Cho hàm số
. Tính
.
Ta có:
Khi đó:
Đồng thời
Vậy
Cho hàm số
. Tính
.
Ta có:
Khi đó:
Đồng thời
Vậy
Tìm giá trị lớn nhất M của hàm số ![]()
Ta có
Mà
.
Vậy giá trị lớn nhất của hàm số là
Biết rằng
, với
là phân số tối giản và
. Tính
.
Ta có:
.
Vậy: .
Cho dãy số
thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Cho hàm số
. Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
Cho hình vẽ:

Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Ta thấy hàm số có giá trị lớn nhất là và giá trị nhỏ nhất là
=> loại hàm số
và
Tại ta thấy chỉ có
thỏa mãn
Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?
Gọi a là số tiền gửi mỗi tháng.
Cuối tháng thứ 1 số tiền là
Cuối tháng thứ 2 số tiền là
Cuối tháng thứ n số tiền là
Áp dụng công thức trên, ta tính được
Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).
Cho hình chóp
. Trên các cạnh
và
lần lượt lấy các điểm
sao cho
. Hỏi
song song với mặt phẳng nào dưới đây?
Hình vẽ minh họa:
Ta có: là đường trung bình của tam giác ABD suy ra MN//BD
Mặt khác
Biết
với
. Tính giá trị của biểu thức
.
Ta có:
Vậy
Cho hình chóp
có các cạnh bên bằng nhau, đáy
là hình vuông cạnh bằng 10cm. Lấy
sao cho
. Giả sử mặt phẳng
là mặt phẳng đi qua điểm
và song song với
. Các giao tuyến của
với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:
Hình vẽ minh họa
Ta có: . Gọi
lần lượt là các giao điểm của
với
thì
.
Do đó là hình vuông và
Vậy diện tích tứ giác là .
Cho cấp số nhân
. Hỏi số
là số hạng thứ mấy trong cấp số nhân đã cho?
Ta có: là cấp số nhân với
Xác định công thức tổng quát của dãy số
.
Ta có:
Nhận thấy
Dự đoán
Ta chứng minh bằng quy nạp
Trước hết đúng với
Giả sử đúng khi
. Khi đó
Ta có:
Mặt khác ta có . Do đó
Vậy
Vậy (*) đúng với . Theo nguyên lí quy nạp, ta có điều phải chứng minh.
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Tìm được các giới hạn sau:
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Tìm được các giới hạn sau:
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Ta có:
.
b) Ta có:
vì
.
c) Ta có:
, do
d) Ta có:
.
bằng
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.
Tìm các giá trị nguyên của a thuộc
sao cho
là một số nguyên?
Ta có:
Ta có:
Vậy có ba giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Tính giới hạn của ![]()
Ta có:
Hình nào sau đây là hình biểu diễn của hình chóp
với
là hình bình hành?
Hình biểu diễn của hình chóp đáy là hình bình hành là hình
Cho tứ diện
có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Công thức nào sau đây đúng?
Ta có:
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Cho dãy số
, biết
. Mệnh đề nào sau đây sai?
Ta có:
Vậy mệnh đề sai là:
Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?
![]()
![]()
![]()
![]()
Ta có:
Vậy có hai đồng nhất thức.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Cho hai đồ thị hàm số và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là Đúng||Sai
c) Khi thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Vì .
Với với
.
Vậy toạ độ giao điểm của hai đồ thị hàm số là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Phát biểu nào dưới đây sai?
Ta có phát biểu sai là:
Sửa lại là:
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Xét từng mệnh đề ta có
a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.
b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.
c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).
d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).
Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên
Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?
Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho hình chóp S.ABCD với đáy là hình thang ABCD, đáy lớn BC gấp đôi đáy nhỏ AD. Gọi E là trung điểm AD và O là giao điểm của AC và BE, I là một điểm thuộc đoạn OC (I khác O và C). Mặt phẳng (α) qua I song song với (SBE). Xác định hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD.
Hình vẽ minh họa
Ta có:
=> => Ix cắt BC tại M, AD tại Q.
Ta có:
=>
=> Mx cắt SC tại N.
Ta có:
=>
=> Qx cắt SD tại P
Tứ giác BCDE là hình bình hành
=> CD // BE // MQ
=> CD // (α).
Ta có:
=>
Vậy hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD là hình thang MNPQ.
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là
. Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là . Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Diện tích bề mặt của tầng trên cùng là .
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấy
. Giả sử
là mặt phẳng đi qua
song song với hai đường thẳng
và
. Xác định giao tuyến của
với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình
Hình vẽ minh họa
Gọi trung điểm lần lượt là
.
Gọi
Từ kẻ
song song với
.
Ta có:
(1)
Ta có (2)
Từ (1) và (2) => Các giao tuyến của với các cạnh của hình chóp là hình ngũ giác
.
Cho các hàm số
. Trong các hàm số trên, có bao nhiêu hàm số lẻ?
Ta có:
là hàm số chẵn vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.