Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 2: Thông hiểu

    Giá trị của D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n} bằng:

    Ta có:

    D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n}  

    = \lim\dfrac{n\left( \sqrt{1 + \dfrac{1}{n^{2}}} - \sqrt[3]{3 +\dfrac{2}{n^{3}}} ight)}{n\left( \sqrt[4]{2 + \dfrac{1}{n^{3}} +\dfrac{2}{n^{4}}} - 1 ight)}

       =\frac{1 - \sqrt[3]{3}}{\sqrt[4]{2} -1}

  • Câu 3: Thông hiểu

    Cho hình chóp S.MNPQ có đáy MNPQ là hình bình hành. Xác định giao tuyến của hai mặt phẳng (SMQ)(SNP):

    Hình vẽ minh họa

    Gọi (SMQ) \cap (SNP) = d

    Khi đó d đi qua S.

    Xét ba mặt phẳng (SMQ),(SNP);(MNPQ).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d;MQ;NP.

    Theo định lí về giao tuyến của ba mặt phẳng thì d;MQ;NP đồng quy hoặc đôi một song song.

    MQ//NP \Rightarrow d//MQ

  • Câu 4: Nhận biết

    Giá trị của \lim(2n + 1) bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} > \frac{M - 1}{2}

    Ta có:

    2n + 1 > 2n_{M} + 1 > M\ ,\
\ \ \forall n > n_{M}.

    = > \lim(2n + 1) = +
\infty

  • Câu 5: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 6: Thông hiểu

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 7: Thông hiểu

    Cho x = \frac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} ight) là nghiệm của phương trình nào sau đây?

     Giải PT, ta có: 2 \sin x - \sqrt 3  = 0 \Leftrightarrow \sin x = \frac{{\sqrt 3 }}{2} = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{3} + k2\pi  = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 9: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 10: Vận dụng

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    Đáp án là:

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    \lim_{x ightarrow 2}(x - 2) =
0 nên \lim_{x ightarrow 2}\left(
\sqrt{3x + 3} + a ight) = 0.

    Suy ra a = - 3.

    Với a = - 3 ta được

    \lim_{x ightarrow 2}\frac{\sqrt{3x +
3} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{\left( \sqrt{3x + 3} - 3
ight)\left( \sqrt{3x + 3} + 3 ight)}{(x - 2)\left( \sqrt{3x + 3} + 3
ight)}

    = \lim_{x ightarrow 2}\frac{3x - 6}{(x
- 2)\left( \sqrt{3x + 3} + 3 ight)} = \lim_{x ightarrow
2}\frac{3}{\sqrt{3x + 3} + 3} = \frac{1}{2}.

    Vậy b = 1;c = 2.

    Suy ra a + b + c = 0.

  • Câu 11: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 12: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 13: Nhận biết

    Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).

    Công thức đúng là:

    \sin^{2}x + \cos^{2}x = 1

  • Câu 14: Vận dụng

    Tính tổng S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ... .

    Ta có:

    S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ...

    = 9\left( {\underbrace {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^{n - 1}}}} + ...}_{CSN:{u_1} = 1;q = \frac{1}{3}}} ight)

    = 9.\left( \dfrac{1}{1 - \dfrac{1}{3}}ight) = \dfrac{27}{2}

  • Câu 15: Vận dụng

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

    Ta thấy tại x = 0 thì y = 1 => loại đáp án y = \sin\frac{2x}{3}, y = \sin\frac{3x}{2}

    Tại x = 3\pi thì y = 1 thay vào hai đáp án y = \cos\frac{2x}{3}y = \cos\frac{3x}{2} thì chỉ có y = \cos\frac{2x}{3} thỏa mãn

    Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số y = \cos\frac{2x}{3}

  • Câu 16: Thông hiểu

    Tính giới hạn \lim_{x ightarrow - 1}\frac{x^{5} + 1}{x^{3} +
1}.

    Ta có:

    \lim_{x ightarrow - 1}\frac{x^{5} +
1}{x^{3} + 1} = \lim_{x ightarrow - 1}\frac{(x + 1)\left( x^{4} -
x^{3} + x^{2} - x + 1 ight)}{(x + 1)\left( x^{2} - x + 1
ight)}

    = \lim_{x ightarrow - 1}\frac{x^{4} -
x^{3} + x^{2} - x + 1}{x^{2} - x + 1} = \frac{5}{3}

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 18: Thông hiểu

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Đáp án là:

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Diện tích bề mặt của tầng trên cùng là S_{11} = \frac{12288}{2^{11}} = 6\
m^{2}.

  • Câu 19: Nhận biết

    Mệnh đề nào sau đây sai?

    Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.

  • Câu 20: Nhận biết

    Trên đường tròn cung có số đo 1 rad là?

    Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

  • Câu 21: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 22: Nhận biết

    Trong các hàm sau hàm nào là hàm số chẵn?

    Xét hàm số y = -cosx

    Lấy x \in D \Rightarrow  - x \in D ta có:

    - \cos \left( { - x} ight) =  - \cos x \Rightarrow f\left( { - x} ight) = f\left( x ight)

    => Hàm số y = -cosx là hàm số chẵn.

  • Câu 23: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} ight)}^{n + 1}}.\left( {n + 1} ight)}}{{{{\left( { - 1} ight)}^n}.n}} =  - \frac{{n + 1}}{n}=> Loại đáp án A

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( {n + 1} ight)}^2}}}{{{n^2}}}=> Loại đáp án B

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2 \Rightarrow {u_{n + 1}} = 2{u_n}=> Dãy số là cấp số nhân có công bội q = 2

    Chọn đáp án C

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{n + 1}}{{3n}}=> Loại đáp án B

  • Câu 24: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 25: Nhận biết

    Hàm số f(x) =
\frac{x + 1}{x^{2} - 5x + 4} liên tục trên khoảng nào sau đây?

    Ta có:

    Hàm số f(x) = \frac{x + 1}{x^{2} - 5x +
4} là hàm phân thứ hữu tỉ có tập xác định D\mathbb{= R}\backslash\left\{ 1;4
ight\} nên hàm số f(x) liên tục trên các khoảng ( -
\infty;1),(1;4),(4; + \infty).

    Do đó f(x) liên tục trên (2;3).

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Phép chiếu song song theo phương AB lên mặt phẳng (SBC) biến điểm A thành:

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương AB lên mặt phẳng (SBC) là điểm B.

  • Câu 27: Thông hiểu

    Cho hàm số y = 2cos\left( x +
\frac{\pi}{3} ight) + 3 có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là M, m. Tính giá trị của biểu thức S = 20M - 12m.

    Ta có: - 1 \leq \cos\left( x +
\frac{\pi}{3} ight) \leq 1

    Nên 1 \leq 2cos\left( x + \frac{\pi}{3}
ight) + 3 \leq 5.

    Suy ra S = 20M - 12m = 20.5 - 12.1 =
88.

  • Câu 28: Thông hiểu

    Nếu \cos(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \cos(a + b) = 0

    \Leftrightarrow a + b = \frac{\pi}{2} +
k\pi

    \Leftrightarrow a = - b + \frac{\pi}{2}
+ k\pi

    \Rightarrow \left| \sin(a + 2b) ight|
= \left| \sin\left( - b + 2b + \frac{\pi}{2} + k\pi ight) ight| =
\left| \cos(b + k\pi) ight| = \left| \cos b ight|

  • Câu 29: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) biết u_{n} = 3 - 5n. Tìm công sai của cấp số cộng?

    Theo giả thiết ta có:

    u_{n + 1} = - 2 - 5n

    \Rightarrow u_{n + 1} - u_{n} = -
5;\forall n \geq 1

    Vậy d = - 5

  • Câu 30: Vận dụng

    Cho hình chóp S.ABC có các mặt bên là tam giác đều. Gọi M là trung điểm của BC, lấy N \in
SA sao cho NA = 2NS. Hình chiếu của điểm N qua phép chiếu song song phương SM, mặt phẳng chiếu (ABC) là:

    Hình vẽ minh họa

    Do các mặt bên của hình chóp S.ABC là các tam giác đều nên tam giác ABC đều.

    Gọi G là trọng tâm tam giác ABC.

    Ta có NA = 2NS \Rightarrow \frac{NS}{NA}
= \frac{MG}{GA} = \frac{1}{2}

    \Rightarrow NG//SM

    Nên G là hình chiếu song song theo phương SM của N trên (ABC).

    Lại do tam giác ABC đều nên G vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác ABC.

  • Câu 31: Vận dụng cao

    Hàm số y = \sin\left( x + \frac{\pi}{3}ight) - \sin x có tất cả bao nhiêu giá trị nguyên?

    Áp dụng công thức \sin a - \sin b =2cos\frac{a + b}{2}\sin\frac{a - b}{2}

    Ta có

    \sin\left( x + \frac{\pi}{3} ight) -\sin x = 2cos\left( x + \frac{\pi}{6} ight)\sin\frac{\pi}{6} =\cos\left( x + \frac{\pi}{6} ight).

    Ta có - 1 \leq \cos\left( x +\frac{\pi}{6} ight) \leq 1 ightarrow - 1 \leq y \leq1\overset{y\mathbb{\in Z}}{ightarrow}y \in \left\{ - 1;0;1ight\}.

  • Câu 32: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 33: Nhận biết

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm của SASD. Trong các khẳng định sau, khẳng định nào sai?

    Đáp án MN//BC đúng vì MN // AD do trong tam giác SADMN là đường trung bình mà BC// AD nên MN // BC

    Đáp án ON//SB đúng vì ON là đường trung bình của tam giác SBD

    Đáp án OM//SC đúng vì OM là đường trung bình của tam giác SAC

    Đáp án ON//SC sai vì giả sử ON //SCOM //SC nên MN vô lí.

  • Câu 34: Thông hiểu

    Cho hình chóp tứ giác S.ABCD đáy là hình bình hành, M là trung điểm của AB. Giả sử (\gamma) là mặt phẳng đi qua M đồng thời song song với SBCD. Xác định các giao tuyến của mặt phẳng (\gamma) và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?

    Hình vẽ minh họa

    Ta có:

    (\gamma)//SB nên (\gamma) cắt mặt phẳng (SBC) theo giao tuyến MN đi qua M và song song với SB, với N là trung điểm của SC.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (SCD) theo giao tuyến NP đi qua N và song song với CD, với P là trung điểm của SD.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (ABCD) theo giao tuyến MQ đi qua M và song song với CD, với Q là trung điểm của AD.

    Các giao tuyến của mặt phẳng (\gamma) và hình chóp là tứ giác MNPQ

    Lại có MQ//CD//NP nên MNPQ là hình thang.

  • Câu 35: Thông hiểu

    Xác định \lim_{x
ightarrow + \infty}\left( \sqrt{x + 1} - \sqrt{x - 3}
ight)

    Ta có:

    \lim_{x ightarrow + \infty}\left(
\sqrt{x + 1} - \sqrt{x - 3} ight)

    = \lim_{x ightarrow +
\infty}\frac{\left( \sqrt{x + 1} - \sqrt{x - 3} ight)\left( \sqrt{x +
1} + \sqrt{x - 3} ight)}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow + \infty}\frac{x +
1 - (x - 3)}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow +
\infty}\frac{4}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow +\infty}\dfrac{4}{\sqrt{x}\left( \sqrt{1 + \dfrac{1}{x}} + \sqrt{1 -\dfrac{3}{x}} ight)} = 0

  • Câu 36: Vận dụng cao

    Cho dãy số (un) thỏa mãn {u_1} = 1;{u_n} = 10{u_{n - 1}} - 1,\left( {\forall n \geqslant 2} ight). Tìm giá trị nhỏ nhất của n thỏa mãn \log {a_n} > 100

    Ta có:

    {u_n} = 10{u_{n - 1}} - 1 \Leftrightarrow {u_n} - \frac{1}{9} = 10\left( {{u_{n - 1}} - \frac{1}{9}} ight)\left( * ight)

    Đặt {v_n} = {u_n} - \frac{1}{9} \Rightarrow {v_1} = {u_1} - \frac{1}{9} = \frac{8}{9}

    \left( * ight) \Rightarrow {v_n} = 10.{v_{n + 1}},\left( {n \geqslant 2} ight)

    Dãy (vn) là cấp số nhân với công bội q = 10

    => {u_n} = {v_n} + \frac{1}{9} = \frac{8}{9}{.10^{n - 1}} + \frac{1}{9} > {10^{100}}

    Vậy giá trị nhỏ nhất của n để \log {a_n} > 100 là n = 102

  • Câu 37: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 38: Thông hiểu

    Tính tổng sau S =
1 + 5 + 9 + ... + 397

    Ta có:

    S = 1 + 5 + 9 + ... + 397 là tổng của 100 số hạng đầu tiên của cấp số cộng có u_{1} = 1;d = 4

    \Rightarrow S = S_{100} =
\frac{100}{2}.(2.1 + 99.4) = 19900.

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABCD có các cạnh bên bằng nhau, đáy ABCD là hình vuông cạnh bằng 10cm. Lấy M \in SA sao cho 3SM = 2SA. Giả sử mặt phẳng (\gamma) là mặt phẳng đi qua điểm M và song song với AB,AC. Các giao tuyến của (\gamma) với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\gamma) \\
(\gamma)//(ABCD) \\
\end{matrix} ight.. Gọi N,P,Q lần lượt là các giao điểm của (\gamma) với SB,SC,SD thì \left\{ \begin{matrix}
MN//AB \\
NP//BC \\
NP//BC \\
\end{matrix} ight..

    Do đó MNPQ là hình vuông và \frac{MN}{AB} = \frac{SM}{SA} =
\frac{2}{3}

    Vậy diện tích tứ giác là S =
\frac{400}{9}cm^{2}.

  • Câu 40: Vận dụng

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 41: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{3}{{{x^2}}} - \dfrac{2}{x}}}{{\dfrac{5}{{{x^2}}} + 3 + \dfrac{1}{{{x^6}}}}} = 0 \hfill \\ \end{matrix}

  • Câu 42: Nhận biết

    Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1

    Một học sinh chứng minh un luôn chia hết cho 19 như sau:

    Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19

    Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.

    Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1

    Bước 3: Vì 5.23k − 2 + 33k − 119.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*

    Vậy un chia hết cho 19, ∀n ∈ ℕ*

    Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

    Lập luận hoàn toàn đúng!

  • Câu 43: Vận dụng

    Cho cấp số nhân (un) có \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight.. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.

     Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{19}} = 8{u_1}.{q^{16}}} \\   {{u_1} + {u_1}.{q^4} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{16}}\left( {{q^3} - 8} ight) = 0} \\   {{u_1}.\left( {1 + {q^4}} ight) = 272} \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {q = 0 \Rightarrow {u_1} = 272 > 100\left( L ight)} \\   {q = 2 \Rightarrow {u_1} = 16 < 100\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 44: Nhận biết

    Tính giới hạn \lim\frac{n + 2}{n^{2} + n + 1}

    Ta có:

    \lim \frac{{n + 2}}{{{n^2} + n + 1}}= \lim \dfrac{{n\left( {1 + \dfrac{2}{n}} ight)}}{{{n^2}\left( {1 + \dfrac{1}{n} + \dfrac{2}{{{n^2}}}} ight)}}

    = \lim\left( \dfrac{1}{n}.\dfrac{1 +\dfrac{2}{n}}{1 + \dfrac{1}{n} + \dfrac{2}{n^{2}}} ight) = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo