Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Tìm m để phương trình
có hai nghiệm phân biệt là:
Phương trình .
Phương trình đã cho có hai nghiệm ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng đồ thị hàm số y = 3x2 + (4−m)x − 1 trên
cắt trục hoành tại hai điểm phân biệt.
Xét hàm số y = 3x2 + (4−m)x − 1 trên . Ta có
+ TH1: Nếu thì hàm số đồng biến trên
nên m ≤ 1 không thỏa mãn yêu cầu bài toán.
+ TH2: Nếu :
Ta có bảng biến thiên

Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên cắt trục hoành tại hai điểm phân biệt
Vì − m2 + 8m − 28 = − (m−4)2 − 12 < 0, ∀m nên
(thỏa mãn m > 1).
Vậy là giá trị cần tìm.
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho hàm số
. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.
Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng − 2.
Khi đó: .
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?
TH1:; phương trình chỉ có một nghiệm duy nhất nên loại m = 0
TH2: m ≠ 0
Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì
đồng thời m ∈ [ − 7; 7].
Vậy m = {1; 2;3;4;5;6;7}→ có 7 giá trị nguyên của m thỏa mãn.
Số nghiệm của phương trình
là:
Điều kiện:
Vậy phương trình đã cho có tất cả 1 nghiệm.
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Cho tam giác
có
Tính ![]()
Ta có
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.
Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.
Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày
Điều kiện: x, y > 0
Khi đó số tiền lãi một ngày của nhà máy này là (triệu đồng)
Số giờ làm việc trong ngày của đội 1 là (giờ)
Số giờ làm việc trong ngày của đội 2 là (giờ)
Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình (∗).
Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi
là toạ độ một trong các đỉnh
.
Ta có:
Suy ra khi
Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: triệu đồng.
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
?
Thay tọa độ (0;0) vào hệ ta được
không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Từ vị trí
người ta quan sát một cây cao (hình vẽ).
Biết
.
Chiều cao của cây gần nhất với giá trị nào sau đây?

Trong tam giác , ta có
.
Suy ra .
Suy ra
.
Áp dụng định lý sin trong tam giác , ta được
Cho
thoả mãn hệ
Tìm giá trị lớn nhất
của biểu thức ![]()
Trong mặt phẳng tọa độ vẽ các đường thẳng
Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ là
Ta có
Cho bốn điểm phân biệt
và không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để
?
Ta có:
là hình bình hành.
Mặt khác, là hình bình hành
.
Do đó, điều kiện cần và đủ để là
là hình bình hành.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Bảng xét dấu sau đây là của tam thức bậc hai nào?

Từ bảng xét dấu ta có:
có hai nghiệm phân biệt
và
khi
Do đó
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho bất phương trình
có tập nghiệm là
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Ta thấy
thỏa mãn phương trình do đó
là một cặp nghiệm của phương trình.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
sao cho điểm
cách đều hai điểm
?
Ta có:
Từ
Vậy tọa độ điểm D cần tìm là: .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Giá trị biểu thức
là:
Ta có:
Miền nghiệm của bất phương trình
chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi
Chọn Ta có:

Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Hỏi có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình
?
Bất phương trình
Vì x2 ≥ 0, ∀x ∈ ℝ nên bất phương trình
Phương trình và
Bảng xét dấu

Dựa vào bảng xét dấu, ta thấy f(x) ≤ 0 ⇔ x ∈ (−3 ; −2) ∪ [ − 1 ; 1].
Kết hợp với x ∈ ℤ ta được x = {−1 ; 0 ; 1}.
Vậy có tất cả 3 giá trị nguyên cần tìm.
Tam thức bậc hai
nhận giá trị không âm khi và chỉ khi
Ta có: và
.
Phương trình có hai nghiệm phân biệt là
.
Do đó,
.
Trong mặt phẳng tọa độ
cho ba điểm
và
Tìm điểm
thuộc trục hoành sao cho ![]()
Vì .
Ta có:
.
Ta có:
.
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Hỏi cặp vectơ nào sau đây cùng hướng?
Cặp và
là cặp vectơ cùng hướng.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Cho tam giác
đều cạnh
. Tính ![]()
Gọi là trung điểm của
Suy ra
Ta lại có
Trong hệ tọa độ
cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng ![]()
Ta có
Cho tam giác ABC có điểm O thỏa mãn
. Khẳng định nào sau đây là đúng?
Ta có: .

Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.