Trong mặt phẳng tọa độ
cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?
*a = 0thì bpt trở thành − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.
* a ≠ 0 thì .
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Cho hình thang vuông
có
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa
Dựng hình bình hành ADBM ta có:
Do nên
tại H,
Tứ giác ADBH là hình vuông nên , ta cũng tính được
.
Dựng hình bình hành DMNC ta có: .
Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.
Ta có:
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Phương trình
có nghiệm là bao nhiêu?
.
Vậy phương trình vô nghiệm.
Biểu thức
đạt giá trị nhỏ nhất với điều kiện
tại điểm
có toạ độ là:
Vẽ các đường thẳng :
Khi đó miền nghiệm của hệ là miền trong của tam giác
Tọa độ các đỉnh:
Ta có :
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình 
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cho hai tập hợp
. Tìm giá trị của a để
.
Để khi và chỉ khi
.
Vậy là giá trị cần tìm.
Cho hình vuông ABCD, tâm O, cạnh 4 cm. Điểm E, H lần lượt thuộc các cạnh BC, CD sao cho
và
. Độ dài vecto
là:
Ta có:
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Cặp số
là nghiệm của bất phương trình nào sau đây?
Vì là mệnh đề đúng nên cặp số
là nghiệm của bất phương trình
.
Mệnh đề nào sau đây đúng?
Vì vectơ - không cùng phương với mọi vectơ.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Nhận xét:
Parabol có bề lõm hướng xuống.
Parabol cắt trục hoành tại 2 điểm (3;0) và (−1;0). Xét các đáp án, đáp án thỏa mãn.
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Trong mặt phẳng Oxy cho
,
,
. Khẳng định nào sau đây đúng.
Do nên loại đáp án
.
Do,
,
suy ra
không vuông góc
nên loại đáp án
.
Ta có ,
,
, suy ra
,
. Do đó tam giác
vuông cân tại
.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?
Ta có đáp án có:
Vậy x = 1 là trục đối xứng của đồ thị hàm số .
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Trên mặt phẳng tọa độ, đường thẳng chia mặt phẳng thành hai nửa mặt phẳng.
Chọn điểm không thuộc đường thẳng đó. Ta thấy
là nghiệm của bất phương trình đã cho. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng bờ
chứa điểm
kể cả
.
Vậy bất phương trình luôn có vô số nghiệm.
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tập nghiệm
của bất phương trình
là:
Ta có: (hiển nhiên).
Vậy .
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Cho hình thang
,
là trung điểm của
. Có bao nhiêu vectơ khác vectơ – không cùng phương với
?
Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Giá trị biểu thức
bằng:
Ta có:
Tìm giá trị thực của tham số m để phương trình (m+1)x2 − 2mx + m − 2 = 0 có hai nghiệm phân biệt x1, x2 khác 0 thỏa mãn ![]()
Ta có Δ′ = m + 2.
Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi
Theo định lý Vi-et, ta có:
Theo bài ra, ta có
Kết hợp với điều kiện ta được là giá trị cần tìm.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho tam giác
có
và
. Biết rằng:

Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Cho
Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại đáp án
và
ngược hướng.
Xét tỉ số không cùng phương. Loại đáp án Hai vectơ
đối nhau.
Xét tỉ số và
cùng hướng.
Chọn đáp án và
cùng hướng.
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Trên đường thẳng
lấy điểm
sao cho
. Điểm
được xác định đúng trong hình vẽ nào sau đây:

Ta có nên
và
và
ngược hướng.