Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Trên đường tròn bán kính 15dm, cho cung tròn có độ dài
. Số đo của cung tròn đó là:
Độ dài cung tròn là:
=>
Tất cả các nghiệm của phương trình tan (x) = cot (x) là?
Điều kiện
thỏa mãn điều kiện.
Cho hình chóp
có đáy
là hình bình hành. Các điểm
lần lượt là trọng tâm các tam giác
,
,
. Mặt phẳng nào dưới đây song song với đường thẳng
?
Hình vẽ minh họa
Ta có:
Chọn khẳng định đúng trong các khẳng định sau:
Theo công thức cộng
.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Tính giới hạn
.
Ta có:
Cho đồ thị hàm số như hình vẽ:

Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Xét dãy số ta có:
d không cố định => Dãy số không phải là một cấp số cộng.
Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?
Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?
Sn = Σi = 1n i(2i+1) = Σi = 1n (2i2+1)
Kết quả của giới hạn
bằng:
Ta có:
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Cho hai mặt phẳng
và
song song với nhau. Mệnh đề nào sau đây sai?
Đáp án “Đường thẳng và đường thẳng
thì
” sai vì nếu
và đường thẳng
thì
và
có thể chéo nhau.
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Gọi O là tâm hình bình hành ABCD
Ta có:
M là trọng tâm tam giác BCD =>
ABCD là hình bình hành =>
=>
Xét tam giác SAC có:
Theo định lí Ta - lét suy ra
Cho tam giác ABC cân tại A, AH ⊥ BC. Các cạnh AB, AH, BC lập thành một cấp số nhân. Tính công bội q của cấp số nhân đó.
Ta có: AB = AC (tam giác ABC cân)
Các cạnh BC, AB, AH lập thành cấp số nhân nên ta có hệ phương trình:
Vậy công bội của cấp số nhân là
Khẳng định nào sau đây sai?
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:
TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.
TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”
Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.
Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.
Cho hình chóp
, biết
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có là điểm chung của hai mặt phẳng
và
.
Vì nên
là điểm chung của hai mặt phẳng
và
.
Do đó giao tuyến của hai mặt phẳng và
là
.
Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình vẽ minh họa

Xét ΔBFD có OO’ là đường trung bình => OO’ // DF
Mà DF ⊂ (ADF)
=> OO' // (ADF)
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn
theo thứ tự tăng dần?
Số nguyên tố là số tự nhiên lớn hơn và chỉ có hai ước số là
và chính nó.
Vậy dãy số nguyên tố nhỏ hơn là
,
,
,
.
Tính ![]()
Ta có:
Ta có:
Ta cũng có:
Vậy
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:
Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.
Ta có:
Biết rằng
. Tính
?
Ta có:
Khi đó
bằng:
Ta có:
Tìm giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Trong các dãy số sau, dãy số nào là cấp số nhân?
=> Loại đáp án A
=> Loại đáp án B
=> Dãy số là cấp số nhân có công bội q = 2
Chọn đáp án C
=> Loại đáp án B
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ
của năm 2022 được cho bởi một hàm số
với
và
. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Vì
Ngày có ánh sáng mặt trời nhiều nhất
Do
Với rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện
thì ta biết năm này tháng 2 chỉ có 28 ngày).
Cho hộp chữ nhật
có
lần lượt là tâm của
. Trung điểm của
lần lượt là
. Xác định hình chiếu của tam giác
qua phép chiếu song song phương
lên mặt phẳng
.
Hình vẽ minh họa
Ta có: nên tứ giác
là hình bình hành.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Mặt khác thuộc mặt phẳng
nên hình chiếu của
qua phép chiếu song song
lên mặt phẳng
lần lượt là điểm
và
.
Vậy qua phép chiếu song song theo phương lên mặt phẳng
thì hình chiếu của tam giác
là đoạn thẳng
.
Hỏi trên đoạn
, phương trình
có bao nhiêu nghiệm?
Ta có
Theo giả thiết, ta có
.
Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó: