Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tính giá trị biểu thức P = \left\lbrack \tan\frac{17\pi}{4} + \tan\left(
\frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}.

    Ta có:

    \tan\frac{17\pi}{4} = \tan\left(
\frac{\pi}{4} + 4\pi ight) = \tan\frac{\pi}{4} = 1

    \tan\left( \frac{7\pi}{2} - x ight) =
\cot x

    \cot\frac{13\pi}{4} = \cot\left(
\frac{\pi}{4} + 3\pi ight) = \cot\frac{\pi}{4} = 1

    \cot(7\pi - x) = - \cot x

    Khi đó:

    P = \left\lbrack \tan\frac{17\pi}{4} +
\tan\left( \frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}

    P = \left( 1 + \cot x ight)^{2} +
\left( 1 - \cot x ight)^{2}

    P = 2 + 2\cot^{2}x =\dfrac{2}{\sin^{2}x}

  • Câu 2: Nhận biết

    Cho \overrightarrow{u} = (3; - 2) và tọa độ hai điểm A(0; - 3),B(1;5). Biết 2\overrightarrow{x} + 2\overrightarrow{u} -
\overrightarrow{AB} = \overrightarrow{0}, tọa độ vecto \overrightarrow{x} là:

    Tọa độ vecto \overrightarrow{x} = \left(
- \frac{5}{2};6 ight).

  • Câu 3: Vận dụng

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(3;4). Tìm tọa độ điểm M thuộc trục hoành sao cho A,\ B,\ M thẳng hàng.

    Điểm M \in
Ox\overset{}{ightarrow}M(m;0). Ta có \overrightarrow{AB} = (1;7)\overrightarrow{AM} = (m - 2;3).

    ĐểA,B,M thẳng hàng \Leftrightarrow \overrightarrow{AB} cùng phương với \overrightarrow{AM}
\Leftrightarrow \frac{m - 2}{1} = \frac{3}{7} \Leftrightarrow m =
\frac{17}{7}.

  • Câu 4: Vận dụng cao

    Nghiệm của phương trình \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x +
3}{5} là:

    Điều kiện: x \geq \frac{2}{3} .Ta có

    \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x
+ 3}{5}

    \Leftrightarrow \left( \sqrt{4x + 1} -
\sqrt{3x - 2} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) =
\left( \frac{x + 3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2}
ight)

    \Leftrightarrow x + 3 = \left( \frac{x +
3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight)

    \Leftrightarrow (x + 3)\left\lbrack 1 -
\frac{1}{5}\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) ightbrack =
0

    \Leftrightarrow \sqrt{4x + 1} + \sqrt{3x -
2} = 5 ( vì x + 3 > 0 )

     ⇔ x = 2.

  • Câu 5: Vận dụng

    Cách phát biểu nào sau đây dùng để phát biểu mệnh đề: A
\Rightarrow B?

    A không phải là điều kiện cần để có B.

    Chọn đáp án A là điều kiện cần để có B.

  • Câu 6: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( \sqrt{5} - 1 ight)x -
\sqrt{5} nhận giá trị dương khi và chỉ khi

    f(x) = x^{2} + \left( \sqrt{5} - 1
ight)x - \sqrt{5} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - \sqrt{5} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x \in
\left( - \infty; - \sqrt{5} ight) \cup (1; + \infty).

  • Câu 7: Vận dụng cao

    Tìm điều kiện cần và đủ để hai khoảng ( - \infty;9a)\left( \frac{4}{a}; + \infty ight) là tập rỗng, biết a là số thực âm.

    Điều kiện cần và đủ để hai tập giao khác rỗng là:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{4}{a} < 9a} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{{4 - 9{a^2}}}{a} < 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  { - \dfrac{2}{3} < a < \dfrac{2}{3}} 
\end{array}} ight. \Leftrightarrow  - \dfrac{2}{3} < a < 0

  • Câu 8: Vận dụng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Biết \left| \overrightarrow{a} ight| =2 , \left| \overrightarrow{b} ight|= \sqrt{3}\left( \overrightarrow{a},\overrightarrow{b}
ight) = 120^{o}. Tính\left|
\overrightarrow{a} + \overrightarrow{b} ight|.

    Ta có: \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{7 - 2\sqrt{3}}.

  • Câu 9: Nhận biết

    Cho hai mệnh đề A: “∀ x ∈ R: x^{2} – 1 ≠ 0” và B: “∃ n ∈ Z: n = n^{2}”. Xét tính đúng, sai của hai mệnh đề A và B.

     Với mệnh đề A, thay x=1 \Rightarrow 1^2-1=0 nên A sai.

    Với mệnh đề B, thay n=0 \Rightarrow 0^2=0 nên B đúng.

  • Câu 10: Thông hiểu

    Trong hệ tọa độ Oxy, cho các điểm A(0;1),B(1;3),C(2;7). Xác định tọa độ điểm N thỏa mãn biểu thức \overrightarrow{AB} = 2\overrightarrow{AN} +
3\overrightarrow{CN}?

    Theo bài ra ta có:

    \overrightarrow{AB} =
2\overrightarrow{AN} + 3\overrightarrow{CN}

    \Leftrightarrow \overrightarrow{AO} +
\overrightarrow{OB} = 2\overrightarrow{AO} + 2\overrightarrow{ON} +
3\overrightarrow{CO} + 3\overrightarrow{ON}

    \Leftrightarrow \overrightarrow{ON} =
\frac{1}{5}\left( \overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} ight)

    \Rightarrow N\left( \frac{1 +
6}{5};\frac{1 + 3 + 21}{5} ight) = \left( \frac{7}{5};5
ight)

  • Câu 11: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 12: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 13: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 14: Vận dụng

    Cho đường thẳng d : y = x + 1 và Parabol (P) : y = x2 − x − 2. Biết rằng d cắt (P) tại hai điểm phân biệt A, B. Khi đó diện tích tam giác OAB bằng:

    Phương trình hoành độ giao điểm của d(P)x2 − x − 2 = x + 1 ⇔ x2 − 2x − 3 = 0.

    Phương trình này có a − b + c = 0 nên có hai nghiệm x1 =  − 1,x2 = 3.

    Suy ra A(−1;0)B(3;4).

    Diện tích tam giác OAB bằng \frac{1}{2}.1.3 = \frac{3}{2}.

  • Câu 15: Thông hiểu

    Tập hợp A =
\left\{ 1,2,3,4,5,6 ight\} có bao nhiêu tập hợp con gồm 2 phần tử:

    Tập A gồm 6 phần tử.

    Mỗi phần tử ghép với 1 phần tử còn lại ta được 1 tập con của A2 phần tử.

    Số tập con của A2 phần tử bằng: \frac{6.5}{2} = 15.

  • Câu 16: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 17: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Ở đây đẹp quá!

    Phương trình x^{2} - 9x + 2 = 0 vô nghiệm.

    16 không là số nguyên tố.

    Số \pi có lớn hơn 3 hay không?

    Câu “Phương trình x^{2} - 9x + 2 =
0 vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.

  • Câu 18: Thông hiểu

    Cho góc \alpha thỏa \sin\alpha = \frac{3}{5}90^{O} < \alpha < 180^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{4}{5} \\
90{^\circ} < \alpha < 180{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{4}{5}.

  • Câu 19: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 20: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y > x + 3 \\
y < x + 1 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 21: Thông hiểu

    Đồ thị của hàm số y = f(x) = \left\{ \begin{matrix}
2x + 1 & khi & x \leq 2 \\
- 3 & khi & x > 2 \\
\end{matrix} ight. đi qua điểm nào sau đây:

    Thử lần lượt từng phương án với chú ý về điều kiện ta được:

    f(0) = 2.0 + 1 = 1 ≠  − 3, đồ thị không đi qua điểm (0; −3).

    f(3) =  − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).

    f(2) = 2.2 + 1 = 5 ≠  − 3, đồ thị không đi qua điểm (2; −3).

    f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).

  • Câu 22: Thông hiểu

    Cho tam giác ABC, gọi Mlà trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng\mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 23: Thông hiểu

    Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng  − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.

    (P) có hoành độ đỉnh bằng  − 3 và đi qua M(−2;1) nên ta có hệ

    \left\{ \begin{matrix}
- \frac{b}{2a} = - 3 \\
4a + 8 + c = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 6a \\
4a + c = - 7 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{3} \\
c = - \frac{13}{3} \\
\end{matrix} ight.

    \overset{}{ightarrow}S = a + c = -
5.

  • Câu 24: Vận dụng

    Từ hai vị trí AB của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30^{0}, phương nhìn BC tạo với phương nằm ngang góc 15^{0}30'. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

    Từ giả thiết, ta suy ra tam giác ABC\widehat{CAB} = 60^{0},\ \ \widehat{ABC} =
105^{0}30'c = 70. Khi đó \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Leftrightarrow \widehat{C} = 180^{0} - \left(
\widehat{A} + \widehat{B} ight) =
180^{0} - 165^{0}30' = 14^{0}30'.

    Theo định lí sin, ta có \frac{b}{\sin B}
= \frac{c}{\sin C} hay \frac{b}{sin105^{0}30'} =
\frac{70}{sin14^{0}30'}

    Do đó AC = b =
\frac{70.sin105^{0}30'}{sin14^{0}30'} \approx 269,4m.

    Gọi CH là khoảng cách từ C đến mặt đất. Tam giác vuông ACH có cạnh CH đối diện với góc 30^{0} nên

    CH = \frac{AC}{2} = \frac{269,4}{2} =
134,7\ m. Vậy ngọn núi cao khoảng 135m.

  • Câu 25: Thông hiểu

    Tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR} bằng vectơ nào sau đây?

    Ta có

    \overrightarrow{MN} + \overrightarrow{PQ}
+ \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}

    = \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} +
\overrightarrow{RN}

    = \overrightarrow{MN}.

  • Câu 26: Vận dụng

    Cho \overrightarrow{AB} eq
\overrightarrow{0} và một điểm C. Có bao nhiêu điểm D thỏa mãn \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{CD} ight|\ ?

    Ta có \left| \overrightarrow{AB} ight|
= \left| \overrightarrow{CD} ight| \Leftrightarrow AB = CD. Suy ra tập hợp các điểm D thỏa mãn yêu cầu bài toán là đường tròn tâm C, bán kính AB.

  • Câu 27: Nhận biết

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 28: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 29: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 30: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 31: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

    Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.

  • Câu 33: Thông hiểu

    Phương trình \sqrt{-x^{2}+6x-5}=8-2x có nghiệm là:

    Điều kiện: - {x^2} + 6x - 5 \geqslant 0 \Leftrightarrow x \in \left[ { - 5,1} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt { - {x^2} + 6x - 5}  = 8 - 2x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {8 - 2x \geqslant 0} \\   { - {x^2} + 6x - 5 = {{\left( {8 - 2x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   { - {x^2} + 6x - 5 = 64 - 32x + 4{x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {5{x^2} - 38x + 69 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x = \dfrac{{23}}{5}\left( {ltm} ight)} \end{array}} ight.} \end{array}} ight. \Leftrightarrow x = 3 \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta có: x=3 thỏa mãn 

    Vậy phương trình có nghiệm là x=3.

  • Câu 34: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y < - 1 không chứa điểm nào sau đây?

    Xét điểm ( - 1; - 1). Ta có: - 3( - 1) - 5( - 1) = 8 < - 1 không thỏa mãn. Do đó ( - 1; - 1) không thuộc miền nghiệm của bất phương trình.

  • Câu 35: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 36: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 37: Vận dụng

    Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    +)m = - 2 \Rightarrow g(x) = - 7x - 1 >
0 \Leftrightarrow x < - \frac{1}{7} (không thỏa mãn yêu cầu bài toán)

    +) m = \frac{3}{2} \Rightarrow g(x) =
0 (không thỏa mãn)

    Xét 2m^{2} + m - 6 eq 0 \Leftrightarrow
\left\{ \begin{matrix}
m eq - 2 \\
m eq \frac{3}{2} \\
\end{matrix} ight.

    g(x) \leq 0,\ \ \forall x \Leftrightarrow
\left\{ \begin{matrix}
a = 2m^{2} + m - 6 < 0 \\
\Delta' = 12m^{2} - 8m - 15 \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < \frac{3}{2} \\
- \frac{5}{6} \leq m \leq \frac{3}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{5}{6} \leq m <
\frac{3}{2}

  • Câu 38: Thông hiểu

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 40: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 41: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 42: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 43: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 44: Thông hiểu

    Cho tam giác ABC có BC = a, CA = b, AB = c. Tính P=(\overrightarrow{AB}+\overrightarrow{AC})\times \overrightarrow{BC}

    Ta có: 

    \begin{matrix}  P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\overrightarrow {BC}  \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {BA}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( { - \overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = {\left( {\overrightarrow {AC} } ight)^2} - {\left( {\overrightarrow {AB} } ight)^2} = {\left| {\overrightarrow {AC} } ight|^2} - {\left| {\overrightarrow {AB} } ight|^2} \hfill \\   \Rightarrow P = {b^2} - {c^2} \hfill \\ \end{matrix}

  • Câu 45: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo