Tìm mệnh đề đúng trong các mệnh đề sau.
Mệnh đề đúng: "Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). "
Tìm mệnh đề đúng trong các mệnh đề sau.
Mệnh đề đúng: "Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). "
Cho tứ diện
có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Cho dãy số
, biết
. Năm số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Vậy 5 số hạng đầu tiên của dãy số là:
Trong các mệnh đề sau, mệnh đề nào đúng?
Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.
Cho cấp số cộng
có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Cho hình chóp
có đáy
là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau?
Hình vẽ minh họa
Quan sát hình vẽ ta thấy kết quả cần tìm là: và BD.
Cho hình chóp
có đáy là hình bình hành,
là trọng tâm tam giác
,
là trọng tâm tam giác
.
lần lượt là trung điểm của
.
là giao điểm của đường thẳng
và mặt phẳng
. Các khẳng định dưới đây là đúng hay sai?
a)
Đúng||Sai
b) Tứ giác
là hình thang có đáy
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Cho hình chóp có đáy là hình bình hành,
là trọng tâm tam giác
,
là trọng tâm tam giác
.
lần lượt là trung điểm của
.
là giao điểm của đường thẳng
và mặt phẳng
. Các khẳng định dưới đây là đúng hay sai?
a) Đúng||Sai
b) Tứ giác là hình thang có đáy
Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có là đường trung bình của tam giác
mà
nên
b) Sai
Ta có
Gọi
Ta có
Vậy là hình bình hành
c) Đúng
Gọi là giao điểm của
và
trong
, ta có
là trung điểm
Vậy là đường trung bình của tam giác
Ta có
d) Đúng
Gọi là trung điểm
ta có
Ta có
Kết quả đúng của
là?
Ta có:
Cho đường tròn đường kính
. Tìm số đo
của cung có độ dài
?
mà
vậy số đo
cần tìm là
.
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm.
Vì là một nghiệm của phương trình
nên ta có:
.
Vậy m = - 4 là giá trị cần tìm.
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho hàm số
. Tính
.
Ta có:
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Có bao nhiêu giá trị nguyên của a thỏa mãn
?
Ta có:
Do đó:
Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Tính tổng 
Ta có:
Giá trị của
bằng:
Ta có:
Tính giới hạn ![]()
Ta có:
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Cho hình chóp
có đáy là hình thang có cạnh đáy là
. Gọi
lần lượt là trung điểm của
, điểm
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
với
.
Vậy giao tuyến của hai mặt phẳng là đường thẳng qua P và song song với AB.
Cho hình hộp
. Xác định hình chiếu của hình hộp qua phép chiếu song song phương
lên mặt phẳng chiếu
.
Hình vẽ minh họa:
Qua phép chiếu song song phương lên mặt phẳng chiếu
. Ta có:
biến thành B
biến thành
biến thành
biến thành
Do đó hình hộp biến thành hình bình hành
.
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Một cấp số nhân có số hạng đầu
, công bội q = 2. Biết
. Tìm n?
Ta có:
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Giải phương trình
ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ
của năm 2022 được cho bởi một hàm số
với
và
. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Vì
Ngày có ánh sáng mặt trời nhiều nhất
Do
Với rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện
thì ta biết năm này tháng 2 chỉ có 28 ngày).
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Cho dãy số
với
. Tính
.
Ta có:
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Dãy (un) là một cấp số cộng
=> với a, b là hằng số
=>