Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Tìm điều kiện cần và đủ để hai khoảng
và
là tập rỗng, biết
là số thực âm.
Điều kiện cần và đủ để hai tập giao khác rỗng là:
Trong mặt phẳng
cho
. Tính
?
Ta có ,
suy ra
.
Cho tam giác đều
có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: ![]()
Vì là mệnh đề sai nên
không thuộc miền nghiệm của bất phương trình.
Xác định A ∩ B trong trường hợp sau:
![]()
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Tính tổng tất cả các nghiệm của phương trình
?
Ta có:
Vậy tổng các nghiệm của phương trình bằng .
Số nghiệm của phương trình:
là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Cho parabol (P) : y = x2 − 4x + 3 và đường thẳng d : y = mx + 3. Tìm tất cả các giá trị thực của m để d cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng
.
Phương trình hoành độ giao điểm của (P) và d là x2 − 4x + 3 = mx + 3
.
Để d cắt (P) tại hai điểm phân biệt A, B khi và chỉ khi 4 + m ≠ 0 ⇔ m ≠ − 4.
Với .
Với .
Gọi H là hình chiếu của B lên OA. Suy ra BH = |xB| = |4+m|.
Theo giả thiết bài toán, ta có
.
Phương trình mx2 − (3m+2)x + 1 = 0 có tính chất nào sau đây:
Với m = 0 phương trình trở thành suy ra phương trình có nghiệm.
Với m ≠ 0, ta có Δ = (3m+2)2 − 4m = 9m2 + 8m + 4.
Vì tam thức 9m2 + 8m + 4 có am = 9 > 0, Δ′m = − 20 < 0 nên 9m2 + 8m + 4 > 0 với mọi m.
Do đó phương trình đã cho luôn có nghiệm với mọi m.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Từ suy ra
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?
Ta có:
Mệnh đề đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai. (Hay
đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai).
Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.
Hoành độ đỉnh của (P) là .
Suy ra tung độ đỉnh y = − 4m − 2. Do đó tọa độ đỉnh của (P) là I(1;−4m−2).
Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên − 4m − 2 = 3.1 − 1 ⇔ m = − 1.
Nghiệm của phương trình
là:
Điều kiện: .Ta có
( vì x + 3 > 0 )
⇔ x = 2.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:
Ta có: A\ B = {1; 4}.
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Cho
và một điểm
Có bao nhiêu điểm
thỏa mãn ![]()
Ta có . Suy ra tập hợp các điểm
thỏa mãn yêu cầu bài toán là đường tròn tâm
bán kính
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ
theo các vectơ đơn vị là
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Cho
Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại đáp án
và
ngược hướng.
Xét tỉ số không cùng phương. Loại đáp án Hai vectơ
đối nhau.
Xét tỉ số và
cùng hướng.
Chọn đáp án và
cùng hướng.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Tam thức bậc hai ![]()
Ta có: và
.
Phương trình có hai nghiệm là
và
.
Do đó
.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi
.
Ta có .
Mà theo giả thiết
Suy ra
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là: