp án là: C
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Có bao nhiêu mệnh đề trong các câu sau?
Hôm nay trời đẹp quá!
Trung Quốc là nước đông dân nhất thế giới.
Năm 2018 là năm nhuận.
Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho
. Với m là bao nhiêu thì (1) có nghiệm duy nhất
ĐK x > 2
.
Phương trình (1) có nghiệm duy nhất .
Tập nghiệm
của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình
.
Tập
bằng tập nào sau đây?