Miền nghiệm của bất phương trình
chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Miền nghiệm của bất phương trình
chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Cho hình thang vuông
có
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa
Dựng hình bình hành ADBM ta có:
Do nên
tại H,
Tứ giác ADBH là hình vuông nên , ta cũng tính được
.
Dựng hình bình hành DMNC ta có: .
Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.
Ta có:
Trong mặt phẳng tọa độ
cho ba điểm
và
Tìm điểm
thuộc trục hoành sao cho ![]()
Vì .
Ta có:
.
Ta có:
.
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Cho tam giác
, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?
Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm . Vậy có 6 véc tơ.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?
*x2 − x − 5 = 0 có 2 nghiệm phân biệt
* − x2 − x − 1 = 0vô nghiệm, a = − 1 < 0 nên − x2 − x − 1 < 0, ∀x ∈ ℝ
*2x2 + x = 0 có 2 nghiệm phân biệt
*x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Cặp số nào sau đây là nghiệm của bất phương trình
?
Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:
Vậy (0;3) không là cặp nghiệm của bất phương trình
Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:
Vậy (6; 1) là cặp nghiệm của bất phương trình.
Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:
Vậy (2; 4) không là cặp nghiệm của bất phương trình.
Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:
Vậy (3; 2) không là cặp nghiệm của bất phương trình.
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là và
(ha)
Điều kiện:
Lợi nhuận thu được là (đồng).
Tổng số công dùng để trồng ha cà phê và
ha sầu riêng là
.
Ta có hệ bất phương trình sau:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình
Miền nghiệm của hệ bất phương trình là tứ giác
(kể cả biên)
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là tọa độ của một trong các đỉnh
.
Ta có: .
Suy ra lớn nhất khi
Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Cho tam giác
có
là trọng tâm. Mệnh đề nào sau đây đúng?
Gọi là trung điểm của
Mà
là trọng tâm của tam giác
Từ suy ra
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Tập xác định của hàm số
là
Ta có :
• Khi x < 2: xác định khi
.
Suy ra D1 = (−∞;2).
• Khi x ≥ 2: xác định khi x + 7 ≥ 0 ⇔ x ≥ − 7.
Suy ra D1 = [2; + ∞).
Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.
Số nghiệm của phương trình
là:
Điều kiện:
Vậy phương trình đã cho có tất cả 1 nghiệm.
Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

Tập hợp A biểu thị trên trục số là nửa khoảng
Tam thức bậc hai
:
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Tìm tất cả các giá trị thực của tham số m sao cho phương trình (m−2)x2 − 2mx + m + 3 = 0 có hai nghiệm dương phân biệt.
Yêu cầu bài toán
.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Giả sử
. Tính số đo góc
?
Ta có:
Theo định lí cosin ta có:
Ta thấy
Mặt khác
Do đó: khi
Vậy tam giác ABC là tam giác vuông tại .
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với
. Bất phương trình thứ hai sai nên không thỏa mãn.
Với
. Đúng. Chọn đáp án này.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho hình vuông
. Khẳng định nào sau đậy đúng?
Ta có tứ giác là hình vuông nên
hay
nên phương án
đúng.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Trên đường thẳng
lấy điểm
sao cho
. Điểm
được xác định đúng trong hình vẽ nào sau đây:

Ta có nên
và
và
ngược hướng.
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là − 1 và 2, cắt trục Oy tại điểm có tung độ bằng − 2.
Gọi A và B là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là − 1 và 2. Suy ra A(−1;0), B(2;0).
Gọi C là giao điểm của (P) với trục Oy có tung độ bằng − 2. Suy ra C(0;−2).
Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:
.
Vậy (P) : y = x2 − x − 2.
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Từ một đỉnh tháp chiều cao
, người ta nhìn hai điểm
và
trên mặt đất dưới các góc nhìn là
và
so với phương nằm ngang. Ba điểm
thẳng hàng. Tính khoảng cách
(chính xác đến hàng đơn vị)?
Ta có: Trong tam giác vuông :
Trong tam giác vuông :
Suy ra: khoảng cách
Tổng
bằng vectơ nào sau đây?
Ta có
.
Cho tứ giác
Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ ![]()
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Số nghiệm của phương trình:
là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Trong mặt phẳng tọa độ
, tọa độ trung điểm
của đoạn thẳng
với
là:
Tọa độ trung điểm M của AB là:
Vậy tọa độ trung điểm M của AB là .
Anh T dự định trồng cà phê và hạt tiêu trên một mảnh đất có diện tích 8ha. Nếu trồng 1ha cà phê thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1ha hạt tiêu thì cần 30 ngày công và thu được 50 triệu đồng. Anh T cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, anh T chỉ có thể sử dụng không quá 180 ngày công cho việc trồng hai loại cây.
Gọi là số hecta đất trồng cà phê và
là số hecta đất trồng hạt tiêu.
Ta có các điều kiện ràng buộc đối với như sau:
Hiển nhiên .
Diện tích canh tác không vượt quá 8 ha nên .
Số ngày công sử dụng không vượt quá 180 nên .
Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc:
Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ , ta được miền tứ giác
(Hình).
Toạ độ các đỉnh của tứ giác đó là: .
Gọi là số tiền (đơn vị: triệu đồng) anh T thu được, ta có:
.
Ta phải tìm thoả mãn hệ bất phương trình sao cho
đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức
trên miền tứ giác
.
Tính các giá trị của biểu thức tại các đỉnh của đa giác, ta có:
Tại
Tại
Tại
Tại
đạt giá trị lớn nhất bằng 340 tại
.
Vậy để thu được nhiều tiền nhất, anh T cần trồng 6ha cà phê và 2ha hạt tiêu.
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.