Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Tìm chu kì T của hàm số lượng giác ![]()
Hàm số y = cos3x tuần hoàn với chu kì
Hàm số y = cos5x tuần hoàn với chu kì
=> Hàm số tuần hoàn với chu kì là
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy đáp án đúng là
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho hình lập phương
. Khẳng định nào sau đây sai?
Ta có: luôn đúng
=> Hai mặt phẳng không song song với nhau.
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Phát biểu nào dưới đây sai?
Ta có phát biểu sai là:
Sửa lại là:
Tính tổng 
Ta có:
Kết quả của giới hạn
bằng bao nhiêu?
Ta có:
Ta lại có:
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Trong các mệnh đề sau mệnh đề nào sai:
Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có:
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
bằng:
Ta có:
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
. Gọi
là giao điểm của
và
. Giao điểm của
với
là điểm
. Hãy chọn cách xác định điểm
đúng nhất trong bốn phương án sau.
Hình vẽ minh họa
Trong mặt phẳng gọi
.
Mà nên
Cho dãy số
thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số
, với
. Mệnh đề nào sau đây đúng?
Ta có: là dãy thay dấu nên không tăng, không giảm.
Tập giá trị của dãy số là {-1; 1}
Vậy dãy số là dãy số bị chặn.
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Số nghiệm của phương trình
trên khoảng
là?
Ta có:
nên .
Tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Cho hình chóp tứ giác
, đáy
là tứ giác lồi,
. Gọi
là mặt phẳng qua
song song với các đường thẳng
. Xác định các giao tuyến của
với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh hoạ
Xét mặt phẳng , kẻ đường thẳng qua
và song song với
, cắt
lần lượt tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Trong mặt phẳng , kẻ đường thẳng song song với
, cắt
tại
.
Vậy hình tạo bởi các giao tuyến là hình thang với
.
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Cho hình chóp
có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình chóp có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Hình vẽ minh họa
Ta có:
Do
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Phương trình
có nghiệm là:
Giải phương trình:
Cho tứ diện đều
. Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Hình vẽ minh họa
Không mất tính tổng quát, xét mặt bên .
Giả sử song song với
. Khi đó, số tam giác có cạnh
nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm
,
,
,
,
.
Trong mặt bên , nối các điểm chia đều các cạnh
ta thấy có 3 đoạn thẳng song song với
, 3 đoạn thẳng song song với
và 3 đoạn thẳng song song với
.
Mặt khác, vai trò 4 mặt của tứ diện là như nhau.
Vậy, số tam giác thỏa mãn yêu cầu đề bài là .
Xác định công thức tổng quát của dãy số
.
Ta có:
Nhận thấy
Dự đoán
Ta chứng minh bằng quy nạp
Trước hết đúng với
Giả sử đúng khi
. Khi đó
Ta có:
Mặt khác ta có . Do đó
Vậy
Vậy (*) đúng với . Theo nguyên lí quy nạp, ta có điều phải chứng minh.
Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Cho hàm số
. Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số
theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?
Ta có:
Các số hạng lập thành cấp số nhân
Cho tứ diện
, lấy
là trung điểm của
. Qua phép chiếu song song theo phương
lên mặt phẳng
biến điểm
thành điểm nào sau đây?
Hình vẽ minh họa
Gọi là trung điểm của
. Khi đó
là đường trung bình của tam giác
.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Cho hình chóp
có đáy
là hình bình hành tâm
. Lấy điểm
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
mặt phẳng chiếu
là điểm
. Khi đó tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh họa:
Phép chiếu song song phương phương mặt phẳng chiếu
biến điểm
thành điểm
.
Do đó:
Xét tam giác ta có:
=> là trung điểm của
Từ đó suy ra
Mệnh đề nào sau đây sai?
Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.
Dãy số có các số hạng cho bởi
có số hạng tổng quát là công thức nào dưới đây?
Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án và
Ta có: ở các đáp án
và
Xét đáp án
Xét đáp án
Vậy công thức tổng quát của dãy số đã cho là
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Giải phương trình
.
Phương trình
Vậy đáp án cần tìm là:
Trên đường tròn định hướng, mỗi cung lượng giác
xác định:
Trên đường tròn định hướng, mỗi cung lượng giác xác định vô số góc lượng giác tia đầu
, tia cuối
.