Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số
thỏa mãn điều kiện
;
với
số hạng
bằng:
Ta có:
Vậy
Tìm tập nghiệm của phương trình
?
Điều kiện:
Ta có:
Kết hợp với điều kiện suy ra phương trình có nghiệm
Vậy phương trình có tập nghiệm là:
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Cho hình lăng trụ
. Trọng tâm các tam giác
lần lượt là
. Tìm mặt phẳng song song với mặt phẳng
.
Theo bài ra ta có:
Các điểm lần lượt là trọng tâm các tam giác
.
.
Chứng minh tương tự
Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?
Gọi H là trung điểm của tam giác AB.
M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.
Khi đó ta có:
Theo định lí Ta - lét ta có:
Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.
Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Mà n là số chẵn và
Cho dãy số
với
. Tính
.
Ta có:
Trong các phát biểu sau, phát biểu nào đúng?
Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất." sai vì nếu hai mặt phẳng trùng nhau thì chúng có vô số đường thẳng chung.
Phương án "Hai mặt phẳng có thể có đúng hai điểm chung." sai vì nếu hai mặt phẳng có hai điểm chung thì chúng có chung một đường thẳng.
Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có chung một đường thẳng duy nhất hoặc mọi điểm thuộc mặt phẳng này đều thuộc mặt phẳng kia." đúng vì hai mặt phẳng có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.
Phương án "Hai mặt phẳng luôn có điểm chung." sai vì hai mặt phẳng đáy của hình hộp thì không có điểm chung.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Mệnh đề A(n) đúng với n = k với k ≥ p.
Tập nghiệm của phương trình
là:
Ta có:
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Hai đường thẳng cắt nhau xác định mộ mặt phẳng duy nhất.
Công thức nào sau đây sai?
Ta có:
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Cho tứ diện
. Các cạnh
có trung điểm lần lượt là
. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Ta có:
,
=> MPNQ là hình bình hành
=> thuộc một mặt phẳng.
,
=> MRNS là hình bình hành
=> thuộc một mặt phẳng.
,
=> PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.
Vậy không thuộc cùng một mặt phẳng.
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho tứ diện . Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Ta có:
và
lần lượt là trọng tâm các tam giác
và
nên
,
và
đồng qui tại
(là trung điểm của
) .
Vì nên
và
.
Lại có
Hai số hạng đầu của một cấp số nhân là
và
. Số hạng thứ ba của cấp số nhân là:
Công bội của cấp số nhân là:
Vậy số hạng thứ ba của cấp số nhân là:
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Cho hàm số
liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Đặt
Khi đó:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng
hay phương trình
có ít nhất một nghiệm thuộc khoảng
.
bằng:
Ta có:
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Cho cấp số cộng
. Tính ![]()
Ta có:
Cho góc
thỏa mãn
. Giá trị của biểu thức ![]()
Ta có:
Ta có:
Khi đó giá trị biểu thức G là:
Giá trị của
bằng:
Ta có:
Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để bất phương trình
![]()
Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử
bằng:
Giả sử m là số thực thỏa mãn yêu cầu bài toán:
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, tập nghiệm của bất phương trình là
=> Thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với đặt
thì
Theo giả thiết ta có:
với mọi giá trị x thuộc tập xác định (*)
Nếu thì
mâu thuẫn với (*)
Nếu thì
mâu thuẫn với (*)
Vậy nên số phần tử của S là 1.
Cho hình vẽ:

Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Ta thấy hàm số có giá trị lớn nhất là và giá trị nhỏ nhất là
=> loại hàm số
và
Tại ta thấy chỉ có
thỏa mãn
Cho hai dãy số
với
và
. Khi đó
bằng:
Ta có:
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho hàm số
xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hàm số xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hình chóp
. Gọi
lần lượt là trung điểm của các cạnh
và
. Trong các đường thẳng sau đây, đường thẳng nào không song song với
?
Hình vẽ minh họa

Ta có: lần lượt là trung điểm của các cạnh
lần lượt là đường trung bình của tam giác
.
Và là hình bình hành
=>
Vậy không song song với
.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
bằng:
Ta có:
Tại một nhà máy, người ta đo được rằng
lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với
ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Đáp án: 500
Tại một nhà máy, người ta đo được rằng lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với
ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Đáp án: 500
Ta có:
.
Tính giới hạn
.
Ta có:
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Các điểm
qua phép chiếu song song phương
trên mặt phẳng
ta thu được ảnh lần lượt là
. Hình chóp
cần thêm điều kiện gì để tứ giác
là hình vuông?
Hình vẽ minh họa
Theo bài ra ta có: lần lượt là ảnh của
qua phép chiếu song song phương
trên mặt phẳng
.
Ta có:
=> là đường trung bình của các tam giác
=>
=> là hình bình hành
=>
là hình bình hành.
Để là hình vuông thì
suy ra hình chóp
có mặt bên
vuông cân tại
.
Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?
Giả sử cấp số nhân có số hạng đầu là , công bội
, với
Theo bài ra ta có:
Mà
Vậy góc lớn nhất có số đo
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Tính ![]()
Ta có:
Do
Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Vậy
Có bao nhiêu giá trị nguyên của m thuộc
sao cho
là:
Ta có:
Ta có: