Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 2: Vận dụng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 3: Nhận biết

    Đổi số đo của góc 70^{0} sang đơn vị radian

    Cách 1: Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Khi đó:\mu = \frac{70.\pi}{180} =
\frac{7.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.

    Bước 2. Bấm 70 shift DRG 1 =

  • Câu 4: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu và công sai lần lượt là - 2;3. Số hạng thứ 10 bằng:

    Ta có: u_{1} = - 2;d = 3

    \Rightarrow u_{10} = u_{1} + 9d =
25

  • Câu 5: Thông hiểu

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Đáp án là:

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Mỗi hàng liền phía trên ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có: u_{1} = 1;d = 1;n = 10.

    Khi đó, tổng số khúc gỗ là:

    S_{10} = \frac{n\left( 2u_{1} + (n - 1)d
ight)}{2}

    = \frac{10\left( 2.1 + (10 - 1)1
ight)}{2} = 55 (khúc gỗ).

  • Câu 6: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 7: Thông hiểu

    Cho ba mặt phẳng phân biệt \left( \alpha ight),\;{m{ }}\left( \beta ight),{m{ }}\;\left( \gamma ight)\left( \alpha ight) \cap \left( \beta ight) = {d_1}; \left( \beta ight) \cap \left( \gamma ight) = {d_2}; \left( \alpha ight) \cap \left( \gamma ight) = {d_3}. Khi đó ba đường thẳng {d_1},\;{d_2},\;{d_3}:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song. 

  • Câu 8: Thông hiểu

    Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?

    Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.

  • Câu 9: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{5
+ 2cot^{2}x - \sin x} + \cot\left( \frac{\pi}{2} + x
ight)

    Hàm số xác định khi và chỉ khi

    5 + 2cot^{2}x - \sin x \geq 0\cot\left( \frac{\pi}{2} + x
ight) xác định và \cot x xác định

    Ta có: \cot\left( \frac{\pi}{2} + x
ight) xác định khi và chỉ khi

    \begin{matrix}\sin\left( \dfrac{\pi}{2} + x ight) eq 0 \hfill \\\Rightarrow \dfrac{\pi}{2} + x eq k\pi\hfill \\\Rightarrow x eq - \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill\\\end{matrix}

    Mà cot x xác định khi

    \begin{matrix}\sin x eq 0 \hfill \\\Rightarrow x eq k\pi \hfill \\\Rightarrow x eq + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Do đó hàm số xác định khi và chỉ khi \left\{ \begin{matrix}x eq - \dfrac{\pi}{2} + k\pi \\x eq k\pi \\\end{matrix} ight.\  \Rightarrow x eq \dfrac{k\pi}{2},k \in\mathbb{Z}

    Vậy tập xác định của hàm số là D\mathbb{=R}\backslash\left\{ \frac{k\pi}{2},k \in\mathbb{ Z} ight\}

  • Câu 10: Thông hiểu

    Giá trị của C =
\lim\frac{\left( 2n^{2} + 1 ight)^{4}(n + 2)^{9}}{n^{17} + 1} bằng:

    Ta có:

    C = \lim\frac{n^{8}\left( 2 +
\frac{1}{n^{2}} ight)^{4}.n^{9}.\left( 1 + \frac{2}{n}
ight)^{9}}{n^{17}.\left( 1 + \frac{1}{n^{17}} ight)} =
\lim\frac{\left( 2 + \frac{1}{n^{2}} ight)^{4}.\left( 1 + \frac{2}{n}
ight)^{9}}{1 + \frac{1}{n^{17}}} = 16

  • Câu 11: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 12: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 13: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 14: Nhận biết

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Khẳng định “Ba điểm phân biệt” là sai. Ba điểm phân biệt không thẳng hàng mới xác định một mặt phẳng duy nhất.

    Khẳng định “Một điểm và một đường thẳng” sai. Điểm không nằm trên đường thẳng mới xác định một mặt phẳng duy nhất.

    Khẳng định “Hai đường thẳng cắt nhau” đúng.

    Khẳng định “Bốn điểm phân biệt” sai.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    MN // AB

    AB // CD (ABCD là hình bình hành)

    => MN // CD

    Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung

    => Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD

    Hay (MNC) \cap (ABD) =CD

  • Câu 16: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4;\widehat {BAC} = {30^0}. Mặt phẳng \left( P ight) song song với \left( {ABC} ight) cắt đoạn SA tại M sao cho \frac{{SM}}{{SA}} = 2. Tính diện tích thiết diện tạo bởi mặt phẳng \left( P ight) và hình chóp S.ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4;\widehat {BAC} = {30^0}. Mặt phẳng \left( P ight) song song với \left( {ABC} ight) cắt đoạn SA tại M sao cho \frac{{SM}}{{SA}} = 2. Tính diện tích thiết diện tạo bởi mặt phẳng \left( P ight) và hình chóp S.ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Cho cấp số nhân \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096}. Hỏi số \frac{1}{4096} là số hạng thứ mấy trong cấp số nhân đã cho?

    Ta có: \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096} là cấp số nhân với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\q = \dfrac{u_{2}}{u_{1}} = \dfrac{1}{2} \\\end{matrix} ight.

    \Rightarrow u_{n} = \frac{1}{2}.\left(
\frac{1}{2} ight)^{n - 1} = \frac{1}{2^{n}} =
\frac{1}{4096}

    \Rightarrow \frac{1}{2^{n}} =
\frac{1}{2^{12}} \Rightarrow n = 12

  • Câu 18: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 19: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 20: Thông hiểu

    Biết rằng \lim_{x ightarrow
3}\frac{x^{2} - 5x + 6}{x^{2} - 9} = \frac{a}{b}, với \frac{a}{b} là phân số tối giản và a,b\mathbb{\in N}. Tính a + b.

    Ta có:

    \lim_{x ightarrow 3}\frac{x^{2} - 5x +
6}{x^{2} - 9} = \lim_{x ightarrow 3}\frac{(x - 2)(x - 3)}{(x - 3)(x +
3)}

    = \lim_{x ightarrow 3}\frac{x - 2}{x +3} = \frac{1}{6} = \frac{a}{b} \Rightarrow a = 1,b = 6.

    Vậy: a + b = 7.

  • Câu 21: Nhận biết

    Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.

    Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.

    Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.

    Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”

  • Câu 22: Thông hiểu

    Tìm chu kì T của hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight)

    Hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight) tuần hoàn với chu kì T = \frac{{2\pi }}{{100\pi }} = \frac{1}{{50}}.

  • Câu 23: Nhận biết

    Giá trị của \lim\frac{\sqrt{n + 1}}{n + 2} bằng:

    Với mọi số thực a>0 nhỏ tùy ý, ta chọn n_{a} = \left\lbrack \frac{1}{a^{2}} - 1
ightbrack + 1

    Ta có:

    \frac{\sqrt{n + 1}}{n + 2} <
\frac{1}{\sqrt{n + 1}} < a  với mọi n > n_{a}

    Suy ra \lim\frac{\sqrt{n + 1}}{n + 2} =
0

  • Câu 24: Vận dụng cao

    Rút gọn biểu thức B = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {\left( { - 1} ight)^n}.{\sin ^{2n}}x + ... với \sin x eq \pm 1?

    Ta có:

    \begin{matrix}
  B = \underbrace {1 - {{\sin }^2}x + {{\sin }^4}x - {{\sin }^6}x + ... + {{\left( { - 1} ight)}^n}.{{\sin }^{2n}}x + ...}_{CSN:{u_1};q =  - {{\sin }^2}x} \hfill \\
   = \dfrac{1}{{1 + {{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 25: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 26: Vận dụng

    Tính giới hạn \lim\sqrt{2.3^{n} - n +
2}.

    Ta có:

    \begin{matrix}
  \lim \sqrt {{{2.3}^n} - n + 2}  \hfill \\
   = \lim \sqrt {{3^n}} \sqrt {2 - \dfrac{n}{{{3^n}}} + 2.{{\left( {\dfrac{1}{3}} ight)}^n}}  \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\sqrt{3^{n}} = + \infty \\0 \leq \dfrac{n}{3^{n}} \leq \dfrac{n}{C_{2}^{n}} = \dfrac{2}{n - 1}ightarrow 0 \Rightarrow \lim\dfrac{n}{3^{n}} = 0 \\\lim\left( \dfrac{1}{3} ight)^{n} = 0 \\\end{matrix} ight. nên \left\{\begin{matrix}\lim\sqrt{3^{n}} = + \infty \\\lim\sqrt{2 - \dfrac{n}{3^{n}} + 2\left( \dfrac{1}{3} ight)^{n}} =\sqrt{2} > 0 \\\end{matrix} ight.

    Do đó \lim\sqrt{2.3^{n} - n + 2} = +
\infty

  • Câu 27: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 28: Nhận biết

    Mệnh đề nào sau đây là sai?

    Hàm số  y = \cot x tuần hoàn với chu kì \pi

  • Câu 29: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 30: Vận dụng

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 31: Vận dụng

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Đáp án là:

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Để hàm số P(x) liên tục trên (0; + \infty) thì hàm số phải liên tục tại x_{0} = 400 hay \lim_{xightarrow 400} P(x)=P( 400 )

    Ta có:

    \lim_{x ightarrow 400^{-}}P(x) =
\lim_{x ightarrow 400^{-}}4,5x = 4,5.400 = 1800

    \lim_{x ightarrow 400^{+}}P(x) =
\lim_{x ightarrow 400^{-}}(4x + k) = 4.400 + k = 1600 + k

    Để tồn tại \lim_{xightarrow 400} P( x ) thì 1800 = 1600 +
k.

    Suy ra k = 200

  • Câu 32: Vận dụng cao

    Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm 2022 được cho bởi một hàm số y = 4sin\left\lbrack \frac{\pi}{178}(t - 60)ightbrack + 10 với t\mathbb{\inZ}0 < t \leq 365. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?

    \sin\left\lbrack \frac{\pi}{178}(t -60) ightbrack \leq 1

    \Leftrightarrow y = 4sin\left\lbrack\frac{\pi}{178}(t - 60) ightbrack + 10 \leq 14.

    Ngày có ánh sáng mặt trời nhiều nhất \Leftrightarrow y = 14 \Leftrightarrow\sin\left\lbrack \frac{\pi}{178}(t - 60) ightbrack = 1

    \Leftrightarrow \frac{\pi}{178}(t - 60)= \frac{\pi}{2} + k2\pi \Leftrightarrow t = 149 + 356k.

    Do 0 < t \leq 365

    \begin{matrix}   \Leftrightarrow 0 < 149 + 356k \leqslant 365 \hfill \\   \Leftrightarrow  - \dfrac{{149}}{{356}} < k \leqslant \dfrac{{54}}{{89}}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \hfill \\ \end{matrix}

    Với k = 0 ightarrow t = 149 rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện 0 < t\leq 365 thì ta biết năm này tháng 2 chỉ có 28 ngày).

  • Câu 33: Vận dụng cao

    Cho cấp số nhân \left( u_{n} ight) có các số hạng đều dương và \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} + \ldots + u_{n} = 2020 \\\dfrac{1}{u_{1}} + \dfrac{1}{u_{2}} + \dfrac{1}{u_{3}} + \ldots +\dfrac{1}{u_{n}} = 2021 \\\end{matrix} ight. Giá trị của P = u_{1} \cdot u_{2} \cdot u_{3}\ldots\ldots
u_{n} là:

    Ta có P = u_{1} \cdot \left( u_{1} \cdot q ight)\ldots..\left( u_{1} \cdot q^{n - 1} ight)

    = u_{1}^{n} \cdot q^{1 + 2 + 3 + \ldots + (n - 1)}

    = u_{1}^{n} \cdot q^{\frac{n(n -1)}{2}} = \left( u_{1} \cdot q^{\frac{n - 1}{2}}ight)^{n}

    Theo giả thiết, ta có:

    A = u_{1} + u_{2} +
u_{3} + \ldots + u_{n} = u_{1} \cdot \frac{q^{n} - 1}{q -
1}
    B = \frac{1}{u_{1}} + \frac{1}{u_{2}} +
\frac{1}{u_{3}} + \ldots + \frac{1}{u_{n}}

    = \frac{1}{u_{1}} \cdot \left( 1 +
\frac{1}{q} + \frac{1}{q^{2}} + \ldots + \frac{1}{q^{n - 1}}
ight)

    = \dfrac{1}{u_{1}} \cdot \dfrac{1 -\dfrac{1}{q^{n}}}{1 - \dfrac{1}{q}} = \dfrac{1}{u_{1}} \cdot \dfrac{q^{n} -1}{q - 1} \cdot \dfrac{1}{q^{n - 1}}.
    Suy ra \frac{A}{B} = u_{1}^{2} \cdot q^{n -
1} = \left( u_{1} \cdot q^{\frac{n - 1}{2}} ight)^{2}. Vậy P = \sqrt{\left( \frac{A}{B} ight)^{n}} =
\sqrt{\left( \frac{2020}{2021} ight)^{n}}.

  • Câu 34: Thông hiểu

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 35: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 36: Nhận biết

    Đổi số đo 365^{0} sang số đo theo đơn vị là radian.

    Ta có: 365^{0} = \frac{365\pi}{180}rad =
\frac{73\pi}{36}rad

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,CB,SA. Gọi H là giao điểm của ACMN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi E = KH \cap SO.

    HK \subset (MNK) nên E = SO \cap (MNK)

  • Câu 38: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 39: Thông hiểu

    Giá trị của giới hạn \lim_{x ightarrow 0}\frac{2\sqrt{1 + x} -
\sqrt[3]{8 - x}}{x} là:

    Ta có:

    \lim_{x ightarrow 0}\frac{2\sqrt{1 +
x} - \sqrt[3]{8 - x}}{x}

    = \lim_{x ightarrow 0}\left(
\frac{2\sqrt{1 + x} - 2}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}
ight)

    = \lim_{x ightarrow 0}\left(
\frac{2}{\sqrt{x + 1} + 1} + \frac{1}{4 + 2\sqrt[3]{8 - x + \sqrt[3]{(8
- x)^{2}}}} ight)

    = 1 + \frac{1}{12} =
\frac{13}{12}

  • Câu 40: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi I, J, K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)?

     Hình vẽ minh họa

    Tìm mặt phẳng song song với (IJK)

    Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.

    => \frac{{AI}}{{IM}} = \frac{{AJ}}{{JN}} = 2 (tính chất trọng tâm tam giác)

    => IJ//MN(1)

    Xét mặt phẳng (AA'EM) ta có: \frac{{AI}}{{IM}} = \frac{{A'K}}{{KE}} = 2

    => IK//ME

    ME //BB'

    => IK//BB'(2)

    Từ (1) và (2) => (IJK)(BB'C)là hai mặt phẳng phân biệt. Khi đó ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\left( {IJK} ight) e \left( {BB'C'} ight)} \\   {IJ,IK \subset \left( {IJK} ight)} \\   {MN,BB' \subset \left( {BB'C'} ight)} \end{array}} ight. \hfill \\   \Rightarrow \left( {IJK} ight)//\left( {BB'C'} ight) \hfill \\ \end{matrix}

  • Câu 41: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 42: Nhận biết

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q lần lượt là trung điểm của BC,CD,SB,SD. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có MN là đường trung bình tam giác BDC \Rightarrow MN//BD (1)

    Ta có PQ là đường trung bình của tam giác SBD \Rightarrow
PQ//BD(2).

    \Rightarrow MN//PQ.

  • Câu 43: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thưc P =
\tan\left( \alpha + \frac{\pi}{4} ight).

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( \pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    P = \tan\left( \alpha + \dfrac{\pi}{4}ight) = \dfrac{\tan\alpha + \tan\dfrac{\pi}{4}}{1 -\tan\alpha.\tan\dfrac{\pi}{4}} = \dfrac{2 + 1}{1 - 2} = - 3

  • Câu 44: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 1}  - x) bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 1}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 1}  - x} ight)\left( {\sqrt {{x^2} + 1}  + x} ight)}}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{{{x^2}}}}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo