Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = \frac{2}{3}. Tính giá trị của biểu thức P = \sin^{4}\alpha +\cos^{4}a.

    Ta có:

    P = \sin^{4}\alpha +\cos^{4}a

    = \left( \sin^{2}\alpha + \cos^{2}\alphaight)^{2} - 2\sin^{2}\alpha \cos^{2}\alpha

    = 1 - \dfrac{1}{2}\left(2\sin\alpha\cos\alpha ight)^{2}

    = 1 -\dfrac{1}{2}\sin^{2}(2\alpha)

    = 1 - \frac{1}{2}.\left( \frac{2}{3}ight)^{2} = \frac{7}{9}

  • Câu 2: Nhận biết

    Với những giá trị nào của x thì giá trị của các hàm số y = \sin 3xy = \sin x bằng nhau?

     Xét phương trình hoành độ giao điểm: sin 3x = sin x

    \Leftrightarrow \left[ \begin{gathered}  3x = x + k2\pi  \hfill \\  3x = \pi  - x + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{4} + k\frac{\pi }{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

  • Câu 3: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 4: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 5: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n} = \frac{1}{2 - u_{n - 1}},\ \forall n \geq 2 \\
\end{matrix} ight.. Khi đó u_{3} có giá trị bằng

    Theo công thức truy hồi ta có

    u_{2} = \frac{1}{2 - \frac{1}{2}} =
\frac{2}{3} \Rightarrow u_{3} = \frac{1}{2 - \frac{2}{3}} =
\frac{3}{4}.

  • Câu 6: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 7: Vận dụng cao

    Tập giá trị của hàm số y = \frac{\cos x +1}{\sin x + 1} trên \left\lbrack0;\frac{\pi}{2} ightbrack

    Ta có:

    \left\{ \begin{matrix}0 \leq \cos x \leq 1 \\0 \leq \sin x \leq 1 \\\end{matrix} ight.\ ;\left( x \in \left\lbrack 0;\frac{\pi}{2}ightbrack ight)

    Nên \frac{0 + 1}{1 + 1} \leq \frac{\cos x+ 1}{1 + 1} \leq \frac{1 + 1}{0 + 1} \Rightarrow \frac{1}{2} \leq y \leq2

  • Câu 8: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 9: Vận dụng

    Tính tổng S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ... .

    Ta có:

    S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ...

    = 9\left( {\underbrace {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^{n - 1}}}} + ...}_{CSN:{u_1} = 1;q = \frac{1}{3}}} ight)

    = 9.\left( \dfrac{1}{1 - \dfrac{1}{3}}ight) = \dfrac{27}{2}

  • Câu 10: Vận dụng cao

    Rút gọn biểu thức B = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {\left( { - 1} ight)^n}.{\sin ^{2n}}x + ... với \sin x eq \pm 1?

    Ta có:

    \begin{matrix}
  B = \underbrace {1 - {{\sin }^2}x + {{\sin }^4}x - {{\sin }^6}x + ... + {{\left( { - 1} ight)}^n}.{{\sin }^{2n}}x + ...}_{CSN:{u_1};q =  - {{\sin }^2}x} \hfill \\
   = \dfrac{1}{{1 + {{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 11: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    \lim_{x ightarrow + \infty}\dfrac{3x +2}{x - 1} = \lim_{x ightarrow + \infty}\dfrac{3 + \dfrac{2}{x}}{1 -\dfrac{1}{x}} = \dfrac{3 + 0}{1 - 0} = 3

  • Câu 12: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 13: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = - 2;\ \ u_{4} =
- 54. Tính u_{8}.

    Ta có:

    \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{4} = - 54 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{1}.q^{3} = - 54 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q^{3} = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q = 3 \\\end{matrix} ight.

    Vậy u_{8} = u_{1}.q^{7} = - 2.3^{7} = -
4374.

  • Câu 14: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 16: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 17: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 18: Nhận biết

    Giá trị của \lim\sqrt[n]{a} với a> 0 bằng:

    Nếu a=1 thì ta có luôn giới hạn bằng 1.

    • Với  a > 1 thì khi đó: a = \left\lbrack 1 +\left( \sqrt[n]{a} - 1 ight) ightbrack^{n} > n(\sqrt[n]{a} -1)

    Suy ra: 0 < \sqrt[n]{a - 1} <\frac{a}{n} ightarrow 0 nên \lim\sqrt[n]{a} = 1

    • Với 0 < a < 1 thì khi đó:  \frac{1}{a} >1 .

    Suy ra: \lim \sqrt[n]{\frac{1}{a} }=1 \Rightarrow \lim \sqrt[n]{a}=1.\frac{1}{a}>1 \Rightarrow \lim \sqrt[n]{a}=1

    Tóm lại ta luôn có: \lim\sqrt[n]{a} =1 với a > 0 .

  • Câu 19: Nhận biết

    Cho hàm số y =
f(x) = \frac{2x + 3}{x - 1}. Tính \lim_{x ightarrow - \infty}f(x).

    Hàm số đã cho xác định trên ( -
\infty;1)(1; +
\infty)

    Giả sử \left( x_{n} ight) là một dãy số bất kì, thỏa mãn x_{n} <
1;x_{n} ightarrow - \infty

    Ta có: \lim f\left( x_{n} ight) =\lim\dfrac{2x_{n} + 3}{x_{n} - 1} = \lim\dfrac{2 + \dfrac{3}{x_{n}}}{1 -\dfrac{1}{x_{n}}} = 2

    Vậy \lim_{x ightarrow - \infty}\frac{2x
+ 3}{x - 1} = 2

  • Câu 20: Thông hiểu

    Cho hàm số f(x)
= \frac{x - 2}{3 - x}. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 2} ight) = 1 > 0} \\ 
  \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left( {3 - x} ight) = 0 \hfill \\
  x \mapsto {3^ + } \Rightarrow \left( {3 - x} ight) < 0 \hfill \\ 
\end{gathered}  
\end{array}} ight. \Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - \infty

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{x - 2}{3 - x} = \lim_{x ightarrow -\infty}\dfrac{1 - \dfrac{2}{x}}{\dfrac{3}{x} - 1} = - 1

    Vậy đáp án đúng là \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight.

  • Câu 21: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 22: Vận dụng cao

    Tính tổng {S_n} = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

     Ta có:

    \begin{matrix}  {S_n} = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  {S_n} = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {{4^2} + 2 + \dfrac{1}{{{4^2}}}} ight) + ... + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\  {S_n} = 2n + \left( {4 + {4^2} + ... + {4^n}} ight) + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\   = 2n + 4.\dfrac{{1 - {4^n}}}{{1 - 4}} + \frac{1}{4}\frac{{1 - \frac{1}{{{4^n}}}}}{{1 - \frac{1}{4}}} \hfill \\  {S_n} = 2n + \dfrac{4}{3}\left( {{4^n} - 1} ight) + \dfrac{{{4^{n - 1}}}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 24: Thông hiểu

    Cho tứ diện ABCD. Gọi G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD. Tìm tỉ số \frac{G_{1}G_{2}}{AB} (làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Đáp án là:

    Cho tứ diện ABCD. Gọi G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD. Tìm tỉ số \frac{G_{1}G_{2}}{AB} (làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Hình vẽ minh họa

    Ta có:

    G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD nên BG _ { 1 }, AG_{2}CD đồng qui tại M(là trung điểm của CD) .

    G_{1}G_{2}//AB nên G_{1}G_{2}//(ABD)G_{1}G_{2}//(ABC).

    Lại có \frac{G_{1}G_{2}}{AB} =
\frac{MG_{1}}{MB} = \frac{1}{3} = 0,33

  • Câu 25: Vận dụng

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Hình vẽ minh họa

    Trong mặt phẳng (BCD), gọi I = RQ \cap BD.

    Trong (ABD), gọi S = PI \cap AD \Rightarrow S = AD \cap (PQR).

    Trong mặt phẳng (BCD), dựng DE//BC \Rightarrow DE là đường trung bình của tam giác IBR.

    \Rightarrow \  D là trung điểm của BI.

    Trong (ABD), dựng DF//AB \Rightarrow \frac{DF}{BP} = \frac{1}{2}
\Rightarrow \frac{DF}{PA} = \frac{1}{2} \Rightarrow \frac{SA}{SD} =
2.

  • Câu 26: Nhận biết

    Chọn khẳng định đúng.

    Ta có: \pi rad tương ứng với 180^{0}.

  • Câu 27: Thông hiểu

    Cho tứ diện ABCD. Gọi I,J,K lần lượt là các điểm nằm trên các cạnh AB,BC,CD. Giao tuyến của mặt phẳng (IJK) và mặt phẳng (BCD) là đường thẳng

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
J \in (IJK) \\
J \in BC \subset (BCD) \\
\end{matrix} ight.

    => J là điểm chung của hai mặt phẳng (IJK)(BCD).

    Ta lại có: \left\{ \begin{matrix}
K \in (IJK) \\
K \in CD \subset (BCD) \\
\end{matrix} ight.

    => K là điểm chung của hai mặt phẳng (IJK)(BCD).

    Vậy giao tuyến của mặt phẳng (IJK) và mặt phẳng (BCD) là đường thẳng JK.

  • Câu 28: Vận dụng

    Cho đồ thị hàm số như hình vẽ:

    Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây

    Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án

    y = \sqrt{2}\sin\left( x + \frac{\pi}{4}
ight)

    Tại x = 0 thì y = -
\frac{\sqrt{2}}{2} => Loại đáp án y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y =
1 ta thấy chỉ có y = \sin\left( x -
\frac{\pi}{4} ight) thỏa mãn

  • Câu 29: Vận dụng

    Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là 10250m^{2}, tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?

    Gọi u_{0} là diện tích đế tháp và u_{n} là diện tích bề mặt trên của tầng thứ n, với 1 \leq n \leq11.

    Theo giả thiết ta có: u_{n + 1} =\frac{1}{2}u_{n};\left( n \in \lbrack 0;10brack ight)

    Dãy số \left( u_{n} ight) lập thành sấp số nhân với số hạng đầu tiên là u_{0} = 10250, công sai q = \frac{1}{2}.

    Diện tích mặt trên cùng của tháp là:

    u_{11} = u_{0}.q^{11} = 10250.\left(\frac{1}{2} ight)^{11} \approx 5m^{2}

  • Câu 30: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy các điểm M \in AD',N \in DB sao cho AM = DN = x;\left( 0 < x < a\sqrt{2}
ight). Khi giá trị x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

    Hình vẽ minh họa

    Áp dụng định lí Ta – lét đảo cho D,N,B
\in DBA,M,D' \in
AD'. Từ tỉ lệ

    \frac{AM}{AD'} = \frac{DN}{DB}\left(
= \frac{x}{a\sqrt{2}} ight)

    Ta suy ra AD,MN,BD' cùng song song với một mặt phẳng (\alpha) nào đó.

    Ta chọn mặt phẳng (\beta) chứa BD' và song song với AD.

    Mặt phẳng (\beta) chính là mặt phẳng (BCD'A') và là mặt phẳng cố định.

    \Rightarrow
MN//(\alpha)//(BCD'A')

    Hay MN//(A'BC)

  • Câu 31: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 32: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang có cạnh đáy là AB,CD. Gọi M,N lần lượt là trung điểm của AD;BC, điểm P
\in SA;(P eq S;P eq A). Xác định giao tuyến của hai mặt phẳng (SAB);(MNP).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
P = (SAB) \cap (MNP) \\
MN \subset (MNP) \\
AB \subset (SAB) \\
MN//AB \\
\end{matrix} ight.

    \Rightarrow (SAB) \cap (MNP) =
PQ với Px//AB//MN,Q \in
SB.

    Vậy giao tuyến của hai mặt phẳng (SAB);(MNP) là đường thẳng qua P và song song với AB.

  • Câu 34: Thông hiểu

    Giá trị của B =
\lim\frac{4n^{2} + 3n + 1}{(3n - 1)^{2}\ } bằng:

    B = \lim\frac{4n^{2} + 3n + 1}{(3n -
1)^{2}\ }

    = \lim\frac{4n^{2} + 3n + 1}{{9n}^{2} -6n + 1 }

    = \lim\frac{4 + \frac{3}{n} + \frac{1}{n^{2}}}{9 -\frac{6}{n} + \frac{1}{n^{2}}} = - \frac{4}{9}

  • Câu 35: Nhận biết

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm của SASD. Trong các khẳng định sau, khẳng định nào sai?

    Đáp án MN//BC đúng vì MN // AD do trong tam giác SADMN là đường trung bình mà BC// AD nên MN // BC

    Đáp án ON//SB đúng vì ON là đường trung bình của tam giác SBD

    Đáp án OM//SC đúng vì OM là đường trung bình của tam giác SAC

    Đáp án ON//SC sai vì giả sử ON //SCOM //SC nên MN vô lí.

  • Câu 36: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

  • Câu 37: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 38: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 39: Thông hiểu

    Phương trình 2\cos^{2}x - 3\sqrt{3}\sin2x - 4\sin^{2}x = -4 có họ nghiệm là

    Ta có:

    \cos x = 0 \Leftrightarrow x =
\frac{\pi}{2} + k\pi

    \Rightarrow \sin^{2}x = 1 là nghiệm của phương trình.

    \cos x eq 0 : Chia 2 vế phương trình cho \cos^{2}x ta được:

    2 - 6\sqrt{3}\tan x - 4\tan^{2}x = -4\left( 1 + \tan^{2}x ight)

    \Leftrightarrow tanx = \frac{1}{\sqrt{3}}
\Leftrightarrow x = \frac{\pi}{6} + k\pi.

  • Câu 40: Vận dụng

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Đáp án là:

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5nên f(x) - 10\overset{x
ightarrow 1}{ightarrow}5(x - 1)hay f(x)\overset{x ightarrow 1}{ightarrow}5x +
5

    Do đó

    \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4f(x) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5x + 5 -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4(5x + 5) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5(x -
1)\left( \sqrt{x} + 1 ight)}{(x - 1)\left( \sqrt{20x + 29} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5\left(
\sqrt{x} + 1 ight)}{\left( \sqrt{20x + 29} + 3 ight)} =
1.

  • Câu 41: Thông hiểu

    Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?

    Gọi H là trung điểm của tam giác AB.

    M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.

    Khi đó ta có: \frac{{HM}}{{HC}} = \frac{{HQ}}{{HD}} = \frac{1}{3}

    Theo định lí Ta - lét ta có: MQ//CD

    Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.

  • Câu 42: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 43: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 44: Nhận biết

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo