Tổng
có kết quả bằng?
Ta có
Do đó
Tổng
có kết quả bằng?
Ta có
Do đó
Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Mà nên
Vậy tập xác định
Tìm tất cả các giá trị thực của tham số a để phương trình
có ba nghiệm lập thành cấp số nhân.
Ta có:
kiểm tra lại kết quả ta được
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Tính giới hạn
.
Ta có:
Tập nghiệm của phương trình
là?
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Cho dãy số
với
. Số
là số hạng thứ bao nhiêu của dãy số đó?
Ta có
.
Vậy 19 là số hạng thứ 7 của dãy số đã cho.
Cho tứ diện
có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Biết
. Giá trị
bằng
Đáp án: -13||- 13
Biết . Giá trị
bằng
Đáp án: -13||- 13
Vì là hữu hạn nên phương trình
có nghiệm
Khi đó
Vậy .
Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?
Giả sử cấp số nhân có số hạng đầu là , công bội
, với
Theo bài ra ta có:
Mà
Vậy góc lớn nhất có số đo
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Tính giới hạn ![]()
Ta có:
Dãy số nào sau đây có giới hạn bằng
?
Vì nên
.
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
bằng
Ta có:
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?
Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là:
Cho hình lăng trụ
. Gọi trung điểm của
lần lượt là
. Qua phép chiếu song song phương
, mặt phẳng chiếu
biến điểm
thành điểm nào?
Hình vẽ minh họa
Ta có: suy ra
là hình bình hành.
Suy ra phép chiếu song song phương , mặt phẳng chiếu
biến điểm
thành
.
Cho mặt phẳng
và hai đường thẳng
. Khẳng định nào sau đây đúng?
“Nếu và
thì
đồng phẳng.” sai vì có thể chéo nhau.
“Nếu và
cắt
thì
cắt
.” sai vì có thể nằm trên
“Nếu và
thì
.” sai vì có thể nằm trên
.
Giá trị của
bằng:
Ta có:
Mệnh đề nào sau đây đúng?
Mệnh đề đúng: “Qua ba điểm không thẳng hàng xác định được duy nhất một mặt phẳng.”
Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?
Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy a song song d
Giải phương trình
ta được họ nghiệm
. Tính
?
Đáp án: 11
Giải phương trình ta được họ nghiệm
. Tính
?
Đáp án: 11
ĐKXĐ: .
Đối chiếu điều kiện, nghiệm phương trình là
.
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Cho đường thẳng
song song với mặt phẳng
. Nếu mặt phẳng
chứa
và cắt
theo giao tuyến
thì
và
là hai đường thẳng:
Cho đường thẳng song song với mặt phẳng
. Nếu mặt phẳng
chứa
và cắt
theo giao tuyến
thì
song song với
.
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Cho hình chóp
có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Cho hình chóp có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Giá trị của
bằng:
Ta có:
Cho cấp số nhân
với
. Viết bốn số hạng đầu tiên của cấp số nhân.
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Cho tam giác
là hình biểu diễn của một tam giác đều. Hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là:
Tâm của đường tròn ngoại tiếp tam giác đều đồng thời là trọng tâm tam giác đó.
Do tam giác ABC là hình biểu diễn của tam giác đều, kết hợp với tính chất bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số hai đoạn thẳng nằm trên hai đường thẳng song song hoặc nằm trên cùng một đường thẳng ta được hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác .
Cho tứ diện
, lấy
lần lượt là trung điểm của
và
. Giả sử
. Khẳng định nào đúng về đặc điểm của đường thẳng
?
Hình vẽ minh họa
Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà nên
.
Vậy đường thẳng đi qua
và song song với
.
Có bao nhiêu giá trị nguyên của a thỏa mãn
?
Ta có:
Do đó:
Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Chọn công thức đúng trong các công thức dưới đây.
Công thức đúng là
Có bao nhiêu giá trị nguyên của tham số m để hàm số
xác định trên tập số thực?
Hàm số đã cho xác định khi
Kết hợp với điều kiện m là số nguyên
=> m = {-4; -3; ... ; 2; 3}
Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.