Cho dãy số
với
. Số
là số hạng thứ bao nhiêu của dãy số đó?
Ta có
.
Vậy 19 là số hạng thứ 7 của dãy số đã cho.
Cho dãy số
với
. Số
là số hạng thứ bao nhiêu của dãy số đó?
Ta có
.
Vậy 19 là số hạng thứ 7 của dãy số đã cho.
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.
Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.
Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:
Hình vẽ minh họa
Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là AB và CD nên giao tuyến của chúng là đường thẳng đi qua S và song song với AB và CD tức song song với BI.
Gọi T là tập giá trị của hàm số
. Tìm tổng các giá trị nguyên của T.
Ta có:
Vì
Do đó tổng các giá trị nguyên của T là 7.
Với giá trị
nào dưới đây thì các số
theo thứ tự đó lập thành một cấp số nhân?
Ta có: lập thành một cấp số nhân
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Một hãng taxi đưa ra giá cước
(đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Cho hình chóp
. Có bao nhiêu cạnh của hình chóp chéo nhau với cạnh
?
Hình vẽ minh họa
Các cạnh của hình chóp chéo nhau với cạnh là
.
bằng
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả
Cho tứ diện
có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Một quả bóng cao su được thả từ độ cao
. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng
Đáp án 405
Một quả bóng cao su được thả từ độ cao . Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng
Đáp án 405
Gọi là khoảng cách lần rơi thứ
Ta có ,
,…,
,…
Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ bằng
.
Gọi là khoảng cách lần nảy thứ
Ta có ,
,…,
,…
Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ bằng
.
Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng .
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Tính giới hạn ![]()
Ta có:
Ta có:
=>
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Số nghiệm của phương trình
trên khoảng
là?
Ta có:
nên .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là
Hình vẽ minh họa

Ta có thiết diện của S.ABCD cắt bởi
mặt phẳng (IJK) là ngũ giác
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Trên đường tròn bán kính 15dm, cho cung tròn có độ dài
. Số đo của cung tròn đó là:
Độ dài cung tròn là:
=>
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?
Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho hai hình bình hành
và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d) Sáu điểm
là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Hình vẽ minh họa
a) Sai: và
cắt nhau tại
.
b) Đúng.
Vì là hình bình hành nên
, suy ra
.
Vì là hình bình hành nên
, suy ra
.
Mà và
cắt nhau nên
.
c) Sai: Vì và
có điểm
chung.
d) Đúng:
Vì và
là hình bình hành nên
đôi một song song
Mặt khác (theo câu b)
Do đó 6 điểm là 6 đỉnh của một hình lăng trụ tam giác
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Hỏi trên
, phương trình
có bao nhiêu nghiệm?
Phương trình
Theo giả thiết
Vậy phương trình có duy nhất một nghiệm trên .
Tính ![]()
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau?
Hình vẽ minh họa
Quan sát hình vẽ ta thấy kết quả cần tìm là: và BD.
Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:
Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.
Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED
Lại có: MD // SI => (1)
ME // IC => (2)
Từ (1) và (2) suy ra:
Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)
Suy ra MD = ME
Vậy tam giác MED cân tại M.
Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Cho giới hạn
. Khi đó :
a)
khi
Đúng||Sai
b)
khi
Sai||Đúng
c)
khi
Đúng||Sai
d) Có 3 giá trị nguyên của
thuộc
sao cho
là một số nguyên. Đúng||Sai
Cho giới hạn . Khi đó :
a) khi
Đúng||Sai
b) khi
Sai||Đúng
c) khi
Đúng||Sai
d) Có 3 giá trị nguyên của thuộc
sao cho
là một số nguyên. Đúng||Sai
Ta có
Ta có
Kết luận:
a) Đúng | b) Sai | c) Đúng | d) Đúng |
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Tính giới hạn
.
Ta có:
Ta lại có:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).
Hình vẽ minh họa
Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Khẳng định nào sau đây đúng?
Ta có: