Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

  • Câu 2: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 3: Nhận biết

    \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1}}{{x - 1}} bằng

    Ta có: \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1}}{{x - 1}} =  + \infty

    Do \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} ight) = 2 > 0 \hfill \\  x \to {1^ + } \Rightarrow x - 1 > 0 \hfill \\ \end{gathered}  ight.

  • Câu 4: Thông hiểu

    Dãy số \left(
u_{n} ight) có công thức số hạng tổng quát nào dưới đây xác định một cấp số nhân?

    Xét dãy số U_{n} = 2020^{n} ta có:

    \frac{U_{n + 1}}{U_{n}} = \frac{2020^{n +
1}}{2020^{n}} = 2020;\forall n \in \mathbb{N}^{*} nên U_{n} = 2020^{n} là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} =
2020^{n^{3}}

    \frac{U_{n + 1}}{U_{n}} = \frac{2020^{(n
+ 1)^{3}}}{2020^{n^{3}}} = 2020^{3n^{2} + 3n + 1};\forall n \in
\mathbb{N}^{*} nên U_{n} =
2020^{n^{3}} không là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} = \frac{2020}{n +
2019}

    \frac{U_{n + 1}}{U_{n}} =
\frac{\frac{2020}{n + 1 + 2019}}{\frac{2020}{n + 2019}} = \frac{n +
2019}{n + 2020};\forall n \in \mathbb{N}^{*} nên U_{n} = \frac{2020}{n + 2019} không là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} = 2020n +
2019

    \frac{U_{n + 1}}{U_{n}} = \frac{2020(n +
1) + 2019}{2020n + 2019} = \frac{2020n + 4039}{2020n + 2019};\forall n
\in \mathbb{N}^{*} nên U_{n} =
2020n + 2019 không là công thức số hạng tổng quát xác định một cấp số nhân

  • Câu 5: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 6: Thông hiểu

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Ta có:

    \sin\left( 2x - \frac{\pi}{4} ight) =
\sin\left( x + \frac{3\pi}{4} ight)

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {2x - \dfrac{\pi }{4} = x + \dfrac{{3\pi }}{4} + k2\pi } \\ 
  {2x - \dfrac{\pi }{4} = \dfrac{\pi }{4} - x + k2\pi } 
\end{array}(k \in \mathbb{Z})} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z})\  ight.\

    x \in (0;\pi)\ nên\ x \in \left\{
\frac{\pi}{6};\frac{5\pi}{6} ight\}

    Vậy phương trình có hai nghiệm thuộc khoảng (0;\pi)x
= \frac{\pi}{6};x = \frac{5\pi}{6}.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 7: Thông hiểu

    Tính giới hạn  \lim_{x ightarrow 2}\frac{\sqrt{x + 2} - 2}{x -
2}

    Ta có:

    \lim_{x ightarrow 2}\frac{\sqrt{x + 2}
- 2}{x - 2} = \lim_{x ightarrow 3}\frac{\left( \sqrt{x + 2} - 2
ight)\left( \sqrt{x + 2} + 2 ight)}{(x - 2)\left( \sqrt{x + 2} + 2
ight)}

    = \lim_{x ightarrow 2}\frac{x - 2}{(x
- 2)\left( \sqrt{x + 2} + 2 ight)}

    = \lim_{x ightarrow 2}\frac{1}{\sqrt{x
+ 2} + 2} = \frac{1}{4}

  • Câu 8: Vận dụng cao

    Giá trị lớn nhất của hàm số: y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}

     Ta có: 

    \begin{matrix}  \sin x + \cos x = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow  - 1 \leqslant \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Rightarrow  - \sqrt 2  \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\   \Rightarrow  - \sqrt 2  + 2 \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2 \leqslant \sqrt 2  + 2 \hfill \\   \Rightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2  >  0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  y = \dfrac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}} \hfill \\   \Leftrightarrow \left( {1 - y} ight)\sin x + \left( {2 - y} ight)\cos x + 1 - 2y = 0 \hfill \\ \end{matrix}

    Phương trình có nghiệm:

    \begin{matrix}   \Leftrightarrow {\left( {1 - y} ight)^2} + {\left( {2 - y} ight)^2} \geqslant {\left( {1 - 2y} ight)^2} \hfill \\   \Leftrightarrow {y^2} + y - 2 \leqslant 0 \Leftrightarrow  - 2 \leqslant y \leqslant 1 \hfill \\   \Rightarrow \max y = 1 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?

    (1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.

    (2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.

    (3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.

    Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song

    Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c

    Phát biểu (3) Sai vì có thể xảy ra b trùng c.

  • Câu 10: Vận dụng

    Giá trị của giới hạn \lim\left\lbrack
\frac{1}{1.3} + \frac{1}{3.5} + ... + \frac{1}{(2n - 1)(2n + 1)}
ightbrack bằng:

    Với mọi giá trị k \in
\mathbb{N}^{*} thì \frac{1}{(2k +
1)(2k - 1)} = \frac{1}{2}\left( \frac{1}{2k - 1} - \frac{1}{2k + 1}
ight)

    Do đó:

    \lim\left\lbrack \frac{1}{1.3} +
\frac{1}{3.5} + ... + \frac{1}{(2n - 1)(2n + 1)}
ightbrack

    = \lim\left\lbrack \frac{1}{2}\left( 1 -
\frac{1}{3} + \frac{1}{3} - \frac{1}{5} + .. + \frac{1}{2n - 1} -
\frac{1}{2n + 1} ight) ightbrack

    = \lim\left\lbrack \frac{1}{2}\left( 1 -
\frac{1}{2n - 1} ight) ightbrack = \frac{1}{2}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của AC và BM

    Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)

    => Giao tuyến cần tìm chính là đường thẳng SI.

  • Câu 12: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

  • Câu 13: Nhận biết

    Đổi số đo của góc 70^{0} sang đơn vị radian

    Cách 1: Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Khi đó:\mu = \frac{70.\pi}{180} =
\frac{7.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.

    Bước 2. Bấm 70 shift DRG 1 =

  • Câu 14: Nhận biết

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    “Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

    “Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

    “Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.

  • Câu 15: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng là

    Ta có: u_{7} = u_{1} + 6d = - 0,1 + 6.0,1
= 0,5

  • Câu 16: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight) bằng: 

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight)\left( {\sqrt {n + 5}  + \sqrt {n + 1} } ight)}}{{\sqrt {n + 5}  + \sqrt {n + 1} }} \hfill \\   = \lim \dfrac{{n + 5 - n - 1}}{{\sqrt {n + 5}  + \sqrt {n + 1} }} \hfill \\   = \lim \dfrac{4}{{\sqrt {n + 5}  + \sqrt {n + 1} }} = 0 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 19: Nhận biết

    Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?

    Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89

  • Câu 20: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 21: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 22: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 23: Vận dụng

    Một cấp số nhân có 5 số hạng, công bội q bằng \frac{1}{4} số hạng thứ nhất, tổng hai số hạng đầu bằng 24. Xác định cấp số nhân?

    Theo bài ra ta có:

    u_{1} + u_{2} = u_{1} + u_{1}.q =
24

    \Rightarrow u_{1} +
\frac{1}{4}{u_{1}}^{2} = 24

    \Rightarrow \left\lbrack \begin{matrix}
u_{1} = - 12;q = - 3 \\
u_{1} = 8;q = 2 \\
\end{matrix} ight.

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Lấy M là trung điểm của SC. Tìm hình chiếu của điểm M qua phép chiếu song song phương AB lên mặt phẳng chiếu (SAD).

    Giả sử N là ảnh của  M  theo phép chiếu song song phương  AB  lên mặt phẳng \left( {SAD} ight).

    Suy ra MN//AB =  > MN//CD

    Do  M  là trung điểm của SC=> N là trung điểm của  SD .

  • Câu 25: Nhận biết

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Có bao nhiêu đường thẳng chứa cạnh của hình lập phương chéo nhau với đường thẳng chứa đường chéo AC_{1} của hình lập phương?

    Hình vẽ minh họa

    Có 6 đường thẳng là BB_{1},DD_{1},A_{1}D_{1},A_{1}B_{1},CB,CD.

  • Câu 26: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 27: Nhận biết

    Tính \cos\alpha biết 0 < \alpha < \frac{\pi}{2}\sin\alpha = \frac{1}{4}.

    Ta có sin^{2}\alpha + cos^{2}\alpha =
1

    \Rightarrow cos^{2}\alpha = 1 -
sin^{2}\alpha = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}.

    0 < \alpha <
\frac{\pi}{2} nên \cos\alpha >
0.

    Vậy \cos\alpha =
\frac{\sqrt{15}}{4}.

  • Câu 28: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n + 5. Số 19 là số hạng thứ bao nhiêu của dãy số đó?

    Ta có

    u_{n} = 19 \Leftrightarrow 2n + 5 =
19

    \Leftrightarrow 2n = 14 \Leftrightarrow n
= 7.

    Vậy 19 là số hạng thứ 7 của dãy số đã cho.

  • Câu 29: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 30: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 31: Thông hiểu

    Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối u_{6} của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}q = 2 \\S_{6} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - q^{6}}{1 - q} = 189 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - 2^{6}}{1 - 2} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1} = 3 \\\end{matrix} ight.

    \Rightarrow u_{6} = u_{1}.q^{5} =
3.2^{6} = 96

  • Câu 32: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 33: Nhận biết

    Hàm số f(x) =\dfrac{x^{2} + x\cos x + \sin x}{2sinx + 3} liên tục trên:

    Ta có: 2sinx + 3 eq 0,\forall
x\mathbb{\in R}

    => Tập xác định D\mathbb{=
R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 34: Thông hiểu

    Có bao nhiêu giá trị nguyên của a để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng?

    Để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng thì a^{4} + 3a^{2}
- 9 = 2a^{2}

    Đặt t = a^{2};(t \geq 0) phương trình trở thành

    t^{2} + t - 9 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{- 1 + \sqrt{37}}{2} \\t = \dfrac{- 1 - \sqrt{37}}{2}(l) \\\end{matrix} ight.

    Với t = \frac{- 1 + \sqrt{37}}{2}
\Rightarrow a = \pm \sqrt{\frac{- 1 + \sqrt{37}}{2}}

    Do a\mathbb{\in Z} vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.

  • Câu 35: Thông hiểu

    Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?

    Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.

  • Câu 36: Thông hiểu

    Cho ba đường thẳng a,b,c đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?

    Gọi M là điểm bất kì nằm trên a.

    Giả sử d là đường thẳng qua M cắt cả b và c.

    Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.

    Với mỗi điểm M ta được một đường thẳng d.

    Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.

  • Câu 37: Nhận biết

    Giá trị của B =
\lim\frac{2n + 3}{n^{2} + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn \ \
n_{a} thỏa mãn:

    \frac{2n_{a} +
3}{n_{a}^{2} + 1} < a

    \Leftrightarrow n_{a} > \frac{1 +
\sqrt{a^{2} - 4a + 13}}{a}

    Ta có: \frac{2n + 3}{n^{2} + 1} < a\
với\ mọi\ n > n_{a}

    Suy ra  B =\lim\frac{2n + 3}{n^{2} + 1} =0 .

  • Câu 38: Nhận biết

    Cho hình chóp S.ABCD, đáy là hình bình hành. Gọi O là giao điểm của ACBD, M là trung điểm SC. Khằng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có OM là đường trung bình tam giác SAC nên OM//SA, mà SA
\subset (SAD)OM ⊄
(SAD) suy ra OM//(SAD).

  • Câu 39: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 40: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 41: Vận dụng

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Kiểm tra được y = 1 - sin^{2}x; y = \left| \cot x ight|.sin^{2}x; y = 1 + \left| \cot x + \tan x
ight| là các hàm số chẵn.

    y = x^{2}tan2x - \cot x là hàm số lẻ.

  • Câu 42: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 43: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 44: Nhận biết

    Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?

    Ta thấy ở dãy số 2;\ 2;\ 2;\ 2;\
2u_{1} = u_{2} = u_{3} = u_{4}
= u_{5} = 2 nên đây là cấp số nhân với công bội q = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo