Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?
Ta có:
Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng
=>
Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng
=>
Vậy x = 2; y = 20
Kết quả của giới hạn ![]()
Ta có:
. Khi đó:
(vì )
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Tính giới hạn ![]()
Ta có:
Ta có:
=>
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho dãy số
với
. Khẳng định nào sau đây đúng?
Ta có: là cấp số nhân có
.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề đúng là: "Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau hoặc trùng nhau."
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Bốn điểm nào sau đây đồng phẳng?
Hình vẽ minh họa

Ta có: là đường trung bình của tam giác
nên.
là đường trung bình của tam giác
nên
.
=>
=> đồng phẳng.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.
Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.
Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.
Tính giới hạn
.
Ta có:
bằng
Ta có:
Tính giới hạn của hàm số
khi
.
Ta có:
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Cho
là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Tính tổng ![]()
Ta có:
Cho hình chóp
. Gọi
lần lượt là trung điểm của các đoạn thẳng
. Đường thẳng
song song với mặt phẳng nào trong các mặt phẳng dưới đây?
Hình vẽ minh họa
Ta có:
Tính giới hạn
.
Ta có:
Cho dãy số
với
. Tính
.
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d)
cắt mặt phẳng
Sai||Đúng
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Hình vẽ minh họa
a) Đúng
Vì lần lượt là trung điểm các cạnh
và
nên
là hình bình hành nên
.
b) Sai
Do không đồng phẳng nên
không thể song song với
c) Đúng
Do mà
.
d) Sai
Do là đường trung bình của tam giác
nên
, mà
nên
.
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Cho biết mệnh đề nào sau đây sai?
Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Khi đó khẳng định nào sai?
Hình vẽ minh họa
Qua phép chiếu song song theo phương lên mặt phẳng
biến: M thành P, N thành
.
Do đó
Qua phép chiếu song song theo phương lên mặt phẳng
biến:
thành
, R thành R, M thành Q, P thành P, L thành L, Q thành Q.
Vậy
Vậy khẳng định sai là:
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Một hãng taxi đưa ra giá cước
(đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?
Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:
sai.
Suy ra
mới là kết quả đúng!
Dãy số (un) xác định bởi
và dãy số (vn) xác định bởi
. Tính
.
Ta có:
nên dãy
là cấp số nhân với công bội
Lại có: , khi đó ta có:
Cộng vế theo vế ta được
Do đó:
=>
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn
. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
Giả sử công bội của cấp số nhân là q
Ta có:
=>
Do cấp số nhân có các số hạng không âm nên q = 2
Ta có:
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.