Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    MN // AB

    AB // CD (ABCD là hình bình hành)

    => MN // CD

    Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung

    => Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD

    Hay (MNC) \cap (ABD) =CD

  • Câu 2: Vận dụng cao

    Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?

    Gọi a là số tiền gửi mỗi tháng.

    Cuối tháng thứ 1 số tiền là a + a.0,006 =a.1,006

    Cuối tháng thứ 2 số tiền là \left\lbracka.(1,006 + 1) ightbrack.1,006 = a(1,006)^{2} + a.1006

    Cuối tháng thứ n số tiền là

    a(1,006)^{n} + a(1,006)^{n - 1} + ... +a.1,006

    = a.1,006\left\lbrack (1,006)^{n - 1} +(1,006)^{n - 12} + ... + 1 ightbrack

    = \frac{a}{1006}.(1,006).\left\lbrack(1,006)^{n} - 1 ightbrack

    Áp dụng công thức trên, ta tính được

    a =\frac{100.10^{6}.0,006}{1,006.\left\lbrack (1,006)^{18} - 1ightbrack} \approx 5246111,01

    Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).

  • Câu 3: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.

    Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.

  • Câu 4: Vận dụng

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Đáp án là:

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Hình vẽ minh họa

    Không mất tính tổng quát, xét mặt bên \Delta ABC.

    Giả sử MN song song với BC. Khi đó, số tam giác có cạnh MN nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm \Delta PMN, \Delta QMN, \Delta IMN,\Delta JMN, \Delta KMN, \Delta LMN.

    Trong mặt bên \Delta ABC, nối các điểm chia đều các cạnh AB,BC,CA ta thấy có 3 đoạn thẳng song song với AB, 3 đoạn thẳng song song với BC và 3 đoạn thẳng song song với CA.

    Mặt khác, vai trò 4 mặt của tứ diện là như nhau.

    Vậy, số tam giác thỏa mãn yêu cầu đề bài là 6.(3 + 3 + 3).4 = 216.

  • Câu 5: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 6: Nhận biết

    Với k là số nguyên dương, c là hằng số, giới hạn \lim_{x ightarrow +
\infty}\frac{c}{x^{k}} bằng

    Ta có \lim_{x ightarrow + \infty}c =
c\lim_{x ightarrow +
\infty}x^{k} = + \infty nên \lim_{x
ightarrow + \infty}\frac{c}{x^{k}} = 0

  • Câu 7: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là u_{1} = - 6;q = - 2. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.

    Ta có:

    2046 = u_{1}.\frac{1 - q^{n}}{1 -
q}

    \Rightarrow 2046 = ( - 6).\frac{1 - ( -
2)^{n}}{1 - ( - 2)}

    \Rightarrow n = 10

  • Câu 8: Nhận biết

    Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:

    Mệnh đề đúng M \in d.

  • Câu 9: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 10: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 11: Vận dụng

    Giá trị của \lim\frac{a^{n}}{n!} bằng:

    Gọi m là số tự nhiên thỏa: m+1>|a|.

    Khi đó với mọi n > m+1.

    Ta có: 0 < \left| \frac{a^{n}}{n!}ight| = \left| \frac{a}{1}.\frac{a}{2}\ldots\frac{a}{m} ight|.\left|\frac{a}{m + 1}\ldots\frac{a}{n} ight| < \frac{|a|^{m}}{m!}.\left(\frac{|a|}{m + 1} ight)^{n - m}

    \lim\left( \frac{|a|}{m + 1}ight)^{n - m} = 0 .

    Từ đó suy ra: \lim\frac{a^{n}}{n!} =0 .

  • Câu 12: Nhận biết

    Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?

    Ta có:

    \sin( - a) = - \sin a

    \cos(a - \pi) = - \cos a

    \cot(a - \pi) = - \cot a

    \tan(\pi + a) = \tan a

  • Câu 13: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    \lim \frac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} = \lim \dfrac{{\sqrt[3]{{{n^3}\left( {1 + \dfrac{1}{{{n^3}}}} ight)}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} \hfill \\   = \lim \dfrac{{n\sqrt[3]{{1 + \dfrac{1}{{{n^3}}}}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} = \dfrac{1}{6} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = \sqrt{2 + 2} - 1 = 1.

    b) Ta có:

    \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (4x - 3) \cdot
\frac{1}{x - 1} ightbrack = + \infty\lim_{x ightarrow 1^{+}}(4x - 3) = 1,\lim_{x
ightarrow 1^{+}}\frac{1}{x - 1} = + \infty.

    c) Ta có:

    \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight)

    = \lim_{x ightarrow 2^{-}}\frac{x + 2
- 1}{(x - 2)(x + 2)} = \lim_{x ightarrow 2^{-}}\frac{x + 1}{(x - 2)(x
+ 2)}

    = \lim_{x ightarrow 2^{-}}\left\lbrack
\frac{x + 1}{x + 2} \cdot \frac{1}{(x - 2)} ightbrack = -
\infty, do \left\{ \begin{matrix}\lim_{x ightarrow 2^{-}}\dfrac{x + 1}{x + 2} = \dfrac{3}{4} \\\lim_{x ightarrow 2^{-}}\dfrac{1}{x - 2} = - \infty \\\end{matrix} ight.

    d) Ta có:

    \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = \lim_{x ightarrow - 1^{-}}\frac{- x - 1}{(x - 1)(x +
1)} = \lim_{x ightarrow - 1^{-}}\frac{- 1}{x - 1} =
\frac{1}{2}.

  • Câu 16: Thông hiểu

    Tính giá trị biểu thức B = \cos2\alpha.\sin\alpha. Biết \sin\alpha = \frac{\sqrt{5}}{3}?.

    Ta có:

    B = \cos2\alpha.\sin\alpha

    = \left( 1 - 2\sin^{2}\alphaight).\sin\alpha

    = \sin\alpha -2\sin^{3}\alpha

    \Rightarrow B = \frac{\sqrt{5}}{3} -
2.\left( \frac{\sqrt{5}}{3} ight)^{3} = -
\frac{\sqrt{5}}{27}

  • Câu 17: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 18: Vận dụng cao

    Rút gọn biểu thức A = 1 + \cos^{2}x +\cos^{4}x + ... + \cos^{2n}x + ... với \cos x eq \pm 1

    Ta có:

    \begin{matrix}
  A = \underbrace {1 + {{\cos }^2}x + {{\cos }^4}x + ... + {{\cos }^{2n}}x + ...}_{CSN:{u_1} = 1;q = {{\cos }^2}x} \hfill \\
   = \dfrac{1}{{1 - {{\cos }^2}x}} = \dfrac{1}{{{{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 19: Vận dụng cao

    Cho dãy số =\left( x_{n} ight) thỏa mãn điều kiện x_{1} = 1; x_{n + 1} - x_{n} = \frac{1}{n(n + 1)} với n = 1;2;3;... số hạng x_{2018} bằng:

    Ta có:

    x_{n + 1} - x_{n} = \frac{1}{n(n + 1)} =\frac{1}{n} - \frac{1}{n + 1}

    \Leftrightarrow \sum_{k = 1}^{n -1}\left( x_{k + 1} - x_{k} ight) = \sum_{k = 1}^{n - 1}\left(\frac{1}{k} - \frac{1}{k + 1} ight)

    \Leftrightarrow x_{n} - x_{1} = 1 -\frac{1}{n}

    \Leftrightarrow x_{n} = \frac{2n -1}{n}

    Vậy x_{2018} =\frac{4035}{2018}

  • Câu 20: Nhận biết

    Cho dãy xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 3 \\
u_{n + 1} = \frac{1}{2}u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Số hạng tổng quát của dãy un là?

    Ta có u_{1} = 3;u_{2} = \frac{1}{2}u_{1} =
\frac{3}{2};u_{3} = \frac{1}{2}u_{2} =
\frac{3}{2^{2}};\ldots

    Ta đi chứng minh cho dãy số có số hạng tổng quát là u_{n} = \frac{3}{2^{n - 1}}

    Thật vậy, n = 1 thì u1 = 3 (đúng).

    Giả sử với n = k(k≥1) thì u_{k} = \frac{3}{2^{k - 1}}. Ta đi chứng minh u_{k + 1} =
\frac{3}{2^{k}}

    Ta có u_{k + 1} = \frac{1}{2}u_{k} =
\frac{1}{2} \cdot \frac{3}{2^{k - 1}} = \frac{3}{2^{k}} (điều phải chứng minh).

    Vậy số hạng tổng quát của dãy số là u_{n}
= \frac{3}{2^{n - 1}}

  • Câu 21: Thông hiểu

    Giới hạn \lim_{}\frac{2^{n} -
3^{n}}{2^{n} + 1} bằng

    Ta có:

    \lim\dfrac{2^{n} - 3^{n}}{2^{n} + 1} =\lim\dfrac{1 - \left( \dfrac{3}{2} ight)^{n}}{1 + \left( \dfrac{1}{2}ight)^{n}}

    = \dfrac{\lim\left( 1 - \left(\dfrac{3}{2} ight)^{n} ight)}{\lim\left( 1 + \left( \dfrac{1}{2}ight)^{n} ight)} = \lim\left( 1 - \left( \dfrac{3}{2} ight)^{n}ight) = - \infty

  • Câu 22: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 23: Thông hiểu

    \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}}  = \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {1^3}}}{{{{3.1}^2} + 1}}}  = 0

  • Câu 24: Nhận biết

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 25: Vận dụng cao

    Tìm giá trị nhỏ nhất m của hàm số y = 2sin^{2}x +\sqrt{3}sin2x.

    Ta có y = 2sin^{2}x + \sqrt{3}sin2x = 1 -cos2x + \sqrt{3}sin2x

    \begin{matrix}= \sqrt{3}sin2x - cos2x + 1 = 2\left( \dfrac{\sqrt{3}}{2}sin2x -\dfrac{1}{2}cos2x ight) + 1 \\= 2\left( sin2x\cos\dfrac{\pi}{6} - \sin\dfrac{\pi}{6}cos2x ight) + 1 =2sin\left( 2x - \dfrac{\pi}{6} ight) + 1. \\\end{matrix}

    - 1 \leq \sin\left( 2x - \frac{\pi}{6}ight) \leq 1

    \begin{matrix}\Leftrightarrow - 1 \leq 1 + 2sin\left( 2x - \dfrac{\pi}{6} ight) \leq3 \hfill\\\Leftrightarrow - 1 \leq y \leq 3 \hfill\\\end{matrix}

    Do đó giá trị nhỏ nhất của hàm số là -1.

  • Câu 26: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 27: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = 1 \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề đúng là “Hai đường thẳng chéo nhau thì không có điểm chung ”.

  • Câu 29: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 30: Vận dụng

    Cho số thực m thỏa mãn \lim_{x ightarrow + \infty}\frac{m\sqrt{2x^{2} +
3} + 2017}{2x + 2018} = \frac{1}{2}. Khi đó giá trị của m là bao nhiêu?

    Ta có:

    \lim_{x ightarrow +
\infty}\frac{m\sqrt{2x^{2} + 3} + 2017}{2x + 2018} =
\frac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{mx\sqrt{2 + \dfrac{3}{x^{2}}} + 2017}{x\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{m\sqrt{2 + \dfrac{3}{x^{2}}} + \dfrac{2017}{x}}{\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \frac{m\sqrt{2}}{2} =
\frac{1}{2} \Leftrightarrow m = \frac{\sqrt{2}}{2}

  • Câu 31: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 33: Thông hiểu

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 vô nghiệm.

    TH1. Với m = 2, phương trình \left( {m - 2} ight)\sin 2x = m + 1 \Leftrightarrow 0 = 3: vô lý.

    Suy ra m=2 thì phương trình đã cho vô nghiệm.

    TH2. Với m eq 2, phương trình \left( {m - 2} ight)\sin 2x = m + 1 \Leftrightarrow \sin 2x = \frac{{m + 1}}{{m - 2}}

    Để phương trình vô nghiệm

    \Leftrightarrow \frac{{m + 1}}{{m - 2}} otin \left[ { - \,1;1} ight] \Leftrightarrow \left[ \begin{gathered}  \frac{{m + 1}}{{m - 2}} > 1 \hfill \\  \frac{{m + 1}}{{m - 2}} <  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m > 2 \hfill \\  \frac{1}{2} < m < 2 \hfill \\ \end{gathered}  ight.

    Kết hợp hai trường hợp, ta được m \in \left( {\frac{1}{2}; + \infty } ight) là giá trị cần tìm.

  • Câu 34: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 35: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 36: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 37: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM
= 2MA. Diện tích thiết diện của hình chóp S.ABC tạo bởi (P) bằng

    Hình vẽ minh họa:

    Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SB, SC.

    (P)//(ABC) nên theo định lí Talet, ta có \frac{SM}{SA} = \frac{SN}{SB} =
\frac{SP}{SC} = \frac{2}{3}.

    Khi đó (P) cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số k = \frac{2}{3}.

    Vậy S_{\Delta MNP} = k^{2}.S_{\Delta ABC}
= \left( \frac{2}{3} ight)^{2}.9 = 4.

  • Câu 40: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 41: Thông hiểu

    Cho tứ diện ABCD. Trung điểm các cạnh AB,AC lần lượt là các điểm M,N. Giả sử (MND) \cap (BCD) = d. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(DMN) \supset MN \\
(DBC) \supset BC \\
MN//BC \\
\end{matrix} ight.

    => d là đường thẳng song song với MNBC.

    => d song song với (ABC)

  • Câu 42: Thông hiểu

    Giải phương trình 2\cos x = - 1 được nghiệm là:

    Ta có

    2cosx = - 1 \Leftrightarrow \cos x = -
\frac{1}{2}

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi,\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm là x =
\pm \frac{2\pi}{3} + k2\pi,k\mathbb{\in Z}

  • Câu 43: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 44: Thông hiểu

    Tìm x để 2;8;x;128 theo thứ tự đó lập thành một cấp số nhân.

    Cấp số nhân 2;8;x;128 theo thứ tự là u_{1};u_{2};u_{3};u_{4} ta có:

    \left\{ \begin{matrix}\dfrac{u_{2}}{u_{1}} = \dfrac{u_{3}}{u_{2}} \\\dfrac{u_{3}}{u_{2}} = \dfrac{u_{4}}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{8}{2} = \dfrac{x}{8} \\\dfrac{128}{x} = \dfrac{x}{8} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 32 \\x^{2} = 1024 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 32 \\
\left\lbrack \begin{matrix}
x = 32 \\
x = - 32 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow x = 32

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo