Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?

    Trên đường tròn định hướng, góc hình học AOB có phân biệt điểm đầu A và điểm cuối B là góc lượng giác.

  • Câu 2: Vận dụng cao

    Cho dãy số (un) thỏa mãn {u_1} = 1;{u_n} = 10{u_{n - 1}} - 1,\left( {\forall n \geqslant 2} ight). Tìm giá trị nhỏ nhất của n thỏa mãn \log {a_n} > 100

    Ta có:

    {u_n} = 10{u_{n - 1}} - 1 \Leftrightarrow {u_n} - \frac{1}{9} = 10\left( {{u_{n - 1}} - \frac{1}{9}} ight)\left( * ight)

    Đặt {v_n} = {u_n} - \frac{1}{9} \Rightarrow {v_1} = {u_1} - \frac{1}{9} = \frac{8}{9}

    \left( * ight) \Rightarrow {v_n} = 10.{v_{n + 1}},\left( {n \geqslant 2} ight)

    Dãy (vn) là cấp số nhân với công bội q = 10

    => {u_n} = {v_n} + \frac{1}{9} = \frac{8}{9}{.10^{n - 1}} + \frac{1}{9} > {10^{100}}

    Vậy giá trị nhỏ nhất của n để \log {a_n} > 100 là n = 102

  • Câu 3: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 4: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 5: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n - 1. Dãy số \left( u_{n} ight) là dãy số

    Ta có:

    u_{n + 1} - u_{n} = \left\lbrack 2(n +
1) - 1 ightbrack - (2n - 1)

    = 2n + 2 - 1 - 2n + 1 = 2 >
0

    Vậy dãy số \left( u_{n} ight) là dãy số tăng.

  • Câu 6: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 7: Vận dụng

    Tính tổng S = 1 + \frac{2}{3} +
\frac{4}{9} + ... + \frac{2^{n}}{3^{n}} + ... .

    Ta có:

    S = 1 + \frac{2}{3} + \frac{4}{9} + ...
+ \frac{2^{n}}{3^{n}} + ...

    = \underbrace {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} ight)}^2} + ... + {{\left( {\frac{2}{3}} ight)}^n} + ...}_{CSN:{u_1} = 1;q = \frac{2}{3}}

    = \dfrac{1}{1 - \dfrac{2}{3}} =3

  • Câu 8: Nhận biết

    Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

    Hình vẽ minh họa

    Với 4 điểm không đồng phẳng A,B,C,D có thể xác định được 4 mặt phẳng phân biệt từ các điểm đó là (ABC),(BCD),(ACD),(ABD).

  • Câu 9: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 10: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 11: Nhận biết

    Tìm tập các định D của hàm số y =\frac{1}{\sin\left( x - \dfrac{\pi}{2} ight)}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( x - \dfrac{\pi}{2} ight) eq 0 \hfill \\\Rightarrow x - \dfrac{\pi}{2} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ (1 + 2k)\frac{\pi}{2},k\mathbb{\in Z}ight\}

  • Câu 12: Nhận biết

    \tan x có nghĩa khi nào?

    Để \tan x có nghĩa thì \cos x e 0

    => x eq \frac{\pi}{2} +k\pi

  • Câu 13: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Giá trị u10 là?

    Từ \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight. ta có un + 1 − un = 5

    dãy (un) là một cấp số cộng với công sai d = 5 nên

    u10 = u1 + 9d = 2 + 45 = 47

  • Câu 14: Nhận biết

    \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} =  - \infty

    Do \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 2} ight) = 3 \hfill \\  x \to {1^ - } \Rightarrow x - 1 < 0 \hfill \\ \end{gathered}  ight.

  • Câu 15: Nhận biết

    Cho mặt phẳng (\alpha) và điểm H không thuộc mặt phẳng (\alpha). Số đường thẳng đi qua H và song song với (\alpha)

    Có vô số đường thẳng đi qua H và song song với (\alpha) với điểm H không thuộc mặt phẳng (\alpha).

  • Câu 16: Nhận biết

    Với giá trị x nào dưới đây thì các số - 4;x; - 9 theo thứ tự đó lập thành một cấp số nhân?

    Ta có: - 4;x; - 9 lập thành một cấp số nhân

    \Rightarrow x^{2} = ( - 4).( - 9) =
36

    \Rightarrow x = \pm 6

  • Câu 17: Nhận biết

    Trong không gian, cho ba đường thẳng m,n,t không đồng phẳng đôi một cắt nhau. Tìm số giao điểm phân biệt của ba đường thẳng.

    Giả sử ba đường thẳng m,n,t đôi một cắt lần lượt M,N,T phân biệt và tạo thành mặt phẳng (MNT).

    => m,n,t cùng nằm trên một mặt phẳng (trái giả thiết).

    => M,N,T trùng nhau, tức là m,n,t đồng quy.

    Vậy có duy nhất một giao điểm phân biệt của ba đường thẳng đã cho.

  • Câu 18: Thông hiểu

    Giải phương trình 2\cos x = - 1 được nghiệm là:

    Ta có

    2cosx = - 1 \Leftrightarrow \cos x = -
\frac{1}{2}

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi,\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm là x =
\pm \frac{2\pi}{3} + k2\pi,k\mathbb{\in Z}

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD, lấy M là trung điểm của AD. Qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) biến điểm M thành điểm nào sau đây?

    Hình vẽ minh họa

    Gọi N là trung điểm của CD. Khi đó MN là đường trung bình của tam giác ACD

    \Rightarrow MN//AC.

    Do đó hình chiếu của điểm M qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) là điểm N.

  • Câu 20: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow + \infty}\left( x + 1 - \sqrt{x^{2} - x - 2}
ight)

    Ta có:

    E = \lim_{x ightarrow + \infty}\left(
x + 1 - \sqrt{x^{2} - x - 2} ight)

    E = \lim_{x ightarrow +
\infty}\frac{\left( x + 1 - \sqrt{x^{2} - x - 2} ight)\left( x + 1 +
\sqrt{x^{2} - x - 2} ight)}{x + 1 + \sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{(x + 1)^{2} - \left( x^{2} - x - 2 ight)^{2}}{x + 1 +\sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{x\left( 3 + \dfrac{3}{x} ight)}{x\left( 1 + \dfrac{1}{x} +\sqrt{1 - \dfrac{1}{x} - \dfrac{2}{x^{2}}} ight)}

    E = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{3}{x}}{1 + \frac{1}{x} + \sqrt{1 - \dfrac{1}{x} -\dfrac{2}{x^{2}}}} = \dfrac{3}{2}

  • Câu 21: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 22: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 23: Thông hiểu

    Cho tam giác ABC. Khẳng định nào sau đây sai?

    Ta có:

    \widehat{A} + \widehat{B} + \widehat{C}
= \pi \Rightarrow \widehat{A} + \widehat{B} = \pi -
\widehat{C}

    Do đó \cos\left( \widehat{A} +
\widehat{B} ight) = \cos\left( \pi - \widehat{C} ight) = -
\cos\widehat{C}

    Vậy khẳng định sai là: \cos\left(
\widehat{A} + \widehat{B} ight) = \cos\widehat{C}

  • Câu 24: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho một cấp số nhân có các số hạng đều không âm thỏa mãn {u_2} = 6;{u_4} = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.

    Giả sử công bội của cấp số nhân là q

    Ta có:

    => {u_4} = {u_2}.{q^2} \Rightarrow q =  \pm 2

    Do cấp số nhân có các số hạng không âm nên q = 2

    Ta có: {S_{12}} = {u_1}.\frac{{1 - {2^{12}}}}{{1 - 2}} = 3\left( {{2^{12}} - 1} ight)

  • Câu 26: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 27: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD AD ∈ BC. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng SAB) tại J. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Xác định khẳng định sai

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  S \in \left( {SAB} ight) \cap \left( {SCD} ight) \hfill \\  I = AB \cap CD \hfill \\  AB \subset \left( {SAB} ight) \hfill \\  CD \subset \left( {SCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow \left( {SAB} ight) \cap \left( {SCD} ight) = SI \hfill \\  \left\{ \begin{gathered}  DM \cap \left( {SAB} ight) = J \hfill \\  DM \subset \left( {SCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow J \in \left( {SAB} ight) \cap \left( {SCD} ight) = SI \hfill \\ \end{matrix}

    Vậy ba điểm S, I, J thẳng hàng.

    Khẳng định sai là: "JM \in \left( {SAB} ight)"

  • Câu 28: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 29: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 30: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 31: Vận dụng

    Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

    Kí hiệu p_{n} là chu vi của hình vuông thứ nQ_{n} là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính p_{n}Q_{n}(n = 1,2,3,\ldots) và tìm lim Q_{n} (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

    Đáp án: 13,66

    Đáp án là:

    Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

    Kí hiệu p_{n} là chu vi của hình vuông thứ nQ_{n} là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính p_{n}Q_{n}(n = 1,2,3,\ldots) và tìm lim Q_{n} (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

    Đáp án: 13,66

    Ta có:

    p_{n} = 4 \cdot \frac{1}{(\sqrt{2})^{n -
1}}

    Q_{n} = 4 + 4 \cdot \frac{1}{\sqrt{2}} +
4 \cdot \frac{1}{(\sqrt{2})^{2}} + \ldots + 4 \cdot
\frac{1}{(\sqrt{2})^{n - 1}}

    = 4 \cdot \frac{1}{1 -
\frac{1}{\sqrt{2}}} \approx 13,66

  • Câu 32: Thông hiểu

    Cho hình chóp tam giác S.ABC. Trên các cạnh SBAB lần lượt lấy các điểm M,N sao cho 4SM = SB\frac{NA}{NB} = \frac{1}{3}. Khi đó mặt phẳng nào song song với đường thẳng MN?

    Hình vẽ minh họa

    Theo giả thiết ta có: \left\{\begin{matrix}N \in AB \\\dfrac{NA}{NB} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \frac{NA}{AB} =\frac{1}{4}

    Xét tam giác SAB ta có: \frac{SM}{AB} = \frac{AN}{AB} =
\frac{1}{4}

    \Rightarrow MN//SA\left\{ \begin{matrix}
SA \subset (SAC) \\
MN ⊄ (SAC) \\
\end{matrix} ight.\  \Rightarrow MN//(SAC)

  • Câu 33: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 34: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 35: Thông hiểu

    Cho phương trình \cos^{2}2x = m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Ta có:

    0 \leq \cos^{2}2x \leq 1 \Leftrightarrow0 \leq m + 1 \leq 1

    \Leftrightarrow - 1 \leq m \leq
0 thì phương trình có nghiệm.

  • Câu 36: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 37: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 38: Nhận biết

    Giá trị của \lim\frac{1}{n + 1} bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\frac{1}{a} - 1

    Suy ra:

    \frac{1}{n +
1} < \frac{1}{n_{a} + 1} < a\ \forall n > n_{0}

    Vậy \lim\frac{1}{n + 1} = 0.

  • Câu 39: Thông hiểu

    Biết  \lim_{x
ightarrow 0}\frac{\sqrt{3x + 1} - 1}{x} = \frac{a}{b}, trong đó a,b là hai số nguyên dương và phân số \frac{a}{b} tối giản. Tính giá trị của biểu thức T = a^{2} +
b^{2}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{3x +
1} - 1}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{3x + 1} - 1 ight)\left( \sqrt{3x + 1} + 1 ight)}{x\left(
\sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{3x + 1 -
1}{x\left( \sqrt{3x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{3x}{x\left( \sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow
0}\frac{1}{\sqrt{3x + 1} + 1} = \frac{3}{2}

    \Rightarrow a = 3;b = 2

    \Rightarrow T = 3^{2} + 2^{2} =
13

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?

    Hình vẽ minh họa

    Tìm đường thẳng không song song với IJ

    Ta có:

    IJ là đường trung bình tam giác SAB nên IJ{m{//}}AB

    ABCD là hình bình hành nên AB{m{//}}CD

    => IJ{m{//}}CD

    EF là đường trung bình tam giác SCD 

    => EF{m{//}}CD => IJ{m{//}}EF

    Vậy AD không song song với IJ.

  • Câu 41: Thông hiểu

    Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:

    Ta có:

    \begin{matrix}  {u_6} = {u_1}.{q^5} \hfill \\   \Leftrightarrow 0,00001 =  - {q^5} \hfill \\   \Leftrightarrow q = \dfrac{{ - 1}}{{10}} \hfill \\   \Rightarrow {u_n} = {u_1}.{q^{n - 1}} =  - 1.{\left( {\dfrac{{ - 1}}{{10}}} ight)^{n - 1}} = \dfrac{{{{\left( { - 1} ight)}^n}}}{{{{10}^{n - 1}}}} \hfill \\ \end{matrix}

  • Câu 42: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 4. Giá trị nhỏ nhất của u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1} bằng:

    Ta gọi d là công sai của cấp số cộng.

    Khi đó:

    u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1}

    = 4(4 + d) + (4 + d)(4 + 2d) + 4(4 +
2d)

    = 2d^{2} + 24d + 48 = 2(d + 6)^{2} - 24\geq - 24

    Vậy giá trị nhỏ nhất của u_{1}u_{2} +
u_{2}u_{3} + u_{3}u_{1} là -24 đạt được khi khi d = - 6.

  • Câu 43: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 44: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \sqrt{5 - m\sin x - (m + 1)\cos x} xác định trên tập số thực?

    Hàm số đã cho xác định khi

    5 - m\sin x - (m + 1)\cos x \geq0;\forall x\mathbb{\in R}

    \begin{matrix}   \Rightarrow 5 \geqslant \max \left\{ {m\sin x - \left( {m + 1} ight)\cos x} ight\} \hfill \\   \Leftrightarrow 5 \geqslant \sqrt {{m^2} + {{\left( {m + 1} ight)}^2}}  \hfill \\   \Leftrightarrow {m^2} + m - 12 \leqslant 0 \Rightarrow m \in \left[ { - 4;3} ight] \hfill \\ \end{matrix}

    Kết hợp với điều kiện m là số nguyên

    => m = {-4; -3; ... ; 2; 3}

    Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo