Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính \lim_{x ightarrow 1}\frac{x^{2} +
3x + 2}{- 2x^{2} + x + 3}.

    Ta có :

    \lim_{x ightarrow 1}\frac{x^{2} + 3x +
2}{- 2x^{2} + x + 3} = \lim_{x ightarrow 1}\frac{1^{2} + 3.1 + 2}{-
2.1^{2} + 1 + 3} = 3.

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Giả sử (\alpha) là một mặt phẳng tùy ý. Giao tuyến của (\alpha) với các mặt của hình chóp S.ABCD không thể tạo thành hình nào dưới đây?

    Hình chóp tứ giác đã cho có 5 mặt

    Do đó có tối đa 5 giao tuyến được tạo thành bởi mặt phẳng (\alpha) tùy ý với các mặt của hình chóp S.ABCD.

    Vậy đáp án là hình lục giác.

  • Câu 3: Nhận biết

    Cho dãy số \left( u_{n} ight), biết u_{n} = \frac{n}{2^{n}}. Chọn đáp án đúng.

    Ta có: u_{4} = \frac{4}{2^{4}} =
\frac{4}{16} = \frac{1}{4}

  • Câu 4: Nhận biết

    Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Phát biểu đúng là: "MP và NQ chéo nhau"

  • Câu 5: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân với u_{n} eq 0;n \in\mathbb{N}^{*}. Dãy số nào sau đây không phải là cấp số nhân?

    Giả sử \left( u_{n} ight) là cấp số nhân công bội q thì:

    Dãy u_{1};u_{3};u_{5} là cấp số nhân công bội q^{2}.

    Dãy 3u_{1};3u_{2};3u_{3} là cấp số nhân với công bội 2q.

    Dãy \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}} là cấp số nhân công bội \frac{1}{q}.

    Dãy u_{1} + 2;u_{2} + 2;u_{3} +2 không là cấp số nhân.

  • Câu 6: Thông hiểu

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Đáp án là:

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Phương trình hoành độ giao điểm của hai đồ thị hàm số:

    \sin\left( x + \frac{\pi}{4} ight) =\sin x

    \Leftrightarrow \left\lbrack\begin{matrix}x + \dfrac{\pi}{4} = x + k2\pi \\x + \dfrac{\pi}{4} = \pi - x + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight.

    \Leftrightarrow x = \frac{3\pi}{8} +
k\pi(k\mathbb{\in Z})

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{3\pi}{8};\frac{11\pi}{8}
ight\}.

    Với x = \frac{3\pi}{8} \Rightarrow y =
\sin\frac{3\pi}{8} \approx 0,92 với x = \frac{11\pi}{8} \Rightarrow y =
\sin\frac{11\pi}{8} \approx - 0,92.

    Vậy toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{3\pi}{8};sin\frac{3\pi}{8}
ight),\left( \frac{11\pi}{8};sin\frac{11\pi}{8} ight).

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

  • Câu 7: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 8: Thông hiểu

    Đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị (C) của hàm số bằng cách:

    Nhắc lại lý thuyết:

    Cho (C) là đồ thị của hàm số y = f\left( x ight)p > 0, ta có:

    + Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số y = f\left( x ight) + p.

    + Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số y = f\left( x ight) - p

    + Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số y = f\left( {x + p} ight)

    + Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số y = f\left( {x - p} ight)

    Vậy đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị hàm số y = \cos x bằng cách tịnh tiến sang phải \frac{\pi }{2} đơn vị.

  • Câu 9: Nhận biết

    Góc \frac{2\pi}{5} đổi sang độ bằng bao nhiêu?

    Ta có: \frac{2\pi}{5} =
\frac{2\pi}{5}\left( \frac{180}{\pi} ight)^{0} = 72^{0}.

  • Câu 10: Nhận biết

    Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi u_{1} = - 5;d = 3.

    Theo bài ra ta có:

    S_{100} = \frac{\left( 2u_{1} + 99d
ight).100}{2} = 14350

  • Câu 11: Thông hiểu

    Tính giá trị của giới hạn sau \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}} là?

    Ta có:

    \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}}
= \lim\frac{10}{n^{2}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}}}

    Nhưng{\ \lim}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}} = 1\lim\frac{10}{n^{2}\ } = 0

    Nên \lim\frac{10}{\sqrt{n^{4} + n^{2} +
1}} = 0

  • Câu 12: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 13: Vận dụng

    Cho hình lăng trụ tam giác ABC.A'B'C' , tâm của các mặt bên (ABB'A');(BCC'B');(ACC'A') lần lượt là M,N,P. Hình chiếu của điểm P qua phép chiếu song song phương BC', mặt phẳng chiếu (AB'C) là:

    Hình vẽ minh họa

    Gọi Q là ảnh của P qua phép chiếu song song phương BC' lên mặt phẳng (AB'C).

    Ta có PQ//BC'PQ \subset (ABC').

    AN là giao tuyến của hai mặt phẳng (ABC')(AB'C) nên Q \in AN.

    Lại có P là trung điểm của AC' nên PQ là đường trung bình của tam giác ANC'

    => P là trung điểm của AN.

  • Câu 14: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 15: Nhận biết

    Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?

     Mệnh đề sai: "a //(Q)".

  • Câu 16: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 17: Nhận biết

    Tính giá trị của biểu thức B = \cos\frac{\pi}{30}.\cos\frac{\pi}{5} +\sin\frac{\pi}{30}.\sin\frac{\pi}{5} là:

    Ta có:

    B = \cos\frac{\pi}{30}.\cos\frac{\pi}{5}+ \sin\frac{\pi}{30}.\sin\frac{\pi}{5}

    B = \cos\left( \frac{\pi}{30} -
\frac{\pi}{5} ight) = \cos\left( - \frac{\pi}{6} ight) =
\frac{\sqrt{3}}{2}

  • Câu 18: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 19: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 20: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 21: Vận dụng

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 22: Vận dụng cao

    Giá trị lớn nhất của hàm số: y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}

     Ta có: 

    \begin{matrix}  \sin x + \cos x = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow  - 1 \leqslant \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Rightarrow  - \sqrt 2  \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\   \Rightarrow  - \sqrt 2  + 2 \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2 \leqslant \sqrt 2  + 2 \hfill \\   \Rightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2  >  0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  y = \dfrac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}} \hfill \\   \Leftrightarrow \left( {1 - y} ight)\sin x + \left( {2 - y} ight)\cos x + 1 - 2y = 0 \hfill \\ \end{matrix}

    Phương trình có nghiệm:

    \begin{matrix}   \Leftrightarrow {\left( {1 - y} ight)^2} + {\left( {2 - y} ight)^2} \geqslant {\left( {1 - 2y} ight)^2} \hfill \\   \Leftrightarrow {y^2} + y - 2 \leqslant 0 \Leftrightarrow  - 2 \leqslant y \leqslant 1 \hfill \\   \Rightarrow \max y = 1 \hfill \\ \end{matrix}

  • Câu 23: Vận dụng

    Cho cấp số nhân (un) có tổng n số hạng đầu tiên là {S_n} = {5^n} - 1. Tìm số hạng đầu và công bội của cấp số nhân đó?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = {S_1} = 5 - 1 = 4} \\   {{u_1} + {u_2} = {S_2} = {5^2} - 1 = 24} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_2} = 24 - {u_1} = 20} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {q = \dfrac{{{u_2}}}{{{u_1}}} = 5} \end{array}} ight.

  • Câu 24: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 25: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 26: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Trọng tâm các tam giác ABC,ACC',A'B'C' lần lượt là I,J,K. Tìm mặt phẳng song song với mặt phẳng (IJK).

    Theo bài ra ta có:

    Các điểm I,J,K lần lượt là trọng tâm các tam giác ABC,ACC',A'B'C' .

    \Rightarrow \frac{AI}{AM} = \frac{AJ}{AN}
= \frac{2}{3} \Rightarrow IJ//MN.

    \Rightarrow
IJ//(BCC'B')

    Chứng minh tương tự IK//(BCC'B')
\Rightarrow (IJK)//(BCC'B')

    \Rightarrow
(IJK)//(BC'B')

  • Câu 27: Nhận biết

    Mệnh đề nào sau đây sai?

     Mệnh đề sai: \sin x = 0 \Rightarrow x = k2\pi

    Sửa lại:

    \sin x = 0 \Rightarrow x = k\pi ;(k \in \mathbb{Z})

  • Câu 28: Thông hiểu

    Tính H = \lim_{xightarrow 2}\frac{2 - x}{\sqrt{x + 7} - 3}

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2 -x}{\sqrt{x + 7} - 3}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{\left( \sqrt{x + 7} - 3 ight)\left(\sqrt{x + 7} + 3 ight)}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{x + 7 - 9}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{- (2 - x)} = - 6

  • Câu 29: Nhận biết

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 30: Nhận biết

    Cho dãy số (un)un =  − n2 + n + 1. Số  − 19 là số hạng thứ mấy của dãy?

    Giả sử un =  − 19(n∈ℕ*) Suy ra - n^{2} + n + 1 = - 19 \Leftrightarrow
- n^{2} + n + 20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = - 4 \\
\end{matrix} \Leftrightarrow n = 5 ight. (do  n∈ℕ*).

    Vậy số  − 19 là số hạng thứ 5 của dãy.

  • Câu 31: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Xác định mệnh đề sai?

    Hình vẽ minh họa

    Theo bài ra ta có:

    \left\{ \begin{matrix}
BA'//CD' \\
A'C'//AC \\
\end{matrix} \Rightarrow (BA'C')//(ACD') ight.

    \left\{ \begin{matrix}
AD//BC \\
AA'//BB' \\
\end{matrix} \Rightarrow (ADD'A')//(BCC'B') ight.

    \left\{ \begin{matrix}
BD//B'D' \\
A'D//B'C \\
\end{matrix} \Rightarrow (BA'D)//(CB'D') ight.

    Mặt khác B' \in (ABA') \cap
(CB'D)

    => (ABA')//(CB'D') là mệnh đề sai.

  • Câu 32: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 33: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình (m-2).\sin{2x} = m + 1 nhận x= \frac{\pi }{12} làm nghiệm

     Phương trình nhận x= \frac{\pi }{12} làm nghiệm

    \begin{matrix}  \Rightarrow(m - 2).\sin \left( {2.\dfrac{\pi }{{12}}} ight) = m + 1 \hfill \\   \Leftrightarrow (m - 2).\sin \dfrac{\pi }{6} = m + 1 \hfill \\   \Leftrightarrow (m - 2).\dfrac{1}{2} = m + 1 \hfill \\   \Leftrightarrow m - 2 = 2m + 2 \hfill \\   \Leftrightarrow m =  - 4 \hfill \\ \end{matrix}

    vậy m = -4

  • Câu 34: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 7}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 7}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{7}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt 4  - 0}}{2} = 1 \hfill \\ \end{matrix}

  • Câu 35: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 36: Vận dụng

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    Đáp án là:

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    \lim_{x ightarrow 2}(x - 2) =
0 nên \lim_{x ightarrow 2}\left(
\sqrt{3x + 3} + a ight) = 0.

    Suy ra a = - 3.

    Với a = - 3 ta được

    \lim_{x ightarrow 2}\frac{\sqrt{3x +
3} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{\left( \sqrt{3x + 3} - 3
ight)\left( \sqrt{3x + 3} + 3 ight)}{(x - 2)\left( \sqrt{3x + 3} + 3
ight)}

    = \lim_{x ightarrow 2}\frac{3x - 6}{(x
- 2)\left( \sqrt{3x + 3} + 3 ight)} = \lim_{x ightarrow
2}\frac{3}{\sqrt{3x + 3} + 3} = \frac{1}{2}.

    Vậy b = 1;c = 2.

    Suy ra a + b + c = 0.

  • Câu 37: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 38: Vận dụng

    \lim \frac{{{{( - 1)}^n}}}{{n + 5}} bằng:

    Ta có:

    0 \leqslant \left| {\frac{{{{( - 1)}^n}}}{{n + 5}}} ight| \leqslant \frac{1}{{n + 5}} < \frac{1}{n}

    Do \lim \frac{1}{n} = 0 => \lim \frac{{{{\left( { - 1} ight)}^n}}}{{n + 5}} = 0

  • Câu 39: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 40: Thông hiểu

    Cho m,n là hai đường thẳng phân biệt và mặt phẳng (\alpha). Chọn mệnh đề đúng?

    Ta có:

    \left\{ \begin{matrix}
m ⊄ (\alpha) \\
m\bot n \\
n \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.

    \left\{ \begin{matrix}
m\bot n \\
n\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai trong trường hợp

    \left\{ \begin{matrix}
m \cap (\alpha) = H \\
n \cap (\alpha) = H \\
\end{matrix} ight.\  \Rightarrow m \cap n = H đúng vì là hai đường thẳng phân biệt.

    \left\{ \begin{matrix}
m\bot n \\
m \cap (\alpha) = P \\
\end{matrix} ight.\  \Rightarrow n \cap (\alpha) = P sai vì đường thẳng hoặc

  • Câu 41: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 42: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số a để phương trình x^{3} + x^{2} + 2ax + a =
0 có ba nghiệm lập thành cấp số nhân.

    Ta có:

    \left\{ \begin{matrix}
x_{1}x_{3} = {x_{2}}^{2} \\
x_{1} + x_{2} + x_{3} = - 1 \\
x_{1}.x_{2} + x_{2}x_{3} + x_{3}x_{1} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
{x_{2}}^{2} + \left( 1 + x_{2} ight)x_{2} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
x_{2} - 2 = - 2a \\
\end{matrix} ight.\  \Rightarrow - 8a^{3} = - a

    \Rightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{1}{2\sqrt{2}} \\\end{matrix} ight. kiểm tra lại kết quả ta được a = - \frac{1}{2\sqrt{2}}

  • Câu 43: Thông hiểu

    Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Giả sử CM và DN đồng phẳng.

    Khi đó, ta có A, B cùng thuộc mặt phẳng (MNDC)

    => A, B, C, D đồng phẳng, trái giả thiết ABCD là tứ diện.

    Vậy CM và DN chéo nhau.

  • Câu 44: Thông hiểu

    Biết số đo một góc (Ox;Oy) = \frac{3\pi}{2} + 2001\pi. Giá trị tổng quát của góc (Ox;Oy)

    Ta có:

    (Ox;Oy) = \frac{3\pi}{2} + 2001\pi =\frac{\pi}{2} + 2002\pi

    \Rightarrow (Ox;Oy) = \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo