Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Biết rằng hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} và tổng lập phương các nghiệm của phương trình y = 0 bằng 9. Tính P = abc.

    Hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} nên ta có - \frac{b}{2a} = \frac{3}{2} và điểm \left( \frac{3}{2};\frac{1}{4} ight) thuộc đồ thị \Rightarrow \frac{9}{4}a +
\frac{3}{2}b + c = \frac{1}{4}.

    Gọi x1, x2 là hai nghiệm của phương trình y = 0. Theo giả thiết: x13 + x23 = 9

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{3} - 3x_{1}x_{2}\left( x_{1} + x_{2} ight) =
9\overset{Viet}{ightarrow}\left( - \frac{b}{a} ight)^{3} - 3\left( -
\frac{b}{a} ight)\left( \frac{c}{a} ight) = 9.

    Từ đó ta có hệ \left\{ \begin{matrix}
- \frac{b}{2a} = \frac{3}{2} \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\left( - \frac{b}{a} ight)^{3} - 3\left( - \frac{b}{a} ight)\left(
\frac{c}{a} ight) = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = - 3a \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\frac{c}{a} = 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}P = abc = 6.

  • Câu 2: Thông hiểu

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 3: Vận dụng

    Cho các vectơ \overrightarrow{a} = (4; - 2),\overrightarrow{b} =
( - 1; - 3),\overrightarrow{c} = (2;5). Phân tích vectơ \overrightarrow{b} theo hai vectơ \overrightarrow{a}\ và\
\overrightarrow{c}, ta được:

    Giả sử \overrightarrow{b} =m\overrightarrow{a} + n\overrightarrow{c} \Leftrightarrow \left\{\begin{matrix}- 1 = 4m + 2n \\- 3 = - 2m + 5n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{1}{24} \ = - \frac{7}{12} \\\end{matrix} ight.. Vậy \overrightarrow{b} =
\frac{1}{24}\overrightarrow{a} -
\frac{7}{12}\overrightarrow{c}.

  • Câu 4: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho hàm số: y =
\left\{ \begin{matrix}
\frac{1}{x - 1} & x \leq 0 \\
\sqrt{x + 2} & x > 0 \\
\end{matrix} ight.. Tập xác định của hàm số là tập hợp nào sau đây?

    Với x ≤ 0 ta có: y = \frac{1}{x - 1} xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.

    Với x > 0 ta có: y = \sqrt{x + 2} xác định với mọi x ≥  − 2 nên xác định với mọi x > 0.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 6: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 7: Nhận biết

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 8: Vận dụng

    Cho tam giác ABC với trực tâm H. D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng?

    Ta có BD là đường kính\Rightarrow \overrightarrow{OB} =
\overrightarrow{DO}.

    Ta có AH\bot BC,DC\bot BC \Rightarrow
AH//DC(1)

    Ta lại cóCH\bot AB,DA\bot AB \Rightarrow
CH//DA(2)

    Từ (1)(2) \Rightarrowtứ giác HADC là hình bình hành\Rightarrow \overrightarrow{HA} =
\overrightarrow{CD};\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 9: Thông hiểu

    Nghiệm của phương trình \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1} là:

     Điều kiện: x>1.

    Ta có: \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1}  \Rightarrow x^2-4x+3=x-1\Leftrightarrow x^2-5x+4=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 10: Nhận biết

    Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x_0; y_0) sao cho ax_0 + by_0 + c < 0 được gọi là ……của bất phương trình ax + by + c < 0”.

    Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x_0; y_0) sao cho ax_0 + by_0 + c < 0 được gọi là miền nghiệm của bất phương trình ax + by + c < 0.

  • Câu 11: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 12: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 13: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho vectơ \overrightarrow{a} = (9;3). Vectơ nào sau đây không vuông góc với vectơ \overrightarrow{a}?

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.1 +
3.( - 3) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{1}} nên đáp án \overrightarrow{v_{1}} = (1; - 3) đúng.

    \overrightarrow{a}.\overrightarrow{v_{2}} = 9.2 +
3.( - 6) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{2}} nên đáp án \overrightarrow{v_{2}} = (2; - 6) đúng.

    \overrightarrow{a}.\overrightarrow{v_{3}} = 9.1 +
3.3 = 18 eq 0 nên đáp án \overrightarrow{v_{3}} = (1;3) sai.

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.( -
1) + 3.3 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{4}} nên đáp án \overrightarrow{v_{4}} = ( - 1;3) đúng.

  • Câu 14: Thông hiểu

    Cho tam giác ABCI,\
D lần lượt là trung điểm AB,\
CI, điểm N thuộc cạnh BC sao cho BN = 2NC. Đẳng thức nào sau đây đúng?

    Gọi K là trung điểm BN.

    Xét \Delta CKI ta có

    \left\{ \begin{matrix}
DN//IK \\
DN = \frac{1}{2}IK \\
\end{matrix} ight.\ \ \ \  \Rightarrow \ \ \overrightarrow{DN} =
\frac{1}{2}\overrightarrow{IK} (1)

    Xét \Delta ABN ta có

    \left\{ \begin{matrix}
AN//IK \\
AN = \frac{1}{2}IK \\
\end{matrix} ight.\ \ \ \  \Rightarrow \ \ \overrightarrow{AN} =
2\overrightarrow{IK} (2)

    Từ (1) và (2) suy ra \
\overrightarrow{AN} = 2\overrightarrow{IK} = 2.2\ \ \overrightarrow{DN}
= 4\ \ \overrightarrow{DN}.

  • Câu 15: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{x^{2} + 2x + 3} + \frac{1}{\sqrt{5 -
2x}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\ .

    Phương trình x2 + 2x + 3 = 0 ⇔ x ∈ ⌀5 - 2x = 0 \Leftrightarrow x =
\frac{5}{2}.

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in \left( \  -
\infty;\frac{5}{2} ight).

    Vậy tập xác định của hàm số là D = \left(
\  - \infty;\frac{5}{2} ight).

  • Câu 16: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 17: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 18: Thông hiểu

    Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 12,B = \{ n \in \mathbb{N} \mid n \leq
6\}, C = \{ n \in \mathbb{N} \mid 4
\leq n \leq 12\}. Mệnh đề nào sau đây là đúng?

    Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:

    A \cap (B \cup C) = A

  • Câu 19: Nhận biết

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 20: Thông hiểu

    Giá trị biểu thức A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} là:

    Ta có:

    \begin{matrix}  A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} \hfill \\  A = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} \hfill \\  A = \dfrac{1}{4} + \dfrac{3}{4} = 1 \hfill \\ \end{matrix}

  • Câu 21: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 22: Vận dụng cao

    Phương trình x.\sqrt[3]{35 - x^{3}}\left( x + \sqrt[3]{35 -
x^{3}} ight) = 30 có mấy nghiệm nguyên dương ?

    Đặt t = \sqrt[3]{35 - x^{3}}. Ta có hệ phương trình:

    \begin{matrix}
\left\{ \begin{matrix}
xt(x + t) = 30 \\
x^{3} + t^{3} = 35 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + t = 5 \\
x.t = 6 \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x = 2 \\
t = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 3 \\
t = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Vậy phương trình có 2 nghiệm x = 2x = 3.

  • Câu 23: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 24: Vận dụng

    Trong mặt phẳng tọa độ Oxy, gọi H(m,n) là trực tâm tam tam giác ABC có tọa độ các đỉnh A( - 3;0),B(3;0),C(2;6). Tính giá trị biểu thức P = m + 6n?

    Ta có: H(m,n) là trực tâm tam giác ABC nên \left\{ \begin{matrix}
AH\bot BC \\
BH\bot AC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
\overrightarrow{AH} = (m + 3;n);\overrightarrow{BC} = ( - 1;6) \\
\overrightarrow{BH} = (m - 3;n);\overrightarrow{AC} = (5;6) \\
\end{matrix} ight.

    Ta có hệ phương trình \left\{
\begin{matrix}
- m + 6n = 3 \\
5m + 6n = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = \frac{5}{6} \\
\end{matrix} ight.

    Vậy biểu thức P = m + 6n = 7

  • Câu 25: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 26: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 28: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 29: Thông hiểu

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác ABC.

    Ta có \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 30: Thông hiểu

    Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:

    Ta có: I là tâm hình chữ nhật ABCD

    => I là trung điểm của AC và I là trung điểm của BD

    Khi đó ta tìm tọa độ điểm B và điểm C

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_D} = 2{x_I}} \\   {{y_B} + {y_D} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = 2{x_I} - {x_D}} \\   {{y_B} = 2{y_I} - {y_D}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = -4} \\   {{y_B} =  - 1} \end{array}} ight. \Rightarrow B\left( {-4; - 1} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_C} = 2{x_I}} \\   {{y_A} + {y_C} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} = 2{x_I} - {x_A}} \\   {{y_C} = 2{y_I} - {y_A}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} =  - 2} \\   {{y_C} =  - 3} \end{array}} ight. \Rightarrow C\left( { - 2; - 3} ight) \hfill \\ \end{matrix}

    => Gọi M là trung điểm của BC có tọa độ là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_C} = 2{x_M}} \\   {{y_B} + {y_C} = 2{y_M}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x_B} + {x_C}}}{2} = {x_M}} \\   {\dfrac{{{y_B} + {y_C}}}{2} = {y_M}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_M} =  - 3} \\   {{y_M} =  - 2} \end{array}} ight. \Rightarrow M\left( { - 3; - 2} ight) \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 32: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 33: Nhận biết

    Cho \overrightarrow{AB} và một điểm C. Có bao nhiêu điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

    Có một và chỉ một điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

  • Câu 34: Nhận biết

    Cho hai điểm A(4; - 1),B( - 2;5). Tọa độ trung điểm của đoạn AB là:

    Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{4 + ( - 2)}{2} = 1 \\y_{M} = \dfrac{- 1 + 5}{2} = 2 \\\end{matrix} ight.\  \Rightarrow M(1;2)

  • Câu 35: Thông hiểu

    Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0?

    (x; y) = (2; 3) => x = 2;{\text{ }}y = 3 thay vào bất phương trình ta có:

    2 + 2.3 - 1 = 7 > 0 => Đáp án sai

    (x; y) = (1; 2) => x = 1;{\text{ }}y = 2 thay vào bất phương trình ta có:

    1 + 2.2 - 1 = 4 > 0 => Đáp án sai

    (x; y) = (0; 1) => x = 0;{\text{ }}y = 1 thay vào bất phương trình ta có:

    0 + 2.1 - 1 = 1> 0 => Đáp án sai

    (x; y) = (-1; 0) => x = -1;{\text{ }}y = 0 thay vào bất phương trình ta có:

    -1 + 2.0 - 1 = -2 < 0 => Đáp án đúng

    Vậy (x; y) = (-1; 0) là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0

  • Câu 36: Thông hiểu

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 37: Vận dụng cao

    Cho hai tập hợp khác rỗng A = (m - 1;4brackB = ( - 2;2m + 2)với m\mathbb{\in R}. Tìm m để A \cap B
eq \varnothing.

    \Leftrightarrow \left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m < 5(*)

    Ta có A \cap B = \varnothing
\Leftrightarrow 2m + 2 \leq m - 1 \Leftrightarrow m \leq - 3\
(**)

    Từ (*) và (**) suy ra A \cap B eq
\varnothing \Leftrightarrow - 2 < m < 5.

  • Câu 38: Vận dụng

    Cho ba mệnh đề: P: “số 20chia hết cho 5 và chia hết cho 2

    Q: “ Số 35 chia hết cho 9

    R: “ Số 17 là số nguyên tố ”

    Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:

    P đúng, Q sai, R đúng.

    \overline{Q} đúng, R đúng nên \overline{Q} \Rightarrow Rđúng,

    P đúng, \overline{Q} \Rightarrow Rđúng nên P \Leftrightarrow \left( \overline{Q} \Rightarrow
R ight)đúng, \left( \overline{Q}
\Rightarrow R ight) \Rightarrow P đúng.

    R đúng, \overline{Q} đúng nên R \Leftrightarrow \overline{Q}đúng.

    R đúng, P đúng nên R
\Rightarrow P đúng,

    R \Rightarrow P đúng, Q sai nên (R
\Rightarrow P) \Rightarrow Q sai.

    Chọn đáp án (R \Rightarrow P) \Rightarrow
Q.

  • Câu 39: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 40: Thông hiểu

    Phương trình: \sqrt{x+2}=4-x có bao nhiêu nghiệm?

     Điều kiện: x + 2 \geqslant 0 \Leftrightarrow x \geqslant  - 2

    \begin{matrix}  \sqrt {x + 2}  = 4 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {4 - x \geqslant 0} \\   {x + 2 = {{\left( {4 - x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {x + 2 = 16 - 8x + {x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {{x^2} - 9x + 14 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x = 7\left( {ktm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy nghiệm của phương trình là x=2

  • Câu 41: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 42: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 43: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 44: Vận dụng

    Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

    Tính bán kinh của chiếc đĩa

    Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):

    Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.

    Nửa chu vi tam giác ABC: 

    \begin{matrix}  p = \dfrac{{AB + AC + BC}}{2} \hfill \\   = \dfrac{{4,3 + 7,5 + 3,7}}{2} = \dfrac{{31}}{4}\left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng công thức Hê - rông tính diện tích tam giác ABC:

    \begin{matrix}  S = \sqrt {p\left( {p - AB} ight)\left( {p - AC} ight)\left( {p - BC} ight)}  \hfill \\   \Rightarrow S \approx 5,2\left( {c{m^2}} ight) \hfill \\ \end{matrix}

    Mặt khác 

    \begin{matrix}  S = \dfrac{{AB.AC.BC}}{{4R}} \Rightarrow R = \dfrac{{AB.AC.BC}}{{4s}} \hfill \\   \Rightarrow R \approx 5,73\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 45: Vận dụng

    Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a = m - 1 eq 0 \\
{\Delta'}_{x} = ( - \ 1)^{2} - (m - 1)(m + 1) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
1 - m^{2} + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m^{2} < 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
- \ \sqrt{2} < m < \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow m \in \left( - \
\sqrt{2};\sqrt{2} ight)\backslash\left\{ 1 ight\}.

    Vậy phương trình có hai nghiệm phân biệt \Leftrightarrow m \in \left( - \ \sqrt{2};\sqrt{2}
ight)\backslash\left\{ 1 ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo