Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Cho dãy số
với
, trong đó
là tham số thực.
a) Khi
thì
Đúng||Sai
b) Khi
thì
. Sai||Đúng
c) Khi
thì
. Đúng||Sai
d) Khi
thì
Đúng||Sai
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Ta có
Nhận lượng liên hợp :
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Cho hình chóp
có
là hình bình hành tâm
,
là trung điểm
. Tìm mệnh đề sai.
Do nên
=> sai.
Cho hình lăng trụ
. Tìm mệnh đề sai trong các mệnh đề dưới đây:
Khẳng định sai là:
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho dãy số
thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Sai||Đúng
b) Trong khoảng
phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng
phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Sai||Đúng
b) Trong khoảng phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên bằng
. Đúng||Sai
Phương trình
Vì nên:
Với ta chỉ chọn được
.
Với ta chỉ chọn được
.
Vậy tổng các nghiệm bằng .
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Dãy số nào là cấp số nhân?
Theo bài ra ta có:
(loại)
(loại)
(thỏa mãn)
(loại)
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Giá trị của giới hạn
bằng:
Với mọi giá trị thì
Do đó:
Cho hàm số
thỏa mãn
và
. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?
Hàm số đã cho xác định trên .
Ta có:
mà
nên
.
Mặt khác
mà
nên
.
Ta lại có nên tồn tại số
sao cho f(m) < 0 và
nên tồn tại số
sao cho
.
Vậy nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.
Trong không gian, cho ba đường thẳng
không đồng phẳng đôi một cắt nhau. Tìm số giao điểm phân biệt của ba đường thẳng.
Giả sử ba đường thẳng đôi một cắt lần lượt
phân biệt và tạo thành mặt phẳng
.
=> cùng nằm trên một mặt phẳng (trái giả thiết).
=> trùng nhau, tức là
đồng quy.
Vậy có duy nhất một giao điểm phân biệt của ba đường thẳng đã cho.
Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."
Cho hình chóp
có đáy là hình bình hành
. Gọi
. Giả sử mặt phẳng
đi qua
và song song với
. Xác định các giao tuyến của mặt phẳng
với hình chóp. Hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
và
Tương tự ta cũng có
Khi đó
=> Hình tạo bởi các giao tuyến của (α) với hình chóp là tam giác MNP.
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Cho tổng
. Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Cho dãy số
, biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Giá trị của
bằng:
Ta có:
Nghiệm của phương trình
là?
Ta có:
.
Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo
(lấy 2 chữ số thập phân).
Cung có số đo thì có số đó radian là
Bán kính đường tròn
=>
Hãy nêu tất cả các hàm số trong các hàm số
thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng
?
Ta có:
Hàm số y = tan x đồng biến và nhận giá trị âm trên khoảng
=> sai
Trên khoảng hàm số y = sin x đồng biến và nhận giá trị âm.
Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."
Cho hình hộp
. Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Cho hình hộp . Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Ta có .
Tương tự:
Suy ra mặt phẳng cắt hình hộp theo thiết diện là hình bình hành
.
Mặt khác .
Trong mặt phẳng , gọi
là giao điểm của hai đường thẳng
và
thì
là đường trung bình của tam giác
là trung điểm của đoạn thẳng
.
Trong mặt phẳng , gọi
là giao điểm của
và
thì
là đường trung bình của tam giác
(vì
và
là trung điểm
)
Mà tứ giác là hình bình hành nên
là trung điểm
hay
Lại có
Hàm số nào trong các hàm số sau liên tục tại
?
Xét hàm số có:
Vậy hàm số liên tục tại .
Giải phương trình ![]()
Ta có:
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Rút gọn biểu thức
với ![]()
Ta có:
Cho hàm số
. Khi đó
bằng:
Ta có:
Cho hình chóp
. Gọi
và
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
là đường trung bình của tam giác
nên
mà
.
Cho tứ diện
. Các cạnh
có trung điểm lần lượt là
. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Ta có:
,
=> MPNQ là hình bình hành
=> thuộc một mặt phẳng.
,
=> MRNS là hình bình hành
=> thuộc một mặt phẳng.
,
=> PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.
Vậy không thuộc cùng một mặt phẳng.
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Hình vẽ minh họa
-Ta có .
Trong mặt phẳng , gọi
Suy ra .
Ta có:
-Trong mp , gọi
.
Ta có .