Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Cho các số thực
thỏa mãn
. Khi đó số giao điểm của hàm số
với trục
là:
Hàm số xác định và liên tục trên
.
Hàm số bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)
Ta có:
suy ra
sao cho
Lại có: suy ra
sao cho
Mặt khác
Từ đó suy ra
Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)
Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.
Kết quả của giới hạn ![]()
Ta có:
. Khi đó:
(vì )
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
và
xác định và
xác định
Ta có: xác định khi và chỉ khi
Mà cot x xác định khi
Do đó hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho hình hộp
. Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Cho hình hộp . Trên các cạnh
,
,
lần lượt lấy ba điểm
,
,
sao cho
,
,
. Biết mặt phẳng
cắt cạnh
tại
. Tính tỉ số
.
Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Ta có .
Tương tự:
Suy ra mặt phẳng cắt hình hộp theo thiết diện là hình bình hành
.
Mặt khác .
Trong mặt phẳng , gọi
là giao điểm của hai đường thẳng
và
thì
là đường trung bình của tam giác
là trung điểm của đoạn thẳng
.
Trong mặt phẳng , gọi
là giao điểm của
và
thì
là đường trung bình của tam giác
(vì
và
là trung điểm
)
Mà tứ giác là hình bình hành nên
là trung điểm
hay
Lại có
Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?
Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Giới hạn
bằng
Ta có:
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Cho tứ diện
. Gọi
là trung điểm cạnh
, lấy điểm
trên cạnh
sao cho
. Giao tuyến của hai mặt phẳng
và
đi qua giao điểm của hai đường nào trong các cặp đường thẳng sau?
Hình vẽ minh họa

Gọi I là giao điểm của MN và BC.
Giao tuyến cần tìm là DI.
Do đó giao tuyến ấy đi qua giao điểm của MN và BC.
Cho hình chóp S.MNP Q có đáy MNP Q là hình chữ nhật. Giao tuyến của hai mặt phẳng
(SMN) và (SPQ) song song với đường thẳng nào sau đây?
Hình vẽ minh họa

Xét (SMN) và (SPQ) có:
S là điểm chung
Mà
=> với d là đường thẳng đi qua S và song song với
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Hai đường thẳng cắt nhau xác định mộ mặt phẳng duy nhất.
Cho hình lăng trụ
. Gọi
lần lượt là trung điểm của
và
. Giao của
với
là:
Hình vẽ minh họa
Vì là trung điểm của
và
nên
Suy ra cùng thuộc một mặt phẳng.
Trong mặt phẳng gọi
là giao điểm của
và
.
Ta có:
Vậy giao của với
là giao của
với
.
Nghiệm của phương trình
là?
Ta có:
.
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm giao tuyến của MA và SD.
Hình vẽ minh họa:

Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:
IJ là đường trung bình hình thang ABCD => IJ // AB
Hai mặt phẳng (GIJ) và (SAB): lần lượt chứa hai đường thẳng song song (là IJ và AB) và có điểm G chung
=> Giao tuyến của chúng là đường thẳng đi qua G và song song với AB.
Đường thẳng này cắt SA tại M và cắt SB tại N.
Cho tứ giác
và một điểm
không thuộc mặt phẳng
. Trên đoạn
lấy một điểm
không trùng với
và
.Gọi
là giao điểm của đường thẳng
với mặt phẳng
. Khi đó
là giao tuyến của hai mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có (1)
Gọi .
Khi đó:
Từ (1) và (2) suy ra
Trong mặt phẳng . Gọi
.
Khi đó:
Dễ thấy
Gọi T là tập giá trị của hàm số
. Tìm tổng các giá trị nguyên của T.
Ta có:
Vì
Do đó tổng các giá trị nguyên của T là 7.
Giá trị của
bằng:
Ta có:
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Biết
. Khi đó
có giá trị bằng:
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
bằng:
Ta có:
Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

Chọn khẳng định đúng.
Ta có: khi đó:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm.
Vì là một nghiệm của phương trình
nên ta có:
.
Vậy m = - 4 là giá trị cần tìm.
Cho hình chóp
có đáy là hình thang có cạnh đáy là
. Gọi
lần lượt là trung điểm của
, điểm
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
với
.
Vậy giao tuyến của hai mặt phẳng là đường thẳng qua P và song song với AB.
Cho tổng
. Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."
Số nghiệm thuộc đoạn
của phương trình: ![]()
Điều kiện xác định
Vậy có tất cả 15 nghiệm.
Trên đường tròn bán kính 15dm, cho cung tròn có độ dài
. Số đo của cung tròn đó là:
Độ dài cung tròn là:
=>
Cho cấp số cộng
với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Cho hai đường thẳng
và
chéo nhau. Có bao nhiêu mặt phẳng chứa
và song song với
?
Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.
Cho dãy số (un) có u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?
Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.
Giá trị của giới hạn
là:
Ta có:
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Tất cả các nghiệm của phương trình tan (x) = cot (x) là?
Điều kiện
thỏa mãn điều kiện.
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Cho hàm số
. Giá trị của m để hàm số đã cho liên tục tại
là:
Ta có:
Để hàm số liên tục tại thì