Biết phương trình
có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Biết phương trình
có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Tìm tất cả các giá trị thực âm của tham số
để hai khoảng
và
có khoảng giao khác rỗng.
Với thì
luôn có nghĩa.
Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung
(vì m < 0)
Vì nên ta xét các trường hợp sau
Nếu thì
Vậy không thỏa yêu cầu bài toán.
Nếu −1 < m < 0 thì
Vậy giá trị cần tìm của m là .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ của vectơ ![]()
Ta có
Cách khác:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Phương trình
có bao nhiêu nghiệm thực phân biệt?
Điều kiện: .
Ta có: .
.
Vậy phương trình có 3 nghiệm thực phân biệt.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Tập nghiệm của phương trình
là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi
Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0, có Δ′x = (m+2)2 + 2m + 1.
Yêu cầu bài toán ⇔ Δ′x ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0
là giá trị cần tìm.
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam thức bậc hai
có đồ thị như hình vẽ dưới đây

Bảng biến thiên của tam thức bậc hai là
Từ đồ thị ta có:
Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3
=> f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án


Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án

Vậy bảng biến thiên đúng là

Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Tứ giác MNPQ là hình bình hành nếu:
Hình vẽ minh họa

Ta có MNPQ là hình bình hành nếu
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Với mọi góc
, giá trị của biểu thức
![]()
Ta có:
Do đó:
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho tam giác
đều có cạnh là 6. Tính
.
Hình vẽ minh họa
Gọi là trung điểm của
. Vì tam giác
đều có cạnh là 6, nên ta có
.
Xét tam giác vuông tại
, có
.
Suy ra
Mặt khác ta có:
.
Tìm mệnh đề trong các câu sau.
Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.
Chọn đáp án Paris là thủ đô của Đức.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho tam giác
có
là trọng tâm và
là trung điểm của
Đẳng thức nào sau đây đúng?
Vì là trung điểm của
suy ra
Ta có
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Tổng
bằng vectơ nào sau đây?
Ta có
.
Cho hàm số:
. Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Tập
bằng tập nào sau đây?
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho
Tập nào sau đây bằng tập ![]()
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:
Ta có: mệnh đề là mệnh đề sai vì
nên không có bất kì giá trị
nào thỏa mãn
Vì mệnh đề
là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.
Chọn đáp án
Cho tam giác
,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .
Trong mặt phẳng
, cho
và
. Khẳng định nào sau đây là sai?
Ta có: nên đáp án Tích vô hướng của hai vectơ đã cho là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Đáp án sai là Góc giữa hai vectơ là .
Miền nghiệm của bất phương trình
chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Tam giác
có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho tứ giác
. Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Xác định parabol
, biết rằng
đi qua điểm
và có trục đối xứng
.
Vì hàm số có trục đối xứng và đi qua điểm
nên:
và
.
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.