Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 2: Vận dụng

    Trong mặt phẳng tọa độ Oxy, gọi H(m,n) là trực tâm tam tam giác ABC có tọa độ các đỉnh A( - 3;0),B(3;0),C(2;6). Tính giá trị biểu thức P = m + 6n?

    Ta có: H(m,n) là trực tâm tam giác ABC nên \left\{ \begin{matrix}
AH\bot BC \\
BH\bot AC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
\overrightarrow{AH} = (m + 3;n);\overrightarrow{BC} = ( - 1;6) \\
\overrightarrow{BH} = (m - 3;n);\overrightarrow{AC} = (5;6) \\
\end{matrix} ight.

    Ta có hệ phương trình \left\{
\begin{matrix}
- m + 6n = 3 \\
5m + 6n = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = \frac{5}{6} \\
\end{matrix} ight.

    Vậy biểu thức P = m + 6n = 7

  • Câu 3: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 4: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 5: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 6: Thông hiểu

    Tam thức bậc hai :

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu .

  • Câu 7: Nhận biết

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 8: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Tính \left| 2\overrightarrow{OA}
- \overrightarrow{OB} ight|.

    Gọi C là điểm đối xứng của O qua A
\Rightarrow OC = 2a. Tam giác OBC vuông tại O,BC =
\sqrt{OB^{2} + OC^{2}} = a\sqrt{5}.

    Ta có 2\overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OC} - \overrightarrow{OB} =
\overrightarrow{BC}, suy ra \left|
2\overrightarrow{OA} - \overrightarrow{OB} ight| = \left|
\overrightarrow{BC} ight| = a\sqrt{5}.

  • Câu 9: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    Chọn khẳng định đúng.

    Ta có:

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\cot^{2}\widehat{B} + \cot^{2}\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} -2

    \Leftrightarrow \left(\sin^{2}\widehat{B} + \sin^{2}\widehat{C} ight)\left(\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} ight) =4

    \Leftrightarrow\dfrac{\sin^{2}\widehat{B}}{\sin^{2}\widehat{C}} +\dfrac{\sin^{2}\widehat{C}}{\sin^{2}\widehat{B}} - 2 = 0

    \Leftrightarrow \left(\dfrac{\sin\widehat{B}}{\sin\widehat{C}} -\dfrac{\sin\widehat{C}}{\sin\widehat{B}} ight)^{2} = 0

    \Leftrightarrow \sin\widehat{B} =
\sin\widehat{C}

    \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân.

  • Câu 10: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 11: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 12: Nhận biết

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 13: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 14: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 15: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 16: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y > 11 không chứa điểm nào sau đây?

    Xét điểm (1; - 3). Ta có: - 3.1 - 5.3 = - 18 > 11 không thỏa mãn. Do đó (1;3) không thuộc miền nghiệm của bất phương trình - 3x - 5y >
11.

  • Câu 17: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 18: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 19: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 20: Vận dụng

    Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, OQ=\sqrt{2}+\sqrt{6}m

    Tính độ dài PT

    Khi đó đoạn PT bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\widehat {SQB} = \widehat {PQT} = \alpha } \\   {\widehat {TOP} = \beta } \end{array}} ight.

    Áp dụng định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  P{Q^2} = O{P^2} + O{Q^2} - 2OP.OQ.\cos \widehat {POQ} \hfill \\   \Rightarrow P{Q^2} = {\left( {\sqrt 2 } ight)^2} + {\left( {\sqrt 2  + \sqrt 6 } ight)^2} - 2.\sqrt 2 .\left( {\sqrt 2  + \sqrt 6 } ight).\cos {45^0} \hfill \\   \Rightarrow PQ = 2\sqrt 2 \left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  \cos \alpha  = \cos \widehat {OQP} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{O{Q^2} + P{Q^2} - O{P^2}}}{{2.OQ.PQ}} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{{{\left( {\sqrt 2  + \sqrt 6 } ight)}^2} + {{\left( {2\sqrt 2 } ight)}^2} - {{\left( {\sqrt 2 } ight)}^2}}}{{2.\left( {\sqrt 2  + \sqrt 6 } ight).\sqrt 2 }} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{2} \Rightarrow \alpha  = {30^0} \hfill \\ \end{matrix}

    Ta lại có: \beta  = {45^0} + \alpha  = {45^0} + {30^0} = {75^0}

    => {\widehat {TPO}}=75^0

    Xét tam giác OTP ta có: 

    \begin{matrix}  \widehat {OTP} + \widehat {TOP} + \widehat {TPO} = {180^0} \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {\widehat {TOP} + \widehat {TPO}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {{{45}^0} + {{75}^0}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {60^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác OTP ta có:

    \begin{matrix}  \dfrac{{OP}}{{\sin \widehat {OTP}}} = \dfrac{{PT}}{{\sin \widehat {TOP}}} \hfill \\   \Rightarrow PT = \dfrac{{OP.\sin \widehat {TOP}}}{{\sin \widehat {OTP}}} \hfill \\   \Rightarrow PT = \dfrac{{2.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{2\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 22: Thông hiểu

    Cho tập X =
\left\{ 2,3,4 ight\}. Tập X có bao nhiêu tập hợp con?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 23: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 24: Nhận biết

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 25: Nhận biết

    Cho \overrightarrow{a} = ( - 1;2),\ \overrightarrow{b}
= (5; - 7). Tìm tọa độ của vectơ \overrightarrow{a} -
\overrightarrow{b}.

    Ta có \overrightarrow{a} -
\overrightarrow{b} = \left( - 1 - 5;2 - ( - 7) ight) = ( -
6;9).

  • Câu 26: Vận dụng

    Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.:

    Nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight. là miền đa giác OABCD với O(0;0);A(1;0);B(4;3);C(2;4);D(0;4).

    Giá trị lớn nhất F(x;y)=x+2y đạt được tại 1 trong 5 đỉnh của đa giác.

    Với O(0;0) \Rightarrow F=0.

    VớiA(1;0)\Rightarrow F=1.

    Với B(4;3) \Rightarrow F=10.

    Với C(2;4) \Rightarrow F=10.

    Với D(0;4) \Rightarrow F=8.

    Vậy GTLN F=10.

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

  • Câu 28: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 29: Thông hiểu

    Cho hình thoi ABCD tâm O, cạnh bằng a và \widehat{A}=60^0. Kết luận nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn kết luận đúng

    Ta có:  ABCD là hình thoi \widehat{A}=60^0

    => \widehat{ADC}=120^0

    Áp dụng định lí cosin trong tam giác ADC ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} - 2AD.DC\cos {120^0} \hfill \\   \Rightarrow A{C^2} = {a^2} + {a^2} - 2.a.a.\left( { - \dfrac{1}{2}} ight) \hfill \\   \Rightarrow A{C^2} = 3{a^2} \hfill \\   \Rightarrow AC = a\sqrt 3  \hfill \\   \Rightarrow OA = \dfrac{1}{2}AC = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    =>AO=|\overrightarrow{AO}|=\frac{a\sqrt{3}}{2}

  • Câu 30: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 33: Thông hiểu

    Cho tam giác ABC vuông tại A và có AB =
3,\ \ AC = 4. Tính \left|
\overrightarrow{CA} + \overrightarrow{AB} ight|.

    Ta có \left| \overrightarrow{CA} +
\overrightarrow{AB} ight| = \left| \overrightarrow{CB} ight| = CB =
\sqrt{AC^{2} + AB^{2}} = \sqrt{3^{2} + 4^{2}} = 5.

  • Câu 34: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 35: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Ta có: \overrightarrow{u} = (2; - 1) = -( - 2;1) = - \overrightarrow{v}\ \ \ \ \  \Rightarrow \ \\overrightarrow{u}\overrightarrow{v} đối nhau.

  • Câu 36: Vận dụng

    Hỏi có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình \frac{x^{4} - x^{2}}{x^{2} + 5x + 6} \leq 0 ?

    Bất phương trình \frac{x^{4} -
x^{2}}{x^{2} + 5x + 6} \leq 0 \Leftrightarrow \frac{x^{2}\left( x^{2} -
1 ight)}{x^{2} + 5x + 6} \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \
(*).

    x2 ≥ 0,  ∀x ∈ ℝ nên bất phương trình

    (*) \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = 0 \\
\frac{x^{2} - 1}{x^{2} + 5x + 6} \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
f(x) = \frac{x^{2} - 1}{x^{2} + 5x + 6} \leq 0 \\
\end{matrix} ight.\ .

    Phương trình x^{2} - 1 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - \ 1 \\
\end{matrix} ight.x^{2} + 5x
+ 6 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \ 2 \\
x = - \ 3 \\
\end{matrix} ight.\ .

    Bảng xét dấu

    Dựa vào bảng xét dấu, ta thấy f(x) ≤ 0 ⇔ x ∈ (−3 ; −2) ∪ [ − 1 ; 1].

    Kết hợp với x ∈ ℤ ta được x = {−1 ; 0 ; 1}.

    Vậy có tất cả 3 giá trị nguyên cần tìm.

  • Câu 37: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 38: Thông hiểu

    Cho góc \alpha thoả mãn 0^{\circ} < \alpha < 180^{\circ}\cot\alpha = - 2. Giá trị của \sin\alpha là:

    Ta có: \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}

    \Rightarrow \cot^{2}\alpha =
\frac{\cos^{2}\alpha}{\sin^{2}\alpha} = \frac{1 -
\sin^{2}\alpha}{\sin^{2}\alpha}

    \Rightarrow 1 + \cot^{2}\alpha =
\frac{1}{\sin^{2}\alpha}.

    Do đó \sin^{2}\alpha = \frac{1}{1 +
\cot^{2}\alpha} = \frac{1}{1 + ( - 2)^{2}} = \frac{1}{5}.

    0^{0} < \alpha <
180^{\circ} nên \sin\alpha =\frac{\sqrt{5}}{5}.

  • Câu 39: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Biểu diễn \overrightarrow{AG} theo hai vecto \overrightarrow{AB},\overrightarrow{AC}

    Cách 1: Giả sử I là trung điểm của BC

    \begin{matrix}   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI}  \hfill \\   \Leftrightarrow \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AI}  \hfill \\ \end{matrix}

    Theo tính chất đường trung tuyến trong tam giác ABC ta có:

    \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AI} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AI} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AI}

    \begin{matrix}   \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  \hfill \\ \end{matrix}

    Cách 2: Ta có:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AA}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow 0  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AG}  \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 41: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 42: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 43: Nhận biết

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 44: Vận dụng cao

    Các giá trị của tham số m để phương trình (2x - 1)^{2} + m = \sqrt{x^{2} - x +
1} (1) có nghiệm là:

    Đặt t = \sqrt{x^{2} - x + 1}

     ⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3

    x^{2} - x + 1 = \left( x - \frac{1}{2}
ight)^{2} + \frac{3}{4} \geq \frac{3}{4} nên t \geq \frac{\sqrt{3}}{2}

    Phương trình (1) trở thành 4t2 − 3 + m = t ⇔  − 4t2 + t + 3 = m.

    Xét hàm số y =  − 4t2 + t − 3 với t \geq \frac{\sqrt{3}}{2}

    Ta có - \frac{b}{2a} = \frac{1}{8} <
\frac{\sqrt{3}}{2}

    Bảng biến thiên

    Phương trình (1) có nghiệm phương trình có nghiệm t \geq
\frac{\sqrt{3}}{2}

    đồ thị hàm số y =  − 4t2 + t − 3 trên \lbrack\frac{\sqrt{3}}{2}; +
\infty) cắt đường thẳng y = m
\Leftrightarrow m \leq \frac{- 12 + \sqrt{3}}{2} .

    Vậy phương trình (1) có nghiệm khi và chỉ khi m \leq \frac{- 12 + \sqrt{3}}{2}.

  • Câu 45: Thông hiểu

    Cho bất phương trình x^{2}−8x+7≥0 . Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

     Ta có: x^{2}−8x+7≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} ight.. Suy ra S=[-\infty;1) \cup [7;+\infty).

    Nhận xét: [6;+\infty) không thuộc S.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo