Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 2: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ: x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}3m - 1 eq 0 \\x = \frac{5m + 1}{3m - 1} > - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq \frac{1}{3} \\\frac{8m}{3m - 1} > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m > \frac{1}{3} \\m < 0 \\\end{matrix} ight..

  • Câu 4: Vận dụng

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} ight| = 4, \left| \overrightarrow{b} ight| =
5\left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{o}. Tính \left| \overrightarrow{a} +
\overrightarrow{b} ight|.

    Ta có \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ \cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{21}.

  • Câu 5: Vận dụng

    Tam giác ABCAB =
4,\ \ BC = 6,\ \ AC = 2\sqrt{7}. Điểm M thuộc đoạn BC sao cho MC
= 2MB. Tính độ dài cạnh AM.

    Theo định lí hàm cosin, ta có : \cos B =
\frac{AB^{2} + BC^{2} - AC^{2}}{2.AB.BC} = \frac{4^{2} + 6^{2} - \left( 2\sqrt{7}
ight)^{2}}{2.4.6} = \frac{1}{2}.

    Do MC = 2MB\overset{}{ightarrow}BM =
\frac{1}{3}BC = 2.

    Theo định lí hàm cosin, ta có:

    \begin{matrix}
AM^{2} = AB^{2} + BM^{2} - 2.AB.BM.cos\widehat{B} \\
\\
\end{matrix}

    = 4^{2} + 2^{2} - 2.4.2.\frac{1}{2} = 12
\Rightarrow AM = 2\sqrt{3}.

  • Câu 6: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 7: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đây đúng?

    ABCD là hình vuông \Rightarrow \overrightarrow{AD} =
\overrightarrow{BC} = - \overrightarrow{CB} \Rightarrow \left|
\overrightarrow{AD} ight| = \left| \overrightarrow{CB}
ight|.

  • Câu 8: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 9: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 10: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm a để A \cap B có đúng một phần tử.

    Để A \cap B có đúng một phần tử khi và chỉ khi a = 5. Khi đó A \cap B = \{ 5\}.

    Vậy a = 5 là giá trị cần tìm.

  • Câu 11: Vận dụng

    Hàm số y =  − x2 + 2(m−1)x + 3 nghịch biến trên (1;+∞) khi giá trị m thỏa mãn:

    Đồ thị hàm số có trục đối xứng là đường x = m − 1. Đồ thị hàm số đã cho có hệ số x2 âm nên sẽ đồng biến trên (−∞;m−1) và nghịch biến trên (m−1;+∞). Theo đề, cần: m − 1 ≤ 1 ⇔ m ≤ 2.

  • Câu 12: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 13: Vận dụng cao

    Cho biểu thức B xác định, rút gọn biểu thức

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}} với \pi < x < 2\pi?

    Ta có:

    \sin(x + 2013\pi) = \sin(x + \pi +
2012\pi) = \sin(x + \pi) = - \sin x

    Do đó:

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos
x}}

    B = \sqrt{2} + \frac{1}{\sin
x}.\sqrt{\frac{1 - \cos x + 1 + \cos x}{\left( 1 + \cos x ight)\left(
1 - \cos x ight)}}

    B = \sqrt{2} + \dfrac{1}{\sin x}.\sqrt{\dfrac{2}{1 - \cos^{2}x}}

    B = \sqrt{2} + \frac{1}{\sin x}.\sqrt{\dfrac{2}{\sin^{2}x}}

    B = \sqrt{2}\left( 1 + \frac{1}{\sin
x.\left| \sin x ight|} ight)

    \pi < x < 2\pi nên \sin x < 0

    \Rightarrow B = \sqrt{2}\left( 1 -\dfrac{1}{\sin^{2}x} ight) = - \sqrt{2}\cot^{2}x

  • Câu 14: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 15: Thông hiểu

    Cho \overrightarrow{a} = ( - 5;0),\ \overrightarrow{b}
= (4;x). Tìm x để hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương.

    Hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương \Leftrightarrow - 5.x =
0.4\overset{}{ightarrow}x = 0.

  • Câu 16: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 17: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{x}{2} + \frac{y}{3} - 1 \geq 0 \\
x \geq 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{0}{2} + \frac{0}{3} - 1 \geq 0 \\
0 \geq 0 \\
0 + \frac{1}{2} - \frac{3.0}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(2;1) \Rightarrow \left\{
\begin{matrix}
\frac{2}{2} + \frac{1}{3} - 1 \geq 0 \\
2 \geq 0 \\
2 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng.

  • Câu 18: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 19: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 20: Vận dụng cao

    Biết phương trình (x + 5)(2 - x) = 3\sqrt{x^{2} + 3x}có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?

    Điều kiện:

    x2 + 3x ≥ 0⇔ \left\lbrack \begin{matrix}
x \leq - 3 \\
x \geq 0 \\
\end{matrix} ight.\ (1)

    phương trình \Leftrightarrow x^{2} + 3x +
3\sqrt{x^{2} + 3x} - 10 = 0.

    Đặt t = \sqrt{x^{2} + 3x}, điều kiện t ≥ 0.

    Phương trình trở thành t2 + 3t − 10 = 0

    \left\lbrack \begin{matrix}
t = 2(TM) \\
t = - 5(KTM) \\
\end{matrix} ight. \sqrt{x^{2} + 3x} = 2 \Leftrightarrow x^{2} + 3x -
4 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 = x_{2} \\
x = - 4 = x_{1} \\
\end{matrix} ight., thoả mãn (1) ⇒ x1 + 4x2 = 0.

  • Câu 21: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( \sqrt{5} - 1 ight)x -
\sqrt{5} nhận giá trị dương khi và chỉ khi

    f(x) = x^{2} + \left( \sqrt{5} - 1
ight)x - \sqrt{5} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - \sqrt{5} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x \in
\left( - \infty; - \sqrt{5} ight) \cup (1; + \infty).

  • Câu 22: Thông hiểu

    Cho f(x)=ax^{2}+bx+c(a≠0)Δ=b^{2}−4ac<0. Khi đó mệnh đề nào đúng?

     Khi \Delta<0 thì f(x) luôn cùng dấu với hệ số a \text{       } \forall x\in \mathbb{R}. Do đó nó không đổi dấu.

  • Câu 23: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 24: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 25: Nhận biết

    Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;2), B(-1;3), C(-2;1). Chọn khẳng định đúng.

    Biểu diễn các điểm trên hệ trục tọa độ như sau:

    Chọn khẳng định đúng

    Ta có:

    \begin{matrix}  \overrightarrow {OA}  = \left( {1,2} ight) \hfill \\  \overrightarrow {BC}  = \left( { - 2 + 1,1 - 3} ight) = \left( { - 1, - 2} ight) =  - 1.\left( {1,2} ight) =  - 1.\overrightarrow {OA}  \hfill \\ \end{matrix}

    Vậy hai vectơ \overrightarrow{OA},\overrightarrow{BC} cùng phương, ngược hướng.

  • Câu 26: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 27: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 28: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 29: Vận dụng

    Phát biểu nào sau đây là mệnh đề đúng:

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng, Q sai.

    2.5 = 10là mệnh đề đúng, Luân Đôn là thủ đô của Hà Lan là mệnh đề sai \Rightarrow2.5 = 10 \Rightarrow Luân Đôn là thủ đô của Hà Lan” là mệnh đề sai.

    7 là số lẻ là mệnh đề đúng,7 chia hết cho 2 là mệnh đề sai \Rightarrow7 là số lẻ \Rightarrow 7 chia hết cho 2” là mệnh đề sai.

    81 là số chính phương là mệnh đề đúng, \sqrt{81} là số nguyên là mệnh đề đúng \Rightarrow81 là số chính phương \Rightarrow \sqrt{81} là số nguyên” là mệnh đề đúng.

    Số 141 chia hết cho 3 là mệnh đề đúng, 141 chia hết cho 9 là mệnh đề sai \Rightarrow “Số 141 chia hết cho 3 \Rightarrow 141 chia hết cho 9” là mệnh đề sai.

    Chọn đáp án 81 là số chính phương \Rightarrow \sqrt{81} là số nguyên.

  • Câu 30: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(3; - 2),\ B(7;1),\ C(0;1),\ D( - 8; -
5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (4;3) \\
\overrightarrow{CD} = ( - 8; - 6) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{CD} = -
2\overrightarrow{AB}\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{CD} ngược hướng.

  • Câu 31: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 32: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Tìm phát biểu không phải mệnh đề.

    Buồn ngủ quá!” là mệnh đề.

  • Câu 34: Vận dụng

    Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:

    Ta có:x2 − 2(m−1)x + m2 − 2m = 0

     ⇔ x2 − 2mx + m2 + 2x − 2m = 0

    \Leftrightarrow (x - m)(x - m + 2) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x_{1} = m \\
x_{2} = m - 2 \\
\end{matrix} ight.

    Để phương trình đã cho có hai nghiệm trái dấu \Leftrightarrow \left\{ \begin{matrix}
x_{1} eq x_{2} \\
x_{1}x_{2} < 0 \\
\end{matrix} \Leftrightarrow 0 < m < 2 ight. (1)

    Với m ∈ (0 ; 2) suy ra \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} < 0 \\
\end{matrix} ight. .

    Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0

     ⇔ (x2x1)(x2+x1) > 0

     ⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1

    Kết hợp điều kiện (1), ta được 0 < m < 1.

  • Câu 35: Vận dụng

    Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA. Trong các khẳng định sau, hãy tìm khẳng định sai?

    Ta có MN là đường trung bình của tam giác ABC. Suy raMN = \frac{1}{2}AChay \left| \overrightarrow{MN} ight| =
\frac{1}{2}\left| \overrightarrow{AC} ight|.

    Chọn đáp án sai \left|
\overrightarrow{MN} ight| = \left| \overrightarrow{AC}
ight|.

  • Câu 36: Thông hiểu

    Xác định parabol (P):y=2x^{2}+bx+c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x=1.

    Vì hàm số có trục đối xứng x=1 và đi qua điểm M(0;4) nên: 

    \frac{-b}{2a}=1 \Leftrightarrow b=-2a4=2.0^{2}+b.0+c \Leftrightarrow c=4.

    Nhận xét: Trong 4 đáp án, chỉ có y=2x^{2}-4x+4 thỏa mãn 2 điều kiện trên.

  • Câu 37: Nhận biết

    Cho bất phương trình x - 2y - 1 < 0 có tập nghiệm S. Khẳng định nào sau đây là đúng?

    Xét điểm ( - 2; - 1). Ta có: - 2 - 2( - 1) - 1 = - 1 < 0 thỏa mãn. Do đó ( - 2; - 1) \in S.

  • Câu 38: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 39: Thông hiểu

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 40: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 41: Thông hiểu

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 42: Vận dụng cao

    Cho A = \left\{x\in\mathbb{ R}||mx - 3| = mx - 3 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - 4 = 0ight\}. Tìm m để B\backslash A = B.

    Ta có:

    |mx - 3| = mx - 3

    \Leftrightarrow mx - 3 \geq
0

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {m > 0,x \geqslant \dfrac{3}{m}} \\ 
  {m < 0,x \leqslant \dfrac{3}{m}} 
\end{array}} ight.

    Do đó m < 0 thì A = \left( - \infty;\frac{3}{m}
ightbrack; nếu m >
0 thì A = \left\lbrack \frac{3}{m};
+ \infty ight)

    Ta có:x^{2} - 4 = 0 \Leftrightarrow m =
\pm 2\mathbb{\in R}

    Do đó B = \left\{ - 2;2
ight\}

    Ta có: B\backslash A = B \Leftrightarrow
\left\lbrack \begin{matrix}
A eq \varnothing(*) \\
\left\{ \begin{matrix}
- 2 otin A \\
2 otin A \\
\end{matrix}(**) ight.\  \\
\end{matrix} ight.

    TH1: (*) \Leftrightarrow M =
0

    TH2: Nếu m < 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 > \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight.

    \Leftrightarrow - 2 > \frac{3}{m}
\Leftrightarrow m > - \frac{3}{2}

    Tóm lại - \frac{3}{2} < m <
0 thì thỏa mãn yêu cầu bài toán.

    TH3: Nếu m > 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 < \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight. \Rightarrow 2 < \dfrac{3}{m} \Rightarrow m < \frac{3}{2}

    Kết hợp ba trường hợp, vậy - \frac{3}{2}
< m < \frac{3}{2} thì thỏa mãn yêu cầu bài toán.

  • Câu 43: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ G là trọng tâm của tam giác ABC. Khẳng định nào sau đây đúng?

    G là trọng tâm của tam giác ABC nên \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM}.M là trung điểm của BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight). Do đó \overrightarrow{AG}
= \frac{2}{3}.\frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight) = \frac{1}{3}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight).

  • Câu 44: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 45: Thông hiểu

    Cho hai vectơ \overrightarrow{u} = ( - 4; - 3)\overrightarrow{v} = ( - 1; - 7). Góc giữa hai vectơ \overrightarrow{u}\overrightarrow{v} là:

    \cos\left( \overrightarrow{u},\overrightarrow{v} ight) = \dfrac{( - 4)(- 1) + ( - 3).( - 7)}{\sqrt{4^{2} + 3^{2}}.\sqrt{1^{2} + 7^{2}}} =\dfrac{\sqrt{2}}{2}

    \Rightarrow \left( \overrightarrow{u},\overrightarrow{v} ight) =45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo