Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Trong mặt phẳng
, cho
và
. Khẳng định nào sau đây là sai?
Ta có: nên đáp án Tích vô hướng của hai vectơ đã cho là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Đáp án sai là Góc giữa hai vectơ là .
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Tích các nghiệm của phương trình
là:
Điều kiên:
Phương trình tương đương:
Đặt
Với t = 4 ta có:
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Giá trị
là:
Ta có: .
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Phủ định của mệnh đề “Phương trình
có 2 nghiệm phân biệt” là mệnh đề nào?
Phủ định của mệnh đề P là mệnh đề "không phải P".
Chọn đáp án Phương trình không phải có 2 nghiệm phân biệt.
Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:
Các ước dương của 12 là: 1; 2; 3; 4; 6; 12
=> Cách viết tập hợp đúng là:
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}. Vậy có 4 giá trị nguyên của m.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Phát biểu nào sau đây là mệnh đề đúng:
Mệnh đề chỉ sai khi
đúng,
sai.
là mệnh đề đúng, Luân Đôn là thủ đô của Hà Lan là mệnh đề sai
“
Luân Đôn là thủ đô của Hà Lan” là mệnh đề sai.
là số lẻ là mệnh đề đúng,
chia hết cho
là mệnh đề sai
“
là số lẻ
chia hết cho 2” là mệnh đề sai.
là số chính phương là mệnh đề đúng,
là số nguyên là mệnh đề đúng
“
là số chính phương
là số nguyên” là mệnh đề đúng.
Số chia hết cho
là mệnh đề đúng,
chia hết cho
là mệnh đề sai
“Số
chia hết cho
chia hết cho 9” là mệnh đề sai.
Chọn đáp án là số chính phương
là số nguyên.
Trong mặt phẳng tọa độ
, khoảng cách giữa hai điểm
và
bằng:
Khoảng cách giữa hai điểm M, N là
Trong mặt phẳng tọa độ
, cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Tìm các giá trị của
để
là đoạn có độ dài bằng 10. Biết
và
, với
là tham số.
Nếu thì
, suy ra loại.
Nếu thì
Để là một đoạn có độ dài bằng 10 khi và chỉ khi
Tam thức bậc hai
:

Dựa vào bảng xét dấu, chọn đáp án Âm với mọi .
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức
là:
Xét biếu thức có
và nghiệm là
Ta có bảng xét dấu như sau:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Hỏi có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình
?
Bất phương trình
Vì x2 ≥ 0, ∀x ∈ ℝ nên bất phương trình
Phương trình và
Bảng xét dấu

Dựa vào bảng xét dấu, ta thấy f(x) ≤ 0 ⇔ x ∈ (−3 ; −2) ∪ [ − 1 ; 1].
Kết hợp với x ∈ ℤ ta được x = {−1 ; 0 ; 1}.
Vậy có tất cả 3 giá trị nguyên cần tìm.
Tìm đáp án không phải mệnh đề trong các câu sau.
Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Hàm số y = − x2 + 2(m−1)x + 3 nghịch biến trên (1;+∞) khi giá trị m thỏa mãn:
Đồ thị hàm số có trục đối xứng là đường x = m − 1. Đồ thị hàm số đã cho có hệ số x2 âm nên sẽ đồng biến trên (−∞;m−1) và nghịch biến trên (m−1;+∞). Theo đề, cần: m − 1 ≤ 1 ⇔ m ≤ 2.
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm
sao cho
được gọi là ……của bất phương trình
”.
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm sao cho
được gọi là miền nghiệm của bất phương trình
.
Điều kiện nào là điều kiện cần và đủ để
là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Cho hình thoi
cạnh
và
. Đẳng thức nào sau đây đúng?
Vì tam giác cân và
, suy ra tam giác
đều cạnh
nên
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có