Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.
Với m = 4 thì g(x) = − 1 < 0 thỏa mãn yêu cầu bài toán
Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.
Do đó
⇔ m < 4
Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Từ hình vẽ suy ra đỉnh .
Thay tọa độ đỉnh vào các hàm số ở các đáp án, chỉ có hàm số
thỏa mãn.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Theo định nghĩa thì là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: ![]()
Vì là mệnh đề sai nên
không thuộc miền nghiệm của bất phương trình.
Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).
Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân ⇔ đường thẳng (d) tạo với chiều dương trục hoành bằng 45∘ hoặc 135∘⇔ hệ số góc tạo của (d) bằng 1 hoặc
.
Thử lại: m = 5 thì d không đi qua O.
Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm
là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Cho
. Điều kiện để
là:
Ta có:
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho tọa độ ba điểm
. Tính
?
Ta có:
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Tập xác định của hàm số
là:
Hàm số .
Điều kiện xác định: .
Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho
là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Cho
,
. Tính góc của
.
Ta có .
Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn:
.
Để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước
phải bằng
nghĩa là:
Vậy với thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.
Miền giá trị của hàm số
là
Cách 1: Do x2 + 1 > 0; ∀x ∈ ℝ nên hàm số xác định với mọi x ∈ ℝ
Gọi y0 là giá trị tùy ý, ta có phương trình:
⇔ (3−y0)x2 + 2x + 3 − y0 = 0(1)
+ Nếu y0 = 3 thì phương trình (1)trở thành: 2x = 0 ⇔ x = 0.
Vậy phương trình (1)có nghiệm y0 = 3(*).
+ Nếu y0 ≠ 3 thì phương trình (1)là phương trình bậc hai, nên nó có nghiệm khi và chỉ khi
Δ′ = 12 − (3−y0)2 ≥ 0
⇔ − y02 + 6y0 − 8 ≥ 0
⇔ 2 ≤ y0 ≤ 4.
Vậy phương trình (1)có nghiệm .
+ Kết hợp (*), (**) thì phương trình (1)có nghiệm ⇔ 2 ≤ y0 ≤ 4.
Vậy: Miền giá trị của hàm số là [2; 4].
Cách 2: Ta có
Suy ra GTNN của A = 2 khi và chỉ khi x = − 1.
Mặt khác
Suy ra GTLN của A = 4 khi và chỉ khi x = 1.
Vậy miền giá trị của hàm số là [2; 4].
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Trong hệ tọa độ
cho tam giác
có
,
và
thuộc trục
, trọng tâm
của tam giác thuộc trục
. Tìm tọa độ điểm ![]()
Vì thuộc trục
có hoành độ bằng
. Loại
.
Trọng tâm thuộc trục
có tung độ bằng
Xét các đáp án còn lại chỉ có đáp án
thỏa mãn
Tính giá trị biểu thức
.
Ta có:
Khi đó:
Số nghiệm của phương trình ![]()
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Trong các tập hợp sau đây, tập hợp nào bằng tập hợp
:
Ta có:
Tập hợp là tập hợp
.
Vậy tập hợp
Trong mặt phẳng tọa độ
cho ba vectơ
và
với
Tìm
để
vuông góc với trục hoành.
Trục hoành có vtcp .
. Do đó:
nên đáp án
sai.
. Do đó:
nên đáp án
đúng.
. Do đó:
nên đáp án
sai.
. Do đó:
nên đáp án
sai.
Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Cho 4 điểm A, B, C, D phân biệt. Khi đó
bằng
Ta có:
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Tìm tất cả các giá trị của m để tam thức
luôn dương với
.
Để tam thức luôn dương với
:
Xét ta có bảng xét dấu như sau:

Kết hợp các điều kiện ta được
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho hai số thực x, y thoả mãn
. Hãy tìm giá trị nhỏ nhất m và lớn nhất M của biểu thức
.
Từ giả thiết suy ra và
,
chính là khoảng cách giữa
số
và
trên trục số.
nhỏ nhất khi
và
;
lớn nhất khi
và
.
Vậy .
Mệnh đề nào sau đây là mệnh đề tương đương?
Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, ![]()

Khi đó đoạn PT bằng:
Ta có:
Áp dụng định lí cosin cho tam giác POQ ta có:
Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:
Ta lại có:
=>
Xét tam giác OTP ta có:
Áp dụng định lí sin cho tam giác OTP ta có:
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.