Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cặp số nào sau đây là nghiệm của bất phương trình
?
Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:
Vậy (0;3) không là cặp nghiệm của bất phương trình
Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:
Vậy (6; 1) là cặp nghiệm của bất phương trình.
Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:
Vậy (2; 4) không là cặp nghiệm của bất phương trình.
Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:
Vậy (3; 2) không là cặp nghiệm của bất phương trình.
Tổng các nghiệm của phương trình
là:
Đặt .
Ta có .
Phương trình trở thành
Thay vào ta được . Vậy tổng các nghiệm của phương trình là
.
Tìm tập nghiệm của phương trình ![]()
Nhận xét: .
Do đó vô lí.
Vậy .
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức
là:
Xét biếu thức có
và nghiệm là
Ta có bảng xét dấu như sau:

Điểm
thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Xét hệ . Thay tọa độ
vào hệ:
. Cả 2 bất phương trình đều đúng. Chọn đáp án này.
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho hai điểm
phân biệt. Tập hợp những điểm
thỏa mãn
là
Ta có:
.
Tập hợp điểm là đường tròn đường kính
.
Giá trị nhỏ nhất của biểu thức
trên miền xác định bởi hệ
là:
Miền nghiệm của hệ là miền trong của tam giác
kể cả biên
Ta thấy đạt giá trị nhỏ nhất chỉ có thể tại các điểm
,
,
.
Tại thì
.
Tại thì
Tại thì
.
Vậy khi
,
.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Nửa mặt phẳng là miền nghiệm của bất phương trình
không chứa điểm nào trong các điểm sau:
Thay điểm vào bất phương trình, ta được:
(sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Tập xác định của hàm số
là:
Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Cho tam giác
có
. Biết rằng các góc của tam giác thỏa mãn biểu thức:
![]()
Chọn khẳng định đúng?
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác vuông tại C.
Số nghiệm của phương trình
là
Điều kiện: .
⇔
⇔
⇔ ⇔ x = 0(TM).
Vậy, phương trình có một nghiệm.
Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ
có điểm đầu và điểm cuối là đỉnh của lục giác bằng :
Các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác là
và
.
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Với giá trị nào của x thì mệnh đề chứa biến "
" là đúng?
Thay vào 2 vế, ta được:
(đúng).
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Phương trình mx2 − (3m+2)x + 1 = 0 có tính chất nào sau đây:
Với m = 0 phương trình trở thành suy ra phương trình có nghiệm.
Với m ≠ 0, ta có Δ = (3m+2)2 − 4m = 9m2 + 8m + 4.
Vì tam thức 9m2 + 8m + 4 có am = 9 > 0, Δ′m = − 20 < 0 nên 9m2 + 8m + 4 > 0 với mọi m.
Do đó phương trình đã cho luôn có nghiệm với mọi m.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Trong mặt phẳng Oxy, cho
và
. Kết luận nào sau đây sai?
Ta có:
Vậy kết luận sai là:
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Một cửa hàng bán hai loại mặt hàng
và
. Biết rằng cứ bán một mặt hàng loại
cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại
cửa hàng lãi 7 nghìn đồng. Gọi
lần lượt là số mặt hàng loại
và mặt hàng loại
mà cửa hàng đó bán ra trong một tháng. Cặp số
nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?
Đặt x là số tiền lãi của mặt hàng A
y là số tiền lãi của mặt hàng B
Đổi 30 triệu = 30 000 nghìn đồng
Theo đề bài ta có:
TH1: Thay A (1000; 2000) vào phương trình
. Thay B(3000; 1000
vào phương trình
: Thay C
vào phương trình
TH4: Thay vào phương trình
Vậy đáp án là: C
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).