Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho tam giác đều ABC có cạnh a. Tính tích vô hướng ![]()
Ta có: Tam giác ABC đều =>
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Phương trình
có mấy nghiệm nguyên ?
Đặt . Ta có hệ phương trình:
Với t = − x ta được
Với t = x − 1 ta được
Vậy phương trình có 2 nghiệm x = − 2 và .
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Điểm nào sau đây thuộc miền nghiệm của bất phương trình
?
Xét điểm . Ta có:
nên
thuộc miền nghiệm của bất phương trình đã cho.
Tập xác định của hàm số
là:
ĐKXĐ:
+) Xét tam thức bậc hai f(x) = 2x2 − 2(m+1)x + m2 + 1
Ta có af = 2 > 0, Δf′ = ... = − (m−1)2 ≤ 0
Suy ra với mọi m ta có f(x) = 2x2 − 2(m+1)x + m2 + 1 ≥ 0, ∀x ∈ ℝ(1)
+) Xét tam thức bậc hai g(x) = m2x2 − 2mx + m2 + 2
Với m = 0 ta có g(x) = 2 > 0, xét với m ≠ 0 ta có:
ag = m2 > 0, Δg′ = − m2(m2+1) < 0.
Suy ra với mọi m ta có g(x) = m2x2 − 2mx + m2 + 2 > 0, ∀x ∈ ℝ (2)
Từ (1) và (2) suy ra với mọi m thì và m2x2 − 2mx + m2 + 2 ≠ 0 đúng với mọi giá trị của x.
Vậy tập xác định của hàm số là D = ℝ.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Trong hệ tọa độ
cho tam giác
có
và trọng tâm là gốc tọa độ
Tìm tọa độ đỉnh
?
Gọi .
Vì là trọng tâm tam giác
nên
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Tập xác định của hàm số
là:
Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Mệnh đề nào sau đây là mệnh đề tương đương?
Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.
Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện
là
Biểu diễn miền nghiệm của hệ :
Nghiệm của hệ là miền đa giác
với
.
Giá trị lớn nhất đạt được tại 1 trong 5 đỉnh của đa giác.
Với .
Với.
Với .
Với .
Với .
Vậy GTLN .
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình 
Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Cho ba điểm
phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Cho biết
là một phần tử của tập hợp
xét các mệnh đề sau:
(I) ![]()
(II)
.
(III) ![]()
(IV) ![]()
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình
?
Thay (0; 1) vào bất phương trình, ta được: 1 < 1 (sai). Do đó cặp số này không là nghiệm của bất phương trình.
Cho hình vuông
cạnh
. Gọi
là trung điểm của
, lấy các điểm
lần lượt là các điểm thay đổi trên các cạnh
sao cho
. Tìm giá trị nhỏ nhất của biểu thức
.
Hình vẽ minh họa

Đặt
Khi đó
Dấu bằng xảy ra khi và chỉ khi hay P, Q là trung điểm của BC, DA
Ta có:
Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.
Ta lại có:
Trong mặt phẳng tọa độ
, tọa độ trung điểm
của đoạn thẳng
với
là:
Tọa độ trung điểm M của AB là:
Vậy tọa độ trung điểm M của AB là .
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Cho hình thang
có đáy là
và
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Dựa vào đáp án, ta có nhận xét sau:
đúng, vì
đúng, vì
đúng, vì
và
Suy ra
sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Phương trình sau có bao nhiêu nghiệm
?
Điều kiện xác định: .
Với thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí
, đi thẳng theo hai hướng tạo với nhau một góc
. Tàu thứ nhất chạy với tốc độ
, tàu thứ hai chạy với tốc độ
. Hỏi sau
giờ hai tàu cách nhau bao nhiêu
?

Ta có: Sau quãng đường tàu thứ nhất chạy được là:
Sau quãng đường tàu thứ hai chạy được là:
Vậy: sau hai tàu cách nhau là:
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Cho hình vuông
. Khẳng định nào sau đậy đúng?
Ta có tứ giác là hình vuông nên
hay
nên phương án
đúng.
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho phương trình
. Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.