Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    +)m = - 2 \Rightarrow g(x) = - 7x - 1 >
0 \Leftrightarrow x < - \frac{1}{7} (không thỏa mãn yêu cầu bài toán)

    +) m = \frac{3}{2} \Rightarrow g(x) =
0 (không thỏa mãn)

    Xét 2m^{2} + m - 6 eq 0 \Leftrightarrow
\left\{ \begin{matrix}
m eq - 2 \\
m eq \frac{3}{2} \\
\end{matrix} ight.

    g(x) \leq 0,\ \ \forall x \Leftrightarrow
\left\{ \begin{matrix}
a = 2m^{2} + m - 6 < 0 \\
\Delta' = 12m^{2} - 8m - 15 \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < \frac{3}{2} \\
- \frac{5}{6} \leq m \leq \frac{3}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{5}{6} \leq m <
\frac{3}{2}

  • Câu 2: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 3: Vận dụng cao

    Cho hai tập hợp A
= ( - \infty;m), B = \lbrack 3m -
1;3m + 3brack. Tìm tất cả các giá trị của tham số m để A
\subset C_{\mathbb{R}}B.

    Ta có: {C_\mathbb{R}}B = \left( { - \infty ;3m - 1} ight) \cup \left( {3m + 3; + \infty } ight)

    Do đó để A \subset {C_\mathbb{R}}B

    \Leftrightarrow m \leqslant 3m - 1 \Leftrightarrow m \geqslant \frac{1}{2}

  • Câu 4: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 5: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 6: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 7: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 8: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).

  • Câu 9: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 10: Vận dụng cao

    Phương trình x.\sqrt[3]{35 - x^{3}}\left( x + \sqrt[3]{35 -
x^{3}} ight) = 30 có mấy nghiệm nguyên dương ?

    Đặt t = \sqrt[3]{35 - x^{3}}. Ta có hệ phương trình:

    \begin{matrix}
\left\{ \begin{matrix}
xt(x + t) = 30 \\
x^{3} + t^{3} = 35 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + t = 5 \\
x.t = 6 \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x = 2 \\
t = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 3 \\
t = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Vậy phương trình có 2 nghiệm x = 2x = 3.

  • Câu 11: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 13: Vận dụng cao

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 14: Vận dụng

    Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có AH\bot BCDC\bot BC (do góc \widehat{DCB} chắn nửa đường tròn).

    Suy ra AH \parallel DC.

    Tương tự ta cũng có CH \parallel
AD.

    Suy ra tứ giác ADCHlà hình bình hành. Do đó \overrightarrow{HA} =
\overrightarrow{CD}\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 15: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 16: Thông hiểu

    Cho tam giác đều ABC có cạnh bằng a và chiều cao AH. Mệnh đề nào sau đây là sai?

    +)AH\bot BC nên đáp án \overrightarrow{AH}.\overrightarrow{BC} =
0 đúng.

    +)\left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0}. Đáp án \left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0} đúng.

    +)\overrightarrow{AB}.\overrightarrow{AC}= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight)=a.a.\cos 60^{\ ^{{^\circ}}} = \frac{a^{2}}{2}. Đáp án \overrightarrow{AB}.\overrightarrow{AC} =
\frac{a^{2}}{2}. đúng.

    +)\overrightarrow{AC}.\overrightarrow{CB}
= \left| \overrightarrow{AC} ight|.\left| \overrightarrow{CB}
ight|.cos120^{\ ^{{^\circ}}} = - \frac{a^{2}}{2}. Đáp án \overrightarrow{AC}.\overrightarrow{CB} =
\frac{a^{2}}{2}. sai.

  • Câu 17: Thông hiểu

    Xác định tập hợp sau đây trên trục số: C = \left( {7;12} ight] \cap \left( { - \infty ;9} ight]:

    Xác định tập hợp trên trục số như sau:

    Xác định tập hợp trên trục số

  • Câu 18: Vận dụng

    Biết A là mệnh đề sai, còn B là mệnh đề đúng. Mệnh đề nào sau đây đúng?

    B đúng, A sai nên B \Rightarrow
A, B \Leftrightarrow A là mệnh đề sai.

    \overline{A} đúng, \overline{B} sai nên \overline{A} \Rightarrow \overline{B} là mệnh đề sai do đó \overline{A}
\Leftrightarrow \overline{B} là mệnh đề sai.

    Chọn đáp án B \Rightarrow
\overline{A}.

  • Câu 19: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó (P) Chọn A.

  • Câu 20: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 21: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 22: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 23: Thông hiểu

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 24: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 25: Thông hiểu

    Biết phương trình 3x + 1 - \sqrt{3x^{2} + 7x} - \sqrt{3x - 1} =0 có một nghiệm có dạng x = \frac{a +\sqrt{b}}{c}, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.

    Điều kiện: \left\{ \begin{matrix}3x^{2} + 7x \geq 0 \\3x - 1 \geq 0 \\\end{matrix} ight.\  \Leftrightarrow x \geq \frac{1}{3}\ \(*)

    Với điều kiện trên, phương trình tương đương

    \left\lbrack (2x + 1) - \sqrt{3x^{2} +7x} ightbrack + \left\lbrack x - \sqrt{3x - 1} ightbrack =0

    \Leftrightarrow \frac{x^{2} - 3x +1}{(2x + 1) + \sqrt{3x^{2} + 7x}} + \frac{x^{2} - 3x + 1}{x + \sqrt{3x -1}} = 0

    \Leftrightarrow \left( x^{2} - 3x + 1ight)\left( \frac{1}{2x + 1 + \sqrt{3x^{2} + 7x}} + \frac{1}{x +\sqrt{3x - 1}} ight) = 0

     ⇔ x2 − 3x + 1 = 0

    \Leftrightarrow x = \frac{3 +\sqrt{5}}{2} hoặc x = \frac{3 -\sqrt{5}}{2}

    Theo yêu cầu đề bài ta chọn nghiệm x =\frac{3 + \sqrt{5}}{2}.

    Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.

  • Câu 26: Nhận biết

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 27: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng

    Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

    Tính bán kinh của chiếc đĩa

    Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):

    Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.

    Nửa chu vi tam giác ABC: 

    \begin{matrix}  p = \dfrac{{AB + AC + BC}}{2} \hfill \\   = \dfrac{{4,3 + 7,5 + 3,7}}{2} = \dfrac{{31}}{4}\left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng công thức Hê - rông tính diện tích tam giác ABC:

    \begin{matrix}  S = \sqrt {p\left( {p - AB} ight)\left( {p - AC} ight)\left( {p - BC} ight)}  \hfill \\   \Rightarrow S \approx 5,2\left( {c{m^2}} ight) \hfill \\ \end{matrix}

    Mặt khác 

    \begin{matrix}  S = \dfrac{{AB.AC.BC}}{{4R}} \Rightarrow R = \dfrac{{AB.AC.BC}}{{4s}} \hfill \\   \Rightarrow R \approx 5,73\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 30: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 31: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 32: Thông hiểu

    Số giá trị nguyên của x để tam thức f(x)=2x^{2}−7x−9 nhận giá trị âm là:

     Ta có: \Delta >0a=2>0.

    Phương trình f(x)=0 có hai nghiệm x=-1;x=\frac92.

    Do đó f(x)<0 \Leftrightarrow  -1 < x < \frac92 \Leftrightarrow x=\{0;1;2;3;4\} (5 giá trị).

  • Câu 33: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

  • Câu 34: Thông hiểu

    Cho tọa độ ba điểm A(0;3),B(4;0),C( - 2; - 5). Tính \overrightarrow{AB}.\overrightarrow{BC}?

    Ta có: A(0;3),B(4;0),C( - 2; -
5)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{AB} = (4; - 3) \\
\overrightarrow{BC} = ( - 6; - 5) \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 4.( - 6) + ( - 3).( - 5) = -
9

  • Câu 35: Thông hiểu

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 36: Nhận biết

    Cho tam giác ABCAB =
12,AC = 13,BC = 5. Diện tích S của tam giác ABC là:

    Ta có: BA^{2} + BC^{2} = AC^{2} nên tam giác ABC vuông tại B.

    Diện tích tam giác là: S = \frac{1}{2}BA
\cdot BC = 30.

  • Câu 37: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} và vectơ \overrightarrow{v} có độ dài bằng nhau.

    Ta có: \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u} = \left( \frac{1}{2}; - 5 ight) \Rightarrow \left|
\overrightarrow{u} ight| = \frac{\sqrt{101}}{2}

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; - 4)
\Rightarrow \left| \overrightarrow{v} ight| = \sqrt{k^{2} +
16}

    Để \left| \overrightarrow{u} ight| =
\left| \overrightarrow{v} ight| \Leftrightarrow \frac{\sqrt{101}}{2} =
\sqrt{k^{2} + 16} \Leftrightarrow \frac{101}{4} = k^{2} + 16
\Leftrightarrow k = \pm \frac{\sqrt{37}}{2}.

  • Câu 38: Thông hiểu

    Cho \overrightarrow{a}, \overrightarrow{b}không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ } là:

    Ta có- \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } ight) =
\frac{1}{2}\overrightarrow{\ x\ }. Chọn - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ }.

  • Câu 39: Thông hiểu

    Tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR} bằng vectơ nào sau đây?

    Ta có

    \overrightarrow{MN} + \overrightarrow{PQ}
+ \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}

    = \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} +
\overrightarrow{RN}

    = \overrightarrow{MN}.

  • Câu 40: Thông hiểu

    Cho \overrightarrow{a} = ( - 5;0),\ \overrightarrow{b}
= (4;x). Tìm x để hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương.

    Hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương \Leftrightarrow - 5.x =
0.4\overset{}{ightarrow}x = 0.

  • Câu 41: Nhận biết

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

     Ta có: \overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{MC}-\overrightarrow{MD}  \Leftrightarrow \overrightarrow {AB}= \overrightarrow {DC} (Đúng).

  • Câu 42: Thông hiểu

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 43: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ trung điểm M của đoạn thẳng AB với A(3; -
4),B(7;2) là:

    Tọa độ trung điểm M của AB là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{3 + 7}{2} = 5 \\y_{M} = \dfrac{- 4 + 2}{2} = - 1 \\\end{matrix} ight.

    \Rightarrow M(5; - 1)

    Vậy tọa độ trung điểm M của AB là M(5; -
1).

  • Câu 44: Nhận biết

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 45: Vận dụng

    Cho 4 điểm A(1; -
2),B(0;3),C( - 3;4),D( - 1;8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?

    Ta có: \overrightarrow{AD}( - 2;10),\
\overrightarrow{AB}( - 1;5) \Rightarrow \overrightarrow{AD} =
2\overrightarrow{AB} \Rightarrow 3 điểm A,B,D thẳng hàng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo