Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Tổng các nghiệm của phương trình
là:
Đặt .
Ta có .
Phương trình trở thành
Thay vào ta được . Vậy tổng các nghiệm của phương trình là
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Miền nghiệm của hệ bất phương trình
là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?
Xét điểm thử vào các bất phương trình của hệ thấy thỏa mãn.
Chỉ có hình vẽ chứa điểm
. Chọn đáp án hình vẽ này.
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là và
(ha)
Điều kiện:
Lợi nhuận thu được là (đồng).
Tổng số công dùng để trồng ha cà phê và
ha sầu riêng là
.
Ta có hệ bất phương trình sau:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình
Miền nghiệm của hệ bất phương trình là tứ giác
(kể cả biên)
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là tọa độ của một trong các đỉnh
.
Ta có: .
Suy ra lớn nhất khi
Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Các hệ bất phương trình ;
có chứa các bất phương trình bậc hai
=> Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.
Đáp án là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.
Đáp án có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Cho hai vecto
và
biết
và
. Tính
.
Ta có:
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Cho
và
. Tập hợp
là
.
Suy ra .
Giải bất phương trình ![]()
Ta có bảng xét dấu như sau:

Vậy tập nghiệm của bất phương trình là:
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Giá trị biểu thức
bằng:
Ta có:
.
Cho 2 vectơ
và
có
,
và
.Tính
.
Ta có .
Cho lục giác đều
có tâm
Đẳng thức nào sau đây sai?
Đẳng thức sai là
Tập xác định của hàm số
là:
ĐKXĐ:
+) Xét tam thức bậc hai f(x) = 2x2 − 2(m+1)x + m2 + 1
Ta có af = 2 > 0, Δf′ = ... = − (m−1)2 ≤ 0
Suy ra với mọi m ta có f(x) = 2x2 − 2(m+1)x + m2 + 1 ≥ 0, ∀x ∈ ℝ(1)
+) Xét tam thức bậc hai g(x) = m2x2 − 2mx + m2 + 2
Với m = 0 ta có g(x) = 2 > 0, xét với m ≠ 0 ta có:
ag = m2 > 0, Δg′ = − m2(m2+1) < 0.
Suy ra với mọi m ta có g(x) = m2x2 − 2mx + m2 + 2 > 0, ∀x ∈ ℝ (2)
Từ (1) và (2) suy ra với mọi m thì và m2x2 − 2mx + m2 + 2 ≠ 0 đúng với mọi giá trị của x.
Vậy tập xác định của hàm số là D = ℝ.
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Số nghiệm của phương trình
là:
Điều kiện:
Vậy phương trình đã cho có tất cả 1 nghiệm.
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?
Trên khoảng (−3;−1) và (1;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−3;−1) và (1;3).
Cho các vectơ
. Tính tích vô hướng của
.
Ta có ,
suy ra
.
Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Ta có tam giác ACH vuông tại C
Chiều cao của cột cờ khoảng:
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).
Trục đối xứng
Do
Vậy (P) : y = 2x2 + 4x.
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Cho tam giác
thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Có bao nhiêu mệnh đề trong các câu sau?
Ở đây đẹp quá!
Phương trình
vô nghiệm.
16 không là số nguyên tố.
Số
có lớn hơn
hay không?
Câu “Phương trình vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.
Cho phương trình
. Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Theo định nghĩa thì là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ
theo các vectơ đơn vị là
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: ![]()
Vì là mệnh đề sai nên
không thuộc miền nghiệm của bất phương trình.
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Câu nào sau đây đúng?
Do là trung điểm của
nên ta có:
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.