Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 2: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 3: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=5^{n+1}. Tìm số hạng u_{n-1}

    Ta có:

    \begin{matrix}  {u_n} = {5^{n + 1}} \hfill \\   \Rightarrow {u_{n - 1}} = {5^{\left( {n - 1} ight) + 1}} = {5^n} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

  • Câu 5: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng cao

    Cho dãy số (un), biết \left\{ \begin{matrix}
u = \sqrt{2} \\
u_{n + 1} = \sqrt{2 + u_{n}},n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Khẳng định nào sau đây đúng về dãy số (un) ?

    Ta có u_{1} = \sqrt{2};u_{2} = \sqrt{2 +\sqrt{2}};u_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}};

    \ldots;u_{n} = \sqrt{2+ \sqrt{2} + \sqrt{2 + \ldots + \sqrt{2}}}

    Do un + 1 − un > 0 nên (un) là dãy số tăng.

    Lại có \sqrt{2} < u_{n} \leq 2 suy ra dãy số bị chặn.

  • Câu 7: Thông hiểu

    Cho hai hình bình hành ABCDABEF không đồng phẳng có tâm lần lượt là IJ. Chọn

    khẳng định sai.

    Hình vẽ minh họa

    Do IJ là trung điểm của BDBF, nên IJ//DFDF
\subset (ADF) \Rightarrow IJ//(ADF), suy ra IJ / /(ADF) và IJ / / DF đúng.

    Do IJ là trung điểm của ACAE, nên IJ//ECEC
\subset (CBE) \Rightarrow IJ//(CEB), suy ra IJ / /(CEB) đúng.

    Vậy IJ / / ADsai

  • Câu 8: Thông hiểu

    Tìm nghiệm dương nhỏ nhất của phương trình 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0.

     Ta có 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0 \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  4x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  4x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4x = \frac{\pi }{2} + k2\pi  \hfill \\  4x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{8} + \frac{{k\pi }}{2} \hfill \\  x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với x = \frac{\pi }{8} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{\pi }{8} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{1}{4} \to {k_{\min }} = 0 \Rightarrow x = \frac{\pi }{8}

    TH2. Với x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{7}{{12}} \to {k_{\min }} = 0 \Rightarrow x = \frac{{7\pi }}{{24}}

    So sánh hai nghiệm ta được x = \frac{\pi }{8} là nghiệm dương nhỏ nhất.

  • Câu 9: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 10: Nhận biết

    Chọn mệnh đề sai.

    Mệnh đề "Tồn tại duy nhất một đường thẳng qua một điểm và song song với một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì không tồn tại đường thẳng nào đi qua điểm đó và song song với đường thẳng cho trước

  • Câu 11: Thông hiểu

    Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?

    Ta có: (ABB'A') // (CDD'C')

    => (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến A'B'C'D'

    => A'B' // C'D' (1)

    Chứng minh tương tự ta có: (AA'D'D) // (BB'C'C)

    => (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến A'D'B'C'

    => A'D' // B'C' (2)

    Từ (1) và (2) => A'B'C'D' là hình bình hành.

  • Câu 12: Thông hiểu

    Tìm giới hạn H =
\lim_{x ightarrow 1}\left( \frac{3x^{2} - x - 2}{x^{2} - 1}
ight)

    Ta có:

    H = \lim_{x ightarrow 1}\left(
\frac{3x^{2} - x - 2}{x^{2} - 1} ight)

    H = \lim_{x ightarrow 1}\frac{(x -
1)(3x + 2)}{(x - 1)(x + 1)}

    H = \lim_{x ightarrow 1}\frac{3x +
2}{x + 1} = \frac{5}{2}

  • Câu 13: Nhận biết

    Giá trị của \lim\frac{\sqrt{n + 1}}{n + 2} bằng:

    Với mọi số thực a>0 nhỏ tùy ý, ta chọn n_{a} = \left\lbrack \frac{1}{a^{2}} - 1
ightbrack + 1

    Ta có:

    \frac{\sqrt{n + 1}}{n + 2} <
\frac{1}{\sqrt{n + 1}} < a  với mọi n > n_{a}

    Suy ra \lim\frac{\sqrt{n + 1}}{n + 2} =
0

  • Câu 14: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 2;u_{2} = - 8. Mệnh đề nào sau đây đúng?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = - 8 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1}.q = - 8 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\\begin{matrix}q = - 4 \\S_{5} = 2.\dfrac{1 - ( - 4)^{5}}{1 + 4} = 410 \\S_{6} = 2.\dfrac{1 - ( - 4)^{6}}{1 + 4} = - 1638 \\u_{5} = u_{1}.q^{4} = 512 \\\end{matrix} \\\end{matrix} ight.

  • Câu 15: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'M là trung điểm của AB, BC \cap
(MA'C') = \left\{ N ight\}. Tính tỉ số độ dài hai cạnh MNA'C'.

    Hình vẽ minh họa

    Ba mặt phẳng phân biệt (ABCD), (ACC’A’), (MA’C’) đôi một cắt nhau theo ba giao tuyến AC, A’C’MN.

    Theo tính chất hình hộp ta có AC // A’C’ nên MN // AC // A’C’

    Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.

    Vậy MN = \frac{1}{2}AC =
\frac{1}{2}A'C' hay \frac{MN}{A'C'} =
\frac{1}{2}.

  • Câu 16: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow 3^{+}}\frac{x - 3}{\sqrt{x^{2} - 9}}

    Ta có:

    E = \lim_{x ightarrow 3^{+}}\frac{x -
3}{\sqrt{x^{2} - 9}} = \lim_{x ightarrow 3^{+}}\frac{\sqrt{(x -
3)^{2}}}{\sqrt{(x - 3)(x + 3)}} = \lim_{x ightarrow
3^{+}}\frac{\sqrt{x - 3}}{\sqrt{x + 3}} = 0

  • Câu 17: Thông hiểu

    Cho các hàm số y
= \cos x;y = \sin x;y = \tan x;y = \cot x. Trong các hàm số trên, có bao nhiêu hàm số lẻ?

    Ta có:

    y = \cos x là hàm số chẵn vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cos( - x) = \cos x =
f(x)

    y = \sin x là hàm số lẻ vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \sin( - x) = - \sin x = -
f(x)

    y = \tan x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \tan( - x) = - \tan x = -
f(x)

    y = \cot x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ k\pi|k\mathbb{\in Z} ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cot( - x) = \cot( - x) = -
f(x)

  • Câu 18: Nhận biết

    Hàm số nào trong các hàm số dưới đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{x}{x + 1} có tập xác định D\mathbb{= R}\backslash\left\{
- 1 ight\} nên hàm số không liên tục trên \mathbb{R}.

  • Câu 19: Nhận biết

    Biết ba số m;2;m
+ 3 lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?

    Để ba số m;2;m + 3 lập thành một cấp số nhân thì m.(m + 3) = 2^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

    Vậy tổng các giá trị của m là S = -
3

  • Câu 20: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 21: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 22: Vận dụng cao

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 23: Vận dụng cao

    Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm 2022 được cho bởi một hàm số y = 4sin\left\lbrack \frac{\pi}{178}(t - 60)ightbrack + 10 với t\mathbb{\inZ}0 < t \leq 365. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?

    \sin\left\lbrack \frac{\pi}{178}(t -60) ightbrack \leq 1

    \Leftrightarrow y = 4sin\left\lbrack\frac{\pi}{178}(t - 60) ightbrack + 10 \leq 14.

    Ngày có ánh sáng mặt trời nhiều nhất \Leftrightarrow y = 14 \Leftrightarrow\sin\left\lbrack \frac{\pi}{178}(t - 60) ightbrack = 1

    \Leftrightarrow \frac{\pi}{178}(t - 60)= \frac{\pi}{2} + k2\pi \Leftrightarrow t = 149 + 356k.

    Do 0 < t \leq 365

    \begin{matrix}   \Leftrightarrow 0 < 149 + 356k \leqslant 365 \hfill \\   \Leftrightarrow  - \dfrac{{149}}{{356}} < k \leqslant \dfrac{{54}}{{89}}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \hfill \\ \end{matrix}

    Với k = 0 ightarrow t = 149 rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện 0 < t\leq 365 thì ta biết năm này tháng 2 chỉ có 28 ngày).

  • Câu 24: Nhận biết

    \lim_{x ightarrow 1^{+}}\frac{x + 1}{x
- 1} bằng

    Đặt f(x) = x + 1;g(x) = x -
1.

    Ta có \lim_{x ightarrow 1^{+}}f(x) =
2;\lim_{x ightarrow 1^{+}}g(x) = 0;g(x) > 0 khi x ightarrow 1^{+}

    Vậy \lim_{x ightarrow 1^{+}}\frac{x +
1}{x - 1} = + \infty.

  • Câu 25: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD \subset (SAD) \\
BC \subset (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d//AD//BC và d đi qua S

  • Câu 26: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu \sin\alpha;cos\alpha cùng dấu?

    Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì \sin\alpha;cos\alpha cùng dấu

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD. Gọi M, N, P, Q, R, T lần lượt là trung điểm AC, BD, BC, CD, SA, SD. Bốn điểm nào sau đây đồng phẳng?

    Hình vẽ minh họa

    Tìm bốn điểm đồng phẳng

    Ta có: RT là đường trung bình của tam giác SAD nên.

    MQ là đường trung bình của tam giác ACD nên MQ{m{//}}AD.

    => RT{m{//}}MQ

    => M, Q, R, T đồng phẳng.

  • Câu 29: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 31: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 32: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 33: Thông hiểu

    Cho phương trình \cos^{2}2x = m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Ta có:

    0 \leq \cos^{2}2x \leq 1 \Leftrightarrow0 \leq m + 1 \leq 1

    \Leftrightarrow - 1 \leq m \leq
0 thì phương trình có nghiệm.

  • Câu 34: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 35: Vận dụng cao

    Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng \dfrac{3}{4} độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.

    Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống

    Vì mỗi lần bóng nảy lên bằng \dfrac{3}{4} lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:

    {S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn có {u_1} = 6.\frac{3}{4} = \frac{9}{1},q = \frac{3}{4}

    => {S_1} = \dfrac{{\dfrac{9}{2}}}{{1 - \dfrac{3}{4}}} = 18

    Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:

    {S_2} = 6 + 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn với {u_1} = 6;q = \frac{3}{4}

    => {S_2} = \dfrac{6}{{1 - \dfrac{3}{4}}} = 24

    Vậy tổng quãng đường bóng bay là 42m

  • Câu 36: Vận dụng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 37: Vận dụng

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 38: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

  • Câu 40: Nhận biết

    Trong phát biểu sau đây, phát biểu nào đúng?

    Phương án "Hình chóp có tất cả các mặt là hình tam giác" sai vì mặt đáy có thể không là tam giác.

    Phương án "Tất cả các mặt bên của hình chóp là hình tam giác" đúng vì theo định nghĩa

    Phương án "Tồn tại một mặt bên của hình chóp không phải là hình tam giác" sai vì theo định nghĩa mặt bên của hình chóp luôn là tam giác

    Phương án "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì số cạnh bên bằng số mặt bên trong khi các mặt hình chóp gồm các mặt bên và mặt đáy.

    Có thể giải thích "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì xét với hình chóp tam giác số cạnh bên bằng 3 nhưng số mặt bằng 4.

  • Câu 41: Nhận biết

    Tính giá trị của biểu thức B = \cos\frac{\pi}{30}.\cos\frac{\pi}{5} +\sin\frac{\pi}{30}.\sin\frac{\pi}{5} là:

    Ta có:

    B = \cos\frac{\pi}{30}.\cos\frac{\pi}{5}+ \sin\frac{\pi}{30}.\sin\frac{\pi}{5}

    B = \cos\left( \frac{\pi}{30} -
\frac{\pi}{5} ight) = \cos\left( - \frac{\pi}{6} ight) =
\frac{\sqrt{3}}{2}

  • Câu 42: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

    Ta dễ dàng kiểm tra được các hàm số

    y = \sin x.\cos2x

    y = \frac{\tan x}{\tan^{2}x +1}

    y = \cos x.\sin^{3}x

    là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O

    Xét hàm số y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) ta có:

    f(x) = y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) = \sin^{3}x.\sin{x} = \sin^{4}x

    Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

  • Câu 43: Thông hiểu

    Tính giá trị biểu thức B = \lim\left\lbrack \sqrt{n}\left( \sqrt{n + 1} -
\sqrt{n - 1} ight) ightbrack

    B = \lim\left\lbrack \sqrt{n}\left(
\sqrt{n + 1} - \sqrt{n - 1} ight) ightbrack

    B = \lim\frac{\sqrt{n}\left( \sqrt{n +
1} - \sqrt{n - 1} ight)\left( \sqrt{n + 1} + \sqrt{n - 1}
ight)}{\sqrt{n + 1} + \sqrt{n - 1}}

    B = \lim\frac{2\sqrt{n}}{\sqrt{n + 1} +
\sqrt{n - 1}}

    B =\lim\dfrac{\dfrac{2\sqrt{n}}{\sqrt{n}}}{\dfrac{\sqrt{n + 1} + \sqrt{n -1}}{\sqrt{n}}}

    B = \lim\dfrac{2}{\sqrt{1 + \dfrac{1}{n}}+ \sqrt{1 - \dfrac{1}{n}}}

    B = \frac{2}{1 + 1} = 1

  • Câu 44: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo