Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Giá trị biểu thức
bằng:
Ta có:
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Cho hai hàm số y1 = x2 + (m−1)x + m, y2 = 2x + m + 1. Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì m có giá trị là
Phương trình hoành độ giao điểm: x2 + (m−1)x + m = 2x + m + 1 ⇔ x2 + (m−3)x − 1 = 0 (1).
Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì pt(1) có hai nghiệm phân biệt
⇔ Δ = (m−3)2 + 4 > 0 luôn đúng ∀m ∈ ℝ.
Xác định m để
với mọi x ∈ ℝ
Để với mọi x ∈ ℝ thì
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Tập xác định của hàm số
là:
ĐKXĐ:
+) Xét tam thức bậc hai f(x) = 2x2 − 2(m+1)x + m2 + 1
Ta có af = 2 > 0, Δf′ = ... = − (m−1)2 ≤ 0
Suy ra với mọi m ta có f(x) = 2x2 − 2(m+1)x + m2 + 1 ≥ 0, ∀x ∈ ℝ(1)
+) Xét tam thức bậc hai g(x) = m2x2 − 2mx + m2 + 2
Với m = 0 ta có g(x) = 2 > 0, xét với m ≠ 0 ta có:
ag = m2 > 0, Δg′ = − m2(m2+1) < 0.
Suy ra với mọi m ta có g(x) = m2x2 − 2mx + m2 + 2 > 0, ∀x ∈ ℝ (2)
Từ (1) và (2) suy ra với mọi m thì và m2x2 − 2mx + m2 + 2 ≠ 0 đúng với mọi giá trị của x.
Vậy tập xác định của hàm số là D = ℝ.
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?
Ta có: là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
Chọn đáp án
Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ
theo các vectơ đơn vị là
Cho hai tập hợp khác rỗng
và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho tam giác
, có trọng tâm
. Gọi
lần lượt là trung điểm của
. Chọn khẳng định sai?
Ta có: nên
sai.
Chọn .
Cho tam giác
,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Phương trình
có mấy nghiệm nguyên ?
Điều kiện: x ≥ − 2
PT đã cho tương đương với:
Do x = − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:
Đặt ta có:
Với t = 2 ta được
Vậy phương trình có 0 nghiệm nguyên.
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Cho góc
. Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Khi
có độ dài lớn nhất thì độ dài của đoạn
bằng:
Theo định lí hàm sin, ta có
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Tam giác vuông tại
.
Cho tam giác
có tọa độ ba đỉnh
. Xác định tọa độ điểm
thỏa mãn
?
Giả sử tọa độ điểm D là:
Ta có: thỏa mãn
Ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Có bao nhiêu giá trị nguyên của tham số
sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho 2 vectơ
và
có
,
và
. Tính
.
Ta có
.
Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Cho phương trình
. Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cặp số nào sau đây là nghiệm của bất phương trình
?
Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:
Vậy (0;3) không là cặp nghiệm của bất phương trình
Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:
Vậy (6; 1) là cặp nghiệm của bất phương trình.
Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:
Vậy (2; 4) không là cặp nghiệm của bất phương trình.
Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:
Vậy (3; 2) không là cặp nghiệm của bất phương trình.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=