Cho hình chóp
có đáy là hình bình hành. Hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm nào sau đây?
Hình vẽ minh họa
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Cho hình chóp
có đáy là hình bình hành. Hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm nào sau đây?
Hình vẽ minh họa
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Cho dãy số
biết
. Mệnh đề nào sau đây sai?
Ta có:
bằng
Ta có:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?
Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.
Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Cho tam giác ABC cân tại A, AH ⊥ BC. Các cạnh AB, AH, BC lập thành một cấp số nhân. Tính công bội q của cấp số nhân đó.
Ta có: AB = AC (tam giác ABC cân)
Các cạnh BC, AB, AH lập thành cấp số nhân nên ta có hệ phương trình:
Vậy công bội của cấp số nhân là
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Cho hình hộp
. Xác định hình chiếu của hình hộp qua phép chiếu song song phương
lên mặt phẳng chiếu
.
Hình vẽ minh họa:
Qua phép chiếu song song phương lên mặt phẳng chiếu
. Ta có:
biến thành B
biến thành
biến thành
biến thành
Do đó hình hộp biến thành hình bình hành
.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.
Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.
Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.
=> H là giao điểm của MN và mặt phẳng (SBD).
Tính giới hạn của hàm số
.
Ta có:
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Phương trình lượng giác
có nghiệm là:
Ta có
Cho hộp chữ nhật
có
lần lượt là tâm của
. Trung điểm của
lần lượt là
. Xác định hình chiếu của tam giác
qua phép chiếu song song phương
lên mặt phẳng
.
Hình vẽ minh họa
Ta có: nên tứ giác
là hình bình hành.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Mặt khác thuộc mặt phẳng
nên hình chiếu của
qua phép chiếu song song
lên mặt phẳng
lần lượt là điểm
và
.
Vậy qua phép chiếu song song theo phương lên mặt phẳng
thì hình chiếu của tam giác
là đoạn thẳng
.
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.
Ta có:
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa

Xét (SAD) và (SBC) có:
S là điểm chung
=> Giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song với AD
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Cho hai hình bình hành
và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d) Sáu điểm
là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Hình vẽ minh họa
a) Sai: và
cắt nhau tại
.
b) Đúng.
Vì là hình bình hành nên
, suy ra
.
Vì là hình bình hành nên
, suy ra
.
Mà và
cắt nhau nên
.
c) Sai: Vì và
có điểm
chung.
d) Đúng:
Vì và
là hình bình hành nên
đôi một song song
Mặt khác (theo câu b)
Do đó 6 điểm là 6 đỉnh của một hình lăng trụ tam giác
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Cho hình chóp
có đáy
là hình bình hành tâm
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa:
Ta có: suy ra giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm S và song song với AB và DC.
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Mặt khác
Mà
Cho cấp số cộng có
,
. Khi đó:
a)
. Đúng||Sai
b) Số hạng tổng quát thứ
của cấp số cộng là
. Đúng||Sai
c) Tổng
số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng
. Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Ba giao tuyến này hoặc đồng quy hoặc đôi một song song."
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có:
Mà
.
Suy ra giá trị nhỏ nhất của hàm số bằng .
Dấu xảy ra
Kết quả của giới hạn
bằng bao nhiêu?
Ta có:
Ta lại có:
Cho các mệnh đề:
1) Nếu hàm số
liên tục trên
và
thì tồn tại
sao cho
.
2) Nếu hàm số
liên tục trên
và
thì phương trình
có nghiệm.
3) Nếu hàm số
đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
.
Trong các mệnh đề trên:
Theo tính chất hàm số liên tục thì
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
. Mệnh đề sai.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm. Mệnh đề đúng.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
. Mệnh đề đúng.
Cho ba số a; 5; 3b theo thứ tự lập thành cấp số cộng và ba số a; 3; 3b theo thứ tự lập thành cấp số nhân thì
bằng?
Ta có:
Ba số a; 5; 3b theo thứ tự lập thành cấp số cộng
=> a + 3b = 5.2
=> a = 10 – 3b
Ba số a; 3; 3b theo thứ tự lập thành cấp số nhân
=> a.3b = 32
=> ab = 3
Giá trị của
là:
Ta có:
Giá trị của
bằng:
Với mọi M >0 lớn tùy ý, ta chọn
Ta có:
với mọi
Vậy .
Cho tứ diện
. Gọi
lần lượt là các điểm nằm trên các cạnh
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa
Ta có:
=> J là điểm chung của hai mặt phẳng và
.
Ta lại có:
=> K là điểm chung của hai mặt phẳng và
.
Vậy giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.
Tính giới hạn: ![]()
Ta có:
Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?
Sn = Σi = 1n i(2i+1) = Σi = 1n (2i2+1)