Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Mệnh đề nào sau đây sai?
Mệnh đề đúng khi
đúng và
đúng.
là tam giác đều
là mệnh đề đúng.
là tam giác đều là mệnh đề sai
“
là tam giác đều
” là mệnh đề sai.
Chọn đáp án là tam giác đều
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm thỏa mãn cả 4 phươn trình trong hệ.
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Trong mặt phẳng tọa độ Oxy, cho
. Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Trong mặt phẳng tọa độ
cho ba vectơ
và
với
Tìm
để
vuông góc với trục hoành.
Trục hoành có vtcp .
. Do đó:
nên đáp án
sai.
. Do đó:
nên đáp án
đúng.
. Do đó:
nên đáp án
sai.
. Do đó:
nên đáp án
sai.
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ta có: thỏa mãn
Vậy phương trình có nghiệm là .
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cặp số
là nghiệm của bất phương trình nào?
Ta có: .
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Tập xác định của hàm số
là
Ta có :
• Khi x < 2: xác định khi
.
Suy ra D1 = (−∞;2).
• Khi x ≥ 2: xác định khi x + 7 ≥ 0 ⇔ x ≥ − 7.
Suy ra D1 = [2; + ∞).
Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.
Tập
bằng tập nào sau đây?
Ta có:
Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?
*a = 0thì bpt trở thành − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.
* a ≠ 0 thì .
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?
Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ
Điều kiện: x > 0
Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)
Đoạn đường mà vận động viên B chạy được là 12x (km)
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
0,46 giờ ≈ 28 phút
Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.
Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.
Cho tứ giác
. Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài ![]()
Dựng hình bình hành tâm O như sau:

Ta có:
Vì tam giác AOB vuông tại A ta có:
Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi
Ta có:

Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Cho hai điểm
và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Hình nào sau đây là đồ thị của hàm số ![]()
Hàm số có các hệ số
Vì nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

Đồ thị có toạ độ đỉnh tung độ
hay
. Do đó ta loại hình vẽ

Cho bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là đúng?
Xét điểm . Ta có:
thỏa mãn. Do đó
.
Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:
Ta có:x2 − 2(m−1)x + m2 − 2m = 0
⇔ x2 − 2mx + m2 + 2x − 2m = 0
Để phương trình đã cho có hai nghiệm trái dấu (1)
Với m ∈ (0 ; 2) suy ra .
Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0
⇔ (x2−x1)(x2+x1) > 0
⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1
Kết hợp điều kiện (1), ta được 0 < m < 1.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Tính giá trị biểu thức
.
Ta có:
Khi đó:
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Cho tập hợp
và
, với
là tham số. Tìm
để
có đúng hai tập con và
?
có đúng hai tập con và
khi và chỉ khi phương trình
(1) có đúng một nghiệm dương.
Trường hợp 1. , phương trình (1) trở thành
Do đó không thỏa đề bài.
Trường hợp 2. , khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi
Vậy là giá trị duy nhất thỏa mãn yêu cầu đề bài.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.