Tính giới hạn
.
Ta có:
Tính giới hạn
.
Ta có:
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Có bao nhiêu giá trị nguyên của a thỏa mãn
?
Ta có:
Do đó:
Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức
. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?
Ta có:
Do đó mực nước của kênh cao nhất khi
Vì
Vậy mực nước của kênh là cao nhất khi t = 14 (h)
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Số nghiệm của phương trình với
là?
4 || Bốn || bốn || 4 nghiệm
Phương trình
Vì
Vì
Vậy có tất cả 4 nghiệm thỏa mãn bài toán.
Cho hàm số
xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hàm số xác định trên
thỏa mãn
. Tính giới hạn
?
Cho ba đường thẳng
đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?
Gọi M là điểm bất kì nằm trên a.
Giả sử d là đường thẳng qua M cắt cả b và c.
Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.
Với mỗi điểm M ta được một đường thẳng d.
Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Tính giới hạn ![]()
Ta có:
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Phương trình
có nghiệm là:
Ta có , với
.
Góc có số đo
đổi sang độ là:
Cách 1:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".
Bước 2: Bấm SHIFT Ans 2 =
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là
, tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?
Gọi là diện tích đế tháp và
là diện tích bề mặt trên của tầng thứ n, với
.
Theo giả thiết ta có:
Dãy số lập thành sấp số nhân với số hạng đầu tiên là
, công sai
.
Diện tích mặt trên cùng của tháp là:
Giá trị của giới hạn
là:
Ta có:
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?
Gọi a là số tiền gửi mỗi tháng.
Cuối tháng thứ 1 số tiền là
Cuối tháng thứ 2 số tiền là
Cuối tháng thứ n số tiền là
Áp dụng công thức trên, ta tính được
Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).
Cho hình hộp
, gọi
là trung điểm của
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp.
Hình vẽ minh họa
Ta có:
Suy ra giao tuyến của và
là đường thẳng
qua
song song với
;
.
Vì nên hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp
là hình thang
.
Cho hình chóp
có đáy
là hình thang với
là đáy lớn. Biết
. Gọi
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 13
Cho hình chóp có đáy
là hình thang với
là đáy lớn. Biết
. Gọi
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 13
Hình vẽ minh họa
Gọi là giao điểm của
và
trong mặt phẳng
.
Theo hệ quả Talet, ta có:
Ta có:
.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề đúng là: "Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau hoặc trùng nhau."
Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Cho tứ diện
. Gọi
là trung điểm cạnh
, lấy điểm
trên cạnh
sao cho
. Giao tuyến của hai mặt phẳng
và
đi qua giao điểm của hai đường nào trong các cặp đường thẳng sau?
Hình vẽ minh họa

Gọi I là giao điểm của MN và BC.
Giao tuyến cần tìm là DI.
Do đó giao tuyến ấy đi qua giao điểm của MN và BC.
Tính giới hạn
.
Ta có:
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Tìm giá trị thực của m để hàm số
liên tục tại
.
Tập xác định của hàm số: chứa
Theo giả thiết thì ta phải có:
Vậy
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Các điểm
qua phép chiếu song song phương
trên mặt phẳng
ta thu được ảnh lần lượt là
. Hình chóp
cần thêm điều kiện gì để tứ giác
là hình vuông?
Hình vẽ minh họa
Theo bài ra ta có: lần lượt là ảnh của
qua phép chiếu song song phương
trên mặt phẳng
.
Ta có:
=> là đường trung bình của các tam giác
=>
=> là hình bình hành
=>
là hình bình hành.
Để là hình vuông thì
suy ra hình chóp
có mặt bên
vuông cân tại
.
Tìm khẳng định đúng.
Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.
Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.
ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.
=> Chọn phương án – có thể là một hình tam giác.
Cho cấp số nhân
với
. Viết bốn số hạng đầu tiên của cấp số nhân.
Ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cho tứ diện
có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Cho hàm số
. Tính
.
Hàm số đã cho xác định trên và
Giả sử là một dãy số bất kì, thỏa mãn
Ta có:
Vậy
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.