Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tam giác ABC có AK, BM là trung tuyến. Cho \overrightarrow{AB} =
m\overrightarrow{AK} + n\overrightarrow{BM}. Tính 5m - 3n.

    \overrightarrow{AB} = \overrightarrow{AK}+ \overrightarrow{KB} = \overrightarrow{AK} + \overrightarrow{KM} +\overrightarrow{MB}= \overrightarrow{AK} - \overrightarrow{BM} -\frac{1}{2}\overrightarrow{AB}

    \Leftrightarrow \overrightarrow{AB} =
\frac{2}{3}\overrightarrow{AK} -
\frac{2}{3}\overrightarrow{BM}

    5m - 3n = 5.\frac{2}{3} + 3.\frac{2}{3} =
\frac{16}{3} .

  • Câu 2: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 4: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{a} = (5;m - 7)\overrightarrow{b} = (m + 1;3) với m\mathbb{\in R}. Tìm giá trị của tham số m để \overrightarrow{a}\bot\overrightarrow{b}?

    Ta có:

    \overrightarrow{a}\bot\overrightarrow{b}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{0}

    \Leftrightarrow 5(m - 1) + 3.(m - 7) = 0
\Leftrightarrow m = 2

    Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.

  • Câu 5: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 6: Nhận biết

    Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình 2x + y < 1?

     Thay (0; 1) vào bất phương trình, ta được: 1 < 1 (sai). Do đó cặp số này không là nghiệm của bất phương trình.

  • Câu 7: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 8: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b, độ dài các cạnh tam giác thỏa mãn biểu thức \left\{ \begin{matrix}
a = x^{2} + x + 1 \\
b = 2x + 1 \\
c = x^{2} - 1 \\
\end{matrix} ight.với x là số thực lớn hơn 1. Tính độ lớn góc \widehat{A}?

    Áp dụng định lí cosin ta có: \cos\widehat{A} = \frac{b^{2} + c^{2} -
a^{2}}{2bc}

    Ta có: \left\{ \begin{matrix}
a^{2} = x^{4} + 2x^{3} + 3x^{2} + 2x + 1 \\
b^{2} = 4x^{2} + 4x + 1 \\
c^{2} = x^{4} - 2x^{2} + 1 \\
bc = 2x^{3} + x^{2} - 2x - 1 \\
\end{matrix} ight.

    Từ đó suy ra

    b^{2} + c^{2} - a^{2} = -
bc

    \Rightarrow \cos\widehat{A} = -
\frac{1}{2}

    \Rightarrow \widehat{A} =
120^{0}

  • Câu 9: Vận dụng

    Biểu thức F(x;y)
= y - x đạt giá trị nhỏ nhất với điều kiện \left\{ \begin{matrix}
2x - y \geq 2 \\
x - 2y \leq 2 \\
x + y \leq 5 \\
x \geq 0 \\
\end{matrix} ight. tại điểm M có toạ độ là:

    Vẽ các đường thẳng :

    \begin{matrix}
\left( d_{1} ight):y = 2x - 2 \\
\left( d_{2} ight):y = \frac{1}{2}x - 1 \\
\left( d_{3} ight):y = 5 - x \\
\end{matrix}

    Khi đó miền nghiệm của hệ là miền trong của tam giác ABC

    Tọa độ các đỉnh: A\left(
\frac{7}{3};\frac{8}{3} ight); B(4;1);C\left( \frac{2}{3}; - \frac{2}{3}
ight)

    Ta có : F(4;1) = - 3; \ \ F\left( \frac{2}{3}; - \frac{2}{3} ight) =
\frac{- 4}{3} \Rightarrow F_{\min}
= - 3

  • Câu 10: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 11: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 12: Vận dụng

    Tam giác ABC vuông tại A,\ AB = AC = 2. Độ dài vectơ 4\overrightarrow{AB} -
\overrightarrow{AC} bằng:

    Vẽ \overrightarrow{AB'} =
4\overrightarrow{AB};\ \ \ \ \ \ \overrightarrow{AC'} = -
\overrightarrow{AC}. Vẽ hình bình hành AC'DB'

    Ta có: \left| 4\overrightarrow{AB} -
\overrightarrow{AC} ight| = \left| \overrightarrow{AB'} +
\overrightarrow{AC'} ight| = \left| \overrightarrow{AD} ight| =
AD

    Do đó AD = \sqrt{A{B'}^{2} +
A{C'}^{2}} = \sqrt{8^{2} + 2^{2}} = 2\sqrt{17}.

  • Câu 13: Vận dụng

    Cho hai điểm A(2,2), B(5,
- 2). Tìm M trên tia Ox sao cho \widehat{AMB\ } = \
90^{o}.

    Gọi M(x;0), với x\mathbb{\in R}.

    Khi đó \overrightarrow{AM} = (x - 2; -
2),\ \ \overrightarrow{BM} = (x - 5;2).

    Theo yêu cầu đề bài ta có \overrightarrow{AM}.\overrightarrow{BM} = 0
\Leftrightarrow (x - 2)(x - 5) - 4
= x^{2} - 7x + 6 = 0 \Rightarrow
\left\lbrack \begin{matrix}
x = 1 \Rightarrow M(1;0) \\
x = 6 \Rightarrow M(6;0) \\
\end{matrix} ight..

  • Câu 14: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight.?

     Thay tọa độ (0;0) vào hệ \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight. ta được \left\{\begin{matrix}-1>0\\ 4<0\end{matrix}ight. không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.

  • Câu 15: Thông hiểu

    Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?

     Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là kết luận của định lí.

  • Câu 16: Thông hiểu

    Cho hàm số y =
\left\{ \begin{matrix}
- 2x + 1 & khi & x \leq - 3 \\
\frac{x + 7}{2} & khi & x > - 3 \\
\end{matrix} ight.. Biết f(x0) = 5 thì x0

    TH1. x0 ≤  − 3: Với f(x0) = 5 ⇔  − 2x0 + 1 = 5 ⇔ x0 =  − 2 (Loại).

    TH2. x0 >  − 3: Với f\left( x_{0} ight) = 5 \Leftrightarrow
\frac{x_{0} + 7}{2} = 5 \Leftrightarrow x_{0} = 3 (thỏa mãn).

  • Câu 17: Nhận biết

    Tập nghiệm của bất phương trình x^{2} - x
- 12 \leq 0 là?

    Ta có f(x) = x^{2} - x - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = - 3 \\
\end{matrix} ight.

    Bảng xét dấu:

    Dựa vào bảng xét dấu f(x) \leq 0
\Leftrightarrow - 3 \leq x \leq 4.

  • Câu 18: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 19: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là .

    Xét 2m^{2} - 3m - 2 = 0 \Leftrightarrow m
= - \frac{1}{2}hoặc m = 2

    • Khi m = - \frac{1}{2} thì bất phương trình trở thành x \geq -
\frac{1}{5} nên không có nghiệm đúng với mọi x.

    • Khi m = 2 thì bất phương trình trở thành  − 1 ≤ 0 nên có nghiệm đúng với mọi x.

    • Khi \left\{ \begin{matrix}
m eq - \frac{1}{2} \\
m eq 2 \\
\end{matrix} ight. thì yêu cầu bài toán

     ⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' \leq 0 \\
a < 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
3m^{2} - 7m + 2 \leq 0 \\
2m^{2} - 3m - 2 < 0 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{3} \leq m \leq 2 \\
- \frac{1}{2} < m < 2 \\
\end{matrix} \Leftrightarrow \frac{1}{3} \leq m < 2 ight.

    Kết hợp hai trường hợp ta được \frac{1}{3}
\leq m \leq 2 là giá trị cần tìm.

  • Câu 20: Thông hiểu

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 21: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 22: Thông hiểu

    Cho hàm số bậc hai y = ax^{2} + bx + c;(a eq 0) có đỉnh I( - 1;4) và đi qua điểm M( - 2;5). Xác định giá trị biểu thức S = a + b + c?

    Parabol có đỉnh I( - 1;4)

    \Leftrightarrow \left\{ \begin{matrix}- \dfrac{b}{2a} = - 1 \\4 = a.( - 1)^{2} + b.( - 1) + c \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a - b = 0 \\a - b + c = 4 \\\end{matrix} ight.(*)

    Parabol đi qua điểm M( - 2;5) suy ra

    5 = a( - 2)^{2} + b.( - 2) +
c

    \Leftrightarrow 4a - 2b + c =
5(**)

    Từ (*) và (**) ta có hệ phương trình

    \left\{ \begin{matrix}
2a - b = 0 \\
a - b + c = 4 \\
4a - 2b + c = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 5 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = 1 + 2 + 5 =
8

  • Câu 23: Nhận biết

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 24: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 25: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(6;0),B(3;1)C( - 1; - 1). Tính số đo góc B của tam giác đã cho.

    Ta có: \overrightarrow{AB} = ( -
3;1)\overrightarrow{CB} =
(4;2).

    \cos B =
\frac{\overrightarrow{AB}.\overrightarrow{CB}}{AB.CB} = \frac{-
10}{\sqrt{10}.\sqrt{20}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CB} ight) = 135^{o}.

  • Câu 26: Thông hiểu

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 27: Nhận biết

    Cho tam giác ABCcân tại A, \widehat{A} = 120^{o} AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{o} = - \frac{1}{2}a^{2}.

  • Câu 28: Thông hiểu

    Cho \pi <
\alpha < \frac{3\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có : \pi < \alpha <
\frac{3\pi}{2} ightarrow 0 < \frac{3\pi}{2} - \alpha <
\frac{\pi}{2}\overset{}{ightarrow} \left\{ \begin{matrix}
\sin\left( \frac{3\pi}{2} - \alpha ight) > 0 \\
\cos\left( \frac{3\pi}{2} - \alpha ight) > 0 \\
\end{matrix} ight. \overset{}{ightarrow}\tan\left( \frac{3\pi}{2} -
\alpha ight) > 0.

  • Câu 29: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 30: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 31: Thông hiểu

    Cho phương trình \frac{x^{2} - 4x + 2}{\sqrt{x - 2}} = \sqrt{x -2}. Số nghiệm của phương trình này là:

    ĐKXĐ: x > 2 khi đó phương trình trở thành x^{2} - 4x + 2 = x - 2\Leftrightarrow x^{2} - 5x + 4 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight..

    Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.

  • Câu 32: Vận dụng

    Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, OQ=\sqrt{2}+\sqrt{6}m

    Tính độ dài PT

    Khi đó đoạn PT bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\widehat {SQB} = \widehat {PQT} = \alpha } \\   {\widehat {TOP} = \beta } \end{array}} ight.

    Áp dụng định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  P{Q^2} = O{P^2} + O{Q^2} - 2OP.OQ.\cos \widehat {POQ} \hfill \\   \Rightarrow P{Q^2} = {\left( {\sqrt 2 } ight)^2} + {\left( {\sqrt 2  + \sqrt 6 } ight)^2} - 2.\sqrt 2 .\left( {\sqrt 2  + \sqrt 6 } ight).\cos {45^0} \hfill \\   \Rightarrow PQ = 2\sqrt 2 \left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  \cos \alpha  = \cos \widehat {OQP} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{O{Q^2} + P{Q^2} - O{P^2}}}{{2.OQ.PQ}} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{{{\left( {\sqrt 2  + \sqrt 6 } ight)}^2} + {{\left( {2\sqrt 2 } ight)}^2} - {{\left( {\sqrt 2 } ight)}^2}}}{{2.\left( {\sqrt 2  + \sqrt 6 } ight).\sqrt 2 }} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{2} \Rightarrow \alpha  = {30^0} \hfill \\ \end{matrix}

    Ta lại có: \beta  = {45^0} + \alpha  = {45^0} + {30^0} = {75^0}

    => {\widehat {TPO}}=75^0

    Xét tam giác OTP ta có: 

    \begin{matrix}  \widehat {OTP} + \widehat {TOP} + \widehat {TPO} = {180^0} \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {\widehat {TOP} + \widehat {TPO}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {{{45}^0} + {{75}^0}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {60^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác OTP ta có:

    \begin{matrix}  \dfrac{{OP}}{{\sin \widehat {OTP}}} = \dfrac{{PT}}{{\sin \widehat {TOP}}} \hfill \\   \Rightarrow PT = \dfrac{{OP.\sin \widehat {TOP}}}{{\sin \widehat {OTP}}} \hfill \\   \Rightarrow PT = \dfrac{{2.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{2\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 34: Thông hiểu

    Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?

    *a = 0thì bpt trở thành  − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.

    * a ≠ 0 thì ax^{2} - x + a \geq 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 4a^{2} \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
a \geq \frac{1}{2} \\
a \leq - \frac{1}{2} \\
\end{matrix} ight.\  \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow a \geq \frac{1}{2}.

  • Câu 35: Thông hiểu

    Đồ thị hình bên dưới là đồ thị của hàm số nào?

    Đồ thị cắt trục tung tại điểm có tung độ bằng 1.

    Đồ thị cắt trục hoành tại điểm có hoành độ bằng 1, phương trình hoành độ giao điểm phải có nghiệm x = 1, ta chỉ có phương trình 2x^{2} - 3x + 1 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = \frac{1}{2} \\
\end{matrix} ight..

  • Câu 36: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 37: Thông hiểu

    Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng 5\sqrt{5} là:

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  = \left( {x - 6;10} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {AB} } ight| = \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  \hfill \\  \left| {\overrightarrow {AB} } ight| = 5\sqrt 5  \hfill \\   \Leftrightarrow \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  = 5\sqrt 5  \hfill \\   \Leftrightarrow {x^2} - 12x + 136 = 125 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 11} \\   {x = 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 39: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

  • Câu 40: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 41: Vận dụng cao

    Cho \frac{x^{2} -
2(m + 1)x + 6m - 2}{\sqrt{x - 2}} = \sqrt{x - 2}(1). Với m là bao nhiêu thì (1) có nghiệm duy nhất

    ĐK x > 2

    \frac{x^{2} - 2(m + 1)x + 6m - 2}{\sqrt{x
- 2}} = \sqrt{x - 2} \Rightarrow x^{2} - 2(m + 1)x + 6m - 2 = x - 2
\Leftrightarrow x^{2} - (2m + 3)x + 6m = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 \\
x = 2m \\
\end{matrix} ight..

    Phương trình (1) có nghiệm duy nhất \Leftrightarrow \left\lbrack \begin{matrix}
2m = 3 \\
2m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{3}{2} \\
m \leq 1 \\
\end{matrix} ight..

  • Câu 42: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ vecto \overrightarrow{u} = - 3\overrightarrow{i} +
7\overrightarrow{j} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} = -
3\overrightarrow{i} + 7\overrightarrow{j} = ( - 3;7).

  • Câu 43: Thông hiểu

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 44: Nhận biết

    Biết phương trình \sqrt{7x + 1} = 2\sqrt{x + 4} có nghiệm duy nhất là x = x_{0} . Hãy chọn khẳng định đúng.

    ĐK x \in \left\lbrack - \frac{1}{7}; +
\infty ight)

    \sqrt{7x + 1} = 2\sqrt{x + 4}\Leftrightarrow 7x + 1 = 4(x + 4)\Leftrightarrow x = 5(TM)  \Rightarrow x_{0} = 5 \in (4;6).

  • Câu 45: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo