Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trên đường tròn cung có số đo 1 rad là?

    Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

  • Câu 2: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 3: Thông hiểu

    Cho hàm số f(x)
= \frac{x - 2}{3 - x}. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 2} ight) = 1 > 0} \\ 
  \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left( {3 - x} ight) = 0 \hfill \\
  x \mapsto {3^ + } \Rightarrow \left( {3 - x} ight) < 0 \hfill \\ 
\end{gathered}  
\end{array}} ight. \Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - \infty

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{x - 2}{3 - x} = \lim_{x ightarrow -\infty}\dfrac{1 - \dfrac{2}{x}}{\dfrac{3}{x} - 1} = - 1

    Vậy đáp án đúng là \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight.

  • Câu 4: Nhận biết

    Cho cấp số nhân (un) có {u_1} = 2 và công bội q = 3. Số hạng u2 là:

    Ta có: u2 = u1 . q = -2 . 3 = -6

  • Câu 5: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 6: Thông hiểu

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Ta có: \lim\left( - 2n^{3} - 5n + 9
ight) = \lim n^{3}\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}}
ight) = - \infty,

    Do \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}} ight) = - 2 \\
\end{matrix} ight.

    \lim\frac{4^{n} + 3}{1 + 3 \cdot 4^{n +
1}} = \lim\frac{4^{n} + 3}{1 + 12 \cdot 4^{n}}

    = \lim\frac{4^{n}\left( 1 +
\frac{3}{4^{n}} ight)}{4^{n}\left( \frac{1}{4^{n}} + 12 ight)} =
\lim\frac{1 + \frac{3}{4^{n}}}{\frac{1}{4^{n}} + 12} =
\frac{1}{12}

    a) Tích a.b = - \infty

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D( -
\infty;1brack

    c) Giá trị \frac{1}{12} là số lớn hơn 0

    d) Phương trình lượng giác \cos x =
\frac{1}{12} có nghiệm

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 7: Nhận biết

    Phát biểu nào dưới đây sai?

    Ta có phát biểu sai là: \lim_{x
ightarrow + \infty}q^{n} = 0;\left( |q| > 1 ight)

    Sửa lại là: \lim_{x ightarrow +
\infty}q^{n} = 0;\left( |q| < 1 ight)

  • Câu 8: Vận dụng cao

    Tính tổng {S_n} = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

     Ta có:

    \begin{matrix}  {S_n} = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  {S_n} = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {{4^2} + 2 + \dfrac{1}{{{4^2}}}} ight) + ... + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\  {S_n} = 2n + \left( {4 + {4^2} + ... + {4^n}} ight) + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\   = 2n + 4.\dfrac{{1 - {4^n}}}{{1 - 4}} + \frac{1}{4}\frac{{1 - \frac{1}{{{4^n}}}}}{{1 - \frac{1}{4}}} \hfill \\  {S_n} = 2n + \dfrac{4}{3}\left( {{4^n} - 1} ight) + \dfrac{{{4^{n - 1}}}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 9: Vận dụng

    Kết quả của giới hạn \lim \left( {\dfrac{{\sqrt {3n}  + {{\left( { - 1} ight)}^n}.\cos 3n}}{{\sqrt n  - 1}}} ight) bằng bao nhiêu?

    Ta có:

    \begin{matrix}
  \lim \left( {\dfrac{{\sqrt {3n}  + {{\left( { - 1} ight)}^n}.\cos 3n}}{{\sqrt n  - 1}}} ight) \hfill \\
   = \lim \left( {\dfrac{{\sqrt {3n} }}{{\sqrt n  - 1}} + \dfrac{{{{\left( { - 1} ight)}^n}.\cos 3n}}{{\sqrt n  - 1}}} ight) \hfill \\ 
\end{matrix}

    Ta lại có:

    \lim\left( \frac{\sqrt{3n}}{\sqrt{n} -
1} ight) = \frac{\sqrt{3}}{1} = \sqrt{3}

    0 \leq \left| \frac{( -1)^{n}.\cos3n}{\sqrt{n} - 1} ight| \leq \frac{1}{\sqrt{n} - 1}\Rightarrow \lim\frac{( - 1)^{n}.\cos3n}{\sqrt{n} - 1} = 0

    \Rightarrow \lim\left( \frac{\sqrt{3n} +
( - 1)^{n}cos3n}{rn} - 1 ight) = \sqrt{3}

  • Câu 10: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 11: Nhận biết

    Trong các mệnh đề sau mệnh đề nào sai:

    Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".

  • Câu 12: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 14: Vận dụng

    \lim_{x
ightarrow 1}\frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} bằng:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{100} - 2x
+ 1}{x^{50} - 2x + 1}

    = \lim_{x ightarrow 1}\frac{\left(
x^{100} - 1 ight) - 2(x - 1)}{\left( x^{50} - 1 ight) - 2(x -
1)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( x^{99} + x^{98} + .... + x + 1 - 2 ight)}{(x - 1)\left(
x^{49} + x^{48} + .... + x + 1 - 2 ight)}

    = \lim_{x ightarrow 1}\frac{x^{99} +
x^{98} + .... + x + 1 - 2}{x^{49} + x^{48} + .... + x + 1 - 2} =
\frac{98}{48} = \frac{49}{24}

  • Câu 15: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 16: Vận dụng cao

    Rút gọn S = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {( - 1)^n}.{\sin ^{2n}}x + ... với \sin x e  \pm 1

    Ta có: 

     S = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {( - 1)^n}.{\sin ^{2n}}x + ... là một dãy cấp số nhân với {u_1} = 1,q =  - {\sin ^2}x nên

    S = \frac{1}{{1 + {{\sin }^2}x}}

  • Câu 17: Nhận biết

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 18: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,CB,SA. Gọi H là giao điểm của ACMN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi E = KH \cap SO.

    HK \subset (MNK) nên E = SO \cap (MNK)

  • Câu 20: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Nhận biết

    Cho dãy số (u_{n}), với {u_n} = {( - 1)^n}. Mệnh đề nào sau đây đúng?

    Ta có: {u_n} = {( - 1)^n} là dãy thay dấu nên không tăng, không giảm.

    Tập giá trị của dãy số {u_n} = {( - 1)^n} là {-1; 1}

    \Rightarrow  - 1 \leqslant {u_n} \leqslant 1

    Vậy dãy số u_{n} là dãy số bị chặn.

  • Câu 22: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 23: Thông hiểu

    Số nghiệm của phương trình \cot (x+ \frac{\pi}{4})+1=0 trên khoảng ( -\pi ;3\pi ) là?

     Ta có:\cot (x+\frac{\pi}{4})+1=0 \Leftrightarrow \cot (x+\frac{\pi}{4})=-1

    \Leftrightarrow x+\frac{\pi}{4}=-\frac{\pi}{4}+k \pi  \Leftrightarrow x= -\frac{\pi}{2} +k\pi, k \in \mathbb{Z}

    ycbt\Leftrightarrow -\pi< -\frac{\pi}{2} +k \pi  <3\pi\Leftrightarrow  -\frac{1}{2} < k < \frac{7}{2}, k \in \mathbb{Z}

    nên k \in \{0;1;2;3\}.

  • Câu 24: Nhận biết

    Tập xác định của hàm số y =
3tan^{2}\left( \frac{x}{2} - \frac{\pi}{4} ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}cos^{2}\left( \dfrac{x}{2} - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Rightarrow \dfrac{x}{2} - \dfrac{\pi}{4} eq \dfrac{\pi}{2} + k\pi \hfill \\\Rightarrow x eq \dfrac{3\pi}{2} + k2\pi;k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{3\pi}{2} + k2\pi,k\mathbb{\in Z}
ight\}

  • Câu 25: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 26: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi, AC \cap BD = O. Gọi (\alpha) là mặt phẳng qua O song song với các đường thẳng AB,SC. Xác định các giao tuyến của (\alpha) với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh hoạ

    Xét mặt phẳng (ABCD), kẻ đường thẳng qua O và song song với AB, cắt BC;AD lần lượt tại E,F.

    Trong mặt phẳng (SBC), kẻ đường thẳng song song với SC, cắt SB tại I.

    Trong mặt phẳng (SAB), kẻ đường thẳng song song với AB, cắt SA tại K.

    Vậy hình tạo bởi các giao tuyến là hình thang EFKI với IK//EF.

  • Câu 27: Vận dụng cao

    Hàm số y = sin^{4}x - cos^{4}x đạt giá trị nhỏ nhất tại x = x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có y = sin^{4}x - cos^{4}x

    = \left(sin^{2}x + cos^{2}x ight)\left( sin^{2}x - cos^{2}x ight) = -cos2x.

    - 1 \leq cos2x \leq 1 \Rightarrow - 1\geq - cos2x \geq 1

    \Rightarrow - 1 \geq y \geq 1

    Do đó giá trị nhỏ nhất của hàm số là -1.

    Đẳng thức xảy ra \Leftrightarrow cos2x =1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi\ \left(k\mathbb{\in Z} ight).

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Hình vẽ minh họa

    Ta có:SI = (SBC) \cap (SAD)

    Do \left\{ \begin{matrix}
SI = (SAD) \cap (SBC)\ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AD \subset (SAD)\ ;\ \ BC \subset (SBC) \\
AD \parallel BC \\
\end{matrix} \\
\end{matrix} ight. \Rightarrow
SI \parallel BC \parallel AD .

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 29: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Kiểm tra được y = \cot4x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    y = \frac{\sin x + 1}{\cos x} là hàm số không chẵn không lẻ

    y = \tan^{2}x,y = \left| \cot xight| là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.

  • Câu 31: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 32: Vận dụng

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Đáp án là:

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Hình vẽ minh họa

    Không mất tính tổng quát, xét mặt bên \Delta ABC.

    Giả sử MN song song với BC. Khi đó, số tam giác có cạnh MN nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm \Delta PMN, \Delta QMN, \Delta IMN,\Delta JMN, \Delta KMN, \Delta LMN.

    Trong mặt bên \Delta ABC, nối các điểm chia đều các cạnh AB,BC,CA ta thấy có 3 đoạn thẳng song song với AB, 3 đoạn thẳng song song với BC và 3 đoạn thẳng song song với CA.

    Mặt khác, vai trò 4 mặt của tứ diện là như nhau.

    Vậy, số tam giác thỏa mãn yêu cầu đề bài là 6.(3 + 3 + 3).4 = 216.

  • Câu 33: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 34: Nhận biết

    Cho hai đường thẳng song song ab. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Có vô số mặt phẳng chứa a và song song với b (đó là tất cả các mặt phẳng chứa a nhưng không chứa b).

  • Câu 35: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 36: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 37: Thông hiểu

    Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số 5;x;y;320 theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?

    Ta có:

    Các số hạng 5;x;y;320 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 5 \\\begin{matrix}q = \dfrac{x}{5} \\y = u_{3} = u_{1}q^{2} = \dfrac{x^{2}}{5} \\320 = u_{4} = u_{1}q^{3} = \dfrac{x^{3}}{25} \\\end{matrix} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 20 \\y = 80 \\\end{matrix} ight.

  • Câu 38: Thông hiểu

    Cho tứ diện ABCD, lấy M là trung điểm của AD. Qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) biến điểm M thành điểm nào sau đây?

    Hình vẽ minh họa

    Gọi N là trung điểm của CD. Khi đó MN là đường trung bình của tam giác ACD

    \Rightarrow MN//AC.

    Do đó hình chiếu của điểm M qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) là điểm N.

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm M
\in SA sao cho \frac{MA}{MS} =
2. Hình chiếu của điểm S qua phép chiếu song song phương MO mặt phẳng chiếu (ABCD) là điểm N. Khi đó tỉ số độ dài \frac{CN}{CA} bằng bao nhiêu?

    Hình vẽ minh họa:

    Phép chiếu song song phương phương MO mặt phẳng chiếu (ABCD) biến điểm S thành điểm N.

    Do đó: SN//MO \Rightarrow N \in
AC

    Xét tam giác SANta có: \frac{ON}{OA} = \frac{SM}{MA} =
\frac{1}{2}

    => N là trung điểm của OC

    Từ đó suy ra \frac{CN}{CA} =
\frac{1}{4}

  • Câu 40: Nhận biết

    Mệnh đề nào sau đây sai?

    Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.

  • Câu 41: Nhận biết

    Dãy số có các số hạng cho bởi - 1;1; - 1;1;... có số hạng tổng quát là công thức nào dưới đây?

    Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án u_{n} = 1u_{n} = - 1

    Ta có: u_{1} = - 1 ở các đáp án u_{n} = ( - 1)^{n}u_{n} = ( - 1)^{n + 1}

    Xét đáp án u_{n} = ( - 1)^{n} \Rightarrowu_{1} = - 1

    Xét đáp án u_{n} = ( - 1)^{n + 1}\Rightarrow u_{1} = ( - 1)^{2} = 1 eq - 1

    Vậy công thức tổng quát của dãy số đã cho là u_{n} = ( - 1)^{n}

  • Câu 42: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?

    Mỗi đường tròn định hướng có bán kính R =1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 43: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 44: Thông hiểu

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định:

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định vô số góc lượng giác tia đầu OA, tia cuối OB.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo