Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}2x+y\leq 6\\ 3x+4y\leq 6 \\ 5x-2y\geq 0\\x\leq 2 \\ y\geq -1 \end{matrix}ight. có miền nghiệm là miền ngũ giác ABCDE như hình dưới. Giá trị nhỏ nhất của F = 12x -39y là:

    Tìm giá trị nhỏ nhất của biểu thức F = ax + by

    Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.

    Tọa độ đỉnh A là tọa độ giao điểm hai đường thẳng a và c

    => Tọa độ điểm A là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {5x - 2y = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{4}{3}} \\   {y = \dfrac{{10}}{3}} \end{array}} ight. \hfill \\   \Rightarrow A\left( {\dfrac{4}{3};\dfrac{{10}}{3}} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng a và e

    => Tọa độ điểm B là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {x = 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow B\left( {2;2} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh D là tọa độ giao điểm hai đường thẳng b và d

    => Tọa độ điểm D là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x- 4y = 6} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{{2}}{3}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow D\left( {\dfrac{{2}}{3}; - 1} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh E là tọa độ giao điểm hai đường thẳng d và e

    => Tọa độ điểm E là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {5x - 2y = 0} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{2}{5}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow E\left( { - \dfrac{2}{5}; - 1} ight) \hfill \\ \end{matrix}

    Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị nhỏ nhất của biểu thức F trên miền tứ giác ABCDE.

    Tính các giá trị của biểu thức F = 12x -39y tại các đỉnh của đa giác.

    Tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight) ta có: F = 12.\frac{4}{3} - 39.\frac{{10}}{3} =  - 114

    Tại B\left( {2;2} ight) ta có: F = 12.2 - 39.2 =  - 54

    Tại C\left( {2;0} ight) ta có: F = 12.2 - 39.0 = 24

    Tại D\left( {\frac{{2}}{3}; - 1} ight) ta có: F = 12.\frac{{2}}{3} - 39.\left( { - 1} ight) = 47

    Tại E\left( { - \frac{2}{5}; - 1} ight) ta có: F = 12.\left( { - \frac{2}{5}} ight) - 39.\left( { - 1} ight) = \frac{{171}}{5}

    F đạt giá trị nhỏ nhất bằng -114 tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight)

  • Câu 2: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 3: Thông hiểu

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 4: Nhận biết

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 5: Vận dụng

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 6: Vận dụng

    Cho hình chữ nhật ABCD có AB = \sqrt{2}, AD = 1. Tính góc giữa hai vectơ \overrightarrow{AC}\overrightarrow{BD}

    Ta có: 

    ABCD là hình chữ nhật

    \begin{matrix}   \Rightarrow AC = BD = \sqrt 3  \hfill \\   \Rightarrow OB = OC = \dfrac{{\sqrt 3 }}{2} \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AC}  = 2\overrightarrow {OC} } \\   {\overrightarrow {BD}  = 2\overrightarrow {OD} } \end{array}} ight. \Rightarrow \left( {\overrightarrow {AC} ,\overrightarrow {BD} } ight) = \left( {\overrightarrow {OC} ,\overrightarrow {OD} } ight) = \widehat {DOC}

    Xét tam giác ODC ta có:

    \begin{matrix}  \cos \widehat {DOC} = \dfrac{{O{D^2} + O{C^2} - {{\left( {DC} ight)}^2}}}{{2OD.OC}} \hfill \\   \Rightarrow \cos \widehat {DOC} = \dfrac{{{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2} - 2}}{{2{{\left( {\dfrac{{\sqrt 3 }}{2}} ight)}^2}}} =  - \dfrac{1}{3} \hfill \\   \Rightarrow \widehat {DOC} \approx {109^0} \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 8: Nhận biết

    Câu 1câu 2

    Đáp án là:

    Câu 1câu 2

  • Câu 9: Nhận biết

    Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”

    Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.

  • Câu 10: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = mx cắt đồ thị hàm số (P) : y = x3 − 6x2 + 9x tại ba điểm phân biệt.

    Phương trình hoành độ giao điểm của (P) với dx3 − 6x2 + 9x = mx

    \overset{}{\leftrightarrow}x\left( x^{2}
- 6x + 9 - m ight) = 0\overset{}{\leftrightarrow}\left\lbrack
\begin{matrix}
x = 0 \\
x^{2} - 6x + 9 - m = 0.(1) \\
\end{matrix} ight.

    Để (P) cắt d tại ba điểm phân biệt khi và chỉ (1) có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
0^{2} - 6.0 + 9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m eq 9 \\
\end{matrix} ight..

  • Câu 11: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 12: Nhận biết

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 13: Thông hiểu

    Các giá trị m để tam thức f(x)=x^{2}-(m+2)x+8m+1 đổi dấu 2 lần là:

     Để f(x) đổi dấu 2 lần thì \Delta >0.

    Ta có: (m+2)^2-4 (8m+1)>0 \Leftrightarrow m^2-28m>0 \Leftrightarrow m<0 hoặc m>28.

     

  • Câu 14: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 15: Thông hiểu

    Cho 5 điểm M, N, P, Q, R. Tính tổng \overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{RN}+\overrightarrow{NP}+\overrightarrow{QR}

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RN}  + \overrightarrow {NP}  + \overrightarrow {QR}  \hfill \\   = \left( {\overrightarrow {MN}  + \overrightarrow {NP} } ight) + \left( {\overrightarrow {PQ}  + \overrightarrow {QR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MP}  + \overrightarrow {PR}  + \overrightarrow {RN}  \hfill \\   = \left( {\overrightarrow {MP}  + \overrightarrow {PR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MR}  + \overrightarrow {RN}  = \overrightarrow {MN}  \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 17: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 18: Vận dụng

    Nghiệm của bất phương trình x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4} >
0

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x +
4} = \frac{- x^{3} + 2x^{2} + 5x - 6}{- x^{2} + 3x + 4}

    = \frac{(x - 1)\left( - x^{2} + x + 6
ight)}{- x^{2} + 3x + 4}

    - x^{2} + x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.\ ,\

    - x^{2} + 3x + 4 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng xét dấu

    Suy ra

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4}
> 0 \Leftrightarrow x \in ( - 2; - 1) \cup (1;3) \cup (4; +
\infty).

    Vậy nghiệm của bất phương trình có 3 khoảng.

  • Câu 19: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 20: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 21: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 22: Thông hiểu

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 23: Thông hiểu

    Gọi M,\
N lần lượt là trung điểm các cạnh AD,\ BC của tứ giác ABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}. Nên \overrightarrow{MB} + \overrightarrow{MC} =
2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MB}= \overrightarrow{MD} +\overrightarrow{DC} + \overrightarrow{MA} + \overrightarrow{AB}=\overrightarrow{AB} + \overrightarrow{DC} + \left( \overrightarrow{MD} +\overrightarrow{MA} ight) = \overrightarrow{AB} +\overrightarrow{DC}

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}. Nên \overrightarrow{AB} + \overrightarrow{DC} =
2\overrightarrow{MN} đúng.

    \overrightarrow{AB} +\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +\overrightarrow{DC} ight)= \overrightarrow{AC} + \overrightarrow{DB}= 2\overrightarrow{MN}. Nên \overrightarrow{AC} + \overrightarrow{DB} =
2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 24: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 26: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm M( - 3;1),N(1;4),P(5;3). Xác định tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành?

    Gọi tọa độ điểm Q(x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MQ} = (x + 3;y - 1) \\
\overrightarrow{NP} = (4; - 1) \\
\end{matrix} ight.

    Vì MNPQ là hình bình hành nên

    \overrightarrow{MQ} =
\overrightarrow{NP} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 4 \\
y - 1 = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 0 \\
\end{matrix} ight.

    Vậy tọa độ điểm Q cần tìm là Q(1;0).

  • Câu 28: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 29: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 30: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 31: Nhận biết

    Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi

    f(x) = 2x2 + 2x + 5 = 0 có: \left\{ \begin{matrix}
\Delta' = 1 - 10 = - 9 < 0 \\
a = 2 > 0 \\
\end{matrix} ight. nên f(x) > 0∀x ∈ ℝ.

  • Câu 32: Thông hiểu

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 33: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 34: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 35: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 36: Vận dụng cao

    Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.

    Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày

    Điều kiện: x, y > 0

    Khi đó số tiền lãi một ngày của nhà máy này là f(x;y) = 2x + 1,6y (triệu đồng)

    Số giờ làm việc trong ngày của đội 1 là 3x + y (giờ)

    Số giờ làm việc trong ngày của đội 2 là x
+ y (giờ)

    Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình: \left\{ \begin{matrix}
3x + y \leq 6 \\
x + y \leq 4 \\
x,\ y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (∗).

    Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi (x;y) là toạ độ một trong các đỉnh O(0;0),A(2;0),B(1;3),C(0;4).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(2;0) = 4 \\
f(1;3) = 6,8 \\
f(0;4) = 6,4 \\
\end{matrix} ight.

    Suy ra max\ f(x;y) = 6,8 khi (x;y) = (1;3)

    Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: 6,8 triệu đồng.

  • Câu 37: Thông hiểu

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 38: Vận dụng cao

    Phương trình 6x^{2} - 10x + 5 = (4x - 1)\sqrt{6x^{2} - 6x +
5} có mấy nghiệm nguyên ?

    Đặt t = \sqrt{6x^{2} - 6x + 5}\ \ \ \ (t
\geq 0). Phương trình đã cho trở thành:

    \begin{matrix}
t^{2} - (4x - 1)t - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 4x \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\sqrt{6x^{2} - 6x + 5}\  = 1 \\
\sqrt{6x^{2} - 6x + 5}\  = 4x \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{- 3 + \sqrt{59}}{10}.
\\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 39: Vận dụng cao

    Tam giác ABC thỏa mãn đẳng thức

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} + \dfrac{b^{2}\cos\dfrac{C -A}{2}}{2\sin\dfrac{B}{2}} + \dfrac{b^{2}\cos\dfrac{A -B}{2}}{2\sin\dfrac{C}{2}} = a^{2} + b^{2} + c^{2}

    Biết AB = c;BC = a;AC = b. Chọn khẳng định nào dưới đây đúng?

    Ta có:

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} = \dfrac{a\left( 2R\sin A ight)\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}}

    = 2aR.\cos\dfrac{A}{2}\cos\dfrac{B -C}{2}

    = 2aR.\sin\dfrac{B + C}{2}\cos\dfrac{B -C}{2}

    = aR.\left( \sin B + \sin C ight) =
\frac{a(b + c)}{2}

    Chứng minh tương tự và suy ra ta có:

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} + \dfrac{b^{2}\cos\dfrac{C -A}{2}}{2\sin\dfrac{B}{2}} + \dfrac{b^{2}\cos\dfrac{A -B}{2}}{2\sin\dfrac{C}{2}}

    = \frac{a(b + c)}{2} + \frac{b(c +
a)}{2} + \frac{c(a + b)}{2}

    = ab + bc + ca

    \leq \frac{a^{2} + b^{2}}{2} +
\frac{b^{2} + c^{2}}{2} + \frac{c^{2} + a^{2}}{2} = a^{2} + b^{2} +
c^{2}

    Dấu bằng xảy ra khi và chỉ khi a = b =
c

    Vậy tam giác ABC là tam giác đều.

  • Câu 40: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 41: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 42: Thông hiểu

    Miền nghiệm của bất phương trình \left( 1 + \sqrt{3} ight)x - \left( 1 - \sqrt{3}
ight)y \geq 2 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \  - 1). Vì \left( 1 + \sqrt{3} ight).1 - \left( 1 -
\sqrt{3} ight).( - 1) = 2 \geq 2 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \  -
1).

  • Câu 43: Vận dụng

    Gọi AN,\
CM là các trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +\frac{1}{2}\overrightarrow{AM}= \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}.

  • Câu 44: Nhận biết

    Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

    Các hệ bất phương trình \left\{\begin{matrix}x^{2}+y<0\\ y-x>0\end{matrix}ight.\left\{\begin{matrix}2x-y^{2}<5\\ 4x+3y>10^{10}\end{matrix}ight. có chứa các bất phương trình bậc hai {x^2} + y < 0;2x - {y^2} < 5 => Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.

    Đáp án y - 2x <0 là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.

    Đáp án \left\{\begin{matrix}x<1\\ y-1>2\end{matrix}ight. có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.

  • Câu 45: Thông hiểu

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo