Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi học kì 1 Toán 10 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 10 Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B,\tan\widehat{AOB} = \frac{AB}{OB} \Rightarrow AB = tan60^{0}.OB =
60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là h = AB +
OC = \left( 60\sqrt{3} + 1 ight)\ m.

  • Câu 2: Thông hiểu

    Cho tam giác ABCG là trọng tâm. Mệnh đề nào sau đây đúng?

    Gọi E là trung điểm của AC = > \overrightarrow{BA} +
\overrightarrow{BC} = 2\ \overrightarrow{BE}. (1)G là trọng tâm của tam giác ABC = >
\overrightarrow{BE} = \frac{3}{2}\overrightarrow{BG}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{BA} + \overrightarrow{BC} =
2.\frac{3}{2}\overrightarrow{BG} = 3\ \overrightarrow{BG}.

  • Câu 3: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 4: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 5: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 6: Vận dụng

    Cho tam giác ABC, AB =
5,AC = 1. Tính tọa độ điểm D là chân đường phân giác góc A. Biết B(7;
- 2);C(1;4).

    Theo tính chất đường phân giác: \frac{DB}{DC} = \frac{AB}{AC}. Suy ra \overrightarrow{DB} = -
5\overrightarrow{DC}.

    Gọi D(x;y). Suy ra \overrightarrow{DB}(7 - x; - 2 -
y);\overrightarrow{DC}(1 - x;4 - y).

    Ta có: \left\{ \begin{matrix}
7 - x = - 5(1 - x) \\
- 2 - y = - 5(4 - y) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm D(2;3).

  • Câu 7: Thông hiểu

    Cho tam giác ABC với M,\ \
N,\ \ P lần lượt là trung điểm của. Khẳng định nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có \overrightarrow{AP} + \overrightarrow{BM} +
\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA}

    = \frac{1}{2}\left( \overrightarrow{AB}
+ \overrightarrow{BC} + \overrightarrow{CA} ight) =
\frac{1}{2}\overrightarrow{AA} = \overrightarrow{0}.

    Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} =
\overrightarrow{0}.. Ta có \overrightarrow{MN} + \overrightarrow{NP} +
\overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.. Ta có \overrightarrow{PB} + \overrightarrow{MC} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =
\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AN} =
\overrightarrow{PM} = - \overrightarrow{MP}. Chọn đáp án này.

  • Câu 8: Thông hiểu

    Cho \overrightarrow{a} = (x;2),\ \overrightarrow{b} =
( - 5;1),\ \overrightarrow{c} = (x;7). Tìm x biết \overrightarrow{c} = 2\overrightarrow{a} +
3\overrightarrow{b}.

    Ta có \left\{ \begin{matrix}2\overrightarrow{a} = (2x;4) \\3\overrightarrow{b} = ( - 15;3) \\\end{matrix} ight.\ \overset{}{ightarrow}2\overrightarrow{a} +3\overrightarrow{b} = (2x - 15;7).

    Để \overrightarrow{c} =
2\overrightarrow{a} +
3\overrightarrow{b}\overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = 2x - 15 \\
7 = 7 \\
\end{matrix} ight.\ \overset{}{ightarrow}x = 15.

  • Câu 9: Thông hiểu

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 10: Thông hiểu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

  • Câu 11: Thông hiểu

    Cho số đúng \overline{a} = 1,12512 và số gần đúng của \overline{a} của 1,125. Xác định sai số tuyệt đối \Delta_{a}.

    Ta có: a = 1,125

    Suy ra sai số tuyệt đối là:

    \Delta_{a} = \left| \overline{a} - a
ight| = |1,12512 - 1,125| = 0,00012

  • Câu 12: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 13: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}
Q_{1} = 5 \\
Q_{3} = 7 \\
\end{matrix} ight.\  \Rightarrow \Delta Q = 7 - 5 = 2

    Vậy khoảng tứ phân vị bằng 2.

  • Câu 14: Thông hiểu

    Xác định các tứ phân vị của mẫu số liệu: 60;78;80;64;70;76;80;74;86;90?

    Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:

    60;64;70;74;76;78;80;80;86;90

    Ta có: N = 10 suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6

    Q_{2} = \frac{76 + 78}{2} =
77

    Vậy đáp án đúng là: Q_{1} = 70,Q_{2} =
77,Q_{3} = 80.

  • Câu 15: Nhận biết

    Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.

    Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.

     Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.

    Hai giá trị chính giữa là 96 105. Do đó Q_2=\frac{96+105}2=100,5.

    Tứ phân vị Q_1 của mẫu số liệu: 72 77 84 96 là Q_1=\frac{77+84}2=80,5.

    Tứ phân vị Q_3 của mẫu số liệu 105 105 117 124 là: Q_3=\frac{105+117}2=111.

    Khoảng tứ phân vị \Delta_Q=111-80,5=30,5.

  • Câu 16: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 17: Vận dụng

    Cho hình vuông ABCD cạnh a, tâm O. Tính \left| \overrightarrow{OB} + \overrightarrow{OC}
ight|.

    Gọi M là trung điểm của BC.

    Ta có \left| \overrightarrow{OB} +
\overrightarrow{OC} ight| = 2\left| \overrightarrow{OM} ight| = 2OM
= AB = a.

  • Câu 18: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

  • Câu 19: Thông hiểu

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 20: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 21: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 22: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 23: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm trung vị của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.

    Suy ra trung vị

    M_{e} = \frac{17 + 17}{2} =
17.

  • Câu 24: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 25: Nhận biết

    Cho dãy số liệu thống kê 21,23,24,25,22,20. Tính số trung bình cộng của dãy số liệu thống kê đã cho?

    Số trung bình cộng của dãy số liệu đã cho là:

    \frac{21 + 23 + 24 + 25 + 22 + 20}{6} =
22,5

    Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.

  • Câu 26: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 27: Nhận biết

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 28: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 29: Vận dụng cao

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \sqrt[2017]{\sin\widehat{C}}

    Giả sử AB = c;BC = a;AC = b. Tính số đo góc \widehat{C}?

    Ta có:

    \sin\widehat{C} \in \lbrack - 1;1brack
\Rightarrow sin^{2017}\widehat{C} \geq sin^{2}\widehat{C}

    \Rightarrow sin^{2}\widehat{A} +
sin^{2}\widehat{B} \geq sin^{2}\widehat{C}

    \Rightarrow 4R^{2}.\left\lbrack
sin^{2}\widehat{A} + sin^{2}\widehat{B} ightbrack \geq
4R^{2}.sin^{2}\widehat{C}

    \Rightarrow a^{2} + b^{2} \geq
c^{2}

    \Rightarrow a^{2} + b^{2} - c^{2} \geq
0

    Theo định lí cosin ta có:

    \Rightarrow \cos\widehat{C} =
\frac{a^{2} + b^{2} - c^{2}}{2ab} \geq 0

    Ta thấy

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \frac{1 - \cos2\widehat{A}}{2} + \frac{1 -\cos2\widehat{B}}{2}

    = 1 - \frac{\cos2\widehat{A} +\cos2\widehat{B}}{2}

    = 1 - \cos\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B}ight)

    = 1 - \cos\widehat{C}.\cos\left(\widehat{A} - \widehat{B} ight) \geq 1

    Mặt khác \sqrt[2017]{\sin\widehat{C}}\leq \sqrt[2017]{1} = 1

    Do đó: sin^{2}\widehat{A} +
sin^{2}\widehat{B} = \sqrt[2017]{\sin\widehat{C}} khi \left\{ \begin{matrix}\cos\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = 0 \\\sin\widehat{C} = 1 \\\end{matrix} ight.

    \Rightarrow \widehat{C} =\dfrac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại \widehat{C}.

  • Câu 30: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 31: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 32: Nhận biết

    Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

    Xét đáp án x + y < 0 

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0 

    Vậy cặp số (2; 3) không là nghiệm của bất phương trình.

    Xét đáp án x + y > 0

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án x - y < 0

    Thay x=2;y=3 ta được: 2 - 3 = -1 < 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án 2x - y > 0

    Thay x=2;y=3 ta được: 2.2 - 3 = 1 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

  • Câu 33: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{a} = (5;m - 7)\overrightarrow{b} = (m + 1;3) với m\mathbb{\in R}. Tìm giá trị của tham số m để \overrightarrow{a}\bot\overrightarrow{b}?

    Ta có:

    \overrightarrow{a}\bot\overrightarrow{b}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{0}

    \Leftrightarrow 5(m - 1) + 3.(m - 7) = 0
\Leftrightarrow m = 2

    Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.

  • Câu 34: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 35: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
1;1),B(1;3)C(1; - 1). Khẳng định nào sau đây là đúng?

    \overrightarrow{AB}\mathbf{=}(2;2)\Rightarrow\left|\overrightarrow{{AB}}ight|\mathbf{=}{2}\sqrt{{2}}.

    \overrightarrow{AC}=(2;-2)\Rightarrow\left|\overrightarrow {AC}ight|\mathbf{=}2\sqrt{{2}}.

    Ta có: AB = AC\Rightarrow \Delta{ABC} cân tại A.

    \overrightarrow{BC}=(0;-4)\Rightarrow\left|\overrightarrow{BC}ight|={4}.

    BC^2=AB^2+AC^2 =8+8=4^2 \Rightarrow \Delta ABC vuông tại A.

    Vậy \Delta ABC vuông cân tại A.

  • Câu 36: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Số các vectơ bằng \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là:

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{ED}.

  • Câu 37: Vận dụng cao

    Với mọi góc \alpha, giá trị của biểu thức

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight)

    Ta có:

    \cos\alpha = - \cos\left( \alpha +
\frac{5\pi}{5} ight)

    \cos\left( \alpha + \frac{\pi}{5}
ight) = - \cos\left( \alpha + \frac{6\pi}{5} ight)

    \cos\left( \alpha + \frac{2\pi}{5}
ight) = - \cos\left( \alpha + \frac{7\pi}{5} ight)

    \cos\left( \alpha + \frac{3\pi}{5}
ight) = - \cos\left( \alpha + \frac{8\pi}{5} ight)

    \cos\left( \alpha + \frac{4\pi}{5}
ight) = - \cos\left( \alpha + \frac{9\pi}{5} ight)

    Do đó:

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight) = 0

  • Câu 38: Nhận biết

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

  • Câu 39: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 40: Vận dụng

    Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

    Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.

    Sắp xếp các giá trị theo thứ tự không giảm:

    3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7

    Từ mẫu số liệu ta tính được: Q_{2} =
6,7Q_{1} = 4,5, Q_{3} = 7,8.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 7,8 -
4,5 = 3,3.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 4,5 -
1,5.3,3 = - 0,45.

    Ta có: Q_{3} + 1,5\Delta_{Q} = 7,8 +
1,5.3,3 = 12,75.

    Ta thấy không có số liệu nào nhỏ hơn -
0,45 và lớn hơn 12,75 nên mẫu không có giá trị bất thường.

  • Câu 41: Vận dụng cao

    Cho A = \left\{x\in\mathbb{ R}||mx - 3| = mx - 3 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - 4 = 0ight\}. Tìm m để B\backslash A = B.

    Ta có:

    |mx - 3| = mx - 3

    \Leftrightarrow mx - 3 \geq
0

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {m > 0,x \geqslant \dfrac{3}{m}} \\ 
  {m < 0,x \leqslant \dfrac{3}{m}} 
\end{array}} ight.

    Do đó m < 0 thì A = \left( - \infty;\frac{3}{m}
ightbrack; nếu m >
0 thì A = \left\lbrack \frac{3}{m};
+ \infty ight)

    Ta có:x^{2} - 4 = 0 \Leftrightarrow m =
\pm 2\mathbb{\in R}

    Do đó B = \left\{ - 2;2
ight\}

    Ta có: B\backslash A = B \Leftrightarrow
\left\lbrack \begin{matrix}
A eq \varnothing(*) \\
\left\{ \begin{matrix}
- 2 otin A \\
2 otin A \\
\end{matrix}(**) ight.\  \\
\end{matrix} ight.

    TH1: (*) \Leftrightarrow M =
0

    TH2: Nếu m < 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 > \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight.

    \Leftrightarrow - 2 > \frac{3}{m}
\Leftrightarrow m > - \frac{3}{2}

    Tóm lại - \frac{3}{2} < m <
0 thì thỏa mãn yêu cầu bài toán.

    TH3: Nếu m > 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 < \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight. \Rightarrow 2 < \dfrac{3}{m} \Rightarrow m < \frac{3}{2}

    Kết hợp ba trường hợp, vậy - \frac{3}{2}
< m < \frac{3}{2} thì thỏa mãn yêu cầu bài toán.

  • Câu 42: Nhận biết

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 43: Thông hiểu

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 44: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 45: Nhận biết

    Cho hai điểm A(4; - 1),B( - 2;5). Tọa độ trung điểm của đoạn AB là:

    Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{4 + ( - 2)}{2} = 1 \\y_{M} = \dfrac{- 1 + 5}{2} = 2 \\\end{matrix} ight.\  \Rightarrow M(1;2)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo