Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Giải phương trình
ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của
(kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Để hàm số liên tục trên
thì hàm số phải liên tục tại
hay
Ta có:
Để tồn tại thì
.
Suy ra
Cho
. Khẳng định nào sau đây đúng?
Ta có:
Cho một cấp số cộng (Un) có
. Công sai d của cấp số cộng là:
Ta có:
Tính ![]()
Ta có:
bằng
Ta có:
Do
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Cho tứ diện
. Các cạnh
có trung điểm lần lượt là
. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Ta có:
,
=> MPNQ là hình bình hành
=> thuộc một mặt phẳng.
,
=> MRNS là hình bình hành
=> thuộc một mặt phẳng.
,
=> PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.
Vậy không thuộc cùng một mặt phẳng.
Cho hình hộp
. Ảnh của
qua phép chiếu song song với phương
mặt phẳng chiếu
lần lượt là:
Hình vẽ minh họa
Ta có: nên ảnh của điểm
qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Mặt khác điểm nên ảnh của
qua qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Trong không gian, cho ba đường thẳng phân biệt
trong đó
. Khẳng định nào sau đây sai?
Nếu c cắt a thì c cắt b hoặc c chéo b.
Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Cho ba số a; 5; 3b theo thứ tự lập thành cấp số cộng và ba số a; 3; 3b theo thứ tự lập thành cấp số nhân thì
bằng?
Ta có:
Ba số a; 5; 3b theo thứ tự lập thành cấp số cộng
=> a + 3b = 5.2
=> a = 10 – 3b
Ba số a; 3; 3b theo thứ tự lập thành cấp số nhân
=> a.3b = 32
=> ab = 3
Cho phương trình
có nghiệm là:
Giải phương trình như sau:
Vì
vậy phương trình lượng giác đã cho vô nghiệm.
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Tính giá trị lớn nhất của hàm số ![]()
Ta có:
Áp dụng bất đẳng thức
Do đó
Dấu bằng xảy ra khi
Cho hình chóp
có đáy
là hình bình hành. Gọi
,
,
,
lần lượt là trung điểm của các cạnh bên
,
,
,
. Tứ giác
là hình gì?
Hình vẽ minh họa
Tứ giác là hình bình hành.
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Giá trị của giới hạn
là:
Ta có:
Cho phương trình bậc ba:
(m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.
Ta có:
Để ba nghiệm của phương trình lập thành một cấp số nhân
Thiết diện của hình chóp
khi cắt bởi mặt phẳng
tùy ý thể là:
Vì số mặt của hình chóp là 5 nên thiết diện tối đa chỉ có 5 cạnh.
=> Không thể là lục giác.
Cho hình chóp
. Gọi
lần lượt là trung điểm của các đoạn thẳng
. Đường thẳng
song song với mặt phẳng nào trong các mặt phẳng dưới đây?
Hình vẽ minh họa
Ta có:
Chọn mệnh đề đúng trong các mệnh đề dưới đây:
Theo định nghĩa về vị trí tương đối của hai đường thẳng trong không gian thì đáp án đúng là: " Hai đường thẳng chéo nhau thì không có điểm chung."
Cho dãy xác định bởi công thức
. Số hạng tổng quát của dãy un là?
Ta có
Ta đi chứng minh cho dãy số có số hạng tổng quát là
Thật vậy, n = 1 thì u1 = 3 (đúng).
Giả sử với n = k(k≥1) thì . Ta đi chứng minh
Ta có (điều phải chứng minh).
Vậy số hạng tổng quát của dãy số là
Biết
. Khi đó
có giá trị bằng:
Ta có:
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Xét tính liên tục của hàm số
. Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm -5 shift DRG 2 =
Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Cho hộp chữ nhật
có
lần lượt là tâm của
. Trung điểm của
lần lượt là
. Xác định hình chiếu của tam giác
qua phép chiếu song song phương
lên mặt phẳng
.
Hình vẽ minh họa
Ta có: nên tứ giác
là hình bình hành.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Mặt khác thuộc mặt phẳng
nên hình chiếu của
qua phép chiếu song song
lên mặt phẳng
lần lượt là điểm
và
.
Vậy qua phép chiếu song song theo phương lên mặt phẳng
thì hình chiếu của tam giác
là đoạn thẳng
.
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
, lấy điểm
. Thiết diện cắt bởi mặt phẳng
với tứ diện
là:
Hình vẽ minh họa
Vì I và J là trung điểm của BC và BD nên IJ//CD (1)
nên giao tuyến của hai mặt phẳng
và
là đường thẳng d qua E và song song với CD.
Gọi ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng
.
Vì EF//IJ nên IJEF là hình thang.
Cho dãy số (un) xác định bởi
. Giá trị u10 là?
Từ ta có un + 1 − un = 5
⇒ dãy (un) là một cấp số cộng với công sai d = 5 nên
u10 = u1 + 9d = 2 + 45 = 47
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho hình chóp tứ giác
, đáy
là tứ giác lồi,
. Gọi
là mặt phẳng qua
song song với các đường thẳng
. Xác định các giao tuyến của
với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh hoạ
Xét mặt phẳng , kẻ đường thẳng qua
và song song với
, cắt
lần lượt tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Vậy hình tạo bởi các giao tuyến là hình thang với
.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Có bao nhiêu số tự nhiên chẵn k để 
Ta có:
Bài toán trở thành
Ta có: nên bài toán trở thành tìm k sao cho
Mà
=> Không tồn tại giá trị của k (do k nguyên dương và k chẵn).
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
Biết giới hạn . Khi đó:
a) Giá trị lớn hơn 0. Sai||Đúng
b) Ba số tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân với công bội
và
, thì
. Đúng||Sai
a) Ta có:
b) Ba số tạo thành một cấp số cộng với công sai bằng 1
c) Trên khoảng phương trình lượng giác
có 2 nghiệm
d) Cho cấp số nhân với công bội
và
, thì
Kết luận:
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |