Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là: Độ dài của \overrightarrow{ED}.

  • Câu 2: Thông hiểu

    Giải phương trình: \sqrt{2x^{2}-6x+4}=x-2

     Điều kiện: 2{x^2} - 6x + 4 \geqslant 0

    \Leftrightarrow x \in \left( { - \infty ;1} ight] \cup \left[ {2; + \infty } ight)

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 6x + 4}  = x - 2 \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x - 2 \geqslant 0} \\   {2{x^2} - 6x + 4 = {{\left( {x - 2} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy phương trình có nghiệm x=2.

  • Câu 3: Nhận biết

    Cho bất phương trình 3x + 2 + 2(y – 2) < 2(x + 1) miền nghiệm của bất phương trình không chứa điểm nào sau đây?

     Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 4: Vận dụng

    Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a = m - 1 eq 0 \\
{\Delta'}_{x} = ( - \ 1)^{2} - (m - 1)(m + 1) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
1 - m^{2} + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m^{2} < 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
- \ \sqrt{2} < m < \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow m \in \left( - \
\sqrt{2};\sqrt{2} ight)\backslash\left\{ 1 ight\}.

    Vậy phương trình có hai nghiệm phân biệt \Leftrightarrow m \in \left( - \ \sqrt{2};\sqrt{2}
ight)\backslash\left\{ 1 ight\}.

  • Câu 5: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 6: Thông hiểu

    Xác định A ∩ B trong trường hợp sau:

    \begin{matrix}  A = \left\{ {(x;y)|x,y \in \mathbb{R},3x - y = 7} ight\} \hfill \\  B = \left\{ {(x;y)|x,y \in \mathbb{R},x - y = 1} ight\} \hfill \\ \end{matrix}

    Tập hợp A ∩ B là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x - y = 7} \\   {x - y = 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 3} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow \left( {x;y} ight) = \left( {3;2} ight) \hfill \\ \end{matrix}

    Vậy A \cap B = \left\{ {\left( {3;2} ight)} ight\}

  • Câu 7: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = (3;4)\overrightarrow{v} = ( - \ 8;6). Khẳng định nào sau đây đúng?

    \overrightarrow{u} = (3;4) \Rightarrow
\left| \overrightarrow{u} ight| = \sqrt{3^{2} + 4^{2}} = 5\overrightarrow{v} = ( - \ 8;6) \Rightarrow
\left| \overrightarrow{v} ight| = \sqrt{( - 8)^{2} + 6^{2}} =
10 nên đáp án \left|
\overrightarrow{u} ight| = \left| \overrightarrow{v} ight| sai.

    \frac{3}{- 8} eq
\frac{4}{6} nên đáp án M\left( 0; -
\frac{1}{2} ight).\overrightarrow{v} cùng phương sai.

    \overrightarrow{u}.\overrightarrow{v}
= 3.( - 8) + 4.6 = 0 \Rightarrow
\overrightarrow{u}\bot\overrightarrow{v} nên đáp án \overrightarrow{u} vuông góc với \overrightarrow{v} đúng.

  • Câu 8: Vận dụng

    Hai chiếc tàu thuỷ cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60^{0}. Tàu thứ nhất chạy với tốc độ 30\ km/h, tàu thứ hai chạy với tốc độ 40\ km/h. Hỏi sau 2 giờ hai tàu cách nhau bao nhiêu km?

    Ta có: Sau 2h quãng đường tàu thứ nhất chạy được là: S_{1} = 30.2 = 60\
km.

    Sau 2h quãng đường tàu thứ hai chạy được là: S_{2} = 40.2 = 80\
km.

    Vậy: sau 2h hai tàu cách nhau là: S = \sqrt{{S_{1}}^{2} + {S_{2}}^{2} -
2S_{1}.S_{2}.cos60^{0}} =
20\sqrt{13}.

  • Câu 9: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 10: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \cos\alpha.

    Ta có: \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{5}{13}.

  • Câu 11: Thông hiểu

    Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?

    Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình x^{2} - x + m > 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 - 4m < 0 \Leftrightarrow m
> \frac{1}{4}.

  • Câu 12: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 13: Vận dụng cao

    Tìm các giá trị của a để A \cap
B là đoạn có độ dài bằng 10. Biết A= \left\{ x\in\mathbb{ R}|x \leq 4 ight\} và B = \lbrack a + 1;10), với a là tham số.

    Nếu a + 1 > 4 \Leftrightarrow a >
3 thì A \cap B =
\varnothing, suy ra loại.

    Nếu a + 1 \leq 4 \Leftrightarrow a \leq
3 thì A \cap B = \lbrack a +
1;4brack

    Để A \cap B là một đoạn có độ dài bằng 10 khi và chỉ khi

    4 - (a + 1) = 10 \Leftrightarrow a = -
7

  • Câu 14: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 15: Vận dụng

    Trong các mệnh đề sau tìm mệnh đề đúng?

    Với x = \frac{1}{2}\mathbb{\in
R} thì x > x^{2}
\Rightarrow mệnh đề \exists
x\mathbb{\in R}:x > x^{2} là mệnh đề đúng.

    Chọn đáp án \exists x\mathbb{\in R}:x
> x^{2}.

  • Câu 16: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 17: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 18: Thông hiểu

    Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x + y - 3 > 0?

    Xét điểm M\left( 1;\frac{3}{2}ight) . Ta có: 2.1 + \frac{3}{2}- 3 = \frac{1}{2} > 0 nên M\left( 1;\frac{3}{2} ight) thuộc miền nghiệm của bất phương trình đã cho.

  • Câu 19: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 20: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 21: Nhận biết

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 22: Vận dụng cao

    Với giá trị nào của tham số a thì phương trình: \left( x^{2} - 5x + 4 ight)\sqrt{x - a} =0 có đúng hai nghiệm phân biệt.

     \left( x^{2} - 5x + 4 ight)\sqrt{x - a} =0  \Leftrightarrow \left\lbrack \begin{matrix}x = a \\\left\{ \begin{matrix}x > a \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = a \\\left\{ \begin{matrix}x > a \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight..

    Phương trình có hai nghiệm phân biệt  ⇔ 1 ≤ a < 4.

  • Câu 23: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 24: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 25: Nhận biết

    Cho tam giác ABC vuông tại A, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    M là trung điểm của BC nên \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MB} = - \
\overrightarrow{MC}.

  • Câu 26: Vận dụng

    Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có AH\bot BCDC\bot BC (do góc \widehat{DCB} chắn nửa đường tròn).

    Suy ra AH \parallel DC.

    Tương tự ta cũng có CH \parallel
AD.

    Suy ra tứ giác ADCHlà hình bình hành. Do đó \overrightarrow{HA} =
\overrightarrow{CD}\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 27: Thông hiểu

    Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.

    \overrightarrow{MB} = \overrightarrow{MA} +\overrightarrow{AB} = \frac{1}{2}\overrightarrow{OA} +\overrightarrow{OB} - \overrightarrow{OA}= -\frac{1}{2}\overrightarrow{OA} + \overrightarrow{OB} .

  • Câu 28: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 29: Vận dụng

    Cho tam giác ABC. Lấy điểm M trên BC sao cho \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AC}.\overrightarrow{AM} = 0. Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AC}.\overrightarrow{AM} = 0 \Leftrightarrow \overrightarrow{AM}\left(
\overrightarrow{AB} - \overrightarrow{AC} ight) = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0 nên AM\bot BC.

  • Câu 30: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 31: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 32: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 33: Vận dụng

    Cho hai hàm số y1 = x2 + (m−1)x + m, y2 = 2x + m + 1. Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì m có giá trị là

    Phương trình hoành độ giao điểm: x2 + (m−1)x + m = 2x + m + 1 ⇔ x2 + (m−3)x − 1 = 0  (1).

    Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì pt(1) có hai nghiệm phân biệt

     ⇔ Δ = (m−3)2 + 4 > 0 luôn đúng m ∈ ℝ.

  • Câu 34: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 35: Thông hiểu

    Trong hệ tọa độ Oxy, cho tọa độ bốn điểm A(1;2),B( - 1;3), C( - 2; - 1),D(0; - 2). Chọn khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = ( - 1; - 4) \\
\overrightarrow{BC} = ( - 1; - 4) \\
\end{matrix} ight.. Vậy ABCD là hình bình hành.

  • Câu 36: Thông hiểu

    Hàm số nào sau đây có đỉnh S(1; 0)?

    Hàm số y = x^2 – 2x + 1 có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh S(1; 0)

  • Câu 37: Nhận biết

    Cho \overrightarrow{a} = (2; - 4),\ \overrightarrow{b}
= ( - 5;3). Tìm tọa độ của \overrightarrow{u} = 2\overrightarrow{a} -
\overrightarrow{b}.

    Ta có \left\{ \begin{matrix}
2\overrightarrow{a} = (4; - 8) \\
- \overrightarrow{b} = (5; - 3) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{u} =
2\overrightarrow{a} - \overrightarrow{b} = (4 + 5; - 8 - 3) = (9; -
11).

  • Câu 38: Thông hiểu

    Phủ định của mệnh đề “Phương trình x^{2} + bx + c = 0 có 2 nghiệm phân biệt” là mệnh đề nào?

    Phủ định của mệnh đề P là mệnh đề "không phải P".

    Chọn đáp án Phương trình x^{2} + bx + c =
0 không phải có 2 nghiệm phân biệt.

  • Câu 39: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 40: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 41: Thông hiểu

    Khoảng giá trị của x khi y = 1 trong hệ bất phương trình \left\{\begin{matrix}x+y\geq 1\\ 2x-3y<5\end{matrix}ight. là:

    Với y=1 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 1 \geqslant 1} \\   {2x - 3.1 < 5} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {2x < 8} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {x < 4} \end{array} \Leftrightarrow x \in \left[ {0;4} ight)} ight. \hfill \\ \end{matrix}

    Vậy khi y = 1 thì khoảng giá trị của x là {\left[ {0;4} ight)}.

  • Câu 42: Thông hiểu

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 43: Thông hiểu

    Đồ thị của hàm số y = f(x) = \left\{ \begin{matrix}
2x + 1 & khi & x \leq 2 \\
- 3 & khi & x > 2 \\
\end{matrix} ight. đi qua điểm nào sau đây:

    Thử lần lượt từng phương án với chú ý về điều kiện ta được:

    f(0) = 2.0 + 1 = 1 ≠  − 3, đồ thị không đi qua điểm (0; −3).

    f(3) =  − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).

    f(2) = 2.2 + 1 = 5 ≠  − 3, đồ thị không đi qua điểm (2; −3).

    f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).

  • Câu 44: Vận dụng cao

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 45: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo