Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có: (I là trung điểm của BC)
=> Qũy tích điểm M là đường tròn đường kính IA.
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho bất phương trình
miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho tam thức bậc hai
có đồ thị như hình vẽ dưới đây

Bảng biến thiên của tam thức bậc hai là
Từ đồ thị ta có:
Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3
=> f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án


Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án

Vậy bảng biến thiên đúng là

Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Tập
có bao nhiêu tập hợp con, biết
có 3 phần tử ?
Tập có
phần tử
số tập con của
bằng:
.
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho tọa độ ba điểm
. Tính
?
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ta có: thỏa mãn
Vậy phương trình có nghiệm là .
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Các giá trị m để tam thức
đổi dấu 2 lần là:
Để đổi dấu 2 lần thì
.
Ta có:
hoặc
.
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Tập nghiệm
của phương trình
là:
Điều kiện: .
Ta có:
.
Thử lại không thỏa mãn.
Vậy
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Mệnh đề nào sau đây sai?
Mệnh đề đúng khi
đúng và
đúng.
là tam giác đều
là mệnh đề đúng.
là tam giác đều là mệnh đề sai
“
là tam giác đều
” là mệnh đề sai.
Chọn đáp án là tam giác đều
Cho
có
. Số đo của góc
là:
Ta có:
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tìm tập xác định D của hàm số
.
Điều kiện xác định: . Vậy tập xác định: D = [ − 1; + ∞) ∖ {0}.
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5| − m = 0 có hai nghiệm phân biệt?
PT: |x2−4|x|−5| − m = 0 ⇔ |x2−4|x|−5| = m .
Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .
Xét hàm số y = x2 − 4x − 5 (P1) có đồ thị như hình 1.

Xét hàm số y = x2 − 4|x| − 5 (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.
Phần 2: Lấy đối xứng phần 1 qua trục Oy.
Ta được đồ thị (P2) như hình 2.
Xét hàm số y = |x2−4|x|−5| (P), ta có: .
Suy ra đồ thị hàm số (P) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.
Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.
Ta được đồ thị (P) như hình 3.
Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m (1) có hai nghiệm phân biệt.
Mà . Vậy có 2008 giá trị.
Trong hệ tọa độ
cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho hình vuông
cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Cho tam giác
có
là trọng tâm. Mệnh đề nào sau đây đúng?
Gọi là trung điểm của
Mà
là trọng tâm của tam giác
Từ suy ra
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Tam giác
vuông ở
và có góc
. Hệ thức nào sau đây là sai?
Vì nên loại
.
Vì nên loại
.
Vì nên loại
.
Vì nên chọn
.
Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?
Gọi y là số tiền lãi của cửa hàng bán giày.
Ta có y = (120−x)(x−40) = − x2 + 160x − 4800 = − (x−80)2 + 1600 ≤ 1600.
Dấu xảy ra ⇔ x = 80.
Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là:
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Tìm các giá trị của
để
là đoạn có độ dài bằng 10. Biết
và
, với
là tham số.
Nếu thì
, suy ra loại.
Nếu thì
Để là một đoạn có độ dài bằng 10 khi và chỉ khi
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.