Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là M,N,P,Q. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có:

    (MNP)//(ABCD) \Rightarrow
(MNP)//(ABD)

    MP//ACAC cắt BD nên khẳng định MP//BD sai.

    MN cắt (SAD) tại M nên khẳng định MN//(SAD) sai.

    MP cắt (SBD) tại trung điểm của MP nên khẳng định MP//(SBD) sai.

  • Câu 3: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 4: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M \in SA, mặt phẳng (\alpha)đi qua M và song song với SB,AC. Giao điểm của mặt phẳng (\alpha) với các cạnh AB,BC,SC,SD,BD lần lượt tại N,E,F,I,J. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:\left\{ \begin{matrix}
IJ = (\alpha) \cap (SBD) \\
(\alpha)//SB \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (SBD) =
IJ//SB

    SB \subset (SAB) \Rightarrow
IJ//(SAB)

  • Câu 7: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 8: Vận dụng cao

    Bạn An thả quả bóng cao su từ độ cao 5\ \
m so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng \frac{4}{5} độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?

    Đáp án: 45

    Đáp án là:

    Bạn An thả quả bóng cao su từ độ cao 5\ \
m so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng \frac{4}{5} độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?

    Đáp án: 45

    Quãng đường bóng đi được từ khi thả đến chạm đất lần 1 là 5\ \ m.

    Quãng đường bóng đi được từ khi chạm đất lần 1đến chạm đất lần 2 là \frac{4}{5}.5.2.

    Quãng đường bóng đi được từ khi chạm đất lần 2 đến chạm đất lần 3 là \left( \frac{4}{5}
ight)^{2}.5.2……

    Quãng đường bóng đi được từ khi chạm đất lần n đến chạm đất lần n + 1\left( \frac{4}{5} ight)^{n}.5.2

    Tổng quãng đường bóng đi được từ lúc thả đến không nảy lên nữa là:

    S = 5 + \frac{4}{5}.5.2 + \left(
\frac{4}{5} ight)^{2}.5.2 + ... + \left( \frac{4}{5} ight)^{n}.5.2 +
...

    = 5 + 5.2.\left( \frac{4}{5} + \left(\frac{4}{5} ight)^{2} + ... + \left( \frac{4}{5} ight)^{n} + ...ight)= 5 + 5.2.\dfrac{\dfrac{4}{5}}{1 - \dfrac{4}{5}} = 45.

  • Câu 9: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 10: Thông hiểu

    Nghiệm của phương trình 2\sin^{2}x+5 \sin x + 3=0 là

      \begin{matrix}  2{\sin ^2}x + 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x + 1} ight).\left( {2\sin x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x + 1 = 0} \\   {2\sin x + 3 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x =  - 1} \\   {\sin x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\   \Rightarrow \sin x =  - 1 \hfill \\   \Rightarrow x =  - \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Cho dãy số \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là cấp số cộng với:

    Ta có: \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là một cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = \dfrac{1}{2}} \\   {{u_2} - {u_1} =  - \dfrac{1}{2} = d} \end{array}} ight.

  • Câu 12: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\frac{x}{{{x^3} - 6}}} bằng:

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\dfrac{x}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{x{{\left( {x + 50} ight)}^2}}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{{x^3} + 100{x^2} + 50x}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{1 + \dfrac{{100}}{{{x^2}}} + \dfrac{{50}}{{{x^3}}}}}{{1 - \dfrac{6}{{{x^3}}}}}}  = 1 \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Xác định số hạng tổng quát của dãy số dãy số \left( u_{n} ight) với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight..

    Từ công thức \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{2} = u_{1} - 2 = \dfrac{1}{2} - 2 = - \dfrac{3}{2} \\u_{3} = u_{2} - 2 = \dfrac{- 3}{2} - 2 = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét đáp án u_{n} = \frac{1}{2} + 2(n -
1) với n = 2 \Rightarrow u_{2} =
\frac{1}{2} + 2(2 - 1) = \frac{5}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} - 2(n -
1) ta thấy thỏa mãn

    Xét đáp án u_{n} = \frac{1}{2} -
2n với n = 2 \Rightarrow u_{2} =
\frac{1}{2} - 2.2 = - \frac{7}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} +
2n với n = 1 \Rightarrow u_{1} =
\frac{1}{2} + 2.1 = \frac{5}{2} (loại)

  • Câu 14: Nhận biết

    Tính giới hạn B =
\lim_{x ightarrow ( - 2)^{-}}\left( \frac{3 + 2x}{x + 2}
ight).

    Ta có:

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3 + 2x} ight) =  - 1 < 0

    \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {x + 2} ight) = 0} \\ 
  {x \mapsto {{\left( { - 2} ight)}^ - } \Rightarrow x + 2 < 0} 
\end{array}} ight.

    \Rightarrow B = \lim_{x ightarrow ( -
2)^{-}}\left( \frac{3 + 2x}{x + 2} ight) = + \infty

  • Câu 15: Thông hiểu

    Đổi số đo của góc - 125^{0}45' sang đơn vị radian:

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: - 125^{0}45' = - \left( 125 +
\frac{45}{60} ight)^{0} khi đó:

    \mu = \dfrac{- \left( 125 + \dfrac{45}{60}ight)^{0}.\pi}{180} = \dfrac{503.\pi}{720}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCDG,E lần lượt là trọng tâm tam giác SADSCD. Lấy các điểm H,K lần lượt là trung điểm của ABBC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi I là trung điểm của SD.

    Xét tam giác ACI có: \frac{IG}{IA} = \frac{IE}{IC} =
\frac{1}{3}

    Theo định lí đảo của định lí Thales, ta có GE//AC (1).

    Mặt khác HK là đường trung bình của tam giác ABC

    => HK//AC (2)

    Từ (1) và (2) ta có HK//GE.

  • Câu 17: Nhận biết

    Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

    Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.

    Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.

    Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)

    Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.

  • Câu 18: Vận dụng cao

    Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?

    Ta có S30 = 2 + 4 + 6 + … + 60

     ⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)

    \Rightarrow S_{30} = \frac{(2 + 60)
\cdot 30}{2} = 930

  • Câu 19: Nhận biết

    Cho hình vẽ:

    Trên đường tròn lượng giác, số đo của góc lượng giác (OA;OB') là:

    Từ hình vẽ ta có: (OA;OB') = -
\frac{\pi}{2}

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm M
\in SA sao cho \frac{MA}{MS} =
2. Hình chiếu của điểm S qua phép chiếu song song phương MO mặt phẳng chiếu (ABCD) là điểm N. Khi đó tỉ số độ dài \frac{CN}{CA} bằng bao nhiêu?

    Hình vẽ minh họa:

    Phép chiếu song song phương phương MO mặt phẳng chiếu (ABCD) biến điểm S thành điểm N.

    Do đó: SN//MO \Rightarrow N \in
AC

    Xét tam giác SANta có: \frac{ON}{OA} = \frac{SM}{MA} =
\frac{1}{2}

    => N là trung điểm của OC

    Từ đó suy ra \frac{CN}{CA} =
\frac{1}{4}

  • Câu 21: Vận dụng cao

    Hàm số y = sin^{4}x - cos^{4}x đạt giá trị nhỏ nhất tại x = x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có y = sin^{4}x - cos^{4}x

    = \left(sin^{2}x + cos^{2}x ight)\left( sin^{2}x - cos^{2}x ight) = -cos2x.

    - 1 \leq cos2x \leq 1 \Rightarrow - 1\geq - cos2x \geq 1

    \Rightarrow - 1 \geq y \geq 1

    Do đó giá trị nhỏ nhất của hàm số là -1.

    Đẳng thức xảy ra \Leftrightarrow cos2x =1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi\ \left(k\mathbb{\in Z} ight).

  • Câu 22: Vận dụng

    Có bao nhiêu giá trị nguyên của m thuộc (0;20) sao cho \lim\sqrt{3 + \frac{mn^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là:

    Ta có:

    \left\{ \begin{matrix}\lim\dfrac{mn^{2} - 1}{3 + n^{2}} = \lim\dfrac{m -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = m \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{mn^{2} -
1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + m}

    Ta có: \left\{ \begin{matrix}
m \in (0;20);m\mathbb{\in Z} \\
\sqrt{m + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 1;6;13
ight\}

  • Câu 23: Thông hiểu

    Nghiệm của phương trình: \sin \left( {x + \frac{\pi }{8}} ight) =  - \frac{1}{2}

     Ta có:

    \begin{matrix}  \sin \left( {x + \dfrac{\pi }{8}} ight) =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{8} =  - \dfrac{\pi }{6} + k2\pi } \\   {x + \dfrac{\pi }{8} = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{{7\pi }}{{24}} + k2\pi } \\   {x = \dfrac{{25\pi }}{{24}} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM
= 2MA. Diện tích thiết diện của hình chóp S.ABC tạo bởi (P) bằng

    Hình vẽ minh họa:

    Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SB, SC.

    (P)//(ABC) nên theo định lí Talet, ta có \frac{SM}{SA} = \frac{SN}{SB} =
\frac{SP}{SC} = \frac{2}{3}.

    Khi đó (P) cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số k = \frac{2}{3}.

    Vậy S_{\Delta MNP} = k^{2}.S_{\Delta ABC}
= \left( \frac{2}{3} ight)^{2}.9 = 4.

  • Câu 26: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 27: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 28: Nhận biết

    Giá trị của B =
\lim\frac{n.\sin n - 3n^{2}}{n^{2}} bằng:

    Ta có:

    B = \lim\frac{n.\sin n - 3n^{2}}{n^{2}}
= \lim\frac{\frac{\sin n}{n} - 3}{1} = - 3

  • Câu 29: Nhận biết

    Rút gọn biểu thức A = \cos^{4}15^{0} - \sin^{4}15^{0}

    Ta có:

    A = \cos^{4}15^{0} -\sin^{4}15^{0}

    A = \left( \cos^{2}15^{0} + \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    A = \cos^{2}15^{0} -\sin^{2}15^{0}

    A = \cos\left( 2.15^{0} ight) =\cos30^{0} = \frac{\sqrt{3}}{2}

  • Câu 30: Thông hiểu

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 31: Nhận biết

    Cho mặt phẳng (P) và điểm A không thuộc mặt phẳng (P). Số đường thẳng đi qua A và song song với (P) là:

    Có vô số đường thẳng đi qua  A  và song song với  (P)  với điểm  A  không thuộc mặt phẳng  (P).

  • Câu 32: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 33: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 34: Nhận biết

    Tìm tập xác định của hàm số y = \frac{{ \sin 2x}}{{\cos x - 1}}

    Hàm số xác định khi và chỉ khi

    \cos x - 1 e 0 \Leftrightarrow \cos x e 1 \Leftrightarrow x e k2\pi ,{\text{ }}k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 35: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 36: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 37: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n + 5. Số 19 là số hạng thứ bao nhiêu của dãy số đó?

    Ta có

    u_{n} = 19 \Leftrightarrow 2n + 5 =
19

    \Leftrightarrow 2n = 14 \Leftrightarrow n
= 7.

    Vậy 19 là số hạng thứ 7 của dãy số đã cho.

  • Câu 38: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. Qua S kẻ Sx\ ;\ Sy lần lượt song song với AB\ ,\ \ AD. Gọi O là giao điểm của ACBD. Các mệnh đề sau đúng hay sai?

    a) Giao tuyến của (SAC)(SBD) là đường thẳng Sx. Sai||Đúng

    b) Giao tuyến của (SBD)(SAC) là đường thẳng Sy. Sai||Đúng

    c) Giao tuyến của (SAB)(SCD) là đường thẳng Sx. Đúng||Sai

    d) Giao tuyến của (SAD)(SBC) là đường thẳng Sx. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Qua S kẻ Sx\ ;\ Sy lần lượt song song với AB\ ,\ \ AD. Gọi O là giao điểm của ACBD. Các mệnh đề sau đúng hay sai?

    a) Giao tuyến của (SAC)(SBD) là đường thẳng Sx. Sai||Đúng

    b) Giao tuyến của (SBD)(SAC) là đường thẳng Sy. Sai||Đúng

    c) Giao tuyến của (SAB)(SCD) là đường thẳng Sx. Đúng||Sai

    d) Giao tuyến của (SAD)(SBC) là đường thẳng Sx. Sai||Đúng

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAB) \cap (SCD)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AB \subset (SAB)\ ;\ \ CD \subset (SCD) \\
AB \parallel CD \\
\end{matrix} \\
\end{matrix} ight.

    \Rightarrow Sx = (SAB) \cap
(SCD) với Sx \parallel AB \parallel
CD.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 39: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 40: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Cặp đường thẳng nào dưới đây song song với nhau?

    Ta có AB song song với CD theo tính chất hình bình hành.

  • Câu 41: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    \lim_{x ightarrow 2}\frac{ax^{2} +
bx - 2}{x - 2} = 5 là 1 số hữu hạn và \lim_{x ightarrow 2}(x - 2) = 0 nên \lim_{x ightarrow 2}\left( ax^{2} + bx - 2
ight) = 0 hay 4a + 2b - 2 = 0
\Leftrightarrow b = 1 - 2a.

    Khi đó:

    \lim_{x ightarrow 2}\frac{ax^{2} + bx
- 2}{x - 2} = \lim_{x ightarrow 2}\frac{ax^{2} + (1 - 2a)x - 2}{x -
2}

    = \lim_{x ightarrow 2}\frac{ax^{2} + x
- 2ax - 2}{x - 2} = \lim_{x ightarrow 2}\frac{(ax^{2} - 2ax) + (x -
2)}{x - 2}

    = \lim_{x ightarrow 2}\frac{(x - 2)(ax
+ 1)}{x - 2} = \lim_{x ightarrow 2}(ax + 1)

    = 2a + 1 = 5 \Rightarrow a =
2

    Suy ra b = - 3.

    Vậy S = - 4.

  • Câu 42: Vận dụng cao

    Kết quả của giới hạn\lim\frac{2^{n + 1} +
3n + 10}{3n^{2} - n + 2} là:

    Ta có:

    \begin{matrix}
  {2^n} = \sum\limits_{k = 0}^n {C_n^k}  \hfill \\
   \Rightarrow {2^n} \geqslant C_n^3 = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} \sim \dfrac{{{n^3}}}{6} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.

    Khi đó:

    \begin{matrix}
  \lim \dfrac{{{2^{n + 1}} + 3n + 10}}{{3{n^2} - n + 2}} \hfill \\
   = \lim \dfrac{{{2^n}}}{{{n^2}}}.\dfrac{{2 + 3.\dfrac{n}{{{2^n}}} + 10.{{\left( {\dfrac{1}{2}} ight)}^n}}}{{3 - \dfrac{1}{n} + \dfrac{2}{{{n^2}}}}} \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\lim\dfrac{2 + 3.\dfrac{n}{2^{n}} + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} = \dfrac{2}{3} > 0 \\\end{matrix} ight.

    Vậy \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2}- n + 2} = + \infty

  • Câu 43: Vận dụng

    Cho hai hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x};g(x) = \frac{|sin2x| - cos3x}{2 + tan^{2}x}. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x} có tập xác định D=\mathbb{ R}

    Với mọi x thuộc D => -x thuộc D ta có:

    f( - x) = \frac{\cos( - 2x)}{1 +
sin^{2}( - 3x)} = \frac{cos2x}{1 + sin^{2}3x} = f(x)

    Vậy f(x) là hàm số chẵn

    Tương tự xét hàm số g(x) = \frac{|sin2x|
- cos3x}{2 + tan^{2}x};D\mathbb{= R}\backslash\left\{ \frac{\pi}{2} +
k\pi,k\mathbb{\in Z} ight\}

    Với mọi x thuộc D => -x thuộc D ta có:

    \begin{matrix}g( - x) = \dfrac{\left| \sin( - 2x) ight| - \cos( - 3x)}{2 + tan^{2}( -x)}\hfill \\= \dfrac{|sin2x| - cos3x}{2 + tan^{2}x} = g(x) \hfill\\\end{matrix}

    Vậy g(x) là hàm số chẵn.

  • Câu 44: Thông hiểu

    Tìm chu kì T của hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight)

    Hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight) tuần hoàn với chu kì T = \frac{{2\pi }}{{100\pi }} = \frac{1}{{50}}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo