Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 2: Nhận biết

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 3: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 5: Thông hiểu

    Tập nghiệm của phương trình \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0 là:

     Điều kiện x>2.

    Ta có: \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0\Leftrightarrow x^2-5x+4=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 6: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 7: Nhận biết

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 8: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 9: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 10: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 11: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 12: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 13: Thông hiểu

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 14: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 15: Vận dụng

    Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có AH\bot BCDC\bot BC (do góc \widehat{DCB} chắn nửa đường tròn).

    Suy ra AH \parallel DC.

    Tương tự ta cũng có CH \parallel
AD.

    Suy ra tứ giác ADCHlà hình bình hành. Do đó \overrightarrow{HA} =
\overrightarrow{CD}\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 16: Vận dụng cao

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 17: Thông hiểu

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số

    y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) là:

    Hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng \left( \frac{m +
1}{4}\ \ ;\ \  + \infty ight).

    Để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) thì ta phải có (1\ \ ;\ \ 5) \subset \left(
\frac{m + 1}{4}\ \ ;\ \  + \infty ight) \Leftrightarrow \frac{m + 1}{4} \leq 1
\Leftrightarrow m \leq 3.

    Các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)m = 1,  m = 2,  m = 3.

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)S = 1 + 2 + 3 = 6.

  • Câu 18: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 19: Nhận biết

    Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?

    *x2 − x − 5 = 0 có 2 nghiệm phân biệt

    * − x2 − x − 1 = 0vô nghiệm, a =  − 1 < 0 nên  − x2 − x − 1 < 0, ∀x ∈ ℝ

    *2x2 + x = 0 có 2 nghiệm phân biệt

    *x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.

  • Câu 20: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 21: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 22: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ tan\alpha trái dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai thì \sin\alpha >
0, \cos\alpha < 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ tư thì \sin\alpha <
0, \cos\alpha > 0.

    Vậy nếu \sin\alpha,\ cos\alpha trái dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ II hoặc IV.

  • Câu 23: Vận dụng

    Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

    Tính thời điểm hai vận động viên cách nhau 10km

    Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?

    Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ

    Điều kiện: x > 0

    Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)

    Đoạn đường mà vận động viên B chạy được là 12x (km)

    Ta có: \widehat {AOB} = {135^0} - {15^0} = {120^0}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  A{B^2} = B{C^2} + A{C^2} - 2BC.AC.\cos \widehat {AOB} \hfill \\   \Leftrightarrow {10^2} = {\left( {13x} ight)^2} + {\left( {12x} ight)^2} - 2.13x.12x.\cos {120^0} \hfill \\   \Leftrightarrow {10^2} = 169{x^2} + 144{x^2} + 156{x^2} \hfill \\   \Leftrightarrow {x^2} = \dfrac{{100}}{{469}} \hfill \\   \Rightarrow x \approx 0,46 \hfill \\ \end{matrix}

    0,46 giờ ≈ 28 phút

    Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.

    Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.

  • Câu 24: Vận dụng

    Trong các mệnh đề sau, mệnh đề nào sai?

    Với n = 1\mathbb{\in N} ta có: 1^{2} > 1 là mệnh đề sai

    \Rightarrow Mệnh đề n"" alt=""\forall n\mathbb{\in N},n^{2} > n"" /> là mệnh đề sai.

  • Câu 25: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 26: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng \mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 27: Vận dụng

    Tìm tất cả các giá trị thực của m để phương trình x4 − 2x2 + 3 − m = 0 có nghiệm.

    Đặt t = x2    (t≥0).

    Khi đó, phương trình đã cho trở thành: t2 − 2t + 3 − m = 0. (*)

    Để phương trình đã cho có nghiệm khi và chỉ khi (*) có nghiệm không âm.

    Phương trình (*) vô nghiệm khi và chỉ khi Δ′ < 0 ⇔ m − 2 < 0 ⇔ m < 2.

    Phương trình (*) có 2 nghiệm âm khi và chỉ khi \left\{ \begin{matrix}
\Delta' = m - 2 \geq 0 \\
S = 2 < 0 \\
P = 3 - m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

    Do đó, phương trình (*) có nghiệm không âm khi và chỉ khi m ≥  − 2.

  • Câu 28: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=(-5;0),\overrightarrow{b}=(4;x). Tìm x để \overrightarrow{a}\overrightarrow{b} cùng phương.

     Để \overrightarrow{a}\overrightarrow{b} cùng phương thì 

    \begin{matrix}{a_1}{b_2} - {a_2}{b_1} = 0 \hfill \\   \Rightarrow  - 5.x - 0.4 = 0 \hfill \\   \Rightarrow x = 0 \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN}=-3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

     Vì \overrightarrow{MN}=-3\overrightarrow{MP} nên M nằm giữa NP, đồng thời MN=3MP.

  • Câu 30: Nhận biết

    Cho ngũ giác ABCDE. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm A?

    Các vectơ có điểm cuối là điểm A\overrightarrow{BA}; \overrightarrow{CA}; \overrightarrow{DA}; \overrightarrow{EA}.

  • Câu 31: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 32: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 33: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 34: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 35: Vận dụng cao

    Cho tập hợp A =\left\{ x\in\mathbb{ R}|x^{2} + x - m = 0 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - mx + 1 = 0ight\}, (m là tham số thực). Tìm tất cả các giá trị của tham số m để A \cap B
eq \varnothing.

    A \cap B eq \varnothing nên tồn tại a \in A \cap B. Khi đó:

    \left\{ \begin{matrix}
a^{2} + a - m = 0 \\
a^{2} - ma + 1 = 0 \\
\end{matrix} ight.

    \Rightarrow (1 + m)a - (1 + m) =
0

    \Rightarrow \left\lbrack \begin{matrix}
m = - 1 \\
a = 1 \\
\end{matrix} ight.

    Nếu m = - 1 thử lại thấy B eq \varnothing nên không thỏa mãn.

    Nếu a = 1 thay vào tập A tìm được m
= 2. Thử lại khi m = 2 thấy A \cap B = \left\{ 1
ight\}.

    Vậy m = 2.

  • Câu 36: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

  • Câu 37: Vận dụng

    Tập xác định của hàm số y = \sqrt{\frac{2x^{2} - 2(m + 1)x + m^{2} +
1}{m^{2}x^{2} - 2mx + m^{2} + 2}} là:

    ĐKXĐ: \left\{ \begin{matrix}
\frac{2x^{2} - 2(m + 1)x + m^{2} + 1}{m^{2}x^{2} - 2mx + m^{2} + 2} \geq
0 \\
m^{2}x^{2} - 2mx + m^{2} + 2 eq 0 \\
\end{matrix} ight.

    +) Xét tam thức bậc hai f(x) = 2x2 − 2(m+1)x + m2 + 1

    Ta có af = 2 > 0,  Δf′ = ... =  − (m−1)2 ≤ 0

    Suy ra với mọi m ta có f(x) = 2x2 − 2(m+1)x + m2 + 1 ≥ 0,  ∀x ∈ ℝ(1)

    +) Xét tam thức bậc hai g(x) = m2x2 − 2mx + m2 + 2

    Với m = 0 ta có g(x) = 2 > 0, xét với m ≠ 0 ta có:

    ag = m2 > 0,  Δg′ =  − m2(m2+1) < 0.

    Suy ra với mọi m ta có g(x) = m2x2 − 2mx + m2 + 2 > 0,  ∀x ∈ ℝ (2)

    Từ (1) và (2) suy ra với mọi m thì \frac{2x^{2} - 2(m + 1)x + m^{2} + 1}{m^{2}x^{2} -
2mx + m^{2} + 2} \geq 0m2x2 − 2mx + m2 + 2 ≠ 0 đúng với mọi giá trị của x.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 38: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 39: Nhận biết

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 40: Nhận biết

    Cho \overrightarrow{u} = (3; - 2) và tọa độ hai điểm A(0; - 3),B(1;5). Biết 2\overrightarrow{x} + 2\overrightarrow{u} -
\overrightarrow{AB} = \overrightarrow{0}, tọa độ vecto \overrightarrow{x} là:

    Tọa độ vecto \overrightarrow{x} = \left(
- \frac{5}{2};6 ight).

  • Câu 41: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 42: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 43: Vận dụng

    Cho 2 vectơ đơn vị \overrightarrow{a}\overrightarrow{b} thỏa\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2. Hãy xác định \left(
3\overrightarrow{a} - 4\overrightarrow{b} ight)\left(
2\overrightarrow{a} + 5\overrightarrow{b} ight).

    Ta có: \left| \overrightarrow{a} ight|
= \left| \overrightarrow{b} ight| = 1\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2 \Leftrightarrow \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = 4 \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 1 .

    Suy ra \left( 3\overrightarrow{a} -4\overrightarrow{b} ight)\left( 2\overrightarrow{a} +5\overrightarrow{b} ight)= 6{\overrightarrow{a}}^{2} -20{\overrightarrow{b}}^{2} + 7\overrightarrow{a}.\overrightarrow{b} = -7.

  • Câu 44: Thông hiểu

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 45: Thông hiểu

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x) < 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
a < 0 \\
\end{matrix} ight.\  \Leftrightarrow (m + 2)^{2} + 8(m - 4) < 0
\Leftrightarrow m^{2} + 12m - 28 < 0 \Leftrightarrow - 14 < m <
2.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo