Đề thi học kì 1 Toán 11 Cánh Diều Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 44 câu
  • Số điểm tối đa: 44 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho dãy số có các số hạng đầu là 0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};\ldots Số hạng tổng quát của dãy số này là

    Ta có 0=\frac{0}{0+1};\frac{1}{2}=\frac{1}{1+1};\frac{2}{3}=\frac{2}{2+1};

    \frac{3}{4}=\frac{3}{3+1};\frac{4}{5}=\frac{4}{4+1}

    Suy ra u_{n} = \frac{n}{n + 1}

  • Câu 2: Nhận biết

    Tìm b >
0 để các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow \left( \sqrt{b} ight)^{2}
= \frac{1}{\sqrt{2}}.\sqrt{2}

    \Rightarrow b = 1

  • Câu 3: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 4: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 5: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 6: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 7: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 8: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Tất cả các nghiệm của phương trình \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 là:

    Ta có: \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 \Leftrightarrow \cot \left( {x - {{15}^{\text{o}}}} ight) = \sqrt 3

    \Leftrightarrow x - {15^{\text{o}}} = {30^{\text{o}}} + k{180^{\text{o}}}

    Vậy suy ra x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z

    Nghiệm của phương trình đã cho là: x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z.

  • Câu 10: Vận dụng cao

    Hàm số y = cos^{2}x - \cos x có tất cả bao nhiêu giá trị nguyên?

    Ta có:

    y = cos^{2}x - \cos x = \left( \cosx - \frac{1}{2} ight)^{2} - \frac{1}{4}.

    - 1 \leq \cos x \leq 1

    \begin{matrix}\Leftrightarrow - \dfrac{3}{2} \leq \cos x - \dfrac{1}{2} \leq \dfrac{1}{2}\\\Leftrightarrow 0 \leq \left( \cos x - \dfrac{1}{2} ight)^{2} \leq\dfrac{9}{4} \\\end{matrix}

    \begin{matrix}\Leftrightarrow - \dfrac{1}{4} \leq \left( \cos x - \dfrac{1}{2}ight)^{2} - \dfrac{1}{4} \leq 2 \hfill \\\Leftrightarrow - \dfrac{1}{4} \leq y \leq 2\overset{y\in\mathbb{Z}}{\Rightarrow}y \in \left\{ 0;1 ight\} \hfill\\\end{matrix}

    Nên có 3 giá trị thỏa mãn.

  • Câu 11: Thông hiểu

    Giới hạn dãy số (u_{n}) với u_{n} = \frac{\left( 3n - n^{4} ight)}{4n -
5} là?

    Ta có:

    \lim u_{n} = \lim\frac{\left( 3n - n^{4}
ight)}{4n - 5} = \lim{n^{3}\frac{\frac{3}{n^{3}} - 1}{4 -
\frac{5}{n}}} = - \infty

    \lim n^{3} = + \infty nên suy ra:

     \lim\frac{\frac{3}{n^{3}} - 1}{4 -
\frac{5}{n}} = - \frac{1}{4}.

  • Câu 12: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 13: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 14: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Nhận biết

    Cho hình vẽ:

    Trên đường tròn lượng giác, số đo của góc lượng giác (OA;OB') là:

    Từ hình vẽ ta có: (OA;OB') = -
\frac{\pi}{2}

  • Câu 16: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Xác định mệnh đề sai?

    Hình vẽ minh họa

    Theo bài ra ta có:

    \left\{ \begin{matrix}
BA'//CD' \\
A'C'//AC \\
\end{matrix} \Rightarrow (BA'C')//(ACD') ight.

    \left\{ \begin{matrix}
AD//BC \\
AA'//BB' \\
\end{matrix} \Rightarrow (ADD'A')//(BCC'B') ight.

    \left\{ \begin{matrix}
BD//B'D' \\
A'D//B'C \\
\end{matrix} \Rightarrow (BA'D)//(CB'D') ight.

    Mặt khác B' \in (ABA') \cap
(CB'D)

    => (ABA')//(CB'D') là mệnh đề sai.

  • Câu 17: Vận dụng

    Hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  { - x\cos x{\text{       }}khi{\text{ }}x < 0} \\   {\dfrac{{{x^2}}}{{1 + x}}{\text{        }}khi{\text{ }}0 \leqslant x < 1} \\   {{x^3}{\text{             }}khi{\text{ x}} \geqslant {\text{1}}} \end{array}} ight.

    Ta có: f(x) liên tục tại x e 0; x e 1

    Tại x=0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\cos x} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = 0 \hfill \\  f\left( 0 ight) = 0 \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight)

    Vậy hàm số liên tục tại x=0

    Tại x=1 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = \dfrac{1}{2} \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3}} ight) = 1 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) e \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số bị gián đoạn tại x=1

    Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.

  • Câu 18: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 19: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 20: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{1- sin2x} - \sqrt{1 + sin2x}

    Hàm số xác định khi và chỉ khi -1\leq \sin2x \leq 1

    Vậy tập xác định của hàm số là D=\mathbb{R}

  • Câu 21: Vận dụng

    Kết quả của giới hạn \lim\left\lbrack \frac{\sqrt{3n} + ( -
1)^{n}.cos3n}{\sqrt{n} - 1} ightbrack bằng:

    Ta có

    \lim\left\lbrack \frac{\sqrt{3n} + ( -1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    = \lim\left\lbrack\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack + \lim\left\lbrack \frac{(- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    Khi đó ta có:

    \lim\left\lbrack
\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack = \frac{\sqrt{3}}{1} =
\sqrt{3}

    0 \leq \left| \frac{( -1)^{n}.\cos3n}{\sqrt{n} - 1} ight| \leq \frac{1}{\sqrt{n} - 1}ightarrow 0 \Rightarrow \lim\frac{( - 1)^{n}.\cos3n}{\sqrt{n} - 1} =0

    Vậy \lim\left\lbrack \frac{\sqrt{3n} + (- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack = \sqrt{3}

  • Câu 22: Nhận biết

    Giá trị của \lim\frac{{(\sin n)}^{2}}{n + 2}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a}
> \frac{1}{a} - 2

    Suy ra

    \frac{\left( \sin n ight)^{2}}{n
+ 2} < \frac{1}{n + 2} < \frac{1}{n_{a} + 2} < a\ \forall n
> n_{a}

    Vậy:  \lim\frac{{{(sin}n)}^{2}}{n + 2} = 0 .

  • Câu 23: Vận dụng cao

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Giả sử cạnh hình vuông bằng a.

    Ta có cạnh của hình vuông được tạo ở bước 1 là \frac{a\sqrt{5}}{3} \Rightarrow S_{1} =
\frac{5a^{2}}{9}

    Tương tự như trên, ta có:

    S_{2} = \left(
\frac{5}{9} ight)^{2}a^{2},S_{3}
= \left( \frac{5}{9} ight)^{3}a^{2},…, S_{n} = \left( \frac{5}{9}
ight)^{n}a^{2}

    Nên S = S_{1} + S_{2} + S_{3} + ... +
S_{n} + ... là tổng của cấp số nhân lùi vô hạn với \left\{ \begin{matrix}
u_{1} = \frac{5}{9}a^{2} \\
q = \frac{5}{9} \\
\end{matrix} ight..

    Khi đó S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{5}{9}a^{2}}{1 - \dfrac{5}{9}} =\dfrac{5}{4}a^{2}.

    Với a = 1 suy ra S =
\frac{5}{4}.

  • Câu 24: Vận dụng

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 25: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm thiết diện của (MAB) với hình chóp.

    Do (MAB) chứa AB // CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N.

    Vậy thiết diện của (MAB) với hình chóp là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.

  • Câu 27: Nhận biết

    Trong không gian cho hai đường thẳng song song a và b. Chọn mệnh đề đúng.

    Cho hai đường thẳng a và b song song, nếu đường thẳng c song song với a thì c song song hoặc trùng với b.

  • Câu 28: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M
\in CD;(M eq C;M eq D). Giả sử mặt phẳng (\alpha) đi qua M và song song với SC;AC. Xác định các giao tuyến của mặt phẳng (\alpha) với hình chóp. Hình tạo bởi các giao tuyến trên là hình gì?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha) \cap (ABCD) = M \\
(\alpha)//AC \\
AC \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (ABCD) =
Mx//ACMx \cap AD =
N

    Tương tự ta cũng có (\alpha) \cap (SDC) =
MP//SC

    Khi đó (\alpha) \cap (SAD) =
NP

    => Hình tạo bởi các giao tuyến của (α) với hình chóp là tam giác MNP.

  • Câu 30: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 31: Nhận biết

    Rút gọn biểu thức A = \cos^{4}15^{0} - \sin^{4}15^{0}

    Ta có:

    A = \cos^{4}15^{0} -\sin^{4}15^{0}

    A = \left( \cos^{2}15^{0} + \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    A = \cos^{2}15^{0} -\sin^{2}15^{0}

    A = \cos\left( 2.15^{0} ight) =\cos30^{0} = \frac{\sqrt{3}}{2}

  • Câu 32: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 33: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 34: Nhận biết

    Kí hiệu nào sau đây là tên của mặt phẳng

     Kí hiệu tên của mặt phẳng là (P).

  • Câu 35: Vận dụng

    Cho cấp số nhân (un) có tổng n số hạng đầu tiên là {S_n} = {5^n} - 1. Tìm số hạng đầu và công bội của cấp số nhân đó?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = {S_1} = 5 - 1 = 4} \\   {{u_1} + {u_2} = {S_2} = {5^2} - 1 = 24} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_2} = 24 - {u_1} = 20} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {q = \dfrac{{{u_2}}}{{{u_1}}} = 5} \end{array}} ight.

  • Câu 36: Thông hiểu

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Xét dãy số \left\{\begin{matrix}u_0=1 \\ u_n=2u_{n-1}\end{matrix}ight.\forall n\geq1

     Ta có: \frac{{{u_n}}}{{{u_{n - 1}}}} = 2 => Dãy số là cấp số nhân

  • Câu 37: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 38: Thông hiểu

    Tính giới hạn F =\lim_{x ightarrow \frac{\pi}{2}}\dfrac{\cos x}{x -\dfrac{\pi}{2}}

    Ta có:

    F = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\cos x}{x - \dfrac{\pi}{2}} = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\sin\left( \dfrac{\pi}{2} - x ight)}{x -\dfrac{\pi}{2}}

    = \lim_{x ightarrow \frac{\pi}{2}}\dfrac{- \sin\left( x- \dfrac{\pi}{2} ight)}{x - \dfrac{\pi}{2}} = - 1

  • Câu 39: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

  • Câu 40: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=5^{n+1}. Tìm số hạng u_{n-1}

    Ta có:

    \begin{matrix}  {u_n} = {5^{n + 1}} \hfill \\   \Rightarrow {u_{n - 1}} = {5^{\left( {n - 1} ight) + 1}} = {5^n} \hfill \\ \end{matrix}

  • Câu 41: Nhận biết

    Xét tính liên tục của hàm số f(x) = \left\{ \begin{matrix}
1 - \cos x\ \ \ khi\ x \leq 0 \\
\sqrt{x + 1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 0 \\
\end{matrix} ight.. Khẳng định nào sau đây đúng?

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: f(x) liên tục trên ( - \infty;0)(0; + \infty)

    Mặt khác

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\sqrt{x + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( 1 - \cos x ight) = 0

    Vậy hàm số gián đoạn tại x = 1

  • Câu 42: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 43: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 44: Thông hiểu

    Trong các giới hạn dưới đây, giới hạn nào không tồn tại?

    Ta có:

    \lim_{x ightarrow - 1}\frac{x}{(x +
1)^{2}} = - \infty

    \lim_{x ightarrow - \infty}\dfrac{2x +1}{x^{2} + 1} = \lim_{x ightarrow - \infty}\dfrac{\dfrac{2}{x} +\dfrac{1}{x^{2}}}{1 + \dfrac{1}{x^{2}}} = 0

    \lim_{x ightarrow 0}\frac{x}{\sqrt{x +
1}} = 0

    \lim_{x ightarrow + \infty}\left( \cos
x ight) không xác định.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo