Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.

    Khẳng định nào sau đây là sai?

    Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải

    \overset{}{ightarrow} Hàm số không đổi trên khoảng (0;2).

    Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;3).

    Chọn đáp án Hàm số đồng biến trên khoảng (2;3).

  • Câu 2: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 3: Vận dụng cao

    Tìm m để phương trình \sqrt{x^{2} + mx + 2} = 2x + 1 có hai nghiệm phân biệt là:

    Phương trình \Leftrightarrow \left\{
\begin{matrix}
x \geq - \frac{1}{2} \\
3x^{2} + (4 - m)x - 1 = 0(*) \\
\end{matrix} ight..

    Phương trình đã cho có hai nghiệm  ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng - \frac{1}{2} \Leftrightarrow đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt.

    Xét hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; +
\infty). Ta có - \frac{b}{2a} =
\frac{m - 4}{6}

    + TH1: Nếu \frac{m - 4}{6} \leq -
\frac{1}{2} \Leftrightarrow m \leq 1 thì hàm số đồng biến trên \lbrack - \frac{1}{2}; + \infty) nên m ≤ 1 không thỏa mãn yêu cầu bài toán.

    + TH2: Nếu \frac{m - 4}{6} > -
\frac{1}{2} \Leftrightarrow m > 1 :

    Ta có bảng biến thiên

    Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt \Leftrightarrow y{(-\frac12)}\geq0>y{(\frac{m-4}6)}

    \Leftrightarrow\frac{2m-9}4\geq0>\frac1{12}{(-m^2+8m-28)\;}(1)

     − m2 + 8m − 28 =  − (m−4)2 − 12 < 0,  ∀m nên

    (1) \Leftrightarrow 2m - 9 \geq 0
\Leftrightarrow m \geq \frac{9}{2} (thỏa mãn m > 1).

    Vậy m \geq \frac{9}{2} là giá trị cần tìm.

  • Câu 4: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 5: Nhận biết

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M(0; - 3) lần lượt vào từng phương trình của hệ \left\{\begin{matrix}2x - y \leq 3 \\2x + 5y \leq 12x + 8 \\\end{matrix} ight. ta thấy thỏa mãn.

  • Câu 6: Thông hiểu

    Cho tam giác đều ABC với đường cao AH. Đẳng thức nào sau đây đúng?

    Chọn \left| \overrightarrow{AC} ight| =
2\left| \overrightarrow{HC} ight|H là trung điểm AC\overrightarrow{AC},\ \overrightarrow{HC} cùng hướng.

  • Câu 7: Vận dụng

    Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a = m - 1 eq 0 \\
{\Delta'}_{x} = ( - \ 1)^{2} - (m - 1)(m + 1) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
1 - m^{2} + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m^{2} < 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
- \ \sqrt{2} < m < \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow m \in \left( - \
\sqrt{2};\sqrt{2} ight)\backslash\left\{ 1 ight\}.

    Vậy phương trình có hai nghiệm phân biệt \Leftrightarrow m \in \left( - \ \sqrt{2};\sqrt{2}
ight)\backslash\left\{ 1 ight\}.

  • Câu 8: Vận dụng

    Trong mặt phẳng tọa độ Oxy, gọi H(a,b) là trực tâm tam giác ABC có tọa độ các đỉnh A(3;1),B( - 1;2)I(1; - 1) là trọng tâm tam giác ABC. Tính giá trị biểu thức K = a + 3b?

    Gọi C\left( x_{C};y_{C} ight). Vì I là trọng tâm tam giác ABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{I} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{I} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = 1 \\y_{C} = - 1 \\\end{matrix} ight.\  \Rightarrow C(1; - 4)

    Ta có: H(a,b) là trực tâm tam giác ABC nên \left\{ \begin{matrix}
AH\bot BC \\
BH\bot AC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
\overrightarrow{AH} = (a - 3;b + 1);\overrightarrow{BC} = (2; - 6) \\
\overrightarrow{BH} = (a + 1;b - 2);\overrightarrow{AC} = ( - 2; - 3) \\
\end{matrix} ight.

    Ta có hệ phương trình \left\{\begin{matrix}2(a - 3) - 6(b + 1) = 0 \\- 2(a + 1) - 3(b - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{10}{3} \\b = \dfrac{- 8}{9} \\\end{matrix} ight.

    Vậy biểu thức K = a + 3b =
\frac{2}{3}

  • Câu 9: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 10: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 11: Nhận biết

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 12: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 13: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sqrt{sin^{2}}\alpha = \sin\alpha.

    Ta có \sqrt{sin^{2}\alpha}
\Leftrightarrow \sin\alpha \Leftrightarrow \left| \sin\alpha ight| =
\sin\alpha.

    Đẳng thức \left| \sin\alpha ight| =
\sin\alpha\overset{}{ightarrow}\sin\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc II.

  • Câu 14: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b, độ dài các cạnh tam giác thỏa mãn biểu thức \left\{ \begin{matrix}
a = x^{2} + x + 1 \\
b = 2x + 1 \\
c = x^{2} - 1 \\
\end{matrix} ight.với x là số thực lớn hơn 1. Tính độ lớn góc \widehat{A}?

    Áp dụng định lí cosin ta có: \cos\widehat{A} = \frac{b^{2} + c^{2} -
a^{2}}{2bc}

    Ta có: \left\{ \begin{matrix}
a^{2} = x^{4} + 2x^{3} + 3x^{2} + 2x + 1 \\
b^{2} = 4x^{2} + 4x + 1 \\
c^{2} = x^{4} - 2x^{2} + 1 \\
bc = 2x^{3} + x^{2} - 2x - 1 \\
\end{matrix} ight.

    Từ đó suy ra

    b^{2} + c^{2} - a^{2} = -
bc

    \Rightarrow \cos\widehat{A} = -
\frac{1}{2}

    \Rightarrow \widehat{A} =
120^{0}

  • Câu 15: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 17: Vận dụng cao

    Cho hình vuông ABCD cạnh a. Gọi M là trung điểm của AB, lấy các điểm P,Q,R lần lượt là các điểm thay đổi trên các cạnh BC,AC,AD sao cho \widehat{PMR} = 90^{0}. Tìm giá trị nhỏ nhất của biểu thức \left|\overrightarrow{MP} + \overrightarrow{MQ} + \overrightarrow{MR}ight|.

    Hình vẽ minh họa

    Tìm giá trị nhỏ nhất của biểu thức

    Đặt \left| {\overrightarrow {AR} } ight| = x;\left| {\overrightarrow {BP} } ight| = y;\left| {\overrightarrow {ME} } ight| = z;\left| {\overrightarrow {EQ} } ight| = t

    Khi đó \Delta AMR\sim\Delta BPM

    \Rightarrow \left\{ \begin{matrix}xy = \dfrac{a^{2}}{4} \\x + y \geq 2\sqrt{xy} = a \\\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi x =y hay P, Q là trung điểm của BC, DA

    Ta có:

    \left| \overrightarrow{MP} +\overrightarrow{MQ} + \overrightarrow{MR} ight|^{2} = (x + y + z)^{2}+ t^{2} \geq (1 + z)^{2} + t^{2} = \left| \overrightarrow{MH}ight|

    Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.

    Ta lại có: \widehat{MDH} \approx 108^{0}\Rightarrow MH \geq MD = \frac{a\sqrt{5}}{2}

  • Câu 18: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

  • Câu 19: Thông hiểu

    Tập nghiệm S của phương trình \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2là:

     Điều kiện: x \ge1.

    Ta có: \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2\Leftrightarrow \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+\frac{2(x+2)}{x+2}\Leftrightarrow \sqrt {x - 1}  =  - x - 11 + 2x + 4 \Leftrightarrow \sqrt {x - 1}=x-7\Rightarrow x-1=(x-7)^2 \Leftrightarrow x^2-15x+50=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 5}\\{x = 10}\end{array}} ight..

    Thử lại x=5 không thỏa mãn.

    Vậy S=\{10\}

  • Câu 20: Vận dụng

    Tam giác ABCAB =
4,\ \ BC = 6,\ \ AC = 2\sqrt{7}. Điểm M thuộc đoạn BC sao cho MC
= 2MB. Tính độ dài cạnh AM.

    Theo định lí hàm cosin, ta có : \cos B =
\frac{AB^{2} + BC^{2} - AC^{2}}{2.AB.BC} = \frac{4^{2} + 6^{2} - \left( 2\sqrt{7}
ight)^{2}}{2.4.6} = \frac{1}{2}.

    Do MC = 2MB\overset{}{ightarrow}BM =
\frac{1}{3}BC = 2.

    Theo định lí hàm cosin, ta có:

    \begin{matrix}
AM^{2} = AB^{2} + BM^{2} - 2.AB.BM.cos\widehat{B} \\
\\
\end{matrix}

    = 4^{2} + 2^{2} - 2.4.2.\frac{1}{2} = 12
\Rightarrow AM = 2\sqrt{3}.

  • Câu 21: Vận dụng

    Cho hai điểm cố định A,B; gọi I là trung điểm AB. Tập hợp các điểm M thoả: \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} - \overrightarrow{MB}
ight| là:

    Ta có \left| \overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} -\overrightarrow{MB} ight|\Leftrightarrow \left| 2\overrightarrow{MI}ight| = \left| \overrightarrow{BA} ight| \Leftrightarrow 2MI = BA\Leftrightarrow MI = \frac{BA}{2}

    Vậy tập hợp các điểm M là đường tròn đường kính AB.

  • Câu 22: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 23: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 24: Thông hiểu

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 25: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Cho hai vectơ \overrightarrow{u} = ( - 4; - 3)\overrightarrow{v} = ( - 1; - 7). Góc giữa hai vectơ \overrightarrow{u}\overrightarrow{v} là:

    \cos\left( \overrightarrow{u},\overrightarrow{v} ight) = \dfrac{( - 4)(- 1) + ( - 3).( - 7)}{\sqrt{4^{2} + 3^{2}}.\sqrt{1^{2} + 7^{2}}} =\dfrac{\sqrt{2}}{2}

    \Rightarrow \left( \overrightarrow{u},\overrightarrow{v} ight) =45^{0}

  • Câu 27: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 28: Thông hiểu

    Tìm parabol (P):y=ax^{2}+3x-2, biết rằng parabol có đỉnh I(-\frac{1}{2};-\frac{11}{4}).

     Vì hàm số bậc hai có đỉnh I(-\frac{1}{2};-\frac{11}{4}) nên:

    \frac{-b}{2a}= \frac {-1}2 \Leftrightarrow b=a-\frac {11}4=a{(\frac{-1}2})^{2}+3.(-\frac1{2})-2.

    Suy ra a=3.

  • Câu 29: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 30: Vận dụng

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?

    Xét điểm M(0;1) thử vào các bất phương trình của hệ thấy thỏa mãn.

    Chỉ có hình vẽ chứa điểm M(0;1). Chọn đáp án hình vẽ này.

  • Câu 31: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 32: Thông hiểu

    Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn: \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight..

    Để hệ bất phương trình \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight. trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước x^2,y^2 phải bằng 0 nghĩa là:

    m=0

    Vậy với m=0 thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.

  • Câu 33: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 34: Nhận biết

    Phương trình \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x} có bao nhiêu nghiệm?

    \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x}\Leftrightarrow \left\{ \begin{matrix}6 - 3x \geq 0 \\2x^{2} - 5x + 2 = 6 - 3x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\2x^{2} - 2x - 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight..

    Vậy phương trình có 2 nghiệm.

  • Câu 35: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 36: Thông hiểu

    Cho tam giác ABC đều cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC}
ight|.

    Gọi H là trung điểm của BC \Rightarrow AH\bot BC.

    Suy ra AH = \frac{BC\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}.

    Ta lại có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AH} ight| =
2.\frac{a\sqrt{3}}{2} = a\sqrt{3}.

  • Câu 37: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 38: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Biểu diễn \overrightarrow{AG} theo hai vecto \overrightarrow{AB},\overrightarrow{AC}

    Cách 1: Giả sử I là trung điểm của BC

    \begin{matrix}   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI}  \hfill \\   \Leftrightarrow \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AI}  \hfill \\ \end{matrix}

    Theo tính chất đường trung tuyến trong tam giác ABC ta có:

    \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AI} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AI} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AI}

    \begin{matrix}   \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  \hfill \\ \end{matrix}

    Cách 2: Ta có:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AA}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow 0  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AG}  \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 40: Thông hiểu

    Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x^{2} + 2x + 1 là:

     Xét biếu thức f(x) = x^{2} + 2x + 1∆ = 0 và nghiệm là x = -{\text{ }}1;{\text{ }}a = 1 > 0

    Ta có bảng xét dấu như sau:

    Tìm bảng xét dấu của tam thức bậc hai

  • Câu 41: Thông hiểu

    Cho mệnh đề chứa biến P(n):``n^{2} - 1 chia hết cho 4” với n là số nguyên. Xét xem các mệnh đề P(5)P(2) đúng hay sai?

    Thay n = 5n = 2 vào P(n) ta được các số 24 \vdots 43 không chia hết cho 4. Vậy P(5) đúng và P(2) sai.

  • Câu 42: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 43: Vận dụng cao

    Cho đường thẳng (d):y = \left( a^{2} - 2 ight)x + a + b và bất phương trình x + y - 3 <
0. Tìm điều kiện của ab để mọi điểm thuộc (d) đều là nghiệm của bất phương trình đã cho.

    Để mọi điểm thuộc đường thẳng  (d)  đều là nghiệm của bất phương trình thì điều kiện cần là  (d):y = \left( a^{2} - 2 ight)x + a + b  phải song song với \left( {d'} ight):y =  - x + 3. Khi đó ta có:

    \left\{ \begin{matrix}
a^{2} - 2 = - 1 \\
a + b eq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = - 1 \\
b eq 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight. ta được (d):y = - x + b + 1

    Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng (d) là đồ thị của đường thẳng d' khi d' tịnh tiến xuống dưới theo trục Oy.

    Nghĩa là b + 1 < 3 \Rightarrow b <
2.

  • Câu 44: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 45: Thông hiểu

    Hãy liệt kê các phần tử của tập hợp \mathbf{X =}\left\{ \mathbf{x}\mathbb{\in
R}\mathbf{|}\mathbf{x}^{\mathbf{2}}\mathbf{+ x
+}\mathbf{1}\mathbf{=}\mathbf{0} ight\}\mathbf{.}

    Ta có: x^{2} + x + 1 = 0 không có nghiệm thực.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo