Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Xét
Suy ra
Vậy dãy số (un) bị chặn.
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Xét
Suy ra
Vậy dãy số (un) bị chặn.
Cho tứ diện
. Các điểm
lần lượt là trung điểm
. Các điểm
lần lượt là trọng tâm các tam giác
. Các mệnh đề sau đúng hay sai?
a) Đường thẳng
chéo với đường thẳng
Sai||Đúng
b) Đường thẳng
chéo với đường thẳng
Đúng||Sai
c) Đường thẳng
chéo với đường thẳng
Sai||Đúng
d) Đường thẳng
chéo với đường thẳng
Sai||Đúng
Cho tứ diện . Các điểm
lần lượt là trung điểm
. Các điểm
lần lượt là trọng tâm các tam giác
. Các mệnh đề sau đúng hay sai?
a) Đường thẳng chéo với đường thẳng
Sai||Đúng
b) Đường thẳng chéo với đường thẳng
Đúng||Sai
c) Đường thẳng chéo với đường thẳng
Sai||Đúng
d) Đường thẳng chéo với đường thẳng
Sai||Đúng
Hình vẽ minh họa
Do
(Định lý Talet)
Xét tam giác có:
(do
là đường trung bình của tam giác)
Lại có:
Vậy và
chéo nhau.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Phương trình nào cùng tập nghiệm với phương trình ![]()
Ta có:
Vậy phương trình có cùng tập nghiệm với phương trình
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Các điểm
qua phép chiếu song song phương
trên mặt phẳng
ta thu được ảnh lần lượt là
. Hình chóp
cần thêm điều kiện gì để tứ giác
là hình vuông?
Hình vẽ minh họa
Theo bài ra ta có: lần lượt là ảnh của
qua phép chiếu song song phương
trên mặt phẳng
.
Ta có:
=> là đường trung bình của các tam giác
=>
=> là hình bình hành
=>
là hình bình hành.
Để là hình vuông thì
suy ra hình chóp
có mặt bên
vuông cân tại
.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Công thức nào sau đây đúng?
Công thức đúng là:
Cho cấp số cộng
có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Cho tứ giác
có
là giao điểm của
. Lấy một điểm
bất kì không thuộc
, một điểm
bất kì thuộc cạnh
. Gọi
là giao điểm của
và
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa
Chọn mặt phẳng phụ (SBD) chứa SD.
Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).
Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).
Trong mặt phẳng ( ABCD) có
Trong mặt phẳng (SAC) có
Suy ra
Trong mặt phẳng (SBD) gọi và do
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Kết quả của giới hạn
bằng:
Ta có
Khi đó ta có:
Vậy
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Cho khai triển
. Tìm m để tổng các hệ số của khai triển bằng 0.
Tổng các hệ số của khai triển là giá trị của biểu thức tại
Vậy tổng các hệ số của khai triển là:
Để tổng các hệ số khai triển bằng 0 thì
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Đổi số đo của góc
sang radian được kết quả là:
Ta có:
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Cho dãy số
với
. Tính
.
Ta có:
Chọn mệnh đề sai trong các mệnh đề sau:
Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.
Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.
Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.
Cho hàm số
. Tính
.
Hàm số đã cho xác định trên và
Giả sử là một dãy số bất kì, thỏa mãn
Ta có:
Vậy
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấy
. Giả sử
là mặt phẳng đi qua
song song với hai đường thẳng
và
. Xác định giao tuyến của
với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình
Hình vẽ minh họa
Gọi trung điểm lần lượt là
.
Gọi
Từ kẻ
song song với
.
Ta có:
(1)
Ta có (2)
Từ (1) và (2) => Các giao tuyến của với các cạnh của hình chóp là hình ngũ giác
.
Để kết luận đường thẳng
song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số ![]()
Ta có
Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.
Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.
Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.
Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).
Mệnh đề nào dưới đây SAI?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.
Cho ba mặt phẳng
đôi một song song. Hai đường thẳng
lần lượt cắt ba mặt phẳng tại
và
, (
nằm giữa
và
,
nằm giữa
và
). Biết rằng
. Tính
.
Ta có:
Biết
. Giá trị
bằng
Đáp án: -13||- 13
Biết . Giá trị
bằng
Đáp án: -13||- 13
Vì là hữu hạn nên phương trình
có nghiệm
Khi đó
Vậy .
Trong các dãy số sau, dãy số nào là cấp số nhân?
Xét dãy số
Ta có: => Dãy số là cấp số nhân
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Dãy số nào sau đây có giới hạn bằng 0?
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để hàm số
liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Cho hai đường thẳng phân biệt
và
trong không gian. Có bao nhiêu vị trí tương đối giữa
và
?
Hai đường thẳng trong không gian có 4 VTTĐ: trùng nhau, cắt nhau, song song, chéo nhau.
Vì hai đường thẳng phân biệt nên hai đường thẳng có 3 vị trí tương đối: cắt nhau, song song, chéo nhau.
Kết quả của giới hạn
là:
Ta có:
Khi đó:
Vì
Vậy
Tính giới hạn ![]()
Ta có:
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.