Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 2: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 3: Nhận biết

    Câu nào là mệnh đề toán học?

     Mệnh đề toán học là: "2 là số tự nhiên"

  • Câu 4: Nhận biết

    Cho \overrightarrow{a} = ( - 1;2),\ \overrightarrow{b}
= (5; - 7). Tìm tọa độ của vectơ \overrightarrow{a} -
\overrightarrow{b}.

    Ta có \overrightarrow{a} -
\overrightarrow{b} = \left( - 1 - 5;2 - ( - 7) ight) = ( -
6;9).

  • Câu 5: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + 3y - 2 \geq 0 \\
2x + y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
0 + 3.1 - 2 \geq 0 \\
2.0 + 1 + 1 \leq 0 \\
\end{matrix} ight..Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
- 1 + 3.1 - 2 \geq 0 \\
2.( - 1) + 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng.

  • Câu 6: Vận dụng cao

    Cho đường thẳng (d):y = \left( a^{2} - 2 ight)x + a + b và bất phương trình x + y - 3 <
0. Tìm điều kiện của ab để mọi điểm thuộc (d) đều là nghiệm của bất phương trình đã cho.

    Để mọi điểm thuộc đường thẳng  (d)  đều là nghiệm của bất phương trình thì điều kiện cần là  (d):y = \left( a^{2} - 2 ight)x + a + b  phải song song với \left( {d'} ight):y =  - x + 3. Khi đó ta có:

    \left\{ \begin{matrix}
a^{2} - 2 = - 1 \\
a + b eq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = - 1 \\
b eq 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight. ta được (d):y = - x + b + 1

    Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng (d) là đồ thị của đường thẳng d' khi d' tịnh tiến xuống dưới theo trục Oy.

    Nghĩa là b + 1 < 3 \Rightarrow b <
2.

  • Câu 7: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 8: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 9: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{x^{2} + 2x + 3} + \frac{1}{\sqrt{5 -
2x}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\ .

    Phương trình x2 + 2x + 3 = 0 ⇔ x ∈ ⌀5 - 2x = 0 \Leftrightarrow x =
\frac{5}{2}.

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in \left( \  -
\infty;\frac{5}{2} ight).

    Vậy tập xác định của hàm số là D = \left(
\  - \infty;\frac{5}{2} ight).

  • Câu 10: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 11: Thông hiểu

    Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:

    Xét: \left\{ \begin{matrix}
\mathbf{x \in}\mathbf{Q} \\
\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{4}\mathbf{x
+}\mathbf{2}\mathbf{=}\mathbf{0} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow}\left\{ \begin{matrix}
\mathbf{x \in}\mathbf{Q} \\
\mathbf{x =}\mathbf{2}\mathbf{\pm}\sqrt{\mathbf{2}} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow} Không có x thỏa mãn.

  • Câu 12: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 13: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 14: Thông hiểu

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 15: Nhận biết

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 16: Thông hiểu

    Cho tam giác ABC, có trọng tâm G. Gọi A_{1},B_{1},C_{1} lần lượt là trung điểm của BC,CA,AB. Chọn khẳng định sai?

    Ta có: \overrightarrow{GC} = -
2\overrightarrow{GC_{1}} nên \overrightarrow{GC} =
2\overrightarrow{GC_{1}} sai.

    Chọn \overrightarrow{GC} =
2\overrightarrow{GC_{1}}.

  • Câu 17: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=(-5;0),\overrightarrow{b}=(4;x). Tìm x để \overrightarrow{a}\overrightarrow{b} cùng phương.

     Để \overrightarrow{a}\overrightarrow{b} cùng phương thì 

    \begin{matrix}{a_1}{b_2} - {a_2}{b_1} = 0 \hfill \\   \Rightarrow  - 5.x - 0.4 = 0 \hfill \\   \Rightarrow x = 0 \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Gọi O là giao điểm của hai đường chéo hình chữ nhật ABCD. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là \left|
\overrightarrow{AC} ight| = \left| \overrightarrow{BD}
ight|. Do độ dài hai đường chéo hình chữ nhật bằng nhau.

  • Câu 20: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 21: Vận dụng cao

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5|  − m = 0 có hai nghiệm phân biệt?

    PT: |x2−4|x|−5|  − m = 0 ⇔ |x2−4|x|−5|  = m .

    Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .

    Xét hàm số y = x2 − 4x − 5  (P1) có đồ thị như hình 1.

    Xét hàm số y = x2 − 4|x| − 5  (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:

    Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.

    Phần 2: Lấy đối xứng phần 1 qua trục Oy.

    Ta được đồ thị (P2) như hình 2.

    Xét hàm số y = |x2−4|x|−5| (P), ta có: y = \left\{ \begin{matrix}
x^{2} - 4|x| - 5\ \ \ \ \ \ \ \ \ \ (y \geq 0) \\
- \left( x^{2} - 4|x| - 5 ight)\ \ (y < 0) \\
\end{matrix} ight..

    Suy ra đồ thị hàm số (P) gồm hai phần:

    Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.

    Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.

    Ta được đồ thị (P) như hình 3.

    Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m   (1) có hai nghiệm phân biệt\Leftrightarrow
\left\lbrack \begin{matrix}
m > 9 \\
m = 0 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in (0;\ 2017brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 10;\ 11;\ 12;\ ...;\
2017 ight\}. Vậy có 2008 giá trị.

  • Câu 22: Thông hiểu

    Miền nghiệm của bất phương trình - x + y < 2 được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?

    Vẽ đường thẳng -x + y = 2

    Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.

    Vậy đáp án là:

  • Câu 23: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA(6;1),\ B( - 3;5) và trọng tâm G( - 1;1). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{6 + ( - 3) + x}{3} = - 1 \\
\frac{1 + 5 + y}{3} = 1 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 6 \\
y = - 3 \\
\end{matrix} ight.\ .

  • Câu 24: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 25: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 26: Vận dụng

    Cho hệ \left\{
\begin{matrix}
2x + 3y < 5\ \ \ (1) \\
x + \frac{3}{2}y < 5\ \ \ (2) \\
\end{matrix} ight.. Gọi S_{1} là tập nghiệm của bất phương trình (1), S_{2} là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì

    Trước hết, ta vẽ hai đường thẳng:

    \left( d_{1} ight):2x + 3y =
5

    \left( d_{2} ight):x + \frac{3}{2}y =
5

    Ta thấy (0\ \ ;\ \ 0) là nghiệm của cả hai bất phương trình. Điều đó có nghĩa gốc tọa độ thuộc cả hai miền nghiệm của hai bất phương trình. Say khi gạch bỏ các miền không thích hợp, miền không bị gạch là miền nghiệm của hệ.

    Quan sát hình vẽ, chọn đáp án S_{1}
\subset S_{2}. Do miền nghiệm d_{2} rộng hơn và chứa d_{1}.

  • Câu 27: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 28: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \cos\alpha.

    Ta có: \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{5}{13}.

  • Câu 29: Nhận biết

    Số nghiệm của phương trình 3x + \sqrt{x - 8} = \sqrt{4 - x}. là bao nhiêu?

    Xét phương trình: 3x + \sqrt{x - 8} =
\sqrt{4 - x}.

    Điều kiện: \left\{ \begin{matrix}
x - 8 \geq 0 \\
4 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 8 \\
x \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow x \in \varnothing..

    Vậy phương trình vô nghiệm.

  • Câu 30: Nhận biết

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 31: Vận dụng cao

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \sqrt[2017]{\sin\widehat{C}}

    Giả sử AB = c;BC = a;AC = b. Tính số đo góc \widehat{C}?

    Ta có:

    \sin\widehat{C} \in \lbrack - 1;1brack
\Rightarrow sin^{2017}\widehat{C} \geq sin^{2}\widehat{C}

    \Rightarrow sin^{2}\widehat{A} +
sin^{2}\widehat{B} \geq sin^{2}\widehat{C}

    \Rightarrow 4R^{2}.\left\lbrack
sin^{2}\widehat{A} + sin^{2}\widehat{B} ightbrack \geq
4R^{2}.sin^{2}\widehat{C}

    \Rightarrow a^{2} + b^{2} \geq
c^{2}

    \Rightarrow a^{2} + b^{2} - c^{2} \geq
0

    Theo định lí cosin ta có:

    \Rightarrow \cos\widehat{C} =
\frac{a^{2} + b^{2} - c^{2}}{2ab} \geq 0

    Ta thấy

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \frac{1 - \cos2\widehat{A}}{2} + \frac{1 -\cos2\widehat{B}}{2}

    = 1 - \frac{\cos2\widehat{A} +\cos2\widehat{B}}{2}

    = 1 - \cos\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B}ight)

    = 1 - \cos\widehat{C}.\cos\left(\widehat{A} - \widehat{B} ight) \geq 1

    Mặt khác \sqrt[2017]{\sin\widehat{C}}\leq \sqrt[2017]{1} = 1

    Do đó: sin^{2}\widehat{A} +
sin^{2}\widehat{B} = \sqrt[2017]{\sin\widehat{C}} khi \left\{ \begin{matrix}\cos\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = 0 \\\sin\widehat{C} = 1 \\\end{matrix} ight.

    \Rightarrow \widehat{C} =\dfrac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại \widehat{C}.

  • Câu 32: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 33: Vận dụng

    Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:

    Ta có:x2 − 2(m−1)x + m2 − 2m = 0

     ⇔ x2 − 2mx + m2 + 2x − 2m = 0

    \Leftrightarrow (x - m)(x - m + 2) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x_{1} = m \\
x_{2} = m - 2 \\
\end{matrix} ight.

    Để phương trình đã cho có hai nghiệm trái dấu \Leftrightarrow \left\{ \begin{matrix}
x_{1} eq x_{2} \\
x_{1}x_{2} < 0 \\
\end{matrix} \Leftrightarrow 0 < m < 2 ight. (1)

    Với m ∈ (0 ; 2) suy ra \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} < 0 \\
\end{matrix} ight. .

    Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0

     ⇔ (x2x1)(x2+x1) > 0

     ⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1

    Kết hợp điều kiện (1), ta được 0 < m < 1.

  • Câu 34: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình \sqrt{6 - 5x} = 2 - x?

    Ta có:

    \sqrt{6 - 5x} = 2 - x

    \Rightarrow \left\{ \begin{matrix}
2 - x \geq 0 \\
6 - 5x = (2 - x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x^{2} + x - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình bằng 1 + ( - 2) = - 1.

  • Câu 35: Vận dụng

    Một tam giác có ba cạnh là 52,56,60. Bán kính đường tròn ngoại tiếp là:

    Ta có: p = \frac{a + b + c}{2} = \frac{52 + 56 + 60}{2} = 84.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)} = \sqrt{84(84 - 52)(84 - 56)(84
- 60)} = 1344.

    S = \frac{abc}{4R} \Rightarrow R =
\frac{abc}{4S} =
\frac{52.56.60}{4.1344} = \frac{65}{2}.

  • Câu 36: Nhận biết

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 37: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 38: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(–4;0),B(–5;0)C(3;0). Tìm điểm M thuộc trục hoành sao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}.

    M \in Ox \Rightarrow
M(a;0).

    Ta có: \overrightarrow{MA} = ( - 4 -
a;0); \overrightarrow{MB} = ( - 5 -
a;0) ;\overrightarrow{MC} = (3 -
a;0).

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow - 3a - 6 = 0 \Leftrightarrow
a = - 2 \Rightarrow M( - 2;0).

  • Câu 39: Vận dụng

    Cho hai điểm cố định A,B; gọi I là trung điểm AB. Tập hợp các điểm M thoả: \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} - \overrightarrow{MB}
ight| là:

    Ta có \left| \overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} -\overrightarrow{MB} ight|\Leftrightarrow \left| 2\overrightarrow{MI}ight| = \left| \overrightarrow{BA} ight| \Leftrightarrow 2MI = BA\Leftrightarrow MI = \frac{BA}{2}

    Vậy tập hợp các điểm M là đường tròn đường kính AB.

  • Câu 40: Thông hiểu

    Cho hai vectơ \overrightarrow{u} = ( - 4; - 3)\overrightarrow{v} = ( - 1; - 7). Góc giữa hai vectơ \overrightarrow{u}\overrightarrow{v} là:

    \cos\left( \overrightarrow{u},\overrightarrow{v} ight) = \dfrac{( - 4)(- 1) + ( - 3).( - 7)}{\sqrt{4^{2} + 3^{2}}.\sqrt{1^{2} + 7^{2}}} =\dfrac{\sqrt{2}}{2}

    \Rightarrow \left( \overrightarrow{u},\overrightarrow{v} ight) =45^{0}

  • Câu 41: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là D = [ − 1;  + ∞) ∖ {0}.

  • Câu 42: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{x}{2} + \frac{y}{3} - 1 \geq 0 \\
x \geq 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{0}{2} + \frac{0}{3} - 1 \geq 0 \\
0 \geq 0 \\
0 + \frac{1}{2} - \frac{3.0}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(2;1) \Rightarrow \left\{
\begin{matrix}
\frac{2}{2} + \frac{1}{3} - 1 \geq 0 \\
2 \geq 0 \\
2 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng.

  • Câu 43: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 44: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 45: Vận dụng cao

    Biết phương trình (x + 5)(2 - x) = 3\sqrt{x^{2} + 3x}có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?

    Điều kiện:

    x2 + 3x ≥ 0⇔ \left\lbrack \begin{matrix}
x \leq - 3 \\
x \geq 0 \\
\end{matrix} ight.\ (1)

    phương trình \Leftrightarrow x^{2} + 3x +
3\sqrt{x^{2} + 3x} - 10 = 0.

    Đặt t = \sqrt{x^{2} + 3x}, điều kiện t ≥ 0.

    Phương trình trở thành t2 + 3t − 10 = 0

    \left\lbrack \begin{matrix}
t = 2(TM) \\
t = - 5(KTM) \\
\end{matrix} ight. \sqrt{x^{2} + 3x} = 2 \Leftrightarrow x^{2} + 3x -
4 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 = x_{2} \\
x = - 4 = x_{1} \\
\end{matrix} ight., thoả mãn (1) ⇒ x1 + 4x2 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo