Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Cho tam giác có
thỏa mãn điều kiện
. Xác định vị trí điểm
Gọi là trọng tâm tam giác
.
Ta có .
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp .
Ta có: .
Cho góc thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho tam giác , chọn công thức đúng trong các đáp án sau:
Ta có:
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là
Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Cho hình thang vuông có
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa
Dựng hình bình hành ADBM ta có:
Do nên
tại H,
Tứ giác ADBH là hình vuông nên , ta cũng tính được
.
Dựng hình bình hành DMNC ta có: .
Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.
Ta có:
Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Do miền nghiệm không chứa biên nên ta loại đáp án và
. Chọn điểm
thử vào các hệ bất phương trình.
Xét đáp án , ta có
. Sai.
Vậy chọn đáp án .
Trong mặt phẳng tọa độ , cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Tập hợp bằng tập hợp nào sau đây?
Ta có: .
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.
Cho hàm số bậc hai có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Tập nghiệm của phương trình ?
Ta có:
Vậy tập nghiệm phương trình là:
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)
hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Tập nghiệm S của bất phương trình là:
Ta có: .
Suy ra .
Tam giác có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho lục giác đều tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Phương trình có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Viết mệnh đề sau bằng cách sử dụng kí hiệu hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:
Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: . Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?
Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:
y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)
Vậy nhóm này có tuổi thọ 76,89 tuổi.
Cho hệ bất phương trình có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Trong hệ tọa độ cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng
Ta có
Trong mặt phẳng Oxy cho ,
,
. Khẳng định nào sau đây đúng.
Do nên loại đáp án
.
Do,
,
suy ra
không vuông góc
nên loại đáp án
.
Ta có ,
,
, suy ra
,
. Do đó tam giác
vuông cân tại
.
Cho hai vectơ và
không cùng phương. Hai vectơ nào sau đây là cùng phương?
Ta có .
Hai vectơ và
là cùng phương.
Chọn đáp án và
.
Tìm tất cả giá trị của tham số để hệ bất phương trình
có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.
Họ đường thẳng luôn đi qua điểm
, hay nói cách khác các đường thẳng
xoay quanh A.
Mặt khác, ta có đúng với mọi m
=> Miền nghiệm của bất phương trình luôn chứa điểm
.
Do đó ta có 3 khả năng sau
Vậy .
Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:
Vì B' đối xứng với B qua A => A là trung điểm của BB'
Cho và một điểm C. Có bao nhiêu điểm D thỏa mãn
Có một và chỉ một điểm D thỏa mãn
Miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình.
Tìm tập xác định D của hàm số
Hàm số xác định khi và chỉ khi
⇔ x2 + x − 20 ≥ 0
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy x2 + x − 20 ≥ 0 ⇔ x ∈ (−∞ ; −5) ∪ (4 ; + ∞].
Vậy tập xác định của hàm số là D = (−∞ ; −5) ∪ (4 ; + ∞].
Cho bất phương trình (1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Cho . Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Xác định parabol biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Xác định điểm không thuộc đồ thị của hàm số ?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Cho tam giác , tập hợp các điểm
sao cho
là:
Gọi là trọng tâm của tam giác
, ta có
.
Thay vào ta được : , hay tập hợp các điểm
là đường tròn có tâm là trọng tâm của tam giác
và bán kính bằng
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác có các góc thỏa mãn biểu thức
Giả sử . Tính số đo góc
?
Ta có:
Theo định lí cosin ta có:
Ta thấy
Mặt khác
Do đó: khi
Vậy tam giác ABC là tam giác vuông tại .
Cho định lí “Nếu thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Hãy chọn kết quả đúng khi phân tích vectơ theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Trong mặt phẳng tọa độ , cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Tam giác có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Cho hệ bất phương trình . Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng.
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).