Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Tập xác định của hàm số
là:
ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.
Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.
Ta có a = 2m2 + 1 > 0, Δ′ = 4m2 − 2(2m2+1) = − 2 < 0.
Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0 ∀x ∈ ℝ.
Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho bất phương trình
. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.
Ta có: . Suy ra
.
Nhận xét: không thuộc
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?
*x2 − x − 5 = 0 có 2 nghiệm phân biệt
* − x2 − x − 1 = 0vô nghiệm, a = − 1 < 0 nên − x2 − x − 1 < 0, ∀x ∈ ℝ
*2x2 + x = 0 có 2 nghiệm phân biệt
*x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác ABC nội tiếp đường tròn bán kính R,
,
. Tính số đo của
biết
là góc tù.
Theo bài ra ta có: là góc tù =>
là góc nhọn.
Xét tam giác ABC áp dụng định lí sin ta có:
Mặt khác
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho hình vuông ABCD, tâm O, cạnh 4 cm. Điểm E, H lần lượt thuộc các cạnh BC, CD sao cho
và
. Độ dài vecto
là:
Ta có:
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Tìm tất cả các giá trị của m để tam thức
luôn dương với
.
Để tam thức luôn dương với
:
Xét ta có bảng xét dấu như sau:

Kết hợp các điều kiện ta được
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?
TH1:; phương trình chỉ có một nghiệm duy nhất nên loại m = 0
TH2: m ≠ 0
Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì
đồng thời m ∈ [ − 7; 7].
Vậy m = {1; 2;3;4;5;6;7}→ có 7 giá trị nguyên của m thỏa mãn.
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Theo định nghĩa thì là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.
Tập nghiệm của phương trình
là?
Điều kiện: .
Ta có: . Loại
.
Vậy .
Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.
Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).
Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1
⇔ (1) có 2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1
.
Tổng
bằng vectơ nào sau đây?
Ta có
.
Cho tập hợp A = {
, với
là số thực dương}. Tìm số lớn nhất của tập hợp A?
Ta có:
Đẳng thức xảy ra khi .
Vậy số nhỏ nhất là 3.
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5].
Ta có x2 − 5x + 7 + 2m = 0 ⇔ x2 − 5x + 7 = − 2m. (*)
Phương trình (*) là phương trình hoành độ giao điểm của parabol (P) : x2 − 5x + 7 và đường thẳng y = − 2m (song song hoặc trùng với trục hoành).
Ta có bảng biến thiên của hàm số y = x2 − 5x + 7 trên [1; 5] như sau:

Dựa vào bảng biến ta thấy x ∈ [1; 5] thì .
Do đo để phương trình (*) có nghiệm
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Cho tam giác
đều cạnh
. Gọi
là trung điểm
. Khẳng định nào sau đây đúng?
Tam giác đều cạnh
nên độ dài đường trung tuyến bằng
.
Chọn
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Trong mặt phẳng tọa độ
cho hai điểm
và
Tìm tọa độ điểm
thuộc trục tung sao cho tam giác
vuông tại ![]()
Vì .
Ta có:
Để tam giác ABC vuông tại A khi và chỉ khi
.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình
.
Trong hệ tọa độ
cho tam giác
có
,
và
thuộc trục
, trọng tâm
của tam giác thuộc trục
. Tìm tọa độ điểm ![]()
Vì thuộc trục
có hoành độ bằng
. Loại
.
Trọng tâm thuộc trục
có tung độ bằng
Xét các đáp án còn lại chỉ có đáp án
thỏa mãn
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho hai vectơ
và
. Góc giữa hai vectơ
và
là:
Trong các tập hợp sau, tập hợp nào bằng nhau:
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> . Vậy tập hợp
bằng tập hợp
. Đáp án đúng
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> ;
. Vậy tập hợp
không bằng tập hợp
.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Điều kiện nào là điều kiện cần và đủ để
là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Mệnh đề nào sau đây sai?
Mệnh đề đúng khi
đúng và
đúng.
là tam giác đều
là mệnh đề đúng.
là tam giác đều là mệnh đề sai
“
là tam giác đều
” là mệnh đề sai.
Chọn đáp án là tam giác đều
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Cho hình vuông ABCD cạnh a. Tính ![]()
Hình vẽ minh họa

Ta có:
Tam giác ACD vuông cân tại D ta có:
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.