Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Tính
.
Ta có:
Do đó
Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng
song song với
cắt đoạn SA tại
sao cho
. Diện tích thiết diện của hình chóp S.ABC tạo bởi
bằng
Hình vẽ minh họa:
Gọi N, P lần lượt là giao điểm của mặt phẳng và các cạnh SB, SC.
Vì nên theo định lí Talet, ta có
.
Khi đó cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số
.
Vậy .
Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho ba số a; 5; 3b theo thứ tự lập thành cấp số cộng và ba số a; 3; 3b theo thứ tự lập thành cấp số nhân thì
bằng?
Ta có:
Ba số a; 5; 3b theo thứ tự lập thành cấp số cộng
=> a + 3b = 5.2
=> a = 10 – 3b
Ba số a; 3; 3b theo thứ tự lập thành cấp số nhân
=> a.3b = 32
=> ab = 3
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Cho hộp chữ nhật
có
lần lượt là tâm của
. Trung điểm của
lần lượt là
. Xác định hình chiếu của tam giác
qua phép chiếu song song phương
lên mặt phẳng
.
Hình vẽ minh họa
Ta có: nên tứ giác
là hình bình hành.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Mặt khác thuộc mặt phẳng
nên hình chiếu của
qua phép chiếu song song
lên mặt phẳng
lần lượt là điểm
và
.
Vậy qua phép chiếu song song theo phương lên mặt phẳng
thì hình chiếu của tam giác
là đoạn thẳng
.
Cho cấp số cộng
với
. Khi đó số hạng
là số nào?
Theo bài ra ta có:
.
Cho hai đường thẳng trong không gian không có điểm chung, khẳng định nào sau đây là đúng?
Cho hai đường thẳng trong không gian không có điểm chung có hai trường hợp xảy ra là hai đường thẳng song song hoặc chéo nhau
Cho một cấp số cộng có
. Hỏi
bằng bao nhiêu?
Ta có:
Giới hạn
bằng:
Sử dụng máy tính cầm tay ta được:
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho hàm số.![]()
a) Giới hạn:
Sai||Đúng
b) Giới hạn:
Đúng||Sai
c) Giới hạn:
Đúng||Sai
d) Giới hạn:
Sai||Đúng
Cho hàm số.
a) Giới hạn: Sai||Đúng
b) Giới hạn: Đúng||Sai
c) Giới hạn: Đúng||Sai
d) Giới hạn: Sai||Đúng
a) Ta có
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Tính giá trị của giới hạn
.
Đặt thì ta có:
Do đó:
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Chứng minh tương tự ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Từ (1) và (2) => là hình bình hành.
Cho cấp số nhân
có các số hạng đều dương và
Giá trị của
là:
Ta có
Theo giả thiết, ta có:
Và
.
Suy ra . Vậy
.
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
song song với mặt phẳng
. Đúng||Sai
d)
cắt mặt phẳng
. Sai||Đúng
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a) . Đúng||Sai
b) . Đúng||Sai
c) song song với mặt phẳng
. Đúng||Sai
d) cắt mặt phẳng
. Sai||Đúng
Hình vẽ minh họa
a) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
.
b) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
Mà
c) Đúng.
Vì .
Vì là đường trung bình của hình bình hành
nên
d) Sai.
Ta có: mà
.
Cho hình chóp
có
lần lượt là trọng tâm tam giác
và
. Lấy các điểm
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Gọi là trung điểm của
.
Xét tam giác có:
Theo định lí đảo của định lí Thales, ta có (1).
Mặt khác là đường trung bình của tam giác
=> (2)
Từ (1) và (2) ta có .
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
“Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
“Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
“Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Quy ước chọn chiều dương của một đường tròn định hướng là
Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Biết rằng
với
và
tối giản. Khi đó kết quả nào sau đây đúng?
Ta có:
Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.
Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.
Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.
=> H là giao điểm của MN và mặt phẳng (SBD).
Phương trình
có nghiệm là:
Ta có:
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Cho dãy số
biết
. Mệnh đề nào sau đây sai?
Ta có: