Cho tam thức bậc hai . Khẳng định nào sau đây đúng?
Ta có:
Cho tam thức bậc hai . Khẳng định nào sau đây đúng?
Ta có:
Cho hai lực và
cùng tác động vào một vật đứng tại điểm O, biết hai lực
và
đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Cho lục giác đều tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Cho tam giác có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Trong mặt phẳng tọa độ cho hai vectơ
và
Tính tích vô hướng
Ta có: và
Vậy
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Tìm tập xác định của hàm số
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Giá trị là:
Ta có: .
Trên đường thẳng lấy điểm
sao cho
. Điểm
được xác định đúng trong hình vẽ nào sau đây:
Ta có nên
và
và
ngược hướng.
Giải bất phương trình
Ta có: .
Tìm m để với mọi x ∈ ℝ?
Để bất phương trình với mọi x ∈ ℝ thì:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT
Vậy , ymax = 21.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi
Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Tập nghiệm của phương trình là?
Điều kiện: .
Ta có: . Loại
.
Vậy .
Cho . Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Giá trị nguyên dương lớn nhất của x để hàm số xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).
Chiều dài hàng rào là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho tam giác đều có cạnh bằng
Tính tích vô hướng
.
Miền nghiệm của bất phương trình chứa điểm nào sau đây?
Đầu tiên ta thu gọn bất phương trình đã cho về thành
Xét điểm Vì
nên miền nghiệm của bất phương trình đã cho chứa điểm
Khoảng giá trị của x khi trong hệ bất phương trình
là:
Với hệ bất phương trình trở thành:
Vậy khi thì khoảng giá trị của x là
.
Cho tam giác có
là trung điểm của
là trọng tâm của tam giác
Khẳng định nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Vì
là trung điểm của
nên
Do đó
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét mệnh đề không chia hết cho 3:
TH1: với
, ta có:
không chia hết cho
TH2: với
, ta có:
không chia hết cho
TH3: với
, ta có:
không chia hết cho
thì
không chia hết cho
Gọi là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Trong hệ tọa độ cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho 4 điểm A, B, C, D phân biệt. Khi đó bằng
Ta có:
Cho tam giác thỏa mãn biểu thức
Khi đó tam giác là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Tam giác ABC có . Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho tam giác vuông cân tại
cạnh
Tính
Gọi là điểm đối xứng của
qua
Tam giác
vuông tại
có
Ta có suy ra
Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Xét đáp án
là bất phương trình bậc nhất 3 ẩn
, không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
là bất phương trình bậc nhất hai ẩn có dạng
,
.
Xét đáp án
là bất phương trình có chứa
nên không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
không là bất phương trình bậc nhất hai ẩn vì không có dạng
.
Xác định tập hợp sau đây trên trục số: :
Xác định tập hợp trên trục số như sau:
Biết và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Miền nghiệm của bất phương trình chứa điểm nào sau đây?
Xét điểm Vì
nên miền nghiệm của bất phương trình chứa điểm
Xét sự biến thiên của hàm số trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Ta có
Với mọi x1, x2 ∈ (0;+∞) và x1 < x2. Ta có .
Suy ra nghịch biến trên (0;+∞).
Cho 2 vectơ và
có
,
và
. Tính
.
Ta có
.
Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?
Trên khoảng (−3;−1) và (1;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−3;−1) và (1;3).
Cho hai điểm và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Xác định parabol biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ vào hệ
ta được
thỏa mãn.
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số là số nguyên tố.
(4) Số là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Trong mặt phẳng tọa độ , tọa độ vecto
là:
Ta có: .
Cho hai lực và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:
Ta có: .
Phương trình có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Cho tam giác ,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .