Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Cho tam giác
có tọa độ ba đỉnh
. Trọng tâm G của tam giác
là:
Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Phương trình
có mấy nghiệm nguyên ?
Điều kiện: x ≥ − 2
PT đã cho tương đương với:
Do x = − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:
Đặt ta có:
Với t = 2 ta được
Vậy phương trình có 0 nghiệm nguyên.
Cho tam giác
có
Tính ![]()
Ta có
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Cho
và một điểm
Có bao nhiêu điểm
thỏa mãn ![]()
Ta có . Suy ra tập hợp các điểm
thỏa mãn yêu cầu bài toán là đường tròn tâm
bán kính
.
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Số nghiệm của phương trình
là
Điều kiện: .
⇔
⇔
⇔ ⇔ x = 0(TM).
Vậy, phương trình có một nghiệm.
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tính tích vô hướng ![]()
Ta có: và
Vậy
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tam thức bậc hai
:
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng − 3.
Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.
Theo giả thiết 2m + 3 = − 3 ⇔ m = − 3.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho tam giác
có tọa độ ba đỉnh
. Xác định tọa độ điểm
thỏa mãn
?
Giả sử tọa độ điểm D là:
Ta có: thỏa mãn
Ta có:
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho hai tập hợp khác rỗng
và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Trong hệ tọa độ
cho tam giác
có
, trọng tâm
và trung điểm cạnh
là
Tổng hoành độ của điểm
và
là
Vì là trung điểm
nên
Vì là trọng tâm tam giác
nên
Suy ra
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?
Ta có: là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
Chọn đáp án
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Cho tam giác
Hai điểm
chia cạnh
theo ba phần bằng nhau
Tính
theo
và ![]()
Ta có
Cho parabol (P) : y = x2 − 4x + 3 và đường thẳng d : y = mx + 3. Tìm tất cả các giá trị thực của m để d cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng
.
Phương trình hoành độ giao điểm của (P) và d là x2 − 4x + 3 = mx + 3
.
Để d cắt (P) tại hai điểm phân biệt A, B khi và chỉ khi 4 + m ≠ 0 ⇔ m ≠ − 4.
Với .
Với .
Gọi H là hình chiếu của B lên OA. Suy ra BH = |xB| = |4+m|.
Theo giả thiết bài toán, ta có
.
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó ![]()
Ta có: G là trọng tâm tam giác ABC =>
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Tìm các giá trị của m để biểu thức sau luôn dương
![]()
Tam thức − 4x2 + 5x − 2 có a = − 4 < 0, Δ = − 7 < 0
suy ra − 4x2 + 5x − 2 < 0 ∀x
Do đó h(x) luôn dương khi và chỉ khi h′(x) = − x2 + 4(m+1)x + 1 − 4m2 luôn âm
Vậy với thì biểu thức h(x) luôn dương.
Cho hình vuông
. Khẳng định nào sau đây đúng?
là hình vuông
.
Cho hình chữ nhật ABCD có
, AD = 1. Tính góc giữa hai vectơ
và ![]()
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.