Cho hình chữ nhật ABCD có
, AD = 1. Tính góc giữa hai vectơ
và ![]()
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Cho hình chữ nhật ABCD có
, AD = 1. Tính góc giữa hai vectơ
và ![]()
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?
Ta có: là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
Chọn đáp án
Cho tam giác đều
có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Tìm tập xác định D của hàm số
.
Điều kiện xác định: . Vậy tập xác định: D = [ − 1; + ∞) ∖ {0}.
Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:
Ta có:x2 − 2(m−1)x + m2 − 2m = 0
⇔ x2 − 2mx + m2 + 2x − 2m = 0
Để phương trình đã cho có hai nghiệm trái dấu (1)
Với m ∈ (0 ; 2) suy ra .
Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0
⇔ (x2−x1)(x2+x1) > 0
⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1
Kết hợp điều kiện (1), ta được 0 < m < 1.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Phương trình
có mấy nghiệm nguyên dương ?
Đặt . Ta có hệ phương trình:
Vậy phương trình có 2 nghiệm x = 2 và x = 3.
Tổng các nghiệm của phương trình
là:
Đặt , điều kiện t ≥ 0. Khi đó
.
Phương trình trở thành
(Thỏa mãn)
Với t = 3 ta có
Vậy phương trình có hai nghiệm .
Tổng các nghiệm của phương trình là .
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Trong mặt phẳng tọa độ
cho
. Cho biết
. Khi đó
Ta có: .
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Tập hợp
bằng tập hợp nào sau đây?
Ta có: .
Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.
Vì (P) có hoành độ đỉnh bằng − 3 và đi qua M(−2;1) nên ta có hệ
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Giá trị
là:
Ta có: .
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho parabol (P) : y = ax2 + bx + c, (a≠0) có đồ thị như hình bên. Khi đó 2a + b + 2c có giá trị là

Parabol (P) : y = ax2 + bx + c, (a≠0) đi qua các điểm A(−1; 0), B(1; −4), C(3; 0) nên có hệ phương trình:
.
Khi đó: 2a + b + 2c = 2.1 − 2 + 2(−3) = − 6.
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Cho 5 điểm M, N, P, Q, R. Tính tổng ![]()
Ta có:
Tập
bằng tập nào sau đây?
Ta có:
Cho hai tập hợp
,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: ![]()
Vì là mệnh đề sai nên
không thuộc miền nghiệm của bất phương trình.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng.
Trong mặt phẳng tọa độ Oxy, cho
. Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho
và một điểm
Có bao nhiêu điểm
thỏa mãn ![]()
Ta có . Suy ra tập hợp các điểm
thỏa mãn yêu cầu bài toán là đường tròn tâm
bán kính
.
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Với mọi góc
, giá trị của biểu thức
![]()
Ta có:
Do đó:
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4−x)(600+200x) = − 200x2 + 200x + 2400.
Xét hàm số f(x) = − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên
Vậy .
Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Tập nghiệm
của bất phương trình
là:
Ta có: (hiển nhiên).
Vậy .
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Trong mặt phẳng
cho
. Tính
?
Ta có ,
suy ra
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Câu 1câu 2
Câu 1câu 2
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Cho mệnh đề chứa biến
chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.