Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho 5 điểm M, N, P, Q, R. Tính tổng \overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{RN}+\overrightarrow{NP}+\overrightarrow{QR}

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RN}  + \overrightarrow {NP}  + \overrightarrow {QR}  \hfill \\   = \left( {\overrightarrow {MN}  + \overrightarrow {NP} } ight) + \left( {\overrightarrow {PQ}  + \overrightarrow {QR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MP}  + \overrightarrow {PR}  + \overrightarrow {RN}  \hfill \\   = \left( {\overrightarrow {MP}  + \overrightarrow {PR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MR}  + \overrightarrow {RN}  = \overrightarrow {MN}  \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 3: Nhận biết

    Tứ giác MNPQ là hình bình hành nếu:

    Hình vẽ minh họa

    Hoàn thành khẳng định

    Ta có MNPQ là hình bình hành nếu \overrightarrow {MN}  = \overrightarrow {QP}

  • Câu 4: Vận dụng

    Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?

    Tam giác ABC đều cạnh a nên độ dài đường trung tuyến bằng \frac{a\sqrt{3}}{2}.

    Chọn \left| \overrightarrow{AM} ight| =
\frac{a\sqrt{3}}{2}.

  • Câu 5: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 6: Thông hiểu

    Cho tọa độ ba điểm A(0;3),B(4;0),C( - 2; - 5). Tính \overrightarrow{AB}.\overrightarrow{BC}?

    Ta có: A(0;3),B(4;0),C( - 2; -
5)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{AB} = (4; - 3) \\
\overrightarrow{BC} = ( - 6; - 5) \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 4.( - 6) + ( - 3).( - 5) = -
9

  • Câu 7: Thông hiểu

    Cho \sin\alpha =\frac{1}{4}, với 0^{\circ} <
\alpha < 90^{\circ}. Giá trị \cos\alpha bằng

    Ta có:

    \cos^{2}\alpha = 1 -\sin^{2}\alpha

    = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}

    \Rightarrow \cos\alpha =\frac{\sqrt{15}}{4} (do 0^{\circ}
< \alpha < 90^{\circ}).

    Vậy \cos\alpha =\frac{\sqrt{15}}{4}.

  • Câu 8: Vận dụng

    Từ vị trí A người ta quan sát một cây cao (hình vẽ).

    Biết AH = 4m,HB = 20m,\widehat{BAC} =
45^{0}.

    Chiều cao của cây gần nhất với giá trị nào sau đây?

    Trong tam giác AHB, ta có \tan\widehat{ABH} = \frac{AH}{BH} = \frac{4}{20} =
\frac{1}{5} \overset{}{ightarrow}\widehat{ABH} \approx
11^{0}19'.

    Suy ra \widehat{ABC} = 90^{0} -
\widehat{ABH} = 78^{0}41'.

    Suy ra \widehat{ACB} = 180^{0} - \left(
\widehat{BAC} + \widehat{ABC} ight) = 56^{0}19'.

    Áp dụng định lý sin trong tam giác ABC, ta được \frac{AB}{\sin\widehat{ACB}} =
\frac{CB}{\sin\widehat{BAC}} \overset{}{ightarrow}CB =
\frac{AB.sin\widehat{BAC}}{\sin\widehat{ACB}} \approx 17m.

  • Câu 9: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 10: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{x}{2} + \frac{y}{3} - 1 \geq 0 \\
x \geq 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{0}{2} + \frac{0}{3} - 1 \geq 0 \\
0 \geq 0 \\
0 + \frac{1}{2} - \frac{3.0}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(2;1) \Rightarrow \left\{
\begin{matrix}
\frac{2}{2} + \frac{1}{3} - 1 \geq 0 \\
2 \geq 0 \\
2 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng.

  • Câu 11: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 12: Vận dụng

    Cho tam thức bậc hai f(x) = \left( 2m^{2} + m - 6 ight)x^{2} + (2m -
3)x - 1. Tìm tất cả các giá trị thực của tham số m để bất phương trình f(x) > 0 vô nghiệm?

    Bất phương trình: f(x) > 0\
(*) vô nghiệm khi và chỉ khi

    \left( 2m^{2} + m - 6 ight)x^{2} + (2m
- 3)x - 1 \leq 0,\forall x\mathbb{\in R}

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    Với m = - 2 thì (*) \Leftrightarrow - 7x - 1 > 0 \Leftrightarrow x
< - \frac{1}{7} loại giá trị m =
- 2.

    Với m = \frac{3}{2} thì bất phương trình (*) \Leftrightarrow 0x - 1 <
0 bất phương trình vô nghiệm, nhận giá trị m = \frac{3}{2}.

    Xét 2m^{2} + m - 6 eq 0

    \left( 2m^{2} + m - 6 ight)x^{2} + (2m
- 3)x - 1 \leq 0,\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} + m - 6 < 0 \\
(2m - 3)^{2} - 4\left( 2m^{2} + m - 6 ight).( - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < \dfrac{3}{2} \hfill \\
   - \dfrac{5}{6} \leqslant m \leqslant \frac{3}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - \frac{5}{6} \leqslant m < \frac{3}{2}

    Vậy m \in \left\lbrack -
\frac{5}{6};\frac{3}{2} ightbrack thì bất phương trình (*) vô nghiệm.

  • Câu 13: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 14: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 15: Thông hiểu

    Phương trình \sqrt{3x + 1} + \sqrt{5 - x} = 4 có bao nhiêu nghiệm

    Đkxđ: - \frac{1}{3} \leq x \leq5.

    \sqrt{3x + 1} + \sqrt{5 - x} =4

    \Leftrightarrow 2x + 6 + 2\sqrt{(3x +1)(5 - x)} = 16

    \Leftrightarrow \sqrt{(3x + 1)(5 - x)} =5 - x

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{5 - x} = 0 \\\sqrt{3x + 1} = \sqrt{5 - x} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5 \\3x + 1 = 5 - x \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5(TM) \\x = 1(TM) \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 16: Nhận biết

    Cho \overrightarrow{AB} = -
\overrightarrow{CD}. Khẳng định nào sau đây đúng?

    Ta có \overrightarrow{AB} = -
\overrightarrow{CD} = \overrightarrow{DC}. Do đó:

    \overrightarrow{AB}\overrightarrow{CD} ngược hướng.

    \overrightarrow{AB}\overrightarrow{CD} cùng độ dài.

    ABCD là hình bình hành nếu \overrightarrow{AB}\overrightarrow{CD} không cùng giá.

    \overrightarrow{AB} + \overrightarrow{CD}
= \overrightarrow{0}.

    Chọn đáp án \overrightarrow{AB}\overrightarrow{CD} cùng độ dài.

  • Câu 17: Thông hiểu

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 18: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}. Xác định vị trí điểm M.

     Điểm M là trọng tâm tam giác ABC khi và chỉ khi \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}.

  • Câu 19: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 20: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 21: Thông hiểu

    Cho tam giác đều ABC cạnh a. Tính độ dài \overrightarrow{AB}+\overrightarrow{AC}.

     

    Gọi M là trung điểm BC. Suy ra \left|\overrightarrow {AB}+\overrightarrow {AC}ight|=\left|2\overrightarrow {AM}ight|=2AM.

    Áp dụng định lí Pytago trong tam giác vuông AMB. Suy ra AM=\frac{a\sqrt3}2 \Rightarrow 2AM=a\sqrt3.

  • Câu 22: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3)O(0;0).

    (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ

    \left\{ \begin{matrix}
a + b + c = 1 \\
a - b + c = - 3 \\
c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
c = 0 \\
\end{matrix} ight..

    Vậy (P) : y =  − x2 + 2x.

  • Câu 23: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;1),\ B(3;2),\ C(6;5). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

    Gọi D(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1) \\
\overrightarrow{DC} = (6 - x;5 - y) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = 6 - x \\1 = 5 - y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\ \overset{}{ightarrow}D(4;4).

  • Câu 24: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 25: Nhận biết

    Cho tam giác ABC có tọa độ ba đỉnh A(1;2),B(3; - 2),C(2;3). Trọng tâm G của tam giác ABC là:

    Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{G} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{G} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{G} = 2 \\y_{G} = 1 \\\end{matrix} ight.\  \Rightarrow G(2;1)

  • Câu 26: Vận dụng

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10;  − 4) để đường thẳng d : y =  − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?

    Xét phương trình:  − (m+1)x + m + 2 = x2 + x − 2

     ⇔ x2 + x(m+2) − m − 4 = 0

    Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là \left\{ \begin{matrix}
\Delta > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 2)^{2} + 4(m + 4) > 0 \\
- m - 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 8m + 20 > 0\ ,\ \forall m \\
m < - 4 \\
\end{matrix} ight.

    Vậy trong nửa khoảng[ − 10;  − 4)6 giá trị nguyên m.

  • Câu 27: Thông hiểu

    Hãy liệt kê các phần tử của tập hợp \mathbf{X =}\left\{ \mathbf{x}\mathbb{\in
R}\mathbf{|}\mathbf{x}^{\mathbf{2}}\mathbf{+ x
+}\mathbf{1}\mathbf{=}\mathbf{0} ight\}\mathbf{.}

    Ta có: x^{2} + x + 1 = 0 không có nghiệm thực.

  • Câu 28: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 29: Vận dụng cao

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5|  − m = 0 có hai nghiệm phân biệt?

    PT: |x2−4|x|−5|  − m = 0 ⇔ |x2−4|x|−5|  = m .

    Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .

    Xét hàm số y = x2 − 4x − 5  (P1) có đồ thị như hình 1.

    Xét hàm số y = x2 − 4|x| − 5  (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:

    Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.

    Phần 2: Lấy đối xứng phần 1 qua trục Oy.

    Ta được đồ thị (P2) như hình 2.

    Xét hàm số y = |x2−4|x|−5| (P), ta có: y = \left\{ \begin{matrix}
x^{2} - 4|x| - 5\ \ \ \ \ \ \ \ \ \ (y \geq 0) \\
- \left( x^{2} - 4|x| - 5 ight)\ \ (y < 0) \\
\end{matrix} ight..

    Suy ra đồ thị hàm số (P) gồm hai phần:

    Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.

    Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.

    Ta được đồ thị (P) như hình 3.

    Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m   (1) có hai nghiệm phân biệt\Leftrightarrow
\left\lbrack \begin{matrix}
m > 9 \\
m = 0 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in (0;\ 2017brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 10;\ 11;\ 12;\ ...;\
2017 ight\}. Vậy có 2008 giá trị.

  • Câu 30: Nhận biết

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c;(a eq 0). Khẳng định nào sau đây đúng?

    Ta có: f(x) > 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta < 0 \\
\end{matrix} ight.

  • Câu 31: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 32: Vận dụng

    Trong mặt phẳng tọa độ Oxy, gọi H(a,b) là trực tâm tam giác ABC có tọa độ các đỉnh A(3;1),B( - 1;2)I(1; - 1) là trọng tâm tam giác ABC. Tính giá trị biểu thức K = a + 3b?

    Gọi C\left( x_{C};y_{C} ight). Vì I là trọng tâm tam giác ABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{I} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{I} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = 1 \\y_{C} = - 1 \\\end{matrix} ight.\  \Rightarrow C(1; - 4)

    Ta có: H(a,b) là trực tâm tam giác ABC nên \left\{ \begin{matrix}
AH\bot BC \\
BH\bot AC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
\overrightarrow{AH} = (a - 3;b + 1);\overrightarrow{BC} = (2; - 6) \\
\overrightarrow{BH} = (a + 1;b - 2);\overrightarrow{AC} = ( - 2; - 3) \\
\end{matrix} ight.

    Ta có hệ phương trình \left\{\begin{matrix}2(a - 3) - 6(b + 1) = 0 \\- 2(a + 1) - 3(b - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{10}{3} \\b = \dfrac{- 8}{9} \\\end{matrix} ight.

    Vậy biểu thức K = a + 3b =
\frac{2}{3}

  • Câu 33: Vận dụng

    Trong các mệnh đề sau mệnh đề nào:

    Với n = 3\mathbb{\in N \Rightarrow}n^{2}
\vdots 9 nhưng n không chia hết cho 9.

    Chọn đáp án \forall n\mathbb{\in N},n^{2}
\vdots 9 \Rightarrow n \vdots 9.

  • Câu 34: Nhận biết

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 35: Vận dụng cao

    Cho tập hợp khác rỗng \left\lbrack m - 1;\frac{m + 3}{2}
ightbrackB = ( - \infty -
3) \cup \lbrack 3; + \infty). Tập hợp các giá trị thực của tham số m để A \cap B eq
\varnothing

    Để A \cap B eq \varnothing thì điều kiện là: \left\{ \begin{gathered}
  m - 1 < \dfrac{{m + 3}}{2} \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {m - 1 <  - 3} \\ 
  {\dfrac{{m + 3}}{2} \geqslant 3} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {m < 5} \\ 
  {\left[ {\begin{array}{*{20}{c}}
  {m <  - 2} \\ 
  {m \geqslant 3} 
\end{array}} ight.} 
\end{array}} ight.

    Vậy m \in ( - \infty; - 2) \cup \lbrack
3;5) thỏa mãn điều kiện.

  • Câu 36: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 37: Thông hiểu

    Giá trị nguyên dương lớn nhất của x để hàm số y = \sqrt{5 - 4x - x^{2}} xác định là

    Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].

    Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.

  • Câu 38: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 39: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 41: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 42: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 43: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCA(1; -
1), B(5; - 3)C thuộc trục Oy, trọng tâm G của tam giác thuộc trục Ox. Tìm tọa độ điểm C.

    C thuộc trục Oy\overset{}{ightarrow} C có hoành độ bằng 0. Loại C(2;4).

    Trọng tâm G thuộc trục Ox\overset{}{ightarrow} G có tung độ bằng 0. Xét các đáp án còn lại chỉ có đáp án C(0;4) thỏa mãn \frac{y_{A} + y_{B} + y_{C}}{3} = 0.

  • Câu 44: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 45: Vận dụng cao

    Phương trình x.\sqrt[3]{35 - x^{3}}\left( x + \sqrt[3]{35 -
x^{3}} ight) = 30 có mấy nghiệm nguyên dương ?

    Đặt t = \sqrt[3]{35 - x^{3}}. Ta có hệ phương trình:

    \begin{matrix}
\left\{ \begin{matrix}
xt(x + t) = 30 \\
x^{3} + t^{3} = 35 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + t = 5 \\
x.t = 6 \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x = 2 \\
t = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 3 \\
t = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Vậy phương trình có 2 nghiệm x = 2x = 3.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo