Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 2: Vận dụng cao

    Biết \lim\left( \frac{\left( \sqrt{5}
ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -
3} + \frac{2n^{2} + 3}{n^{2} - 1} ight) = \frac{a\sqrt{5}}{b} +
cvới a,b,c \mathbb{\in Z}. Tính giá trị của biểu thức S = a^{2} + b^{2}
+ c^{2}.

    Ta có:

    \lim\left( \dfrac{\left( \sqrt{5}ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -3} + \dfrac{2n^{2} + 3}{n^{2} - 1} ight)

    = \lim\left( \dfrac{1 - 2.\left(\dfrac{2}{\sqrt{5}} ight)^{n} + \left( \dfrac{1}{\sqrt{5}}ight)^{n}}{5.\left( d\frac{2}{\sqrt{5}} ight)^{2} + \sqrt{5} -3.\left( \dfrac{1}{\sqrt{5}} ight)^{n}} + \dfrac{2 + \dfrac{3}{n^{2}}}{1- \dfrac{1}{n^{2}}} ight)

    = \frac{1}{\sqrt{5} + 2} =
\frac{\sqrt{5}}{5} + 2

    Vậy S = a^{2} + b^{2} + c^{2} = 1^{2} +
5^{2} + 2^{2} = 30

  • Câu 3: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho dãy số\left( {{u_n}} ight):\left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_{n + 1}} = n{u_n}} \end{array}} ight. với mọi n\geq 1. Khi đó số hạng thứ 5 của dãy là:

    Ta có:

    \begin{matrix}  {u_1} = 2 \hfill \\  {u_2} = 1{u_1} = 2 \hfill \\  {u_3} = 2.{u_2} = 2.2 = 4 \hfill \\  {u_4} = 3.{u_3} = 3.4 = 12 \hfill \\  {u_5} = 4.{u_4} = 4.12 = 48 \hfill \\ \end{matrix}

    Khi đó số hạng thứ 5 của dãy là 48

  • Câu 5: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Lấy các điểm M \in SB,N \in SD sao cho \frac{SM}{MB} = 2;\frac{SN}{SD} =
\frac{1}{3}. Hình chiếu của M,N qua phép chiếu song song phương SO mặt phẳng chiếu (ABCD)lần lượt là P,Q. Tỉ số độ dài \frac{PO}{QO} bằng bao nhiêu?

    Hình vẽ minh hoạ

    Do P là hình chiếu song song của M qua phép chiếu song song phương SO

    \Rightarrow \frac{MB}{SB} =
\frac{BP}{BO}

    \frac{SM}{MB} = 2 \Rightarrow SM =
2MB

    \Rightarrow \frac{BP}{BO} = \frac{1}{3}
\Rightarrow \frac{OP}{OB} = \frac{2}{3}

    Chứng minh tương tự ta có: \frac{OQ}{OD}
= \frac{1}{3}

    Ta có: BO = DO \Rightarrow \frac{OP}{OQ}
= \frac{1}{2}

  • Câu 6: Vận dụng cao

    Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?

    Ta có S30 = 2 + 4 + 6 + … + 60

     ⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)

    \Rightarrow S_{30} = \frac{(2 + 60)
\cdot 30}{2} = 930

  • Câu 7: Thông hiểu

    Cho góc \alpha thỏa mãn \tan\alpha = 2. Tính giá trị biểu thức P = \frac{sin2\alpha}{cos4\alpha +1}.

    Ta có:

    P = \dfrac{\sin2\alpha}{\cos4\alpha +1}

    P =\dfrac{\sin2\alpha}{2\cos^{2}2\alpha}

    P =\tan2\alpha.\dfrac{1}{\cos2\alpha}

    P = \dfrac{2\tan\alpha}{1 -\tan^{2}\alpha}.\dfrac{\sin^{2}\alpha + \cos^{2}\alpha}{2\left(\cos^{2}\alpha - \sin^{2}\alpha ight)}

    P = \dfrac{2}{1 -4}.\dfrac{\tan^{2}\alpha + 1}{1 - \tan^{2}\alpha} = \dfrac{10}{9}

  • Câu 8: Vận dụng cao

    Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng \dfrac{3}{4} độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.

    Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống

    Vì mỗi lần bóng nảy lên bằng \dfrac{3}{4} lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:

    {S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn có {u_1} = 6.\frac{3}{4} = \frac{9}{1},q = \frac{3}{4}

    => {S_1} = \dfrac{{\dfrac{9}{2}}}{{1 - \dfrac{3}{4}}} = 18

    Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:

    {S_2} = 6 + 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn với {u_1} = 6;q = \frac{3}{4}

    => {S_2} = \dfrac{6}{{1 - \dfrac{3}{4}}} = 24

    Vậy tổng quãng đường bóng bay là 42m

  • Câu 9: Vận dụng

    Tính tổng S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ... .

    Ta có:

    S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ...

    = 9\left( {\underbrace {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^{n - 1}}}} + ...}_{CSN:{u_1} = 1;q = \frac{1}{3}}} ight)

    = 9.\left( \dfrac{1}{1 - \dfrac{1}{3}}ight) = \dfrac{27}{2}

  • Câu 10: Nhận biết

    Trên đường tròn bán kính 15dm, cho cung tròn có độ dài l = 25\pi(dm). Số đo của cung tròn đó là:

    Độ dài cung tròn là: l =
R.\alpha

    => \alpha = \frac{l}{R} =
\frac{25\pi}{15} = \frac{5\pi}{3}

  • Câu 11: Vận dụng

    Giả sử a,b là các giá trị để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2} + ax + b}}{{{x^2} - 4}}{\text{   , khi }}x <  - 2} \\ 
  {x + 1{\text{   , khi }}x \geqslant  - 2} 
\end{array}} ight. có giới hạn hữu hạn khi x dần tới -
2. Tính giá trị biểu thức 3a -
b

    Ta có: \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}(x + 1) = - 1

    Suy ra f(x) hữu hạn khi x dần tới -
2 khi và chỉ khi

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x)

    \Leftrightarrow \lim_{x ightarrow
2^{-}}f(x) = - 1

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{x^{2} + ax + b}{x^{2} - 4} = - 1

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0(*)

    Do \lim_{x ightarrow 2^{-}}\left( x^{2}
- 4 ight) = 0 nên điều kiện cần để có (*) là

    \lim_{x ightarrow 2^{-}}\left( 2x^{2}
+ ax + b - 4 ight) = 0

    \Rightarrow 2a - b = 4

    Ngược lại với 2a - b = 4 ta có:

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + 2a - 8}{x^{2} - 4} = 0

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x + a - 4}{x - 2} = 0

    \Leftrightarrow a = 8

    => f(x) có giới hạn hữu hạn khi x dần tới - 2 \Leftrightarrow \left\{ \begin{matrix}
a = 8 \\
b = 12 \\
\end{matrix} ight.

    \Leftrightarrow 3a - b = 12

  • Câu 12: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow 3^{+}}\frac{x - 3}{\sqrt{x^{2} - 9}}

    Ta có:

    E = \lim_{x ightarrow 3^{+}}\frac{x -
3}{\sqrt{x^{2} - 9}} = \lim_{x ightarrow 3^{+}}\frac{\sqrt{(x -
3)^{2}}}{\sqrt{(x - 3)(x + 3)}} = \lim_{x ightarrow
3^{+}}\frac{\sqrt{x - 3}}{\sqrt{x + 3}} = 0

  • Câu 14: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 15: Vận dụng

    Đồ thị hàm số y = \sin x được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    Tịnh tiến đồ thị y = cosx + 1 sang phải \frac{\pi}{2} ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2} ight) +
1

    Tiếp theo tịnh tiến đồ thị y = \cos\left(
x - \frac{\pi}{2} ight) + 1 xuống dưới một đơn vị ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2}
ight)

    VD

     

    0

  • Câu 16: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 17: Thông hiểu

    Tính \lim_{x
ightarrow + \infty}\left( \sqrt{x^{2} + 2x - 1} - x - 1
ight)

    Ta có:

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + 2x - 1} - x - 1 ight)

    = \lim_{x ightarrow +
\infty}\frac{\left( \sqrt{x^{2} + 2x - 1} + x + 1 ight)\left(
\sqrt{x^{2} + 2x - 1} - x - 1 ight)}{\sqrt{x^{2} + 2x - 1} + x +
1}

    = \lim_{x ightarrow + \infty}\frac{-
2}{\sqrt{x^{2} + 2x - 1} + x + 1} = 0

  • Câu 18: Thông hiểu

    Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?

    Ta có:

    Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng

    => - 7 + 11 = 2.x \Rightarrow x = 2

    Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng

    => 2 + y = 2.11 \Rightarrow y = 20

    Vậy x = 2; y = 20

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Hình vẽ minh họa

    a) Đúng

    Ta có MN là đường trung bình của tam giác SAB \Rightarrow MN//ABAB//CD nên MN//CD

    b) Sai

    Ta có \left\{ \begin{matrix}
S \in (SAB) \cap (SCD) \\
AB//CD \\
AB \subset (SAB),CD \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
d = (SAB) \cap (SCD) \\
S \in d \\
d//AB//CD \\
\end{matrix} ight.

    Gọi I = AN \cap d \Rightarrow \left\{
\begin{matrix}
I \in AN \\
I \in d,d \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow I = AN \cap
(SCD)

    Ta có SI//BA \Rightarrow \frac{SI}{AB} =
\frac{SN}{NB} = 1

    \Rightarrow SI = AB \Rightarrow SI =
CD

    Vậy SICD là hình bình hành

    c) Đúng

    Gọi F là giao điểm của AEBC trong (ABCD), ta có

    AD//CF \Rightarrow \frac{AE}{EF} =
\frac{ED}{CE} = 1

    \Rightarrow E là trung điểm AF

    Vậy ME là đường trung bình của tam giác SAF

    \Rightarrow EM//SF

    Ta có \left\{ \begin{matrix}
ME//SF \\
ME ⊄ (SCD) \\
SF \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow ME//(SCD)

    d) Đúng

    Gọi E là trung điểm CD ta có

    \frac{EH}{ES} = \frac{EG}{EB}\left( =
\frac{1}{3} ight) \Rightarrow GH//SB

    Ta có \left\{ \begin{matrix}
GH//SB \\
SB \subset (SBD) \\
GH ⊄ (SBD) \\
\end{matrix} ight.\  \Rightarrow GH//(SBD)

  • Câu 20: Nhận biết

    Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?

    Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89

  • Câu 21: Thông hiểu

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Ta có: \lim\left( - 2n^{3} - 5n + 9
ight) = \lim n^{3}\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}}
ight) = - \infty,

    Do \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}} ight) = - 2 \\
\end{matrix} ight.

    \lim\frac{4^{n} + 3}{1 + 3 \cdot 4^{n +
1}} = \lim\frac{4^{n} + 3}{1 + 12 \cdot 4^{n}}

    = \lim\frac{4^{n}\left( 1 +
\frac{3}{4^{n}} ight)}{4^{n}\left( \frac{1}{4^{n}} + 12 ight)} =
\lim\frac{1 + \frac{3}{4^{n}}}{\frac{1}{4^{n}} + 12} =
\frac{1}{12}

    a) Tích a.b = - \infty

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D( -
\infty;1brack

    c) Giá trị \frac{1}{12} là số lớn hơn 0

    d) Phương trình lượng giác \cos x =
\frac{1}{12} có nghiệm

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 22: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in SB; (M
eq B;M eq S). Khi đó, giao tuyến của mặt phẳng (MAD) với các mặt của hình chóp là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MAD) \cap (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (MAD) \cap (SBC) =
Mx//AD//BC

    Trong mặt phẳng (SBC) giả sử SC \cap Mx = N

    Do đó ADMN là giao tuyến của mặt phẳng (MAD) với các mặt của hình chóp.

    \left\{ \begin{matrix}
AD//MN \\
MN < AD \\
\end{matrix} ight. nên ADMN là hình thang.

  • Câu 24: Nhận biết

    Chọn mệnh đề sai. Trong không gian:

    Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.

  • Câu 25: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 26: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 27: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 29: Nhận biết

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 30: Thông hiểu

    Cho lăng trụ ABC.A'B'C'. Lấy M là trung điểm của AC. Xác định hình chiếu của điểm M lên mặt phẳng (AA'B') theo phương chiếu CB là:

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song. Hình biểu diễn của một hình không gian

    Gọi N là trung điểm của  AB . Ta có: MN//CB

    Vậy hình chiếu song song của điểm  M  lên \left( {AA'B'} ight) theo phương chiếu CB là điểm N.

  • Câu 31: Nhận biết

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 32: Vận dụng cao

    Tính giá trị lớn nhất của hàm số y =\sqrt{1 + \frac{1}{2}cos^{2}x} + \frac{1}{2}\sqrt{5 +2sin^{2}x}

    Ta có:

    \begin{matrix}y = \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \dfrac{1}{2}\sqrt{5 + 2sin^{2}x}\hfill \\= \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \sqrt{\dfrac{5}{4} +\dfrac{1}{2}sin^{2}x}\hfill \\\end{matrix}

    Áp dụng bất đẳng thức 2\left( a^{2} +b^{2} ight) \geq (a + b)^{2}

    Do đó

    \begin{matrix}  2\left[ {\left( {1 + \dfrac{1}{2}{{\cos }^2}x} ight) + \left( {\dfrac{5}{4} + \dfrac{1}{2}{{\sin }^2}x} ight)} ight] \geqslant {y^2} \hfill \\  {y^2} \leqslant 2\left( {\dfrac{9}{4} + \dfrac{1}{2}} ight) = \dfrac{{11}}{2} \hfill \\   \Rightarrow y \leqslant \dfrac{{\sqrt {22} }}{2} \hfill \\ \end{matrix}

    Dấu bằng xảy ra khi

    \begin{matrix}  1 + \dfrac{1}{2}{\cos ^2}x = \dfrac{5}{4} + \dfrac{1}{2}{\sin ^2}x \hfill \\   \Leftrightarrow \dfrac{1}{2}\cos 2x = \dfrac{1}{4} \Rightarrow \cos 2x = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 34: Thông hiểu

    Nghiệm của phương trình 2cos (2x) =-2

    Ta có: 2 \cos 2x = -2 \Leftrightarrow \cos 2x=-1 \Leftrightarrow 2 x= \pi + k2\pi

    \Leftrightarrow x = \frac{\pi}{2} +k \pi , \, k \in \mathbb{Z}.

  • Câu 35: Nhận biết

    Tính giới hạn B =
\lim_{x ightarrow ( - 2)^{-}}\left( \frac{3 + 2x}{x + 2}
ight).

    Ta có:

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3 + 2x} ight) =  - 1 < 0

    \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {x + 2} ight) = 0} \\ 
  {x \mapsto {{\left( { - 2} ight)}^ - } \Rightarrow x + 2 < 0} 
\end{array}} ight.

    \Rightarrow B = \lim_{x ightarrow ( -
2)^{-}}\left( \frac{3 + 2x}{x + 2} ight) = + \infty

  • Câu 36: Vận dụng

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Đáp án là:

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Hình vẽ minh họa

    Gọi M là trung điểm của AB.

    Gọi MN = (P) \cap (ABD) (N \in AD), do (P)//(BCD) \Rightarrow MN//\ BD \Rightarrow
N là trung điểm của AD.

    Gọi MP = (P) \cap (ABC) (P \in AC), do (P)//(BCD) \Rightarrow MP//BC \Rightarrow
P là trung điểm của AC.

    Thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P)\Delta MNP.

    Gọi I,\ J lần lượt là trung điểm của CDBD.

    Ta chứng minh được \Delta MNP = \Delta
JDI (c – c – c).

    Ta có

    S_{\Delta MNP} = S_{\Delta DIJ} =
\frac{1}{2}DI.DJ.sin\widehat{JDI}

    =
\frac{1}{4}.\frac{1}{2}DB.DC.sin\widehat{BDC} = \frac{1}{4}.S_{\Delta
DBC} = \frac{1}{4}.16 = 4

    Vậy S_{\Delta MNP} = 4.

  • Câu 37: Nhận biết

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 38: Thông hiểu

    Với giá trị nào của m thì phương trình \cos x + m - 2 = 0 có nghiệm:

     Ta có:

    \begin{matrix}  \cos x + m - 2 = 0 \hfill \\   \Rightarrow \cos x = 2 - m \hfill \\ \end{matrix}

    Do \cos x \in \left[ { - 1;1} ight]

    \begin{matrix}  \Rightarrow  - 1 \leqslant 2 - m \leqslant 1 \hfill \\   \Rightarrow 1 \leqslant m \leqslant 3 \hfill \\ \end{matrix}

    Vậy m \in \left[ {1;3} ight]

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 40: Nhận biết

    Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

    Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.

    Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.

    Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)

    Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.

  • Câu 41: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Dãy số 1, 2, 4, 8, 16 tuân theo quy luật \frac{{{u_{n + 1}}}}{{{u_n}}} = 2

    => Dãy số đó là cấp số nhân

  • Câu 42: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 43: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 44: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1 với n = 1,2,.... Tìm số hạng đầu u_{1} và công bội q của cấp số nhân đó?

    Ta có:

    \left\{ \begin{matrix}
u_{1} = S_{1} = 5 - 1 = 4 \\
u_{1} + u_{2} = S_{2} = 5^{2} - 1 = 24 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 4 \\
u_{2} = 24 - u_{1} = 20 \\
\end{matrix} ight.

    \Rightarrow u_{1} = 4, q = \frac{u_{2}}{u_{1}} = 5.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo