Trong mặt phẳng tọa độ cho hai điểm
và
Tìm tọa độ điểm
thuộc trục tung sao cho tam giác
vuông tại
Vì .
Ta có:
Để tam giác ABC vuông tại A khi và chỉ khi
.
Trong mặt phẳng tọa độ cho hai điểm
và
Tìm tọa độ điểm
thuộc trục tung sao cho tam giác
vuông tại
Vì .
Ta có:
Để tam giác ABC vuông tại A khi và chỉ khi
.
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó
Ta có: G là trọng tâm tam giác ABC =>
Cho tọa độ ba điểm . Tính
?
Ta có:
Cho tam giác đều cạnh
. Tính
Gọi là trung điểm của
Suy ra
Ta lại có
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
Ta có:
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:
Ta có: mệnh đề là mệnh đề sai vì
nên không có bất kì giá trị
nào thỏa mãn
Vì mệnh đề
là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.
Chọn đáp án
Tứ giác MNPQ là hình bình hành nếu:
Hình vẽ minh họa
Ta có MNPQ là hình bình hành nếu
Tam thức bậc hai
Ta có: và
.
Phương trình có hai nghiệm là
và
.
Do đó
.
Cho tam giác , gọi
là trung điểm của
và
là trọng tâm của tam giác
. Đẳng thức vectơ nào sau đây đúng?
Ta có
Mặt khác và
cùng hướng
hay
.
Gọi lần lượt là trung điểm của các cạnh
và
của tứ giác
. Mệnh đề nào sau đây đúng?
Do M là trung điểm các cạnh AB nên .
Do N lần lượt là trung điểm các cạnh DC nên .
Ta có
Mặt khác
Do đó .
Số tập hợp con của tập hợp là:
Các tập hợp con của tập A:
Số tập con có 3 phần tử là
Số tập con có 2 phần tử là
Số tập con có 1 phần tử là
Vậy tập hơp A có tất cả 8 tập con.
Hãy liệt kê các phần tử của tập hợp
Ta có: không có nghiệm thực.
Cho hình vuông cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Trong mặt phẳng tọa độ cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng
Hệ số góc a = 2018.
Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hướng xuống.
Parabol cắt trục hoành tại 2 điểm (3;0) và (−1;0). Xét các đáp án, đáp án thỏa mãn.
Cho bốn điểm phân biệt thỏa mãn
. Khẳng định nào sau đây sai?
Phải suy ra là hình bình hành (nếu
không thẳng hàng) hoặc bốn điểm
thẳng hàng.
Đáp án sai là là hình bình hành.
Cho có
. Số đo của góc
là:
Ta có:
Tam giác có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)
Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt ⇔ Δ = 4 − m > 0 ⇔ m < 4.
Theo giả thiết
TH1:
TH2: : không thỏa mãn (*).
Do đó T = 3.
Một giá đỡ được gắn vào bức tường như hình vẽ. Tam giác ABC vuông cân ở đỉnh C. Người ta treo vào điểm A một vật có trọng lượng 10 N. Khi đó lực tác động vào bức tường tại hai điểm B và C có cường độ lần lượt là:
Cường độ lực tại C bằng cường độ lực tại A và bằng 10 N.
Cường độ lực tại B bằng (định lý Pyago cho tam giác vuông cân).
Cho hàm số . Ta có kết quả nào sau đây đúng?
;
.
Cho tam thức f(x) = (a ≠ 0), có ∆ =
. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Miền nghiệm của bất phương trình được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?
Vẽ đường thẳng -x + y = 2
Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.
Vậy đáp án là:
Tập nghiệm của phương trình
là:
Điều kiện: .
Ta có:
.
Thử lại không thỏa mãn.
Vậy
Tổng các nghiệm của phương trình là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Cặp số không là nghiệm của bất phương trình nào sau đây?
Xét đáp án
Thay ta được:
Vậy cặp số không là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Điểm thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ lần lượt vào từng phương trình của hệ
ta thấy thỏa mãn.
Tam giác thỏa mãn đẳng thức
Biết . Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Số nghiệm của phương trình là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Cho hệ bất phương trình có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cặp vectơ nào sau đây vuông góc?
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
đúng.
Vì suy ra đáp án
và
sai.
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Phần tô đậm trong hình vẽ dưới đây (kể cả đường thẳng d) biểu diễn miền nghiệm của bất phương trình.
Thay điểm O(0;0) thuộc phần tô đậm vào bất phương trình , ta được:
(loại).
Thay điểm (-4;1) thuộc phần tô đậm vào bất phương trình ta được:
(loại).
Thay điểm (-5;1) thuộc phần tô đậm vào bất phương trình ta được:
(loại).
Vậy chọn
Trong mặt phẳng tọa độ cho hai vectơ
và
Tính tích vô hướng
Ta có: và
Vậy
Tam giác ABC có . Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Điểm cuối của thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho 4 điểm . Ba điểm nào trong 4 điểm đã cho là thẳng hàng?
Ta có: 3 điểm
thẳng hàng.
Cho hình bình hành có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Ta có:
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?
*x2 − x − 5 = 0 có 2 nghiệm phân biệt
* − x2 − x − 1 = 0vô nghiệm, a = − 1 < 0 nên − x2 − x − 1 < 0, ∀x ∈ ℝ
*2x2 + x = 0 có 2 nghiệm phân biệt
*x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.