Tính tổng
:
Ta có:
Tính tổng
:
Ta có:
Giá trị của
bằng:
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Xác định giao tuyến của hai mặt phẳng
và
:
Hình vẽ minh họa
Gọi
Khi đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Cho
là nghiệm của phương trình nào sau đây?
Ta có:
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Cho hình chóp
có đáy
là hình bình hành. Các điểm
lần lượt là trọng tâm các tam giác
,
,
. Mặt phẳng nào dưới đây song song với đường thẳng
?
Hình vẽ minh họa
Ta có:
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Biết giới hạn
,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng:
.
Đáp án: 0
Biết giới hạn ,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng: .
Đáp án: 0
Vì nên
.
Suy ra .
Với ta được
.
Vậy .
Suy ra .
Một hãng taxi đưa ra giá cước
(đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Tính tổng
.
Ta có:
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Tính giới hạn
.
Ta có:
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là
. Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là . Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Diện tích bề mặt của tầng trên cùng là .
Mệnh đề nào sau đây sai?
Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.
Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Trong các dãy số sau, dãy số nào là cấp số nhân?
=> Loại đáp án A
=> Loại đáp án B
=> Dãy số là cấp số nhân có công bội q = 2
Chọn đáp án C
=> Loại đáp án B
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Cho hình chóp
, có đáy
là hình bình hành. Phép chiếu song song theo phương
lên mặt phẳng
biến điểm
thành:
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho hình chóp
có các mặt bên là tam giác đều. Gọi
là trung điểm của
, lấy
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
là:
Hình vẽ minh họa
Do các mặt bên của hình chóp là các tam giác đều nên tam giác
đều.
Gọi là trọng tâm tam giác
.
Ta có
Nên là hình chiếu song song theo phương
của
trên
.
Lại do tam giác đều nên
vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác
.
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Áp dụng công thức
Ta có
Ta có
Hai số hạng đầu của một cấp số nhân là
và
. Số hạng thứ ba của cấp số nhân là:
Công bội của cấp số nhân là:
Vậy số hạng thứ ba của cấp số nhân là:
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.
Cho hình chóp tứ giác
đáy là hình bình hành,
là trung điểm của
. Giả sử
là mặt phẳng đi qua
đồng thời song song với
và
. Xác định các giao tuyến của mặt phẳng
và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
Các giao tuyến của mặt phẳng và hình chóp là tứ giác
Lại có nên
là hình thang.
Xác định ![]()
Ta có:
Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Cho hình chóp
có các cạnh bên bằng nhau, đáy
là hình vuông cạnh bằng 10cm. Lấy
sao cho
. Giả sử mặt phẳng
là mặt phẳng đi qua điểm
và song song với
. Các giao tuyến của
với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:
Hình vẽ minh họa
Ta có: . Gọi
lần lượt là các giao điểm của
với
thì
.
Do đó là hình vuông và
Vậy diện tích tứ giác là .
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
. Trên cạnh
lấy điểm
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số ![]()
Đáp án: 2
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
. Trên cạnh
lấy điểm
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số
Đáp án: 2
Hình vẽ minh họa
+ Cho
Trong mặt phẳng hai đường thẳng
không song song nên gọi
là giao điểm của hai đường thẳng
và
. Khi đó
.
+ Ta thấy
+ Trong . Khi đó
.
Xét tam giác , áp dụng định lí Menelaus có:
Xét tam giác , áp dụng định lí Menelaus có:
Vậy .
bằng:
Ta có:
Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1
Một học sinh chứng minh un luôn chia hết cho 19 như sau:
Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19
Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.
Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1
Bước 3: Vì 5.23k − 2 + 33k − 1 và 19.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*
Vậy un chia hết cho 19, ∀n ∈ ℕ*
Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?
Lập luận hoàn toàn đúng!
Cho cấp số nhân (un) có
. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.
Ta có:
Tính giới hạn ![]()
Ta có: