Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Xét đáp án
là bất phương trình bậc nhất 3 ẩn
, không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
là bất phương trình bậc nhất hai ẩn có dạng
,
.
Xét đáp án
là bất phương trình có chứa
nên không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
không là bất phương trình bậc nhất hai ẩn vì không có dạng
.
Cho hai tập hợp khác rỗng
và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .
Cho 2 vectơ đơn vị
và
thỏa
. Hãy xác định
.
Ta có: và
.
Suy ra .
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − (m−1)x + m + 2 = 0 có hai nghiệm phân biệt x1, x2 khác 0 thỏa mãn ![]()
Đặt f(x) = x2 − (m−1)x + m + 2
Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi:
Theo Viet, ta có .
Yêu cầu bài toán
.
Kết hợp điều kiện ta được m ∈ (−∞;−2) ∪ (−2;−1).
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}. Vậy có 4 giá trị nguyên của m.
Trong mp
cho
,
,
. Khẳng định nào sau đây sai?
Ta có suy ra
nên chọn đáp án sai
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Mệnh đề nào sau đây sai?
Mệnh đề đúng khi
đúng và
đúng.
là tam giác đều
là mệnh đề đúng.
là tam giác đều là mệnh đề sai
“
là tam giác đều
” là mệnh đề sai.
Chọn đáp án là tam giác đều
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Cho tam giác
với trực tâm
.
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây là đúng?
Ta có là đường kính
.
Ta có
Ta lại có
Từ tứ giác
là hình bình hành
.
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10; − 4) để đường thẳng d : y = − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?
Xét phương trình: − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0
Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là
Vậy trong nửa khoảng[ − 10; − 4) có 6 giá trị nguyên m.
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Trong hệ trục tọa độ
, tọa độ của vectơ
là
Ta có
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có:
Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Giá trị
là:
Ta có: .
Cho góc
. Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Độ dài lớn nhất của đoạn
bằng:
Theo định lí hàm sin, ta có:
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Cho tam giác ABC và điểm M thỏa mãn
. Xác định vị trí điểm M.
Điểm là trọng tâm tam giác
khi và chỉ khi
.
Parabol y = − x2 + 2x + 3 có phương trình trục đối xứng là
Parabol y = − x2 + 2x + 3 có trục đối xứng là đường thẳng ⇔ x = 1.
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Tìm m để
với mọi x ∈ ℝ?
Để bất phương trình với mọi x ∈ ℝ thì:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Trong mặt phẳng
cho
. Tính
?
Ta có ,
suy ra
.
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Cho biết
. Tính
.
Ta có:
.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng
Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn:
.
Để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước
phải bằng
nghĩa là:
Vậy với thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Nếu
là trọng tâm tam giác
thì đẳng thức nào sau đây đúng?
Gọi là trung điểm
.
Ta có .