Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Cho ba điểm
phân biệt. Tập hợp những điểm
mà
là :
Ta có:
.
Tập hợp điểm là đường thẳng đi qua
và vuông góc với
.
Tam thức bậc hai
nhận giá trị không âm khi và chỉ khi
Ta có: và
.
Phương trình có hai nghiệm phân biệt là
.
Do đó,
.
Cho
có
Diện tích của tam giác là:
Ta có:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Tập nghiệm của phương trình
là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Tìm các giá trị của m để biểu thức sau luôn dương
![]()
Tam thức − 4x2 + 5x − 2 có a = − 4 < 0, Δ = − 7 < 0
suy ra − 4x2 + 5x − 2 < 0 ∀x
Do đó h(x) luôn dương khi và chỉ khi h′(x) = − x2 + 4(m+1)x + 1 − 4m2 luôn âm
Vậy với thì biểu thức h(x) luôn dương.
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Cho tam giác
có
Tính ![]()
Ta có
Giải hệ phương trình:
. Nghiệm (x; y) là:
Đặt
Hệ phương trình ban đầu trở thành:
Với S = 5; P = 6 ta có:
Với S = -10; P = 21 ta có:
Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Biết rằng hàm số y = ax2 + bx + c (a≠0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A(0;6). Tính tích P = abc.
Nhận xét: Hàm số đi qua điểm A(0;6); đạt cực tiểu bằng 4 tại x = 2 nên đồ thị hàm số đi qua I(2;4) và nhận x = 2 làm trục đối xứng, hàm số cũng đi qua điểm A(0;6) suy ra:
.
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm
, có trục đối xứng là đường thẳng
. Parabol này quay bề lõm lên trên nếu
.
Hàm số có
=> Đồ thị hàm số có bề lõm quay lên.
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Cho hàm số f(x) = ax2 + bx + c có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m − 2018 = 0 có duy nhất một nghiệm.

Phương trình Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 − m (có phương song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có ycbt 2018 − m = 2 ⇔ m = 2016.
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Tìm tất cả các giá trị thực âm của tham số
để hai khoảng
và
có khoảng giao khác rỗng.
Với thì
luôn có nghĩa.
Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung
(vì m < 0)
Vì nên ta xét các trường hợp sau
Nếu thì
Vậy không thỏa yêu cầu bài toán.
Nếu −1 < m < 0 thì
Vậy giá trị cần tìm của m là .
Trong mặt phẳng tọa độ Oxy, cho
. Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Gọi
lần lượt là trung điểm của các cạnh
và
của tứ giác
. Mệnh đề nào sau đây đúng?
Do M là trung điểm các cạnh AB nên .
Do N lần lượt là trung điểm các cạnh DC nên .
Ta có
Mặt khác
Do đó .
Chọn mệnh đề đúng trong các mệnh đề sau đây:
Với nhưng
Mệnh đề
sai.
Với nhưng
là mệnh đề sai
Mệnh đề
sai.
Với nhưng
là mệnh đề sai
Mệnh đề
sai.
Chọn đáp án
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho biết
. Tính
.
Ta có:
.
Tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm phương trình là:
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x ≥ 1 .
Chia cả hai vế cho ta có
Đặt
Phương trình trở thành − 3t2 + 2t = m (*)
Xét hàm số y = − 3t2 + 2t trên [0; 1) , ta có ,
Bảng biến thiên

Phương trình ban đầu có nghiệm ⇔ phương trình (*) có nghiệm t∈ [0; 1)
⇔ đồ thị hàm số y = − 3t2 + 2t trên [0; 1) cắt đường thẳng
Vậy phương trình ban đầu có nghiệm khi và chỉ khi .