Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho K(1; -
3). Điểm A \in Ox,B \in Oy sao cho A là trung điểm KB. Tìm tọa độ của điểm B.

    Ta có: A \in Ox,B \in Oy nên A(x;0),B(0;y).

    A là trung điểm KB nên \left\{ \begin{matrix}
x = \frac{1 + 0}{2} \\
0 = \frac{- 3 + y}{2} \\
\end{matrix} \Leftrightarrow ight.\ \left\{ \begin{matrix}
x = \frac{1}{2} \\
y = 3 \\
\end{matrix} ight.

    Vậy B(0;3).

  • Câu 2: Thông hiểu

    Cho góc \alpha thỏa \cot\alpha = \frac{3}{4}0^{O} < \alpha < 90^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\frac{1}{sin^{2}\alpha} = 1 + cot^{2}\alpha = 1 + \left( \frac{3}{4}
ight)^{2} = \frac{25}{16} \\
0{^\circ} < \alpha < 90{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{4}{5}.

  • Câu 3: Vận dụng cao

    Phương trình 6x^{2} - 10x + 5 = (4x - 1)\sqrt{6x^{2} - 6x +
5} có mấy nghiệm nguyên ?

    Đặt t = \sqrt{6x^{2} - 6x + 5}\ \ \ \ (t
\geq 0). Phương trình đã cho trở thành:

    \begin{matrix}
t^{2} - (4x - 1)t - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 4x \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\sqrt{6x^{2} - 6x + 5}\  = 1 \\
\sqrt{6x^{2} - 6x + 5}\  = 4x \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{- 3 + \sqrt{59}}{10}.
\\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 4: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 5: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 6: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 7: Thông hiểu

    Cho \overrightarrow{OM} = ( - 2; - 1),\overrightarrow{ON} = (3; - 1). Tính góc của \left(
\overrightarrow{OM},\overrightarrow{ON} ight).

    Ta có \cos\left(\overrightarrow{OM},\overrightarrow{ON} ight) =\frac{\overrightarrow{OM}.\overrightarrow{ON}}{\left|\overrightarrow{OM} ight|.\overrightarrow{|ON|}}= \frac{-5}{\sqrt{5}.\sqrt{10}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(\overrightarrow{OM},\overrightarrow{ON} ight) = 135^{o}.

  • Câu 8: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng lên. Loại đáp án y =  − x2 + 4x − 9y =  − x2 + 4x.

    Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.

  • Câu 9: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 10: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 11: Thông hiểu

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 12: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 13: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 14: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 15: Vận dụng

    Trên nóc một tòa nhà có một cột ăng-ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50^{0}40^{0} so với phương nằm ngang.

    Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

    Từ hình vẽ, suy ra \widehat{BAC} =
10^{0}\widehat{ABD} = 180^{0} -
\left( \widehat{BAD} + \widehat{ADB} ight) = 180^{0} - \left( 50^{0} + 90^{0} ight) =
40^{0}.

    Áp dụng định lí sin trong tam giác ABC, ta có \frac{BC}{\sin\widehat{BAC}} =
\frac{AC}{\sin\widehat{ABC}} \overset{}{ightarrow}AC =
\frac{BC.sin\widehat{ABC}}{\sin\widehat{BAC}} =
\frac{5.sin40^{0}}{sin10^{0}} \approx 18,5m.Trong tam giác vuông ADC, ta có \sin\widehat{CAD} =
\frac{CD}{AC}\overset{}{ightarrow}CD = AC.sin\widehat{CAD} =
11,9m. Vậy CH = CD + DH = 11,9 + 7 = 18,9m.

  • Câu 16: Thông hiểu

    Điểm A( -
1;3) là điểm thuộc miền nghiệm của bất phương trình:

    - 3.( - 1) + 2.3 - 4 > 0 là mệnh đề đúng nên A( - 1;3) là điểm thuộc miền nghiệm của bất phương trình - 3x + 2y - 4 > 0.

  • Câu 17: Nhận biết

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 18: Thông hiểu

    Cho phương trình \frac{x^{2} - 4x + 2}{\sqrt{x - 2}} = \sqrt{x -2}. Số nghiệm của phương trình này là:

    ĐKXĐ: x > 2 khi đó phương trình trở thành x^{2} - 4x + 2 = x - 2\Leftrightarrow x^{2} - 5x + 4 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight..

    Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.

  • Câu 19: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 20: Nhận biết

    Câu 1câu 2

    Đáp án là:

    Câu 1câu 2

  • Câu 21: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 22: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 23: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 24: Vận dụng cao

    Tìm tất cả các giá trị thực âm của tham số m để hai khoảng ( - \infty;2m)\left( \frac{2}{m}; + \infty ight) có khoảng giao khác rỗng.

    Với m < 0 thì \frac{2}{m} luôn có nghĩa. 

    Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung 

    \Leftrightarrow 2m > \frac{2}{m}
\Leftrightarrow 2m^{2} < 2 (vì m < 0) \Leftrightarrow 2(m - 1)(m + 1) <
0

    m < 0 nên ta xét các trường hợp sau

    Nếu m < - 1 thì m + 1 < 0,m - 1 < 0 = > 2(m - 1)(m + 1)
> 0

    Vậy m < - 1 không thỏa yêu cầu bài toán.

    Nếu −1 < m < 0 thì m + 1 > 0,m -
1 < 0 \Rightarrow 2(m - 1)(m +
1) < 0

    Vậy giá trị cần tìm của m là - 1 < m
< 0.

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

    Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.

  • Câu 26: Vận dụng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Biết \left| \overrightarrow{a} ight| =2 , \left| \overrightarrow{b} ight|= \sqrt{3}\left( \overrightarrow{a},\overrightarrow{b}
ight) = 120^{o}. Tính\left|
\overrightarrow{a} + \overrightarrow{b} ight|.

    Ta có: \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{7 - 2\sqrt{3}}.

  • Câu 27: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 28: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 29: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 30: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 31: Vận dụng

    Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8 m/s^{2}, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.

    Gọi vận tốc ban đầu của vật là v_0 = 12 m/s.

    Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.

    Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:

    s = {v_0}t + \frac{1}{2}g{t^2}

    Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.

    Ta có hàm số: s = f\left( t ight) = 12t + \frac{1}{2}.9,8.{t^2} = 12t + 4,9{t^2}

    Khi t = 7 thì vật đã rơi được quãng đường là:

    s = f(7) = 12.7 + 4,9. 72 = 324,1 (m).

  • Câu 32: Vận dụng

    Cho hình thoi ABCD cạnh a\widehat{BAD} = 60{^\circ}. Đẳng thức nào sau đây đúng?

    Vì tam giác BAD cân và \widehat{BAD} = 60{^\circ}, suy ra tam giác ABD đều cạnh a nên BD =
a\overset{}{ightarrow}\left| \overrightarrow{BD} ight| =
a.

  • Câu 33: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(0; - 3),\ B(2;1),\ D(5;5) Tìm tọa độ điểm C để tứ giác ABCD là hình bình hành.

    Gọi C(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;4) \\
\overrightarrow{DC} = (x - 5;y - 5) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = x - 5 \\4 = y - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 7 \\y = 9 \\\end{matrix} ight.\ \overset{}{ightarrow}C(7;9).

  • Câu 34: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 35: Thông hiểu

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 36: Vận dụng

    Tìm tập xác định của hàm số y = \frac{2x + 3m}{\sqrt{x^{2} + 2(1 - m)x + 2m^{2}
+ 3}}.

    ĐKXĐ: x2 + 2(1−m)x + 2m2 + 3 > 0

    Xét tam thức bậc hai f(x) = x2 + 2(1−m)x + 2m2 + 3

    Ta có \begin{matrix}
a = 1 > 0,\ \ \Delta' = (1 - m)^{2} - \left( 2m^{2} + 3 ight) \\
= - m^{2} - 2m - 2 < 0 \\
\end{matrix}

    (Vì tam thức bậc hai f(m) =  − m2 − 2m − 2am =  − 1 < 0,  Δm =  − 1 < 0 )

    Suy ra với mọi m ta có x2 + 2(1−m)x + 2m2 + 3 > 0,  ∀x ∈ ℝ.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 37: Nhận biết

    Trong hệ tọa độ Oxy, cho tam giác ABCA(3;5),\ B(1;2),\ C(5;2). Tìm tọa độ trọng tâm G của tam giác ABC?

    Ta có \left\{ \begin{matrix}
x_{G} = \frac{3 + 1 + 5}{3} = 3 \\
y_{G} = \frac{5 + 2 + 2}{3} = 3 \\
\end{matrix} ight.\ \overset{}{ightarrow}G(3;3).

  • Câu 38: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 39: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 40: Thông hiểu

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 41: Nhận biết

    Cho f(x)=ax^{2}+bx+c(a≠0). Điều kiện để f(x)>0 \forall x \in \mathbb{R} là:

     Ta có: f(x)=ax^{2}+bx+c>0 \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{matrix}a>0\\ \Delta < 0\end{matrix}ight..

  • Câu 42: Thông hiểu

    Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng?

    Gọi Mlà trung điểm BC.

    Ta có \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) \Rightarrow
\overrightarrow{AG} = \frac{\overrightarrow{AB} +
\overrightarrow{AC}}{3}.

  • Câu 43: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm giá trị của a để A
\cap B = \lbrack - 2;5brack.

    Để A \cap B = \lbrack -
2;5brack khi và chỉ khi \left\{
\begin{matrix}
a > - 3 \\
a = - 2 \\
\end{matrix} \Leftrightarrow a = - 2 ight..

    Vậy a = - 2 là giá trị cần tìm.

  • Câu 44: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Hôm nay trời đẹp quá!

    Trung Quốc là nước đông dân nhất thế giới.

    Năm 2018 là năm nhuận.

    Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.

  • Câu 45: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo