Cho cấp số nhân có các số hạng lần lượt là
. Tính tổng
của tất cả các số hạng của cấp số nhân đã cho.
Cấp số nhân đã cho có
=>
Cho cấp số nhân có các số hạng lần lượt là
. Tính tổng
của tất cả các số hạng của cấp số nhân đã cho.
Cấp số nhân đã cho có
=>
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa
Ta có:
, d đi qua S và
.
Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1
Một học sinh chứng minh un luôn chia hết cho 19 như sau:
Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19
Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.
Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1
Bước 3: Vì 5.23k − 2 + 33k − 1 và 19.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*
Vậy un chia hết cho 19, ∀n ∈ ℕ*
Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?
Lập luận hoàn toàn đúng!
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa

Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Tính giới hạn
ta được kết quả bằng
Ta có:
.
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho điểm
, đường thẳng
và mặt phẳng
. Kí hiệu nào sau đây đúng?
Kí hiệu đúng là:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Giá trị của
bằng:
Chia cả tử và mẫu cho ta có được.
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

Hình vẽ minh họa
Gọi
Khi đó đi qua
. Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.
Cho mảnh bìa như hình vẽ sau, biết
là hình vuông cạnh
. Các tam giác
là các tam giác cân bằng nhau. Gọi
lần lượt là trọng tâm của hai tam giác
và
. Người ta xếp mảnh bìa này thành hình chóp tứ giác
(các điểm
trùng vào đỉnh
). Khi đó tính độ dài đoạn thẳng
.

Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:
Từ giả thiết ta có:
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của
(kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Để hàm số liên tục trên
thì hàm số phải liên tục tại
hay
Ta có:
Để tồn tại thì
.
Suy ra
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Ta có
=>Đồ thị hàm số được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Cho dãy số (un) có số hạng tổng quát
. Số
là số hạng thứ mấy của dãy?
Ta có
Vậy là số hạng thứ 250 của dãy số (un)
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
Sai||Đúng
b) Phương trình
có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số
khi
bằng -1. Sai||Đúng
d) Dãy số
với
là dãy số không bị chặn. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
a) Ta có:
có điều kiện xác định
Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.
b) Đặt
f(x) liên tục trên tập số thực nên f(x) liên tục trên
Ta có:
Từ (*) và (**) suy ra phương trình có nghiệm thuộc
.
c) Ta có:
Vậy không tồn tại giới hạn của hàm số khi
d) Ta có: với n chẵn
Với n lẻ
Suy ra dãy số không bị chặn.
Với
là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Chọn mệnh đề sai. Trong không gian:
Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.
Phương trình
có nghiệm là
Giải phương trình:
Có bao nhiêu giá trị nguyên của m để phương trình
có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
là trung điểm của cạnh
. Mặt phẳng
chứa
và song song với
cắt các cạnh
lần lượt tại
. Tìm khẳng định đúng dưới dây?
Hình vẽ minh họa:
Ta có: là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó:
Dễ thấy E là trọng tâm tam giác SAC nên
Cho bốn cung (trên một đường tròn định hướng)
các cung nào có điểm cuối trùng nhau?
Ta có:
=> và
có điểm cuối trùng nhau
=> và
có điểm cuối trùng nhau.
Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

Chọn khẳng định đúng.
Ta có: khi đó:
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2
Tập nghiệm của phương trình
là
Ta có
.
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Cho hình lăng trụ
. Trọng tâm các tam giác
lần lượt là
. Tìm mặt phẳng song song với mặt phẳng
.
Theo bài ra ta có:
Các điểm lần lượt là trọng tâm các tam giác
.
.
Chứng minh tương tự
Cho hình chóp
có các mặt bên là tam giác đều. Gọi
là trung điểm của
, lấy
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
là:
Hình vẽ minh họa
Do các mặt bên của hình chóp là các tam giác đều nên tam giác
đều.
Gọi là trọng tâm tam giác
.
Ta có
Nên là hình chiếu song song theo phương
của
trên
.
Lại do tam giác đều nên
vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác
.
Từ độ cao
của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Từ độ cao của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:
Thời điểm chạm đất lần thứ nhất là .
Thời điểm chạm đất lần thứ 2 là .
Thời điểm chạm đất lần thứ 3 là .
Thời điểm chạm đất lần thứ 4 là .
Thời điểm chạm đất lần thứ là
.
Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:
.
Vì ,
,
, …,
,…, là một cấp số nhân lùi vô hạn, công bội
, nên ta có:
.
Vậy
Cho tứ diện
,
sao cho
. Gọi
là trọng tâm tam giác
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Gọi P là trung điểm của AD.
Ta có:
Mà
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 4 của cấp số nhân đã cho.
Ta có:
Khi đó
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Tính giới hạn của hàm số
khi
.
Ta có:
Trong các đẳng thức sau, đẳng thức nào đúng?
Công thức đúng là:
Kết quả của giới hạn ![]()
Ta có:
. Khi đó:
(vì )