Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

Ta có:
Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.
Cho hàm số
. Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?
Gọi H là trung điểm của tam giác AB.
M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.
Khi đó ta có:
Theo định lí Ta - lét ta có:
Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.
Phương trình
có nghiệm là:
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
. Mệnh đề nào dưới đây là mệnh đề sai?

Hình vẽ minh họa:
Ta có:
Ta có: là đường trung bình trong tam giác SAC
Ta có: là đường trung bình trong tam giác
=>
=>
Dễ thấy cắt
tại trung điểm
của
.
Do đó mệnh đề là mệnh đề sai.
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Ta có: (SAB) ∩ (A’B’C’) = A’B’
(SBC) ∩ (A’B’C’) = B’C’
Gọi O là giao điểm của AC và BD
Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO
Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD
Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’
(SAD) ∩ (A’B’C’) = A’D’
=> Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Ta có:
Vậy là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Giá trị của
bằng:
Với mọi M > 0 lớn tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Cho giới hạn
. Khi đó :
a)
khi
Đúng||Sai
b)
khi
Sai||Đúng
c)
khi
Đúng||Sai
d) Có 3 giá trị nguyên của
thuộc
sao cho
là một số nguyên. Đúng||Sai
Cho giới hạn . Khi đó :
a) khi
Đúng||Sai
b) khi
Sai||Đúng
c) khi
Đúng||Sai
d) Có 3 giá trị nguyên của thuộc
sao cho
là một số nguyên. Đúng||Sai
Ta có
Ta có
Kết luận:
a) Đúng | b) Sai | c) Đúng | d) Đúng |
Xác định giới hạn của dãy số
là:
Ta có:
Cho hình chóp tứ giác
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
và
(như hình vẽ). Chọn mệnh đề đúng trong các mệnh đề dưới đây.

Ta có:
Cho cấp số cộng
với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Tính tổng
:
Ta có:
Cho tứ diện
. Trung điểm của các cạnh
lần lượt là các điểm
. Giả sử
. Hỏi đường thẳng
đi qua trung điểm của đoạn thẳng nào?
Hình vẽ minh họa
Ta có: nên giao tuyến của hai mặt phẳng
sẽ đi qua điểm
và song song với
.
Do đó giao tuyến sẽ đi qua trung điểm của
.
Cho hình hộp
. Xác định hình chiếu của hình hộp qua phép chiếu song song phương
lên mặt phẳng chiếu
.
Hình vẽ minh họa:
Qua phép chiếu song song phương lên mặt phẳng chiếu
. Ta có:
biến thành B
biến thành
biến thành
biến thành
Do đó hình hộp biến thành hình bình hành
.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Hãy liệt kê năm số hạng đầu của dãy số
có số hạng tổng quát
?
Ta có:
Vậy năm số hạng đầu tiên của dãy số là
Cho cấp số nhân
có các số hạng đều dương và
Giá trị của
là:
Ta có
Theo giả thiết, ta có:
Và
.
Suy ra . Vậy
.
Cho hàm số.![]()
a) Giới hạn:
Sai||Đúng
b) Giới hạn:
Đúng||Sai
c) Giới hạn:
Đúng||Sai
d) Giới hạn:
Sai||Đúng
Cho hàm số.
a) Giới hạn: Sai||Đúng
b) Giới hạn: Đúng||Sai
c) Giới hạn: Đúng||Sai
d) Giới hạn: Sai||Đúng
a) Ta có
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Tính giới hạn ![]()
Ta có:
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Phương trình lượng giác
có nghiệm là ?
Ta có:
Cho cấp số cộng
có
và công sai
. Tổng 10 số hạng đầu của cấp số cộng bằng:
Tổng 10 số hạng đầu của cấp số cộng là
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Tính giới hạn ![]()
Ta có:
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Cho hình chóp
có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai