Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 2: Vận dụng

    Cho tứ giác ABCD. Trên cạnh AB,\ \ CD lấy lần lượt các điểm M,\ \ N sao cho 3\ \overrightarrow{AM} = 2\
\overrightarrow{AB}3\
\overrightarrow{DN} = 2\ \overrightarrow{DC}. Tính vectơ \overrightarrow{MN} theo hai vectơ \overrightarrow{AD},\ \
\overrightarrow{BC}.

    Ta có \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}\overrightarrow{MN} = \overrightarrow{MB}
+ \overrightarrow{BC} + \overrightarrow{CN}.

    Suy ra 3\ \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
2\left( \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}
ight)

    = \left( \overrightarrow{MA} +
2\overrightarrow{MB} ight) + \overrightarrow{AD} +
2\overrightarrow{BC} + \left( \overrightarrow{DN} + 2\overrightarrow{CN}
ight).

    Theo bài ra, ta có \overrightarrow{MA} +
2\ \overrightarrow{MB} = \overrightarrow{0}\overrightarrow{DN} + 2\ \overrightarrow{CN} =
\overrightarrow{0}.

    Vậy 3\ \overrightarrow{MN} =
\overrightarrow{AD} + 2\ \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} +
\frac{2}{3}\overrightarrow{BC}.

  • Câu 3: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 5: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 6: Thông hiểu

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 7: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 9: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 10: Thông hiểu

    Cho tam giác ABC vuông tại AAB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}.

     

    Đặt \overrightarrow {AB}=\overrightarrow {BD}.

    Ta có: \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {CB}  + \overrightarrow {BD} } ight| = \left| {\overrightarrow {CD} } ight| = CD.

    Áp dụng định lý Pytago trong tam giác ACD: CD = \sqrt {{6^2} + {4^2}}  = 2\sqrt {13}.

  • Câu 11: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 12: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =
\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}
3m - 1 eq 0 \\
x = \frac{5m + 1}{3m - 1} > - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq \frac{1}{3} \\
\frac{8m}{3m - 1} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{1}{3} \\
m < 0 \\
\end{matrix} ight..

  • Câu 13: Vận dụng

    Tập xác định của hàm số y = \frac{mx}{\left( 2m^{2} + 1 ight)x^{2} - 4mx
+ 2} là:

    ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.

    Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.

    Ta có a = 2m2 + 1 > 0,  Δ′ = 4m2 − 2(2m2+1) =  − 2 < 0.

    Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0  ∀x ∈ ℝ.

    Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0,  ∀x ∈ ℝ.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 14: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 15: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 16: Thông hiểu

    Cho \overrightarrow{OM} = ( - 2; - 1),\overrightarrow{ON} = (3; - 1). Tính góc của \left(
\overrightarrow{OM},\overrightarrow{ON} ight).

    Ta có \cos\left(\overrightarrow{OM},\overrightarrow{ON} ight) =\frac{\overrightarrow{OM}.\overrightarrow{ON}}{\left|\overrightarrow{OM} ight|.\overrightarrow{|ON|}}= \frac{-5}{\sqrt{5}.\sqrt{10}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(\overrightarrow{OM},\overrightarrow{ON} ight) = 135^{o}.

  • Câu 17: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 18: Nhận biết

    Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

    f(x) = x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].

  • Câu 19: Vận dụng

    Trong mặt phẳng tọa độ Oxy, gọi H(a,b) là trực tâm tam giác ABC có tọa độ các đỉnh A(3;1),B( - 1;2)I(1; - 1) là trọng tâm tam giác ABC. Tính giá trị biểu thức K = a + 3b?

    Gọi C\left( x_{C};y_{C} ight). Vì I là trọng tâm tam giác ABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{I} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{I} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = 1 \\y_{C} = - 1 \\\end{matrix} ight.\  \Rightarrow C(1; - 4)

    Ta có: H(a,b) là trực tâm tam giác ABC nên \left\{ \begin{matrix}
AH\bot BC \\
BH\bot AC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
\overrightarrow{AH} = (a - 3;b + 1);\overrightarrow{BC} = (2; - 6) \\
\overrightarrow{BH} = (a + 1;b - 2);\overrightarrow{AC} = ( - 2; - 3) \\
\end{matrix} ight.

    Ta có hệ phương trình \left\{\begin{matrix}2(a - 3) - 6(b + 1) = 0 \\- 2(a + 1) - 3(b - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{10}{3} \\b = \dfrac{- 8}{9} \\\end{matrix} ight.

    Vậy biểu thức K = a + 3b =
\frac{2}{3}

  • Câu 20: Thông hiểu

    Cho tam giác ABC có tọa độ ba đỉnh A(6;3),B( - 3;6),C(1; - 2). Xác định tọa độ điểm D \in BC thỏa mãn BD = 2CD?

    Giả sử tọa độ điểm D là: D(x;y)

    Ta có: D \in BC thỏa mãn BD = 2CD

    \Leftrightarrow \overrightarrow{BD} =
2\overrightarrow{DC}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BD} = (x + 3;y - 6) \\
\overrightarrow{DC} = (1 - x; - 2 - y) \\
\end{matrix} ight.

    \overrightarrow{BD} =
2\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 2 - 2x \\
y - 6 = - 4 - 2y \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{1}{3} \\y = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{1}{3};\dfrac{2}{3}ight)

  • Câu 21: Thông hiểu

    Cho tập hợp A = (
- 3;mbrackB = \{ x \in
\mathbb{Z} \parallel x \mid \leq 3\}. Giá trị nguyên dương của m để tập hợp \mathbb{Z} \cap (A \setminus  B) có đúng 10 phần tử là:

    Ta có B = \lbrack -
3;3brack.

    Theo giả thiết thì A \smallsetminus B
eq \varnothing nên m >
3A \smallsetminus B =
(3;mbrack.

    Như vậy, để tập hợp \mathbb{Z} \cap (A
\smallsetminus B) có 10 phần tử thì

    \mathbb{Z} \cap (A \smallsetminus B) = \{
4;5;\ldots;13\}

    Do đó m = 13.

  • Câu 22: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 23: Nhận biết

    Cặp số nào sau đây là nghiệm của bất phương trình - 5x + y \geq 5 ?

    Thay các cặp số vào bất phương trình ta thấy (0;5) là nghiệm của bất phương trình đã cho.

  • Câu 24: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 25: Vận dụng cao

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Đáp án là:

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: x,y (ha)

    Điều kiện: x,y \geq 0

    Số tiền cần bỏ ra để thuê người trồng hoa là 30y.100000 = 3000000y (trồng).

    Lợi nhuận thu được là

    f(x;y) = 1000000x + 12000000 -
3000000y

    \Rightarrow f(x;y) = 10000000x +
9000000y (đồng).

    Vì số công trồng rau không vượt quá 80 nên 20x
\leq 80 \Leftrightarrow x \leq 4

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 10 \\
0 \leq x \leq 4 \\
y \geq 0 \\
\end{matrix} ight.\ (*)

    Ta cần tìm giá trị lớn nhất của f(x;y) trên miền nghiệm của hệ (*).

    Miền nghiệm của hệ (*) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là toạ độ của một trong các đỉnh O(0;0),A(4;0),B(4;6),C(0;10).

    => f(x;y) lớn nhất khi (x;y) = (4;6)

    Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất

  • Câu 26: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 27: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 28: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 29: Thông hiểu

    Tìm tất cả các giá trị của m để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}.

    Để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Xét g\left( x ight) = 1 - 4{x^2} ta có bảng xét dấu như sau:

    Tìm m để tam thức bậc hai luôn dương với mọi x

    g\left( x ight) < 0 \Rightarrow x \in \left( { - \infty ; - \frac{1}{2}} ight) \cup \left( {\frac{1}{2}; + \infty } ight)

    Kết hợp các điều kiện ta được m \in \left( {\frac{1}{2}; + \infty } ight)

  • Câu 30: Thông hiểu

    Phương trình \sqrt{3x + 1} + \sqrt{5 - x} = 4 có bao nhiêu nghiệm

    Đkxđ: - \frac{1}{3} \leq x \leq5.

    \sqrt{3x + 1} + \sqrt{5 - x} =4

    \Leftrightarrow 2x + 6 + 2\sqrt{(3x +1)(5 - x)} = 16

    \Leftrightarrow \sqrt{(3x + 1)(5 - x)} =5 - x

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{5 - x} = 0 \\\sqrt{3x + 1} = \sqrt{5 - x} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5 \\3x + 1 = 5 - x \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5(TM) \\x = 1(TM) \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 31: Vận dụng cao

    Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ Oth,trong đó t là thời gian , kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1, 2m. Sau đó 1 giây, nó đạt độ cao 8, 5m\left| 2x^{2} + x - 3 ight| = \left\{
\begin{matrix}
2x^{2} + x - 3 & khi & 2x^{2} + x - 3 \geq 0 \\
- \left( 2x^{2} + x - 3 ight) & khi & 2x^{2} + x - 3 < 0 \\
\end{matrix} ight. giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.

    Tại t = 0 ta có y = h = 1, 2; tại t = 1 ta có y = h = 8, 5; tại t = 2, ta có y = h = 6.

    hệ trục Oth như hình vẽ.

    Parabol (P) có phương trình: y = at2 + bt + c, với a ≠ 0.

    Giả sử tại thời điểm t thì quả bóng đạt độ cao lớn nhất h.

    Theo bài ra ta có: tại t = 0 thì h = 1, 2 nên A(0;  1,2) ∈ (P).

    Tại t = 1 thì h = 8, 5 nên B(1;  8,5) ∈ (P).

    Tại t = 2 thì h = 6 nên C(2;  6) ∈ (P).

    Vậy ta có hệ: \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
a + b + c = 8,5 \\
4a + 2b + c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \  \\
a = - 4,9\  \\
b = 12,2\  \\
\end{matrix} ight..

    Vậy hàm số Parabol cần tìm có dạng: y =  − 4, 9t2 + 12, 2t + 1, 2.

  • Câu 32: Vận dụng

    Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

    Tính bán kinh của chiếc đĩa

    Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):

    Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.

    Nửa chu vi tam giác ABC: 

    \begin{matrix}  p = \dfrac{{AB + AC + BC}}{2} \hfill \\   = \dfrac{{4,3 + 7,5 + 3,7}}{2} = \dfrac{{31}}{4}\left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng công thức Hê - rông tính diện tích tam giác ABC:

    \begin{matrix}  S = \sqrt {p\left( {p - AB} ight)\left( {p - AC} ight)\left( {p - BC} ight)}  \hfill \\   \Rightarrow S \approx 5,2\left( {c{m^2}} ight) \hfill \\ \end{matrix}

    Mặt khác 

    \begin{matrix}  S = \dfrac{{AB.AC.BC}}{{4R}} \Rightarrow R = \dfrac{{AB.AC.BC}}{{4s}} \hfill \\   \Rightarrow R \approx 5,73\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Cho tam giác ABC với M,\ \
N,\ \ P lần lượt là trung điểm của. Khẳng định nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có \overrightarrow{AP} + \overrightarrow{BM} +
\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA}

    = \frac{1}{2}\left( \overrightarrow{AB}
+ \overrightarrow{BC} + \overrightarrow{CA} ight) =
\frac{1}{2}\overrightarrow{AA} = \overrightarrow{0}.

    Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} =
\overrightarrow{0}.. Ta có \overrightarrow{MN} + \overrightarrow{NP} +
\overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.. Ta có \overrightarrow{PB} + \overrightarrow{MC} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =
\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AN} =
\overrightarrow{PM} = - \overrightarrow{MP}. Chọn đáp án này.

  • Câu 34: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 35: Thông hiểu

    Bảng biến thiên của hàm số y =  − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?

    Hệ số a = - 2 <
0\overset{}{ightarrow} bề lõm hướng xuống.

    Ta có - \frac{b}{2a} = 1y(1) = 3. Do đó chọn .

  • Câu 36: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Các vectơ đối của vectơ \overrightarrow{OD} là:

    Các vectơ đối của vectơ \overrightarrow{OD} là: \overrightarrow{OA},\overrightarrow{DO},\overrightarrow{EF},\overrightarrow{CB},\overrightarrow{DA}.

  • Câu 37: Nhận biết

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 39: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 40: Vận dụng

    Cho điểm A(3;3) và điểm M thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
x + y + 2 \geq 0 \\
- x + y + 2 \geq 0 \\
x - y + 2 \geq 0 \\
\end{matrix} ight.. Độ dài AM lớn nhất là

    Miền nghiệm của hệ bất phương trình là miền không bị gạch trong hình bên.

    Suy ra độ dài AM lớn nhất khi và chỉ khi M trùng với đỉnh nào đó của đa giác nghiệm.

    => AM_{max}=\sqrt{34}

  • Câu 41: Nhận biết

    Số nghiệm nguyên dương của phương trình \sqrt{x - 1} = x - 3

    \sqrt{x - 1} = x - 3 \Leftrightarrow\left\{ \begin{matrix}x \geq 3 \\x - 1 = (x - 3)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x^{2} - 7x + 10 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\\left\lbrack \begin{matrix}x = 2 \\x = 5 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Rightarrow x = 5.

    Vậy phương trình có một nghiệm nguyên dương.

  • Câu 42: Thông hiểu

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 43: Thông hiểu

    Cho 0 < \alpha
< \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha < \frac{\pi}{2}
ightarrow - \pi < \alpha - \pi < -
\frac{\pi}{2}\overset{}{ightarrow} điểm cuối cung \alpha - \pi thuộc góc phần tư thứ III\overset{}{ightarrow} \sin(\alpha - \pi) < 0.

  • Câu 44: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 45: Vận dụng cao

    Cho tam giác ABC có độ dài AB = c;BC = a;AC = b và các cạnh của tam giác thỏa mãn biểu thức: a^{2} + b^{2} =
5c^{2}. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.

    Gọi G là trọng tâm tam giác ABC. Ta có:

    AM^{2} = \frac{AC^{2} + AB^{2}}{2} -
\frac{BC^{2}}{4} = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4}

    \Rightarrow AG^{2} = \frac{4}{9}AM^{2} =
\frac{2\left( b^{2} + c^{2} ight)}{9} - \frac{a^{2}}{9}

    BN^{2} = \frac{BA^{2} + BC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{c^{2} + a^{2}}{2} -
\frac{b^{2}}{4}

    \Rightarrow GN^{2} = \frac{1}{9}BN^{2} =
\frac{c^{2} + a^{2}}{18} - \frac{b^{2}}{36}

    Trong tam giác AGN ta có

    \cos\widehat{AGN} = \frac{AG^{2} +
GN^{2} - AN^{2}}{2.AG.GN}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}ight)}{9}} - \dfrac{a^{2}}{9}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{10c^{2} - 2\left( a^{2} + b^{2}ight)}{36.2.\sqrt{\dfrac{2\left( b^{2} + c^{2} ight)}{9} -\dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} - \dfrac{b^{2}}{36}}} =0

    \Rightarrow \widehat{AGN} =
90^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo