Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hai tập hợp khác rỗng A = \lbrack m - 3;1),B = ( - 3;4m + 5) với m\mathbb{\in R}. Tìm tất cả các giá trị của tham số m để tập A là tập con của tập B.

    A,B khác rỗng và A \subset B nên

    \left\{ \begin{matrix}
m - 3 < 1 \\
- 3 < 4m + 5 \\
- 3 < m - 3 \\
1 \leq 4m + 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 4 \\
m > - 2 \\
m > 0 \\
m \geq - 1 \\
\end{matrix} \Leftrightarrow 0 < m < 4 ight.

    Vậy giá trị m cần tìm là 0 < m < 4.

  • Câu 2: Vận dụng cao

    Phương trình 2x +
1 + x\sqrt{x^{2} + 2} + (x + 1)\sqrt{x^{2} + 2x + 3} = 0 có mấy nghiệm nguyên dương ?

    Đặt a = \sqrt{x^{2} + 2}\ \ ;\ b =
\sqrt{x^{2} + 2x + 3}\ \ \ \ (a,\ b > 0)\

    \Rightarrow x = \frac{b^{2} - a^{2} -
1}{2}

    Phương trình đã cho trở thành:

    \begin{matrix}
(b - a)\left\lbrack (a + b) + \frac{(a + b)^{2}}{2} + \frac{1}{2}
ightbrack = 0 \\
\Leftrightarrow a = b \Leftrightarrow x = - \frac{1}{2}. \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên dương.

  • Câu 3: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 4: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 5: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 6: Vận dụng

    Tam giác ABC cóAB = 10, AC = 24, diện tích bằng 120. Độ dài đường trung tuyến AM là:

    Ta có:

    Diện tích tam giác bằng 120

    \begin{matrix}  S = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.120}}{{10.23}} = 1 \hfill \\ \end{matrix}

    \Rightarrow \widehat A = {90^0} 

    Xét tam giác ABC vuông tại A ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} \hfill \\   \Rightarrow BC = \sqrt {{{10}^2} + {{24}^2}}  = 26 \hfill \\ \end{matrix}

    => Trung tuyến AM có độ dài là:

    AM = \frac{1}{2}BC = \frac{1}{2}.26 = 13

     

  • Câu 7: Thông hiểu

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đáp án là:

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đặt |x| = t(t \geq 0) thì phương trình (*) trở thành: t^{2} - 2mt + 9 - m = 0 (1)

    Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm t = 0 và một nghiệm t > 0.

    Khi t = 0 \Rightarrow m = 9 thì (1) \Leftrightarrow t^{2} - 18t = 0
\Rightarrow \left\lbrack \begin{matrix}
t = 18 > 0\ \ (TM) \\
t = 0 \\
\end{matrix} ight..

    Vậy m = 9

  • Câu 8: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 9: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 10: Vận dụng cao

    Cho biểu thức B xác định, rút gọn biểu thức

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}} với \pi < x < 2\pi?

    Ta có:

    \sin(x + 2013\pi) = \sin(x + \pi +
2012\pi) = \sin(x + \pi) = - \sin x

    Do đó:

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos
x}}

    B = \sqrt{2} + \frac{1}{\sin
x}.\sqrt{\frac{1 - \cos x + 1 + \cos x}{\left( 1 + \cos x ight)\left(
1 - \cos x ight)}}

    B = \sqrt{2} + \dfrac{1}{\sin x}.\sqrt{\dfrac{2}{1 - \cos^{2}x}}

    B = \sqrt{2} + \frac{1}{\sin x}.\sqrt{\dfrac{2}{\sin^{2}x}}

    B = \sqrt{2}\left( 1 + \frac{1}{\sin
x.\left| \sin x ight|} ight)

    \pi < x < 2\pi nên \sin x < 0

    \Rightarrow B = \sqrt{2}\left( 1 -\dfrac{1}{\sin^{2}x} ight) = - \sqrt{2}\cot^{2}x

  • Câu 11: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|.

     

    Ta có: \left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| \overrightarrow {AC} ight|  = AC = a\sqrt 2. (hình vuông cạnh a thì đường chéo bằng a\sqrt2).

     

  • Câu 12: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 13: Vận dụng

    Tập xác định của hàm số y = \sqrt{\frac{2x^{2} - 2(m + 1)x + m^{2} +
1}{m^{2}x^{2} - 2mx + m^{2} + 2}} là:

    ĐKXĐ: \left\{ \begin{matrix}
\frac{2x^{2} - 2(m + 1)x + m^{2} + 1}{m^{2}x^{2} - 2mx + m^{2} + 2} \geq
0 \\
m^{2}x^{2} - 2mx + m^{2} + 2 eq 0 \\
\end{matrix} ight.

    +) Xét tam thức bậc hai f(x) = 2x2 − 2(m+1)x + m2 + 1

    Ta có af = 2 > 0,  Δf′ = ... =  − (m−1)2 ≤ 0

    Suy ra với mọi m ta có f(x) = 2x2 − 2(m+1)x + m2 + 1 ≥ 0,  ∀x ∈ ℝ(1)

    +) Xét tam thức bậc hai g(x) = m2x2 − 2mx + m2 + 2

    Với m = 0 ta có g(x) = 2 > 0, xét với m ≠ 0 ta có:

    ag = m2 > 0,  Δg′ =  − m2(m2+1) < 0.

    Suy ra với mọi m ta có g(x) = m2x2 − 2mx + m2 + 2 > 0,  ∀x ∈ ℝ (2)

    Từ (1) và (2) suy ra với mọi m thì \frac{2x^{2} - 2(m + 1)x + m^{2} + 1}{m^{2}x^{2} -
2mx + m^{2} + 2} \geq 0m2x2 − 2mx + m2 + 2 ≠ 0 đúng với mọi giá trị của x.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 14: Thông hiểu

    Cho tam giác ABC vuông tại A và có AB =
3,\ \ AC = 4. Tính \left|
\overrightarrow{CA} + \overrightarrow{AB} ight|.

    Ta có \left| \overrightarrow{CA} +
\overrightarrow{AB} ight| = \left| \overrightarrow{CB} ight| = CB =
\sqrt{AC^{2} + AB^{2}} = \sqrt{3^{2} + 4^{2}} = 5.

  • Câu 15: Vận dụng

    Cho hình thoi ABCD cạnh a\widehat{BAD} = 60{^\circ}. Đẳng thức nào sau đây đúng?

    Vì tam giác BAD cân và \widehat{BAD} = 60{^\circ}, suy ra tam giác ABD đều cạnh a nên BD =
a\overset{}{ightarrow}\left| \overrightarrow{BD} ight| =
a.

  • Câu 16: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 17: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 18: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 19: Thông hiểu

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 20: Vận dụng

    Cho K(1; -
3). Điểm A \in Ox,B \in Oy sao cho A là trung điểm KB. Tìm tọa độ của điểm B.

    Ta có: A \in Ox,B \in Oy nên A(x;0),B(0;y).

    A là trung điểm KB nên \left\{ \begin{matrix}
x = \frac{1 + 0}{2} \\
0 = \frac{- 3 + y}{2} \\
\end{matrix} \Leftrightarrow ight.\ \left\{ \begin{matrix}
x = \frac{1}{2} \\
y = 3 \\
\end{matrix} ight.

    Vậy B(0;3).

  • Câu 21: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là D = [ − 1;  + ∞) ∖ {0}.

  • Câu 22: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 23: Nhận biết

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 24: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 25: Thông hiểu

    Cho góc \alpha thỏa \cot\alpha = \frac{3}{4}0^{O} < \alpha < 90^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\frac{1}{sin^{2}\alpha} = 1 + cot^{2}\alpha = 1 + \left( \frac{3}{4}
ight)^{2} = \frac{25}{16} \\
0{^\circ} < \alpha < 90{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{4}{5}.

  • Câu 26: Thông hiểu

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 27: Nhận biết

    Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;2), B(-1;3), C(-2;1). Chọn khẳng định đúng.

    Biểu diễn các điểm trên hệ trục tọa độ như sau:

    Chọn khẳng định đúng

    Ta có:

    \begin{matrix}  \overrightarrow {OA}  = \left( {1,2} ight) \hfill \\  \overrightarrow {BC}  = \left( { - 2 + 1,1 - 3} ight) = \left( { - 1, - 2} ight) =  - 1.\left( {1,2} ight) =  - 1.\overrightarrow {OA}  \hfill \\ \end{matrix}

    Vậy hai vectơ \overrightarrow{OA},\overrightarrow{BC} cùng phương, ngược hướng.

  • Câu 28: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Biểu diễn \overrightarrow{AG} theo hai vecto \overrightarrow{AB},\overrightarrow{AC}

    Cách 1: Giả sử I là trung điểm của BC

    \begin{matrix}   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI}  \hfill \\   \Leftrightarrow \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AI}  \hfill \\ \end{matrix}

    Theo tính chất đường trung tuyến trong tam giác ABC ta có:

    \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AI} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AI} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AI}

    \begin{matrix}   \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  \hfill \\ \end{matrix}

    Cách 2: Ta có:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AA}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow 0  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AG}  \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 30: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 31: Vận dụng

    Cho hai điểm B,C phân biệt. Tập hợp những điểm M thỏa mãn \overrightarrow{CM}.\overrightarrow{CB} =
{\overrightarrow{CM}}^{2}

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
{\overrightarrow{CM}}^{2} \Leftrightarrow
\overrightarrow{CM}.\overrightarrow{CB} - {\overrightarrow{CM}}^{2} =
0 \Leftrightarrow
\overrightarrow{CM}.\left( \overrightarrow{CB} - \overrightarrow{CM}
ight) = \overrightarrow{CM}.\overrightarrow{MB} = 0.

    Tập hợp điểm M là đường tròn đường kính BC.

  • Câu 32: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 33: Thông hiểu

    Phương trình \sqrt{-x^{2}+6x-5}=8-2x có nghiệm là:

    Điều kiện: - {x^2} + 6x - 5 \geqslant 0 \Leftrightarrow x \in \left[ { - 5,1} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt { - {x^2} + 6x - 5}  = 8 - 2x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {8 - 2x \geqslant 0} \\   { - {x^2} + 6x - 5 = {{\left( {8 - 2x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   { - {x^2} + 6x - 5 = 64 - 32x + 4{x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {5{x^2} - 38x + 69 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x = \dfrac{{23}}{5}\left( {ltm} ight)} \end{array}} ight.} \end{array}} ight. \Leftrightarrow x = 3 \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta có: x=3 thỏa mãn 

    Vậy phương trình có nghiệm là x=3.

  • Câu 34: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 35: Nhận biết

    Cho \overrightarrow{a} = (2; - 4),\ \overrightarrow{b}
= ( - 5;3). Tìm tọa độ của \overrightarrow{u} = 2\overrightarrow{a} -
\overrightarrow{b}.

    Ta có \left\{ \begin{matrix}
2\overrightarrow{a} = (4; - 8) \\
- \overrightarrow{b} = (5; - 3) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{u} =
2\overrightarrow{a} - \overrightarrow{b} = (4 + 5; - 8 - 3) = (9; -
11).

  • Câu 36: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 37: Vận dụng

    Cho hàm số y =
x^{2} - 2\left( m + \frac{1}{m} ight)x + m(m > 0) xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng

    Đặt y = f(x) = x^{2} - 2\left( m +
\frac{1}{m} ight)x + m.

    Hoành độ đỉnh của đồ thị hàm số là x = m +
\frac{1}{m} \geq 2 .

    Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên \left( - \infty;m +
\frac{1}{m} ight).

    Suy ra, hàm số nghịch biến [ − 1; 1].

    \Rightarrow y_{1} = f( - 1) = 3m +
\frac{2}{m} + 1.

    y_{2} = f(1) = 1 - m -
\frac{2}{m}.

    Theo đề bài ta có: y1 − y2 = 8 \Leftrightarrow 3m + \frac{2}{m} + 1 - 1 + m
+ \frac{2}{m} = 8(m > 0)

     ⇔ m2 − 2m + 1 = 0 ⇔ m = 1.

  • Câu 38: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 39: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 40: Thông hiểu

    Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC biết rằng A(6;3),B( - 3;6),C(1; - 2)?

    Gọi M, N lần lượt là trung điểm của AB và BC.

    I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:

    \left\{ \begin{matrix}
\overrightarrow{MI}.\overrightarrow{AB} = 0 \\
\overrightarrow{MI}.\overrightarrow{BC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3x + y = 0 \\
x - 2y + 5 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
\end{matrix} ight.\  \Leftrightarrow I(1;3)

  • Câu 41: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 42: Thông hiểu

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 43: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 44: Thông hiểu

    Tập X có bao nhiêu tập hợp con, biết X có 3 phần tử ?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 45: Thông hiểu

    Tổng các nghiệm của phương trình \sqrt{3x^{2} - 2x + 9} + \sqrt{3x^{2} - 2x + 2} =7 là:

    Đặt t = \sqrt{3x^{2} - 2x + 2}, điều kiện t ≥ 0. Khi đó \sqrt{3x^{2} - 2x + 9} = \sqrt{t^{2} +7}.

    Phương trình trở thành \sqrt{t^{2} + 7} +t = 7

    \Leftrightarrow \sqrt{t^{2} + 7} = 7 - t\Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t^{2} + 7 = t^{2} - 14t + 49 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t = 3 \\\end{matrix} ight.\  \Leftrightarrow t = 3(Thỏa mãn)

    Với t = 3 ta có \sqrt{3x^{2} - 2x + 2} = 3

    \Leftrightarrow 3x^{2} - 2x + 2 = 9\Leftrightarrow 3x^{2} - 2x - 7 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \frac{1 + \sqrt{22}}{3} \\x = \frac{1 - \sqrt{22}}{3} \\\end{matrix} ight.

    Vậy phương trình có hai nghiệm x = \frac{1\pm \sqrt{22}}{3}.

    Tổng các nghiệm của phương trình là \frac{1 + \sqrt{22}}{3} + \frac{1 - \sqrt{22}}{3} =\frac{2}{3} .

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo