Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tổng các nghiệm của phương trình x^{2} + \sqrt{x^{2} + 11} = 31?

    Đặt t = \sqrt{x^{2} + 11},t \geq0. Khi đó phương trình đã cho trở thành:

    t^{2} + t - 42 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 6 \\t = - 7 \\\end{matrix} ight.

    t ≥ 0 ⇒ t = 6, thay vào ta có \sqrt{x^{2} + 11} =6.

    x2 + 11 = 36 ⇔ x =  ± 5.

    Vậy phương trình có nghiệm là x =  ± 5.

    Tổng các nghiệm của phương trình là 0.

  • Câu 2: Vận dụng

    Cho ba điểm A,B,C phân biệt. Tập hợp những điểm M\overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} là :

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} \Leftrightarrow \overrightarrow{CM}.\overrightarrow{CB} -
\overrightarrow{CA}.\overrightarrow{CB} = 0 \Leftrightarrow \left( \overrightarrow{CM} -
\overrightarrow{CA} ight).\overrightarrow{CB} = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0.

    Tập hợp điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 3: Thông hiểu

    Điểm A( -
1;3) là điểm thuộc miền nghiệm của bất phương trình:

    - 3.( - 1) + 2.3 - 4 > 0 là mệnh đề đúng nên A( - 1;3) là điểm thuộc miền nghiệm của bất phương trình - 3x + 2y - 4 > 0.

  • Câu 4: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 5: Nhận biết

    Bất phương trình 3x – 2(y – x + 1) > 0 tương đương với bất phương trình nào sau đây?

    Ta có: 3x – 2(y – x + 1) > 0 \Leftrightarrow 5x-2y-2>0.

  • Câu 6: Vận dụng

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm Cmà từ đó có thể nhìn được ABdưới một góc 56^{0}16'. Biết CA = 200\ m, CB = 180\ m. Khoảng cách AB gần nhất với kết quả nào sau đây?

    Ta có: AB^{2} = CA^{2} + CB^{2} -
2CB.CA.cosC = 200^{2} + 180^{2} -
2.200.180.cos56^{0}16' \simeq
32416 \Rightarrow AB \simeq 180.

  • Câu 7: Vận dụng

    Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.

    Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).

    Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1

     ⇔ (1)2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
m^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m = \pm 2 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 8: Thông hiểu

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác ABC.

    Ta có \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 9: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 10: Thông hiểu

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 11: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 12: Thông hiểu

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 13: Nhận biết

    Gọi S là tập nghiệm của bất phương trình {x^2} - 8x + 7 \geqslant 0. Trong các tập hợp sau, tập nào không là tập con của S?

    Tam thức bậc hai f\left( x ight) = {x^2} - 8x + 7 có hai nghiệm phân biệt là: {x_1} = 1;{x_2} = 7

    Vì a = 1 > 0 nên f\left( x ight) \geqslant 0 khi x \in \left( { - \infty ;1} ight] \cup \left[ {7; + \infty } ight).

    Tập không phải tập con của S là: [6; + ∞)

  • Câu 14: Nhận biết

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 15: Vận dụng cao

    Với mọi góc \alpha, giá trị của biểu thức

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight)

    Ta có:

    \cos\alpha = - \cos\left( \alpha +
\frac{5\pi}{5} ight)

    \cos\left( \alpha + \frac{\pi}{5}
ight) = - \cos\left( \alpha + \frac{6\pi}{5} ight)

    \cos\left( \alpha + \frac{2\pi}{5}
ight) = - \cos\left( \alpha + \frac{7\pi}{5} ight)

    \cos\left( \alpha + \frac{3\pi}{5}
ight) = - \cos\left( \alpha + \frac{8\pi}{5} ight)

    \cos\left( \alpha + \frac{4\pi}{5}
ight) = - \cos\left( \alpha + \frac{9\pi}{5} ight)

    Do đó:

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight) = 0

  • Câu 16: Thông hiểu

    Tập nghiệm của bất phương trình x^{2} + 4x + 4 > 0 là:

    Ta có:

    \begin{matrix}  {x^2} + 4x + 4 > 0 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ \end{matrix}

    Vậy tập nghiệm của bất phương trình là: (–∞; –2) ∪ (–2; +∞)

  • Câu 17: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 18: Vận dụng cao

    Với giá trị nào của tham số a thì phương trình: \left( x^{2} - 5x + 4 ight)\sqrt{x - a} =0 có đúng hai nghiệm phân biệt.

     \left( x^{2} - 5x + 4 ight)\sqrt{x - a} =0  \Leftrightarrow \left\lbrack \begin{matrix}x = a \\\left\{ \begin{matrix}x > a \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = a \\\left\{ \begin{matrix}x > a \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight..

    Phương trình có hai nghiệm phân biệt  ⇔ 1 ≤ a < 4.

  • Câu 19: Thông hiểu

    Cho tam giác ABC, điểm M thuộc cạnh AB sao cho 3\
AM = ABN là trung điểm của AC. Tính \overrightarrow{MN} theo \overrightarrow{AB}\overrightarrow{AC}.

    N là trung điểm AC nên 2\
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{MA} + \overrightarrow{MA} + \overrightarrow{AC}.
\Leftrightarrow 2\overrightarrow{MN} = 2\ \overrightarrow{MA} +
\overrightarrow{AC} = - \frac{2}{3}\overrightarrow{AB} +
\overrightarrow{AC}.

    Suy ra \overrightarrow{MN} = -
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}.

  • Câu 20: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 21: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 22: Nhận biết

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 23: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 24: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 25: Vận dụng cao

    Cho A = \left\{x\in\mathbb{ R}||mx - 3| = mx - 3 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - 4 = 0ight\}. Tìm m để B\backslash A = B.

    Ta có:

    |mx - 3| = mx - 3

    \Leftrightarrow mx - 3 \geq
0

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {m > 0,x \geqslant \dfrac{3}{m}} \\ 
  {m < 0,x \leqslant \dfrac{3}{m}} 
\end{array}} ight.

    Do đó m < 0 thì A = \left( - \infty;\frac{3}{m}
ightbrack; nếu m >
0 thì A = \left\lbrack \frac{3}{m};
+ \infty ight)

    Ta có:x^{2} - 4 = 0 \Leftrightarrow m =
\pm 2\mathbb{\in R}

    Do đó B = \left\{ - 2;2
ight\}

    Ta có: B\backslash A = B \Leftrightarrow
\left\lbrack \begin{matrix}
A eq \varnothing(*) \\
\left\{ \begin{matrix}
- 2 otin A \\
2 otin A \\
\end{matrix}(**) ight.\  \\
\end{matrix} ight.

    TH1: (*) \Leftrightarrow M =
0

    TH2: Nếu m < 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 > \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight.

    \Leftrightarrow - 2 > \frac{3}{m}
\Leftrightarrow m > - \frac{3}{2}

    Tóm lại - \frac{3}{2} < m <
0 thì thỏa mãn yêu cầu bài toán.

    TH3: Nếu m > 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 < \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight. \Rightarrow 2 < \dfrac{3}{m} \Rightarrow m < \frac{3}{2}

    Kết hợp ba trường hợp, vậy - \frac{3}{2}
< m < \frac{3}{2} thì thỏa mãn yêu cầu bài toán.

  • Câu 26: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 27: Thông hiểu

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 28: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 29: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ vecto \overrightarrow{i} + \overrightarrow{j} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} = (1;1)

  • Câu 30: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 31: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 32: Vận dụng

    Cho tam thức bậc hai f(x) = \left( 2m^{2} + m - 6 ight)x^{2} + (2m -
3)x - 1. Tìm tất cả các giá trị thực của tham số m để bất phương trình f(x) > 0 vô nghiệm?

    Bất phương trình: f(x) > 0\
(*) vô nghiệm khi và chỉ khi

    \left( 2m^{2} + m - 6 ight)x^{2} + (2m
- 3)x - 1 \leq 0,\forall x\mathbb{\in R}

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    Với m = - 2 thì (*) \Leftrightarrow - 7x - 1 > 0 \Leftrightarrow x
< - \frac{1}{7} loại giá trị m =
- 2.

    Với m = \frac{3}{2} thì bất phương trình (*) \Leftrightarrow 0x - 1 <
0 bất phương trình vô nghiệm, nhận giá trị m = \frac{3}{2}.

    Xét 2m^{2} + m - 6 eq 0

    \left( 2m^{2} + m - 6 ight)x^{2} + (2m
- 3)x - 1 \leq 0,\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} + m - 6 < 0 \\
(2m - 3)^{2} - 4\left( 2m^{2} + m - 6 ight).( - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < \dfrac{3}{2} \hfill \\
   - \dfrac{5}{6} \leqslant m \leqslant \frac{3}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - \frac{5}{6} \leqslant m < \frac{3}{2}

    Vậy m \in \left\lbrack -
\frac{5}{6};\frac{3}{2} ightbrack thì bất phương trình (*) vô nghiệm.

  • Câu 33: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 34: Thông hiểu

    Nghiệm của phương trình \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1} là:

     Điều kiện: x>1.

    Ta có: \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1}  \Rightarrow x^2-4x+3=x-1\Leftrightarrow x^2-5x+4=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 35: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 37: Thông hiểu

    Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng 5\sqrt{5} là:

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  = \left( {x - 6;10} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {AB} } ight| = \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  \hfill \\  \left| {\overrightarrow {AB} } ight| = 5\sqrt 5  \hfill \\   \Leftrightarrow \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  = 5\sqrt 5  \hfill \\   \Leftrightarrow {x^2} - 12x + 136 = 125 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 11} \\   {x = 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 38: Vận dụng

    Cho tam giác ABC với trực tâm H. D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng?

    Ta có BD là đường kính\Rightarrow \overrightarrow{OB} =
\overrightarrow{DO}.

    Ta có AH\bot BC,DC\bot BC \Rightarrow
AH//DC(1)

    Ta lại cóCH\bot AB,DA\bot AB \Rightarrow
CH//DA(2)

    Từ (1)(2) \Rightarrowtứ giác HADC là hình bình hành\Rightarrow \overrightarrow{HA} =
\overrightarrow{CD};\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 39: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 40: Vận dụng

    Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?

    Ta có:

    Mệnh đề P ⇔ Q đúng khi cả hai mệnh đề P ⇒ QQ ⇒ P cùng đúng hoặc cùng sai. (Hay P ⇔ Q đúng khi cả hai mệnh đề PQ cùng đúng hoặc cùng sai).

  • Câu 41: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho vectơ \overrightarrow{a} = (9;3). Vectơ nào sau đây không vuông góc với vectơ \overrightarrow{a}?

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.1 +
3.( - 3) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{1}} nên đáp án \overrightarrow{v_{1}} = (1; - 3) đúng.

    \overrightarrow{a}.\overrightarrow{v_{2}} = 9.2 +
3.( - 6) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{2}} nên đáp án \overrightarrow{v_{2}} = (2; - 6) đúng.

    \overrightarrow{a}.\overrightarrow{v_{3}} = 9.1 +
3.3 = 18 eq 0 nên đáp án \overrightarrow{v_{3}} = (1;3) sai.

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.( -
1) + 3.3 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{4}} nên đáp án \overrightarrow{v_{4}} = ( - 1;3) đúng.

  • Câu 42: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 43: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 44: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 45: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm a để A \cap B có đúng một phần tử.

    Để A \cap B có đúng một phần tử khi và chỉ khi a = 5. Khi đó A \cap B = \{ 5\}.

    Vậy a = 5 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo