Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 2: Nhận biết

    Tính \lim_{x
ightarrow 1}\frac{x^{2} + x - 2}{x - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + x -
2}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 2)}{x -
1}

    = \lim_{x ightarrow 1}(x + 2) =
3

  • Câu 3: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 4: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'M là trung điểm của AB, BC \cap
(MA'C') = \left\{ N ight\}. Tính tỉ số độ dài hai cạnh MNA'C'.

    Hình vẽ minh họa

    Ba mặt phẳng phân biệt (ABCD), (ACC’A’), (MA’C’) đôi một cắt nhau theo ba giao tuyến AC, A’C’MN.

    Theo tính chất hình hộp ta có AC // A’C’ nên MN // AC // A’C’

    Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.

    Vậy MN = \frac{1}{2}AC =
\frac{1}{2}A'C' hay \frac{MN}{A'C'} =
\frac{1}{2}.

  • Câu 5: Thông hiểu

    Nếu một cung tròn có số đo 3a^{0} thì số đo radian của nó là:

    Áp dụng công thức \mu =
\frac{m.\pi}{180} tương ứng với m =
3a ta được:

    \mu = \frac{m.\pi}{180} =
\frac{3a.\pi}{180} = \frac{a.\pi}{60}

  • Câu 6: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 7: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

    Đáp án \left\{ \begin{matrix}
a//b \\
b//(\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//b \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//(\alpha) \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//b sai: Trường hợp a,b chéo nhau.

  • Câu 8: Vận dụng cao

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Đáp án là:

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Gọi r_{i} là khoảng cách lần rơi thứ i

    Ta có r_{1} = 81, r_{2} = \frac{2}{3}.81,…, r_{n} = \left( \frac{2}{3} ight)^{n -
1}.81,…

    Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 -
\frac{2}{3}}.

    Gọi t_{i} là khoảng cách lần nảy thứ i

    Ta có t_{1} = \frac{2}{3}.81, t_{2} = \left( \frac{2}{3}
ight).\frac{2}{3}81,…, t_{n} =
\left( \frac{2}{3} ight)^{n - 1}\frac{2}{3}.81,…

    Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ n bằng \dfrac{2}{3}.81.\dfrac{1 - \left( \dfrac{2}{3}ight)^{n - 1}}{1 - \dfrac{2}{3}}.

    Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng S =
\lim\left( 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 - \frac{2}{3}}
+ \frac{2}{3}.81.\frac{1 - \left( \frac{2}{3} ight)^{n - 1}}{1 -
\frac{2}{3}} ight) = 405.

  • Câu 9: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 10: Thông hiểu

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Đáp án là:

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Mỗi hàng liền phía trên ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có: u_{1} = 1;d = 1;n = 10.

    Khi đó, tổng số khúc gỗ là:

    S_{10} = \frac{n\left( 2u_{1} + (n - 1)d
ight)}{2}

    = \frac{10\left( 2.1 + (10 - 1)1
ight)}{2} = 55 (khúc gỗ).

  • Câu 11: Vận dụng

    Cho tứ diện ABCD cạnh bằng 1. Gọi M là trung điểm của AB, E đối xứng với B qua C, F đối xứng với B qua D. Xác định các giao điểm của mặt phẳng (MEF) với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh họa

    Gọi I = MF \cap AD,H = ME \cap
AC

    Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.

    Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.

    Suy ra \frac{HA}{HC} =
\frac{1}{2}. Chứng minh tương tự ta có: \frac{IA}{ID} = \frac{1}{2}. Do đó ta có:

    \frac{HI}{CD} = \frac{2}{3} \Rightarrow
HI = \frac{2}{3}

    Tứ diện đều ABCD có cạnh bằng 1 nên \left\{ \begin{matrix}
\widehat{MAI} = 60^{0} \\
AM = \frac{1}{2};AI = \frac{2}{3} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác ta có:

    MI^{2} = MA^{2} + IA^{2} -
2MA.IA.cos60^{0}

    \Rightarrow MI^{2} =
\frac{13}{36}

    \Rightarrow MI = \sqrt{\frac{13}{36}} =
\frac{\sqrt{13}}{6} = MH

    Áp dụng công thức Hê- rông tính diện tích tam giác ta được: S_{MHI} = \frac{1}{6}

  • Câu 12: Thông hiểu

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

  • Câu 13: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n} = \frac{1}{2 - u_{n - 1}},\ \forall n \geq 2 \\
\end{matrix} ight.. Khi đó u_{3} có giá trị bằng

    Theo công thức truy hồi ta có

    u_{2} = \frac{1}{2 - \frac{1}{2}} =
\frac{2}{3} \Rightarrow u_{3} = \frac{1}{2 - \frac{2}{3}} =
\frac{3}{4}.

  • Câu 14: Vận dụng

    Xác định chu kì T của hàm số y = \tan3x +\cot x

    Hàm số y = \tan3x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = \cot x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \tan3x + \cot x tuần hoàn với chu kì T = \pi

  • Câu 15: Thông hiểu

    Tính giới hạn F =\lim_{x ightarrow \frac{\pi}{2}}\dfrac{\cos x}{x -\dfrac{\pi}{2}}

    Ta có:

    F = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\cos x}{x - \dfrac{\pi}{2}} = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\sin\left( \dfrac{\pi}{2} - x ight)}{x -\dfrac{\pi}{2}}

    = \lim_{x ightarrow \frac{\pi}{2}}\dfrac{- \sin\left( x- \dfrac{\pi}{2} ight)}{x - \dfrac{\pi}{2}} = - 1

  • Câu 16: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy các điểm M \in AD',N \in DB sao cho AM = DN = x;\left( 0 < x < a\sqrt{2}
ight). Khi giá trị x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

    Hình vẽ minh họa

    Áp dụng định lí Ta – lét đảo cho D,N,B
\in DBA,M,D' \in
AD'. Từ tỉ lệ

    \frac{AM}{AD'} = \frac{DN}{DB}\left(
= \frac{x}{a\sqrt{2}} ight)

    Ta suy ra AD,MN,BD' cùng song song với một mặt phẳng (\alpha) nào đó.

    Ta chọn mặt phẳng (\beta) chứa BD' và song song với AD.

    Mặt phẳng (\beta) chính là mặt phẳng (BCD'A') và là mặt phẳng cố định.

    \Rightarrow
MN//(\alpha)//(BCD'A')

    Hay MN//(A'BC)

  • Câu 17: Thông hiểu

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 18: Thông hiểu

    Cho a,b là các số thực khác 0. Tìm điều kiện của a,b để giới hạn \lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} -
3x} + ax}{bx - 1} = 3

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} - 3x} + ax}{bx - 1} = 3

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 - \dfrac{3}{x}} + a}{b - \dfrac{1}{x}} =3

    \Leftrightarrow \frac{- 1 + a}{b} =
3

    \Leftrightarrow \frac{a - 1}{b} =
3

  • Câu 19: Vận dụng

    Giả sử a,b là các giá trị để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2} + ax + b}}{{{x^2} - 4}}{\text{   , khi }}x <  - 2} \\ 
  {x + 1{\text{   , khi }}x \geqslant  - 2} 
\end{array}} ight. có giới hạn hữu hạn khi x dần tới -
2. Tính giá trị biểu thức 3a -
b

    Ta có: \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}(x + 1) = - 1

    Suy ra f(x) hữu hạn khi x dần tới -
2 khi và chỉ khi

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x)

    \Leftrightarrow \lim_{x ightarrow
2^{-}}f(x) = - 1

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{x^{2} + ax + b}{x^{2} - 4} = - 1

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0(*)

    Do \lim_{x ightarrow 2^{-}}\left( x^{2}
- 4 ight) = 0 nên điều kiện cần để có (*) là

    \lim_{x ightarrow 2^{-}}\left( 2x^{2}
+ ax + b - 4 ight) = 0

    \Rightarrow 2a - b = 4

    Ngược lại với 2a - b = 4 ta có:

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + 2a - 8}{x^{2} - 4} = 0

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x + a - 4}{x - 2} = 0

    \Leftrightarrow a = 8

    => f(x) có giới hạn hữu hạn khi x dần tới - 2 \Leftrightarrow \left\{ \begin{matrix}
a = 8 \\
b = 12 \\
\end{matrix} ight.

    \Leftrightarrow 3a - b = 12

  • Câu 20: Nhận biết

    Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.

    Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.

    Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.

    Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”

  • Câu 21: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 22: Thông hiểu

    Tìm khẳng định đúng.

    Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.

    Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.

    ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.

    => Chọn phương án – có thể là một hình tam giác.

  • Câu 23: Thông hiểu

    Kết quả đúng của \lim\frac{- n^{2} + 2n + 1}{\sqrt{3n^{4} +
2}} là?

    Ta có:

    \lim\frac{- n^{2} + 2n + 1}{\sqrt{3n^{4}
+ 2}} = \lim\frac{- 1 + \frac{2}{n} + \frac{1}{n^{2}}\ }{\sqrt{3 +
\frac{2}{n^{2}}\ }}

    = \frac{- 1 + 0
+ 0}{\sqrt{3 + 0}} = - \frac{\sqrt{3}}{3}

  • Câu 24: Thông hiểu

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    Đáp án là:

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    ĐKXĐ: \left\{ \begin{matrix}
\sin x eq 0 \\
\cos x eq 0 \\
\end{matrix} ight..

    \frac{2\sin x}{\cot x} - \frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight)

    \Leftrightarrow 2\sin^{2}x - \tan x\cot x= 2\left( \sin x - \cos x ight)\sin x\cot x

    \Leftrightarrow 2sin^{2}x - 1 = 2\left(
\sin x - \cos x ight)\cos x

    \Leftrightarrow 2\sin^{2}x - 1 =2\sin x.\cos x - 2\cos^{2}x

    \Leftrightarrow 2\sin^{2}x + 2\cos^{2}x -1 = \sin2x \Leftrightarrow \sin2x = 1

    \Leftrightarrow 2x = \frac{\pi}{2} +
k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi\left( k\mathbb{\in Z}
ight)

    Đối chiếu điều kiện, nghiệm phương trình là x = \frac{\pi}{4} + k\pi,k\mathbb{\in
Z}

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow P = 2a + 3b = 2.4 + 3.1 =
11.

  • Câu 25: Vận dụng cao

    Hàm số y = cos^{2}x - \cos x có tất cả bao nhiêu giá trị nguyên?

    Ta có:

    y = cos^{2}x - \cos x = \left( \cosx - \frac{1}{2} ight)^{2} - \frac{1}{4}.

    - 1 \leq \cos x \leq 1

    \begin{matrix}\Leftrightarrow - \dfrac{3}{2} \leq \cos x - \dfrac{1}{2} \leq \dfrac{1}{2}\\\Leftrightarrow 0 \leq \left( \cos x - \dfrac{1}{2} ight)^{2} \leq\dfrac{9}{4} \\\end{matrix}

    \begin{matrix}\Leftrightarrow - \dfrac{1}{4} \leq \left( \cos x - \dfrac{1}{2}ight)^{2} - \dfrac{1}{4} \leq 2 \hfill \\\Leftrightarrow - \dfrac{1}{4} \leq y \leq 2\overset{y\in\mathbb{Z}}{\Rightarrow}y \in \left\{ 0;1 ight\} \hfill\\\end{matrix}

    Nên có 3 giá trị thỏa mãn.

  • Câu 26: Nhận biết

    Giá trị của \lim\frac{1 - n^{2}}{n} bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} thỏa mãn \frac{n_{M}^{2} - 1}{n_{M}} > M

    \Rightarrow n_{M} > \frac{M +
\sqrt{M^{2} + 4}}{2}.

    Ta có:

    \frac{n^{2} - 1}{n} > M\ ,\ \
\forall n > n_{M} = > \lim\frac{n^{2} - 1}{n} = +
\infty

    Vậy \lim\frac{1 - n^{2}}{n} = -
\infty.

  • Câu 27: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).

    Ta có O = AC ∩ BD là tâm của hình hình hành

    => O = AC ∩ MN (do M, N lần lượt là trung điểm của AD và BC).

    Trong mặt phẳng (ABCD), ta có:

    \left\{ {\begin{array}{*{20}{l}}{O \in AC \subset \left( {SAC} ight) \Rightarrow O \in \left( {SAC} ight)} \\{O \in MN \subset \left( {SMN} ight) \Rightarrow O \in \left( {SMN} ight)}\end{array}} ight.

    => O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).

    Vậy (SMN) ∩ (SAC) = SO

  • Câu 28: Nhận biết

    Công thức nào sau đây đúng?

    Công thức đúng là: \cos3a = 4\cos^{3}a -3\cos a

  • Câu 29: Thông hiểu

    Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:

    Ta có: S_{n} = \frac{u_{1}\left( 1 -
q^{n} ight)}{1 - q}n = 6;q =
2;S_{n} = 189

    \Rightarrow 189 = \frac{u_{1}\left( 1 -
2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{6} =
96

  • Câu 30: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 31: Thông hiểu

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 32: Vận dụng

    Tính tổng S = -
2 + 4 - 8 + 16 - 32 + 64 - ... + ( - 2)^{n - 1} + ( - 2)^{n} với n \geq 1,n\mathbb{\in N}.

    Các số hạng - 2;4; - 8;16; - 32;64;...;(
- 2)^{n - 1};( - 2)^{n} có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có u_{1} = -
2;q = - 2

    \Rightarrow S = S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q}

    \Rightarrow S = ( - 2).\frac{1 - ( -
2)^{n}}{3}

  • Câu 33: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 34: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 35: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 36: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p (p là một
    số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

    Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng n=p

  • Câu 37: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M \in SA, mặt phẳng (\alpha)đi qua M và song song với SB,AC. Giao điểm của mặt phẳng (\alpha) với các cạnh AB,BC,SC,SD,BD lần lượt tại N,E,F,I,J. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:\left\{ \begin{matrix}
IJ = (\alpha) \cap (SBD) \\
(\alpha)//SB \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (SBD) =
IJ//SB

    SB \subset (SAB) \Rightarrow
IJ//(SAB)

  • Câu 39: Vận dụng

    Cho dãy số \left( u_{n}
ight)xác định bởi \left\{\begin{matrix}u_{n} = \dfrac{1}{2} \\u_{n + 1} = \dfrac{1}{2 - u_{n}},n \geq 1 \\\end{matrix} ight.. Tính \lim
u_{n}.

    Giả sử \lim u_{n} = a khi đó ta có:

    \begin{matrix}
  a = \lim {u_{n + 1}} = \lim \left( {\dfrac{1}{{2 - {u_n}}}} ight) = \dfrac{1}{{2 - a}} \hfill \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a e 2} \\ 
  {a\left( {2 - a} ight) = 1} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a e 2} \\ 
  {{a^2} - 2a + 1 = 0} 
\end{array}} ight. \hfill \\
   \Leftrightarrow a = 1 \hfill \\ 
\end{matrix}

  • Câu 40: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 41: Vận dụng cao

    Kết quả của giới hạn\lim\frac{2^{n + 1} +
3n + 10}{3n^{2} - n + 2} là:

    Ta có:

    \begin{matrix}
  {2^n} = \sum\limits_{k = 0}^n {C_n^k}  \hfill \\
   \Rightarrow {2^n} \geqslant C_n^3 = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} \sim \dfrac{{{n^3}}}{6} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.

    Khi đó:

    \begin{matrix}
  \lim \dfrac{{{2^{n + 1}} + 3n + 10}}{{3{n^2} - n + 2}} \hfill \\
   = \lim \dfrac{{{2^n}}}{{{n^2}}}.\dfrac{{2 + 3.\dfrac{n}{{{2^n}}} + 10.{{\left( {\dfrac{1}{2}} ight)}^n}}}{{3 - \dfrac{1}{n} + \dfrac{2}{{{n^2}}}}} \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\lim\dfrac{2 + 3.\dfrac{n}{2^{n}} + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} = \dfrac{2}{3} > 0 \\\end{matrix} ight.

    Vậy \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2}- n + 2} = + \infty

  • Câu 42: Nhận biết

    Tập nghiệm của phương trình \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2}là?

     Ta có:   \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  x + \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k2\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

     

  • Câu 43: Nhận biết

    Trong không gian, cho ba đường thẳng a,\
\ b,\ \ c. Trong các mệnh đề sau mệnh đề nào đúng?

    Nếu bc chéo nhau thì bc không cùng thuộc một mặt phẳng.

  • Câu 44: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo