Cho tam giác đều ABC có cạnh a. Tính tích vô hướng ![]()
Ta có: Tam giác ABC đều =>
Cho tam giác đều ABC có cạnh a. Tính tích vô hướng ![]()
Ta có: Tam giác ABC đều =>
Trong mặt phẳng tọa độ
cho ba điểm
và
Tìm điểm
thuộc trục hoành sao cho ![]()
Vì .
Ta có:
.
Ta có:
.
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho biết
. Tính
.
Ta có:
.
Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB là
Xét phương trình hoành độ giao điểm của d và (P):
mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0
Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I là
.
Số nghiệm của phương trình
là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Tìm mệnh đề :
chia hết cho
là mệnh đề đúng, Hình bình hành có hai đường chéo vuông góc nhau là mệnh đề sai
“
chia hết cho
Hình bình hành có hai đường chéo vuông góc nhau” là mệnh đề sai.
Chọn đáp án chia hết cho
Hình bình hành có hai đường chéo vuông góc nhau.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Cặp số
là nghiệm của bất phương trình nào sau đây?
Vì là mệnh đề đúng nên cặp số
là nghiệm của bất phương trình
.
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho tập hợp
,
, (
là tham số thực). Tìm tất cả các giá trị của tham số
để
.
Vì nên tồn tại
. Khi đó:
Nếu thử lại thấy
nên không thỏa mãn.
Nếu thay vào tập
tìm được
. Thử lại khi
thấy
.
Vậy .
Cho tam giác ABC có trọng tâm G. Biểu diễn
theo hai vecto ![]()
Cách 1: Giả sử I là trung điểm của BC
Theo tính chất đường trung tuyến trong tam giác ABC ta có:
Cách 2: Ta có:
Cho
. Điểm
trên trục
sao cho ba điểm
thẳng hàng thì tọa độ điểm
là:
Ta có: trên trục
.
Ba điểm thẳng hàng khi
cùng phương với
.
Ta có . Do đó,
cùng phương với
. Vậy
.Đáp án là
Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]
Ta có:
Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.
Biểu diễn tập [‒5; 5] trên trục số đúng là:

Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Tìm tọa độ vecto
biết
?
Ta có:
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Tập
bằng tập nào sau đây?
Ta có:
Xác định m để
với mọi x ∈ ℝ
Để với mọi x ∈ ℝ thì
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Cho tam giác
đều cạnh
. Gọi
là trung điểm
. Khẳng định nào sau đây đúng?
Tam giác đều cạnh
nên độ dài đường trung tuyến bằng
.
Chọn
Cho tam giác
có
Tính ![]()
Ta có
Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.
Ta thấy 2x2 − 3x + 2 > 0, ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.
Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)
Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất .
Miền nghiệm của bất phương trình
không chứa điểm có tọa độ:
Ta có:
Thay vào bất phương trình ta được:
Vậy không thuộc miền nghiệm của bất phương trình.
Tìm tất cả các giá trị của tham số
sao cho tam thức bậc hai
đổi dấu hai lần trên
?
Để biểu thức trên là tam thức bậc hai thì .
Để tam thức bậc hai đổi dấu 2 lần trên thì
.
Ta có:
. Suy ra
.
Kết hợp điều kiện ở trên, suy ra .
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Cho tam giác ABC nội tiếp đường tròn bán kính R,
,
. Tính số đo của
biết
là góc tù.
Theo bài ra ta có: là góc tù =>
là góc nhọn.
Xét tam giác ABC áp dụng định lí sin ta có:
Mặt khác
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho 4 điểm A, B, C, D phân biệt. Khi đó
bằng
Ta có:
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].