Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Tìm giới hạn ![]()
Ta có:
Nghiệm của phương trình
là?
Ta có:
.
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Cho hai đồ thị hàm số và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là Đúng||Sai
c) Khi thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Vì .
Với với
.
Vậy toạ độ giao điểm của hai đồ thị hàm số là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Tính giới hạn ![]()
Ta có:
Do đó
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho hàm số
. Mệnh đề nào sau đây là đúng?
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên các khoảng và
.
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho một cấp số cộng có
. Hỏi
bằng bao nhiêu?
Ta có:
Cho tứ diện
có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Rút gọn biểu thức: ![]()
Ta có:
Cho hình hộp
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó tỉ số độ dài
là:
Hình vẽ minh họa
Gọi lần lượt là tâm của các hình bình hành
Vì là hình bình hành nên
Từ đó ta có:
(*)
(**)
Từ (*) và (**) suy ra hay
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Cho tứ diện
,
sao cho
. Gọi
là trọng tâm tam giác
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Gọi P là trung điểm của AD.
Ta có:
Mà
Tính giá trị của biểu thức
là:
Ta có:
Cho dãy số
với
. Tính
.
Ta có:
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp . Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Trong không gian, cho ba đường thẳng
không đồng phẳng đôi một cắt nhau. Tìm số giao điểm phân biệt của ba đường thẳng.
Giả sử ba đường thẳng đôi một cắt lần lượt
phân biệt và tạo thành mặt phẳng
.
=> cùng nằm trên một mặt phẳng (trái giả thiết).
=> trùng nhau, tức là
đồng quy.
Vậy có duy nhất một giao điểm phân biệt của ba đường thẳng đã cho.
Cho hình hộp
có
là trung điểm của
. Gọi mặt phẳng
đi qua
và song song với
. Giả sử
. Tỉ lệ độ dài của
và
là:
Hình vẽ minh họa:
Gọi trung điểm của lần lượt là
.
Dễ thấy
Xét mặt phẳng , gọi
Xét tam giác và tam giác
ta có:
(đối đỉnh)
(so le trong)
Vậy hay
Tính giới hạn của hàm số
.
Ta có:
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Cho phương trình
(*), vậy:
a) Phương trình có nghiệm
Đúng||Sai
b) Trong khoảng
phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng
bằng
. Sai||Đúng
d) Trong khoảng
phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Cho phương trình (*), vậy:
a) Phương trình có nghiệm Đúng||Sai
b) Trong khoảng phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng bằng
. Sai||Đúng
d) Trong khoảng phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Ta có:
Vì
Vậy phương trình có hai nghiệm thuộc khoảng là
.
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Giá trị của giới hạn
là:
Ta có:
Tính giá trị của ![]()
Ta có:
Đơn giản biểu thức
, ta có
Ta có:
Cho tứ diện
, lấy điểm
. Mặt phẳng
đi qua
và song song với
và
. Xác định các giao tuyến của
và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh họa:
Mặt phẳng qua
và song song với
=> Mặt phẳng cắt mặt phẳng
theo giao tuyến
song song với
.
Mặt khác, song song với
nên
cắt
và
theo các giao tuyến
và
với
=> Hình tạo bởi các giao tuyến là tứ giác .
Mặt khác
=> Tứ giác là hình bình hành.
Vậy hình tạo bởi các giao tuyến của và các mặt của hình chóp là hình bình hành.
Cho mặt phẳng
và đường thẳng
. Mệnh đề nào sau đây đúng:
Mệnh đề đúng: "".
Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Tính tổng ![]()
Ta có:
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Cho hình lăng trụ
. Gọi trung điểm của
lần lượt là
. Qua phép chiếu song song phương
, mặt phẳng chiếu
biến điểm
thành điểm nào?
Hình vẽ minh họa
Ta có: suy ra
là hình bình hành.
Suy ra phép chiếu song song phương , mặt phẳng chiếu
biến điểm
thành
.
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Tính giá trị của giới hạn sau
là?
Ta có:
Nhưng và
Nên
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số ![]()
Ta có
Giá trị của
bằng:
Ta có:
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả