Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Tập tất cả các giá trị của tham số m để phương trình
có nghiệm thực là
* Với m < 2 ⇒ phương trình vô nghiệm
* Với m ≥ 2,
.
Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.
Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2; + ∞).
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Nghiệm của bất phương trình
có
Bảng xét dấu

Suy ra
.
Vậy nghiệm của bất phương trình có 3 khoảng.
Số nghiệm của phương trình
là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Ta có: là bất phương trình bậc nhất hai ẩn.
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Biểu thức
đạt giá trị nhỏ nhất với điều kiện
tại điểm
có toạ độ là:
Vẽ các đường thẳng :
Khi đó miền nghiệm của hệ là miền trong của tam giác
Tọa độ các đỉnh:
Ta có :
Tìm tập xác định của ![]()
Điều kiện xác định: .
Vậy .
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm thỏa mãn cả 4 phươn trình trong hệ.
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho hình thoi ABCD tâm O, cạnh bằng a và
. Kết luận nào sau đây là đúng?
Hình vẽ minh họa

Ta có: ABCD là hình thoi
=>
Áp dụng định lí cosin trong tam giác ADC ta có:
Trong hệ tọa độ
cho tam giác
có
và trọng tâm là gốc tọa độ
Tìm tọa độ đỉnh
?
Gọi .
Vì là trọng tâm tam giác
nên
Tam giác ABC có
, diện tích bằng 120. Độ dài đường trung tuyến AM là:
Ta có:
Diện tích tam giác bằng 120
Xét tam giác ABC vuông tại A ta có:
=> Trung tuyến AM có độ dài là:
Cho hai vectơ không cùng phương
và
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ và
, đó là
."
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Trong mặt phẳng
cho
. Tính
?
Ta có ,
suy ra
.
Cặp vectơ nào sau đây vuông góc?
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
đúng.
Vì suy ra đáp án
và
sai.
Điểm
thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ lần lượt vào từng phương trình của hệ
ta thấy thỏa mãn.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Cho tứ giác
Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ ![]()
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Cho tam giác
Hai điểm
chia cạnh
theo ba phần bằng nhau
Tính
theo
và ![]()
Ta có
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng.
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Điểm
là điểm thuộc miền nghiệm của bất phương trình:
Vì là mệnh đề đúng nên
là điểm thuộc miền nghiệm của bất phương trình
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B
=> Vùng tô đậm thể hiện .
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm
, có trục đối xứng là đường thẳng
. Parabol này quay bề lõm lên trên nếu
.
Hàm số có
=> Đồ thị hàm số có bề lõm quay lên.