Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = mx cắt đồ thị hàm số (P) : y = x3 − 6x2 + 9x tại ba điểm phân biệt.

    Phương trình hoành độ giao điểm của (P) với dx3 − 6x2 + 9x = mx

    \overset{}{\leftrightarrow}x\left( x^{2}
- 6x + 9 - m ight) = 0\overset{}{\leftrightarrow}\left\lbrack
\begin{matrix}
x = 0 \\
x^{2} - 6x + 9 - m = 0.(1) \\
\end{matrix} ight.

    Để (P) cắt d tại ba điểm phân biệt khi và chỉ (1) có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
0^{2} - 6.0 + 9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m eq 9 \\
\end{matrix} ight..

  • Câu 2: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 3: Vận dụng

    Trong các mệnh đề sau mệnh đề nào:

    Với n = 3\mathbb{\in N \Rightarrow}n^{2}
\vdots 9 nhưng n không chia hết cho 9.

    Chọn đáp án \forall n\mathbb{\in N},n^{2}
\vdots 9 \Rightarrow n \vdots 9.

  • Câu 4: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 5: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 6: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCA(1; -
1), B(5; - 3)C thuộc trục Oy, trọng tâm G của tam giác thuộc trục Ox. Tìm tọa độ điểm C.

    C thuộc trục Oy\overset{}{ightarrow} C có hoành độ bằng 0. Loại C(2;4).

    Trọng tâm G thuộc trục Ox\overset{}{ightarrow} G có tung độ bằng 0. Xét các đáp án còn lại chỉ có đáp án C(0;4) thỏa mãn \frac{y_{A} + y_{B} + y_{C}}{3} = 0.

  • Câu 7: Vận dụng cao

    Cho \frac{x^{2} -
2(m + 1)x + 6m - 2}{\sqrt{x - 2}} = \sqrt{x - 2}(1). Với m là bao nhiêu thì (1) có nghiệm duy nhất

    ĐK x > 2

    \frac{x^{2} - 2(m + 1)x + 6m - 2}{\sqrt{x
- 2}} = \sqrt{x - 2} \Rightarrow x^{2} - 2(m + 1)x + 6m - 2 = x - 2
\Leftrightarrow x^{2} - (2m + 3)x + 6m = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 \\
x = 2m \\
\end{matrix} ight..

    Phương trình (1) có nghiệm duy nhất \Leftrightarrow \left\lbrack \begin{matrix}
2m = 3 \\
2m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{3}{2} \\
m \leq 1 \\
\end{matrix} ight..

  • Câu 8: Thông hiểu

    Xác định tập hợp C = (2;+∞) \setminus  [-3;8] 

    Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp C

    Vậy C = (2;+∞) \setminus  [-3;8] =(8;+∞)

  • Câu 9: Thông hiểu

    Tìm tập xác định của hàm số y=\sqrt{x+2}-\frac{2}{x-3}

    Điều kiện xác định của hàm số là: \left\{ {\begin{array}{*{20}{c}}  {x + 2 \geqslant 0} \\   {x - 3 e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant  - 2} \\   {x e 3} \end{array}} ight.

    => Tập xác định của hàm số là: D = \left[ {2; + \infty } ight)\backslash \left\{ 3 ight\}

  • Câu 10: Thông hiểu

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

  • Câu 11: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính \left| \overrightarrow{AB} - \overrightarrow{DA}
ight|.

    Ta có \left| \overrightarrow{AB} -
\overrightarrow{DA} ight| = \left| \overrightarrow{AB} +
\overrightarrow{AD} ight| = \left| \overrightarrow{AC} ight| = AC =
a\sqrt{2}.

  • Câu 12: Thông hiểu

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

  • Câu 13: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 14: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 15: Thông hiểu

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 16: Thông hiểu

    Cho tọa độ ba điểm A(0;3),B(4;0),C( - 2; - 5). Tính \overrightarrow{AB}.\overrightarrow{BC}?

    Ta có: A(0;3),B(4;0),C( - 2; -
5)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{AB} = (4; - 3) \\
\overrightarrow{BC} = ( - 6; - 5) \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 4.( - 6) + ( - 3).( - 5) = -
9

  • Câu 17: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 18: Vận dụng

    Tìm tập xác định D của hàm số f(x) = \sqrt{\sqrt{x^{2} + x - 12} -
2\sqrt{2}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
\sqrt{x^{2} + x - 12} - 2\sqrt{2} \geq 0 \\
x^{2} + x - 12 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + x - 12 \geq 8 \\
x^{2} + x - 12 \geq 0 \\
\end{matrix} \Leftrightarrow ight.\ x^{2} + x - 12 \geq 8

     ⇔ x2 + x − 20 ≥ 0

    Bảng xét dấu

    Dựa vào bảng xét dấu, ta thấy x2 + x − 20 ≥ 0 ⇔ x ∈ (−∞ ; −5) ∪ (4 ;  + ∞].

    Vậy tập xác định của hàm số là D = (−∞ ; −5) ∪ (4 ;  + ∞].

  • Câu 19: Thông hiểu

    Bảng biến thiên của hàm số y =  − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?

    Hệ số a = - 2 <
0\overset{}{ightarrow} bề lõm hướng xuống.

    Ta có - \frac{b}{2a} = 1y(1) = 3. Do đó chọn .

  • Câu 20: Vận dụng

    Tam giác MPQ vuông tại P. Trên cạnh MQ lấy hai điểm E,\ \ F sao cho các góc \widehat{MPE},\ \ \widehat{EPF},\ \
\widehat{FPQ} bằng nhau. Đặt MP =
q,\ \ PQ = m,\ \ PE = x,\ \ PF = y. Trong các hệ thức sau, hệ thức nào đúng?

    Ta có \widehat{MPE} = \widehat{EPF} =
\widehat{FPQ} = \frac{\widehat{MPQ}}{3} = 30{^\circ} \Rightarrow \widehat{MPF} = \widehat{EPQ} =
60{^\circ}.

    Theo định lí hàm cosin, ta có

    ME^{2} = AM^{2} + AE^{2} -
2.AM.AE.cos\widehat{MAE}

    = q^{2} + x^{2} -
2qx.cos30{^\circ} = q^{2} + x^{2} -
qx\sqrt{3}

    MF^{2} = AM^{2} + AF^{2} -
2AM.AF.cos\widehat{MAF}

    = q^{2} + y^{2} -
2qy.cos60{^\circ} = q^{2} + y^{2} -
qy

    MQ^{2} = MP^{2} + PQ^{2} = q^{2} +
m^{2}.

  • Câu 21: Vận dụng

    Cho tam giác ABC với trực tâm H. D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng?

    Ta có BD là đường kính\Rightarrow \overrightarrow{OB} =
\overrightarrow{DO}.

    Ta có AH\bot BC,DC\bot BC \Rightarrow
AH//DC(1)

    Ta lại cóCH\bot AB,DA\bot AB \Rightarrow
CH//DA(2)

    Từ (1)(2) \Rightarrowtứ giác HADC là hình bình hành\Rightarrow \overrightarrow{HA} =
\overrightarrow{CD};\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 22: Nhận biết

    Cho hai vectơ không cùng phương \overrightarrow{a}\overrightarrow{b}. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a}\overrightarrow{b}, đó là \overrightarrow{0}."

  • Câu 23: Thông hiểu

    Cho tam giác ABC, gọi Mlà trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng\mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 24: Thông hiểu

    Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là

    Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb

    Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.

  • Câu 25: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 26: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho hai vecto \overrightarrow{u} = ( - 2; -
4),\overrightarrow{v} = (2x - y;y). Khi nào hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau?

    Ta có:

    \overrightarrow{u} = \overrightarrow{v}
\Leftrightarrow \left\{ \begin{matrix}
2x - y = - 2 \\
y = - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x + 4 = - 2 \\
y = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = - 4 \\
\end{matrix} ight.

    Vậy hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau khi x = - 3;y = - 4.

  • Câu 28: Vận dụng

    Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB

    Xét phương trình hoành độ giao điểm của d(P):

    mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0

    Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I\left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{y_{A} + y_{B}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{m\left( x_{A} + x_{B} ight)}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{m + 1}{2} \\
y_{I} = \frac{m^{2} + m}{2} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1 + m}{2};\frac{m^{2} +
m}{2} ight).

  • Câu 29: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{i} + \overrightarrow{j}

    Ta có \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{i} +
\overrightarrow{j} = (1;1).

  • Câu 30: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 31: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 32: Vận dụng cao

    Cho tập hợp A = {y\in\mathbb{\in R}|y = \frac{(a + b + c)^{2}}{a^{2} +b^{2} + c^{2}}, với a,b,c là số thực dương}. Tìm số lớn nhất của tập hợp A?

    Ta có:

    (a + b + c)^{2} \leq a^{2} + b^{2} +
c^{2}

    \Leftrightarrow \frac{(a + b +
c)^{2}}{a^{2} + b^{2} + c^{2}} \leq 3

    Đẳng thức xảy ra khi a = b =
c.

    Vậy số nhỏ nhất là 3.

  • Câu 33: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 34: Vận dụng cao

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 35: Thông hiểu

    Cho các vectơ \overrightarrow{a} = (1; - 3),\ \
\overrightarrow{b} = (2;5). Tính tích vô hướng của \overrightarrow{a}\left( \overrightarrow{a} +
2\overrightarrow{b} ight).

    Ta có \overrightarrow{a}.\overrightarrow{a} =
10, \overrightarrow{a}.\overrightarrow{b} = -
13 suy ra \overrightarrow{a}\left(
\overrightarrow{a} + 2\overrightarrow{b} ight) = - 16.

  • Câu 36: Thông hiểu

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 37: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 38: Nhận biết

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 39: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 40: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 41: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y < - 1 không chứa điểm nào sau đây?

    Xét điểm ( - 1; - 1). Ta có: - 3( - 1) - 5( - 1) = 8 < - 1 không thỏa mãn. Do đó ( - 1; - 1) không thuộc miền nghiệm của bất phương trình.

  • Câu 42: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Chọn đáp án 2x + 3y < 5 vì theo định nghĩa bất phương trình bậc nhất hai ẩn.

  • Câu 43: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} và vectơ \overrightarrow{v} có độ dài bằng nhau.

    Ta có: \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u} = \left( \frac{1}{2}; - 5 ight) \Rightarrow \left|
\overrightarrow{u} ight| = \frac{\sqrt{101}}{2}

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; - 4)
\Rightarrow \left| \overrightarrow{v} ight| = \sqrt{k^{2} +
16}

    Để \left| \overrightarrow{u} ight| =
\left| \overrightarrow{v} ight| \Leftrightarrow \frac{\sqrt{101}}{2} =
\sqrt{k^{2} + 16} \Leftrightarrow \frac{101}{4} = k^{2} + 16
\Leftrightarrow k = \pm \frac{\sqrt{37}}{2}.

  • Câu 44: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 45: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo