Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho mặt phẳng (\alpha) và hai đường thẳng m,n. Khẳng định nào sau đây đúng?

    “Nếu m//(\alpha)n//(\alpha) thì m,n đồng phẳng.” sai vì có thể chéo nhau.

    “Nếu m \subset (\alpha)m cắt n thì n cắt (\alpha).” sai vì có thể nằm trên (\alpha) 

    “Nếu m//nn//(\alpha) thì m//(\alpha).” sai vì có thể nằm trên (\alpha) .

  • Câu 2: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 3: Thông hiểu

    Tìm chu kì T của hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight)

    Hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight) tuần hoàn với chu kì T = \frac{{2\pi }}{{100\pi }} = \frac{1}{{50}}.

  • Câu 4: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 5: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 6: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4;\widehat {BAC} = {30^0}. Mặt phẳng \left( P ight) song song với \left( {ABC} ight) cắt đoạn SA tại M sao cho \frac{{SM}}{{SA}} = 2. Tính diện tích thiết diện tạo bởi mặt phẳng \left( P ight) và hình chóp S.ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4;\widehat {BAC} = {30^0}. Mặt phẳng \left( P ight) song song với \left( {ABC} ight) cắt đoạn SA tại M sao cho \frac{{SM}}{{SA}} = 2. Tính diện tích thiết diện tạo bởi mặt phẳng \left( P ight) và hình chóp S.ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng

    Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:

    \Rightarrow {x^2} = \left( {2x - 1} ight)\left( {2x + 1} ight)

    \Rightarrow {x^2} = 4{x^2} - 1

    \Rightarrow 3{x^2} = 1

    \Rightarrow {x^2} = \frac{1}{3} \Rightarrow x =  \pm \frac{1}{{\sqrt 3 }}

  • Câu 8: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
    các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là

    Hình vẽ minh họa

     Đường thẳng và mặt phẳng song song

    Ta có thiết diện của S.ABCD cắt bởi
    mặt phẳng (IJK) là ngũ giác

  • Câu 10: Nhận biết

    Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Phát biểu đúng là: "MP và NQ chéo nhau"

  • Câu 11: Thông hiểu

    Trong các mệnh đề sau mệnh đề nào sai?

    Hai đường thẳng cắt nhau thì cùng nằm trong một mặt phẳng.

    Khi mặt phẳng đó song song với phương chiếu thì hình chiếu của chúng trùng nhau hoặc là một điểm nằm trên một đường thẳng.

    Khi mặt phẳng đó không song song với phương chiếu thì hình chiếu của chúng là hai đường thẳng cắt nhau.

  • Câu 12: Thông hiểu

    Cho hàm số.f(x) = \left\{ \begin{matrix}
1 - x^{2} & \ \text{khi~}x < 2 \\
\sqrt{x + 2} & \ \text{khi~}x \geq 2 \\
\end{matrix} ight.

    a) Giới hạn: \lim_{x ightarrow 3}f(x) =
- 8 Sai||Đúng

    b) Giới hạn: \lim_{x ightarrow
2^{-}}f(x) = - 3 Đúng||Sai

    c) Giới hạn: \lim_{x ightarrow
2^{+}}f(x) = 2 Đúng||Sai

    d) Giới hạn: \lim_{x ightarrow 2}f(x) =
4 Sai||Đúng

    Đáp án là:

    Cho hàm số.f(x) = \left\{ \begin{matrix}
1 - x^{2} & \ \text{khi~}x < 2 \\
\sqrt{x + 2} & \ \text{khi~}x \geq 2 \\
\end{matrix} ight.

    a) Giới hạn: \lim_{x ightarrow 3}f(x) =
- 8 Sai||Đúng

    b) Giới hạn: \lim_{x ightarrow
2^{-}}f(x) = - 3 Đúng||Sai

    c) Giới hạn: \lim_{x ightarrow
2^{+}}f(x) = 2 Đúng||Sai

    d) Giới hạn: \lim_{x ightarrow 2}f(x) =
4 Sai||Đúng

    a) Ta có \lim_{x ightarrow 3}f(x) =
\sqrt{5}

    b) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} <
2x_{n} ightarrow 2, ta có: f\left( x_{n} ight) = 1 -
x_{n}^{2}.

    Khi đó: \lim_{x ightarrow 2^{-}}f(x) =
\lim f\left( x_{n} ight) = 1 - 2^{2} = - 3.

    c) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} >
2x_{n} ightarrow 2, ta có f\left( x_{n} ight) = \sqrt{x_{n} +
2}.

    Khi đó: \lim_{x ightarrow 2^{+}}f(x) =
\lim f\left( x_{n} ight) = \sqrt{2 + 2} = 2.

    d) Vì \lim_{x ightarrow 2^{-}}f(x) eq
\lim_{x ightarrow 2^{+}}f(x) (hay - 3 eq 2) nên không tồn tại \lim_{x ightarrow 2}f(x).

  • Câu 13: Thông hiểu

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 14: Vận dụng cao

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Đáp án là:

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Gọi r_{i} là khoảng cách lần rơi thứ i

    Ta có r_{1} = 81, r_{2} = \frac{2}{3}.81,…, r_{n} = \left( \frac{2}{3} ight)^{n -
1}.81,…

    Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 -
\frac{2}{3}}.

    Gọi t_{i} là khoảng cách lần nảy thứ i

    Ta có t_{1} = \frac{2}{3}.81, t_{2} = \left( \frac{2}{3}
ight).\frac{2}{3}81,…, t_{n} =
\left( \frac{2}{3} ight)^{n - 1}\frac{2}{3}.81,…

    Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ n bằng \dfrac{2}{3}.81.\dfrac{1 - \left( \dfrac{2}{3}ight)^{n - 1}}{1 - \dfrac{2}{3}}.

    Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng S =
\lim\left( 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 - \frac{2}{3}}
+ \frac{2}{3}.81.\frac{1 - \left( \frac{2}{3} ight)^{n - 1}}{1 -
\frac{2}{3}} ight) = 405.

  • Câu 15: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 16: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{2x + 1}{x -
1}

    Khi x \mapsto 1^{+} ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} ight) = 3 > 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  x - 1 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \lim_{x ightarrow
1^{+}}\frac{2x + 1}{x - 1} = + \infty

  • Câu 18: Nhận biết

    Cho hàm số y =
f(x) liên tục trên đoạn \lbrack -
1;2brack và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack. Giá trị của M.n là:

    Hàm số y = f(x) liên tục trên \lbrack - 1;2brack.

    Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1

    Vậy M.n = -3

  • Câu 19: Thông hiểu

    Giải phương trình \cot(3x - 1) = -
\sqrt{3}.

    Ta có

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight) = \cot\left( \frac{5\pi}{6}
ight)

    \Leftrightarrow 3x - 1 = \frac{5\pi}{6}
+ k\pi

    \Leftrightarrow x = \frac{1}{3} +
\frac{5\pi}{18} + k\frac{\pi}{3},k\mathbb{\in Z}

  • Câu 20: Thông hiểu

    Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Ta thấy hàm số có giá trị lớn nhất bằng \sqrt{2} và giá trị nhỏ nhất bằng - \sqrt{2} nên loại các đáp án y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight).

    Tại x = \frac{3\pi}{4};y = -
\sqrt{2} chỉ có hàm số y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn.

  • Câu 21: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 22: Vận dụng cao

    Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm 2022 được cho bởi một hàm số y = 4sin\left\lbrack \frac{\pi}{178}(t - 60)ightbrack + 10 với t\mathbb{\inZ}0 < t \leq 365. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?

    \sin\left\lbrack \frac{\pi}{178}(t -60) ightbrack \leq 1

    \Leftrightarrow y = 4sin\left\lbrack\frac{\pi}{178}(t - 60) ightbrack + 10 \leq 14.

    Ngày có ánh sáng mặt trời nhiều nhất \Leftrightarrow y = 14 \Leftrightarrow\sin\left\lbrack \frac{\pi}{178}(t - 60) ightbrack = 1

    \Leftrightarrow \frac{\pi}{178}(t - 60)= \frac{\pi}{2} + k2\pi \Leftrightarrow t = 149 + 356k.

    Do 0 < t \leq 365

    \begin{matrix}   \Leftrightarrow 0 < 149 + 356k \leqslant 365 \hfill \\   \Leftrightarrow  - \dfrac{{149}}{{356}} < k \leqslant \dfrac{{54}}{{89}}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \hfill \\ \end{matrix}

    Với k = 0 ightarrow t = 149 rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện 0 < t\leq 365 thì ta biết năm này tháng 2 chỉ có 28 ngày).

  • Câu 23: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 24: Nhận biết

    Cho cấp số nhân có số hạng thứ bảy là \frac{1}{2} và công bội \frac{1}{4}. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{7} = \dfrac{1}{2} = u_{1}.q^{6} \\q = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2048 \\q = \dfrac{1}{4} \\\end{matrix} ight.

  • Câu 25: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 26: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 27: Vận dụng

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 28: Nhận biết

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 29: Thông hiểu

    Cho tứ diện ABCD. Gọi E,F lần lượt là trung điểm của ADBC, G là trọng tâm tam giác BCD. Khi đó, giao điểm của EG(ABC) là:

    Hình vẽ minh họa

    Kéo dài EG cắt AF tại I.

    Khi đó I là giao điểm của EG(ABC).

  • Câu 30: Thông hiểu

    Rút gọn biểu thức E = \cos(a + b)\cos(a - b) - \sin(a + b)\sin(a -b)

    Ta có:

    E = \cos(a + b)\cos(a - b) - \sin(a +
b)\sin(a - b)

    E = \cos(a + b + a - b) = \cos2a = 1 -2\sin^{2}a

  • Câu 31: Vận dụng

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    a) Đúng.

    \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 3^{2} - 3 + 3 = 9

    b) Sai.

    \lim_{x ightarrow 1}\left( 3f(x) -
5g(x) ight) = 3.2 - 5.4 = - 14

    c) Sai.

    \lim_{x ightarrow 2}\frac{\sqrt{4x +
1} - 3}{x^{2} - 4} = \lim_{x ightarrow 2}\frac{4x + 1 - 9}{(x - 2)(x +
2)(\sqrt{4x + 1} + 3)}

    = \lim_{x ightarrow 2}\frac{4}{(x +
2)(\sqrt{4x + 1} + 3)} = \frac{1}{6}

    d) Đúng.

    Xét thấy x = 2 là nghiệm của phương trình x^{2} - 3x + 2 = 0 (mẫu số) nên x = 2 cũng là một nghiệm của phương trình 2x^{2} - ax + 4 =
0 (tử số) \Rightarrow a = 6.

    Khi đó:

    \lim_{x ightarrow 2}\frac{2x^{2} - ax +4}{x^{2} - 3x + 2} = \lim_{x ightarrow 2}\frac{2x^{2} - 6x + 4}{x^{2}- 3x + 2} = 2.

    Vậy a = 6;b = 2 \Rightarrow a^{2} + b^{2}
= 36 + 4 = 40.

  • Câu 32: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu và công sai lần lượt là - 2;3. Số hạng thứ 10 bằng:

    Ta có: u_{1} = - 2;d = 3

    \Rightarrow u_{10} = u_{1} + 9d =
25

  • Câu 33: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 34: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 35: Nhận biết

    Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

    4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

  • Câu 36: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là A',B',C',D'. Chọn đáp án đúng.

    Ta có: A'C'//AC \Rightarrow
(A'C'D')//(ABC)

  • Câu 38: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 39: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 40: Nhận biết

    Cho dãy xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 3 \\
u_{n + 1} = \frac{1}{2}u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Số hạng tổng quát của dãy un là?

    Ta có u_{1} = 3;u_{2} = \frac{1}{2}u_{1} =
\frac{3}{2};u_{3} = \frac{1}{2}u_{2} =
\frac{3}{2^{2}};\ldots

    Ta đi chứng minh cho dãy số có số hạng tổng quát là u_{n} = \frac{3}{2^{n - 1}}

    Thật vậy, n = 1 thì u1 = 3 (đúng).

    Giả sử với n = k(k≥1) thì u_{k} = \frac{3}{2^{k - 1}}. Ta đi chứng minh u_{k + 1} =
\frac{3}{2^{k}}

    Ta có u_{k + 1} = \frac{1}{2}u_{k} =
\frac{1}{2} \cdot \frac{3}{2^{k - 1}} = \frac{3}{2^{k}} (điều phải chứng minh).

    Vậy số hạng tổng quát của dãy số là u_{n}
= \frac{3}{2^{n - 1}}

  • Câu 41: Vận dụng

    Kết quả của giới hạn \lim\left\lbrack \frac{\sqrt{3n} + ( -
1)^{n}.cos3n}{\sqrt{n} - 1} ightbrack bằng:

    Ta có

    \lim\left\lbrack \frac{\sqrt{3n} + ( -1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    = \lim\left\lbrack\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack + \lim\left\lbrack \frac{(- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    Khi đó ta có:

    \lim\left\lbrack
\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack = \frac{\sqrt{3}}{1} =
\sqrt{3}

    0 \leq \left| \frac{( -1)^{n}.\cos3n}{\sqrt{n} - 1} ight| \leq \frac{1}{\sqrt{n} - 1}ightarrow 0 \Rightarrow \lim\frac{( - 1)^{n}.\cos3n}{\sqrt{n} - 1} =0

    Vậy \lim\left\lbrack \frac{\sqrt{3n} + (- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack = \sqrt{3}

  • Câu 42: Thông hiểu

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?

    Chọn khẳng định đúng

    Ta có: G là trọng tâm giác ABD 

    => \frac{{BG}}{{GN}} = 2 = \frac{{BM}}{{MC}} \Rightarrow MG//CN

  • Câu 43: Thông hiểu

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 44: Nhận biết

    Với x là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?

    Đẳng thức đúng: sin2x = 2sinx\cos
x.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo