Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.
Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình
.
Cho hai số thực x, y thoả mãn
. Hãy tìm giá trị nhỏ nhất m và lớn nhất M của biểu thức
.
Từ giả thiết suy ra và
,
chính là khoảng cách giữa
số
và
trên trục số.
nhỏ nhất khi
và
;
lớn nhất khi
và
.
Vậy .
Có bao nhiêu mệnh đề trong các câu sau?
Hôm nay trời đẹp quá!
Trung Quốc là nước đông dân nhất thế giới.
Năm 2018 là năm nhuận.
Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Tìm mệnh đề đúng.
Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.
Cho tam giác
đều cạnh
. Gọi
là trung điểm
. Khẳng định nào sau đây đúng?
Tam giác đều cạnh
nên độ dài đường trung tuyến bằng
.
Chọn
Trong hệ trục tọa độ
, tọa độ vecto
là:
Ta có:
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Cho tam thức bậc hai f(x) = x2 − 5x + 6 và a là số thực lớn hơn 3. Tìm khẳng định đúng trong các khẳng định sau.

Dựa vào bảng xét dấu thì f(x) > 0 khi x < 2 ∨ x > 3 mà a > 3 nên f(a) > 0.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Cho hệ bất phương trình
. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:
Xét cặp số (-1; -1) thay vào bất phương trình ta thấy (Loại)
Xét cặp số (-1; 0) thay vào bất phương trình ta thấy (Loại)
Xét cặp số (1; 1) thay vào bất phương trình ta thấy:
Xét cặp số (2; 2) thay vào bất phương trình ta thấy
Xét cặp số (0; -1) thay vào bất phương trình ta thấy (Loại)
Vậy cặp số thỏa mãn hệ bất phương trình là:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Cho tam giác
đều cạnh
. Tính ![]()
Gọi là trung điểm của
Suy ra
Ta lại có
Cho tam giác đều ABC có cạnh a. Tính tích vô hướng ![]()
Ta có: Tam giác ABC đều =>
Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên .
Mặt khác (P) cắt trục tung tại (0;−1) nên c = − 1. Suy ra .
(P) : y = − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.
Suy ra 0 < m < 3.
Tích các nghiệm của phương trình
là:
Điều kiên:
Phương trình tương đương:
Đặt
Với t = 4 ta có:
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Trong mặt phẳng tọa độ
cho hai điểm
và
Tìm
thuộc trục tung sao cho
nhỏ nhất.
Vì .
Ta có:
Ta có:
Suy ra nhỏ nhất khi và chỉ khi
.
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?
Ta có:
Mệnh đề đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai. (Hay
đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai).
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Tam giác ABC có
, diện tích bằng 120. Độ dài đường trung tuyến AM là:
Ta có:
Diện tích tam giác bằng 120
Xét tam giác ABC vuông tại A ta có:
=> Trung tuyến AM có độ dài là:
Tính giá trị
biết rằng
?
Ta có:
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Hỏi cặp vectơ nào sau đây cùng hướng?
Cặp và
là cặp vectơ cùng hướng.
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm
là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Hãy liệt kê các phần tử của tập hợp ![]()
Ta có: không có nghiệm thực.
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Tìm tập xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?

Nhìn vào đồ thị ta có:
Bề lõm hướng xuống ⇒ a < 0.
Hoành độ đỉnh .
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm ⇒ c < 0.
Do đó: a < 0, b > 0, c < 0.
Mệnh đề nào sau đây đúng?
Ta có: và
đối nhau.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Tập
bằng tập nào sau đây?
Ta có:
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.