Giải phương trình
Ta có:
Giải phương trình
Ta có:
Cho hình lăng trụ . Gọi trung điểm của
lần lượt là
. Qua phép chiếu song song phương
, mặt phẳng chiếu
biến điểm
thành điểm nào?
Hình vẽ minh họa
Ta có: suy ra
là hình bình hành.
Suy ra phép chiếu song song phương , mặt phẳng chiếu
biến điểm
thành
.
Có bao nhiêu vị trí tương đối của hai đường thẳng phân biệt và
trong không gian?
Có 3 vị trí tương đối có thể có giữa hai đường thẳng phân biệt và
là:
cắt
song song với
chéo nhau với
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Quy ước chọn chiều dương của một đường tròn định hướng là
Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ
Cho cấp số cộng có
. Giá trị nhỏ nhất của
bằng:
Ta gọi là công sai của cấp số cộng.
Khi đó:
Vậy giá trị nhỏ nhất của là -24 đạt được khi khi
.
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Cho hình chóp có đáy là hình bình hành. Điểm
thuộc cạnh
, điểm
và
lần lượt là trung điểm của
và
. Khi đó:
a) Đúng||Sai
b) Giao tuyến của hai mặt phẳng và
là đường thẳng qua
và song song với
. Sai||Đúng
c) Giao tuyến của hai mặt phẳng và
đường thẳng qua
và song song với
. Đúng||Sai
d) Giao tuyến của hai mặt phẳng và
là đường thẳng qua
và song song với
. Đúng||Sai
Cho hình chóp có đáy là hình bình hành. Điểm
thuộc cạnh
, điểm
và
lần lượt là trung điểm của
và
. Khi đó:
a) Đúng||Sai
b) Giao tuyến của hai mặt phẳng và
là đường thẳng qua
và song song với
. Sai||Đúng
c) Giao tuyến của hai mặt phẳng và
đường thẳng qua
và song song với
. Đúng||Sai
d) Giao tuyến của hai mặt phẳng và
là đường thẳng qua
và song song với
. Đúng||Sai
b) Xác định giao tuyến của hai mặt phẳng và
:
Ta có:
Suy ra , với
là đường thẳng qua
và
.
Hình vẽ minh họa
c) Xác định giao tuyến của hai mặt phẳng và
:
Ta có: .
Khi đó:
Suy ra là đường thẳng qua
và
.
d) Xác định giao tuyến của hai mặt phẳng và
:
Ta có .
Xét tam giác , ta có
là đường trung bình
.
Khi đó:
Suy ra là đường thẳng qua
và
.
Kết luận:
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Tìm tất cả các giá trị thực của tham số a để phương trình có ba nghiệm lập thành cấp số nhân.
Ta có:
kiểm tra lại kết quả ta được
Cho dãy số (un) với ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?
Ta có
Cho hàm số có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Rút gọn biểu thức
Ta có:
Biết rằng . Tính
?
Ta có:
Khi đó
Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Tìm giá trị nhỏ nhất của hàm số
.
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Cho tứ diện có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Giá trị của bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Cho hình chóp tứ giác , đáy
là tứ giác lồi,
. Gọi
là mặt phẳng qua
song song với các đường thẳng
. Xác định các giao tuyến của
với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh hoạ
Xét mặt phẳng , kẻ đường thẳng qua
và song song với
, cắt
lần lượt tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Vậy hình tạo bởi các giao tuyến là hình thang với
.
Cho hình lập phương cạnh bằng
. Lấy các điểm
sao cho
. Khi giá trị
thay đổi, đường thẳng
luôn song song với mặt phẳng cố định nào sau đây?
Hình vẽ minh họa
Áp dụng định lí Ta – lét đảo cho và
. Từ tỉ lệ
Ta suy ra cùng song song với một mặt phẳng
nào đó.
Ta chọn mặt phẳng chứa
và song song với
.
Mặt phẳng chính là mặt phẳng
và là mặt phẳng cố định.
Hay
Giá trị của bằng:
Cho cấp số nhân thỏa mãn
. Tính
Đáp án: 64
Cho cấp số nhân thỏa mãn
. Tính
Đáp án: 64
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:
Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Cho hình chóp có đáy là hình thang
,
. Gọi
là trung điểm của
. Giao tuyến của mặt phẳng
và
là:
Hình vẽ minh họa
Gọi là giao điểm của
và
. Khi đó:
.
Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với
Có bao nhiêu giá trị nguyên của tham số m để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là
Hình vẽ minh họa
Ta có thiết diện của S.ABCD cắt bởi
mặt phẳng (IJK) là ngũ giác
bằng:
Ta có:
Xác định chu kì T của hàm số
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Trong các phương trình sau, phương trình nào tương đương với phương trình ?
Ta có . Chi hai vế phương trình cho
, ta được
.
Tính giới hạn
Ta có:
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Số nghiệm trong khoảng của phương trình
là
Ta có:
.
Với thì
.
Suy ra .
Vậy có 1 nghiệm trong khoảng .
Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?
Sn = Σi = 1n i(2i+1) = Σi = 1n (2i2+1)
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Cho dãy số (un) xác định bởi . Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
bằng:
Ta có:
Khẳng định nào sau đây là sai.
Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Biết giới hạn ,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng: .
Đáp án: 0
Biết giới hạn ,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng: .
Đáp án: 0
Vì nên
.
Suy ra .
Với ta được
.
Vậy .
Suy ra .
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .