Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 2: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Phương trình nào dưới đây có nghiệm trong khoảng (0;1)?

    Xét phương án 2x^{2} - 3x + 4 =
0: 2x^{2} - 3x + 4 = 0\Delta = 9 - 32 = - 23

    => Phương trình vô nghiệm.

    Xét phương án 3x^{4} - 4x^{2} + 5 =
0: 3x^{4} - 4x^{2} + 5 =
0

    Đặt t = x^{2}(t \geq 0), phương trình trở thành: 3t^{2} - 4t + 5 =
0.

    \Delta' = 4 - 15 = - 11

    => Phương trình vô nghiệm.

    Xét phương án (x - 1)^{5} - x^{7} - 2 =
0: (x - 1)^{5} - x^{7} - 2 = 0
\Leftrightarrow (x - 1)^{5} = x^{7} + 2

    \forall x \in (0;1) \Rightarrow \left\{
\begin{matrix}
x - 1 < 0 \Rightarrow (x - 1)^{5} < 0 \\
x^{7} + 2 > 2 \\
\end{matrix} ight.

    \Rightarrow Phương trình vô nghiệm.

    Xét phương án 3x^{2024} - 8x + 4 =
0: 3x^{2024} - 8x + 4 = 0, xét f(x) = 3x^{2024} - 8x + 4.

    \left\{ \begin{matrix}
f(0) = 3.0 - 8.0 + 4 = 4 \\
f(1) = 3.1 - 8.1 + 4 = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0

    Mặc khác hàm số f(x) liên tục trên \mathbb{R} do đó liên tục trên \lbrack 0;1brack.

    Vậy phương trình 3x^{2024} - 8x + 4 =
0 có ít nhất một nghiệm trong khoảng (0;1).

  • Câu 4: Vận dụng cao

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =sin^{2}x - 4sinx + 5. Tính P = M -2m^{2}.

    Ta có: 

    y = sin^{2}x - 4sinx + 5 = \left(\sin x - 2 ight)^{2} + 1.

    Do - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 3 \leq \sin x - 2 \leq - 1 \\\Leftrightarrow 1 \leq \left( \sin x - 2 ight)^{2} \leq 9 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 2 \leq \left( \sin x - 2 ight)^{2} + 1 \leq 10 \hfill\\\Leftrightarrow \left\{ \begin{matrix}M = 10 \\m = 2 \hfill\\\end{matrix} ight.\  \hfill \\\Leftrightarrow P = M - 2m^{2} = 2.\hfill \\\end{matrix}

  • Câu 5: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 6: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 7: Nhận biết

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 8: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có: \left\{ \begin{matrix}
u_{1} = - 1 \\
d = 3 \\
\end{matrix} ight.

    \overset{n \mapsto u_{n} =
100}{ightarrow}100 = u_{1} + (n - 1)d

    \Leftrightarrow 100 = 3n -
8

    \Leftrightarrow n = 36

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD. Trung điểm các cạnh AB,AC lần lượt là các điểm M,N. Giả sử (MND) \cap (BCD) = d. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(DMN) \supset MN \\
(DBC) \supset BC \\
MN//BC \\
\end{matrix} ight.

    => d là đường thẳng song song với MNBC.

    => d song song với (ABC)

  • Câu 11: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 12: Thông hiểu

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 13: Vận dụng cao

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

  • Câu 14: Nhận biết

    Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?

    i) \cos^{2}\alpha =
\frac{1}{\tan^{2}\alpha + 1}.

    iii) \sqrt{2}\cos\left( \alpha +
\frac{\pi}{4} ight) = \cos\alpha + \sin\alpha.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - cos\alpha.

    iv) cot2\alpha = 2\cot^{2}\alpha -
1.

    i) Ta có: \frac{1}{\cos^{2}\alpha} = 1 +
\tan^{2}\alpha \Leftrightarrow \cos^{2}\alpha = \frac{1}{1 +
\tan^{2}\alpha}

    Vậy i) đúng.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - sin\left( \frac{\pi}{2} - \alpha ight) = -
cos\alpha.

    Vậy ii) đúng.

    iii) \sqrt{2}cos\left( \alpha +
\frac{\pi}{4} ight) = \sqrt{2}\left( cos\alpha cos\frac{\pi}{4} -
sin\alpha sin\frac{\pi}{4} ight) = cos\alpha - sin\alpha.

    Vậy iii) sai.

    iv) Ta lấy \alpha =
\frac{\pi}{3}. Ta có VP =
cot2\alpha = cot2 \cdot \frac{\pi}{3} = - \frac{\sqrt{3}}{3},VT =
2\cot^{2}\left( \frac{\pi}{3} ight) - 1 = - \frac{1}{3}.

    Ta có VP eq VT.

    Do đó iv) sai.

    Vậy có 2 đẳng thức đúng.

  • Câu 15: Thông hiểu

    Xét đường tròn bán kính 20cm. Cung tròn có số đo 37^{0} có độ dài tương ứng là:

    Độ dài cung tròn góc \alpha (với \alpha có đơn vị là độ):

    l = \frac{R\pi\alpha}{180^{0}} =
\frac{20.\pi.37^{0}}{180^{0}} = \frac{37\pi}{9}(cm)

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Giả sử CM và DN đồng phẳng.

    Khi đó, ta có A, B cùng thuộc mặt phẳng (MNDC)

    => A, B, C, D đồng phẳng, trái giả thiết ABCD là tứ diện.

    Vậy CM và DN chéo nhau.

  • Câu 17: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 19: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy là hình bình hành. Gọi H,K lần lượt là trung điểm của ABCD (như hình vẽ). Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Ta có: \left\{ \begin{matrix}
HK//BC \\
HK ⊄ (SBC) \\
BC \subset (SBC) \\
\end{matrix} ight.\  \Rightarrow HK//(SBC)

  • Câu 20: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 22: Thông hiểu

    Cho tam giác ABC nằm trong mặt phẳng (\alpha) và phương l. Biết hình chiếu (theo phương l) của tam giác ABC lên mặt phẳng (\beta) là một đoạn thẳng. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song KNTT

    Phương án (\alpha)//(\beta): Hình chiếu của tam giác  ABC  vẫn là một tam giác trên mặt phẳng .

    Phương án (\alpha) \equiv
(\beta): Hình chiếu của tam giác  ABC  vẫn là tam giác  ABC .

    Phương án \left\lbrack \begin{matrix}
(\alpha)//l \\
(\alpha) \supset l \\
\end{matrix} ight. : Khi phương chiếu  l  song song với  (\alpha)  hoặc chứa trong mặt phẳng  (\alpha) . Thì hình chiếu của tam giác  ABC  là một đoạn thẳng trên mặt phẳng (\alpha) .

  • Câu 23: Nhận biết

    Cho dãy số u_{n}
= \frac{n^{2} + 2n - 1}{n + 1}. Giá trị u11

    Ta có u_{11} = \frac{11^{2} + 2.11 - 1}{11
+ 1} = \frac{71}{6}

  • Câu 24: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 25: Vận dụng cao

    Tổng S_{n} =\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \ldots + \frac{1}{(3n -2)(3n + 1)},n \in \mathbb{N}^{*} có công thức thu gọn là?

    S_{n} = \frac{1}{3}\left\lbrack \left( 1- \frac{1}{4} ight) + \left( \frac{1}{4} - \frac{1}{7} ight) +\left( \frac{1}{7} - \frac{1}{10} ight) + \left( \frac{1}{10} -\frac{1}{13} ight) + \ldots + \left( \frac{1}{3n - 2} - \frac{1}{3n +1} ight) ightbrack

    = \frac{1}{3}\left( 1 - \frac{1}{3n + 1}ight) = \frac{n}{3n + 1}

  • Câu 26: Vận dụng cao

    Từ độ cao 5 5 , 8 m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 68,2

    Đáp án là:

    Từ độ cao 5 5 , 8 m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 68,2

    Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:

    Thời điểm chạm đất lần thứ nhất là d_{1}
= 55,8(m).

    Thời điểm chạm đất lần thứ 2 là d_{2}= 55,8 + 2.\frac{55,8}{10}( m ).

    Thời điểm chạm đất lần thứ 3 là d_{3} =
55,8 + 2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}}(m).

    Thời điểm chạm đất lần thứ 4 là d_{4} =
55,8 + 2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} +
2.\frac{55,8}{10^{3}}(m).

    Thời điểm chạm đất lần thứ n,\ \ (n >
1)

    d_{n} = 55,8 +
2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n -
1}}(m).

    Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:

    d = 55,8 +
2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n -
1}} + ...(m).

    2.\frac{55,8}{10}, 2.\frac{55,8}{10^{2}}, 2.\frac{55,8}{10^{3}}, …, 2.\frac{55,8}{10^{n - 1}},…, là một cấp số nhân lùi vô hạn, công bội q =
\frac{1}{10}, nên ta có:

    2.\dfrac{55,8}{10} + 2.\dfrac{55,8}{10^{2}}+ ... + 2.\dfrac{55,8}{10^{n - 1}} + ...= \dfrac{2.\dfrac{55,8}{10}}{1 -\dfrac{1}{10}} = 12,4.

    Vậy d = 55,8 + 2.\frac{55,8}{10} +
2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n - 1}} +
...

    = 55,8 + 12,4 = 68,2\ (m)

  • Câu 27: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 28: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\frac{x}{{{x^3} - 6}}} bằng:

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\dfrac{x}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{x{{\left( {x + 50} ight)}^2}}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{{x^3} + 100{x^2} + 50x}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{1 + \dfrac{{100}}{{{x^2}}} + \dfrac{{50}}{{{x^3}}}}}{{1 - \dfrac{6}{{{x^3}}}}}}  = 1 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}x^{2} - 2x + 3\ \ \ khi\ x > 3 \\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 3 \\3 - 2x^{2}\ \ \ \ \ khi\ x < 3 \\\end{matrix} ight. . Khẳng định nào dưới đây sai?

    Ta có:

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{xightarrow 3^{+}}\left( x^{2} - 2x + 3 ight) = 6

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{xightarrow 3^{-}}\left( 3 - 2x^{2} ight) = - 15

    \Rightarrow \lim_{x ightarrow3^{+}}f(x) eq \lim_{x ightarrow 3^{-}}f(x)

    => Không tồn tại giới hạn khi x dần đến 3.

    Vậy chỉ có khẳng định \lim_{x ightarrow3^{-}}f(x) = 6 sai.

  • Câu 30: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 31: Nhận biết

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

    Ta có: I \in (ABC);B \in
(ABC)

    => BI \subset (ABC)

    Do đó mệnh đề sai là: “BI không nằm trên mặt phẳng (ABC)”.

  • Câu 32: Vận dụng

    Cho hình chóp S.ABCD, biết AC \cap BD \equiv MAB \cap CD \equiv N. Tìm giao tuyến của hai mặt phẳng (SAC)(SBD).

    Hình vẽ minh họa

    Ta có S là điểm chung của hai mặt phẳng (SAC)(SBD).

    AC \cap BD \equiv Mnên M là điểm chung của hai mặt phẳng (SAC)(SBD).

    Do đó giao tuyến của hai mặt phẳng (SAC)(SBD)SM.

  • Câu 33: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 34: Vận dụng

    Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?

    Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)

    Ta có:

    x =
\frac{900.10^{6}.0,06.1,06^{3}}{1,06^{3} - 1}

    x = 336698831,5 (đồng)

    Vậy số tiền bác Hoa phải trả mỗi tháng là T = \frac{336698831,5}{12} \approx
28058236(đồng).

  • Câu 35: Thông hiểu

    Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?

    Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD

    Suy ra SN là đường trung bình của tam giác CAD

    => SN // AD (1)

    Tương tự MR cũng là đường trung bình của tam giác ABD

    => MR // AD (2)

    Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"

    Chứng minh tương tự ta cũng có: SM // NR //BC

    Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"

    Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.

    Lại có: NQ // MP (//AC) và MQ // NP //BD

    => Tứ giác MQNP là hình bình hành

    => Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường

    Mà G là trung điểm của MN

    Do đó G cũng là trung điểm của QP

    Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.

    Đáp án "MN, PQ, RS đồng quy'

    Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.

  • Câu 36: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 37: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 38: Vận dụng

    Cho dãy số \left( u_{n}
ight)xác định bởi \left\{\begin{matrix}u_{n} = \dfrac{1}{2} \\u_{n + 1} = \dfrac{1}{2 - u_{n}},n \geq 1 \\\end{matrix} ight.. Tính \lim
u_{n}.

    Giả sử \lim u_{n} = a khi đó ta có:

    \begin{matrix}
  a = \lim {u_{n + 1}} = \lim \left( {\dfrac{1}{{2 - {u_n}}}} ight) = \dfrac{1}{{2 - a}} \hfill \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a e 2} \\ 
  {a\left( {2 - a} ight) = 1} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a e 2} \\ 
  {{a^2} - 2a + 1 = 0} 
\end{array}} ight. \hfill \\
   \Leftrightarrow a = 1 \hfill \\ 
\end{matrix}

  • Câu 39: Nhận biết

    \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1}}{{x - 1}} bằng

    Ta có: \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1}}{{x - 1}} =  + \infty

    Do \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} ight) = 2 > 0 \hfill \\  x \to {1^ + } \Rightarrow x - 1 > 0 \hfill \\ \end{gathered}  ight.

  • Câu 40: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 41: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (A'BD) song song với mặt phẳng

    Hình vẽ minh họa

    BCD'A' là hình bình hành, ta có BA'\ //\ CD' (1)

    BDD'B' là hình bình hành, ta cóBD\ //\ B'D' (2)

    Mặt khác: BA' \cap BD = B,\ \ \
CD' \cap B'D' = D' (3)

    Từ (1); (2); (3) \Rightarrow(A'BD)//(CB'D'), suy ra phương án cần tìm là: (CB'D').

  • Câu 42: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Kiểm tra được y = \cot4x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    y = \frac{\sin x + 1}{\cos x} là hàm số không chẵn không lẻ

    y = \tan^{2}x,y = \left| \cot xight| là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.

  • Câu 43: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 44: Nhận biết

    Cho \alpha \in
\left( 0;\frac{\pi}{2} ight). Khẳng định nào sau đây đúng?

    Ta có:

    \alpha \in \left( 0;\frac{\pi}{2}
ight) \Rightarrow \alpha - \pi \in \left( - \pi; - \frac{\pi}{2}
ight)

    \Rightarrow \sin(\alpha - \pi) <
0

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo