Giá trị
là:
Ta có: .
Giá trị
là:
Ta có: .
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng trục số như sau:

Vậy
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Trong mặt phẳng
, cho
và
. Khẳng định nào sau đây là sai?
Ta có: nên đáp án Tích vô hướng của hai vectơ đã cho là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Đáp án sai là Góc giữa hai vectơ là .
Số nghiệm của phương trình ![]()
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình.
Miền giá trị của hàm số
là
Cách 1: Do x2 + 1 > 0; ∀x ∈ ℝ nên hàm số xác định với mọi x ∈ ℝ
Gọi y0 là giá trị tùy ý, ta có phương trình:
⇔ (3−y0)x2 + 2x + 3 − y0 = 0(1)
+ Nếu y0 = 3 thì phương trình (1)trở thành: 2x = 0 ⇔ x = 0.
Vậy phương trình (1)có nghiệm y0 = 3(*).
+ Nếu y0 ≠ 3 thì phương trình (1)là phương trình bậc hai, nên nó có nghiệm khi và chỉ khi
Δ′ = 12 − (3−y0)2 ≥ 0
⇔ − y02 + 6y0 − 8 ≥ 0
⇔ 2 ≤ y0 ≤ 4.
Vậy phương trình (1)có nghiệm .
+ Kết hợp (*), (**) thì phương trình (1)có nghiệm ⇔ 2 ≤ y0 ≤ 4.
Vậy: Miền giá trị của hàm số là [2; 4].
Cách 2: Ta có
Suy ra GTNN của A = 2 khi và chỉ khi x = − 1.
Mặt khác
Suy ra GTLN của A = 4 khi và chỉ khi x = 1.
Vậy miền giá trị của hàm số là [2; 4].
Tất cả các giá trị của tham số m để các nghiệm của phương trình
cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:
Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: .
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng.
Cặp số
không là nghiệm của bất phương trình nào sau đây?
Xét đáp án
Thay ta được:
Vậy cặp số không là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Tập xác định của hàm số
là:
Hàm số .
Điều kiện xác định: .
Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).
Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.
Xét
+) (không thỏa mãn yêu cầu bài toán)
+) (không thỏa mãn)
Xét
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Tính độ dài đoạn thẳng
biết tọa độ
?
Ta có:
Cho
Tìm
biết
.
Ta có
Để
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Trong mp
cho
,
,
. Khẳng định nào sau đây sai?
Ta có suy ra
nên chọn đáp án sai
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là
Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.
Gọi là số phần tử của mỗi tập hợp thành phần như hình vẽ:
Theo giả thiết ta có:
Cũng theo giả thiết ta có:
Vậy số học sinh thích ít nhất một tong ba loại quả là
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét mệnh đề không chia hết cho 3:
TH1: với
, ta có:
không chia hết cho
TH2: với
, ta có:
không chia hết cho
TH3: với
, ta có:
không chia hết cho
thì
không chia hết cho
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Cho hình vuông
. Khẳng định nào sau đây đúng?
là hình vuông
.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là − 1 và 2, cắt trục Oy tại điểm có tung độ bằng − 2.
Gọi A và B là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là − 1 và 2. Suy ra A(−1;0), B(2;0).
Gọi C là giao điểm của (P) với trục Oy có tung độ bằng − 2. Suy ra C(0;−2).
Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:
.
Vậy (P) : y = x2 − x − 2.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi:
Ta có: và
.
Phương trình có hai nghiệm phân biệt
.
Do đó khi
.
Cho tam giác
đều cạnh
. Tính ![]()
Gọi là trung điểm của
Suy ra
Ta lại có
Trong mặt phẳng tọa độ
tìm điểm
thuộc trục hoành để khoảng cách từ đó đến điểm
bằng ![]()
Vì .
Ta có: .
Ta có:
.
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.
Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình có 2 nghiệm phân biệt. Suy ra
.
Đỉnh nằm phía trên trục hoành nên suy ra (bề lõm hướng xuống).