Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Cho hình chữ nhật ABCD có
, AD = 1. Tính góc giữa hai vectơ
và ![]()
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Tìm tập xác định D của hàm số
.
Điều kiện: .
Vậy tập xác định của hàm số là D = [ − 1; + ∞) ∖ {0}.
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Cho hai tập hợp
và
với
. Tìm a để
là một khoảng?
Vì nên
và
, tức là A và B luôn là các khoảng.
Xét các trường hợp sau:
Nếu
Khi đó , đương nhiên là một khoảng.
Nếu
Nếu
Khi đó là một khoảng.
Nếu
Khi đó là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là
.
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Cho hai tập hợp
. Tìm giá trị của a để
.
Để khi và chỉ khi
.
Vậy là giá trị cần tìm.
Cho tam giác
với trực tâm
.
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây là đúng?
Ta có là đường kính
.
Ta có
Ta lại có
Từ tứ giác
là hình bình hành
.
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − (m−1)x + m + 2 = 0 có hai nghiệm phân biệt x1, x2 khác 0 thỏa mãn ![]()
Đặt f(x) = x2 − (m−1)x + m + 2
Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi:
Theo Viet, ta có .
Yêu cầu bài toán
.
Kết hợp điều kiện ta được m ∈ (−∞;−2) ∪ (−2;−1).
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng.
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Tổng các nghiệm của phương trình
là:
Đặt .
Ta có .
Phương trình trở thành
Thay vào ta được . Vậy tổng các nghiệm của phương trình là
.
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ vecto
?
Ta có:
Trong mặt phẳng
cho
. Tính
?
Ta có ,
suy ra
.
Tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm phương trình là:
Tính giá trị biểu thức
.
Ta có:
Khi đó:
Tích vô hướng của hai vecto
và
là:
Ta có:
Cho phương trình
. Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
nên miền nghiệm của bất phương trình trên không chứa điểm
.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?
Hình vẽ minh họa

Ta có:
G là trọng tâm tam giác ABC =>
D là trung điểm của BC =>
E là trung điểm của AC =>
F là trung điểm của AB =>
Khi đó:
Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có là hình bình hành.
Cho
là số thực mệnh đề nào sau đây đúng?
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Chọn đáp án
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Cặp số
là nghiệm của bất phương trình nào?
Ta có: .
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm thỏa mãn cả 4 phươn trình trong hệ.