Cho góc thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Cho góc thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Với những giá trị nào của x thì giá trị của các hàm số và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Nếu các dãy số thỏa mãn
và
thì
bằng:
Ta có .
Cho dãy số xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Tập giá trị của hàm số trên
Ta có:
Nên
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Tính tổng .
Ta có:
Rút gọn biểu thức với
?
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?
Ta có:
Cho cấp số nhân với
. Tính
.
Ta có:
Vậy .
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa
Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Cho tổng .
Khi đó công thức tính tổng S(n) là?
Cho hình hộp . Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa
Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Giá trị của với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
Cho hàm số . Tính
.
Hàm số đã cho xác định trên và
Giả sử là một dãy số bất kì, thỏa mãn
Ta có:
Vậy
Cho hàm số . Mệnh đề nào sau đây đúng?
Ta có:
Vậy đáp án đúng là
Hãy liệt kê năm số hạng đầu của dãy số có số hạng tổng quát
?
Ta có:
Vậy năm số hạng đầu tiên của dãy số là
Tính tổng
Ta có:
Tìm tập xác định của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Cho tứ diện . Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho tứ diện . Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Ta có:
và
lần lượt là trọng tâm các tam giác
và
nên
,
và
đồng qui tại
(là trung điểm của
) .
Vì nên
và
.
Lại có
Cho tứ diện . Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Cho tứ diện . Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Hình vẽ minh họa
Trong mặt phẳng , gọi
.
Trong , gọi
.
Trong mặt phẳng , dựng
là đường trung bình của tam giác
.
là trung điểm của
.
Trong , dựng
.
Chọn khẳng định đúng.
Ta có: tương ứng với
.
Cho tứ diện . Gọi
lần lượt là các điểm nằm trên các cạnh
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa
Ta có:
=> J là điểm chung của hai mặt phẳng và
.
Ta lại có:
=> K là điểm chung của hai mặt phẳng và
.
Vậy giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.
Cho đồ thị hàm số như hình vẽ:
Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là , tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?
Gọi là diện tích đế tháp và
là diện tích bề mặt trên của tầng thứ n, với
.
Theo giả thiết ta có:
Dãy số lập thành sấp số nhân với số hạng đầu tiên là
, công sai
.
Diện tích mặt trên cùng của tháp là:
Cho hình lập phương cạnh bằng
. Lấy các điểm
sao cho
. Khi giá trị
thay đổi, đường thẳng
luôn song song với mặt phẳng cố định nào sau đây?
Hình vẽ minh họa
Áp dụng định lí Ta – lét đảo cho và
. Từ tỉ lệ
Ta suy ra cùng song song với một mặt phẳng
nào đó.
Ta chọn mặt phẳng chứa
và song song với
.
Mặt phẳng chính là mặt phẳng
và là mặt phẳng cố định.
Hay
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho hình chóp có đáy là hình thang có cạnh đáy là
. Gọi
lần lượt là trung điểm của
, điểm
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
với
.
Vậy giao tuyến của hai mặt phẳng là đường thẳng qua P và song song với AB.
Giá trị của bằng:
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.
Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:
+ Đường thẳng song song với mặt phẳng.
+ Đường thẳng cắt mặt phẳng.
+ Đường thẳng nầm trên mặt phẳng.
Tính tổng các nghiệm trong đoạn [0;30] của phương trình:
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Biết là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Phương trình có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Cho . Giới hạn
bằng
Đáp án: 1
Cho . Giới hạn
bằng
Đáp án: 1
Ta có:
nên
hay
Do đó
.
Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?
Gọi H là trung điểm của tam giác AB.
M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.
Khi đó ta có:
Theo định lí Ta - lét ta có:
Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.
Nghiệm của phương trình là
Ta có
.
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Hình nào sau đây là hình biểu diễn của hình chóp với
là hình bình hành?
Hình biểu diễn của hình chóp đáy là hình bình hành là hình