Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 2: Thông hiểu

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 3: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 4: Thông hiểu

    Cho bất phương trình \sqrt{5}x - 1 < \sqrt{2023}y có tập nghiệm T. Khẳng định nào sau đây là đúng?

    Xét điểm (2;1). Ta có: \sqrt{5}.2 - 1 < \sqrt{2023}.1 thỏa mãn. Do đó (2;1) \in T.

  • Câu 5: Thông hiểu

    Cho hình bình hành ABCDM là trung điểm của AB. Khẳng định nào sau đây đúng?

    Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ \overrightarrow{DM} theo hai vectơ \overrightarrow{DC}\overrightarrow{BC}.

    ABCD là hình bình hành nên \overrightarrow{DB} = \overrightarrow{DA} +
\overrightarrow{DC}.M là trung điểm AB nên 2\ \overrightarrow{DM} = \overrightarrow{DA} +
\overrightarrow{DB} \Leftrightarrow 2\ \overrightarrow{DM} = 2\
\overrightarrow{DA} + \overrightarrow{DC} \Leftrightarrow 2\
\overrightarrow{DM} = - \ 2\ \overrightarrow{BC} +
\overrightarrow{DC}

    suy ra \overrightarrow{DM} =
\frac{1}{2}\overrightarrow{DC} - \overrightarrow{BC}.

  • Câu 6: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 7: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 8: Vận dụng cao

    Tìm điều kiện cần và đủ để hai khoảng ( - \infty;9a)\left( \frac{4}{a}; + \infty ight) là tập rỗng, biết a là số thực âm.

    Điều kiện cần và đủ để hai tập giao khác rỗng là:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{4}{a} < 9a} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{{4 - 9{a^2}}}{a} < 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  { - \dfrac{2}{3} < a < \dfrac{2}{3}} 
\end{array}} ight. \Leftrightarrow  - \dfrac{2}{3} < a < 0

  • Câu 9: Vận dụng

    Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng

    f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.

    f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.

    f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.

     ⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.

  • Câu 10: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 11: Vận dụng

    Hai chiếc tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc 60^{0}. Tàu B chạy với tốc độ 20 hải lí một giờ. Tàu C chạy với tốc độ 15 hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

    Sau 2 giờ tàu B đi được 40 hải lí, tàu C đi được 30 hải lí. Vậy tam giác ABCAB =
40,\ \ \ AC = 30\widehat{A} =
60^{0}.

    Áp dụng định lí côsin vào tam giác ABC, ta có

    a^{2} = b^{2} + c^{2} - 2bc\cos
A = 30^{2} + 40^{2} -
2.30.40.cos60^{0} = 900 + 1600 -
1200 = 1300.

    Vậy BC = \sqrt{1300} \approx 36 (hải lí).

    Sau 2 giờ, hai tàu cách nhau khoảng 36 hải lí.

  • Câu 12: Thông hiểu

    Cho hàm số bậc hai y = ax^{2} + bx + c;(a eq 0) có đỉnh I( - 1;4) và đi qua điểm M( - 2;5). Xác định giá trị biểu thức S = a + b + c?

    Parabol có đỉnh I( - 1;4)

    \Leftrightarrow \left\{ \begin{matrix}- \dfrac{b}{2a} = - 1 \\4 = a.( - 1)^{2} + b.( - 1) + c \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a - b = 0 \\a - b + c = 4 \\\end{matrix} ight.(*)

    Parabol đi qua điểm M( - 2;5) suy ra

    5 = a( - 2)^{2} + b.( - 2) +
c

    \Leftrightarrow 4a - 2b + c =
5(**)

    Từ (*) và (**) ta có hệ phương trình

    \left\{ \begin{matrix}
2a - b = 0 \\
a - b + c = 4 \\
4a - 2b + c = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 5 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = 1 + 2 + 5 =
8

  • Câu 13: Nhận biết

    Cho bất phương trình x - 2y - 1 < 0 có tập nghiệm S. Khẳng định nào sau đây là đúng?

    Xét điểm ( - 2; - 1). Ta có: - 2 - 2( - 1) - 1 = - 1 < 0 thỏa mãn. Do đó ( - 2; - 1) \in S.

  • Câu 14: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 15: Vận dụng

    Cho \overrightarrow{AB} eq
\overrightarrow{0} và một điểm C. Có bao nhiêu điểm D thỏa mãn \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{CD} ight|\ ?

    Ta có \left| \overrightarrow{AB} ight|
= \left| \overrightarrow{CD} ight| \Leftrightarrow AB = CD. Suy ra tập hợp các điểm D thỏa mãn yêu cầu bài toán là đường tròn tâm C, bán kính AB.

  • Câu 16: Thông hiểu

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 17: Thông hiểu

    Cho tam giác ABC có BC = a, CA = b, AB = c. Tính P=(\overrightarrow{AB}+\overrightarrow{AC})\times \overrightarrow{BC}

    Ta có: 

    \begin{matrix}  P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\overrightarrow {BC}  \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {BA}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( { - \overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = {\left( {\overrightarrow {AC} } ight)^2} - {\left( {\overrightarrow {AB} } ight)^2} = {\left| {\overrightarrow {AC} } ight|^2} - {\left| {\overrightarrow {AB} } ight|^2} \hfill \\   \Rightarrow P = {b^2} - {c^2} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 19: Nhận biết

    Tam giác ABC có \hat B = {60^0},\hat C = {45^0};AC = 5. Độ dài cạnh AB là:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin B}} = \dfrac{{AB}}{{\sin C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin C}}{{\sin B}} = \dfrac{{5.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{5\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -8).

    Xét tỉ số \frac{4}{- 4} eq\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại đáp án \overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-2}{6}\overset{}{ightarrow}\overrightarrow{u},\\overrightarrow{v} không cùng phương. Loại đáp án Hai vectơ \overrightarrow{u} = (2; - 1)\ và\\overrightarrow{v} = ( - 2; - 1) đối nhau.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

    Chọn đáp án \overrightarrow{\mathbf{u}}\mathbf{-}\overrightarrow{\mathbf{v}}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 22: Thông hiểu

    Giải bất phương trình \frac{{5{x^2} + 3x - 8}}{{{x^2} - 7x + 6}} \leqslant 0

    Ta có bảng xét dấu như sau:

    Tìm tập nghiệm của bất phương trình

    Vậy tập nghiệm của bất phương trình là: S = \left[ {\frac{{ - 8}}{5};1} ight) \cup \left( {1;6} ight)

  • Câu 23: Vận dụng cao

    Cho hàm số y =
x^{2} - 2\left( m + \frac{1}{m} ight)x + m(m > 0) xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng

    Đặt y = f(x) = x^{2} - 2\left( m +
\frac{1}{m} ight)x + m.

    Hoành độ đỉnh của đồ thị hàm số là x = m +
\frac{1}{m} \geq 2 (bất đẳng thức Côsi).

    Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên \left( - \infty;m +
\frac{1}{m} ight).

    Suy ra, hàm số nghịch biến [ − 1; 1].

    \Rightarrow y_{1} = f( - 1) = 3m +
\frac{2}{m} + 1.

    y_{2} = f(1) = 1 - m -
\frac{2}{m}.

    Theo đề bài ta có: y1 − y2 = 8 \Leftrightarrow 3m + \frac{2}{m} + 1 - 1 + m
+ \frac{2}{m} = 8(m > 0) \Leftrightarrow m^{2} - 2m + 1 = 0
\Leftrightarrow m = 1.

  • Câu 24: Thông hiểu

    Số nghiệm của phương trình \sqrt{2x^{2}-2x+4}=\sqrt{x^{2}-x+2}

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {2{x^2} - 2x + 4 \geqslant 0} \\   {{x^2} - x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 2x + 4}  = \sqrt {{x^2} - x + 2}  \hfill \\   \Leftrightarrow 2{x^2} - 2x + 4 = {x^2} - x + 2 \hfill \\   \Leftrightarrow {x^2} - x + 2 = 0\left( {VN} ight) \hfill \\ \end{matrix}

    Do {\left( {x - \frac{1}{2}} ight)^2} + \frac{7}{4} > 0,\forall x

    Vậy phương trình vô nghiệm.

  • Câu 25: Thông hiểu

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 26: Nhận biết

    Trong mặt phẳng tọa độ Oxy, khoảng cách giữa hai điểm M(1;4)N(3;2) bằng:

    Khoảng cách giữa hai điểm M, N là

    MN = \sqrt{\left( x_{N} - x_{M}
ight)^{2} + \left( y_{N} - y_{M} ight)^{2}}

    = \sqrt{(3 - 1)^{2} + (2 - 4)^{2}} =
2\sqrt{2}

  • Câu 27: Thông hiểu

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 28: Thông hiểu

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 29: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 30: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 31: Vận dụng

    Hỏi có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình \frac{x^{4} - x^{2}}{x^{2} + 5x + 6} \leq 0 ?

    Bất phương trình \frac{x^{4} -
x^{2}}{x^{2} + 5x + 6} \leq 0 \Leftrightarrow \frac{x^{2}\left( x^{2} -
1 ight)}{x^{2} + 5x + 6} \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \
(*).

    x2 ≥ 0,  ∀x ∈ ℝ nên bất phương trình

    (*) \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = 0 \\
\frac{x^{2} - 1}{x^{2} + 5x + 6} \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
f(x) = \frac{x^{2} - 1}{x^{2} + 5x + 6} \leq 0 \\
\end{matrix} ight.\ .

    Phương trình x^{2} - 1 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - \ 1 \\
\end{matrix} ight.x^{2} + 5x
+ 6 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \ 2 \\
x = - \ 3 \\
\end{matrix} ight.\ .

    Bảng xét dấu

    Dựa vào bảng xét dấu, ta thấy f(x) ≤ 0 ⇔ x ∈ (−3 ; −2) ∪ [ − 1 ; 1].

    Kết hợp với x ∈ ℤ ta được x = {−1 ; 0 ; 1}.

    Vậy có tất cả 3 giá trị nguyên cần tìm.

  • Câu 32: Thông hiểu

    Xác định tập hợp B=\{x∈Z|−2≤x<3\} bằng cách liệt kê các phần tử.

     Ta có: B=\{x∈Z|−2≤x<3\} =\{–2; –1; 0; 1; 2\}.

  • Câu 33: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 34: Vận dụng cao

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =
3 có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}
+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq
\frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3
\Leftrightarrow t + t + 3 +
2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}
3 - t \geq 0 \\
t(t + 3) = (3 - t)^{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
t \leq 3 \\
t = 1 \\
\end{matrix} ight.  ⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}
x = 1 = x_{1} \\
x = 2 = x_{2} \\
\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 35: Vận dụng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Biết \left| \overrightarrow{a} ight| =2 , \left| \overrightarrow{b} ight|= \sqrt{3}\left( \overrightarrow{a},\overrightarrow{b}
ight) = 120^{o}. Tính\left|
\overrightarrow{a} + \overrightarrow{b} ight|.

    Ta có: \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{7 - 2\sqrt{3}}.

  • Câu 36: Nhận biết

    Gọi S là tập nghiệm của bất phương trình {x^2} - 8x + 7 \geqslant 0. Trong các tập hợp sau, tập nào không là tập con của S?

    Tam thức bậc hai f\left( x ight) = {x^2} - 8x + 7 có hai nghiệm phân biệt là: {x_1} = 1;{x_2} = 7

    Vì a = 1 > 0 nên f\left( x ight) \geqslant 0 khi x \in \left( { - \infty ;1} ight] \cup \left[ {7; + \infty } ight).

    Tập không phải tập con của S là: [6; + ∞)

  • Câu 37: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 38: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 39: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 40: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 41: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 42: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
5x - 2y - 1 > 0 \\
2x + 2y + 5 > 0 \\
x + y + 1 < 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
5.0 - 2.0 - 1 > 0 \\
2.0 + 2.0 + 5 > 0 \\
0 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{
\begin{matrix}
5.1 - 2.0 - 1 > 0 \\
2.1 + 2.0 + 5 > 0 \\
1 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 2) \Rightarrow \left\{
\begin{matrix}
5.0 - 2. - 2 - 1 > 0 \\
2.0 + 2. - 2 + 5 > 0 \\
0 - 2 + 1 < 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 43: Vận dụng cao

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 44: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 45: Vận dụng

    Trong hệ tọa độ Oxy, cho hình bình hành OABC, điểm C thuộc trục hoành. Khẳng định nào sau đây đúng?

    Từ giả thiết suy ra cạnh OC thuộc trục hoành \overset{}{ightarrow} cạnh AB song song với trục hoành nên y_{A} =
y_{B}\overset{}{ightarrow}\overrightarrow{AB} = \left( x_{A} - x_{B};0
ight). Do đó loại đáp án \overrightarrow{AB} có tung độ khác 0 và đáp án hai điểm A,\ B có tung độ khác nhau.

    Nếu C có hoành độ bằng 0\overset{}{ightarrow}C(0;0) \equiv O: mâu thuẩn với giả thiết OABC là hình bình hành. Loại đáp án C có hoành độ bằng 0.

    Dùng phương pháp loại trừ, ta chọn x_{A}
+ x_{C} - x_{B} = 0.

    Cách 2. Gọi I là tâm của hình bình hành OABC. Suy ra

    \bullet I là trung điểm AC\overset{}{ightarrow}I\left( \frac{x_{A} +
x_{C}}{2};\frac{y_{A} + 0}{2} ight).

    \bullet I là trung điểm OB\overset{}{ightarrow}I\left( \frac{0 +
x_{B}}{2};\frac{0 + y_{B}}{2} ight).

    Từ đó suy ra \frac{x_{A} + x_{C}}{2} =\frac{0 + x_{B}}{2}\overset{}{ightarrow}x_{A} + x_{C} - x_{B} =0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo