Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm
sao cho
được gọi là ……của bất phương trình
”.
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm sao cho
được gọi là miền nghiệm của bất phương trình
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Từ một đỉnh tháp chiều cao
, người ta nhìn hai điểm
và
trên mặt đất dưới các góc nhìn là
và
so với phương nằm ngang. Ba điểm
thẳng hàng. Tính khoảng cách
(chính xác đến hàng đơn vị)?
Ta có: Trong tam giác vuông :
Trong tam giác vuông :
Suy ra: khoảng cách
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Cho
là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Cho tam giác
có
là trung điểm của
là trọng tâm của tam giác
Khẳng định nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Vì
là trung điểm của
nên
Do đó
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2) và (2; +∞). Khẳng định nào sau đây đúng?
Xét f(x) = x2 − 4x + 5.
TXĐ: D = ℝ.
Tọa độ đỉnh I(2; 1).
Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho tam giác
vuông tại
và có
. Tính
.
Ta có .
Cho tam thức
. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.
Để f(x) ≥ 0 với mọi x ∈ ℝ
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Nghiệm của phương trình
là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB là
Xét phương trình hoành độ giao điểm của d và (P):
mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0
Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I là
.
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho tọa độ hai điểm
và
. Khẳng định nào sau đây đúng?
Ta có:
Phương trình
có mấy nghiệm nguyên ?
Điều kiện: x ≥ − 2
PT đã cho tương đương với:
Do x = − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:
Đặt ta có:
Với t = 2 ta được
Vậy phương trình có 0 nghiệm nguyên.
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm Vì
nên miền nghiệm của bất phương trình chứa điểm
Cho tứ giác
. Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho
và
Khi đó:
Ta có:
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Tìm điều kiện cần và đủ để hai khoảng
và
là tập rỗng, biết
là số thực âm.
Điều kiện cần và đủ để hai tập giao khác rỗng là:
Giá trị biểu thức
bằng:
Ta có:
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)
Thay tọa độ và
vào
. Ta có:
.
Do đó .
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Cho hình vuông
. Khẳng định nào sau đây đúng?
là hình vuông
.
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho tam giác
,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .