Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ \overrightarrow{OC} theo các vectơ đơn vị là

    \begin{matrix}  O\left( {0;0} ight) \hfill \\  \overrightarrow {OC}  = \left( {{x_C} - {x_O};{y_C} - {y_O}} ight) = \left( { - 2; - 5} ight) \hfill \\   \Rightarrow \overrightarrow {OC}  =  - 2\overrightarrow i  - 5\overrightarrow j  \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho hàm số y =
\left\{ \begin{matrix}
- 2x + 1 & khi & x \leq - 3 \\
\frac{x + 7}{2} & khi & x > - 3 \\
\end{matrix} ight.. Biết f(x0) = 5 thì x0

    TH1. x0 ≤  − 3: Với f(x0) = 5 ⇔  − 2x0 + 1 = 5 ⇔ x0 =  − 2 (Loại).

    TH2. x0 >  − 3: Với f\left( x_{0} ight) = 5 \Leftrightarrow
\frac{x_{0} + 7}{2} = 5 \Leftrightarrow x_{0} = 3 (thỏa mãn).

  • Câu 3: Nhận biết

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 4: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 5: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 6: Vận dụng

    Trong các mệnh đề sau mệnh đề nào:

    Với n = 3\mathbb{\in N \Rightarrow}n^{2}
\vdots 9 nhưng n không chia hết cho 9.

    Chọn đáp án \forall n\mathbb{\in N},n^{2}
\vdots 9 \Rightarrow n \vdots 9.

  • Câu 7: Thông hiểu

    Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:

     Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2. 

    Do đó B\subset A

  • Câu 8: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Câu nào sau đây đúng?

    Do M là trung điểm của BC nên ta có: \overrightarrow{GB} + \overrightarrow{GC} =
2\overrightarrow{GM}.

  • Câu 9: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 10: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 11: Thông hiểu

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 12: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Môn toán khó quá!

    (2) Bạn có đói không?

    (3) 2 > 3 hoặc 1 \leq 4.

    (4) \pi < 2.

    Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow2 câu là mệnh đề.

  • Câu 13: Thông hiểu

    Cho hai lực \overrightarrow{F_1}\overrightarrow{F_2} có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực \overrightarrow{F_1}\overrightarrow{F_2} lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

     

    Ta có: \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } ight| = \sqrt {{{80}^2} + {{60}^2}}  = 100N.

  • Câu 14: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(1;1),\ B(2; - 1),\ C(4;3),\ D(3;5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 2) \\
\overrightarrow{DC} = (1; - 2) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} =
\overrightarrow{DC}\overset{}{ightarrow}ABCD là hình bình hành.

  • Câu 15: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 16: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 17: Thông hiểu

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 18: Vận dụng cao

    Tất cả các giá trị của tham số m để các nghiệm của phương trình \sqrt{x+1}-2=0\;(1) cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:

    \sqrt{x + 1} = 2 \Leftrightarrow x + 1 = 4
\Leftrightarrow x = 3

    Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: 9 -
6m - m^{2} - 2 = 0 \Leftrightarrow m^{2} + 6m - 7 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = - 7 \\
\end{matrix} ight..

  • Câu 19: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 20: Vận dụng cao

    Cho biểu thức B xác định, rút gọn biểu thức

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}} với \pi < x < 2\pi?

    Ta có:

    \sin(x + 2013\pi) = \sin(x + \pi +
2012\pi) = \sin(x + \pi) = - \sin x

    Do đó:

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos
x}}

    B = \sqrt{2} + \frac{1}{\sin
x}.\sqrt{\frac{1 - \cos x + 1 + \cos x}{\left( 1 + \cos x ight)\left(
1 - \cos x ight)}}

    B = \sqrt{2} + \dfrac{1}{\sin x}.\sqrt{\dfrac{2}{1 - \cos^{2}x}}

    B = \sqrt{2} + \frac{1}{\sin x}.\sqrt{\dfrac{2}{\sin^{2}x}}

    B = \sqrt{2}\left( 1 + \frac{1}{\sin
x.\left| \sin x ight|} ight)

    \pi < x < 2\pi nên \sin x < 0

    \Rightarrow B = \sqrt{2}\left( 1 -\dfrac{1}{\sin^{2}x} ight) = - \sqrt{2}\cot^{2}x

  • Câu 21: Thông hiểu

    Tập nghiệm S của phương trình \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2là:

     Điều kiện: x \ge1.

    Ta có: \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2\Leftrightarrow \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+\frac{2(x+2)}{x+2}\Leftrightarrow \sqrt {x - 1}  =  - x - 11 + 2x + 4 \Leftrightarrow \sqrt {x - 1}=x-7\Rightarrow x-1=(x-7)^2 \Leftrightarrow x^2-15x+50=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 5}\\{x = 10}\end{array}} ight..

    Thử lại x=5 không thỏa mãn.

    Vậy S=\{10\}

  • Câu 22: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.|\overrightarrow{b}|.

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|\overrightarrow{a} ight|.\left| \overrightarrow{b}ight|.\cos(\overrightarrow{a},\overrightarrow{b}).

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|\overrightarrow{a} ight|.|\overrightarrow{b}|

    Suy ra \cos(\overrightarrow{a},\overrightarrow{b}) = - 1\longrightarrow (\overrightarrow{a},\overrightarrow{b}) =180^{\circ}

  • Câu 23: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Điều kiện 2x^{2} - 5x + 2 \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq \frac{1}{2} \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là \left( -
\infty;\frac{1}{2} ightbrack \cup \lbrack 2; + \infty).

  • Câu 24: Vận dụng

    Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.

    Hoành độ đỉnh của (P)x = - \frac{b}{2a} = \frac{2m}{2m} =
1.

    Suy ra tung độ đỉnh y =  − 4m − 2. Do đó tọa độ đỉnh của (P)I(1;−4m−2).

    Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên  − 4m − 2 = 3.1 − 1 ⇔ m =  − 1.

  • Câu 25: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 26: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 27: Thông hiểu

    Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn: \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight..

    Để hệ bất phương trình \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight. trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước x^2,y^2 phải bằng 0 nghĩa là:

    m=0

    Vậy với m=0 thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.

  • Câu 28: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 29: Vận dụng cao

    Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

    Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).

    Khi đó:

    Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .

    Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .

    Lợi nhuận mà doanh nghiệp thu được trong một năm là

    f(x) = (4−x)(600+200x) =  − 200x2 + 200x + 2400.

    Xét hàm số f(x) =  − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên

    Vậy \max_{\lbrack 0;4brack}f(x) = 2\ 450
\Leftrightarrow x = \frac{1}{2}.

    Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.

  • Câu 30: Nhận biết

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 31: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 32: Vận dụng cao

    Cho A = \left\{x\in\mathbb{ R}||mx - 3| = mx - 3 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - 4 = 0ight\}. Tìm m để B\backslash A = B.

    Ta có:

    |mx - 3| = mx - 3

    \Leftrightarrow mx - 3 \geq
0

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {m > 0,x \geqslant \dfrac{3}{m}} \\ 
  {m < 0,x \leqslant \dfrac{3}{m}} 
\end{array}} ight.

    Do đó m < 0 thì A = \left( - \infty;\frac{3}{m}
ightbrack; nếu m >
0 thì A = \left\lbrack \frac{3}{m};
+ \infty ight)

    Ta có:x^{2} - 4 = 0 \Leftrightarrow m =
\pm 2\mathbb{\in R}

    Do đó B = \left\{ - 2;2
ight\}

    Ta có: B\backslash A = B \Leftrightarrow
\left\lbrack \begin{matrix}
A eq \varnothing(*) \\
\left\{ \begin{matrix}
- 2 otin A \\
2 otin A \\
\end{matrix}(**) ight.\  \\
\end{matrix} ight.

    TH1: (*) \Leftrightarrow M =
0

    TH2: Nếu m < 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 > \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight.

    \Leftrightarrow - 2 > \frac{3}{m}
\Leftrightarrow m > - \frac{3}{2}

    Tóm lại - \frac{3}{2} < m <
0 thì thỏa mãn yêu cầu bài toán.

    TH3: Nếu m > 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 < \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight. \Rightarrow 2 < \dfrac{3}{m} \Rightarrow m < \frac{3}{2}

    Kết hợp ba trường hợp, vậy - \frac{3}{2}
< m < \frac{3}{2} thì thỏa mãn yêu cầu bài toán.

  • Câu 33: Thông hiểu

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 34: Vận dụng

    Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ AB có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40m, \widehat{CAB} = 45^{0}\widehat{CBA} = 70^{0}.Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABC, ta có \frac{AC}{\sin B} = \frac{AB}{\sin C}

    \sin C = \sin(\alpha + \beta) nên AC = \frac{AB.sin\beta}{\sin(\alpha +
\beta)} =
\frac{40.sin70^{0}}{sin115^{0}} \approx 41,47m.

  • Câu 35: Thông hiểu

    Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:

     Vì B' đối xứng với B qua A => A là trung điểm của BB'

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_{B'}} = 2{x_A}} \\   {{y_B} + {y_{B'}} = 2{x_A}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 2{x_A} - {x_B}} \\   {{y_{B'}} = 2{x_A} - {y_B}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 4} \\   {{y_{B'}} = 1} \end{array}} ight. \Leftrightarrow B'\left( {4;1} ight) \hfill \\ \end{matrix}

  • Câu 36: Thông hiểu

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

  • Câu 37: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ tan\alpha trái dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai thì \sin\alpha >
0, \cos\alpha < 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ tư thì \sin\alpha <
0, \cos\alpha > 0.

    Vậy nếu \sin\alpha,\ cos\alpha trái dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ II hoặc IV.

  • Câu 38: Vận dụng

    Cho \overrightarrow{AB} eq
\overrightarrow{0} và một điểm C. Có bao nhiêu điểm D thỏa mãn \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{CD} ight|\ ?

    Ta có \left| \overrightarrow{AB} ight|
= \left| \overrightarrow{CD} ight| \Leftrightarrow AB = CD. Suy ra tập hợp các điểm D thỏa mãn yêu cầu bài toán là đường tròn tâm C, bán kính AB.

  • Câu 39: Vận dụng

    Trong mặt phẳng tọa độ Oxy, tìm điểm M thuộc trục hoành để khoảng cách từ đó đến điểm N( - \ 1;4) bằng 2\sqrt{5}.

    M \in Ox \Rightarrow
M(a;0).

    Ta có: \overrightarrow{MN} = ( - 1 - a;4)
\Rightarrow \left| \overrightarrow{MN} ight| = \sqrt{( - 1 - a)^{2} +
4^{2}}.

    Ta có: \left| \overrightarrow{MN} ight|
= 2\sqrt{5} \Leftrightarrow a^{2} + 2a + 1 + 16 = 20 \Leftrightarrow a^{2} + 2a - 3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 1 \Rightarrow M(1;0) \\
a = - 3 \Rightarrow M( - 3;0) \\
\end{matrix} ight..

  • Câu 40: Vận dụng

    Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:

    Ta có:x2 − 2(m−1)x + m2 − 2m = 0

     ⇔ x2 − 2mx + m2 + 2x − 2m = 0

    \Leftrightarrow (x - m)(x - m + 2) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x_{1} = m \\
x_{2} = m - 2 \\
\end{matrix} ight.

    Để phương trình đã cho có hai nghiệm trái dấu \Leftrightarrow \left\{ \begin{matrix}
x_{1} eq x_{2} \\
x_{1}x_{2} < 0 \\
\end{matrix} \Leftrightarrow 0 < m < 2 ight. (1)

    Với m ∈ (0 ; 2) suy ra \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} < 0 \\
\end{matrix} ight. .

    Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0

     ⇔ (x2x1)(x2+x1) > 0

     ⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1

    Kết hợp điều kiện (1), ta được 0 < m < 1.

  • Câu 41: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 42: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 43: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 44: Nhận biết

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 45: Nhận biết

    Cho ngũ giác ABCDE. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm A?

    Các vectơ có điểm cuối là điểm A\overrightarrow{BA}; \overrightarrow{CA}; \overrightarrow{DA}; \overrightarrow{EA}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo