Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của AC và BM

    Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)

    => Giao tuyến cần tìm chính là đường thẳng SI.

  • Câu 3: Thông hiểu

    Phương trình 2\cos^{2}x - 3\sqrt{3}\sin2x - 4\sin^{2}x = -4 có họ nghiệm là

    Ta có:

    \cos x = 0 \Leftrightarrow x =
\frac{\pi}{2} + k\pi

    \Rightarrow \sin^{2}x = 1 là nghiệm của phương trình.

    \cos x eq 0 : Chia 2 vế phương trình cho \cos^{2}x ta được:

    2 - 6\sqrt{3}\tan x - 4\tan^{2}x = -4\left( 1 + \tan^{2}x ight)

    \Leftrightarrow tanx = \frac{1}{\sqrt{3}}
\Leftrightarrow x = \frac{\pi}{6} + k\pi.

  • Câu 4: Thông hiểu

    Tìm tập nghiệm của phương trình \left( \sin x + 1 ight).\left( \sin x - \sqrt{2}
ight) = 0?

    Ta có:

    \left( \sin x + 1 ight).\left( \sin x
- \sqrt{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\sin x + 1 = 0 \\
\sin x - \sqrt{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\sin x = - 1 \\
\sin x = \sqrt{2}(L) \\
\end{matrix} ight.

    \Leftrightarrow \sin x = - 1
\Leftrightarrow x = - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy phương trình có tập nghiệm là: S =
\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 5: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Tính giới hạn M
= \lim_{x ightarrow 2}\frac{x^{2} - 4}{x - 2}.

    Ta có:

    M = \lim_{x ightarrow 2}\frac{x^{2} -
4}{x - 2} = \lim_{x ightarrow 2}\frac{(x - 2)(x + 2)}{x - 2} = \lim_{x
ightarrow 2}(x + 2) = 4

  • Câu 7: Nhận biết

    Cho hai đường thẳng song song a và b. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Tất cả những mặt phẳng chứa a và không chứa b đều là những mặt phẳng song song với b.

  • Câu 8: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 9: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 10: Thông hiểu

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho tứ diện ABCD, lấy điểm M \in BC,(M eq B,M eq C). Mặt phẳng (\beta) đi qua M và song song với ABBC. Xác định các giao tuyến của (\beta) và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh họa:

    Mặt phẳng (\beta) qua M và song song với AB

    => Mặt phẳng (\beta) cắt mặt phẳng (ABC) theo giao tuyến MN song song với AB,(N \in AC).

    Mặt khác, (\beta) song song với CD nên (\beta) cắt (ACD)(BCD) theo các giao tuyến NPMQ với P \in
AD;Q \in BD

    => Hình tạo bởi các giao tuyến là tứ giác MNPQ.

    Mặt khác \left\{ \begin{matrix}
MN//PQ(//AB) \\
NP//MQ(//CD) \\
\end{matrix} ight.

    => Tứ giác MNPQ là hình bình hành.

    Vậy hình tạo bởi các giao tuyến của (\beta) và các mặt của hình chóp là hình bình hành.

  • Câu 12: Thông hiểu

    Đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị (C) của hàm số bằng cách:

    Nhắc lại lý thuyết:

    Cho (C) là đồ thị của hàm số y = f\left( x ight)p > 0, ta có:

    + Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số y = f\left( x ight) + p.

    + Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số y = f\left( x ight) - p

    + Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số y = f\left( {x + p} ight)

    + Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số y = f\left( {x - p} ight)

    Vậy đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị hàm số y = \cos x bằng cách tịnh tiến sang phải \frac{\pi }{2} đơn vị.

  • Câu 13: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 14: Thông hiểu

    Tìm khẳng định đúng.

    Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.

    Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.

    ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.

    => Chọn phương án – có thể là một hình tam giác.

  • Câu 15: Vận dụng cao

    Từ độ cao 5 5 , 8 m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 68,2

    Đáp án là:

    Từ độ cao 5 5 , 8 m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 68,2

    Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:

    Thời điểm chạm đất lần thứ nhất là d_{1}
= 55,8(m).

    Thời điểm chạm đất lần thứ 2 là d_{2}= 55,8 + 2.\frac{55,8}{10}( m ).

    Thời điểm chạm đất lần thứ 3 là d_{3} =
55,8 + 2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}}(m).

    Thời điểm chạm đất lần thứ 4 là d_{4} =
55,8 + 2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} +
2.\frac{55,8}{10^{3}}(m).

    Thời điểm chạm đất lần thứ n,\ \ (n >
1)

    d_{n} = 55,8 +
2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n -
1}}(m).

    Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:

    d = 55,8 +
2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n -
1}} + ...(m).

    2.\frac{55,8}{10}, 2.\frac{55,8}{10^{2}}, 2.\frac{55,8}{10^{3}}, …, 2.\frac{55,8}{10^{n - 1}},…, là một cấp số nhân lùi vô hạn, công bội q =
\frac{1}{10}, nên ta có:

    2.\dfrac{55,8}{10} + 2.\dfrac{55,8}{10^{2}}+ ... + 2.\dfrac{55,8}{10^{n - 1}} + ...= \dfrac{2.\dfrac{55,8}{10}}{1 -\dfrac{1}{10}} = 12,4.

    Vậy d = 55,8 + 2.\frac{55,8}{10} +
2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n - 1}} +
...

    = 55,8 + 12,4 = 68,2\ (m)

  • Câu 16: Nhận biết

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 17: Nhận biết

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

    Ta có: I \in (ABC);B \in
(ABC)

    => BI \subset (ABC)

    Do đó mệnh đề sai là: “BI không nằm trên mặt phẳng (ABC)”.

  • Câu 18: Nhận biết

    Giá trị của \lim\frac{1 - n^{2}}{n} bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} thỏa mãn \frac{n_{M}^{2} - 1}{n_{M}} > M

    \Rightarrow n_{M} > \frac{M +
\sqrt{M^{2} + 4}}{2}.

    Ta có:

    \frac{n^{2} - 1}{n} > M\ ,\ \
\forall n > n_{M} = > \lim\frac{n^{2} - 1}{n} = +
\infty

    Vậy \lim\frac{1 - n^{2}}{n} = -
\infty.

  • Câu 19: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 20: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 21: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 22: Nhận biết

    Cho \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây:

    Ta có \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác

    => \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.

  • Câu 23: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 5}  - x) bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 5}  - x} ight)\left( {\sqrt {{x^2} + 5}  + x} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 24: Vận dụng cao

    Hàm số y = cos^{2}x + 2sinx + 2 đạt giá trị nhỏ nhất tại x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có: y = cos^{2}x + 2sinx + 2 = 1 -sin^{2}x + 2sinx + 2

    = - sin^{2}x + 2sinx + 3 = - \left( \sinx - 1 ight)^{2} + 4.

    - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 2 \leq \sin x - 1 \leq 0 \\\Leftrightarrow 0 \leq \left( \sin x - 1 ight)^{2} \leq 4 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 0 \geq - \left( \sin x - 1 ight)^{2} \geq - 4 \hfill \\\Leftrightarrow 4 \geq - \left( \sin x - 1 ight)^{2} + 4 \geq 0 \hfill \\\end{matrix}.

    Suy ra giá trị nhỏ nhất của hàm số bằng 0.

    Dấu '' = '' xảy ra \Leftrightarrow \sin x = - 1\Leftrightarrow x = - \frac{\pi}{2} + k2\pi\ \left( k\mathbb{\in Z}ight).

  • Câu 25: Nhận biết

    Cho ba mặt phẳng (\alpha),(\beta),(\gamma) lần lượt giao nhau theo các giao tuyến phân biệt m,n,d. Khẳng định nào dưới đây đúng?

    Theo định lí về giao tuyến của ba mặt phẳng thì m,n,d đôi một song song hoặc đồng quy.

  • Câu 26: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 27: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 28: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 29: Nhận biết

    Cho cấp số nhân (un) có {u_1} = 2 và công bội q = 3. Số hạng u2 là:

    Ta có: u2 = u1 . q = -2 . 3 = -6

  • Câu 30: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 31: Vận dụng

    Tìm các giá trị nguyên của a thuộc (0;20)sao cho \lim\sqrt{3 + \frac{a.n^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là một số nguyên?

    Ta có:

    \left\{ \begin{matrix}\lim\left( \dfrac{a.n^{2} - 1}{3 + n^{2}} ight) = \lim\dfrac{a -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = a \\\lim\left( \dfrac{1}{2^{n}} ight) = \lim\left( \dfrac{1}{2} ight)^{n}= 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{a.n^{2}
- 1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + a}

    Ta có: \left\{ \begin{matrix}
a \in (0;20),a\mathbb{\in Z} \\
\sqrt{a + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 1;6;13
ight\}

    Vậy có ba giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 32: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 33: Vận dụng

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Đáp án là:

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Hàm số y = f(x) có TXĐ D\mathbb{= R}.

    Hàm số f(x) = \frac{x(x + 1)}{x^{2} -
1} liên tục trên mỗi khoảng ( -
\infty; - 1), ( - 1;1)(1; + \infty).

    (i) Xét tại x = - 1, ta có \lim_{x ightarrow - 1}f(x) = \lim_{x ightarrow
- 1}\frac{x(x + 1)}{x^{2} - 1} = \lim_{x ightarrow - 1}\frac{x}{x - 1}
= \frac{1}{2} = f( - 1)\overset{}{ightarrow} Hàm số liên tục tại x = - 1.

    (ii) Xét tại x = 1, ta có 

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{x}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{x}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. \toHàm số y = f(x) gián đoạn tại x = 1.

    Vậy số điểm gián đoạn cần tìm là 1.

  • Câu 34: Vận dụng

    Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:

    Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.

    Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED

    Lại có: MD // SI => \frac{{AM}}{{AI}} = \frac{{MD}}{{SI}} (1)

    ME // IC => \frac{{AM}}{{AI}} = \frac{{ME}}{{IC}} (2)

    Từ (1) và (2) suy ra: \frac{{ME}}{{IC}} = \frac{{MD}}{{SI}}

    Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)

    Suy ra MD = ME

    Vậy tam giác MED cân tại M.

  • Câu 35: Thông hiểu

    Cho tứ diện ABCDI,J lần lượt là trọng tâm tam giác ABCABD. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm của BD và BC

    Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)

    Do I, J là trọng tâm tam giác ABC và ABD suy ra \frac{AI}{AM} = \frac{AJ}{AN} = \frac{2}{3}
\Rightarrow JI//MN(**)

    Từ (*) và (**) suy ra TH

     

    1

  • Câu 36: Nhận biết

    Cho đường tròn đường kính 12cm. Tìm số đo (rad) của cung có độ dài 3cm ?

    d = 12 \Rightarrow R = 6\alpha = \frac{l}{R} vậy số đo (rad) cần tìm là \frac{1}{2}.

  • Câu 37: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 39: Nhận biết

    Hàm số nào sau đây là hàm số chẵn:

     Hàm số sinx là hàm số lẻ

    => Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ

    Xét hàm số y = |sinx| ta có:

    Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D

    Ta có: f(-x) = |sin⁡( -x)| = |- sinx| = |sinx|

    => f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn

    Vậy hàm số y = |sinx| là hàm số chẵn

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là A',B',C',D'. Chọn đáp án đúng.

    Ta có: A'C'//AC \Rightarrow
(A'C'D')//(ABC)

  • Câu 41: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 42: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 43: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 44: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo