Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 2: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 3: Vận dụng

    Tính tổng S = 1 + \frac{2}{3} +
\frac{4}{9} + ... + \frac{2^{n}}{3^{n}} + ... .

    Ta có:

    S = 1 + \frac{2}{3} + \frac{4}{9} + ...
+ \frac{2^{n}}{3^{n}} + ...

    = \underbrace {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} ight)}^2} + ... + {{\left( {\frac{2}{3}} ight)}^n} + ...}_{CSN:{u_1} = 1;q = \frac{2}{3}}

    = \dfrac{1}{1 - \dfrac{2}{3}} =3

  • Câu 4: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau.

    Hai đường thẳng song song là hai đường thẳng cùng nằm trên cùng một mặt phẳng và không có điểm chung.

    Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trên một mặt phẳng (hai đường thẳng không có điểm chung thì hai đường thẳng có thể song song hoặc chéo nhau).

    Hai đường thẳng cắt nhau là hai đường thẳng có điểm chung duy nhất.

  • Câu 5: Nhận biết

    Mệnh đề nào sau đây sai?

    Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.

  • Câu 6: Nhận biết

    Đổi số đo của góc - 5rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \frac{- 5.180}{\pi}
ight)^{0} = - 286^{0}28'44''

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm -5 shift DRG 2 =

  • Câu 7: Nhận biết

    Cho dãy số \left(
u_{n} ight) xác định bởi u_{n} =
\frac{n^{2} + 3n + 7}{n + 1}. Ba số hạng đầu tiên của dãy là:

    Ba số hạng đầu tiên của dãy là \frac{11}{2};\frac{17}{3};\frac{25}{4}

  • Câu 8: Thông hiểu

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Đáp án là:

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Xét từng mệnh đề ta có

    a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.

    b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.

    c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).

    d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).

    Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên

  • Câu 9: Thông hiểu

    Giá trị của F = \lim\frac{(n - 2)^{7}(2n + 1)^{3}}{\left(
n^{2} + 2 ight)^{5}}bằng:

    Ta có:

     F = \lim\frac{(n - 2)^{7}(2n + 1)^{3}}{\left(
n^{2} + 2 ight)^{5}} 

    = \lim\frac{\left( 1 - \frac{2}{n}ight)^{7}\left( 2 + \frac{1}{n} ight)^{3}}{\left( 1 +\frac{5}{n^{2}} ight)^{5}\ } = 8

  • Câu 10: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 11: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 12: Thông hiểu

    Tất cả các nghiệm của phương trình tan (x) = cot (x) là?

     Điều kiện \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight.\, \Leftrightarrow \sin 2x e 0\, \Leftrightarrow x e m\frac{\pi }{2}\,{\text{ , }}m \in \mathbb{Z}

    \tan x = \cot x \Leftrightarrow \tan x = \tan \left( {\frac{\pi }{2} - x} ight)

    \Leftrightarrow x = \frac{\pi }{2} - x + k\pi

    \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\,\left( {\,k \in \mathbb{Z}} ight) thỏa mãn điều kiện.

  • Câu 13: Thông hiểu

    Số nghiệm trong khoảng ( - \pi\ ;\
\pi) của phương trình 1 - \cos2x =0 là

    Ta có:

    1 - cos2x = 0

    \Leftrightarrow cos2x = 1

    \Leftrightarrow 2x = k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = k\pi\left(
k\mathbb{\in Z} ight).

    Với - \pi < x < \pi thì - 1 < k < 1.

    Suy ra k = 0.

    Vậy có 1 nghiệm trong khoảng ( - \pi\ ;\
\pi).

  • Câu 14: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 15: Vận dụng cao

    Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}

    Ta có:

    \lim\sqrt[4]{\dfrac{4^{n} + 2^{n +1}}{3^{n} + 4^{n + a}}} = \lim\sqrt[4]{\dfrac{1 + 2\left( \dfrac{1}{2}ight)^{n}}{\left( \dfrac{3}{4} ight)^{n} + 4^{n}}}

    \begin{matrix}
   = \sqrt {\dfrac{1}{{{4^a}}}}  = \sqrt {\dfrac{1}{{{{\left( {{2^a}} ight)}^2}}}}  = \dfrac{1}{{{2^a}}} \leqslant \dfrac{1}{{1024}} \hfill \\
   \Leftrightarrow {2^a} \geqslant 1024 = {2^{10}} \hfill \\
   \Leftrightarrow a \geqslant 10 \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}
a \in (0;2018) \\
a\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 10;11;...;2017
ight\}

    Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.

  • Câu 16: Nhận biết

    Cho dãy số có các số hạng đầu là - 2;0;2;4;6;.... Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?

    Ta có: u_{1} = - 2 loại các đáp án u_{n} = n - 2u_{n} = - 2(n + 1). Ta kiểm tra u_{2} = 0

    Xét đáp án u_{n} = - 2nu_{2} = - 4 eq 0

    Xét đáp án u_{n} = 2n - 4u_{2} = 2.2 - 4 = 0 là đáp án đúng.

  • Câu 17: Vận dụng cao

    Cho tam giác ABC cân tại A, AH ⊥ BC. Các cạnh AB, AH, BC lập thành một cấp số nhân. Tính công bội q của cấp số nhân đó.

    Ta có: AB = AC (tam giác ABC cân)

    Các cạnh BC, AB, AH lập thành cấp số nhân nên ta có hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{q} = \dfrac{{BC}}{{AH}} = \dfrac{{2HC}}{{AH}} = 2\cot \widehat C} \\   {\dfrac{1}{q} = \dfrac{{AH}}{{AB}} = 2\sin \widehat B} \end{array}} ight. \hfill \\   \Rightarrow \cot \widehat C = \sin \widehat C \Rightarrow 2\cos \widehat C = {\sin ^2}\widehat C = 1 - {\cos ^2}\widehat C \hfill \\   \Leftrightarrow {\cos ^2}\widehat C - 2\cos \widehat C - 1 = 0 \hfill \\   \Leftrightarrow \cos \widehat C = \sqrt 2  - 1;\left( {0 < \widehat C < {{90}^0}} ight) \hfill \\   \Leftrightarrow \sin \widehat C = \sqrt {2\left( {\sqrt 2  - 1} ight)}  \hfill \\ \end{matrix}

    Vậy công bội của cấp số nhân là q = \frac{1}{{\sin \widehat C}} = \frac{1}{{\sqrt {2\left( {\sqrt 2  - 1} ight)} }} = \frac{1}{2}.\sqrt {2\left( {\sqrt 2  + 1} ight)}

  • Câu 18: Thông hiểu

    Tìm khẳng định đúng.

    Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.

    Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.

    ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.

    => Chọn phương án – có thể là một hình tam giác.

  • Câu 19: Vận dụng

    Cho tập hợp M =
\left\{ 2^{1};2^{2};2^{3};...;2^{2020} ight\}. Số tập hợp con của tập hợp M gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:

    Gọi ba phần tử thỏa mãn yêu cầu bài toán là 2^{a} < 2^{b} < 2^{c} với a,b,c \in \left\{ 1;2;...;2020
ight\}

    2^{a};2^{b};2^{c} lập thành một cấp số nhân

    Suy ra a,b,c lập thành một cấp số cộng

    \Rightarrow a + b = 2c

    Thấy rằng a và c phải cùng tính chẵn lẻ.

    Khi đó số tập con thỏa mãn yêu cầu bài toán là C_{1010}^{2} + C_{1010}^{2} = 1019090

  • Câu 20: Vận dụng

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 21: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 22: Vận dụng

    \lim_{x
ightarrow 1}\frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} bằng:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{100} - 2x
+ 1}{x^{50} - 2x + 1}

    = \lim_{x ightarrow 1}\frac{\left(
x^{100} - 1 ight) - 2(x - 1)}{\left( x^{50} - 1 ight) - 2(x -
1)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( x^{99} + x^{98} + .... + x + 1 - 2 ight)}{(x - 1)\left(
x^{49} + x^{48} + .... + x + 1 - 2 ight)}

    = \lim_{x ightarrow 1}\frac{x^{99} +
x^{98} + .... + x + 1 - 2}{x^{49} + x^{48} + .... + x + 1 - 2} =
\frac{98}{48} = \frac{49}{24}

  • Câu 23: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 24: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 25: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 26: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 27: Vận dụng

    Xác định chu kì T của hàm số y = \tan3x +\cot x

    Hàm số y = \tan3x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = \cot x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \tan3x + \cot x tuần hoàn với chu kì T = \pi

  • Câu 28: Nhận biết

    Tìm giới hạn \lim_{x ightarrow ( -
3)^{+}}\frac{3 + 2x}{x + 3}.

    Ta có \lim_{x ightarrow ( - 3)^{+}}(3 +
2x) = - 3, \lim_{x ightarrow ( -
3)^{+}}(x + 3) = 0x + 3 >
0 nên \lim_{x ightarrow ( - \
3)^{+}}\frac{3 + 2x}{x + 3} = - \infty.

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Hình vẽ minh họa

    Xét tam giác DBC có \frac{DO}{DB} =\frac{DK}{DC} = \frac{1}{3} \Rightarrow OK//BC

    Xét tam giác ABC có: \frac{AO}{AC} =\frac{AJ}{AB} = \frac{2}{3} \Rightarrow OJ//BC

    Suy ra ba điểm O; K; J thẳng hàng

    Suy ra (IJK) \cap (ABCD) = OK đúng

    Tương tự ta cũng chúng minh được OH//IJ (Vì OH//SB;IJ//SB)

    Suy ra H \in (IJO) \Rightarrow (IJO) \cap(SBD) = OH

    Gọi F là trung điểm của SA khi đó \frac{SI}{SF} = \frac{SH}{SD} = \frac{2}{3}\Rightarrow IH//DF

    Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.

    Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.

  • Câu 30: Nhận biết

    Với k là số nguyên dương, c là hằng số, giới hạn \lim_{x ightarrow +
\infty}\frac{c}{x^{k}} bằng

    Ta có \lim_{x ightarrow + \infty}c =
c\lim_{x ightarrow +
\infty}x^{k} = + \infty nên \lim_{x
ightarrow + \infty}\frac{c}{x^{k}} = 0

  • Câu 31: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 2x + \sin \frac{x}{2}

    Hàm số y = \cos 2x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{2} = \pi

    Hàm số y = \sin \frac{x}{2} tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi

    Suy ra hàm số y = \cos 2x + \sin \frac{x}{2} tuần hoàn với chu kì T = 4\pi

  • Câu 32: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 33: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 34: Nhận biết

    Cho hình chóp S.ABCD, đáy là hình bình hành. Gọi O là giao điểm của ACBD, M là trung điểm SC. Khằng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có OM là đường trung bình tam giác SAC nên OM//SA, mà SA
\subset (SAD)OM ⊄
(SAD) suy ra OM//(SAD).

  • Câu 35: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD,M là trung điểm CD,I là điểm ở trên đoạn thẳng AG,BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

    Ta có A là điểm chung thứ nhất giữa hai mặt phẳng (ACD)(GAB).

    Do BG \cap CD = M \Rightarrow \left\{
\begin{matrix}
M \in BG \subset (ABG) \Rightarrow M \in (ABG) \\
M \in CD \subset (ACD) \Rightarrow M \in (ACD) \\
\end{matrix} ight.

    \Rightarrow M là điểm chung thứ hai giữa hai mặt phẳng (ACD)(GAB)

    \Rightarrow (ABG) \cap (ACD) =
AM nên AM = (ACD) \cap
(ABG) đúng.

    \Rightarrow J = BI \cap AM \Rightarrow
A,J,M thẳng hàng nên A,J,M thẳng hàng đúng

    Ta có \left\{ \begin{matrix}
DJ \subset (ACD) \\
DJ \subset (BDJ) \\
\end{matrix} \Rightarrow DJ = (ACD) \cap (BDJ) ight. nên DJ = (ACD) \cap (BDJ) đúng.

    Điểm I di động trên AG nên J có thể không phải là trung điểm của AM

    Nên J là trung điểm của AM sai.

  • Câu 36: Vận dụng

    Cho hình lăng trụ tam giác ABC.A'B'C' , tâm của các mặt bên (ABB'A');(BCC'B');(ACC'A') lần lượt là M,N,P. Hình chiếu của điểm P qua phép chiếu song song phương BC', mặt phẳng chiếu (AB'C) là:

    Hình vẽ minh họa

    Gọi Q là ảnh của P qua phép chiếu song song phương BC' lên mặt phẳng (AB'C).

    Ta có PQ//BC'PQ \subset (ABC').

    AN là giao tuyến của hai mặt phẳng (ABC')(AB'C) nên Q \in AN.

    Lại có P là trung điểm của AC' nên PQ là đường trung bình của tam giác ANC'

    => P là trung điểm của AN.

  • Câu 37: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 38: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG;OP) là:

    Góc lượng giác (OG;OP) chiếm \frac{1}{4} đường tròn

    => Số đo là: \frac{1}{4}.2\pi + k2\pi= \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 40: Thông hiểu

    Tính H = \lim_{xightarrow 2}\frac{2 - x}{\sqrt{x + 7} - 3}

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2 -x}{\sqrt{x + 7} - 3}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{\left( \sqrt{x + 7} - 3 ight)\left(\sqrt{x + 7} + 3 ight)}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{x + 7 - 9}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{- (2 - x)} = - 6

  • Câu 41: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Hình vẽ minh họa

    Ta có:SI = (SBC) \cap (SAD)

    Do \left\{ \begin{matrix}
SI = (SAD) \cap (SBC)\ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AD \subset (SAD)\ ;\ \ BC \subset (SBC) \\
AD \parallel BC \\
\end{matrix} \\
\end{matrix} ight. \Rightarrow
SI \parallel BC \parallel AD .

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 42: Vận dụng cao

    Tổng S_{n} =\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \ldots + \frac{1}{(3n -2)(3n + 1)},n \in \mathbb{N}^{*} có công thức thu gọn là?

    S_{n} = \frac{1}{3}\left\lbrack \left( 1- \frac{1}{4} ight) + \left( \frac{1}{4} - \frac{1}{7} ight) +\left( \frac{1}{7} - \frac{1}{10} ight) + \left( \frac{1}{10} -\frac{1}{13} ight) + \ldots + \left( \frac{1}{3n - 2} - \frac{1}{3n +1} ight) ightbrack

    = \frac{1}{3}\left( 1 - \frac{1}{3n + 1}ight) = \frac{n}{3n + 1}

  • Câu 43: Vận dụng cao

    Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức h = 3cos\left( \frac{\pi t}{8} +\frac{\pi}{4} ight) + 12. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?

    Ta có:

    \begin{matrix}  h = 3\cos \left( {\dfrac{{\pi t}}{8} + \dfrac{\pi }{4}} ight) + 12 \leqslant 3 + 12 = 15 \hfill \\   \Rightarrow \cos \left( {\dfrac{{\pi t}}{8} + \dfrac{\pi }{4}} ight) = 1 \hfill \\ \end{matrix}

    Do đó mực nước của kênh cao nhất khi \cos\left( \frac{\pi t}{8} + \frac{\pi}{4} ight)= 1 \Leftrightarrow \frac{\pi t}{8} + \frac{\pi}{4} = k2\pi \Rightarrowt = 16k - 2

    0 \leq t \leq 24 \Rightarrow k = 1\Rightarrow t = 14

    Vậy mực nước của kênh là cao nhất khi t = 14 (h)

  • Câu 44: Nhận biết

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo