Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x};g(x) = \frac{|sin2x| - cos3x}{2 + tan^{2}x}. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x} có tập xác định D=\mathbb{ R}

    Với mọi x thuộc D => -x thuộc D ta có:

    f( - x) = \frac{\cos( - 2x)}{1 +
sin^{2}( - 3x)} = \frac{cos2x}{1 + sin^{2}3x} = f(x)

    Vậy f(x) là hàm số chẵn

    Tương tự xét hàm số g(x) = \frac{|sin2x|
- cos3x}{2 + tan^{2}x};D\mathbb{= R}\backslash\left\{ \frac{\pi}{2} +
k\pi,k\mathbb{\in Z} ight\}

    Với mọi x thuộc D => -x thuộc D ta có:

    \begin{matrix}g( - x) = \dfrac{\left| \sin( - 2x) ight| - \cos( - 3x)}{2 + tan^{2}( -x)}\hfill \\= \dfrac{|sin2x| - cos3x}{2 + tan^{2}x} = g(x) \hfill\\\end{matrix}

    Vậy g(x) là hàm số chẵn.

  • Câu 2: Nhận biết

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 3: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 5: Thông hiểu

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành,G là trọng tâm của tam giác SAB. Lấy I
\in AB,M \in AD sao cho AI = IB;AD
= 3AM. Đường thẳng qua M và song song với ABcắt CI tại J. Xác định mặt phẳng song song với đường thẳng GJ?

    Hình vẽ minh họa

    Ta có: \frac{IJ}{IC} = \frac{AM}{AD} =
\frac{1}{2} = \frac{IG}{IS}

    \Rightarrow JG//SC

    \Rightarrow \left\{ \begin{matrix}JG\bot(SCD) \\JG\bot(SAC) \\SBC \\\end{matrix} ight.

  • Câu 7: Vận dụng cao

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2;u_{2} = 4 \\
u_{n + 2} = 2u_{n + 1} - u_{n} + 5;(n \geq 1) \\
\end{matrix} ight.. Tính \lim_{n ightarrow\infty}\dfrac{u_{n}}{n^{2}}.

    Ta có:

    \begin{matrix}
  {u_{n + 2}} = 2{u_{n + 1}} - {u_n} + 5 \hfill \\
   \Rightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} + 5 \hfill \\ 
\end{matrix}

    Đặt \Rightarrow v_{n} = u_{n + 1} - u_{n}
\Rightarrow v_{n + 1} = v_{n} + 5;(n \geq 1)

    Từ đó:

    \begin{matrix}
  {u_2} - {u_1} = 2 \hfill \\
  {u_3} - {u_2} = 7 \hfill \\
  {u_4} - {u_3} = 12 \hfill \\
  ... \hfill \\
  {u_{n + 1}} - {u_n} = 5n - 3 \hfill \\ 
\end{matrix}

    Khi đó:

    \begin{matrix}
  {u_{n + 1}} - {u_1} = 2 + 7 + 12 + ... + \left( {5n - 3} ight) \hfill \\
   = \dfrac{{n\left[ {2 + \left( {5n - 3} ight)} ight]}}{2} = \dfrac{{n\left( {5n - 1} ight)}}{2} \hfill \\ 
\end{matrix}

    Từ đó ta có:

    \begin{matrix}
  {u_{n + 1}} = \dfrac{{n\left( {5n - 1} ight)}}{2} + {u_1} \hfill \\
   = \dfrac{{n\left( {5n - 1} ight)}}{2} + 2 = \dfrac{{5{n^2} - n + 4}}{2} \hfill \\ 
\end{matrix}

    Vậy u_{n} = \frac{5n^{2} - 11n +
10}{2}

    => \lim_{n ightarrow
\infty}\frac{u_{n}}{n^{2}} = \lim_{n ightarrow \infty}\left(
\frac{5n^{2} - 11n + 10}{2} ight) = \frac{5}{2}

  • Câu 8: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1}\frac{2x^{2} - 3x + 1}{1 -
x^{2}}

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{2} - 3x
+ 1}{1 - x^{2}} = \lim_{x ightarrow 1}\frac{1 - 2x}{x - 1} = -
\frac{1}{2}

  • Câu 9: Vận dụng

    Tính giới hạn \lim\sqrt{2.3^{n} - n +
2}.

    Ta có:

    \begin{matrix}
  \lim \sqrt {{{2.3}^n} - n + 2}  \hfill \\
   = \lim \sqrt {{3^n}} \sqrt {2 - \dfrac{n}{{{3^n}}} + 2.{{\left( {\dfrac{1}{3}} ight)}^n}}  \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\sqrt{3^{n}} = + \infty \\0 \leq \dfrac{n}{3^{n}} \leq \dfrac{n}{C_{2}^{n}} = \dfrac{2}{n - 1}ightarrow 0 \Rightarrow \lim\dfrac{n}{3^{n}} = 0 \\\lim\left( \dfrac{1}{3} ight)^{n} = 0 \\\end{matrix} ight. nên \left\{\begin{matrix}\lim\sqrt{3^{n}} = + \infty \\\lim\sqrt{2 - \dfrac{n}{3^{n}} + 2\left( \dfrac{1}{3} ight)^{n}} =\sqrt{2} > 0 \\\end{matrix} ight.

    Do đó \lim\sqrt{2.3^{n} - n + 2} = +
\infty

  • Câu 10: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 11: Vận dụng

    Biết tổng ba số hạng đầu của một cấp số nhân là 16, đồng thời theo thứ tự chúng là số hạng thứ nhất, số hạng thứ tư và số hạng thứ tám của một cấp số cộng. Công bội và số hạng đầu tiên của cấp số nhân là:

    Gọi u_{1};u_{2};u_{3};u_{4} là bốn số hạng đầu của cấp số nhân \left( u_{n}
ight) với công bội q.

    Gọi \left( v_{n} ight) là cấp số cộng tương ứng với công sai d.

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} + u_{2} + u_{3} = 16 \\
u_{1} = v_{1} \\
u_{2} = v_{4} = v_{1} + 3d \\
u_{3} = v_{8} = v_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + u_{1}.q + u_{1}.q^{2} = 16 \\
u_{1}.q = v_{1} + 3d \\
u_{1}.q^{2} = v_{1} + 7d \\
\end{matrix} ight.

    \left( u_{1} eq 0 ight) \Rightarrow\left\lbrack \begin{matrix}q = 1(ktm) \\q = \dfrac{10}{3}(tm) \\\end{matrix} ight.

    q = \frac{10}{3} \Rightarrow u_{1} =
\frac{144}{139}

  • Câu 12: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.

    Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.

  • Câu 13: Vận dụng cao

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Đáp án là:

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Ta có:

    100 + 100.0,8 + 100.0,8)^{2} +
100.(0,8)^{3} + \ldots

    = 100.\frac{1}{1 - 0,8} = 500\left( \
m^{3} ight).

  • Câu 14: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có công bội âm. Biết u_{3} = 12;u_{7} = 192. Khi đó u_{10} = ?

    Ta có:

    \left\{ \begin{matrix}
u_{3} = 12 \\
u_{7} = 192 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1}.q^{2} = 12 \\
u_{1}.q^{6} = 192 \\
\end{matrix} ight.

    \Leftrightarrow \frac{q^{2}}{q^{6}} =
\frac{12}{192} \Leftrightarrow q^{4} = 16

    \Leftrightarrow q = - 2;(q < 0)
\Rightarrow u_{1} = 3

    \Rightarrow u_{10} = u_{1}.q^{9} = 3.( -
2)^{9} = - 1536

  • Câu 16: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 17: Thông hiểu

    Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?

    Chọn phát biểu đúng

    Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.

    => AC và A’C’ cắt nhau.

    Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).

  • Câu 18: Nhận biết

    Cho các giới hạn \lim_{x ightarrow x_{0}}f(x) = 2;\lim_{x
ightarrow x_{0}}g(x) = 3. Tính giá trị biểu thức T = \lim_{x ightarrow x_{0}}\left\lbrack 3f(x) -
4g(x) ightbrack

    Ta có:

    T = \lim_{x ightarrow
x_{0}}\left\lbrack 3f(x) - 4g(x) ightbrack

    \Rightarrow T = 3\lim_{x ightarrow
x_{0}}f(x) - 4\lim_{x ightarrow x_{0}}g(x) = 6 - 12 = - 6

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Cho tứ diện ABCD có độ dài tất cả các cạnh bằng x. Gọi G là trọng tâm tam giác ABC. Tính diện tích thiết diện tạo bởi mặt phẳng (CDG) và tứ diện ABCD?

    Hình vẽ minh họa:

    Gọi M,N lần lượt là trung điểm các cạnh AB,BC

    \Rightarrow AN \cap MC = G

    Ta có: (CDG) \cap AB = M

    Suy ra tam giác MCD là thiết diện của mặt phẳng (CDG) và tứ diện ABCD

    Tam giác ABD đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MD =
\frac{x\sqrt{3}}{2}

    Tam giác ABC đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MC =
\frac{x\sqrt{3}}{2}

    Gọi H là trung điểm của CD \Rightarrow
MH\bot CD

    \Rightarrow S_{MCD} =
\frac{1}{2}MH.CD

    Ta có: MH = \sqrt{MC^{2} -
HC^{2}}

    \Leftrightarrow MH = \sqrt{MC^{2} -
\frac{CD^{2}}{2}}

    \Leftrightarrow MH =
\frac{x\sqrt{2}}{2}

    \Rightarrow S_{MCD} =
\frac{1}{2}.\frac{x\sqrt{2}}{2}.x = \frac{x^{2}\sqrt{2}}{4}

  • Câu 21: Nhận biết

    Giá trị của \lim\frac{1}{n + 1} bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\frac{1}{a} - 1

    Suy ra:

    \frac{1}{n +
1} < \frac{1}{n_{a} + 1} < a\ \forall n > n_{0}

    Vậy \lim\frac{1}{n + 1} = 0.

  • Câu 22: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = \frac{3^{n} - 1}{3^{n -
1}}. Tìm số hạng thứ 5 của cấp số nhân đã cho.

    S_{n} = \frac{3^{n} - 1}{3^{n - 1}} =
3.\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack

    Mặt khác

    \Rightarrow S_{n} = u_{1}.\dfrac{1 -q^{n}}{1 - q} \Rightarrow \left\{ \begin{matrix}u_{1} = 3(1 - q) \\q = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = \dfrac{1}{3} \\\end{matrix} ight.

    \Rightarrow u_{5} = u_{1}.q^{4} =
\frac{2}{3^{4}}

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

    Đáp án \left\{ \begin{matrix}
a//b \\
b//(\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//b \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//(\alpha) \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//b sai: Trường hợp a,b chéo nhau.

  • Câu 24: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 25: Vận dụng cao

    Tìm giá trị nhỏ nhất m của hàm số y = 2sin^{2}x +\sqrt{3}sin2x.

    Ta có y = 2sin^{2}x + \sqrt{3}sin2x = 1 -cos2x + \sqrt{3}sin2x

    \begin{matrix}= \sqrt{3}sin2x - cos2x + 1 = 2\left( \dfrac{\sqrt{3}}{2}sin2x -\dfrac{1}{2}cos2x ight) + 1 \\= 2\left( sin2x\cos\dfrac{\pi}{6} - \sin\dfrac{\pi}{6}cos2x ight) + 1 =2sin\left( 2x - \dfrac{\pi}{6} ight) + 1. \\\end{matrix}

    - 1 \leq \sin\left( 2x - \frac{\pi}{6}ight) \leq 1

    \begin{matrix}\Leftrightarrow - 1 \leq 1 + 2sin\left( 2x - \dfrac{\pi}{6} ight) \leq3 \hfill\\\Leftrightarrow - 1 \leq y \leq 3 \hfill\\\end{matrix}

    Do đó giá trị nhỏ nhất của hàm số là -1.

  • Câu 26: Nhận biết

    Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?

    i) \cos^{2}\alpha =
\frac{1}{\tan^{2}\alpha + 1}.

    iii) \sqrt{2}\cos\left( \alpha +
\frac{\pi}{4} ight) = \cos\alpha + \sin\alpha.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - cos\alpha.

    iv) cot2\alpha = 2\cot^{2}\alpha -
1.

    i) Ta có: \frac{1}{\cos^{2}\alpha} = 1 +
\tan^{2}\alpha \Leftrightarrow \cos^{2}\alpha = \frac{1}{1 +
\tan^{2}\alpha}

    Vậy i) đúng.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - sin\left( \frac{\pi}{2} - \alpha ight) = -
cos\alpha.

    Vậy ii) đúng.

    iii) \sqrt{2}cos\left( \alpha +
\frac{\pi}{4} ight) = \sqrt{2}\left( cos\alpha cos\frac{\pi}{4} -
sin\alpha sin\frac{\pi}{4} ight) = cos\alpha - sin\alpha.

    Vậy iii) sai.

    iv) Ta lấy \alpha =
\frac{\pi}{3}. Ta có VP =
cot2\alpha = cot2 \cdot \frac{\pi}{3} = - \frac{\sqrt{3}}{3},VT =
2\cot^{2}\left( \frac{\pi}{3} ight) - 1 = - \frac{1}{3}.

    Ta có VP eq VT.

    Do đó iv) sai.

    Vậy có 2 đẳng thức đúng.

  • Câu 27: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 28: Thông hiểu

    Biết rằng \lim_{x ightarrow
3}\frac{x^{2} - 5x + 6}{x^{2} - 9} = \frac{a}{b}, với \frac{a}{b} là phân số tối giản và a,b\mathbb{\in N}. Tính a + b.

    Ta có:

    \lim_{x ightarrow 3}\frac{x^{2} - 5x +
6}{x^{2} - 9} = \lim_{x ightarrow 3}\frac{(x - 2)(x - 3)}{(x - 3)(x +
3)}

    = \lim_{x ightarrow 3}\frac{x - 2}{x +3} = \frac{1}{6} = \frac{a}{b} \Rightarrow a = 1,b = 6.

    Vậy: a + b = 7.

  • Câu 29: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 30: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 31: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 32: Thông hiểu

    Biết \sin\alpha +
\cos\alpha = \frac{5}{4}. Khi đó \sin\alpha.\cos\alpha có giá trị bằng:

    Ta có:

    \sin\alpha.cos\alpha

    = \frac{1}{2}\left\lbrack \left(\sin\alpha + \cos\alpha ight)^{2} - \left( \sin^{2}\alpha +\cos^{2}\alpha ight) ightbrack

    = \frac{1}{2}\left\lbrack \left(
\frac{5}{4} ight)^{2} - 1 ightbrack = \frac{9}{32}

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Lấy M là trung điểm của SC. Tìm hình chiếu của điểm M qua phép chiếu song song phương AB lên mặt phẳng chiếu (SAD).

    Giả sử N là ảnh của  M  theo phép chiếu song song phương  AB  lên mặt phẳng \left( {SAD} ight).

    Suy ra MN//AB =  > MN//CD

    Do  M  là trung điểm của SC=> N là trung điểm của  SD .

  • Câu 34: Thông hiểu

    Cho phương trình lượng giác 2cos(x -
\frac{\pi}{3}) = 1, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( x - \frac{\pi}{3} ight) = \cos\left(
- \frac{\pi}{3} ight). Sai||Đúng

    b) Trong khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Sai||Đúng

    c) Trong khoảng ( - \pi;\pi) phương trình có 1 nghiệm nguyên. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên ( - \pi;\pi) bằng \frac{2\pi}{3}. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác 2cos(x -
\frac{\pi}{3}) = 1, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( x - \frac{\pi}{3} ight) = \cos\left(
- \frac{\pi}{3} ight). Sai||Đúng

    b) Trong khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Sai||Đúng

    c) Trong khoảng ( - \pi;\pi) phương trình có 1 nghiệm nguyên. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên ( - \pi;\pi) bằng \frac{2\pi}{3}. Đúng||Sai

    Phương trình  \Leftrightarrow cos(x -\dfrac{\pi}{3}) = \dfrac{1}{2} = \cos\dfrac{\pi}{3}

    \Leftrightarrow\left\lbrack \begin{matrix}x = k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix} ight.

    x \in ( - \pi;\pi) nên:

    Với x = k2\pi ta chỉ chọn được k = 0 \Rightarrow x = 0.

    Với x = \frac{2\pi}{3} + k2\pi ta chỉ chọn được k = 0 \Rightarrow x =
\frac{2\pi}{3}.

    Vậy tổng các nghiệm bằng \frac{2\pi}{3}.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 35: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 36: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 37: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng (SAD)(SBC)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD);BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua Sd//AD//BC.

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) song song với đường thẳng AD.

  • Câu 38: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 39: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Xét \lim_{x ightarrow 1^{+}}f(x) =
\lim_{x ightarrow 1^{+}}\frac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x +
6}}{1 - x}

    = \lim_{x ightarrow1^{+}}\frac{\sqrt{5x - 1} - 2 + 2 - \sqrt[3]{x^{2} + x + 6}}{1 -x}

    = \lim_{x ightarrow 1^{+}}\left(\frac{\sqrt{5x - 1} - 2}{1 - x} + \frac{2 - \sqrt[3]{x^{2} + x + 6}}{1 -x} ight)

    = \lim_{x ightarrow 1^{+}}\left( \frac{5x - 5}{(1 -x)\left( \sqrt{5x - 1} + 2 ight)} + \frac{8 - \left( x^{2} + x + 6ight)}{(1 - x)\left( 4 + 2\sqrt[3]{x^{2} + x + 6} + \left(\sqrt[3]{x^{2} + x + 6} ight)^{2} ight)} ight)

    = \lim_{xightarrow 1^{+}}\left( \frac{- 5}{\left( \sqrt{5x - 1} + 2 ight)} +\frac{x + 2}{4 + 2\sqrt[3]{x^{2} + x + 6} + \left( \sqrt[3]{x^{2} + x +6} ight)^{2}} ight)

    = - \frac{5}{4} + \frac{1}{4} = -
1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}(ax + 2) = a + 2

    f(1) = a + 2

    Hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow a + 2 = - 1
\Leftrightarrow a = - 3.

  • Câu 40: Vận dụng cao

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \frac{1}{2}u_{n} - 1 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.

    Ta sẽ chứng minh bằng quy nạp  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Với n = 1 ta có  − 2 ≤ u1 ≤ 1 (đúng).

    Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là  − 2 ≤ uk ≤ 1

    \Rightarrow - 1 \leq \frac{1}{2}u_{k}
\leq \frac{1}{2} \Rightarrow - 2 \leq \frac{1}{2}u_{k} - 1 \leq -
\frac{1}{2} \Rightarrow - 2 \leq u_{k + 1} \leq 1

    Theo nguyên lí quy nạp ta đã chứng minh được  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Vậy (un) là dãy số bị chặn.

  • Câu 41: Nhận biết

    Hàm số nào sau đây gián đoạn tại x = 1?

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 42: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 43: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 44: Thông hiểu

    Cho lăng trụ ABC.A'B'C'. Lấy M là trung điểm của AC. Xác định hình chiếu của điểm M lên mặt phẳng (AA'B') theo phương chiếu CB là:

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song. Hình biểu diễn của một hình không gian

    Gọi N là trung điểm của  AB . Ta có: MN//CB

    Vậy hình chiếu song song của điểm  M  lên \left( {AA'B'} ight) theo phương chiếu CB là điểm N.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo