Cho cấp số nhân có các số hạng lần lượt là
. Gọi
là tổng của
số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?
Cấp số nhân đã cho có:
Cho cấp số nhân có các số hạng lần lượt là
. Gọi
là tổng của
số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?
Cấp số nhân đã cho có:
Để kết luận đường thẳng
song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
và
xác định và
xác định
Ta có: xác định khi và chỉ khi
Mà cot x xác định khi
Do đó hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Chọn mệnh đề sai trong các mệnh đề sau:
Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.
Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.
Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.
Tìm giá trị lớn nhất M của hàm số ![]()
Ta có
Mà
.
Vậy giá trị lớn nhất của hàm số là
Tính tổng
:
Ta có:
Cho hình chóp
có đáy là hình thang
,
. Gọi
là trung điểm của
. Giao tuyến của mặt phẳng
và
là:
Hình vẽ minh họa
Gọi là giao điểm của
và
. Khi đó:
.
Giá trị của
bằng:
Với mọi số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.
Cho hình lăng trụ
. Gọi
lần lượt là trung điểm của
và
. Giao của
với
là:
Hình vẽ minh họa
Vì là trung điểm của
và
nên
Suy ra cùng thuộc một mặt phẳng.
Trong mặt phẳng gọi
là giao điểm của
và
.
Ta có:
Vậy giao của với
là giao của
với
.
Với góc
bất kì. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Tổng
có kết quả bằng?
Đặt
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Cho tứ diện
. Trên
,
lần lượt lấy các điểm
và
sao cho
cắt
tại
. Điểm
không thuộc mặt phẳng nào trong các mặt phẳng sau?
Hình vẽ minh họa
Do và
.
Do .
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Biết rằng
. Tính
?
Ta có:
Khi đó
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
bằng
Nghiệm của phương trình
là?
Ta có:
.
Tính giới hạn của hàm số
khi
.
Ta có:
Cho lăng trụ
. Lấy
là trung điểm của
. Xác định hình chiếu của điểm
lên mặt phẳng
theo phương chiếu
là:
Hình vẽ minh họa

Gọi là trung điểm của
. Ta có:
Vậy hình chiếu song song của điểm lên
theo phương chiếu
là điểm
.
Cho dãy số
với
, trong đó
là tham số thực.
a) Khi
thì
Đúng||Sai
b) Khi
thì
. Sai||Đúng
c) Khi
thì
. Đúng||Sai
d) Khi
thì
Đúng||Sai
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Ta có
Nhận lượng liên hợp :
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Trong các mệnh đề sau mệnh đề nào sai:
Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".
Cho hình chóp tứ giác
đáy
là hình thang đáy nhỏ
,
,
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
S là điểm chung thứ nhất của hai mặt phẳng (1)
Xét mặt phẳng có:
=> là điểm chung thứ hai của hai mặt phẳng
(2)
Từ (1) và (2)
Cho hình hộp
và điểm
nằm giữa
và
. Giả sử
là mặt phẳng đi qua
và song song với mặt phẳng
. Xác định các giao tuyến của mặt phẳng
tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa

Nhận thấy
Do (1), ta giả sử (P) cắt BB’ tại N, suy ra , kết hợp với
suy ra
, suy ra N thuộc cạnh BB’.
Tương tự, giả sử suy ra
.
Kết hợp với (1) suy ra
Tương tự, sao cho
;
sao cho
;
sao cho
.
Từ đó suy ra thiết diện là lục giác .
Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?
Trên đường tròn định hướng, góc hình học có phân biệt điểm đầu
và điểm cuối
là góc lượng giác.
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Điều kiện để phương trình
có nghiệm là:
Điều kiện để phương trình có nghiệm là
Vậy thì phương trình đã cho có nghiệm.
Tìm tất cả các giá trị thực của tham số a để phương trình
có ba nghiệm lập thành cấp số nhân.
Ta có:
kiểm tra lại kết quả ta được
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Tính tổng
với
.
Các số hạng có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có
Biết
liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
Cho mặt phẳng
và đường thẳng
. Khẳng định nào sau đây sai?
Ta có khẳng định sai là: “Nếu và
thì
."
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.