Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

  • Câu 2: Nhận biết

    Giá trị của \lim\frac{2}{n + 1} bằng:

    Với mọi a>0 nhỏ tùy ý, ta chọn n_{a} =
\left\lbrack \frac{2}{a} - 1 ightbrack + 1

    Suy ra \frac{2}{n + 1} < a\ ,\ \
\forall n > n_{0} = > \lim\frac{2}{n + 1} = 0

  • Câu 3: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 4: Nhận biết

    Cho đường thẳng d song song với mặt phẳng (∝), mặt phẳng (β) chứa d và cắt (∝) theo giao tuyến d’. Khẳng định nào sau đây là đúng?

    Cho đường thẳng d song song với mặt phẳng (∝), mặt phẳng (β) chứa d và cắt (∝) theo giao tuyến d’ => d’ // d

  • Câu 5: Thông hiểu

    Cho một cấp số nhân có các số hạng đều không âm thỏa mãn {u_2} = 6;{u_4} = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.

    Giả sử công bội của cấp số nhân là q

    Ta có:

    => {u_4} = {u_2}.{q^2} \Rightarrow q =  \pm 2

    Do cấp số nhân có các số hạng không âm nên q = 2

    Ta có: {S_{12}} = {u_1}.\frac{{1 - {2^{12}}}}{{1 - 2}} = 3\left( {{2^{12}} - 1} ight)

  • Câu 6: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 7: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2

    => u_n=2^n là cấp số nhân

  • Câu 8: Thông hiểu

    Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Gọi O là tâm hình bình hành ABCD

    Ta có: 2NC = SN \Rightarrow \frac{{NC}}{{SC}} = \frac{1}{3}

    M là trọng tâm tam giác BCD => \frac{{MC}}{{OC}} = \frac{2}{3}

    ABCD là hình bình hành => AO = OC

    => \frac{{MC}}{{AC}} = \frac{{MC}}{{2OC}} = \frac{2}{{2.3}} = \frac{1}{3}

    Xét tam giác SAC có:

    \frac{{MC}}{{AC}} = \frac{{NC}}{{SC}} = \frac{1}{3}

    Theo định lí Ta - lét suy ra MN // SA

  • Câu 9: Vận dụng

    Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là 0,5\%. Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?

    Với số nguyên dương n, kí hiệu u_{n} là số tiền người đó rút được (gồm cả vốn và lãi) sau n tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,005 =
u_{n - 1}.1,005;(\forall n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu u_{1} =
6.10^{7} + 6.10^{7}.0,005 = 6.10^{7}.1,005 với công bội q = 1,005 nên u_{n} = 6.10^{7}.1,005.(1,005)^{n - 1} =
6.10^{7}.(1,005)^{n};(n \geq 1)

    Số tiền rút được sau 2 năm là:

    u_{24} = 6.10^{7}.1,005^{24} \approx
67629587(đồng)

  • Câu 10: Thông hiểu

    \lim\sqrt{4-\frac{\cos2n}{n}} bằng số nào sau đây?

    Ta có: 0 \leqslant \left| {\frac{{\cos 2n}}{n}} ight| \leqslant \frac{1}{n} \to 0

    \Rightarrow \lim \sqrt {4 - \frac{{\cos 2n}}{n}}  = 2

  • Câu 11: Thông hiểu

    Chọn mệnh đề sai trong các mệnh đề sau:

    Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.

    Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.

    Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.

  • Câu 12: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Từ công thức l = R.\alpha nên ta có l\alpha tỉ lệ với nhau.

  • Câu 13: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 14: Nhận biết

    Mệnh đề nào sau đây sai?

     Mệnh đề sai: \sin x = 0 \Rightarrow x = k2\pi

    Sửa lại:

    \sin x = 0 \Rightarrow x = k\pi ;(k \in \mathbb{Z})

  • Câu 15: Vận dụng cao

    Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức h = 3cos\left( \frac{\pi t}{8} +\frac{\pi}{4} ight) + 12. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?

    Ta có:

    \begin{matrix}  h = 3\cos \left( {\dfrac{{\pi t}}{8} + \dfrac{\pi }{4}} ight) + 12 \leqslant 3 + 12 = 15 \hfill \\   \Rightarrow \cos \left( {\dfrac{{\pi t}}{8} + \dfrac{\pi }{4}} ight) = 1 \hfill \\ \end{matrix}

    Do đó mực nước của kênh cao nhất khi \cos\left( \frac{\pi t}{8} + \frac{\pi}{4} ight)= 1 \Leftrightarrow \frac{\pi t}{8} + \frac{\pi}{4} = k2\pi \Rightarrowt = 16k - 2

    0 \leq t \leq 24 \Rightarrow k = 1\Rightarrow t = 14

    Vậy mực nước của kênh là cao nhất khi t = 14 (h)

  • Câu 16: Thông hiểu

    Giải phương trình 2\cos x = - 1 được nghiệm là:

    Ta có

    2cosx = - 1 \Leftrightarrow \cos x = -
\frac{1}{2}

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi,\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm là x =
\pm \frac{2\pi}{3} + k2\pi,k\mathbb{\in Z}

  • Câu 17: Thông hiểu

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 18: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD. Gọi E,F lần lượt là trung điểm của ADBC, G là trọng tâm tam giác BCD. Khi đó, giao điểm của EG(ABC) là:

    Hình vẽ minh họa

    Kéo dài EG cắt AF tại I.

    Khi đó I là giao điểm của EG(ABC).

  • Câu 20: Vận dụng

    Biết \lim_{x
ightarrow - \infty}\frac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =
\frac{1}{2}. Hỏi giá trị a thuộc tập hợp nào dưới đây?

    Ta có:

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =\dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- x\left( \sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} +\dfrac{4}{x} ight)}{x\left( a - \dfrac{2}{x} ight)} =\dfrac{1}{2}

    \Leftrightarrow \frac{- 2}{a} =
\frac{1}{2}

    \Leftrightarrow a = - 4 \Rightarrow a
\in \lbrack - 6; - 3brack

  • Câu 21: Nhận biết

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}  {2{x^3} - 2x{\text{  }}khi{\text{ }}x \geqslant 1} \\   {{x^3} - 2x{\text{   }}khi{\text{ }}x < 1} \end{array}} ight.. Khi đó \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) bằng:

    Ta có:

    \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} - 2x} ight) =  - 1

  • Câu 22: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm M,N làm trung điểm, lấy P \in BC sao cho \frac{CP}{PD} = 2 Q \in AD sao cho bốn điểm M,N,P,Q đồng phẳng. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa

    Xét mặt phẳng (BCD) ta có: \frac{CP}{PD} = 2

    => E = NP \cap BD

    M,N lần lượt là trung điểm của AB,BC do đó MN//AC

    \Rightarrow PQ//AC

    CP = 2PQ \Rightarrow AQ = 2QD hay \frac{QA}{DQ} = 2.

  • Câu 23: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;S_{23} = 483. Tìm công sai d của cấp số cộng?

    Gọi d là công sai của cấp số cộng khi đó ta có:

    S_{23} = 483 \Leftrightarrow
\frac{23\left( 2u_{1} + 22d ight)}{2} = 483

    \Leftrightarrow \frac{23.( - 2 +
22d)}{2} = 483

    \Leftrightarrow d = 2

  • Câu 24: Nhận biết

    Hàm số f(x) =
\frac{x + 1}{x^{2} - 5x + 4} liên tục trên khoảng nào sau đây?

    Ta có:

    Hàm số f(x) = \frac{x + 1}{x^{2} - 5x +
4} là hàm phân thứ hữu tỉ có tập xác định D\mathbb{= R}\backslash\left\{ 1;4
ight\} nên hàm số f(x) liên tục trên các khoảng ( -
\infty;1),(1;4),(4; + \infty).

    Do đó f(x) liên tục trên (2;3).

  • Câu 25: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

  • Câu 26: Thông hiểu

    Giải phương trình \cos\left( 2x -
\frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}?

    Ta có:

    PT\Leftrightarrow \cos\left( 2x -
\frac{\pi}{3} ight) = \cos\frac{5\pi}{6}

    \Leftrightarrow \left\{ \begin{matrix}
2x - \frac{\pi}{3} = \frac{5\pi}{6} + k2\pi \\
2x - \frac{\pi}{3} = - \frac{5\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

  • Câu 27: Nhận biết

    Cho hình chóp S.ABC. Lấy M là trung điểm của các đoạn thẳng SA, N là trung điểm của SB, P \in
SC sao cho \frac{PS}{PC} =
2. Chọn khẳng định sai.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(MNP) \cap (SAC) = MP \\
(MNP) \cap (SAB) = MN \\
(MNP) \cap (SBC) = NP \\
\end{matrix} ight.

    Vậy các giao tuyến tạo bởi (MNP) và hình chóp S.ABC tạo thành là tam giác MNP.

  • Câu 28: Thông hiểu

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    Đáp án là:

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    \lim_{x ightarrow 3}\frac{x^{2} + bx
+ c}{x - 3} = 8 là hữu hạn nên phương trình x^{2} + bx + c = 0 có nghiệm x = 3

    \Leftrightarrow 3b + c + 9 = 0
\Leftrightarrow c = - 9 - 3b

    Khi đó

    \lim_{x ightarrow 3}\frac{x^{2} + bx +
c}{x - 3} = \lim_{x ightarrow 3}\frac{x^{2} + bx - 9 - 3b}{x - 3} =
\lim_{x ightarrow 3}\frac{(x - 3)(x + 3 + b)}{x - 3}

    = \lim_{x ightarrow 3}(x + 3 + b) = 8
\Leftrightarrow 6 + b = 8 \Leftrightarrow b = 2 \Rightarrow c = -
15

    Vậy P = b + c = - 13.

  • Câu 29: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 31: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 32: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 33: Vận dụng cao

    Cho tam giác ABC cân tại A, AH ⊥ BC. Các cạnh AB, AH, BC lập thành một cấp số nhân. Tính công bội q của cấp số nhân đó.

    Ta có: AB = AC (tam giác ABC cân)

    Các cạnh BC, AB, AH lập thành cấp số nhân nên ta có hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{q} = \dfrac{{BC}}{{AH}} = \dfrac{{2HC}}{{AH}} = 2\cot \widehat C} \\   {\dfrac{1}{q} = \dfrac{{AH}}{{AB}} = 2\sin \widehat B} \end{array}} ight. \hfill \\   \Rightarrow \cot \widehat C = \sin \widehat C \Rightarrow 2\cos \widehat C = {\sin ^2}\widehat C = 1 - {\cos ^2}\widehat C \hfill \\   \Leftrightarrow {\cos ^2}\widehat C - 2\cos \widehat C - 1 = 0 \hfill \\   \Leftrightarrow \cos \widehat C = \sqrt 2  - 1;\left( {0 < \widehat C < {{90}^0}} ight) \hfill \\   \Leftrightarrow \sin \widehat C = \sqrt {2\left( {\sqrt 2  - 1} ight)}  \hfill \\ \end{matrix}

    Vậy công bội của cấp số nhân là q = \frac{1}{{\sin \widehat C}} = \frac{1}{{\sqrt {2\left( {\sqrt 2  - 1} ight)} }} = \frac{1}{2}.\sqrt {2\left( {\sqrt 2  + 1} ight)}

  • Câu 34: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 35: Nhận biết

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 36: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)

    Hình vẽ minh họa

    Mặt phẳng nào song song với (IJK)

    Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.

    => \frac{{AI}}{{IM}} = \frac{{AJ}}{{JN}} = 2 (tính chất trọng tâm tam giác)

    => IJ//MN(1)

    Xét mặt phẳng (AA'EM) ta có: \frac{{AI}}{{IM}} = \frac{{A'K}}{{KE}} = 2

    => IK//ME

    ME //BB'

    => IK//BB'(2)

    Từ (1) và (2) => (IJK)(BB'C)là hai mặt phẳng phân biệt. Khi đó ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\left( {IJK} ight) e \left( {BB'C'} ight)} \\   {IJ,IK \subset \left( {IJK} ight)} \\   {MN,BB' \subset \left( {BB'C'} ight)} \end{array}} ight. \hfill \\   \Rightarrow \left( {IJK} ight)//\left( {BB'C'} ight) \hfill \\ \end{matrix}

  • Câu 37: Vận dụng

    Cho hình chóp tứ giác S.ABCD. Gọi A_{1} là trung điểm của SA, B_{1} \in
SB. Xác định các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight)với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:

    Trường hợp 1:

    Hình vẽ minh hoạ

    Nếu B_{1} eq S. Gọi O = AC \cap BD,\ I = SO \cap A_{1}C

    Nếu P = IB_{1} \cap SD

    => Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CP

    Nếu P = IB \cap BD. Gọi Q = CP \cap AD

    Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CQ

    Trường hợp 2:

    Hình vẽ minh hoạ

    Nếu B_{1} \equiv S. Hình tạo bởi các giao tuyến của mặt phẳng \left(
A_{1}B_{1}C ight) với hình chóp là tam giác SAC.

    Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.

  • Câu 38: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).

    Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."

  • Câu 39: Vận dụng cao

    Tổng S =\frac{2}{1.3} + \frac{2}{3.5} + \frac{2}{5.7} + \ldots +\frac{2}{97.99} có kết quả bằng?

    Ta có \frac{2}{1.3} = \frac{1}{1} -\frac{1}{3};\frac{2}{3.5} = \frac{1}{3} - \frac{1}{5};\ldots

    Do đó S = \frac{1}{1} - \frac{1}{3} +\frac{1}{3} - \frac{1}{5} + \ldots + \frac{1}{97} - \frac{1}{99} = 1 -\frac{1}{99} = \frac{98}{99}

  • Câu 40: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 41: Nhận biết

    Cho dãy số \left(
u_{n} ight) xác định bởi u_{n} =
\frac{n^{2} + 3n + 7}{n + 1}. Ba số hạng đầu tiên của dãy là:

    Ba số hạng đầu tiên của dãy là \frac{11}{2};\frac{17}{3};\frac{25}{4}

  • Câu 42: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 43: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 44: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -
\sqrt{n^{2} + 1} trong đó a là tham số thực. tìm a để \lim u_{n} = - 1

    Ta có:

    \lim u_{n} = \lim\left( \sqrt{n^{2} +
a.n + 5} - \sqrt{n^{2} + 1} ight)

    = \lim\left( \frac{a.n + 4}{\sqrt{n^{2}
+ a.n + 5} + \sqrt{n^{2} + 1}} ight)

    = \lim\left( \dfrac{a +\dfrac{4}{n}}{\sqrt{1 + \dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 +\dfrac{1}{n^{2}}}} ight) = \dfrac{a}{2}

    Ta có: \lim u_{n} = - 1

    \Leftrightarrow \frac{a}{2} = - 1
\Rightarrow a = - 2

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo