Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ AB có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40m, \widehat{CAB} = 45^{0}\widehat{CBA} = 70^{0}.Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABC, ta có \frac{AC}{\sin B} = \frac{AB}{\sin C}

    \sin C = \sin(\alpha + \beta) nên AC = \frac{AB.sin\beta}{\sin(\alpha +
\beta)} =
\frac{40.sin70^{0}}{sin115^{0}} \approx 41,47m.

  • Câu 2: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 3: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 4: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

     Vì \overrightarrow {MA} .\overrightarrow {BC}  = 0, mà A,B,C cố định nên suy ra tập hợp M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 5: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 6: Nhận biết

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

  • Câu 7: Nhận biết

    Cho \overrightarrow{u} = (3; - 2) và tọa độ hai điểm A(0; - 3),B(1;5). Biết 2\overrightarrow{x} + 2\overrightarrow{u} -
\overrightarrow{AB} = \overrightarrow{0}, tọa độ vecto \overrightarrow{x} là:

    Tọa độ vecto \overrightarrow{x} = \left(
- \frac{5}{2};6 ight).

  • Câu 8: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 9: Thông hiểu

    Phương trình: \sqrt{x+2}=4-x có bao nhiêu nghiệm?

     Điều kiện: x + 2 \geqslant 0 \Leftrightarrow x \geqslant  - 2

    \begin{matrix}  \sqrt {x + 2}  = 4 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {4 - x \geqslant 0} \\   {x + 2 = {{\left( {4 - x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {x + 2 = 16 - 8x + {x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {{x^2} - 9x + 14 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x = 7\left( {ktm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy nghiệm của phương trình là x=2

  • Câu 10: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 11: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 12: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 0 \\
\end{matrix} ight.. Vậy tập xác định: D = [ − 1;  + ∞) ∖ {0}.

  • Câu 13: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 14: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 15: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 16: Vận dụng

    Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    +)m = - 2 \Rightarrow g(x) = - 7x - 1 >
0 \Leftrightarrow x < - \frac{1}{7} (không thỏa mãn yêu cầu bài toán)

    +) m = \frac{3}{2} \Rightarrow g(x) =
0 (không thỏa mãn)

    Xét 2m^{2} + m - 6 eq 0 \Leftrightarrow
\left\{ \begin{matrix}
m eq - 2 \\
m eq \frac{3}{2} \\
\end{matrix} ight.

    g(x) \leq 0,\ \ \forall x \Leftrightarrow
\left\{ \begin{matrix}
a = 2m^{2} + m - 6 < 0 \\
\Delta' = 12m^{2} - 8m - 15 \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < \frac{3}{2} \\
- \frac{5}{6} \leq m \leq \frac{3}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{5}{6} \leq m <
\frac{3}{2}

  • Câu 17: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 18: Nhận biết

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 19: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 20: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 21: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Trong hệ tọa độ Oxy, cho A( -
1;5),\ B(5;5),\ C( - 1;11). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (6;0) \\
\overrightarrow{AC} = (0;6) \\
\end{matrix} ight.\ \overset{}{ightarrow}6.6 eq
0.0\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{AC} không cùng phương.

  • Câu 23: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình 3\sqrt{x - 1} + m\sqrt{x + 1} = 2\sqrt[4]{x^{2} -
1} có nghiệm là:

    ĐKXĐ: x ≥ 1 .

    Chia cả hai vế cho \sqrt{x + 1} ta có

    pt \Leftrightarrow 3\frac{\sqrt{x -
1}}{\sqrt{x + 1}} + m = 2\frac{\sqrt[4]{x^{2} - 1}}{\sqrt{x + 1}}
\Leftrightarrow - 3\sqrt{\frac{x - 1}{x + 1}} + 2\sqrt[4]{\frac{x - 1}{x
+ 1}} = m

    Đặt t = \sqrt[4]{\frac{x - 1}{x + 1}} =
\sqrt[4]{1 - \frac{2}{x + 1}} \Rightarrow 0 \leq t < 1

    Phương trình trở thành  − 3t2 + 2t = m (*)

    Xét hàm số y =  − 3t2 + 2t trên [0; 1) , ta có - \frac{b}{2a} = \frac{1}{3}, y\left( \frac{1}{3} ight) =
\frac{1}{3}

    Bảng biến thiên

    Phương trình ban đầu có nghiệm phương trình (*) có nghiệm t∈ [0; 1)

    đồ thị hàm số y =  − 3t2 + 2t trên [0; 1) cắt đường thẳng y = m \Leftrightarrow - 1 < m \leq
\frac{1}{3}

    Vậy phương trình ban đầu có nghiệm khi và chỉ khi - 1 < m \leq \frac{1}{3}.

  • Câu 24: Thông hiểu

    Số nghiệm của phương trình \sqrt{2x^{2}-2x+4}=\sqrt{x^{2}-x+2}

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {2{x^2} - 2x + 4 \geqslant 0} \\   {{x^2} - x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 2x + 4}  = \sqrt {{x^2} - x + 2}  \hfill \\   \Leftrightarrow 2{x^2} - 2x + 4 = {x^2} - x + 2 \hfill \\   \Leftrightarrow {x^2} - x + 2 = 0\left( {VN} ight) \hfill \\ \end{matrix}

    Do {\left( {x - \frac{1}{2}} ight)^2} + \frac{7}{4} > 0,\forall x

    Vậy phương trình vô nghiệm.

  • Câu 25: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 26: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 27: Vận dụng

    Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có AH\bot BCDC\bot BC (do góc \widehat{DCB} chắn nửa đường tròn).

    Suy ra AH \parallel DC.

    Tương tự ta cũng có CH \parallel
AD.

    Suy ra tứ giác ADCHlà hình bình hành. Do đó \overrightarrow{HA} =
\overrightarrow{CD}\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 28: Vận dụng cao

    Cho hàm số f(x) = ax2 + bx + c có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m − 2018 = 0 có duy nhất một nghiệm.

    Phương trình f(x) + m - 2018 =
0\overset{}{\leftrightarrow}f(x) = 2018 - m. Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 − m (có phương song song hoặc trùng với trục hoành).

    Dựa vào đồ thị, ta có ycbt 2018 − m = 2 ⇔ m = 2016.

  • Câu 29: Thông hiểu

    Cho tam giác ABC. Gọi I là trung điểm AB. Tìm điểm M thỏa mãn hệ thức: \overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}

    Ta có:

    I là trung điểm của AB => \overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}

    Khi đó:

    \begin{matrix}  \overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MI}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow \overrightarrow {MI}  + \overrightarrow {MC}  = \vec 0 \hfill \\ \end{matrix}

    Vậy M là trung điểm của IC.

  • Câu 30: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; - \ 1)B(3;2). Tìm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    M \in Oy \Rightarrow
M(0;b).

    Ta có: \overrightarrow{MA} = (1; - 1 - b)
\Rightarrow \left|
\overrightarrow{MA} ight| = \sqrt{1^{2} + ( - 1 - b)^{2}}

    Ta có: \overrightarrow{MB} = (3;2 - b)
\Rightarrow \left|
\overrightarrow{MB} ight| = \sqrt{3^{2} + (2 - b)^{2}}

    MA^{2} + MB^{2} = 1 + 1 + 2b + b^{2} + 9 + 4 - 4b + b^{2} = 2b^{2} - 2b + 15 = 2\left\lbrack \left( b - \frac{1}{2} ight)^{2}
+ \frac{29}{4} ightbrack \geq
\frac{29}{2}

    Suy ra MA^{2} + MB^{2} nhỏ nhất khi và chỉ khi b = \frac{1}{2} \Rightarrow
M\left( 0;\frac{1}{2} ight).

  • Câu 31: Nhận biết

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 32: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA( -
2;2),\ B(3;5) và trọng tâm là gốc tọa độ O(0;0). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    O là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{- 2 + 3 + x}{3} = 0 \\
\frac{2 + 5 + y}{3} = 0 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 1 \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 33: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 34: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 36: Vận dụng cao

    Cho tập hợp A = {y\in\mathbb{\in R}|y = \frac{(a + b + c)^{2}}{a^{2} +b^{2} + c^{2}}, với a,b,c là số thực dương}. Tìm số lớn nhất của tập hợp A?

    Ta có:

    (a + b + c)^{2} \leq a^{2} + b^{2} +
c^{2}

    \Leftrightarrow \frac{(a + b +
c)^{2}}{a^{2} + b^{2} + c^{2}} \leq 3

    Đẳng thức xảy ra khi a = b =
c.

    Vậy số nhỏ nhất là 3.

  • Câu 37: Vận dụng

    A, B, C là ba mệnh đề đúng, mệnh đề nào sau đây là đúng?

    B đúng, \overline{C} sai nên B \Rightarrow \overline{C} sai. A đúng, B \Rightarrow \overline{C} sai nên A \Rightarrow \left( B \Rightarrow \overline{C}
ight)là mệnh đề sai.

    C đúng, \overline{A} sai nên C \Rightarrow \overline{A} là mệnh đề sai.

    A đúng, C đúng nên A
\Rightarrow C đúng. B đúng, \overline{A \Rightarrow C} sai nên B \Rightarrow \left( \overline{A
\Rightarrow C} ight) sai.

    A đúng, B đúng nên A \Rightarrow
B là mệnh đề đúng. C đúng, A \Rightarrow B là mệnh đề đúng nên C \Rightarrow (A \Rightarrow B)là mệnh đề đúng.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 38: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

  • Câu 39: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Cho A = \left\{
0;2;4;6 ight\}. Tập A có bao nhiêu tập con có 2 phần tử?

    Tập con có 2 phần tử của A là: \left\{
0;2 ight\};\left\{ 0;4 ight\};\left\{ 0;6 ight\};\left\{ 2;4
ight\};\left\{ 2;6 ight\};\left\{ 4;6 ight\}

    \Rightarrow6 tập con có 2 phần tử.

  • Câu 41: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 42: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \cos\alpha = \sqrt{1 -
sin^{2}\alpha}.

    Ta có \cos\alpha = \sqrt{1 -
sin^{2}\alpha} \Leftrightarrow \cos\alpha =
\sqrt{cos^{2}\alpha} \Leftrightarrow \cos\alpha = \left| \cos\alpha
ight| \Leftrightarrow \cos\alpha.

    Đẳng thức \left| \cos\alpha ight|
\Leftrightarrow \cos\alpha\overset{}{ightarrow}\cos\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc IV.

  • Câu 43: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 44: Thông hiểu

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}?

    Điều kiện xác định:

    2x^{2} - 5x + 2 \geq 0

    \Leftrightarrow \left\lbrack\begin{matrix}x \geq 2 \\x \leq \dfrac{1}{2} \\\end{matrix} ight..

    Vậy tập xác định của hàm số là \left( -
\infty;\frac{1}{2} ightbrack \cup \lbrack 2; + \infty).

  • Câu 45: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo