Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 2: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABCE là điểm thuộc cạnh SA thỏa mãn SE = \frac{m}{n}.SA với \frac{m}{n} là phân số tối giản. Biết rằng GE song song với mặt phẳng (SCD). Giá trị của m.n bằng

    Đáp án: 6

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABCE là điểm thuộc cạnh SA thỏa mãn SE = \frac{m}{n}.SA với \frac{m}{n} là phân số tối giản. Biết rằng GE song song với mặt phẳng (SCD). Giá trị của m.n bằng

    Đáp án: 6

    Hình vẽ minh họa

    Gọi M là trung điểm của BC, F là giao điểm của AMCD trong mặt phẳng (ABCD).

    Theo định lý Talet, ta có: \frac{MA}{MF}
= \frac{MB}{MC} = 1 \Rightarrow MA = MF \Rightarrow M là trung điểm của AF

    \Rightarrow \frac{AG}{AF} =
\frac{AG}{2AM} = \frac{1}{3}

    Ta có:

    \left\{ \begin{matrix}
GE \subset (SAF) \\
GE//(SCD) \\
(SAF) \cap (SCD) = SF \\
\end{matrix} ight.\  \Rightarrow GE//SF

    \Rightarrow \frac{AE}{AS} =
\frac{AG}{AF} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS

    \Rightarrow SE = \frac{2}{3}SA
\Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6.

  • Câu 5: Nhận biết

    Chọn khẳng định đúng.

    Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”

  • Câu 6: Thông hiểu

    Biết rằng \frac{\pi}{2} < \alpha <
\frac{3\pi}{4}. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{\pi}{2} < \alpha <
\frac{3\pi}{4} \Rightarrow \pi < 2\alpha <
\frac{3\pi}{2}

    \Rightarrow \frac{9\pi}{2} < 2\alpha
+ \frac{7\pi}{2} < 5\pi

    Xét trên đường tròn lượng giác ta thấy 2\alpha + \frac{7\pi}{2} thuộc góc phần tư thứ II nên ta có:

    \sin\left( 2\alpha + \frac{7\pi}{2}
ight) > 0

    \cos\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \tan\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \cot\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

  • Câu 7: Thông hiểu

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    a) \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}(x - 1) = 1 - 1 = 0.

    b) \lim_{x ightarrow 1}g(x) = \lim_{x
ightarrow 1}x^{3} = 1^{3} = 1.

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = 3.0 - 1 = - 1.

    d) \lim_{x ightarrow1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = \frac{0}{1} =0.

  • Câu 8: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 9: Thông hiểu

    Cho một cấp số nhân có các số hạng đều không âm thỏa mãn {u_2} = 6;{u_4} = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.

    Giả sử công bội của cấp số nhân là q

    Ta có:

    => {u_4} = {u_2}.{q^2} \Rightarrow q =  \pm 2

    Do cấp số nhân có các số hạng không âm nên q = 2

    Ta có: {S_{12}} = {u_1}.\frac{{1 - {2^{12}}}}{{1 - 2}} = 3\left( {{2^{12}} - 1} ight)

  • Câu 10: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 11: Thông hiểu

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 12: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 13: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Hai đường thẳng phân biệt m,n cùng song song với (\alpha) thì m,n có thể cắt nhau cùng nằm trong (\alpha).

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy một điểm M trên cạnh SB;(M eq S;M eq B). Thiết diện tạo bởi mặt phẳng (ADM) với hình chóp là:

    Hình vẽ minh họa

    Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.

    Ta có: MN // BC // AD nên thiết diện AMND là hình thang.

  • Câu 15: Vận dụng

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 16: Thông hiểu

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 17: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 18: Thông hiểu

    Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?

    Gọi H là trung điểm của tam giác AB.

    M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.

    Khi đó ta có: \frac{{HM}}{{HC}} = \frac{{HQ}}{{HD}} = \frac{1}{3}

    Theo định lí Ta - lét ta có: MQ//CD

    Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.

  • Câu 19: Nhận biết

    Cho dãy số \left( u_{n} ight), biết u_{n} = \frac{n}{2^{n}}. Chọn đáp án đúng.

    Ta có: u_{4} = \frac{4}{2^{4}} =
\frac{4}{16} = \frac{1}{4}

  • Câu 20: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 21: Vận dụng

    Xác định giới hạn của dãy số \lim\left\lbrack \frac{1}{1.2} + \frac{1}{2.3} +
... + \frac{1}{n(n + 1)} ightbrack là:

    Ta có:

    \lim\left\lbrack \frac{1}{1.2} +
\frac{1}{2.3} + ... + \frac{1}{n(n + 1)} ightbrack

    = \lim\left\lbrack 1 - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}
ightbrack

    = \lim\left( 1 - \frac{1}{n + 1} ight)
= 1

  • Câu 22: Nhận biết

    Rút gọn biểu thức A = \cos^{4}15^{0} - \sin^{4}15^{0}

    Ta có:

    A = \cos^{4}15^{0} -\sin^{4}15^{0}

    A = \left( \cos^{2}15^{0} + \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    A = \cos^{2}15^{0} -\sin^{2}15^{0}

    A = \cos\left( 2.15^{0} ight) =\cos30^{0} = \frac{\sqrt{3}}{2}

  • Câu 23: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 24: Thông hiểu

    Cho hình chóp tứ giác S.ABCD đáy ABCD là hình thang đáy nhỏ BC, MC =
MD;(M \in CD), I = AC \cap
BM. Xác định giao tuyến của hai mặt phẳng (MSB);(SAC).

    Hình vẽ minh họa

    Ta có:

    S là điểm chung thứ nhất của hai mặt phẳng (MSB);(SAC) (1)

    Xét mặt phẳng (ABCD) có:

    I = AC \cap BM

    = > I \in (MSB) \cap
(SAC)

    => I là điểm chung thứ hai của hai mặt phẳng (MSB);(SAC) (2)

    Từ (1) và (2) \Rightarrow SI = (MSB) \cap
(SAC)

  • Câu 25: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 26: Vận dụng

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    Đáp án là:

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn 150 \times 6\%= 9(mg), suy ra mệnh đề đúng.

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là: 150 \times 6\% + 150 = 159(mg) suy ra mệnh đề đúng.

    c) Gọi u_{n} là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 1 là: u_{1} = 150(mg)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là:

    u_{2} = u_{1} \times 6\% + 150= 150 \times 6\% + 150 = 150 \times (0,06 + 1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 3 là:

    u_{3} = u_{2}.6\% + 150 = 150\times (0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{2} + 0,06 +
1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 4 là:

    u_{4} = u_{3} \times 6\% + 150= 150 \times (0,06^{2} + 0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{3} + 0,06^{2} + 0,06
+ 1) = 159,5724(mg)

    Suy ra mệnh đề sai.

    d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:

    S = 150 \times \left( 1 + 0,06 +
0,06^{2} + \ldots + 0,06^{29} ight)

    = 150 \times u_{1}\frac{1 - q^{30}}{1 -
q} = 150 \times 1 \times \frac{1 - 0,06^{30}}{1 - 0,06}

    = \frac{7500}{47} \approx
159,57mg

    Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là 159,57mg, suy ra mệnh đề đúng.

  • Câu 27: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 28: Vận dụng cao

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Đáp án là:

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Gọi r_{i} là khoảng cách lần rơi thứ i

    Ta có r_{1} = 81, r_{2} = \frac{2}{3}.81,…, r_{n} = \left( \frac{2}{3} ight)^{n -
1}.81,…

    Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 -
\frac{2}{3}}.

    Gọi t_{i} là khoảng cách lần nảy thứ i

    Ta có t_{1} = \frac{2}{3}.81, t_{2} = \left( \frac{2}{3}
ight).\frac{2}{3}81,…, t_{n} =
\left( \frac{2}{3} ight)^{n - 1}\frac{2}{3}.81,…

    Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ n bằng \dfrac{2}{3}.81.\dfrac{1 - \left( \dfrac{2}{3}ight)^{n - 1}}{1 - \dfrac{2}{3}}.

    Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng S =
\lim\left( 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 - \frac{2}{3}}
+ \frac{2}{3}.81.\frac{1 - \left( \frac{2}{3} ight)^{n - 1}}{1 -
\frac{2}{3}} ight) = 405.

  • Câu 29: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 30: Nhận biết

    Tìm giới hạn \lim_{x ightarrow ( -
3)^{+}}\frac{3 + 2x}{x + 3}.

    Ta có \lim_{x ightarrow ( - 3)^{+}}(3 +
2x) = - 3, \lim_{x ightarrow ( -
3)^{+}}(x + 3) = 0x + 3 >
0 nên \lim_{x ightarrow ( - \
3)^{+}}\frac{3 + 2x}{x + 3} = - \infty.

  • Câu 31: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 32: Nhận biết

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m + 1} ight)\sin x + 2 - m = 0 có nghiệm?

     Phương trình \left( {m + 1} ight)\sin x + 2 - m = 0

    \Leftrightarrow \left( {m + 1} ight)\sin x = m - 2 \Leftrightarrow \sin x = \frac{{m - 2}}{{m + 1}}

    Để phương trình có nghiệm \Leftrightarrow  - \,1 \leqslant \frac{{m - 2}}{{m + 1}} \leqslant 1

    \Leftrightarrow \left\{ \begin{gathered}  0 \leqslant 1 + \frac{{m - 2}}{{m + 1}} \hfill \\  \frac{{m - 2}}{{m + 1}} - 1 \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  \frac{{2m - 1}}{{m + 1}} \geqslant 0 \hfill \\   - \frac{3}{{m + 1}} \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  m \geqslant \frac{1}{2} \hfill \\  m <  - \,1 \hfill \\ \end{gathered}  ight. \hfill \\  m >  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow m \geqslant \frac{1}{2}

    là giá trị cần tìm.

  • Câu 33: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 34: Vận dụng

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Đáp án là:

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Hình vẽ minh họa

    Không mất tính tổng quát, xét mặt bên \Delta ABC.

    Giả sử MN song song với BC. Khi đó, số tam giác có cạnh MN nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm \Delta PMN, \Delta QMN, \Delta IMN,\Delta JMN, \Delta KMN, \Delta LMN.

    Trong mặt bên \Delta ABC, nối các điểm chia đều các cạnh AB,BC,CA ta thấy có 3 đoạn thẳng song song với AB, 3 đoạn thẳng song song với BC và 3 đoạn thẳng song song với CA.

    Mặt khác, vai trò 4 mặt của tứ diện là như nhau.

    Vậy, số tam giác thỏa mãn yêu cầu đề bài là 6.(3 + 3 + 3).4 = 216.

  • Câu 35: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 36: Thông hiểu

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của BCBD, lấy điểm E \in AD;E eq A;E eq D. Thiết diện cắt bởi mặt phẳng (IJE) với tứ diện ABCD là:

    Hình vẽ minh họa

    Vì I và J là trung điểm của BC và BD nên IJ//CD (1)

    \left\{ \begin{matrix}
IJ \subset (IJE) \\
CD \subset (ACD) \\
E \in (IJE) \cap (ACD) \\
\end{matrix} ight. nên giao tuyến của hai mặt phẳng (ACD)(IJE) là đường thẳng d qua E và song song với CD.

    Gọi F = d \cap AC ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng (IJE).

    Vì EF//IJ nên IJEF là hình thang.

  • Câu 37: Thông hiểu

    Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, lấy điểm N trên cạnh AC sao cho AN
= 2NC. Giao tuyến của hai mặt phẳng (DMN)(BCD) đi qua giao điểm của hai đường nào trong các cặp đường thẳng sau?

    Hình vẽ minh họa

    luyện tập điểm đường thẳng mặt phẳng trong không gian

    Gọi I là giao điểm của MN và BC.

    Giao tuyến cần tìm là DI.

    Do đó giao tuyến ấy đi qua giao điểm của MN và BC.

  • Câu 38: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Vì hàm số y = tan x tuần hoàn với chu kì π

    Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.

  • Câu 39: Nhận biết

    Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước

    Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1

    Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1

    Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

    Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.

    Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k p) ".

  • Câu 40: Nhận biết

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha <
\frac{\pi}{2}

    => 0 - \pi < \alpha - \pi <
\frac{\pi}{2} - \pi

    => - \pi < \alpha - \pi < -
\frac{\pi}{2}

    Điểm cuối cung \alpha - \pi thuộc góc phần tư thứ ba

    => \sin(\alpha - \pi) <
0

  • Câu 41: Vận dụng cao

    Biết \lim\left( \frac{\left( \sqrt{5}
ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -
3} + \frac{2n^{2} + 3}{n^{2} - 1} ight) = \frac{a\sqrt{5}}{b} +
cvới a,b,c \mathbb{\in Z}. Tính giá trị của biểu thức S = a^{2} + b^{2}
+ c^{2}.

    Ta có:

    \lim\left( \dfrac{\left( \sqrt{5}ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -3} + \dfrac{2n^{2} + 3}{n^{2} - 1} ight)

    = \lim\left( \dfrac{1 - 2.\left(\dfrac{2}{\sqrt{5}} ight)^{n} + \left( \dfrac{1}{\sqrt{5}}ight)^{n}}{5.\left( d\frac{2}{\sqrt{5}} ight)^{2} + \sqrt{5} -3.\left( \dfrac{1}{\sqrt{5}} ight)^{n}} + \dfrac{2 + \dfrac{3}{n^{2}}}{1- \dfrac{1}{n^{2}}} ight)

    = \frac{1}{\sqrt{5} + 2} =
\frac{\sqrt{5}}{5} + 2

    Vậy S = a^{2} + b^{2} + c^{2} = 1^{2} +
5^{2} + 2^{2} = 30

  • Câu 42: Vận dụng

    Phương trình nào dưới đây có nghiệm trong khoảng (0;1)?

    Xét phương án 2x^{2} - 3x + 4 =
0: 2x^{2} - 3x + 4 = 0\Delta = 9 - 32 = - 23

    => Phương trình vô nghiệm.

    Xét phương án 3x^{4} - 4x^{2} + 5 =
0: 3x^{4} - 4x^{2} + 5 =
0

    Đặt t = x^{2}(t \geq 0), phương trình trở thành: 3t^{2} - 4t + 5 =
0.

    \Delta' = 4 - 15 = - 11

    => Phương trình vô nghiệm.

    Xét phương án (x - 1)^{5} - x^{7} - 2 =
0: (x - 1)^{5} - x^{7} - 2 = 0
\Leftrightarrow (x - 1)^{5} = x^{7} + 2

    \forall x \in (0;1) \Rightarrow \left\{
\begin{matrix}
x - 1 < 0 \Rightarrow (x - 1)^{5} < 0 \\
x^{7} + 2 > 2 \\
\end{matrix} ight.

    \Rightarrow Phương trình vô nghiệm.

    Xét phương án 3x^{2024} - 8x + 4 =
0: 3x^{2024} - 8x + 4 = 0, xét f(x) = 3x^{2024} - 8x + 4.

    \left\{ \begin{matrix}
f(0) = 3.0 - 8.0 + 4 = 4 \\
f(1) = 3.1 - 8.1 + 4 = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0

    Mặc khác hàm số f(x) liên tục trên \mathbb{R} do đó liên tục trên \lbrack 0;1brack.

    Vậy phương trình 3x^{2024} - 8x + 4 =
0 có ít nhất một nghiệm trong khoảng (0;1).

  • Câu 43: Vận dụng cao

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =sin^{2}x - 4sinx + 5. Tính P = M -2m^{2}.

    Ta có: 

    y = sin^{2}x - 4sinx + 5 = \left(\sin x - 2 ight)^{2} + 1.

    Do - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 3 \leq \sin x - 2 \leq - 1 \\\Leftrightarrow 1 \leq \left( \sin x - 2 ight)^{2} \leq 9 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 2 \leq \left( \sin x - 2 ight)^{2} + 1 \leq 10 \hfill\\\Leftrightarrow \left\{ \begin{matrix}M = 10 \\m = 2 \hfill\\\end{matrix} ight.\  \hfill \\\Leftrightarrow P = M - 2m^{2} = 2.\hfill \\\end{matrix}

  • Câu 44: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo