Trong hệ tọa độ cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?
Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Trong hệ tọa độ cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?
Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Cho góc . Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Độ dài lớn nhất của đoạn
bằng:
Theo định lí hàm sin, ta có:
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là và
(ha)
Điều kiện:
Lợi nhuận thu được là (đồng).
Tổng số công dùng để trồng ha cà phê và
ha sầu riêng là
.
Ta có hệ bất phương trình sau:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình
Miền nghiệm của hệ bất phương trình là tứ giác
(kể cả biên)
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là tọa độ của một trong các đỉnh
.
Ta có: .
Suy ra lớn nhất khi
Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.
Tìm tứ phân vị dưới của bảng số liệu sau:
Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái . Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.
Suy ra . Vậy tứ phân vị dưới là 26.
Cho bốn điểm phân biệt thỏa mãn
. Khẳng định nào sau đây sai?
Phải suy ra là hình bình hành (nếu
không thẳng hàng) hoặc bốn điểm
thẳng hàng.
Đáp án sai là là hình bình hành.
Cho hai tập hợp ,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Cho tam giác và điểm
thỏa mãn
. Tìm vị trí điểm
Gọi là trung điểm của
là trung điểm
Trong hệ tọa độ cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng
Ta có
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
Giá trị |
Độ lệch |
Bình phương độ lệch |
21 |
47,61 |
|
23 |
24,01 |
|
25 |
8,41 |
|
28 |
0,01 |
|
30 |
4,41 |
|
32 |
16,81 |
|
34 |
37,21 |
|
31 |
9,61 |
|
29 |
1,21 |
|
26 |
3,61 |
|
Tổng |
152,9 |
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Điểm cuối của góc lượng giác ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Trong mặt phẳng tọa độ , cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Mệnh đề nào sau đây đúng?
Vì vectơ - không cùng phương với mọi vectơ.
Cho là số gần đúng của số đúng
. Khi đó
gọi là:
Ta có: gọi là sai số tuyệt đối của số gần đúng
.
Trong mặt phẳng tọa độ cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Cho hai vectơ và
khác
. Xác định góc
giữa hai vectơ
và
khi
.
Ta có .
Mà theo giả thiết
Suy ra
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong mặt phẳng cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính
Ta có:
Tam giác ABC vuông tại A ta có:
Một tam giác có ba cạnh là . Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Tìm phương sai của dãy số liệu: 43 45 46 41 40.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Biểu thức lượng giác có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: ?
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án đúng
Vậy là nghiệm của bất phương trình bậc nhất hai ẩn:
Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:
Tìm mốt của mẫu số liệu này.
Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:
Vậy
Cho hình bình hành ABCD, điểm M thỏa mãn . Xác định vị trí điểm M.
Ta có: ABCD là hình bình hành
=>
Xét biểu thức:
Vậy M là trung điểm của AC.
Cho 4 điểm A, B, C, D phân biệt. Khi đó bằng
Ta có:
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:
Chiều cao (cm) |
150 |
155 |
160 |
165 |
170 |
175 |
Số học sinh |
4 |
6 |
7 |
6 |
5 |
3 |
Chiều cao trung bình của các học sinh là:
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho tam giác có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có
Cho với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:
Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Nửa mặt phẳng là miền nghiệm của bất phương trình không chứa điểm nào trong các điểm sau:
Thay điểm vào bất phương trình, ta được:
(sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Cho số , trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của
.
Do là số nguyên và hàng thấp nhất có chữ số đáng tin là
nên dạng viết chuẩn của
là
.
Cho định lí “Nếu thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Tam giác có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:
Ta có: I là tâm hình chữ nhật ABCD
=> I là trung điểm của AC và I là trung điểm của BD
Khi đó ta tìm tọa độ điểm B và điểm C
=> Gọi M là trung điểm của BC có tọa độ là:
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Cho Tìm
Vậy .
Cho hệ bất phương trình có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Cho có
. Số đo của góc
là:
Ta có: