Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.
Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.
Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.
Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).
Cho cấp số nhân
có
. Tính
.
Ta có
Vậy .
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Giả sử A là tập con của tập hợp các số nguyên dương sao cho
(I) k ∈ A
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k
Lúc đó, ta có:
(I) k ∈ A : số nguyên dương k thuộc tập A.
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.
Tính giới hạn ![]()
Ta có:
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 120 SHIFT Ans 1 =
Rút gọn biểu thức ![]()
Ta có:
Cho cấp số nhân
với số hạng đầu
và công bội
. Với
, khẳng định nào sau đây đúng?
Do là cấp số nhân nên
.
Đổi số đo
sang số đo theo đơn vị là radian.
Ta có:
Cho hình tứ diện ABCD, phát biểu nào sau đây là đúng?
Phương án "AC và BD cắt nhau" sai vì nếu AC cắt BD thì 4 điểm A, B, C, D đồng phẳng, điều này mẫu thuẫn với A, B, C, D là 4 đỉnh của một tứ diện.
Phương án "AC và BD không có điểm chung" đúng vì nếu chúng có điểm chung thì A, B, C, D không thể là 4 đỉnh của một tứ diện
Phương án "Tồn tại một mặt phẳng chứa AD và BC" sai vì nếu có một mặt phẳng chứa AD và BC thì 4 điểm A, B, C, D đồng phẳng, điều này mâu thuẫn với A, B, C, D là 4 đỉnh của một tứ diện.
Phương án "AB và CD song song với nhau" sai.
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Cho hình chóp S.ABCD với đáy là hình thang ABCD, đáy lớn BC gấp đôi đáy nhỏ AD. Gọi E là trung điểm AD và O là giao điểm của AC và BE, I là một điểm thuộc đoạn OC (I khác O và C). Mặt phẳng (α) qua I song song với (SBE). Xác định hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD.
Hình vẽ minh họa
Ta có:
=> => Ix cắt BC tại M, AD tại Q.
Ta có:
=>
=> Mx cắt SC tại N.
Ta có:
=>
=> Qx cắt SD tại P
Tứ giác BCDE là hình bình hành
=> CD // BE // MQ
=> CD // (α).
Ta có:
=>
Vậy hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD là hình thang MNPQ.
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Đường thẳng
song song với đường thẳng nào?
Hình vẽ minh họa:
Dễ dàng thấy được: là đường trung bình của tam giác
.
Với giá trị nào của m thì phương trình
có nghiệm:
Ta có:
Do
Vậy
Biết rằng
với
là các tham số. Tính giá trị của biểu thức
.
Ta có:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Tìm khẳng định đúng.
Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.
Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.
ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.
=> Chọn phương án – có thể là một hình tam giác.
Từ độ cao 63m của tháp nghiêng Pi-sa ở Italia, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt được ngay trước đó. Tính độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất.
Đáp án: 77
Từ độ cao 63m của tháp nghiêng Pi-sa ở Italia, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt được ngay trước đó. Tính độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất.
Đáp án: 77
Ta thấy:
Ban đầu bóng cao 63m nên chạm đất lần 1 bóng di chuyển quãng đường .
Từ lúc chạm đất lần một đến chạm đất lần hai bóng di chuyển được quãng đường là (do độ cao lần hai bằng
độ cao ban đầu).
Từ lúc chạm đất lần hai đến chạm đất lần ba bóng di chuyển được quãng đường là (do độ cao lần ba bằng
độ cao lần hai)...
Cứ tiếp tục như vậy kéo dài ra vô tận thì ta có được tổng quãng đường mà bóng cao su đã di chuyển là
.
Vậy quãng đường di chuyển của bóng là .
Cho tứ diện
. Gọi
lần lượt là trung điểm
và
, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng
và
.
Hình vẽ minh họa
Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G
=> Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Kết quả đúng của
là:
Xét:
Ta có:
Suy ra
.
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là
đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Gọi là tiền lương anh Nam nhận được vào năm thứ
.
Tại năm đầu tiên, lương anh Nam nhận được là .
Vì mỗi năm, anh Nam được tăng lương thêm đô, nên ta có
Do đó là cấp số cộng với
.
Tổng lương mà anh Nam nhận được là đô, áp dụng công thức tính tổng
số hạng đầu của cấp số cộng:
.
Vậy anh Nam mất 8 năm làm việc để được tổng lương là .
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
bằng
Ta có:
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Trong các mệnh đề sau mệnh đề nào sai?
Hai đường thẳng cắt nhau thì cùng nằm trong một mặt phẳng.
Khi mặt phẳng đó song song với phương chiếu thì hình chiếu của chúng trùng nhau hoặc là một điểm nằm trên một đường thẳng.
Khi mặt phẳng đó không song song với phương chiếu thì hình chiếu của chúng là hai đường thẳng cắt nhau.
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Tính giới hạn
.
Ta có:
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số:
. Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: . Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Ta có:
Tính giới hạn ![]()
Ta có:
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Cho hình chóp
có đáy
là hình thang với
là đáy lớn. Biết
. Gọi
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 13
Cho hình chóp có đáy
là hình thang với
là đáy lớn. Biết
. Gọi
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 13
Hình vẽ minh họa
Gọi là giao điểm của
và
trong mặt phẳng
.
Theo hệ quả Talet, ta có:
Ta có:
.
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Có bao nhiêu giá trị nguyên của m để phương trình
có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Cho hình chóp
có
và
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa
Giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.