Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
Ta có:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
Ta có:
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?
Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Phát biểu lại mệnh đề "Nếu n = 2 thì là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Trong mặt phẳng tọa độ , cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là và
(ha)
Điều kiện:
Lợi nhuận thu được là (đồng).
Tổng số công dùng để trồng ha cà phê và
ha sầu riêng là
.
Ta có hệ bất phương trình sau:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình
Miền nghiệm của hệ bất phương trình là tứ giác
(kể cả biên)
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là tọa độ của một trong các đỉnh
.
Ta có: .
Suy ra lớn nhất khi
Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.
Chọn mệnh đề đúng trong các mệnh đề sau đây:
Với nhưng
Mệnh đề
sai.
Với nhưng
là mệnh đề sai
Mệnh đề
sai.
Với nhưng
là mệnh đề sai
Mệnh đề
sai.
Chọn đáp án
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính
Ta có:
Tam giác ABC vuông tại A ta có:
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:
Vậy
Nghiệm của phương trình là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh
Đó là các vectơ:
Tam thức bậc hai nhận giá trị dương khi và chỉ khi
Dựa vào bảng xét dấu, ta chọn đáp án
Tìm điểm M(a;b) với a < 0 nằm trên Δ : x + y − 1 = 0 và cách N(−1;3) một khoảng bằng 5. Giá trị của a − b là
.
Ta có: MN = 5 ⇒ MN2 = (−1−t)2 + (2+t)2 = 25
⇔ 2t2 + 6t − 20 = 0
⇒ M(−5;6) ⇒ a − b = − 11
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)
Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT
Vậy , ymax = 21.
Cho tam giác đều có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Tìm tập xác định của hàm số .
Hàm số xác định .
Vậy tập xác định: .
Miền nghiệm của bất phương trình chứa điểm có tọa độ:
Ta có:
Vì là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ
.
Cho có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Cho tam giác ,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Các hệ bất phương trình ;
có chứa các bất phương trình bậc hai
=> Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.
Đáp án là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.
Đáp án có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.
Biết phương trình có một nghiệm có dạng
, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.
Điều kiện:
Với điều kiện trên, phương trình tương đương
⇔ x2 − 3x + 1 = 0
hoặc
Theo yêu cầu đề bài ta chọn nghiệm .
Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.
Miền nghiệm của bất phương trình chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó
Ta có: G là trọng tâm tam giác ABC =>
Cho hình bình hành Gọi
là trọng tâm của tam giác
Mệnh đề nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Do đó
Cho hình vuông . Khẳng định nào sau đây đúng?
Chọn Vì
Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi
Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0, có Δ′x = (m+2)2 + 2m + 1.
Yêu cầu bài toán ⇔ Δ′x ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0
là giá trị cần tìm.
Cho hai điểm ,
. Tìm
trên tia Ox sao cho
.
Gọi , với
.
Khi đó .
Theo yêu cầu đề bài ta có
.
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?
Nhận xét: Đồ thị có đỉnh .
Thay tọa độ vào hàm số
ta thấy thỏa mãn.
Cho hàm số: . Tìm x để
Ta có:
Vậy x = 3 hoặc x = 0
Trong mặt phẳng tọa độ Oxy, cho . Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho tam giác có
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Ta có
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho hình bình hành có
là trung điểm của
Khẳng định nào sau đây đúng?
Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ theo hai vectơ
và
Vì là hình bình hành nên
Vì
là trung điểm
nên
suy ra
Trong mặt phẳng , cho
và
. Khẳng định nào sau đây là sai?
Ta có: nên đáp án Tích vô hướng của hai vectơ đã cho là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Đáp án sai là Góc giữa hai vectơ là .
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Trong mặt phẳng tọa độ cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Tập nghiệm của bất phương trình là:
Ta có:
Phương trình có nghiệm là bao nhiêu?
.
Vậy phương trình vô nghiệm.
Miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Đầu tiên, thu gọn bất phương trình đề bài đã cho về thành
Xét điểm . Vì
nên miền nghiệm của bất phương trình đã cho không chứa điểm
.
Cho tam giác có các góc thỏa mãn biểu thức
Khi đó tam giác là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:
Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2.
Do đó