Trong mặt phẳng cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Trong mặt phẳng cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Tam giác có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho Tìm
Vậy .
Cho tam giác , tập hợp các điểm
sao cho
là:
Gọi là trọng tâm của tam giác
, ta có
.
Thay vào ta được : , hay tập hợp các điểm
là đường tròn có tâm là trọng tâm của tam giác
và bán kính bằng
.
Trong hệ tọa độ cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Miền nghiệm của bất phương trình chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Với giá trị thực nào của mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Cho là số gần đúng của số đúng
. Khi đó
gọi là:
Ta có: gọi là sai số tuyệt đối của số gần đúng
.
Cho góc . Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Độ dài lớn nhất của đoạn
bằng:
Theo định lí hàm sin, ta có:
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Cho tam giác và điểm
thỏa mãn
. Tìm vị trí điểm
Gọi là trung điểm của
là trung điểm
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Nửa mặt phẳng là miền nghiệm của bất phương trình không chứa điểm nào trong các điểm sau:
Thay điểm vào bất phương trình, ta được:
(sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.
Tìm phương sai của dãy số liệu: 43 45 46 41 40.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Trong hệ tọa độ cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng
Ta có
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho tam giác có
Tính
Ta có
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
Giá trị |
Độ lệch |
Bình phương độ lệch |
21 |
47,61 |
|
23 |
24,01 |
|
25 |
8,41 |
|
28 |
0,01 |
|
30 |
4,41 |
|
32 |
16,81 |
|
34 |
37,21 |
|
31 |
9,61 |
|
29 |
1,21 |
|
26 |
3,61 |
|
Tổng |
152,9 |
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Một tam giác có ba cạnh là . Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Miền nghiệm của bất phương trình không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình.
Cho số , trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của
.
Do là số nguyên và hàng thấp nhất có chữ số đáng tin là
nên dạng viết chuẩn của
là
.
Cho hệ bất phương trình có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho có
. Số đo của góc
là:
Ta có:
Cho tam giác có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Phần hình vẽ được tô đậm là miền nghiệm của bất phương trình nào? (tính cả bờ là đường thẳng chia đôi mặt phẳng)
Đường thẳng có dạng
đi qua hai điểm
và
.
Thay tọa độ hai điểm này vào :
.
Vậy có dạng
.
Thay điểm vào
:
. Suy ra phần tô màu (chứa
) là nghiệm của bất phương trình
. (tính cả bờ
)
Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]
Ta có:
Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.
Biểu diễn tập [‒5; 5] trên trục số đúng là:
Giá trị biểu thức bằng:
Ta có:
.
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?
Diện tích trồng cà phê là: 6 (ha)
Diện tích trồng sầu riêng là: 2 (ha)
Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là và
(ha)
Điều kiện:
Lợi nhuận thu được là (đồng).
Tổng số công dùng để trồng ha cà phê và
ha sầu riêng là
.
Ta có hệ bất phương trình sau:
Bài toán trở thành tìm giá trị lớn nhất của hàm số trên miền nghiệm của hệ bất phương trình
Miền nghiệm của hệ bất phương trình là tứ giác
(kể cả biên)
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là tọa độ của một trong các đỉnh
.
Ta có: .
Suy ra lớn nhất khi
Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.
Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?
Số học sinh lớp 10A là: (bạn).
Trung bình mỗi bạn đọc: (cuốn sách).
Cho góc thỏa mãn
và
. Tính
Ta có
.
Thay và
vào
, ta được
Cho và
. Tập hợp
là
.
Suy ra .
Cho ba điểm phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:
Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Cho tam giác đều cạnh
. Tính
Gọi là trung điểm của
Suy ra
Ta lại có
Trong hệ tọa độ cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?
Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Cho tam giác . Lấy các điểm
sao cho
và
. Xác định
để ba điểm
thẳng hàng.
Ta có:
Để ba điểm thẳng hàng thì
hay
Miền nghiệm của hệ bất phương trình là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?
Xét điểm thử vào các bất phương trình của hệ thấy thỏa mãn.
Chỉ có hình vẽ chứa điểm
. Chọn đáp án hình vẽ này.
Cho hình bình hành ABCD, điểm M thỏa mãn . Xác định vị trí điểm M.
Ta có: ABCD là hình bình hành
=>
Xét biểu thức:
Vậy M là trung điểm của AC.
Cho tam giác vuông tại
có
. Tính
Ta có:
Cho hai tập hợp ,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để