Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}x+5y<1\\ 5x-4y>6\end{matrix}ight.. Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?

    Khi y=0 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 5.0 < 1} \\   {5x - 4.0 > 6} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {5x > 6} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > \dfrac{6}{5}} \end{array}} ight.\left( {VN} ight) \Rightarrow x \in \left\{ \emptyset  ight\} \hfill \\ \end{matrix}

    Vậy y=0 không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.

  • Câu 2: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    Chọn khẳng định đúng.

    Ta có:

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\cot^{2}\widehat{B} + \cot^{2}\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} -2

    \Leftrightarrow \left(\sin^{2}\widehat{B} + \sin^{2}\widehat{C} ight)\left(\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} ight) =4

    \Leftrightarrow\dfrac{\sin^{2}\widehat{B}}{\sin^{2}\widehat{C}} +\dfrac{\sin^{2}\widehat{C}}{\sin^{2}\widehat{B}} - 2 = 0

    \Leftrightarrow \left(\dfrac{\sin\widehat{B}}{\sin\widehat{C}} -\dfrac{\sin\widehat{C}}{\sin\widehat{B}} ight)^{2} = 0

    \Leftrightarrow \sin\widehat{B} =
\sin\widehat{C}

    \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân.

  • Câu 3: Thông hiểu

    Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x^{2} + 2x + 1 là:

     Xét biếu thức f(x) = x^{2} + 2x + 1∆ = 0 và nghiệm là x = -{\text{ }}1;{\text{ }}a = 1 > 0

    Ta có bảng xét dấu như sau:

    Tìm bảng xét dấu của tam thức bậc hai

  • Câu 4: Thông hiểu

    Cho tam giác đều ABC cạnh a. Tính độ dài \overrightarrow{AB}+\overrightarrow{AC}.

     

    Gọi M là trung điểm BC. Suy ra \left|\overrightarrow {AB}+\overrightarrow {AC}ight|=\left|2\overrightarrow {AM}ight|=2AM.

    Áp dụng định lí Pytago trong tam giác vuông AMB. Suy ra AM=\frac{a\sqrt3}2 \Rightarrow 2AM=a\sqrt3.

  • Câu 5: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 6: Thông hiểu

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?

    Ta có MN là đường trung bình của tam giác ABC.

    Do đó BC =
2MN\overset{}{ightarrow}\left| \overrightarrow{BC} ight| = 2\left|
\overrightarrow{MN} ight|.

  • Câu 7: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 8: Vận dụng cao

    Tìm tất cả giá trị của tham số m để hệ bất phương trình \left\{ \begin{matrix}
x \geq 0 \\
x - y \leq 0 \\
y - mx - 2 \leq 0 \\
\end{matrix} ight. có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.

    Họ đường thẳng \left( d_{m} ight):y -
mx - 2 = 0 luôn đi qua điểm A(0;2), hay nói cách khác các đường thẳng \left( d_{m} ight) xoay quanh A.

    Mặt khác, ta có 1 - m.0 - 2 \leq
0 đúng với mọi m

    => Miền nghiệm của bất phương trình y
- mx - 2 \leq 0 luôn chứa điểm (0;1).

    Do đó ta có 3 khả năng sau

    Vậy m < 0.

  • Câu 9: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số x^{2} + (m - 1)x + m - 2 = 0 có hai nghiệm phân biệt thuộc khoảng ( -
5;5)?

    Ta có:

    PT \Leftrightarrow (x + 1)(x + m - 2) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = - m + 2 \\
\end{matrix} ight.

    Từ yêu cầu bài toán \Leftrightarrow
\left\{ \begin{matrix}
- m + 2 eq - 1 \\
- 5 < - m + 2 < 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 3 \\
- 3 < m < 7 \\
\end{matrix} ight.

    Suy ra m \in \left\{ - 2; - 1;0;1;2;4;5;6
ight\}

    Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 10: Vận dụng cao

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó T = 3.

  • Câu 11: Vận dụng

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 12: Thông hiểu

    Miền nghiệm của bất phương trình x+2(y+1)-4y\leq 2(x+1)-5y không chứa điểm có tọa độ:

    Ta có: 

    x+2(y+1)-4y\leq 2(x+1)-5y

    \begin{matrix}   \Rightarrow x + 2y + 2 - 4y \leqslant 2x + 2 - 5y \hfill \\   \Rightarrow  - x + 3y \leqslant 0 \hfill \\ \end{matrix}

    Thay x=3;y=2 vào bất phương trình ta được: - 3 + 3.2=  5 > 0

    Vậy (3;2) không thuộc miền nghiệm của bất phương trình.

  • Câu 13: Thông hiểu

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 14: Nhận biết

    Cho hai mệnh đề A: “∀ x ∈ R: x^{2} – 1 ≠ 0” và B: “∃ n ∈ Z: n = n^{2}”. Xét tính đúng, sai của hai mệnh đề A và B.

     Với mệnh đề A, thay x=1 \Rightarrow 1^2-1=0 nên A sai.

    Với mệnh đề B, thay n=0 \Rightarrow 0^2=0 nên B đúng.

  • Câu 15: Thông hiểu

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 16: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(0; - 3),\ B(2;1),\ D(5;5) Tìm tọa độ điểm C để tứ giác ABCD là hình bình hành.

    Gọi C(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;4) \\
\overrightarrow{DC} = (x - 5;y - 5) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = x - 5 \\4 = y - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 7 \\y = 9 \\\end{matrix} ight.\ \overset{}{ightarrow}C(7;9).

  • Câu 17: Vận dụng

    Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a = m - 1 eq 0 \\
{\Delta'}_{x} = ( - \ 1)^{2} - (m - 1)(m + 1) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
1 - m^{2} + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m^{2} < 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
- \ \sqrt{2} < m < \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow m \in \left( - \
\sqrt{2};\sqrt{2} ight)\backslash\left\{ 1 ight\}.

    Vậy phương trình có hai nghiệm phân biệt \Leftrightarrow m \in \left( - \ \sqrt{2};\sqrt{2}
ight)\backslash\left\{ 1 ight\}.

  • Câu 18: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 19: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 20: Nhận biết

    Mệnh đề nào sau đây đúng?

    Vì vectơ - không cùng phương với mọi vectơ.

  • Câu 21: Thông hiểu

    Tập hợp nào sau đây là tập xác định của hàm số y = \sqrt{1 + 5x} + \frac{|x|}{\sqrt{7 -
2x}}?

    Hàm số xác đinh khi và chỉ khi \left\{
\begin{matrix}
1 + 5x \geq 0 \\
7 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - \frac{1}{5} \\
x < \frac{7}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{5} \leq x <
\frac{7}{2}.

  • Câu 22: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 23: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 24: Nhận biết

    Tập xác định của hàm số y = \sqrt{x - 1} là:

    Hàm số y = \sqrt{x - 1} xác định  ⇔ x − 1 ≥ 0  ⇔ x ≥ 1.

  • Câu 25: Nhận biết

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 26: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ trung điểm M của đoạn thẳng AB với A(3; -
4),B(7;2) là:

    Tọa độ trung điểm M của AB là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{3 + 7}{2} = 5 \\y_{M} = \dfrac{- 4 + 2}{2} = - 1 \\\end{matrix} ight.

    \Rightarrow M(5; - 1)

    Vậy tọa độ trung điểm M của AB là M(5; -
1).

  • Câu 27: Nhận biết

    Phương trình sau có bao nhiêu nghiệm \sqrt{x - 1} = \sqrt{1 - x}?

    Điều kiện xác định: \left\{
\begin{matrix}
x \geq 1 \\
x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Với x = 1thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.

  • Câu 28: Thông hiểu

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 29: Vận dụng

    Tam giác ABC vuông tại A,\ AB = AC = 2. Độ dài vectơ 4\overrightarrow{AB} -
\overrightarrow{AC} bằng:

    Vẽ \overrightarrow{AB'} =
4\overrightarrow{AB};\ \ \ \ \ \ \overrightarrow{AC'} = -
\overrightarrow{AC}. Vẽ hình bình hành AC'DB'

    Ta có: \left| 4\overrightarrow{AB} -
\overrightarrow{AC} ight| = \left| \overrightarrow{AB'} +
\overrightarrow{AC'} ight| = \left| \overrightarrow{AD} ight| =
AD

    Do đó AD = \sqrt{A{B'}^{2} +
A{C'}^{2}} = \sqrt{8^{2} + 2^{2}} = 2\sqrt{17}.

  • Câu 30: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 31: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
1;1),B(1;3)C(1; - 1). Khẳng định nào sau đây là đúng?

    \overrightarrow{AB}\mathbf{=}(2;2)\Rightarrow\left|\overrightarrow{{AB}}ight|\mathbf{=}{2}\sqrt{{2}}.

    \overrightarrow{AC}=(2;-2)\Rightarrow\left|\overrightarrow {AC}ight|\mathbf{=}2\sqrt{{2}}.

    Ta có: AB = AC\Rightarrow \Delta{ABC} cân tại A.

    \overrightarrow{BC}=(0;-4)\Rightarrow\left|\overrightarrow{BC}ight|={4}.

    BC^2=AB^2+AC^2 =8+8=4^2 \Rightarrow \Delta ABC vuông tại A.

    Vậy \Delta ABC vuông cân tại A.

  • Câu 32: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 33: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 35: Nhận biết

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

  • Câu 36: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.

  • Câu 37: Nhận biết

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 38: Nhận biết

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 39: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 40: Vận dụng cao

    Các giá trị của tham số m để phương trình (2x - 1)^{2} + m = \sqrt{x^{2} - x +
1} (1) có nghiệm là:

    Đặt t = \sqrt{x^{2} - x + 1}

     ⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3

    x^{2} - x + 1 = \left( x - \frac{1}{2}
ight)^{2} + \frac{3}{4} \geq \frac{3}{4} nên t \geq \frac{\sqrt{3}}{2}

    Phương trình (1) trở thành 4t2 − 3 + m = t ⇔  − 4t2 + t + 3 = m.

    Xét hàm số y =  − 4t2 + t − 3 với t \geq \frac{\sqrt{3}}{2}

    Ta có - \frac{b}{2a} = \frac{1}{8} <
\frac{\sqrt{3}}{2}

    Bảng biến thiên

    Phương trình (1) có nghiệm phương trình có nghiệm t \geq
\frac{\sqrt{3}}{2}

    đồ thị hàm số y =  − 4t2 + t − 3 trên \lbrack\frac{\sqrt{3}}{2}; +
\infty) cắt đường thẳng y = m
\Leftrightarrow m \leq \frac{- 12 + \sqrt{3}}{2} .

    Vậy phương trình (1) có nghiệm khi và chỉ khi m \leq \frac{- 12 + \sqrt{3}}{2}.

  • Câu 41: Nhận biết

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 42: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 43: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 44: Thông hiểu

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 45: Thông hiểu

    Tổng các nghiệm của phương trình x^{2} + \sqrt{x^{2} + 11} = 31?

    Đặt t = \sqrt{x^{2} + 11},t \geq0. Khi đó phương trình đã cho trở thành:

    t^{2} + t - 42 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 6 \\t = - 7 \\\end{matrix} ight.

    t ≥ 0 ⇒ t = 6, thay vào ta có \sqrt{x^{2} + 11} =6.

    x2 + 11 = 36 ⇔ x =  ± 5.

    Vậy phương trình có nghiệm là x =  ± 5.

    Tổng các nghiệm của phương trình là 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo