Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Cho hàm số . Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Cho tổng . Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Tính giới hạn
Ta có:
Do đó
Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.
(I) (ADF) // (BCE)
(II) (MOO’) // (ADF)
(III) (MOO’) // (BCE)
(IV) (AEC) // (BDF)
Khẳng định nào sau đây là đúng
Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)
=> BC // (ADF); BE // (ADF)
Mà BC ∩∩ BE = B
=. (ADF) // (BEC).
O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD
Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF
MO’ // (ADF) (1)
Tương tự MO là đường trung bình của tam giác ABD nên MO // AD
MO // (ADF) (2)
Từ (1) và (2) suy ra (MOO’) // (ADF)
Chứng minh tương tự ta cũng có (MOO’) // (BCE).
Hai mặt phẳng (AEC) và (BDF) có:
AC ∩ DB = O ; AE ∩ BF = O’
Suy ra (AEC) ∩ (BDF) = OO’.
Vậy khẳng định (I); (II); (III) đúng.
Tính tổng sau
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?
Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.
Có bao nhiêu giá trị nguyên của m để phương trình có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Tập nghiệm của phương trình là
Ta có
.
Cho tứ diện . Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Cho cấp số nhân có
. Tính
.
Ta có
Vậy .
Cho hình lăng trụ . Gọi
lần lượt là trọng tâm của các tam giác
. Mặt phẳng nào sau đây song song với
?
Hình vẽ minh họa
Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
là điểm thuộc đoạn
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số
.
Hình vẽ minh họa
Giả sử . Nối
với
cắt
tại
Suy ra
Ta có: . Suy ra
.
Tính .
Ta có:
Giá trị của bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Trong phát biểu sau đây, phát biểu nào đúng?
Phương án "Hình chóp có tất cả các mặt là hình tam giác" sai vì mặt đáy có thể không là tam giác.
Phương án "Tất cả các mặt bên của hình chóp là hình tam giác" đúng vì theo định nghĩa
Phương án "Tồn tại một mặt bên của hình chóp không phải là hình tam giác" sai vì theo định nghĩa mặt bên của hình chóp luôn là tam giác
Phương án "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì số cạnh bên bằng số mặt bên trong khi các mặt hình chóp gồm các mặt bên và mặt đáy.
Có thể giải thích "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì xét với hình chóp tam giác số cạnh bên bằng 3 nhưng số mặt bằng 4.
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có
Ta có:
Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?
Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy a song song d
Biết rằng . Mệnh đề nào sau đây đúng?
Ta có:
Xét trên đường tròn lượng giác ta thấy thuộc góc phần tư thứ II nên ta có:
Trong các phát biểu sau đây, phát biểu nào sai?
Phát biểu sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Kết quả của giới hạn bằng
Có nếu
.
Vì nên
.
Tập xác định của hàm số:
Ta có:
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Cho hàm số có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Nghiệm của phương trình là
Cho hàm số có đồ thị như hình dưới đây. Chọn khẳng định đúng.
Dựa vào đồ thị ta thấy hàm số liên tục trên
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Cho dãy số , biết
. Tìm số hạng
Ta có:
bằng:
Ta có:
Tính
Ta có:
Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?
Phương án "Giao tuyến của (SAC) và (SBD) là SO." đúng vì O là giao điểm của AC và BD nên O là điểm chung của (SAC) và (SBD). Hơn nữa, S là điểm chung của (SAC) và (SBD).
Phương án "Giao tuyến của (SAB) và (SCD) là điểm S." sai vì giao tuyến của hai mặt phẳng không thể là điểm
Phương án "Giao tuyến của (SBC) và (SCD) là SK, với K là giao điểm của SD và B" sai vì SD và BC không cắt nhau
Phương án "Giao tuyến của (SOC) và (SAD) là SM, với M là giao điểm của AC và S." sai vì AC và SD không cắt nhau
Cho phương trình bậc ba: (m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.
Ta có:
Để ba nghiệm của phương trình lập thành một cấp số nhân
Kết quả của giới hạn bằng bao nhiêu?
Ta có:
Ta lại có:
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Khẳng định nào sau đây đúng?
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Hình vẽ minh họa
Không mất tính tổng quát, xét mặt bên .
Giả sử song song với
. Khi đó, số tam giác có cạnh
nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm
,
,
,
,
.
Trong mặt bên , nối các điểm chia đều các cạnh
ta thấy có 3 đoạn thẳng song song với
, 3 đoạn thẳng song song với
và 3 đoạn thẳng song song với
.
Mặt khác, vai trò 4 mặt của tứ diện là như nhau.
Vậy, số tam giác thỏa mãn yêu cầu đề bài là .
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?
Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn