Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:
.
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Cho biết
. Tính
.
Ta có:
.
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có:
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Đẳng thức vectơ nào sau đây đúng?
Ta có
Mặt khác và
cùng hướng
hay
.
Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là ℝ.
Xét hoặc m = 2
• Khi thì bất phương trình trở thành
nên không có nghiệm đúng với mọi x.
• Khi m = 2 thì bất phương trình trở thành − 1 ≤ 0 nên có nghiệm đúng với mọi x.
• Khi thì yêu cầu bài toán
⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 ∀x ∈ ℝ
Kết hợp hai trường hợp ta được là giá trị cần tìm.
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Có bao nhiêu mệnh đề trong các câu sau?
Ở đây đẹp quá!
Phương trình
vô nghiệm.
16 không là số nguyên tố.
Số
có lớn hơn
hay không?
Câu “Phương trình vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.
Cho
và tọa độ hai điểm
. Biết
, tọa độ vecto
là:
Tọa độ vecto .
Cho
. Điểm
trên trục
sao cho ba điểm
thẳng hàng thì tọa độ điểm
là:
Ta có: trên trục
.
Ba điểm thẳng hàng khi
cùng phương với
.
Ta có . Do đó,
cùng phương với
. Vậy
.Đáp án là
Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?
Gọi y là số tiền lãi của cửa hàng bán giày.
Ta có y = (120−x)(x−40) = − x2 + 160x − 4800 = − (x−80)2 + 1600 ≤ 1600.
Dấu xảy ra ⇔ x = 80.
Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Trên đường thẳng
lấy điểm
sao cho
. Điểm
được xác định đúng trong hình vẽ nào sau đây:

Ta có nên
và
và
ngược hướng.
Phương trình
có bao nhiêu nghiệm thực phân biệt?
Điều kiện: .
Ta có: .
.
Vậy phương trình có 3 nghiệm thực phân biệt.
Cho tập hợp A = {
, với
là số thực dương}. Tìm số lớn nhất của tập hợp A?
Ta có:
Đẳng thức xảy ra khi .
Vậy số nhỏ nhất là 3.
Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

Tập hợp A biểu thị trên trục số là nửa khoảng
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Tam thức bậc hai
:

Dựa vào bảng xét dấu, chọn đáp án Âm với mọi .
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5| − m = 0 có hai nghiệm phân biệt?
PT: |x2−4|x|−5| − m = 0 ⇔ |x2−4|x|−5| = m .
Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .
Xét hàm số y = x2 − 4x − 5 (P1) có đồ thị như hình 1.

Xét hàm số y = x2 − 4|x| − 5 (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.
Phần 2: Lấy đối xứng phần 1 qua trục Oy.
Ta được đồ thị (P2) như hình 2.
Xét hàm số y = |x2−4|x|−5| (P), ta có: .
Suy ra đồ thị hàm số (P) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.
Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.
Ta được đồ thị (P) như hình 3.
Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m (1) có hai nghiệm phân biệt.
Mà . Vậy có 2008 giá trị.
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Khoảng giá trị của x khi
trong hệ bất phương trình
là:
Với hệ bất phương trình trở thành:
Vậy khi thì khoảng giá trị của x là
.
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tính tích vô hướng ![]()
Ta có: và
Vậy
Trong mặt phẳng tọa độ
tìm điểm
thuộc trục hoành để khoảng cách từ đó đến điểm
bằng ![]()
Vì .
Ta có: .
Ta có:
.
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Cho tam giác
với trực tâm
.
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây là đúng?
Ta có là đường kính
.
Ta có
Ta lại có
Từ tứ giác
là hình bình hành
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Cho
Tập nào sau đây bằng tập ![]()
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Cho
là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Hai chiếc tàu thủy cùng xuất phát từ một vị trí
, đi thẳng theo hai hướng tạo với nhau góc
. Tàu
chạy với tốc độ
hải lí một giờ. Tàu
chạy với tốc độ
hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

Sau giờ tàu
đi được
hải lí, tàu
đi được
hải lí. Vậy tam giác
có
và
Áp dụng định lí côsin vào tam giác ta có
Vậy (hải lí).
Sau giờ, hai tàu cách nhau khoảng
hải lí.
Câu 1câu 2
Câu 1câu 2
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Với mọi góc
, giá trị của biểu thức
![]()
Ta có:
Do đó:
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Miền nghiệm của bất phương trình
chứa điểm có tọa độ:
Ta có:
Vì là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ
.