Công bội nguyên dương của cấp số nhân
thỏa mãn
là:
Ta có:
Công bội nguyên dương của cấp số nhân
thỏa mãn
là:
Ta có:
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Cho dãy số
với
. Tính
.
Ta có:
Dãy số nào dưới đây có giới hạn bằng 0?
Ta có:
Do là dãy cấp số nhân có
Có bao nhiêu giá trị nguyên của tham số m để hàm số
xác định trên tập số thực?
Hàm số đã cho xác định khi
Kết hợp với điều kiện m là số nguyên
=> m = {-4; -3; ... ; 2; 3}
Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có SM ⊥ BC và AM ⊥ BC.
AH, SK và BC đồng qui tại M. Do đó (I) đúng.
AG, SF cắt nhau tại M trên BC. Do đó (II) đúng.
HF và GK cùng nằm trong mặt phẳng (SAM) nên có thể song song hoặc cắt nhau hoặc trùng nhau. Do đó (III) sai.
SH và AK cắt nhau. Do đó (IV) đúng.
bằng
Ta có:
Do
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Tính giá trị u2018 của dãy số (un) xác định bởi ![]()
Ta có:
Đặt
=> Dãy số (vn) là cấp số nhân với
=>
Cho tổng
. Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho hình chóp
, đáy là hình bình hành. Gọi
là giao điểm của
và
,
là trung điểm
. Khằng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
nên
, mà
và
suy ra
.
Tính giá trị của biểu thức ![]()
Ta có:
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.
Ta có:
Cấp số cộng có k số hạng gồm có và số hạng cuối
.
Khi đó:
Do đó
Công thức nào sau đây đúng?
Công thức đúng là:
Tính giới hạn của hàm số
khi
.
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Nghiệm của phương trình sinx + cosx = 1 là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Cho hình lập phương
cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông
. Xác định các giao tuyến của hình lập phương
tạo với mặt phẳng
. Tính diện tích hình tạo bởi các giao tuyến.
Hình vẽ minh họa

Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.
Tứ giác là hình thang có
Ta có:
với
Thay giá trị các cạnh ta có
bằng
Ta có:
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
, lấy điểm
. Thiết diện cắt bởi mặt phẳng
với tứ diện
là:
Hình vẽ minh họa
Vì I và J là trung điểm của BC và BD nên IJ//CD (1)
nên giao tuyến của hai mặt phẳng
và
là đường thẳng d qua E và song song với CD.
Gọi ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng
.
Vì EF//IJ nên IJEF là hình thang.
Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để bất phương trình
![]()
Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử
bằng:
Giả sử m là số thực thỏa mãn yêu cầu bài toán:
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, tập nghiệm của bất phương trình là
=> Thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với đặt
thì
Theo giả thiết ta có:
với mọi giá trị x thuộc tập xác định (*)
Nếu thì
mâu thuẫn với (*)
Nếu thì
mâu thuẫn với (*)
Vậy nên số phần tử của S là 1.
Cho dãy số
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây?
Ta có:
lập thành một cấp số nhân có nên
vì
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Khẳng định nào sau đây đúng?
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Hai đường thẳng cắt nhau xác định mộ mặt phẳng duy nhất.
Tính ![]()
Ta có:
Ta có:
Ta cũng có:
Vậy
Chọn mệnh đề sai?
Xét
Xét
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Cho hình hộp
. Xác định hình chiếu của hình hộp qua phép chiếu song song phương
lên mặt phẳng chiếu
.
Hình vẽ minh họa:
Qua phép chiếu song song phương lên mặt phẳng chiếu
. Ta có:
biến thành B
biến thành
biến thành
biến thành
Do đó hình hộp biến thành hình bình hành
.
Cho hình chóp
, gọi
là trung điểm của
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có: là điểm chung của mặt phẳng
và
(*)
Ta có:
=> là điểm chung của mặt phẳng
và
(**)
Từ (*) và (**) suy ra
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có: