Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị của B =
\lim\frac{2n + 3}{n^{2} + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn \ \
n_{a} thỏa mãn:

    \frac{2n_{a} +
3}{n_{a}^{2} + 1} < a

    \Leftrightarrow n_{a} > \frac{1 +
\sqrt{a^{2} - 4a + 13}}{a}

    Ta có: \frac{2n + 3}{n^{2} + 1} < a\
với\ mọi\ n > n_{a}

    Suy ra  B =\lim\frac{2n + 3}{n^{2} + 1} =0 .

  • Câu 2: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 3: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 4: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

    Hình vẽ minh họa

    Gọi d = (GMN) \cap (BCD)

    Khi đó d đi qua G. Xét ba mặt phẳng (GMN),(BCD),(ACD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,CD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,CD,MN đồng quy hoặc đôi một song song.

    MN//CD\  = > \ d//CD

    Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.

  • Câu 6: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 7: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 8: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 9: Nhận biết

    Khẳng định nào sau đây đúng?

    Ta có:

    \sin(2018a) =2\sin(1009a).\cos(1009a)

  • Câu 10: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho phương trình \sin x.\cos x = 1 có nghiệm là:

     Giải phương trình như sau:

    \begin{matrix}  \sin x.\cos x = 1 \hfill \\   \Leftrightarrow 2\sin x.\cos x = 2 \hfill \\   \Leftrightarrow \sin 2x = 2\left( L ight) \hfill \\ \end{matrix}

    \sin 2x \in \left[ { - 1;1} ight]

    vậy phương trình lượng giác đã cho vô nghiệm.

  • Câu 12: Nhận biết

    Cho c là hằng số, k là một số nguyên dương. Quy tắc nào sau đây sai?

    Ta có \lim_{x ightarrow +
\infty}\frac{1}{x^{k}} = 0 với k là một số nguyên dương.

  • Câu 13: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho tam giác ABC là hình biểu diễn của một tam giác đều. Hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là:

    Tâm của đường tròn ngoại tiếp tam giác đều đồng thời là trọng tâm tam giác đó.

    Do tam giác ABC là hình biểu diễn của tam giác đều, kết hợp với tính chất bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số hai đoạn thẳng nằm trên hai đường thẳng song song hoặc nằm trên cùng một đường thẳng ta được hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác ABC.

  • Câu 15: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 16: Nhận biết

    Kí hiệu nào sau đây là tên của mặt phẳng

     Kí hiệu tên của mặt phẳng là (P).

  • Câu 17: Vận dụng

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Đáp án là:

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t (gam).

    Nồng độ muối của nước là

    C(t) = \frac{30.15t}{600 + 15t} =
\frac{30t}{40 + t} (gam/lít).

    Khi t dần về dương vô cùng, ta có

    \lim_{t ightarrow + \infty}C(t) =
\lim_{t ightarrow + \infty}\frac{30t}{40 + t} = \lim_{t ightarrow +
\infty}\frac{30t}{t\left( \frac{40}{t} + 1 ight)}

    = \lim_{t ightarrow +
\infty}\frac{30}{\frac{40}{t} + 1} = 30\ (gam/lít).

  • Câu 18: Thông hiểu

    Chọn mệnh đề sai trong các mệnh đề sau:

    Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.

    Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.

    Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.

  • Câu 19: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 20: Vận dụng

    Biết các số (y +
1)^{2};xy + 1(x -
1)^{2} lập thành một cấp số nhân; các số 5x - y;2x + 3yx + 2y lập thành một cấp số cộng. Tính tổng S = x + y

    Theo bài ra ta có:

    \left\{ \begin{matrix}
(y + 1)^{2}(x - 1)^{2} = (xy + 1)^{2} \\
(5x - y) + (x + 2y) = 2(2x + 3y) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x + y = 2 \\
xy + x + y = 0 \\
\end{matrix} ight.\  \\
2x = 5y \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x = \dfrac{10}{3} \\y = \dfrac{4}{3} \\\end{matrix} ight.\  \\\left\lbrack \begin{matrix}x = 0;y = 0 \\x = - \dfrac{3}{4};y = - \dfrac{3}{10} \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}S = x + 2y = \dfrac{10}{3} + 2.\dfrac{4}{3} = 6 \\S = x + 2y = - \dfrac{3}{4} + 2.\left( - \dfrac{3}{10} ight) = -\dfrac{27}{10} \\\end{matrix} ight.

  • Câu 21: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Từ công thức l = R.\alpha nên ta có l\alpha tỉ lệ với nhau.

  • Câu 22: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 23: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 24: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 25: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 26: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1}\frac{2x^{2} - 3x + 1}{1 -
x^{2}}

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{2} - 3x
+ 1}{1 - x^{2}} = \lim_{x ightarrow 1}\frac{1 - 2x}{x - 1} = -
\frac{1}{2}

  • Câu 27: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow + \infty}\left( x + 1 - \sqrt{x^{2} - x - 2}
ight)

    Ta có:

    E = \lim_{x ightarrow + \infty}\left(
x + 1 - \sqrt{x^{2} - x - 2} ight)

    E = \lim_{x ightarrow +
\infty}\frac{\left( x + 1 - \sqrt{x^{2} - x - 2} ight)\left( x + 1 +
\sqrt{x^{2} - x - 2} ight)}{x + 1 + \sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{(x + 1)^{2} - \left( x^{2} - x - 2 ight)^{2}}{x + 1 +\sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{x\left( 3 + \dfrac{3}{x} ight)}{x\left( 1 + \dfrac{1}{x} +\sqrt{1 - \dfrac{1}{x} - \dfrac{2}{x^{2}}} ight)}

    E = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{3}{x}}{1 + \frac{1}{x} + \sqrt{1 - \dfrac{1}{x} -\dfrac{2}{x^{2}}}} = \dfrac{3}{2}

  • Câu 28: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 29: Vận dụng cao

    Hàm số y = cos^{2}x + 2sinx + 2 đạt giá trị nhỏ nhất tại x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có: y = cos^{2}x + 2sinx + 2 = 1 -sin^{2}x + 2sinx + 2

    = - sin^{2}x + 2sinx + 3 = - \left( \sinx - 1 ight)^{2} + 4.

    - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 2 \leq \sin x - 1 \leq 0 \\\Leftrightarrow 0 \leq \left( \sin x - 1 ight)^{2} \leq 4 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 0 \geq - \left( \sin x - 1 ight)^{2} \geq - 4 \hfill \\\Leftrightarrow 4 \geq - \left( \sin x - 1 ight)^{2} + 4 \geq 0 \hfill \\\end{matrix}.

    Suy ra giá trị nhỏ nhất của hàm số bằng 0.

    Dấu '' = '' xảy ra \Leftrightarrow \sin x = - 1\Leftrightarrow x = - \frac{\pi}{2} + k2\pi\ \left( k\mathbb{\in Z}ight).

  • Câu 30: Thông hiểu

    Giới hạn \lim_{}\left( n^{3} - 2023n +
2024 ight) bằng

    Ta có:

    \lim\left\lbrack n^{3} - 2023n + 2024
ightbrack

    = \lim\left\{ n^{3}\left( 1 -
\frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) ight\} = +
\infty.

    \left\{ \begin{matrix}
\underset{}{\lim\left( n^{3} ight) = + \infty} \\
\lim\left( 1 - \frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) = 1 >
0 \\
\end{matrix} ight..

  • Câu 31: Nhận biết

    Tìm tập xác định của hàm số y = \frac{{ \sin 2x}}{{\cos x - 1}}

    Hàm số xác định khi và chỉ khi

    \cos x - 1 e 0 \Leftrightarrow \cos x e 1 \Leftrightarrow x e k2\pi ,{\text{ }}k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm của cạnh SC. Mặt phẳng (\alpha) chứa AI và song song với BD cắt các cạnh SB,SD lần lượt tại M,N. Tìm khẳng định đúng dưới dây?

    Hình vẽ minh họa:

    Ta có: E là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó: (\alpha) \equiv
(AMIN)

    Dễ thấy E là trọng tâm tam giác SAC nên \frac{OS}{OE} = \frac{1}{3}

    MN//BD \Rightarrow \frac{MB}{SB} =
\frac{OE}{SO} = \frac{1}{3}

  • Câu 33: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 34: Nhận biết

    Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Phát biểu đúng là: "MP và NQ chéo nhau"

  • Câu 35: Vận dụng cao

    Kết quả của giới hạn\lim\frac{2^{n + 1} +
3n + 10}{3n^{2} - n + 2} là:

    Ta có:

    \begin{matrix}
  {2^n} = \sum\limits_{k = 0}^n {C_n^k}  \hfill \\
   \Rightarrow {2^n} \geqslant C_n^3 = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} \sim \dfrac{{{n^3}}}{6} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.

    Khi đó:

    \begin{matrix}
  \lim \dfrac{{{2^{n + 1}} + 3n + 10}}{{3{n^2} - n + 2}} \hfill \\
   = \lim \dfrac{{{2^n}}}{{{n^2}}}.\dfrac{{2 + 3.\dfrac{n}{{{2^n}}} + 10.{{\left( {\dfrac{1}{2}} ight)}^n}}}{{3 - \dfrac{1}{n} + \dfrac{2}{{{n^2}}}}} \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\lim\dfrac{2 + 3.\dfrac{n}{2^{n}} + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} = \dfrac{2}{3} > 0 \\\end{matrix} ight.

    Vậy \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2}- n + 2} = + \infty

  • Câu 36: Vận dụng

    Cho đồ thị hàm số như hình vẽ:

    Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây

    Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án

    y = \sqrt{2}\sin\left( x + \frac{\pi}{4}
ight)

    Tại x = 0 thì y = -
\frac{\sqrt{2}}{2} => Loại đáp án y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y =
1 ta thấy chỉ có y = \sin\left( x -
\frac{\pi}{4} ight) thỏa mãn

  • Câu 37: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 38: Vận dụng cao

    Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?

    Gọi a là số tiền gửi mỗi tháng.

    Cuối tháng thứ 1 số tiền là a + a.0,006 =a.1,006

    Cuối tháng thứ 2 số tiền là \left\lbracka.(1,006 + 1) ightbrack.1,006 = a(1,006)^{2} + a.1006

    Cuối tháng thứ n số tiền là

    a(1,006)^{n} + a(1,006)^{n - 1} + ... +a.1,006

    = a.1,006\left\lbrack (1,006)^{n - 1} +(1,006)^{n - 12} + ... + 1 ightbrack

    = \frac{a}{1006}.(1,006).\left\lbrack(1,006)^{n} - 1 ightbrack

    Áp dụng công thức trên, ta tính được

    a =\frac{100.10^{6}.0,006}{1,006.\left\lbrack (1,006)^{18} - 1ightbrack} \approx 5246111,01

    Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).

  • Câu 39: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 40: Thông hiểu

    Chọn đẳng thức đúng.

    Ta có:

    \begin{matrix}\cot a + \cot b = \dfrac{\cos a}{\sin a} + \dfrac{\cos b}{\sin b} \hfill \\= \dfrac{\cos a.sinb + \sin a.\cos b}{\sin a.\sin b} = \dfrac{\sin(a +b)}{\sin a.\sin b} \hfill\\\end{matrix}

    Ta lại có:

    \begin{matrix}\cos2a = 2\cos^{2}a - 1\hfill \\\Rightarrow \cos^{2}a = \dfrac{1}{2}(1 + \cos2a) \hfill\\\end{matrix}

  • Câu 41: Nhận biết

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 42: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 43: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {{m^2}{x^2}{\text{        khi }}x \leqslant 2} \\ 
  {\left( {1 - m} ight)x{\text{   khi }}x > 2} 
\end{array}} ight. liên tục trên \mathbb{R}?

    Tập xác định D\mathbb{= R}

    Hàm số liên tục trên mỗi khoảng ( -
\infty;2);(2; + \infty)

    Khi đó hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi f(x) liên tục tại x = 2

    Hay \lim_{x ightarrow 2}f(x) =
f(2)

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)\ \ (*)

    Ta lại có:

    f(2) = 4m^{2}

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left\lbrack (1 - m)x ightbrack = 2(1 -
m)

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}\left( m^{2}x^{2} ight) = 4m^{2}

    Khi đó (*) \Leftrightarrow 4m^{2} = 2(1 -
m)

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 44: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo