Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y =
x^{2} - 2\left( m + \frac{1}{m} ight)x + m(m > 0) xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng

    Đặt y = f(x) = x^{2} - 2\left( m +
\frac{1}{m} ight)x + m.

    Hoành độ đỉnh của đồ thị hàm số là x = m +
\frac{1}{m} \geq 2 .

    Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên \left( - \infty;m +
\frac{1}{m} ight).

    Suy ra, hàm số nghịch biến [ − 1; 1].

    \Rightarrow y_{1} = f( - 1) = 3m +
\frac{2}{m} + 1.

    y_{2} = f(1) = 1 - m -
\frac{2}{m}.

    Theo đề bài ta có: y1 − y2 = 8 \Leftrightarrow 3m + \frac{2}{m} + 1 - 1 + m
+ \frac{2}{m} = 8(m > 0)

     ⇔ m2 − 2m + 1 = 0 ⇔ m = 1.

  • Câu 2: Vận dụng

    Từ một đỉnh tháp chiều cao CD = 80\ m, người ta nhìn hai điểm AB trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26' so với phương nằm ngang. Ba điểm A,B,D thẳng hàng. Tính khoảng cách AB (chính xác đến hàng đơn vị)?

    Ta có: Trong tam giác vuông CDA: tan72^{0}12' = \frac{CD}{AD} \Rightarrow AD = \frac{CD}{tan72^{0}12'}
= \frac{80}{tan72^{0}12'} \simeq 25,7.

    Trong tam giác vuông CDB: tan34^{0}26' = \frac{CD}{BD} \Rightarrow BD =
\frac{CD}{tan34^{0}26'} =
\frac{80}{tan34^{0}26'} \simeq 116,7.

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91\ m.

  • Câu 3: Vận dụng cao

    Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.

    Ta thấy 2x2 − 3x + 2 > 0,  ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.

    Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)

    Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất \Leftrightarrow \Delta = 0 \Leftrightarrow 25 -
16(2 - 5m) = 0 \Leftrightarrow m = \frac{7}{80}.

  • Câu 4: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 5: Thông hiểu

    Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:

    f(x) > 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 7m - 11 <
0\  \Leftrightarrow - 1 < x < \frac{11}{4}.

  • Câu 6: Vận dụng cao

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 7: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCC( -
2; - 4), trọng tâm G(0;4) và trung điểm cạnh BCM(2;0). Tổng hoành độ của điểm AB

    M là trung điểm BC nên \left\{ \begin{matrix}x_{B} = 2x_{M} - x_{C} = 2.2 - ( - 2) = 6 \\y_{B} = 2y_{M} - y_{C} = 2.0 - ( - 4) = 4 \\\end{matrix} ight.\  \Rightarrow B(6;4).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}x_{A} = 3x_{G} - x_{B} - x_{C} = - 4 \\y_{A} = 3y_{G} - y_{B} - y_{C} = 12 \\\end{matrix} ight.\  ightarrow A( - 4;12).

    Suy ra x_{A} + x_{B} = 2.

  • Câu 8: Nhận biết

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 9: Vận dụng cao

    Tổng các nghiệm của phương trình \sqrt{4x^{2} - 1} - \sqrt{2x + 1} = 1 + x -
2x^{2} là:

    Đặt \sqrt{4x^{2} - 1} = a;\sqrt{2x + 1} =
b(a,b \geq 0).

    Ta có 1 + x - 2x^{2} = -
\frac{1}{2}(4x^{2} - 1) + \frac{1}{2}(2x + 1).

    Phương trình trở thành a - b =
\frac{1}{2}\left( b^{2} - a^{2} ight) \Leftrightarrow a =
b

    Thay vào ta được x = 1;x = -
\frac{1}{2}. Vậy tổng các nghiệm của phương trình là \frac{1}{2}.

  • Câu 10: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 11: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = (3;4)\overrightarrow{v} = ( - \ 8;6). Khẳng định nào sau đây đúng?

    \overrightarrow{u} = (3;4) \Rightarrow
\left| \overrightarrow{u} ight| = \sqrt{3^{2} + 4^{2}} = 5\overrightarrow{v} = ( - \ 8;6) \Rightarrow
\left| \overrightarrow{v} ight| = \sqrt{( - 8)^{2} + 6^{2}} =
10 nên đáp án \left|
\overrightarrow{u} ight| = \left| \overrightarrow{v} ight| sai.

    \frac{3}{- 8} eq
\frac{4}{6} nên đáp án M\left( 0; -
\frac{1}{2} ight).\overrightarrow{v} cùng phương sai.

    \overrightarrow{u}.\overrightarrow{v}
= 3.( - 8) + 4.6 = 0 \Rightarrow
\overrightarrow{u}\bot\overrightarrow{v} nên đáp án \overrightarrow{u} vuông góc với \overrightarrow{v} đúng.

  • Câu 12: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 13: Nhận biết

    Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

    f(x) = 5x - x^{2} - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].

  • Câu 14: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 15: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 16: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 17: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{x}{2} + \frac{y}{3} - 1 \geq 0 \\
x \geq 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{0}{2} + \frac{0}{3} - 1 \geq 0 \\
0 \geq 0 \\
0 + \frac{1}{2} - \frac{3.0}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(2;1) \Rightarrow \left\{
\begin{matrix}
\frac{2}{2} + \frac{1}{3} - 1 \geq 0 \\
2 \geq 0 \\
2 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng.

  • Câu 18: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 19: Thông hiểu

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 20: Vận dụng

    Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có AH\bot BCDC\bot BC (do góc \widehat{DCB} chắn nửa đường tròn).

    Suy ra AH \parallel DC.

    Tương tự ta cũng có CH \parallel
AD.

    Suy ra tứ giác ADCHlà hình bình hành. Do đó \overrightarrow{HA} =
\overrightarrow{CD}\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 21: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 22: Nhận biết

    Kí hiệu C_{U}A có nghĩa là gì?

    Cho hai tập hợp AU. Nếu A là tập con của U thì hiệu U\setminus A gọi là phần bù của A trong U, kí hiệu {C_U}A.

  • Câu 23: Thông hiểu

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 24: Thông hiểu

    Cho tập X =
\left\{ 2,3,4 ight\}. Tập X có bao nhiêu tập hợp con?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 25: Vận dụng cao

    Cho tập hợp A =
(0; + \infty)B = \left\{x\in\mathbb{ R}|mx^{2} - 4x + m - 3 = 0 ight\}, với m là tham số. Tìm m để B có đúng hai tập con và B \subset A?

    B có đúng hai tập con và B \subset A khi và chỉ khi phương trình mx^{2} - 4x + m - 3 = 0 (1) có đúng một nghiệm dương.

    Trường hợp 1. m = 0, phương trình (1) trở thành - 4x - 3 = 0
\Leftrightarrow x = - \frac{3}{4}

    Do đó m = 0 không thỏa đề bài.

    Trường hợp 2. m eq 0, khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi

    \left\{ \begin{matrix}\Delta' = 0 \\S > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4 - m(m - 3) = 0 \\\dfrac{4}{m} > 0 \\\end{matrix} ight.

    \Leftrightarrow m = 4

    Vậy m = 4 là giá trị duy nhất thỏa mãn yêu cầu đề bài.

  • Câu 26: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 27: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 28: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 29: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 30: Thông hiểu

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác ABC.

    Ta có \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 31: Nhận biết

    Cho đoạn thẳng ABM là một điểm trên đoạn AB sao cho MA
= \frac{1}{5}AB. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa

    Ta thấy \overrightarrow{MB}\overrightarrow{AB} cùng hướng nên \overrightarrow{MB} = -
\frac{4}{5}\overrightarrow{AB} là sai.

  • Câu 32: Nhận biết

    Cho tam giác ABC có tọa độ ba đỉnh A(1;2),B(3; - 2),C(2;3). Trọng tâm G của tam giác ABC là:

    Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{G} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{G} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{G} = 2 \\y_{G} = 1 \\\end{matrix} ight.\  \Rightarrow G(2;1)

  • Câu 33: Vận dụng

    Trong mặt phẳng Oxy cho A( - 1;1), B(1;3), C(1;
- 1). Khẳng định nào sau đây đúng.

    Do \overrightarrow{AB} = (2;2) nên loại đáp án \overrightarrow {AB}=(-4;2).

    Do\overrightarrow{AB} =
(2;2),\overrightarrow{BC} = (0; -
4),\overrightarrow{AB}.\overrightarrow{BC} = -
8 suy ra\overrightarrow{AB} không vuông góc \overrightarrow{BC} nên loại đáp án \overrightarrow{AB}\bot\overrightarrow{BC}.

    Ta có \overrightarrow{AB} =
(2;2), \overrightarrow{AC} = (2; -
2), \overrightarrow{BC} = (0; -
4), suy ra AB = AC =
\sqrt{8}, \overrightarrow{AB}.\overrightarrow{AC} =
0. Do đó tam giác ABC vuông cân tại A.

  • Câu 34: Vận dụng

    Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?

    Ta có: A là mệnh đề đúng, B là mệnh đề sai nên A \Rightarrow B là mệnh đề sai.

    C là mệnh đề đúng, A \Rightarrow B là mệnh đề sai nên C \Rightarrow (A \Rightarrow B)là mệnh đề sai.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 35: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 36: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 37: Thông hiểu

    Cho tam giác ABC. Gọi M là trung điểm BC và N là trung điểm AM. Đường thẳng BN cắt AC tại P. Khi đó \overrightarrow{AC}=x\overrightarrow{CP} thì giá trị của x là:

    Hình vẽ minh họa

    Tìm x

    Kẻ MD // BP, (D ∈ AC). Do M là trung điểm BC 

    => D là trung điểm CP (1).

    MD // NP, mà N là trung điểm AM

    => P là trung điểm AD (2).

    Từ (1), (2) ta suy ra AP = PD = DC.

    => AP = \frac{1}{2}CP

    Ta có AC = AP + CP

    => AC = \frac{3}{2}CP

    Ta có: \overrightarrow {AC}  =  - \frac{3}{2}\overrightarrow {CP}(vì \overrightarrow {AC} ,\overrightarrow {CP} ngược hướng)

    => x =  - \frac{3}{2}

  • Câu 38: Nhận biết

    Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng(2;+∞).

  • Câu 39: Thông hiểu

    Cho tam giác ABC có tọa độ ba đỉnh A(6;3),B( - 3;6),C(1; - 2). Xác định tọa độ điểm D \in BC thỏa mãn BD = 2CD?

    Giả sử tọa độ điểm D là: D(x;y)

    Ta có: D \in BC thỏa mãn BD = 2CD

    \Leftrightarrow \overrightarrow{BD} =
2\overrightarrow{DC}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BD} = (x + 3;y - 6) \\
\overrightarrow{DC} = (1 - x; - 2 - y) \\
\end{matrix} ight.

    \overrightarrow{BD} =
2\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 2 - 2x \\
y - 6 = - 4 - 2y \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{1}{3} \\y = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{1}{3};\dfrac{2}{3}ight)

  • Câu 40: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 41: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 42: Thông hiểu

    Cho bất phương trình x^{2}−8x+7≥0 . Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

     Ta có: x^{2}−8x+7≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} ight.. Suy ra S=[-\infty;1) \cup [7;+\infty).

    Nhận xét: [6;+\infty) không thuộc S.

  • Câu 43: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 44: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 45: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là .

    Xét 2m^{2} - 3m - 2 = 0 \Leftrightarrow m
= - \frac{1}{2}hoặc m = 2

    • Khi m = - \frac{1}{2} thì bất phương trình trở thành x \geq -
\frac{1}{5} nên không có nghiệm đúng với mọi x.

    • Khi m = 2 thì bất phương trình trở thành  − 1 ≤ 0 nên có nghiệm đúng với mọi x.

    • Khi \left\{ \begin{matrix}
m eq - \frac{1}{2} \\
m eq 2 \\
\end{matrix} ight. thì yêu cầu bài toán

     ⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' \leq 0 \\
a < 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
3m^{2} - 7m + 2 \leq 0 \\
2m^{2} - 3m - 2 < 0 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{3} \leq m \leq 2 \\
- \frac{1}{2} < m < 2 \\
\end{matrix} \Leftrightarrow \frac{1}{3} \leq m < 2 ight.

    Kết hợp hai trường hợp ta được \frac{1}{3}
\leq m \leq 2 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo