Cho dãy số
thỏa mãn điều kiện
;
với
số hạng
bằng:
Ta có:
Vậy
Cho dãy số
thỏa mãn điều kiện
;
với
số hạng
bằng:
Ta có:
Vậy
Biết giới hạn
và
. Khi đó:
a) Giá trị
nhỏ hơn 0. Sai||Đúng
b) Giá trị
lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác
có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng
với công sai
và
, thì
. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Giá trị nhỏ hơn 0. Sai||Đúng
b) Giá trị lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
. Sai||Đúng
a) Ta có:
b) Ta có:
.
c) Phương trình lượng giác có một nghiệm là
d) Cho cấp số cộng với công sai
và
, thì
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng
độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.
Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống
Vì mỗi lần bóng nảy lên bằng lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn có
=>
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn với
=>
Vậy tổng quãng đường bóng bay là 42m
Giải phương trình ![]()
Ta có:
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn
theo thứ tự tăng dần?
Số nguyên tố là số tự nhiên lớn hơn và chỉ có hai ước số là
và chính nó.
Vậy dãy số nguyên tố nhỏ hơn là
,
,
,
.
Cho dãy số
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây?
Ta có:
lập thành một cấp số nhân có nên
vì
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm của tam giác
và
. Mệnh đề nào dưới đây đúng?
Hình vẽ minh họa
Giả sử là trung điểm của
.
Ta có:
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Cho hai hình bình hành ABCD và ABEF không đồng phẳng có tâm lần lượt là I và J. Chọn
khẳng định sai.
Hình vẽ minh họa
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(ADF) và IJ / / DF đúng.
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(CEB) đúng.
Vậy IJ / / ADsai
Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?
Gọi H là trung điểm của tam giác AB.
M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.
Khi đó ta có:
Theo định lí Ta - lét ta có:
Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.
Tính giới hạn
ta được kết quả bằng
Ta có:
.
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Phương trình
có nghiệm là:
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Nghiệm của phương trình
là
Ta có: .
Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?
Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)
Ta có:
(đồng)
Vậy số tiền bác Hoa phải trả mỗi tháng là (đồng).
Xác định
.
Ta có: .
Xét đường tròn bán kính
. Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Kiểm tra sự đúng sai của các kết luận sau?
a)
Sai||Đúng
b)
khi
Đúng||Sai
c) Hàm số
liên tục tại
Đúng||Sai
c)
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Sai||Đúng
b) khi
Đúng||Sai
c) Hàm số liên tục tại
Đúng||Sai
c) Sai||Đúng
Ta có:
Ta có: Khi thì
Ta có:
Vậy hàm số liên túc tại
Ta có:
Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1
Một học sinh chứng minh un luôn chia hết cho 19 như sau:
Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19
Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.
Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1
Bước 3: Vì 5.23k − 2 + 33k − 1 và 19.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*
Vậy un chia hết cho 19, ∀n ∈ ℕ*
Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?
Lập luận hoàn toàn đúng!
Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Vậy
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Cho tứ diện
. Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Cho tứ diện . Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Hình vẽ minh họa
Trong mặt phẳng , gọi
.
Trong , gọi
.
Trong mặt phẳng , dựng
là đường trung bình của tam giác
.
là trung điểm của
.
Trong , dựng
.
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Cho hàm số
. Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?
Ta có:
y.(cosx + 2) = 1 – m.sinx
=> m.sinx + y.cosx = 1 – 2y
Phương trình có nghiệm khi
Nghiệm của phương trình là
=>
=>
Theo yêu cầu bài toán ta có:
Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}
Giá trị của
bằng:
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Cho cấp số nhân
có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Đổi số đo của góc
sang đơn vị radian
Cách 1: Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.
Bước 2. Bấm 70 shift DRG 1 =
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Giá trị của
bằng:
Ta có mà
Suy ra
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấy
. Giả sử
là mặt phẳng đi qua
song song với hai đường thẳng
và
. Xác định giao tuyến của
với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình
Hình vẽ minh họa
Gọi trung điểm lần lượt là
.
Gọi
Từ kẻ
song song với
.
Ta có:
(1)
Ta có (2)
Từ (1) và (2) => Các giao tuyến của với các cạnh của hình chóp là hình ngũ giác
.
Cho ba mặt phẳng
đôi một song song. Hai đường thẳng
lần lượt cắt ba mặt phẳng tại
và
, (
nằm giữa
và
,
nằm giữa
và
). Biết rằng
. Tính
.
Ta có:
Cho tứ diện
. Gọi
là hai điểm phân biệt cùng thuộc đường thẳng
, hai điểm
phân biệt thuộc đường thẳng
. Khi đó vị trí tương đối của hai đoạn thẳng
và
là:
Giả sử đường thẳng và
không chéo nhau, tức là cùng thuộc một mặt phẳng.
Khi đó và
cùng thuộc một mặt phẳng hay
là một tứ giác (trái giả thiết).
Vậy đường thẳng và
chéo nhau.
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có: